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ABSTRACT

INVERSE LIMITS OF FINITE SPACES

BY

Thomas E. Elsner

We make the following definitions. Let S be a topo-

logical space. Subset X c S is co-dense in S iff for

each s 6 S, {s} n X # ¢. Let X” = lim {Xa' f ] be the

GB

inverse limit space of the inverse system {Xa' faB] over

I, a directed indexing set. Let Trazxco a Xa be the usual

projection for each a E I. Subset X ; Xco is strongly dense

in Xco iff for each a E I and xa e Xa' w;1(xa) n X ¢ ¢-

For TO - space X an inverse limit space Xm is a finite

resolution of X iff each Xa is a finite TO - space and

X can be imbedded as a strongly dense subspace in X“. We

will usually write X c Xco identifying X with its image

via this imbedding. It is the purpose of the thesis to in-

vestigate the properties of these TO - compactifications of

X.

In the following outline of principal results, X is a

To - space unless otherwise specified. The numbering of the

results does not correspond to the numbering in the thesis.

Theorem A; Let B be a basis for X. Then there exists

a finite resolution of X, written Xm(B), where I is the

set of nonempty finite subsets of B. We say X is con-

{D

structible from basis B.
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Theorem ;: Each finite resolution of X is homeomor-

phic to a finite resolution constructible from some basis

B.

Theorem ;: Let {Xi} be any collection of To-spaces

with finite resolutions {Xi}. Then the product fix: is a

finite resolution of the product IIXi .

Theorem g; Let S be a compact TO - space and let

P c S be a subspace such that [x 6 S: {—7 = [x]} c F. Then

F is compact.

Theorem g; Let XS be a finite resolution of a Haus-

dorff space X. Then the following are equivalent.

(1) X is compact.

(2) X is co-dense in X”.

(3) X = {x e X“: {*1 = lel.

Theorem Qip Let XOD be a finite resolution of a compact

Hausdorff space X. Then

(1) X has the fixed point property iff Xca has the

fixed point property.

(2) X00 and X have the same Each homology groups.

(3) X is a strong deformation retract of X”.
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INTRODUCTION

Let Xco = lim {Xa' f } be the inverse limit space of

a6

finite TO - spaces, Xa' For each a. let wa:Xon 4 Xa be

the restriction to XOD of the natural projection from the

product space, H Xa' to the factor space, Xa' Say that

subspace X : X” is strongly dense in X00 iff 7r;1(xa) nXfiQI

for each a and xa e Xa' Further, XOD is a finite reso-

lution of a To - space, X, iff X may be imbedded as a

strongly dense subspace of X“. It is the purpose of this

thesis to investigate the properties of these TO - compact-

ifications of the space, X. We make the one notational

convenience that the closure of a singleton (i.e. T;Tj will

usually be written without brackets.

The first chapter is a listing of general results and

properties of inverse limit systems and spaces which are

references throughout the thesis. In the second chapter an

inverse system of finite TO - spaces is constructed from a

general topological space, X, and any basis for X. This

system is used in the third chapter to show the existence of

finite resolutions. After establishing that this construc-

tion is naturally present for every finite resolution, some

general properties of these spaces are discussed. In chapter

four the much more rigid positioning of a compact Hausdorff

space in its finite resolutions is investigated. Chapter

five is a collection of illustrative examples for the

l



previous chapters. The sixth chapter deals with some of the

algebraic topological properties inherited from compact

Hausdorff spaces by their finite resolutions.



CHAPTER ONE

PRELIMINARIES

The following definitions and theorems, with the excep-

tion of L and M, are generally known and are included

for reference for the remainder of the thesis. The notation

here differs slightly from that of [3] or [1] and [2], but

the content is the same. Most proofs are not given and al-

phabetic labelling is used for distinction as reference

theorems.

Definition: An indexing set, I, is said to be directed

by a reflexive, transitive quasi-ordering, g, on I if for

any pair a,B E I there is some y E I with Q,B g y.

In the following, the letters I, J, K will refer to

directed indexing sets which are directed by s unless other-

wise indicated.

Definition: Let {Xa}a€I be a collection of topologi-

:X X be a con-

a6 6 4 a

tinuous map. Require fan to be the identity map for each

cal spaces. For each pair aSB let f

g _’ ' = 0 f . Tha E I and for a B s y require fay faB BY e

collection of spaces and maps {Xa' faP]I is called an

inverse system of spaces over I,
 

Definition: Let be an inverse system ofX .
{ a faB]I

spaces over I. In the product space, “)%y the subspace



XOD = [x 6 H Xa': a s 6 implies ) = xa]f x

OLB(B

is called the inverse limit space of the inverse system

{Xa' f I. (By xa 6 Xa we mean the a-th coordinate of

(16

x E H Xa for each a e I. That is, for Na: 11X(I 4 Xa the

coordinate projection onto the factor space, we have

N (x) = x .) We also use the notation X = lim {X , f I.
a O.

m ‘- (1
dB'

The Xa are called factor_spaces of the limit space. The

maps de are called the bonding_maps of the inverse sys—

tem. This structure and notation may be referred to in these

preliminaries and in later chapters without complete prefac-

ing.

Definition: Let {Xa' f 3 and [Y , g } be inverse

a6 Y Y5

systems of spaces over I and J respectively. Let Y:.I» I

be any map. For each y 6 J, let w : X 4 Y be a con—

Y YIY) Y

tinuous map. The collection of maps {mY}Y€J is an inverse

system gf_maps iff whenever y s 5 in J, the following

diagram commutes.

 

 

f

X Y(Y)Y(6) 3? X

YIG) "’ .Y(y)

I

£06
“95

9Y6

Y(5 ._m_._m_u--m_-- -.mmiag> 'YY

Usually I = J with W the identity map. NOW let X0° and

Y be the inverse limit spaces of the above systems. Define

i: X 4 Y as follows. For each x e X”, let

a: Q



¢(x) (mY(xY(Y)))Y€J

That is, if WY: nlfiy4 YY is the coordinate projection, we

indicate §(x) by giving all of its coordinates. i is

called the induced or limit m§p_g£ the inverse system 9§_mgp§,

{my} and we write Q = lim {mY].

Henceforth Va, for each a e I, will represent the'

restriction of the coordinate projection to the subspace,

X , unless otherwise specified.
(D

Theorem.A; (i) The composition of limit maps is the limit

map of the corresponding inverse system of

compositions.

(ii) The inverse of a limit map is the limit

map of the corresponding inverse system

of inverse maps.

Theorem B; Let i: X 4 Y” be a limit map as above. Then
Q

s is continuous and unique with respect to WY c Q = mYo WY(Y).

Definition: For directed set, I, J c I is cofinal

in I iff for each a E I there is B e J such that a fi B.

Theorem Q: Let i be given as above and let Y(J) be co-

final in I. If each m , y 6 J, is an injection (bijection,

Y

homeomorphism) then i is an injection (bijection, homeomor—

phism).

Theorem D: For J c I, the system {Xa' obtained by
faB}J

restricting indexes to J is also an inverse system. Indi-



cating the limit spaces as x: and X3, the collection of

identity maps iazxa 4 Xa for each a E J induces a limit

 

 

map Q: X: 4 x: called the natural projection into XJ. é

sends (xa)a€I to (Xa)a€J' If J is cofinal in I then

the inverse limit spaces are homeomorphic by Theorem C.

Theorem E: The coordinate projections Va: X0° 4 Xa are con-

tinuous and the following diagram commutes when a s B in

I.

/\.,
%-___i__.afl_____;§xa

Theorem E; For each a e I let Ba be a basis for Xa'

O -1 O 0

: , bThen the collection {Fa (Ud) Ua 6 Ba a E I} is a aSlS

for X .

m

We note that by Theorem D any cofinal J g I may re-

place I in this construction.

Theorem G: If each X is Hausdorff then X ==lim{X , f I._._.___.___.._.
a

m ‘- CL GB

is a closed subspace of H)&1.

Theorem H: Let each Xa be compact and Hausdorff (or finite)

and nonvoid. Then Xco is compact and nonvoid (nonvoid).

Theorem I: Let A c X and let A = w (A). Then {A I

‘*“"““ m a a a

and (Ag? are inverse systems of subsets via the restricted

bonding maps and we have

—- -1 —1.—— . -
A=nwa WI=0WQ (A)=1m{A‘I



Theorem J: Examples

(1) Let each Xa be a distinct copy of space, X, and let

map fa be the identity whenever a s B. Then Xco is home-

5

omorphic to X.

(2) If indexing set, I, has a maximum element, 0, then

Xm is homeomorphic to XQ.

The remaining results present the well known equiva—

lent definition of an inverse limit space as a universal map-

ping space. Initially the idea of a Hausdorff inverse limit

was hoped to be useful. Theorems L and M show that nothing

is gained by its definition. See Lemma 5, page 29 and Ex-

ample B, page 38.

Definition: Let {Xa, de] be a collection of spaces

and continuous maps. Space Y with continuous maps {ga} is

a left approximation of {Xa' I iff the diagram belowfaB

commutes for a < 6.

Definition: A left approximation (X, fa] of {Xa' faB]

is universal over a given category of left approximations

{Yi' gai] iff for each Yi there is a unique continuous map

hi: Yi 4 X such that the following diagram commutes.

 

faB

\ X
X

XB ‘7 a ,/ at
,r' i ‘f

95 g /;P I ”-
a k’ :f .

. X .____-,_-_ I . of; _. . ))X

Y gfix I //’fl (1

. 9.. } Ihi/ 9.:
Left approximation ‘~\Y '1

1

Universal approximation



Theorem 5: [L, Va] is the inverse limit space of inverse

system [Xa' f ] iff L is universal over the category

(16

of all left approximations.

Definition: Let X be Hausdorff. Left approximation

(X, fa] is a Hausdorff inverse limit of inverse system

{Xa' GB

all Hausdorff left approximations.

I iff (X, fa} is universal over the category of

Theorem L: Let X = lim [X , f ]. Let subspace X c X
—----——-— co :— a oo(15

be Hausdorff. Then X is a Hausdorff inverse limit of

(xa, faB} iff x = xco .

Proof: For each x E X”, [x] is Hausdorff. Hence there

is a unique hx: {x} 4 X such that the diagram below commutes

for a s B. This implies that all coordinates of x and

hx(x) are the same. Hence x e X. The converse is trivial.

 

 

,X

/, A

'TI'B /// Tl'a

,/’f

XI: ‘15 e; Xa

h 27

W;\\\\\\ X ’//%a

//

Theorem M: Suppose (X, fa] is a Hausdorff inverse limit

of {X , f I and {X , w ] is the inverse limit. Then X

0'. (16 m C1

and Xm are homeomorphic.

Proof: By Theorem L we need only show that X is im-

bedded in Xm. The universal mapping property of X0° implies

that there is a unique continuous map h: X 4 X“ such that

the diagram below commutes. Map h is one-to-one since



points are distinguished uniquely by their coordinates. If

distinct points x,y e X or their images have the same co—

ordinates then maps from the singletons into X as in the

diagram of Theorem L are not unique. Now X0° and X are

subspaces of the product H X0 and the usual projections

 

 

p are such that p = f and p = n . Then the map

a aI a a| a
'X X

-1 °°

h. : h(X) 4 X is continuous into the product since for each

a , p 0 h-1 = n is continuous.

a 0

X0:

// "\
w / w

P M
x14 fflfi } x

BR ,7, O.

f‘ h A?»

B \ / a
\ ,r’





CHAPTER TWO

CONSTRUCTIONS

In this chapter we construct a particular inverse limit

space whose factor spaces and bonding maps are defined in

terms of finite collections of basic open sets from an arbi—

trary topological space and the partitions that these col-

lections generate.

Definition: A collection u of subsets of a set X

is a partition of X iff the subsets of X in u are non-

void and pairwise disjoint and uu = X. Partition u pggpr

erly partitions a subset F c X iff F is a union of sub-

sets that are elements of u. Partition u properly refines

partition u iff each subset in u is properly partitioned

by y.

In this chapter, X is a topological space and B is

a basis for X. Let I = {a c B: a # ¢ and finite]. For

each a E I define the relation (a) on X by x(a)y iff

IUEOL=XEUI=IUEOL=YEUI

Lemma I: (i) For each a E I, (a) is an equivalence relation.
 

(ii) Let Xa be the partition of X induced by

(a) for each a e I. Direct I by inclusion writing a g B

if a is contained in B. For a s B the partition XB

properly refines Xa

lO
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(iii) We will consider Xa as a point set and will

write xa c X when considering xa e Xo as a subset of X.

Let x e X . For each x E x c X we have

a a a

xa=nIUea:er}-u(Uea:xzu}

Hence partition Xo properly partitions each U E a.

Egggfg (i) Clear since relation (a) is based on the

equality of subsets of a 6 I.

(ii) This follows directly from the definition of a S B.

The proof of part (iii) also helps clarify this point.

(iii) Now yexa iff x(o)y iff {UEa:er]=[U€a:y€U]

iff y e n [U 6 o: x 6 U} - u{U e a: x E U}. Of course we

have xa = {y e X: x(a)y]. Finally for UO 6 a, x 6 U0 and

xa the equivalence class of x, we have shown that xa c U

by the above and so Xo properly partitions U0.

For each a e I we define fa: X 4 Xa as follows. For

each x 6 X, f (x) = x E X iff x 6 x g X. This natural

a a a a

projection is well defined and surjective by the definition

of Xa as a partition. Now topologize Xo so that fa is

an identification map. The resulting space is sometimes

called a decomposition space for X. (See [5], p. 244)

Whenever a s 6 define f ° X 4 Xa as follows. For

(16' 6

each x X , f x = x iff x c x c X. This ma is

BEES ae‘a’ a a a p

well defined and surjective since partition X properly re-

B

fines partition Xa' Given all of the previous constructions

we prove the following.
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Theorem I; (i) U c X is open in X iff u x c X

---—- o a
X EU

is open in X. a a

(ii) Each Xa is a finite TO - space.

(iii) For a s B, foB is an identification map.

(iv) The collection {X , f I is an inverse

o o6 I

system of spaces.

Proof: (i) This is simply restating that the map fa

is an identification map.

(ii) Xa is finite since a E I is a finite subset of

B. Let x , y 6 X be distinct elements. Let x E x c X

a a a a

and . ' ' ' = d f = .Y 6 ya ; X By definition fa(x) xa an o(y) Yo

Further, since x and y are in distinct equivalence clas—

ses, the definition of (o) implies that there is some

U 6 a such that either x e U and y f U or x f U and

y 6 U. In either case by (i) above and (iii) of Lemma 1,

fa(U) is open in X and provides TO - separation for Xa

a d .n ya

(iii) By our definitions we have f o f = f and so

o6 B o

f;é = fBo f;l. Further the proper refinement of Xo given

by XB implies that for each open Uo c Xa'

-l -l —l

f f f U = f U .B ( B( a ( o))) a ( a)

Now since fa and fB are identifications, Uo is open in

. -l -1 -l -l -l .

Xo iff fa (Ua) — ffi (fB (fa (Ua) )) — f5 (foB (Ua)) is open

. . -1 . . . .
in X iff foB(Uo) is open in X6. And so fofl is an iden

tification.



' F s , f = f 0 f from the defini-(iv) or o s B y GY GB BY

tions. Similarly, foo is the identity on Xa for each

a E I.

Let Xm(B) = limea, f ] be the inverse limit space

(16

of the inverse system just constructed, where B indicates

that such a limit space exists for each basis, B, of X.

We note that by Theorem H, X°(B) # ¢. We define a map

f:X 4 Xa(B) as follows. We give each coordinate of images

using the canonical projection Tra:Xon 4 Xa for each a E I.

For each x e X and a E I let wa(f(x)) = fa(x). That

the resulting map f is well defined and continuous follows

from Theorem B and (l) of Theorem J. That is, f is the

induced or limit map from X==lim{X,:i into X ==lim{X ,f I
oB]I B I

where the inverse system of maps is (fa: a g I}, since

Wa° f = fa and the limit map is unique with respect to this

property.

Theorem ;: The map f:X 4 f(X) is a continuous open sur-

jection.

Proof: Continuity is shown above and the surjective

property is obvious. To show that f is open it is suffic-

ient to show that for each U e B, f(U) is open in f(X).

Let a = {U} c B. From the proof of (ii) in Theorem 1,

fo(U) = Uo is open in X. Since Hg is continuous,

w;l(Ua) is open in Xan and then w;1(Ua) n f(X) is open

in f(X). Claim that f(U) is w;1(ua) n f(X). This is

quite clear when from (iii) Lemma 1 we see that Ua is



l4

indeed a singleton in Xo and that f;l(Ud) = U. Further,

from the discussion preceding this theorem,

-1 _ -1
nu (0a) m f(X) _ f(fa (van.



CHAPTER THREE

FINITE RESOLUTIONS: EXISTENCE AND GENERAL PROPERTIES

In this chapter we see how the constructions of the pre-

vious chapter motivate the definition of a finite resolution

of a To - space. We further find that these constructions

encompass all finite resolutions. First we find how TO -

separation of the given space affects the structure previous-

ly given.

Theorem ;: The mapping f:X 4 X“ of Theorem 2 is an imbed-

ding iff X is a T0 - space.

nggf: Since each factor space, Xa' is a To - space,

f(X) is always a T0 - space. Hence if map f is an imbed-

ding then X is a To - space.

Conversely, if X is a To - space then we need only

show that the map is injective and the result follows by

Theorem 2. Let x,y e X be distinct points. In basis, B,

there is some open set U such that either x e U and y E U

or x f U and y 6 U. In either case, letting a = [U] E I

we find by the definition of f:X 4 Xm that f(x) # f(y)

since their a-—th coordinates fa(x) and fa(Y) are dis-

tinct. Hence the map f is an imbedding.

dB]I' Subset F c X0° is

strongly dense in X iff for each a e I and xa E Xa'

Definition: Let X = lim[Xa, f

G)

15



l6

'1

Fa (Xa) 0 F ¢ ¢-

We note that strongly dense implies dense in the usual

sense for a subspace because of Theorem F. It also implies

that each Va is surjective. Henceforth when X is a TO-

space and imbedded in an inverse limit space as in Theorem

3 we will write X c Xm, identifying X with its image.

By the definitions in the constructions we have seen that

v o f = fa in the above. Then considering X c Xan ‘we have

a.

f = w and where confusion is not likely, we will write

a aIX

w :X 4 X .

C1 (I

f and let X be a

oB}I

To - space. Then X0" is a finite resolution of X iff

Definition: Let X = lim{X ,
a: G- a

(i) Each Xa is a finite To - space

(ii) X can be imbedded as a strongly dense subspace

of X .

on

Of course the constructions motivate this definition and

it is clear that the inverse limit space of Theorem 3 meets

these requirements. The strong density follows from the non~

void condition on the subsets of a partition. That is, each

xa e Xa corresponds to a nonvoid subset of X and so con-

sidering X c Xco after imbedding, w;1(xa) n X = xa c X.

We temporarily call such a finite resolution and any natur-

ally equivalent to it a basic finite resolution, since it is

constructed from a basis for X. However we now prove the

following.



17

Theorem 3; Every finite resolution of a To - space is basic.

Proof: Let X = lim[X , f I be a finite resolution
_""—""‘ on Q— a (161

of T0 - space X. By Theorem F we construct basis B = U G

_ QEI

for X where G = {w 1(U ) n X: U open in X I for each

a o a a o

a 6 I.

We must now show the following.

(i) That Xo has the same number of points as the finite

space generated by Go via the relation (Go) as described

in Lemma 1.

(ii) That walx: X 4 Xa is an identification map.

(iii) That the collection {Ga} is cofinal in the set of

all finite subsets of B, ordered by inclusion.

Then by Theorem D, X0° is naturally equivalent to the basic

finite resolution constructed from B.

(i) Since Xo is a T0 - space we have for each x E X

r1 (1

that

{xa}=n[Ua e wama): xa e um} - UIUa e Wa(Ga): xanaI

Since inverse maps commute with intersection, union and com-

plementation, the characterization of points in the finite

space generated by relation (Go) given by (iii) of Lemma

1 shows that the partition associated with (Go) is identi—

cal to that of w;l(Xa) n X.

(ii) Since X is strongly dense in Xm the map na:X 4 X”

is surjective. The surjective restriction of an identifica-

tion is again an identification. The map wa:X 4 Xo is the

restriction of Wu: H)&14 Xo which is an identification map



 

.
I
.
l
l
,

\
I
l
u
.

I
I
I

I
I
I
I

l
l
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(in fact an open mapping).

(iii) Let u be any finite subset of B. For each U 6 u

choose some a E I such that U 6 Go' Label the resulting

finite subset Io c I. Since I is a directed set there

is some B E I so that a s B for each a E 10' Hence

it is sufficient to show that for o g 6, Go c GB. Let Uo

be open in Xo' Then f;;(Ua) = VB is open in X6 and

v-1(v ) n X E G . By Theorem B we get

B B B

w“1<v ) = w‘lf'1(U ) = n'1(U )
B B 5 GB a a o

and so v-1(V ) n X = W-1(U ) n X E G .

B 5 a o a

Since Uo was arbitrary we have Go c Gfi’ So u ; GB for

B given as above and {Ga} is cofinal as required and Xm

is basic.

When necessary for clarity we will write Xm(B) to in-

dicate that the basis B has generated the finite resolu-

tion. In general for any a E I we write Xa is the finite

space generated by a to indicate all of the construction

that yields the factor space Xo'

We have already noted that if X” is a finite resolu-

tion for X then strong density implies that wa:Xm4 Xa is

surjective for each a 6 I. That this condition on the pro-

jections is sufficient for a given inverse limit space of

finite TO - spaces to be a finite resolution of some To —

space, X, is also clear. For each a E I and x“ E X

U.

choose z(x ), an arbitrary element of the nonempty subset

o
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n (xa). Then X” is clearly a finite resolution of

X = {z(xa) : a E I and xa e XaI.

Further note that a finite resolution of a To - space,

X, is also a finite resolution of any set or space between

X and Xco itself. That is, if X g Y c X» then X“D is

a finite resolution of Y since Y inherits the strong

density of X.

If F is a subspace of To - space X, then F is a

To - space and for basis B of X, F n B = [F n U: U 6 B]

is a basis for space F. The expected relationship between

the finite resolutions Fw(F n B) and Xm(B) is shown in

the following.

Theorem ;: Fm(F n B) is homeomorphic to the subspace

[x e Xm: w;l(wa(x)) H F # ¢ for each a 6 II c X .
m

Proof: Intersecting each subset of a partition of X

with the subspace, F, yields a partition of F. Let

F n a = (F n U: U 6 a] for each a e I.

The partition FFflo given by relation (F n o) is that of

the intersection of partition Xa of X and the subspace

F for each a 6 I. For convenience we relabel this space

as Fo' As usual I = {a c B: o # ¢ and finite] and for

each a E I we define ma:Fa 4 Xo as follows. For each

6 F let 2 = x iff z c x c X. B our revious

a o cDon( a) a o o y p

constructions each mo is an imbedding. Also the collection

{ma} is an inverse system of homeomorphisms into and so in—
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duces the map lim {ma} = Q :F“(F n B) 4 XQ(B) by Theorem

B. Further, F” is imbedded in Xm by @ via Theorem C.

Also recall the fact that Q is unique with respect to

race = mac WFfla where WFfla: Fan 4 Fa is the canonical pro-

jection.

Let 2 6 F00 so that @(z) = x E X”. Suppose there is

some a E I such that W;l(wa(x) = xa) n F = ¢. Then

x ( wa(Fa) by the definition of ma. But na(¢(z)) = x

a (I.

which contradicts the uniqueness condition for map @ given

above. Hence w;l(xa) n F # ¢ for each a E I.

Conversely, let x E Xan such that for each a E I

w;1(xa) n F % ¢ and consider point z 6 F. with coordinates

l
ana(z) = ”Ffla(flo (xa) n F). Then for each a E I the defi-

nition of ' ' = e =mo implies that ma(ana(z)) xa and so (2) x

Since mo o ”Foo = Va o @. Hence @(Fm) is the subspace of

the conclusion.

Products of finite resolutions also follow an expected

pattern.

Ihggggm_§: Let X and Y be TO - spaces with finite reso-

lutions XOD and Yco respectively. The product X0° x Y0°

of the finite resolutions is a finite resolution of the pro-

duct X xY.

Proof: Let B(X) and B(Y) be the bases which gener-

ate X and Yan and we write;

Q

X.(B(X)) = 1im [Xo' faYI and Y“(B(Y)) = 13m (YB, g I.
so



21

We first prove that the limit space

6

B = f
I= limz F [xa x Y

Y

, h

B a av X 966

is a finite resolution of Z = X)(Y generated by the basis

B(X) x B(Y). The second part of the proof shows that Z”

and X00 x Yo are homeomorphic.

Let a x B = {U x v: U 6 a and v e 8]. Now a x B

is a finite subset of the basis B(X) x B(Y) for Z. Let

ZoB be the finite space generated by a x B. Since Xo

and YB represent partitions of X and Y and are topolo—

gized by identification, and since a x B consists of all

possible products from o and B, ZoB = Xo x YB. Clearly

the collection [a x B} is cofinal in

(a: F c B(X) x B(Y) and E finite and nonvoidI

and [fay x ng} are the bonding maps necessary. Hence Z0°

is a finite resolution of Z as required.

Now let 2 e 2”. Each coordinate z of 2 has cor-

a6

responding coordinates in Xa and Y . Call them xa(z)

B

and yB(z). They related in the partitionings as follows.

-1 _

”a [xa(z)] n x = p [wa ) n z]

‘1

W P [WoB(ZoB) 0 Z]

-1

IyB(2)] n Y Y

B

where px and py are the first and second coordinate pro-

jections from the product space Z = X)(Y and N :Z 4 Z

a8 w GB

is the usual coordinate projection from the inverse limit
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space. Define the map ¢:Zon 4 meYan as follows. For each

2 6 Zno let @(2) = (x,y) iff for each a and B, xa = xa(z)

and y = (2). By this construction i is well defined

B YB

and (x,y) E Xm)(Y . Further, i is surjective for if

(x,y) E X xY let 2 6 HZ such that for each a, and

co co ()6

B the coordinate

-l

B (YB) n Y)Iz = 7r [(W;1(xa) n X) x (7r

dB o6

Now zoB is well defined because of the constructed parti—

tions and the resulting z E Z0° and f(z) = (x,y).

i is injective for if w # 2 then for some aB we

must have woB # zaB and hence either xa(w) # xa(z) or

yB(w) # yB(z) and so ¢(w) # §(z). Continuity and open map

properties for i follow from the observation that from the

l - l. - -l

construction i (Va (Uo) x NB B

is, the inverse image of a basis for X x Y is a basis
Q Q

1 _ .-

(VBH -— "a (Ua x VB). That

for Z”. This completes the proof.

For infinite products the theorem is simply a notation-

al exercise and the result hinges on the fact that a finite

collection of open sets in nlfi involves proper open sub-

sets of Xi for only a finite number of the indexes,

i1' i2, ---, in. Then

ii i
k

E aka—lo "'0 DI

i

O‘1XOLZ><"°><OL = {U xU X"'xUanIX=U

i£i
k

is still a finite collection of open sets in Hxl. The fin—

ite spaces, mappings, etc. follow as before.
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Continuous mappings onto TO - spaces induce continuous

mappings between certain of their finite resolutions in the

following manner.

Theorem 1: Let X and Y be T0 - spaces with bases B(X)

. ' = , = , tand B(Y) Write x0° {xY gY6IJ and Ya {Ya faB}I 0

represent the finite resolutions generated by these bases.

Let m:X 4 Y be a continuous surjection such that

w-1(B(Y)) ; B(X).

Then there exists a continuous map Q: X 4 Y"D such that

@IX = m.

Proof: By hypothesis the correspondence a 4 m-1(o)

is a well defined order preserving map from I into J.

Further, since m is surjective, m preserves all neces-

sary set operations so that by (iii) of Lemma 1

“3 (Km-1 ((1)) = Yo

where equality means that the partition on Y is the same.

In fact this shows that Xw_1(a) and Y” are homeomorphic.

Let the homeomorphism linking corresponding points (subsets)

in the partitions be written as m :IX -1 4 Y .
o w (o) o

If n :Y 4 Y and w —1 :X 4 X -1 are the usual

(1 °° 0L cp (o) co cp (a)

coordinate projections then for each 2 E X we have

m-1((X)

I-l

ma (2) = Wa(cp(ncp-l(a) (z) n X)).

Also the construction preserves partitions in that
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wa(m<w;31(a)(wm-1(a)<x)) n X)) = wa(oIX))

for each x e X. By chasing subsets in partitions this shows

that for a s B in I the diagram below commutes.

f

 

m5 T

 

g

Xm‘1(e) %Xm-l(o)

Hence the collection (ma: a E II is an inverse system of

maps and we let Q = lim {ma} be the induced map of Theorem

B. Then i: X00 4 Yan and e is continuous and unique with

respect to vac e = So for x E X we have

Cp(1° Wm‘IIQI'

for each a E I.

-l

wa(¢(X)) = oa(wm_1(a)(X)) = wa(w(Ww-1(a)(ww_1(a)(X)) n X))

= W‘ &0(X)).
(1.

Hence §(x) = w(x) for each x E X and the proof is com-

plete.

Example I: We have constructed a finite resolution

XQ(B) of To - space X, for each basis B of X. Order

the bases by inclusion. For bases B c B’ the previous

theorem implies the existence of a continuous map

<I> ‘Xe‘B’I 4 XQ(B)
BBI

such that i is the identity map on X. If we then write
BB'

X B’ = 1' then X (B) is homeomorphic to
D
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II where I = [o c B c B’: o e 1’} c I’. That

is just the natural projection given by Theorem

limIXa, foB

is, QBB’

D from lim[Xa, faBII, into lim [Xa' faBII. Then [Xm(B),<I>BB,I

is an inverse system of spaces. By (2) of Theorem J the

resulting inverse limit space is homeomorphic to X(T) where

T is the basis of all open sets of X. Hence inverse lim-

its of finite resolutions yield nothing more of interest.

We call X(T) the total resolution of X.

Homeomorphic finite resolutions occur for certain col-

lections of bases as shown in the following.

Lemma ;: Let a be a finite nonvoid collection of open

sets of space X. Let a + = [intersections of sets from

d}. Then the finite TO - spaces, Xo and Xo+' generated

by a and o+ are homeomorphic.

Proof: It is sufficient to show that the partitions

Xo and Xa+ generated by relations (a) and (a+) are

identical. Since a : a+, properly refines Xa and so for

x,y E X x(a+)y implies x(a)y. Conversely suppose that

x(a)y. Let ux = [U E o+= x 6 UI and uy==[U E a+: y 6 UI.

We wish to show that ux = uy which implies that

x(a+)y. Hence x(a)y iff x(a+)y and the partitions are iden~

tical.

Case 1: ux = ¢. If y E U E o+ then there is some V E o

with y e V as U is an intersection from d.

Then x(o)y implies that U E ux. This contradicts

ux = ¢ and hence uy = ¢.
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Case 2: Let x E U 6 a+. We may write U = nUi where each

Ui E Q. But x E U iff x E Ui E o for each i

iff y E Ui 6 o for each i iff y 6 U. Hence

ux = uy.

Theorem p: Given a basis B for a T0 - space X, construct

basis B+ = [finite intersections from BI. Then finite reso-

lutions Xw(B) and X”(B+) are homeomorphic.

Proof: First note that if I: [ocB: a74¢ and finite}

then I+= [o+§:B+:a<;BI is cofinal in J: [y:B+:y;é¢ and finite}.

Hence by Lemma 2 and Theorem C the finite resolutions above

are homeomorphic. The homeomorphism intended here is

lim[maI = ¢:Xm(B+) 4 Xm(B) where 4 Xo is the homeo—mazxa+

morphism of Lemma 2 that preserves subsets of the partitions.

Corollary: Let B’ be any basis such that B c B’ c B+.

Then Xm(B’) and Xm(B) are homeomorphic.

Proof: The induced homeomorphism of Theorem 8 is clear-

ly the same as the projection of Example 1 where B c B+.

Hence any B’ in the position given yields a finite resolu-

tion homeomorphic to Xm(B) as it is projected through this

homeomorphism. More specifically, for a c B, (a+} is co-

final in [B c B+: B # ¢ and finite} and this implies that

[a+ n B’: a c B} is cofinal in [y c B’: y # ¢ and finite}

and the generated finite spaces are still homeomorphic to

the original Xa's.



CHAPTER FOUR

COMPACT HAUSDORFF SPACES

In this chapter we find that separation properties and

then compactness for a given topological space force a more

rigid positioning of this space in its finite resolutions.

Several characterizations and properties are found in the

compact Hausdorff case.

Definition: Let S be a topological space. Subspace

X c S is T2 - separated in S iff for distinct x,y E X

there are disjoint open sets U,V in S such that x E U

and y 6 V. Subspaces X and Y of S are T - separated

2

in 8 iff there are disjoint open sets U,V in S such

that X c U and Y g V.

Lemma 3; Let XQ(B) = lim[Xa, be a finite resolutionf

QB}I

of Hausdorff space X. Then X is T2 - separated in Xco

Further, if Y and Z are T2 - separated in IX then ‘Y

and Z are T2 - separated in Xco

Proof: Since X is Hausdorff there are U,V 6 B with

U n v = ¢. x e U and y e v. Let a = [U,VI e I. Then by

(iii) of Lemma 1 w (U) = U and v (V) = V are disjoint

o a o a

open sets in Xo' Continuity of Va implies that h;1(Ua)

—1
and fig (Va) are disjoint open sets in XOD containing x

and y respectively. Now let u and U be disjoint open

sets of X with ‘Y c u and Z c U- Then u = UU and

27
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U = UV where U's and V's are basic open sets from B.

For each U involved in UU let GU = {U} 6 I. Then the

factor space X has two points x and y where

1 ou 0U oU

w- (x ) n X = U. Then clearly

"U “U

-1

[U ( ) nx=u.w x ]

Similarly define av and x0 and get

V

[U W-1(X )] n X - U

“v 0v

Since singletons x and x are open in X and X

_1°‘U 0’v _1 GU 0v

the sets u’ 2 UN (x ) and U’ = U W (x ) are open in

0U “U

X” and they contain u and U and hence Y and Z re-

spectively. If u’ n U’ # B then since X is dense in

X”. u’ n U' n X # ¢. But this contradicts u n U z ¢ since

by construction we have u’ n u’ n X = u n U. So U' 0 U’==¢

and Y and Z are T2 - separated subspaces in X”

We note that a similar definition and result is easily)

proved for T1 - spaces. Also, the condition of being a T2-

separated subspace is a strictly stronger condition than

that of being a Hausdorff subspace. The importance of this

is seen in the following.

Definition: Let S be a topological space. Subspace

X c S is co-dense in S iff for each s e S, s n X # ¢.

The closure of course is taken in S.

Example ;: Let S = [x,y,z} with topology given by

T = [¢,S,[x,y},[y,z},[y}}. Then X = [x,z} is co-dense in S.
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Clearly, for T1 - space S, X is co-dense in 8 iff

X = S. HOwever, Example 2 shows that X being co-dense in

S does not imply that X is dense in S. Further, note

that in Example 2 the subspace X is Hausdorff but not T -
2

separated in S and [y] = S. This shows that T2-separation

is necessary in the following.

Lemma g; Let X be co-dense and T - separated in S. Then

2

§.n X is a singleton for each s 6 S.

Proof: Let s e S and let x,y 6 X be distinct points.

By T - separation there are disjoint U and V open in

2

S with x e U and y e V. Hence at most one of the ele-

ments x and y can be contained in {s}.

We now prove a general result which is used in charac-

terizing the position of a compact Hausdorff space in its

finite resolutions.

Lemma 5: Let X” = lim[Xa, f be an inverse limit of

dB}I

finite spaces. Then Xm is compact.

Proof: Let Xé be the same point set as Xa' but with

the discrete topology. (Then for each a E I the correspond-

I . . . . .

ence xa * X defines a continuous bijection mo:xd 4 X
a a'

Then if X’ = lim[X’, f’ ‘where (x’ = x’ iff
a e a

I

dB]I foB B a

’ = ’ ' ' inversefoB(mB(xBn ma(xa), the collection {ma} is an

system of maps with limit map §:X; 4 X0° also a continuous

bijection. Since Xé is compact and Hausdorff, x; is com-

pact and Hausdorff by Theorems G & H. Then Xco is compact

as the image of x; via Q,
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Corollary: The inverse limit space of an inverse sequence

of finite spaces is the continuous image of the Cantor dis—

continuum.

Proof: This is discussed further in Example D of chap-

ter five.

Corollapy: Every finite resolution of a T0 - space is com-

pact. Every finite resolution of a connected To - space is

a T0 - continuum.

Proof: The first result follows directlwarom the

previous lemma. The second follows from the additional ob—

servation that the space is dense in its finite resolution.

The following is a well known result on compact To -

spaces.

Lemma 6: Let S be a compact To - space and let F be

any nonvoid closed sUbset in S. Then F contains a closed

singleton.

3392;: Let 3' = [Fi e F:Fi 7! o and F1 closed in F}.

Since F is closed in S, each F1 is closed in S. Or-

der J'by inclusion and let a. be any simple chain from J.

By the compactness of S, n c.# ¢ and so 0 c,e J. By

Zorn's Lemma, J has a minimal element M # ¢. Let x,y E M.

The minimal property of M implies that §'= §'= M. Since

S is a T0 - space this implies that x = y and hence M

is a singleton.
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The next result is a direct consequence of Lemma 6 but

to the best of our knowledge it is not well known.

Ibeprem g: Let S be a compact TO - space and let X be

any subset of S such that every closed singleton of S is

contained in X. Then X is compact.

Proof: Let u be any open covering of X. Then u

also covers S. If not then S - U1; is nonvoid and closed

and must contain a point in X. Contradiction! Now 8 is

compact and so u contains a finite subcovering of S and

hence of X c 8. Therefore X is compact.

Theorem 10: Let XOD = lim [Xa, be a finite resolutionf

oB}I

of Hausdorff space X. The following are equivalent.

(i) X is compact.

(ii) X is co-dense in X“.

 

(iii) X = [x e Xeo : [x] = {XI}.

2399;: (i) implies (ii). By the strong density of X

in Xm. J = [U;l(;;727) n X =a.E I} is a collection of non-

void closed subsets of X for each 2 E X. Since I is

directed, (ii) of Lemma 1 implies that J is a filterbase

on X. X is compact and so my 5£ Q5. By Theorem I,

nJ= E n x.

(ii) implies (iii). By Lemma 3, X is T2 - separated

in X00 and so by Lemma 4, [x e Xm::Tx_ = [XI] c X. Now let

x E X and y e X with y # x. If y E X then Lemma 3 im-

plies y f E; If y Z X then X being co-dense implies

that there exists 2 e X with z E y. Suppose y e E1
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Then 2 6‘; and so 2 = x. Hence x 6‘; and y 6‘; and

this contradicts the To - separation of X”. 80 y f El

We have shown that for each y # x, y z i: That is, 2': x

and X; [x exm:_[;I-= {XI}.

(iii) implies (i). Direct from Theorem 9.

We note that the equivalence of (ii) and (iii) is more

general than given above. The structure of Xon is not

necessary, but just that X is a T2 — separated subspace of

a compact To - space. That is sufficient for (ii) implies

(iii) and then (iii) implies (ii) by Lemma 6.

Corollary: Let Xco be a finite resolution of a compact

Hausdorff space X. Then X is a maximal Hausdorff sub-

space of Xm.

Proof: Let X g Y ; XOD such that Y is Hausdorff. If

y E Y -X then there is some x e X such x 6 §; since

X is co-dense in X . Hence Y is not T2 - separated in
(D

XOD but Xm is a finite resolution of Y a X. This contra-

dicts Lemma 3 and so Y -— X z ¢.

A final indication of the position of X c X in the
co

compact Hausdorff case is given in the following.

Theorem 11: Let Xm(B) = lim [Xo' f be a finite resolu-

dB}I

tion of a compact Hausdorff space X. Then X is a retract

of X o

m

Proof: Define r:Xon 4 X as follows. For each 2 G X ,

let r(z) ='; n X. This map is well defined by Lemmas 3 a 4
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and Theorem 10. That is, EDn X is a singleton. Also, by

Theorem 10, r(x) = x for each x e X c X”.

To show that r is continuous it is sufficient to show

that r-1(U) is open in X0° for each U 6 B. Let 2 E Xco

such that r(z) E U. Since X is normal there is V E B

with r(z) e V c'V c U. Let a = {V} E I. We have seen that

in Xo the set wa(V) = Va is an open singleton. Then

w;l(Vd) is open in Xm. By this construction wa(r(z))==va.

Hence w (z) = V since if v (z) = X - V then

a o a o a

wa(r(z)) = wa(z n X) ; TTa(Z) C Wa(Z) = Xa— Va

contradicting the construction. So 2 e W; (Va). It re-

mains to show that w;l(va) : r—1(U). Suppose not and

y E w;1(va) such that r(y) E U. Then the normality of X

implies the existence of W E B such that W DIV = B and

r(y) e w.

Now let [3 = {v,w} e I. In x9, 7TB (V) = VB and

WB(W) = WB are open points and Va and VB represent the

same subset in the partitions of X. We have the following

contradiction.

W = wB B(r(y)) =WB(ynX) swam CTrBW): VBsXB “-WB.

l -1
Hence 2 E w;l(va) c r- (U) and so r (U) is open in Xm

Corollagy: If X is a compact metric space then Xon is a

semimetric space.
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Proof: Let d:X)<X 4 R be a metric on X. For y,ze§X

let d (y,z) = d(r(y),r(z)). Then do is clearly a semi-

metric on XOD and d (y,z) = 0 iff r(y): r(z).

The next general result shows that the retraction of

Theorem 11 is the only one possible.

Lemma 7: Let X be a Hausdorff co-dense retract of space

S. Then the retract r:S 4 X is unique and for each s E S

ggppf; A Hausdorff retract of a space is clearly T2 -

separated in that space. Hence, by Lemma 4, the given map-

ping is well defined. Now let q:S 4 X be a retraction and

suppose for some 3 E S that q(s) # r(s). Since X is

Hausdorff there are disjoint open sets U and V contain-

ing q(s) and r(s). Then q-1(U) and q-1(V) are dis-

joint open sets in S. But r(s) 6'; and r(s) e q-1(V)

imply that s E q—1(V) and by the construction 3 e q-1(U).

This contradiction implies that q(s) = r(s) for each s g S.

 
Definition: Let X be a Hausdorff (To -) space. Com-

/\

pact space, X, is a Hausdorff (To -) compactification of

A

X iff X is Hausdorff (To) and X is imbedded as a dense

/\

subspace of X.

By Lemma 5, every finite resolution X0° of a To - space,

X, is a To - compactification of X. In fact, if

A = [closed singletons in X - X}
as
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and X U A g Y c X”, then Y is a T0 - compactification of

X. If X is Hausdorff the situation is not as vague for

Hausdorff compactifications.

Lemma B: Let XOD be a finite resolution of Hausdorff space

X. Let X c X ; XOD such that X is a Hausdorff compacti—

fication of X. Then X = X U A.

Proof: X inherits Xon as a finite resolution. By

Theorem 10 each x e X is a closed singleton in Xco so

A

X=XUA.



CHAPTER FIVE

EXAMPLES

In most of these examples a reference is made to the

previous chapters. We strive for a reasonable graphic repre-

fdB}I’

of X, we call each point z E X0° a thread in X”. Each

sentation. For X“ = lim {Xo' a finite resolution

a E I will be called a Igyei in X.’ For most of the fol-

lowing examples, the number of levels will be countably in-

finite and the indexing set ordered as the nonnegative in-

tegers.

Then Xco may be easily represented by a graph which is

in fact a ££ep_with finite levels, where the k-th level has

as many points as the space Xk, for each k E I. Point xk

in level k is connected by an edge to point Xk+1 in level

k+l iff fk,k+l(xk+l) = xk. Say that xk+1 is a predeces-

ppp of xk. Clearly, we may require this tree to be rooted

since adding space X as a basic open set and as an addi-

tional element for each R E I, to redefine I, does not

affect this resolution up to homeomorphism and O = {X} is

then minimum in the new indexing set with resulting finite

space a singleton and the root of the tree.

Example A; Let X = [x1,x2, ---, xn,°--I have the

tower topology T = {¢o {x1}I{xlox2}:°°'I{xlox20"°oxn}r°'°:X}-

In this case we will use basis B = T and let I = {O,l,---I

where for each k 2 l, k = {X,{x1I,o--,[xl,--°,xk}] and let

36
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O = {X}. Then the sets of partition Xk are

{{Xl}o [X2}I...I {x'k]l{xk+ll°°'}]

for k 2 1. That is, level k has k+l points and we label

them as xkl'xk2'°'°'xk,k+l' Each Xk also has the tower

topology. The resulting bonding maps are

fk,k+l(xk+l,j) = xkj 3 S k+1

= Xk,k+l j = k+2

The resulting finite resolution is represented as the tree

in Diagram A.

Diagram A

Only the topologies on the XR are not indicated. They

are necessary to indicate those collections of threads which

are to be open sets in X”. By Theorem F, a basis for the

topology of Xco is easily represented in the tree. Simply

choose an open set in any level. The set of all threads rad-

iating from this set is open in Xm. The collection of all

such open sets is a basis for Xm. In the present example,

the finite resolution is clearly a one point TO-compactifi-

cation of X, where the new point is the thread
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m = (x01'x12'°"'xk,k+1"")

This example is also an easy illustration for Lemma 1 and

Theorems 1, 2 e 3.

Example B: Let X = [x1,x2,---,xn,---} be the count-

able discrete space. Let B be the basis of singletons and

for k 2 1 let k = {[xl},---{xk},XI e I. Then Xk has

k4—l points and the tree of Diagram A represents the result-

ing finite resolution Xm, but in this case each level is a

discrete space. Xco is clearly totally disconnected and is

the one point Hausdorff compactification of the integers.

In general, if an inverse limit of finite spaces is

Hausdorff then the topologies on these finite spaces may be

taken as the discrete topology, since the bijection of

Lemma 5 is then a homeomorphism. Hence a finite resolution,

X0° of X, being Hausdorff implies that Xm, and hence X,

is totally disconnected. For example, the unit interval can-

not be the inverse limit of finite spaces.

Example Q: Let X = [0,1] be the unit interval with

basis B = [open intervals with dyadic rational end points}.

It is understood that O and l are always included in the

relative open interval when possible. Again, I is the non-

negative integers where for each k e I,

. . . . k k
k = {intervals Wlth endp01nts in n/2 , O s n s 2 I.

Then {k e I} is cofinal in {finite subsets of B}. The
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resulting finite space, Xk, has 2k+1-1 points,

X

kl' ’ ' ""k(2k+1— 1)

where these points of the partition of [0,1] represent the

following subsets.

"k1 = [0' ‘11?)
2

sz = {jg}

xk4 — I:%I

xk<2k+1_1) -— (33%!- , 1]

Diagram C

The points which have coordinates with just one predeces-

sor are the dyadic rationals in (0,1). Other points in each

level have visibly a left, right and dyadic predecessor. Say

that a thread is eventually left (right) directed iff there

is some k e I such that the left (right) predecessor is

chosen for all n 2 k to define this thread. The point
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0 6 [0,1] s; Xco is an eventually left directed thread and

l is an eventually right directed thread. All other points

of [0,1] g Xm are represented by the complement of the

set of points which are eventually left or right directed.

Further, if z E Xco - X then 2.0 X is a dyadic rational

(See Theorem 10.) which in the diagram is that dyadic approach-

ed by the eventual left or right branching. We also note that

(0,1) ; XOD is strongly dense in XOD and so this space is

also a finite resolution of (0,1) via the basis of dyadic

intervals by Theorem 5. In fact, the set of dyadic rationals

in (0,1) is still strongly dense in X“. Of course [0,1]

is the unique Hausdorff compactification present in each case.

See Lemma 8.

This example can be used to show the well known

Urysohn's Lemma: Let Y ‘be a normal space with A,B c Y

disjoint closed and nonvoid subsets. Then there is a contin—

uous map m: Y 4 [0,1] = X such that m(A) = O and m(B)==l.

Proof: Since Y is normal there is an open set Ullg;Y

Wlth A c U11 and B c U11. Define m1: Y 4 X1 by

U11 * x11

”11 " U11 " x12

Y - U11 4 x13

Since (Y —- U11) 0 A = B and .611 n B = U the normality

of Y again implies the existence of open sets U21 and

U22 such that



U21 : U c U c U and B g (Y-— UA c U 11

21 9

Define m2: Y 4 X2 by

U21 * X21

U21‘—' U21 * x22

Y -—- U22 4 X27

The construction of open sets Uij continues in the usual

manner for this lemma and similarly we define this system

{mi} of clearly continuous maps which also have the proper-

ty, via the nested constructions,

fn(n+l)° mn+l = Con n > 1

where the fij are the induced bonding maps. Hence {mi}

is an inverse system of maps with continuous limit map

é: Y 4 X = lim [X., f..}
m e i 1]

by (l) of Theorem J and Theorem A.

Now let r:Xco 4 [0,1] be the retraction of Theorem 11.

Then let m = r o i. By the definition of r and Theorem

I, if y E A then

mm = rem) n [wilhkmw n x]
k—l

m -l

m 1
=fl[O'—']‘("]:O

I
—
'

M
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Similarly, o(y) = l for each y e B.

In general a finite space X with an odd number of

points, xl,x2,° will be called a 2n+l - train or

..'x2n+l’

simply a train iff X is homeomorphic to the given set of

points with subbasis k = 0,l,"',n+l}.
Hx2k-1' x2k'*2k+1}‘

Example p: Let X = [0,1] with the upper limit topol—

ogy. Let B be the dyadic intervals of Example C with the

right end points included. Now the partitioning of X oc—

curs as a collection of open sets and so Xk has 2k points

and is discrete. Further since each point xk e Xk has ex-

actly two predecessors in level k+l, the resulting limit

space Xon is homeomorphic to the Cantor discontinuum. See

[4] pp. 97-100. In this case threads which are eventually

right directed represent the dyadic rationals with the excep-

tion of 0 e X which is eventually left directed in X0°

All other eventually left directed threads make up Xm-X.

We note that by Lemma 5 the Cantor discontinuum is a Hausdorff

compactification of [0,1] with the upper limit topology.

Example g: Let X = [0,1] with basis B consisting

of the dyadic intervals of Example C and the sets of dyadic

rationals contained in each of these intervals. Each level

space Xk is generated by the dyadic intervals with endpohum;

n/2k for n = 0,l,"',2k and those sets of dyadic rationals

contained in these intervals. From Example C, Xk has

3-2k - 1 points. For example, Xl has the following sub-

sets of X as its points.
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{dyadics in [0,1/2)}
X1.1 =

x12 = [0,1/2) - x11

X13 = [1/2]

xl4 = {dyadics in (l/2,l]}

x15 = (l/2,l] —- xl4

Basic open sets in X1 are [x11],{x14I,[x11,x12I,{x14,x15}.

has two predecessors in X2 and each of these

etc. These points represent

Clearly, x12

has two predecessors in X3,

partitioning of the nondyadic reals in [0,1/2) into those

in [0,1/4) and (l/4,l/2), etc. In each level these points

are closed singletons by our construction. Hence for

-l

a 6 7T1 (X12)!

{a} is a closed singleton by Theorem I. And since for each

such a g Xco that is eventually right (left) directed,

BIN-10:1 ) n X] = ¢
k k ’

we must have a E A where A is the subset of Xco defined

in Lemma 8.

Now X is Hausdorff but not regular and so X U A, be-

ing compact, cannot be Hausdorff since every subspace, in-

cluding X, must then be completely regular. What has oc-

curred in this case is that some point of X is not a closed

singleton in X“. Such a point is O E X. In coordinate

0‘—

form we write 0 = (xkl) and see that (xkz) E {0} since

sz E {Xkl} for each R = 1.2.'°'. See Theorem I.
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Example F: Consider the following plane continuum,

  

X = U In' homeomorphic to the topological sine curve.

n=0

17 ,f 1 ft

I //\ fl"! I

I

I / \~. II 11/, I

I / 12 \I’ 0

I/ I
oI’ 1/2 3/4 1

Diagram F

At step k, each interval In is partitioned as [0,1]

in Example C. To insure finiteness, Xk is generated by

the usual open sets in In for n = l,2,"°,k. with the ex-

ception that the only included endpoint occurs at (0,0) and

the open sets formed by "slicing" U I-{(1--%E,JJI

In
n=k+1 k2

with horizontal lines through y-coordinates j/2k for

j = 0,1, - - -,2k. The collection of all these open sets through

steps k = l,2,°°° is a basis for X and the collections

at each step form a cofinal sequence for the set of finite

subsets from this basis. At each step k, Xk has (k+1)2k+1-

points and is a train as described after Example C. In fact

X in this example is a train of the same length as
2P—1

X2P+p-1 in Example C. This means that the unit interval and

the topological sine curve have resolutions involving the

same sequence of finite spaces. Of course the bonding maps

are considerably different as in the present example a "fold-

ing" of the X 1 train onto the Xk train occurs.
k+



45

Example p; Let X be the unit circle. We continue to

form dyadic type nested partitions generated by nested col-

lections of open sets. In this case let X have its usual

position in the plane with center at the origin. The open

sets generating Xk are all open arcs with endpoints on the

radial lines 9 = 2n'n/2k radians for n = l,2,-:-,2 . For

k 2 2, finite space X is essentially a 2k+l + 1 train
k

with its tails identified. So Xk has 2k+1 points and

we call it a 2k+l - block. A tree representing the result-

ing Xco appears in Diagram G. The three branches from the

root represent the upper and lower open semicircles on the

left and right with a dyadic subdivision as in Example C.

The central branch contains only the two threads represent-

ing (1,0) and (-l,0) on the unit circle.

Diagram G

Example H: Let X be an annulus. By Theorem 6, the

inverse limit of spaces Xk which are products of 2k+l - 1

trains and 2k+2 blocks is a finite resolution of the annu-

lus, which is the product of an interval and a circle. Then

Xk has 2k+2(2k+l - 1) points for k = l,2,°°'. We illu-

strate the subdivision X1 and a schematic of this space as
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three nested 8-blocks in Diagram H. The partitioning of X

continues both radially as in Example F and concentrically

in X2, etc. We note that the resulting inverse limit

space is also a finite resolution for the open annulus as

this subspace is strongly dense. Again by Lemma 8, X is

the only compactification of the open annulus present in X”

 

Diagram H



CHAPTER SIX

ALGEBRAIC STRUCTURES

In this chapter, X is always a compact Hausdorffspace.

We find then that some of the common algebraic structures re—

lating to X are inherited by the finite resolutions of X.

Theorem lg: Let X“ be a finite resolution of ){ and let

¢:Xm 4 Xco be a homeomorphism. Then é/X is a homeomorphism

from X onto X.

Proof: By (iii) of Theorem 10, X is exactly the sub-

set of closed singletons in X”. i and Q are closed

maps so

¢(X) ; X and ¢-1(X) : X

Applying e to the latter inclusion shows that X c ¢(X)

and hence @(X) = X.

Corollary: X has the fixed point property iff X0° has the

fixed point property.

Corollapy: Let H(Xm) and H(X) be the homeomorphisnugroups

of X” and X respectively. Then the map H‘HIXm) 4 H(X)

given by “(4) = é/X is a homomorphism.

Lemma 2: Let m:Y 4 Y’ and @:Z 4 2’ be homeomorphismsanui

let p:Z 4 Y and q:Z’ 4 Y’ be continuous surjections such

that the following diagram commutes.

47



Then for each y e Y and y’ 6 Y’, p-1(y) and q-l(m(y))

are homeomorphic and q-1(y’) and p-1(m-l(y’)) are homeo-

morphic.

Proof: Simply by the commutativity. The homeomorphisms

readily available are the restrictions of i and 4-1 to

P (Y) and q—l(y’) respectively.

Lemma IQ: Let Xco be a finite resolution of X and let map-

ping r:Xco 4 X be the retraction of Theorem 11. Let m:X-+X

be any homeomorphism that has an extension <I>:X0° 4 X“. Then

r-1(m(x)) = 4(r—1(x)) for all x E X.

ggppf; With r taking the place of p and q in Lem-

ma 9, we have the required commuting diagram since the clos-

ure operator commutes with homeomorphisms. For example, if

z e X...

co’IIerm = cp'lde')‘ n X)

= so—IUIE) n X)

= WM?) 0 x)

= 2.0 X = r(z)

Then r-1(x) and r_1(m(x)) are homeomorphic via e, which

in this case means ¢(r-1(x)) = r-1(m(x)).



49

We note that by Theorem 12 we have also shown that every

homeomorphism @:Xm 4 Xco must send fiber r-1(x) into fiber

r-1(¢(x)) for each x E X. If 2 e r-l(x) and z # x then

say that z is a neighbor of x E X.

Theorem I3: Let Xc(B) be a finite resolution of X. Let

m:X 4 X be any homeomorphism such that B(B) = B. Then

there exists a homeomorphism ¢:Xm 4 Xco extending m.

Proof: This theorem is really a special case corollary

to Theorem 7, which guarantees the existence of Q as con-

tinuous. That 6 is a homeomorphism follows from the con—

struction of homeomorphisms ma in Theorem 7, w(B) ==E3 and

Theorem C.

The necessity of w(B) = B is easily seen in light of

Lemma 10 as x e X and its image may have fibers of differ-

ing cardinality in case w(B) ¢ B and so no extension is

possible. As an example, let X = [0,1] and let B be
1

the usual open interval basis and B is the dyadic inter—
2

val basis of Example C. Define a new basis B as the union

of the collections

[0.3/4) n B and (1/4,1] n B
1 2

Consider the homeomorphism ¢(x) = l-x. Now let x < 1/4

be other than a dyadic rational point. Since the collection

[(x,l/n) = n = 2,3,---} g B , the construction of points in

Xco implies that r-1(x) is not a singleton. Since m(x) > 3/4

and not dyadic, the results in Example C imply r—1(m(xn = m(x).
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gorollagy: Let Xw(T) be the total resolution of X. Then

H(X) is a quotient of H(Xm).

Egggg: For every m E H(X) ‘we have TIT) = 7, since-

T and m_1 are open mappings. By Theorem 13 every m E H(X)

extends to some i E H(Xm). Hence the homomorphism of the

second corollary to Theorem 12 is surjective.

Of course there are examples where a basis courser than

T will suffice in the above. For instance, let X = [0,1]

and let B = [open intervals} or more generally, let X be

locally connected and let B = {locally connected open sets}.

The following results discuss the case of arbitrary basis

and examine some groups of homeomorphisms as subgroups of

H(X) and H(Xm).

Definition: Let H(X) and H(Xm) be the homeomorphism

groups of X and XQ(B) respectively. We then write

H(XoB) = {m E H(X) = m(B) = B]

H(Xm,B) = [e e H(Xm) : @/x e H(X,B)}

H0(Xm,B) = [e 6 H(XQ,B): i is the extension of

Theorems 7 e 13}

We note that Hb(Xw,B) is well defined by Theorem B

and is a subgroup of H(Xm,B) by Theorem A. Simple examina—

tion then proves the following.

Lemma ll; The following inclusions are as subgroups.

(i) H(XaB) C H(X)

(ii) H(XQ,B) g; H(Xm)
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(iii) HO(XQ,B) ; H(Xm,B)

(iV) H(X,Bl) n H(X.B2) s H(X.Bl U 32)

Theorem lg: Ho(Xm,B) and H(X,B) are isomorphic.

Proof: By Theorem B the correspondence lim mo <n—> m

is one-to-one, where the ma are as in Theorem 7. Hence

the correspondence is an isomorphism by Theorem A.

In the following, Hb(X) and Hp(Xm) are the p-th

Cech homology groups of X and Xco respectively. The nota-

tion is essentially the same as in [4}. The underlying ne-

cessary group structure is not included in the notation. we

let XXX) be the collection of all finite open coverings of

X. For a,B E ZXX) write a < B if B refines o. For

finite a,B c B, a given basis for X, write a S B if

B contains a. Let I = [finite a c B}. The compactness

of X implies that the collection, J, of basic finite

open coverings from B is cofinal for both. (ZNX),<) and

(1,3). Unfortunately these orderings are not compactible

and so we proceed further by defining for each a 6 J and

x E X, the open set

UaIXI =n (Ugh: erI.

The finiteness of o also implies that the covering

ha = [Ua(x): x E X}

is finite for each a E J. By the construction, a < ua for

each a E J and so [ua: a 6 J} is cofinal in (XXX), <).
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Further a < B implies that ua < u since B contains a

B

and xEX means that UB(x) =n [UeBszU};n{UEa:x€U].

Now let Hp(u) be the p-th Cech homology group of the

nerve of u E XXX) considered as a simplicial complex. For

any n > u let W : U a u be the usual projection and de-

UU

note the resulting induced homomorphism by *wuu_ from

V

Hp(u) to Bp(u). The p-th Cech homology group of X is

the inverse limit group

Hp(X) = 12m {Hp(u). ].
*Wuu

Let X (B) = lim {X , f } be a finite resolution of
a: O— 0. (I

X. Let Hb(xa) be the p-th Cech homology group of the fac—

tor space Xa. Each bonding map induces a homomorphism writ—

ten f : H X

*aB p<B

and H?(Xm) are isomorphic. Using all of the preceding can-

) 4 Hb(xa) and the groups 1&m{H§(xa)'*de}

structions we prove the following.

Theorem lg: Let Xm(B) be a finite resolution of X. Then

H X and H X are isomor hic.p( ) p( a) p

Proof: By our construction and (iii) of Lemma 1,

va(ua) refines every open covering of Xa and so by (2) of

Theorem J, Hb(Xa) and Hp(ua) are isomorphic. Denotetius

isomorphism by *ma. Then the diagram below commutes via

our construction whenever a S B.
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HP(uB)*7Tu u )Hp(ua)

a B

*Cpfi l li’ma

Hp (x5) f sip (XOR

* QB

By the group theoretic equivalent of Theorem C (See [3], p.

218) the induced map *4 = 13m *mo is an isomorphism be-

tween the inverse limit groups Hb(X) and Hp(Xm).

The remaining results show that finite resolutions of

compact Hausdorff spaces inherit path connectedness and then

homotopy type.

Theorem lg: Let X be path connected and let X0° be a fi-

nite resolution of X. Then Xa is path connected.

2529;: Let x E X and let 2 E r-l(x) —— {x} where

the map r:Xa 4 x is the unique retraction. We have x 6‘;

and so 2 f E. since Xco is a To - space. Then [x,z} is

always a Sierpinski subspace of X“ and z is the open

singleton in {x,z}. Then the standard mapping h:[0,1]4xm

given by

t e [0.1)

II Nh(t)

h(l) II N

is continuous and hence is a path from 2 to x. That is,

the neighbors of x e X are in the path component of x e Xm.

The compactness of X implies that each 2 E Xco - X is a
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neighbor of some x E X and so X being path connected

implies that X“ is path connected.

Theorem 11; Let Xco be a finite resolution of X. Then the

unique retraction r:X0° 4 X is a strong deformation retrac-

tion.

Proof: Define h:X0° x I 4 XGD as follows.

h(z,t) z 2 e Xm and t e [0,1)

h(2,1) r(z) Z 6 XOD

We have that h(2,0) is the identity map on X0° and for

each x e X and t 6 [0,1], h(x,t) = x. For the continuity

of h we consider two cases.

Case I. (z,t) E Xon x [0.1). Let U be an open neigh-

borhood of z in X”. Then (z,t) E U x [0,1) ‘which is an

open set in Xco x I and h(U x [0,1)) = U. Hence h is

continuous at (z,t).

Case II. (2,1) 6 X0° x [1]. Let U be an open neigh—

borhood of r(z) in XQ. Then U n X contains r(z) and

is an open set in X. Hence (2,1) 6 r-1(U n X) x I, which

is open in X0° x I. Further, h(r—1(U n X) x I) c U and so

h is continuous at (2,1). This completes the proof.

Corollary: X."o and X are of the same homotopy type and,

in particular, the fundamental groups wl(Xm,2) and nicx,r(2»

are isomorphic.



APPENDIX

UNRESOLVED CONJECTURES

The following consists of several conjectures which we

suspect from the structures investigated and the results al-

ready given. Partial results are included, although in each

case the general approach to a proof or a counterexample is

not yet visible.

If Xco is a finite resolution of a completely regular

space X then only one of the possible Hausdorff compacti-

fications of X can be contained between X and X”. If

present, the structure is given by Lemma 8 as X U A where

A is the set of closed singletons in X0° -— X.

Conjecture A: For each finite resolution Xco of a

A .

completely regular space X, X = X U A ; Xco 1s a Hausdorff

compactification of X.

A

Conjecture B: Given a Hausdorff compactification X

of a space X, there exists a basis B for X such that

. . A

after the usual imbeddings we have X = X U A ; Xm(B).

We note that for each example in chapter five'with com-

pletely regular X, the compactification corresponding to

X U A is easily described. The problem with more complex

examples is the inability to fully appreciate the imagery of

the construction. Further, by Theorem 9 and Lemma 8, to

prove Conjecture A it is sufficient to show that the complete

55
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regularity of X implies that X U A is Hausdorff. A par-

tial step in this direction is given by the following two

results which are directly implied by Lemma 3.

Corollagy: Let y,z E X0° such that for some a e I, the

-l -l
subsets Y — Va (ya)n}{ and Z — Na (za)n X are T2

separated in X. Then y and 2 are T - separated in X”.
2

Proof: The sets u’ and U’ of Lemma 3 will suffice. Wt

 

{
Lemma: Let X“ be a finite resolution of a regukir space .

X. Let x e X and a E A. Then x and a are T - sepa-

2

rated ih X .

Q

Proof: Since ‘5 = a, we have by Theorem I that there

is some B e I such that x g wgl(a ). Since X is regu-

B

lar, x and w‘1(§g) n X are T - separated in X. The

6 2

corollary implies that x and a are T2 - separated in

X

(D

It remains to show that distinct a,b e A are always

T2 - separated when X is completely regular. Any method

similar to that above seems to fail as a proof.

We further remark that Conjecture B is equivalent to

the following since strong density is all that is required

. . . A

to make a subspace of the compactification X inherit Xco

as a finite resolution.

I

Conjecture B : Let X be a Hausdorff compactification

of space X. Then there exists a basis B for X such that

A A

from finite resolution Xm(B), the collection
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A— A A A A

[w 1(x ) H X : x E X and a E I]

a a a a

. 9 A

contains no subset ; X - X.

- A

The collection [9a1(xa) n X} given above may be re-

placed by the smallest algebra of subsets of X containing

The remaining conjecture refers to Theorem 13. Recall

here that X is compact and Hausdorff and m is a homeomor-

phism on X such that ®(B) = B for given basis B. By

Theorem B, the extension Q of Theorem 13 is unique such

that for h , ° = .

eac 0‘61 "wow i maowa

Conjecture g: The extension of Theorem 13 is unique

and hence H(X) and H(XQ(T)) are isomorphic.
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