
EDGE IMPACT IN GRAPHS AND SOCIAL NETWORK MATRIX COMPLETION

By

Dennis Ross

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Doctor of Philosophy

2016

ABSTRACT

EDGE IMPACT IN GRAPHS AND SOCIAL NETWORK MATRIX COMPLETION

By

Dennis Ross

Every graph G can be associated with many well-known invariant properties along

with their corresponding values. Here, a framework is proposed to measure the change in

any particular invariant upon addition of a new edge e in the resulting graph G ` e. In

graphs, the P-impact of an edge e is the ‘magnitude’ of the difference between the values

of the invariant P in graphs G` e from G.

An edge is said to be of maximum P-impact if it can be optimally added to G in

order to achieve a desired result on either the invariant’s value or graph’s structure. New

edges are added from the graph complement in simple graphs or between any pair of vertices

otherwise. In this work several invariants are explored including: number of spanning trees,

sum of distances between vertices, and vertex connectivity. A brief commentary on several

other famous invariants is also provided.

A number of questions about the P-impact of an edge on the structure of graphs

are presented. Also included is an attempt to efficiently determine an optimal set of edges

based on our invariant. Several restrictions and conjectures to determining this optimal set

are discussed. A proof towards optimal edge addition for distance-impact in trees is given.

A natural application to measuring the impact of edge addition to a graph is that

of link prediction problems. These applications are considered and an efficient algorithm

for link prediction even with cold-start vertices using a subspace sharing method that

decouples matrix completion and side information transduction is presented. This method

is extended to predict ratings in user-item recommender systems where both may be cold-

start. Mathematical guarantees and experimental results on real world publication and

social networks are provided.

Végén egy útra.

iii

ACKNOWLEDGMENTS

Before anything else can be said, I must offer my most heartfelt thank you to my advisor Dr.

Abdol-Hossein Esfahanian. I have wanted to work with you from the day I finished your

algorithmic graph theory course. I cannot thank you enough for taking a chance on me as

your advisee, and it has truly been a privilege to earn my degree under your mentorship. I

have achieved so many professional goals thanks to your unending support and leadership.

I will miss the many cold Michigan afternoons consisting of drawing too many graphs on

your white board, but I look forward to continuing our collaborations and friendship in the

future.

I have been largely supported by working with USAID as part of the DSI. This would not

have been possible without the tireless work of Dr. Pouyan Nejadhashemi. Thank you for

taking the stress of maintaining funding off of my shoulders- not to mention exposing me

to many interesting biosystems and global aid data problems.

I further want to extend thanks to the rest of my committee: Drs. Pang-Ning Tan and

Guoliang Xing. Your guidance and insights made the process of completing a dissertation

much more achievable.

This work would not be possible without the wonderful help of several colleagues. To Dr.

Ronald Nussbaum, I greatly enjoyed the graph theory work we completed together. Also, a

massive thank you to both Dr. Rana Forsati and Iman Barjasteh for sharing your interest

and expertise in matrix completion problems (and enduring lots of silly questions). Finally,

thank you to Ashley Depottey for making the DSI lots more fun than it otherwise would

have been.

iv

To my parents, Beth and Gary, thank you for encouraging intellectual curiosity through-

out my entire life. That along with your love and support were instrumental in finishing

this very challenging endeavor. Along with my sister, Valerie, I could always count on my

family when I needed it.

To my friends, you all have stood by me both personally and professionally throughout my

journey through graduate school. I would not have gotten through it without you all, nor

would my time at Michigan State been as much fun. Thank you Ben Hardin, Sara Vrede-

voogd, Dr. Josh Vredevoogd, Dr. Andrew Ratkiewicz, Erich Owens, Dr. Luke Williams,

Liz Wilson, Dr. Cheryl Jaeger Balm, Dr. Thomas Jaeger, and Dr. Tian Hao.

To my wife-to-be, Dr. Jennifer Cornacchione, you have the distinction of being just one

place above Farkas in this section. You are also likely the only person to read every single

word in this document, and your copy-editing was incredibly helpful. Thank you for being

such a wonderful partner, sharing so many experiences with me, and of course for gener-

ously giving me all of the best chairs in New Leaf. Let’s do some great things now that I

am done too! I suppose I can also thank Gus and Oliver here- albeit begrudgingly. . .

Finally, I have to thank my most loyal companion, Farkas. Nagyon köszönöm. You were

the only one with me every day, for every high and low, through both my masters and

doctoral studies. Your fuzzy face always kept me going. Szeretlek kicsem!

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . xii

Chapter 1 Introduction . 1
1.1 Definitions and Terminology . 2
1.2 Motivation and Goals . 6
1.3 Related Work . 8
1.4 Overview . 14

Chapter 2 Problem Statement . 16

Chapter 3 The P-Impact Process . 19
3.1 The Basics . 19

3.1.1 Time Complexity . 20
3.1.1.1 Running Time of SPtree-Impact 21
3.1.1.2 Running Time of Distance-Impact 22

3.2 Random P-Impact Process . 22
3.2.1 Random Distance-Impact Algorithm 23

3.3 Improvements . 23
3.4 Conclusion . 24

Chapter 4 Construction from Empty Graphs 25
4.1 Observations . 25
4.2 Distance Invariants . 26

4.2.1 Count-Impact . 26
4.2.2 Distance-Impact . 28

4.3 Conclusion . 31

Chapter 5 Trees . 32
5.1 Number of Spanning Trees . 32
5.2 Distance . 33

5.2.1 Tree Partitions . 33
5.2.2 Counterexamples in Distance Impact 34
5.2.3 Non-Leaf Distance-Impact Edges in Trees 40

5.3 Conclusion . 60

Chapter 6 P-Impact in Network Completion 61
6.1 Experimentation . 61

6.1.1 Network Completion . 62
6.1.2 Evaluation Metrics . 62
6.1.3 The Process . 63
6.1.4 Predictive Edges on Erdős-Rényi Random Graphs 63

vi

6.1.5 Predictive Edges on Random Trees 65
6.1.6 Predictive Edges on Random Power Law Graphs 67

6.2 Power Law Motivation . 69
6.3 Conclusion . 71

Chapter 7 Network Completion in Graphs 73
7.1 The Assumptions . 74
7.2 The Algorithm . 75

7.2.1 Previous Approach . 75
7.2.2 Overview . 76
7.2.3 Algorithm Details . 76

7.3 Experimental Evaluation . 80
7.3.1 Datasets . 80
7.3.2 Evaluation Metrics . 83
7.3.3 Baseline Algorithms . 83

7.3.3.1 Link Prediction Baseline Algorithms 84
7.3.3.2 Network Completion Baseline Algorithms 85

7.3.4 Experiments on Synthetic Datasets 86
7.3.4.1 Effect of Noise in Side Information 86
7.3.4.2 Effect of Training Size . 87

7.3.5 Evaluation of Link Prediction . 88
7.3.5.1 Link Prediction on Epinions 88
7.3.5.2 Link Prediction on Weibo 90

7.3.6 Evaluation of Network Completion 92
7.3.6.1 Network Completion in Facebook 92
7.3.6.2 Network Completion in Google+ 92

7.4 Conclusion . 94

Chapter 8 Recommender Systems . 95
8.1 The Assumptions . 96
8.2 The Algorithm . 97

8.2.1 Previous Approach . 97
8.2.2 Overview . 98
8.2.3 Algorithm Details . 98

8.3 Experimental Evaluation . 102
8.3.1 Datasets . 103
8.3.2 Evaluation Metrics . 104
8.3.3 The Baseline Algorithms . 105
8.3.4 Effects of Noise . 108
8.3.5 Existing Users and Items . 108
8.3.6 Cold-Start Items . 113
8.3.7 Cold-start Users . 115
8.3.8 Cold-Start Users and Items . 115

8.4 Conclusion . 116

vii

Chapter 9 Conclusions . 117

APPENDIX . 119

REFERENCES . 133

viii

LIST OF TABLES

Table 5.1 Analysis of the counterexamples to the conjecture that the maximum
distance-impact edge joins components in T ´ k where k is the max-
imum index edge. 39

Table 5.2 Analysis of the counterexamples to the conjecture that the maximum
distance-impact edge joins components in T ´ k where k is the max-
imum distIndex edge. 39

Table 5.3 Analysis of the counterexamples to the conjecture that the maximum
distance-impact edge joins components in T ´ c or is incident to c
where c is the center vertex. 40

Table 5.4 The distance-impact of all non-isomorphic edge additions in P4 . . . 42

Table 5.5 The distance-impact of all non-isomorphic edge additions in P5 . . . 42

Table 5.6 The distance-impact of all non-isomorphic edge additions in P6 . . . 49

Table 5.7 The distance-impact of all non-isomorphic edge additions in Tbad . . 52

Table 6.1 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.5q 65

Table 6.2 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for random trees . 67

Table 6.3 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for random power
law graphs . 69

Table 7.1 Statistics of Weibo, Epinions, Facebook, and Google+ datasets . . . 83

ix

Table 7.2 Link prediction results on Epinions dataset and the effects of training
size. 89

Table 7.3 Link prediction results on the Weibo dataset and the effects of varying
training size . 91

Table 7.4 Comparison of different algorithms on the Google+ with different
percentages of observed nodes . 92

Table 8.1 Statistics of the real world datasets 105

Table 8.2 Results on MovieLens 100K and 1M and Epinions for neighbor-based
methods with no cold-start users/items 111

Table 8.3 Results on MovieLens 100K and 1M and Epinions for latent factor
methods with no cold-start users/items 112

Table 8.4 Results on all of the cold-start scenarios for real datasets 114

Table A.1 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.1q 129

Table A.2 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.2q 129

Table A.3 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.3q 130

Table A.4 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.4q 130

x

Table A.5 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.6q 131

Table A.6 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.7q 131

Table A.7 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.8q 132

Table A.8 The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdős-Rényi ran-
dom graphs of the form Gp25, 0.9q 132

xi

LIST OF FIGURES

Figure 1.1 A graph where the dashed edges have their respective distance-
impact noted. 4

Figure 3.1 Maximum distance-impact does not yield an optimal solution . . . 21

Figure 4.1 The Phases of the Maximum Count-Impact Process 27

Figure 4.2 The Phases of the Maximum Distance-Impact Process 29

Figure 5.1 Counterexample to conjecture 5.2.0.1 35

Figure 5.2 Counterexample to conjecture 5.2.0.2 35

Figure 5.3 Counterexample to conjecture 5.2.0.4 36

Figure 5.4 Counterexample to Conjecture 5.2.0.9 37

Figure 5.5 Counterexample to Conjecture 5.2.0.10 37

Figure 5.6 Counterexample to Conjecture 5.2.0.11 38

Figure 5.7 P4 with all non-isomorphic possible edge additions as dashed edges 42

Figure 5.8 P5 with all non-isomorphic possible edge additions as dashed edges 42

Figure 5.9 P6 with all non-isomorphic possible edge additions as dashed edges 43

Figure 5.10 Cn (left) and DpCn´2 (right), each of order and size n 43

Figure 5.11 The regions of DpCn´2 . 45

xii

Figure 5.12 Tbad with all non-isomorphic possible edge additions as dashed edges 52

Figure 5.13 Proposed distance-impact edge when selected leaves are of distance 3 53

Figure 5.14 Proposed distance-impact edge when selected leaves are of distance 4 54

Figure 5.15 Proposed distance-impact edge when selected leaves are of distance
at least 5 . 59

Figure 6.1 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.5q 64

Figure 6.2 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.5q . 64

Figure 6.3 RMSE on single edge addition for varied percentages of removed
edges for random trees graphs . 66

Figure 6.4 MAE on single edge addition for varied percentages of removed edges
for random trees . 66

Figure 6.5 RMSE on single edge addition for varied percentages of removed
edges for random power law graphs 68

Figure 6.6 MAE on single edge addition for varied percentages of removed edges
for random power law graphs . 68

Figure 6.7 RMSE caused by adjacency matrix element deletion for five random
power law graphs of order 15 . 70

Figure 6.8 RMSE caused by adjacency matrix element deletion (1’s only) for
five random power law graphs of order 15 70

Figure 7.1 Algorithm for network completion with side information via the pro-
posed algorithm for decoupled completion and transduction 77

xiii

Figure 7.2 The recovery error of the proposed MC-DT algorithm noise variance
values . 86

Figure 7.3 The recovery error of different algorithms on a synthetic dataset for
different sizes of partially observed submatrix with m nodes 87

Figure 7.4 The recovery of four algorithms on the Facebook dataset measured
in RMSE under different percentages of observed nodes 93

Figure 7.5 The recovery of four algorithms on the Facebook dataset measured
in MAE under different percentages of observed nodes 93

Figure 8.1 Algorithm for rating prediction using side information via the pro-
posed algorithm for decoupled completion and transduction 99

Figure 8.2 RMSE & MAE on the synthetic dataset for different noise variances
on similarity matrices . 109

Figure 8.3 RMSE & MAE of MovieLens 1M for different noise variances on
similarity matrices . 110

Figure A.1 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.1q 121

Figure A.2 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.1q . 121

Figure A.3 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.2q 122

Figure A.4 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.2q . 122

Figure A.5 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.3q 123

xiv

Figure A.6 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.3q . 123

Figure A.7 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.4q 124

Figure A.8 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.4q . 124

Figure A.9 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.6q 125

Figure A.10 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.6q . 125

Figure A.11 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.7q 126

Figure A.12 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.7q . 126

Figure A.13 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.8q 127

Figure A.14 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.8q . 127

Figure A.15 RMSE on single edge addition for varied percentages of removed
edges for random graphs pp “ 0.9q 128

Figure A.16 MAE on single edge addition for varied percentages of removed edges
for random graphs pp “ 0.9q . 128

xv

Chapter 1

Introduction

Graphs provide a simple and powerful mathematical construct in which both ab-

stract and real world models can leverage their structure to make compelling observations.

The structure of a graph is then measured by examining its invariant properties. We are

interested in maximizing or minimizing certain invariants, specifically distance-based mea-

sures, as a graph evolves under the addition of edges. Further applications will take a graph

to be a social network. Using these graphs both link prediction and recommender system

problems may be explored.

This work shows the progression of a pure graph theoretical problem into matrix

completion techniques in networks and recommender systems. As such, in this chapter

the important graph theoretical definitions and structures required for the introduction of

the P-impact process are provided. Within this framework we further give the necessary

motivation for codifying this new concept while providing an overview of the scope of this

work. Additionally, definitions and symbology for matrix completion, link prediction, and

recommender system problems will be necessary to examine the evolution of the impact

problem.

1

1.1 Definitions and Terminology

The graph theoretic terms and symbols of Bollabás in Modern Graph Theory, unless

otherwise noted, are used throughout this dissertation. To begin, a graph is an unordered

pair, G “ pV,Eq, with the set of edges, E or EG, composed of pairs of elements in the

set of vertices, V or VG. The elements in each edge ex,y, where x, y P V , are called the

endpoints of the edge. In a weighted graph each edge is also assigned a real-valued label.

In an unweighted graph all edges are assigned a value of one. The order of the graph is

the cardinality of the vertex set and the size is the cardinality of the edge set. These are

denoted n “ |V | and m “ |E| respectively. G`x is understood as pV Yx,Eq or pV,EYxq

contextually when x is a vertex set or edge set.

A subgraph H “ pV 1, E 1q of a graph G “ pV,Eq is an ordered set where V 1 Ď V and

E 1 Ď E. An induced subgraph, GrV 1s, is the restriction of G to a vertex subset V 1 where

all edges with both endpoints in V 1 are included. Graphs G and H are isomorphic if there

exists bijective correspondence between their vertex sets that preserves adjacency under

the bijective map ϕ : GÑ H. A graph invariant is a property that remains unchanged up

to isomorphism between graphs.

An edge is called incident to a vertex if it contains that vertex as at least one of

its endpoints. Two vertices are called adjacent if they share an edge, and two edges are

adjacent if they share at least one endpoint. The neighborhood of a vertex is the set of all

adjacent vertices. The number of edges incident to a vertex is the degree of that vertex. The

minimum degree of G, δpGq, is the smallest degree in the graph. Similarly, the maximum

degree of G, ∆pGq, is the largest degree present in the graph.

If the set E contains repeated elements, G is called a multigraph and the repeated

edges are called multiple edges. A loop is an edge where both endpoints are the same. A

graph is called simple if it contains no loops or multiple edges. All graphs will be considered

to be simple unless explicitly stated.

2

A path is a linear sequence of vertices where adjacent vertices in the sequence are

adjacent in the graph. The shortest path is the path between two vertices x and y with the

lowest total edge-weight sum connecting them. The length of this path is called the distance

denoted dpx, yq or dGpx, yq. The diameter of a graph is the length of the longest shortest

path. The index of an edge is the number of shortest paths containing it. The dsitance

index, or distIndex, of an edge is the sum of the shortest paths containing multiplied by

their respective lengths. The two endpoints of the path created by the diameter are called

peripheral vertices. A cycle is the same as a path except the underlying sequence is cyclic.

The sum of the distance of all of the pairs of vertices is the all-pairs shortest path distance

or total distance.

A graph is called connected if there exists a path between all pairs of vertices and

disconnected otherwise. A component is a set of vertices that are connected and there

are no paths to vertices outside of this set. Any vertex v whose removal creates more

components in G´ v is called a cut vertex.

A graph of order n ě 2 and size
`

n
2

˘

is called the complete graph Kn. The trivial

graph K1 is a single vertex with no edges. The complement of G “ pV,Eq is a graph

G “ pV,EpGqq. A tree is a connected graph containing exactly n ´ 1 edges. A spanning

tree is a connected subgraph of G with n´1 edges and n vertices. A vertex is a pendant if it

is degree one, and it is a leaf if it is degree one in a tree. A bipartite graph is a graph where

the vertices can be partitioned into two sets U and V such that the endpoints of all edges

lie in exactly one of the partitions. A complete bipartite graph, Km,n, is a bipartite graph

where every vertex in U is adjacent to every vertex in V . A special case of the complete

bipartite graph is the star, K1,n.

Definition 1.1. The P-impact of an edge e is the difference between the values of the

invariant P in graphs G ` e from G. With E “ EpGq for simple graphs and E “ EpKnq

otherwise.

3

When the invariant is discrete-valued the definition of difference is understood con-

textually. The set E may be restricted to any multiset of the edges ofKn and the result is the

set of permissible edges. If more than one edge is added to the graph the P-impact is mea-

sured with the addition of the entire set of edges. The method of adding edges to a graph

G using their P-impact is the P-impact-process. For simple graphs the P-impact-process

terminates when, after the addition of e, we have a complete graph. For a mulitgraph, this

process can be infinite or terminate after a prescribed number of edges is reached.

If the invariant P is taken to be the sum of the all-pairs distance in G, then the

P-impact is called the distance-impact of e on G. When P is the number of spanning trees

of G, this is denoted as sptree-impact of e on G. The discrete version of the distance-

impact of an edge considers the number of pairs of vertices whose distance is reduced with

the addition of an edge. This problem is called the all-pairs shortest path distance count-

impact or count-impact. All of these processes and values can also similarly be considered

for edge deletion or edge evaluation in G´ e and pG` eq ´ e respectively.

7

4

Figure 1.1 A graph where the dashed edges have their respective distance-impact noted.

Moving into the application space, the common descriptions for link-prediction and

recommender system problems are described. Here the words graph and network will be

used interchangeably with a preference for graph in the mathematical space and network

in the application space. In general, the goal of these applications is to provide a list of

edges to add to a graph or a set of items to recommend to a user. The notation describing

the linear algebra structure is as follows. Lower case letters , such as u, are used to denote

scalars and the bolded versions, such as u, are instead vectors. Here R` is used as the

set of real non-negative numbers and rns to denote a set on integers t1, 2, . . . , nu. For

4

matrices upper case letters, such as M, are used. The transpose of vectors and a matrices

are denoted by mJ and MJ, respectively. The scalar product, or dot product, between two

vectors m and n is denoted by mJn.

The rank of a matrix is the dimension of the vector space spanned by the columns

of that matrix. The Frobenius norm of a matrix M P Rnˆm is denoted by }M}F where

}M}F “

b

řn
i“1

řm
j“1 |Mij|

2. The spectral norm of M is }M}2 given by the square root

of the maximum eigenvalue of M˚M. The nuclear norm, or trace norm, of a matrix is

denoted by }M}˚ “ trace
´?

MJM
¯

. Finally the Moore-Penrose pseudo inverse of matrix

M is shown by pMq:.

For the applications, matrix completion problems are explored via collaborative

filtering. For network completion there is a set of n users, U “ tu1, . . . , unu. As an

extension, a set of m items, I “ ti1, . . . , imu is added for recommender system applications.

In the case with users and items each user, ui, may (or may not) provide some form of

feedback on subset of the item set. Examples of feedback can be varied, but in this work

it will be restricted to an explicit real-valued rating.

Although the graph notation is consistent with the impact problems, some further

definitions will be used to describe the graphical (network) structure of the applied prob-

lems. Given an order n graph G “ pV,Eq, the vertices are distinguishable as they represent

distinct users. The adjacency matrix, A P t0, 1unˆn, is such that every entry ei,j P t0, 1, ?u.

An entry of “0” is a known missing edge, “1” is a known extant edge, and “?” is an edge

that is unknown. There is further an induced subgraph of G called O “ pV,E 1q where

O P t0, 1, ?umˆm with 1 ď m ď n and E 1 Ă E.

When a row or column is completely unobserved, the corresponding node is con-

sidered a cold-start node. There are no assumptions as to the distribution of observed nor

unobserved entries in A. However, in O, the edges are sampled uniformally at random and

do not contain any cold-start entries. This is enforced even when such a restriction dictates

that m ! n.

5

The objective of this work to fill out the missing entries of a matrix using the

observed entries and possible other information. The process of filling in the missing entries

is called matrix completion. Any external information about the nodes in a social network

graph beyond the adjacency matrix is called side information. Side information can be

widely varied, depending on the problem domain, and takes on many forms (e.g. human

demographic information, URL click patterns, protein folds in yeast). The process of

applying the side information to complete the adjacency matrix (or ratings matrix) is

called transduction.

1.2 Motivation and Goals

Graph invariants describe the nature of graphs and are at the core of graph theoret-

ical knowledge. Further, it is useful to examine the evolution of graphs over time via edge

addition and deletion. These facts motivated us to create a process in which the changes

in invariant values of graphs can be tracked or controlled via the P-impact process. By

adding edges to an empty graph and examining its evolution, definite patterns emerged.

This led to attempts to generalize and categorize the entire process. According to an ex-

tensive literature search, there is no previous work resembling the P-impact or P-impact

process.

The polynomial nature of the complexity of computation of many invariants is also

leveraged as testing the P-impact process can be fully computationally completed and

compared against known benchmarks. This computational advantage is imperative because

the determination of the optimal P-impact process is generally not trivial– even on basic

graph classes.

By creating a new definition and process there are several clear objectives to this

work. Primarily, the goal is understand as much of the fundamental mathematical nature

of the P-impact process as possible. To this end, the goal is to determine necessary and

sufficient conditions for efficient discovery of optimal P-impact edges in special graph classes

6

before considering the general case. This work settles many cases in trees and provides a

starting point for using graphical information to determine side information to be used in

link prediction and recommender system problems.

There are many results of these types in social media networks. Initially, distance-

impact was deployed as a way to bridge distinct groups of people for more effective mes-

saging. Messages tend to stay close to their sources in social networks [4]. Policy makers or

advertisers could pay to connect seemingly disparate users by a high impact edge so then

could release coordinated messages. This effectively reduces the distance that a message

would need to travel and creates an additional source for newly reduced-distance users to

receive the message.

These applications, from a pure graph theoretical concept to an initial application-

driven approach, led to an exploration of using side information to predict edges in partially

observed networks. This exploration pushed this work into the realm of matrix completion

problems in the realm of link prediction, recommender systems, and, finally, in item-based

taxonomy problems.

Real world networks, social or otherwise, are often modeled by graphs. However,

in real world networks it can be very difficult to gather the complete graph structure

that models many applications (e.g. social networks, biological networks, internet website

interactions). Such issues arise from the nature of these problems. Information may be

protected as a matter privacy, corporate knowledge, or may not be queried due to the sheer

size of the data. Further, actors in networks may try to deliberately obscure themselves,

or may have few measurable interactions. Although not all of these problems may be

alleviated, there are several mathematical techniques that have been successfully deployed

to complete the missing information from such partially observed graphs. These techniques

initially collect a partial sample of a network and then infer the networks structure. This,

admittedly broad, technique is referred to as network completion or less frequently as survey

sampling.

7

To improve on network completion and recommender system problems via matrix

completion side information is collected and analyzed. The work herein is used to solve

such problems in their most difficult case, namely when cold-start issues occur. Currently,

this is the least understood area of matrix completion applications to graph completion

and recommender systems.

1.3 Related Work

Although the concept of the edge impact process is new, graph invariants have been

widely studied using a variety of mathematical techniques. Even more similarly, many

results in extremal graph theory define a minimum addition of edges to achieve a desired

invariant value. Simple graph classes are examined to gain insight and follow extremal

work that was done using constructive and probabilistic tools.

To understand the P-impact in general graphs, first we consider particular graph

classes. Similar work was done by Ross et al. in the distance-preserving problem for regular

graphs [77]. Work in random graphs generation to make general observations was given by

Szemerédi’s Regularity Lemma [43]. This allows claims of randomness when the P-impact

process is used on large graphs.

Erdős published many results on extremal graph theory [22] and specifically graphs

containing certain structures [21]. These extremal problems try to define the smallest

number of edges or vertices that must be used for certain properties to be satisfied. The

P-impact process examines similar phenomena, yet restricts to the addition of edges to

preserve or achieve invariant values. Strictly working with the number of edges, other

extremal results also exist [15].

Some major invariants are understood through similar methods as the P-impact pro-

cess. Edge-connectivity can have a relationship with both distance and spanning tree ap-

plications. The problem itself is quite mature and many computational techniques for com-

puting edge-connectivity exist [54]. Algorithms and improved bounds for edge-connectivity

8

were also found by Esfahanian and Hakimi [23]. This is in addition to other bounds, com-

putational results [56, 25] and extremal results on the number of edges that can be added

to enforce k-edge-connectivity [13].

Although this work focuses more on the role edges play in effecting distances, often

the vertices of concern are highly central to the graph. Previous work has explored the

discovery and properties of central vertices. Nieminen examined and classified the centrality

of vertices in graphs [62]. Later work by Borgatti examined centrality’s role in social

networks [10]. These are examined in the practical applications as the impact of important

actors in social media graphs are explored.

The maximum distance-impact edges try to reduce either total distance or the dis-

tances of the largest number of shortest-paths in a graph. This process is similar to other

ideas that aim to create structurally important edges by measuring betweenness and cen-

trality. Freeman gave a framework for measuring betweenness centrality, and Brandes gave

a fast algorithm for computational finding it [26, 11]. This also leverages similar work

exploring the centers and centroids of graphs [63].

The applications contained herein use the modeling power of graphs for physical and

social networks. There has been much work in these fields that can guide these findings.

Several authors have found methods of measuring impact of messages in social media

[85, 37]. Others have explored the predictive powers of examing the social networks for

predicting: user activity [86], influenza propagation [18], and box-office revenue [3]. Bakshy

et al. also put forth a method for estimating the popularity of content by measuring distance

that URLs traveled through a network [4].

Graph (network) completion problems exist in a number of different settings where

incomplete graph information is present. The literature is deep with methods to solve

such instances with applications in information retrieval, social network analysis, and com-

putational biology [2, 66]. Some relevant examples involve large social networks such as

Facebook and Twitter. Because these networks have users that number in the billions,

9

to infer the full network topology describing the relationships between users (edges in the

network) is known to be difficult in many cases [66].

Extant learning algorithms for network completion problems commonly make struc-

tural assumptions on the nature of the underlying network. From here, there are many

methods to efficiently reconstruct the actual network. The classical network completion

implementations make an assumption that random entries of the adjacency matrix are

missing. However, in network completion is accomplished by randomly subsampling the

partially observed network. Specifically, in [41] it is assumed that the underlying network

follows the Kronecker graph model. An expectation maximization (EM) framework was

used to infer the unobserved pieces of the network.

A computational method that was used to find missing and spurious interactions

within complex network is given in [32]. Here these interactions were found using stochastic

block models which then captured the structural features of the network itself. The same

method was applied on the interactions of proteins in a yeast network. Further, a sampling

method that derives confidence intervals from sampled networks is given in [36].

A similar link prediction application that applies most similarly to the P-impact

process is given in [48]. This work predicts future edges that will be added to a network.

However, because no links can be observed for unsampled nodes, these statistical models

perform poorly in these cases. Such problems exist when extreme sparsity is present, and

fare even worse when presented with the cold-start scenario.

Maximum margin matrix factorization [83] was a method developed for collaborative

filtering. Several works show that, theoretically, this method may perfectly complete a

matrix [90, 58, 72]. Some extensions of this work include collaborative filtering [83] and

also allow the use of side information [1].

One principle method explored in the work is the use of transduction of side infor-

mation to complete matrices and recent work approaches matrix completion using a similar

10

tack. Some work considers matrix completion with transduction [24, 65] and even can be

expanded to the case where side information is of infinite dimension as described in [1].

To handle sparsity problems, several studies have given matrix factorization models

that try to optimize their results by taking fewer samples from the original matrices. Menon

et al. gave a logistic regression approach that added a logistic regression with a principled

confidence-weighting scheme to its objective function [58]. A Bayesian approach was taken

by Porteous et al. wherein regression is applied to the side information themselves [72].

One advantage to this Bayesian approach is that the mixture model for the prior of the

users/items provides a different regularization for each of the latent classes. Park et al.

examined recommenders as simple regression problems [67]. Here they used a combination

of both user and item metadata to create the side information.

A relaxation of the network completion problem can be seen as link prediction on

bipartite graphs with weights. These recommender sytems problems have also been widely

studied with many similar techniques to those used in link-prediction. There has also been

some work directly addressing cold-start problems.

Content-based filtering (CB) and collaborative filtering (CF) are well-known exam-

ples of recommendation approaches. As demonstrated by its performance in the KDD

Cup [19] and Netflix competition [8], the most successful recommendation technique used

is collaborative filtering. This technique exploits the users’ opinions (e.g., movie ratings)

and/or purchasing (e.g., watching, reading) history in order to extract a set of interesting

items for each user. In factorization based CF methods, both users and items are mapped

into a latent feature space based on observed ratings that are later used to make predictions.

Some methods are applied that try to predict item ratings using global, and easy to

calculate, item characteristics. Such algorithms have been based on the popularity of the

items [67] or even through random selection [51]. By approaching the cold-start users/items

in this global manner, any nuance between distinct groups of users is lost. With this lack

of filtering, a great amount of accuracy in the recommendations is lost.

11

To alleviate the concerns raised by the lack of historical data for users/items, meth-

ods were developed present users with a set of items that they must rate. These warm-

start methods may also import user preferences from side information. Such work has

been sucessful [51, 89, 17, 87], but as these methods explicitly force a new user to provide

ratings for k representative items (or a new item being forced on k users) there is signifi-

cant drawbacks in using warm-start methods. In commerce, the views spend learning item

characteristics could have better been spent on presenting items a user may want to have

purchased. For social networks, the site may be uninteresting to a new user because they

are not presented immediately with relevant or entertaining interactions.

To avoid the warm-start pitfalls, there has been a large amount of interest in using

side information to complete the rating or adjacency matrices [82]. This side information

can even provide context for cold-start users/items without requiring direct user feedback.

These methods of feature combination combine the features of the users and items to

increase the model’s accuracy. The determination of these features is found using available

user information (e.g. profile, location, web history) and item information (e.g. metadata,

manufacturer specifications, web traffic).

Because user-user (or user-item) feature spaces can be described using the features

extracted from the side information, there has been a push to develop methods that exploit

the overlapping subspaces therein. These methods are often called matrix co-factorization

and have been used to sucessfully exploit rich sources of side information to increase model

accuracy. In [52, 31, 35, 34] rating and side information matrices are decomposed at the

same time to expose shared latent features. The work of [64] imputed missing values and

used these in the matrix factorization to boost the performance on the cold-start problem.

A kernelized matrix factorization was given by Zhou et al. [90]. Here auxiliary

information is incorporated into matrix factorization to assess the similarity of the latent

features. Saveski et al. [79] developed a matrix factorization method that collectively

decomposed rating and side information matrices within a common space of low dimension.

12

By mapping the features from the side information into the latent features, another

group of feature combination methods have been found. Elbadrawy et al.’s approach is

made to learn a function that transforms the feature vectors of items into their latent space

[20]. Gantner et al. further gave a matrix factorization model that maps the features

directly to latent features [28]. Finally, Boltzmann machines [33] and aspect models [80]

also utilize side information to be used explicitly for cold-start recommendation problems.

Some other models compute similarity between users/item explicitly and use these

similarity matrices to apply feature combination methods [49, 84]. Specifically, Trevisiol

et al. studied users’ consumption of news articles and then built a special graph dubbed

BrowsGraph [84]. BrowsGraph included both structural and temporal properties that both

served news to its users but was also able to provide relevant articles to even cold-start

users.

Another common approach is to allow many different recommender algorithms to

execute on the data and combine their results using various methods. These approaches

require building and running several different models leading to necessarily higher compu-

tational overhead [33]. However, some success has been found in the combination of these

models due to weighted outputs [16], reapplying a rank function [12], applying different

recommenders at each phase [9], and creating a voting framework [70].

One of the more effective approaches for recommender systems is to efficiently factor

the adjacency or rating matrices into multiplicative of k-rank matrices. This approach

heavily influenced this dissertation. Considering the item recommendation case, the general

idea is to factor the rating matrix into user and item specific matrices such that their

product approximates the complete rating matrix. The two major approaches to this end

are optimization techniques [76, 50, 53, 46] and probabilistic [61] in nature.

As another form of side information, over the last five years several taxonomic

approaches to recommender systems have been attempted. These methods attempt to

extract implicit user preferences based on the hierarchy of the items themselves. The first

13

taxonomic matrix factorization approaches tried to grab these explicit taxonomies and

use them as side information. As the field evolved, sophisticated methods to learn the

taxonomies themselves from the item-user interactions were developed.

Zhou et al., using their Kernelized Probabalistic Matrix Factorization (KPMF) algo-

rithm, have leveraged side information within the item-taxonomic framework [91]. In their

work, they accurately make item recommendations using the users’ social network as side

information. Dror et al. created a matrix factorization scheme wherein the categorical and

temporal information about music was used as side information for music rating predictions

[42]. Kanagal et al. developed a taxonomy-aware dynamic latent feature model that not

only allowed such taxomonies to be used in finding items to recommend to users but also

provided a framework for finding similar latent features between parent and sibling items

in the taxonomy [40]. Zhang et al. automated the taxonomy creation process via learning

techniques that created taxonomies with no user input [88]. Their algorithm even performs

better than latent factor models on human-created taxonomies.

Finally, we note that although various hybrid methods such as factorization ma-

chines [74], content-boosted collaborative filtering [57], probabilistic models [71], pairwise

kernel methods [7], and filterbots-based methods [68] have been developed to blend collab-

orative filtering with side information, they are specifically designed to address the data

sparsity problem and fail to cope with cold-start users or items problem, which is the main

focus of this work.

1.4 Overview

In this introduction, we defined a new concept called the P-impact process in addi-

tion to our motivation for introducing this concept. In Chapter 2 we describe a detailed

problem statement while raising open questions about P-impact edges and describing im-

plications in network completion, link prediction, and recommender system problems. In

Chapter 3 the P-impact process is explored. In Chapter 4 distance and count impact are

14

compared in empty graphs. While in Chapter 5 P-impact is applied to trees. Chapter

6 serves as a bridge between P-problems and applications in social networks. Chapter 7

examines network completion in graphs. Chapter 8 extends to recommender systems and

Chapter 9 contains the conclusions of this work.

15

Chapter 2

Problem Statement

The goal of this work is optimize invariant values under edge addition and to use

such techniques to provide predictions for new edge additions in real world applications.

Because of this, the scope of this work focuses on two general facets. First, the mathematical

basis for the P-impact problem is described. Second, the applications to link prediction

and recommender systems are given.

For a general invariant, our meaning of P-impact optimization may not be clear.

Optimality as a measure of goodness where each added edge will try to optimally preserve

an invariant value, structure, or concept. As input a graph G, a target size k, are considered

and a graph H of size k with the desired invariant value is created. Given the wide and

varied nature of graph invariants, this may be understood to hold as each edge is added,

or only after the entire set of edges is added. There may not be an optimal set of edges for

a given G and k under a particular invariant; the prescribed value is approached as closely

as possible with the addition of k edges.

To begin this exploration the three invariants are considered. The first counts the

number of spanning trees and the other two are concerned with distance variants. For the

number of spanning trees, the goal is to maximize the total number of spanning trees via a

fixed number of edge additions. For the distance invariants, a goal is set to determine both

16

the set of edges that reduce the sum of all distances and the highest number of vertices

with reduced distances, respectively.

To discover the optimal set of edges to add in the case of a general graph, first

each of these invariants are considered under the P-impact process with G restricted to

specific graph classes. An empty graph is considered with k “
`

n
2

˘

. The process then adds

edges throughout its P-impact process to eventually reach Kn in the simple case. Here, an

attempt probabilistically identify what graphs are created through this evolutionary process

with our chosen invariants is made. A further open problem is to introduce a function to

randomly add edges of highest and lowest impact in an attempt to create graphs with

interesting properties in a process similar to that which creates small-world networks.

The highest consideration is made for when G as a tree on n nodes with k “ n.

A tree is chosen because it is a minimally connected graph and our invariants rely on

connectedness for reasonable results. In this case the spanning tree impact problem is

trivial and can be determined by only finding the diameter of the graph. However, the

count and distance impact edge sets are provably non-trivial and their determination is to

be explored with some results presented.

When dealing with trees in the P-impact problem, connectivity is heavily leveraged.

However, questions rise as to how to handle vertices that are disconnected from the graph.

Once connectivity was dropped vertices become cold-start (isolated). This lead to an

exploration of cold-start vertices and also determination of edges to be added to a graph.

From these link prediction exercises a practical application arose that considered matrix

completion techniques for adjacency matrices using graph invariants as side information.

From here the problems became more concrete and were explored on a variety of real world

datasets.

The initial aim of the work on network completion (link prediction) applications was

to exploit side information from the nodes. This side information is generally available in

some form from the social networks at hand. A problem thus arises wherein the choice of

17

side information and methods of transduction deeply affect the quality of the link prediction.

Variations are also included where there are cold-start nodes and differing choices for side

information.

Similar to link prediction problems, this work also explores the challenges of predict-

ing ratings in recommender systems. Again, efficient matrix factorization methods exist,

but are generally intolerant to cold-start problems. A further challenge is explored in rec-

ommender systems where cold-start users and items may be present. With sparsity and

cold-start issues present, this work seeks to provide a framework for incorporating side in-

formation using shared subspaces in the matrix completion techniques to provide accurate

rating prediction.

The results of this lay the groundwork for future exploration of P-impact edges. It

provides many insights about the difficulty of assessing distance-impact in graphs and shows

the non-trivial nature of distance-impact edges in trees with a collection of counterexamples

to various conjectures. The mathematical basis culminates with a proof that the maximum

distance-impact edge cannot be incident to two leaves in a tree. Considerable progress

was made when considering the application-based work in both network completion and

recommender systems. Both experimental and mathematical results are given showing a

decoupled transduction approach to incorporating side information in matrix completion

is efficient and accurate. The algorithms presented also handle cold-start problems and

non-randomly distributed sparse data sources.

18

Chapter 3

The P-Impact Process

The P-impact process refers to an algorithm that adds edges from the permissible

set to a graph while attempting to maintain some invariant value until a prescribed graph

size is achieved. The general P-impact process algorithm is described here as well as a

randomized variant. Although running times depend on the complexity of computing the

invariants themselves, computational improvements through meaningful reductions in the

permissible set are explored. These reductions are introduced here and further detailed in

later chapters. Generally, maximum or minimum P-impact edges are considered, but any

impact value of an edge may be used. Lastly, the underlying graphs may control much of

the P-impact process, and these are also discussed in later chapters.

3.1 The Basics

The P-impact process is most simply imagined as a brute force algorithm. Generally,

the concern is with single edge addition that at the time satisfies some invariant condition.

Here, once an edge is added it may not be removed. The algorithm itself is simple in that

it adds each edge from the permissible set one at a time, computes the invariant value,

and removes the edge. From this, it then takes the edge with the desired invariant value.

19

The maximum P-impact edge is usually the one most used, but the max function may be

replaced with any condition as required by the invariant.

Algorithm 1 The P-Impact Process

procedure FindImpactEdge
I={}
for e P P do

I Y pPpG` eq, eq
return maxConditionpPpG` eq, eq

procedure FindImpactfulSet
while |EpGq| ă k do

e “ FindImpactEdgepGq
P “ Pze
G “ G` e

return EpGq

This is the case that we generally pursue. However, there is also interest in finding

an ‘optimal’ set of edges to add. Notice that the process generally picks the edge that is

best in any particular time, but does not consider its impact on future edges. This greedy

approach may not always choose the best edge set for a given invariant as a whole. A

relaxation of this addition will try to find the optimal set of edges to add all at once. For

this formulation of the problem we attempt to determine a single set of edges from the

permissible set that, when added, maintain or achieve an invariant value. These results

may be better, but they rely on a higher burden of calculation that will be discussed next.

3.1.1 Time Complexity

Notice that the P-impact process must compute the invariant value after the addition

of each edge of the permissible set, and then repeat this process for every edge addition

until G is size k. This cost is fixed by the number of times that the best known algorithm

to compute each invariant is called. If an invariant PpGq can be computed in fpnq time this

call must be made for each possible edge in the permissible set, which is Opn2q, and k ´ n

times to choose all of the required edges. Thus, the algorithm will take Oppk´nq ¨n2 ¨fpnqq

20

time to compute. Throughout this dissertation, this model will be used unless explicitly

stated otherwise.

Compare this to the relaxed case, and it is clear that the invariant calculations

are fixed but there is a need to consider all size k ´ n subsets of the permissible set. As

the permissible set can be up to Opn2q in the simple case this is O
´

`

n2

k´n

˘

¨ fpnq
¯

. This

considers all possible subsets of size k ´ n of P. Looking for an optimal subset of a fixed

size will generally be more time-consuming than the previous case, but is still polynomial

in n if fpnq is.

In Figure 3.1 the maximum distance-impact process on a random graph G with

n “ 10, m “ 14, and k “ 17 is outperformed by finding an optimal set of three edges

to add. The added edges are shown in red dashed lines, and the order that the edges are

added are given.

Maximum Distance-Impact Process Optimal Three Edges

1

2

3

1
1

1

Total Distance: 150 Total Distance: 146

Figure 3.1 Maximum distance-impact does not yield an optimal solution

3.1.1.1 Running Time of SPtree-Impact

The sptree-impact of a graph G can be computed by calculating the number of

spanning trees under addition of each edge in the permissible set, respectively. On a given

graph the number of spanning trees is computed in OpV `E`E ¨T q where T is the number

21

of spanning trees [27]. This process can be repeated k ´ n times to find the desired graph

in Oppk ´ nq ¨ V ` E ` E ¨ T qq.

If the best overall set is taken, as in the relaxed case, there is a need to check the

number of spanning trees under the addition of all possible subsets of size k ´ n. This

would take O
´

`

n2

k´n

˘

¨ pV ` E ` E ¨ T q
¯

time.

3.1.1.2 Running Time of Distance-Impact

To find an edge of particular count or distance-impact, each possible edge in the

permissible set must be checked and the all-pairs shortest paths after its addition must be

found. Using the FloydWarshall Algorithm, or several calls to Dijktra’s Algorithm, we can

compute all of the distances in a graph in Opn3q. For the distance-impact the sum of the

total distance in each step is found, and for the count-impact the sum of the total number

of changes is found. Combining these, finding any one edge may be done in Opn5q. This is

the special case when k “ n` 1. In general, there is a need for this process to be repeated

k ´ n times and that gives a running time of Oppk ´ nq ¨ n5q.

Again for the relaxed case, all of the distances under the addition of all possible

subsets of size k ´ n must be checked. This would take O
´

`

n2

k´n

˘

¨ n3
¯

time.

3.2 Random P-Impact Process

What happens if instead of adding the maximum distance-impact edge at each step,

a biased coin is flipped and then the decision to add the maximum or minimum-impact

edge is made? This is the question that may be solved by the random distance-impact

process.

22

3.2.1 Random Distance-Impact Algorithm

This process is quite straightforward. First, two properties are chosen along with

a probability threshold. Second, use the P-impact process as before, but choose the edge

to add based on which condition is randomly selected. Condition one is considered to be

a maximum impact edge and condition two to be a minimum impact edge under both

distance and sptree invariant. Here, consider two conditions and a threshold, 0 ď t ď 1,

for deciding between them.

Algorithm 2 The Random P-Impact Process

procedure FindImpactEdge
I={}
Choose random p P r0, 1s
for e P P do

I Y pPpG` eq, eq

if p ď t then
return maxCondition 1pPpG` eq, eq

else
return maxCondition 2pPpG` eq, eq

procedure FindImpactfulSet
while |EpGq| ă k do

e “ FindImpactEdgepGq
P “ Pze
G “ G` e

return EpGq

Note that there is no reason to restrict to only two conditions. The minimum and

maximum and/or distance and count P-impact are often paired as our conditions, but

arbitrarily many conditions could be imposed.

3.3 Improvements

The costs of calculating invariants is considered to be fixed, and the time complexity

required to compute invariant values is given to the best algorithms available at the time.

Because of this, any improvements to running time must be achieved by reducing the size

23

of the permissible set meaningfully. If such improvements can be achieved, fewer edges

must be examined and, therefore, fewer calls to calculate the invariant values are made.

By determining which edges in the permissible set may be safely removed, the practical

running time can be reduced even in some cases where the worst-case time complexity is

unchanged. Most conjectures as to permissible set reductions are given in trees, but other

graph classes could be explored.

3.4 Conclusion

The P-impact process is a method for determining which edges to add to a graph

until a desired size is achieved. The algorithm for both the standard and random process is

described here along with running time observations. Provided an invariant can be found

in polynomial time, this process can be completed in polynomial time as well. The focus

on the remaining P-impact chapters will revolve around finding fast ways to reduce the

permissible set to improve the computational complexity of the process.

24

Chapter 4

Construction from Empty Graphs

In this chapter an empty graph is considered and a random impact process is used

to add in new edges. The minimal structure present in trees can be used to make sev-

eral observations, however, in this chapter there is no initial structure. Unless otherwise

stated, edges of the maximum impact for our P-impact process are considered at each step.

However, one variant of the random P-impact process will alternate between minimum and

maximum impact edges. The evolution of maximum distance and count-impact is also

described when the initial graph is empty.

4.1 Observations

Many invariants are not necessarily well defined on disconnected graphs. For one,

there are no spanning trees of a disconnected graph because the spanning tree itself must

be connected and contain all vertices. Conversely, the distance invariants can be defined

on disconnected graphs. If two vertices, x and y, have no path connecting them then it is

the case that dpx, yq “ 8. For the purposes of this work, with the same vertices, consider

dpx, yq “ C. Here C will be an arbitrarily large constant. With this real-valued finite

distance, effectively a large penalty is set up for leaving a graph disconnected.

25

In the distance-impact case this restriction will force the first n` 1 edges added to

create a star, but in the count-impact version any tree will be initially created.

4.2 Distance Invariants

4.2.1 Count-Impact

The count-impact process from an empty graph moves through several fully classified

phases. In the first phase it is important to restate that disconnected vertices in a graph are

of arbitrarily large distance apart. This represents the infinite distance that they have from

each other and forces the first n´1 count-impact to create a tree. This is because whenever

at least one vertex is disconnected from the others, the maximum count-impact edge must

connect it to the rest of the graph because the distance reduction is ‘near-infinite’. This

implies that isolated vertices will be connected to each other or connected components, but

unlike the maximum distance-impact edge, which will be described later, these connections

do not have to occur on the highest degree vertices.

In the first phase a truly random tree is constructed. Once this random tree is

constructed, maximum count-impact edges mostly tend to fall into two general archetypes.

In phase two, new edges will generally be connected to peripheral vertices or to vertices of

maximum degree. Similar to the results on trees, there are counterexamples, but computa-

tional testing has shown that approximately 82% of the edges in the second phase will be

of one of these classes. This percentage was computed from all graphs up to order eleven,

but is not a claim for all graphs. Further, note that phase two will be skipped when the

random tree created in phase one produces a star. A conjecture here is that the length of

the diameter in the random tree will control how many edges will be added in phase two.

Once a graph is diameter two, phase three begins. No vertices, other than the newly

connected ones, will benefit from the additional edge. Thus, the count-impact of any edge

is again one. A graphical description of the phases is given in Figure 4.1.

26

Initial: Empty G

Phase 1: Any Tree Phase 2: Diameter Reduction Phase 3: Graph Completion

Output: Kn

Figure 4.1 The Phases of the Maximum Count-Impact Process

Proposition 4.2.1. After the addition of the first n ´ 1 maximum count-impact edges to

an empty graph of order n a tree is created from the collection of all possible trees on n

vertices.

Proof. Consider the set of disconnected vertices to be D of order d, 0 ď d ď n. The set

of vertices that make up the connected component are C of order c, 1 ď c ď n. Because

the unlabeled graph is initially empty, the first edge connects two arbitrary vertices. There

is no choice to be made, however, once the initial edge is added, it must be shown that

all forthcoming distance-impact edges will create a tree. If there are only two vertices the

process is complete and a star K1,1 is created. Count-impact is fairly simple because it

only measures the number of vertices that have reduced. New edges can be added in one

of three cases.

27

Case 1: The edge is incident to two vertices in C. In this case the count-impact can be at

most c because no vertices in D are added to the connected component.

Case 2: The edge is incident to two vertices in D. This has a count-impact of exactly two

because both vertices were in the disconnected set so only a K2 component is created.

Case 3: The edge evu is added where v P D and u P C. The count-impact is c` 1 because

all vertices in w P C have reduced their distance from f to dpw, uq ` 1. This is a reduction

of the distances of c` 1 vertices.

Clearly case 3 is the optimal case because it has a count-impact of c` 1 while case

two is at most c and case 1 is exactly two. Further, the edges from D to C can be added

at random because the count-impact does not take into account the total distance. Thus,

a random tree of order n is created after the addition of n´ 1 count-impact edges.

4.2.2 Distance-Impact

The maximum distance-impact process initially appears as though it must move

through the same phases as the maximum count-impact process. However, significant

differences in phase one lead to the elimination of the diameter reduction phase from the

count-impact variant. Specifically, the distance-impact edge will always form a star after

tree-many edges are added. New edges will still try to minimize the total distance and must

be added from an unconnected vertex to the center of the largest component. Because of

this, the final phase remains the same and will add edges at random to the graph because

its diameter is two. This implies that all possible edges have distance-impact of one. This

process is described in Figure 4.2.

28

Initial: Empty G

Phase 1: Star Emergence Phase 2: Graph Completion

Output: Kn

Figure 4.2 The Phases of the Maximum Distance-Impact Process

Proposition 4.2.2. After the addition of the first n ´ 1 maximum distance-impact edges

to an empty graph of order n the graph K1,n´1 is created.

Proof. Consider the set of disconnected vertices to be D of order d, 0 ď d ď n. The set

of vertices that make up the connected component are C of order c, c ‰ 1 and 1 ă c ď n.

The graph in question is TpV,Eq where V “ DYC. Disconnected vertices are of arbitrarily

large distance apart denoted f . The total distance in C is the constant tdpCq.

As the unlabeled graph is initially empty the first edge connects two arbitrary ver-

tices. There is no choice to be made, however, once the initial edge is added, it must be

shown that all forthcoming distance-impact edges will create a tree. If there are only two

vertices the process is complete and a star K1,1 is created. After the initial K2 is created

there are three choices for a possible new distance-impact edge additions:

29

Case 1: The new edge is between two vertices in C. This is not possible. Either the set

D is empty in which case there have already been n` 1 additions, or there is at least one

vertex left in D. Because the vertices in D are of arbitrary distance from those of C, no

matter how much the reduction of the distances in C, the single reduction of evu, with v P D

and u P C, from f to 1 makes such a edge have a higher distance-impact.

Case 2: Two vertices in D are connected. This reduces the distance of the set D from
`

d
2

˘

¨ f to
``

d
2

˘

´ 1
˘

¨ f ` 1, a total difference of f ´ 1. Note that the other distances in tdpCq

and the distances between D and C is d ¨ c ¨ f and is unchanged.

Case 3: The new edge connects a vertex of D to one of C. This reduces the total distance

of the disconnected and connected sets from d ¨ c ¨ f by at least pd ´ 1q ¨ c ¨ f . This is a

distance savings of c ¨ f .

Case 1 will not occur and it is also the case that the order of the connected compo-

nent is at least two. This implies that the reduction in case 3 of c ¨ f is greater than that of

case 2 because it only has a reduction of f ´ 1 as c ě 2. Now all that remains to be shown

is that the case 2 edge additions always form a star.

Clearly, the only choices for the first two edges are K1,1 and K1,2, respectively. These

are the base cases for induction. Consider now that i edges are added creating an optimal

K1,i´1. Consider the addition of another edge. By the inductive hypothesis it must be

connected to the star K1,i´1. This leaves no non-isomorphic choices.

Case 1: The new edge is connected to a leaf of K1,i´1. The total distance in the star K1,i´1

is pi´1q`pi´2qpi´1q “ pi´1q2. The added distance of the new vertex to that of K1,i´1 is

comprised of the distance to the incident leaf, the distance to the center, and the distance

to the other i´2 leaves. This gives a total distance of pi´1q2`1`2`3pi´2q “ pi`2qpi´1q.

Case 2: The new edge is connected to the center of K1,i´1. The added distance of the new

vertex to that of K1,i´1 is comprised of the distance to the center and the distance to the

other i´ 1 leaves. This is pi´ 1q2 ` 1` 2pi´ 1q “ i2.

Comparing the cases the total distances are i2 ď pi` 2qpi´ 1q if and only if i ě 2 which is

30

covered by the base cases. This new edge must always be added to the center and a star is

thus created.

4.3 Conclusion

The P-impact process on empty graphs provides some insight on the evolution of

invariants as graphs increase in size. However, at the moment much of this work is obser-

vational in nature. Note that maximizing distance-impact tends to reduce the diameter

whereas the maximum count-impact tends to increase the maximum degree. Both of these

claims have been supported by some computational results, but remain ‘rules of thumb’

rather than proven statements. Further observations can be made to some general trends

for graphs, but each stage of the process for distance and count-impact edge addition from

empty graphs is given.

31

Chapter 5

Trees

Many invariants are undefined or uninformative in disconnected graphs; trees pro-

vide connected graphs of the smallest size. Because of this minimal extremal structure

trees provide a reasonable initial graph for the P-impact process. This chapter also focuses

on the graph invariants of the number of spanning trees and the total distance because

they are computationally simple to compute and determine interesting graph properties.

It is shown that finding the maximum sptree-impact edge is trivial while contrasting

this with the more complex task of determining the maximum count and distance-impact

edge. Several conjectures and counterexamples to the a priori determination of the maxi-

mum distance-impact edge are provided and they provide some intuition to the role of the

maximum distance-impact edge in G`e. Finally, a proof is given that shows the maximum

distance-impact edge must not be incident to two leaves of a tree.

5.1 Number of Spanning Trees

Trees are acyclic and as such there is only one spanning tree of a tree T , namely T

itself. Further, the addition of a single edge to a tree creates only one cycle. This makes the

task of finding an arbitrary sptree-impact edge quite simple because it reduces to finding

the distances between the vertices in a tree.

32

Lemma 5.1.1. The number of spanning trees in an order n connected graph with n edges

is equal to the girth of the graph.

Proof. There must be exactly one cycle in a connected graph with n edges on n vertices.

Removing any single edge of this cycle creates a tree, and removing any other edges dis-

connects the graph. Thus we can create spanning trees only by removing one edge at a

time from the only cycle in G. The length of of this cycle is the girth.

As an immediate result of this lemma, to find a sptree-impact edge of value i in T

the edge exy where dT px, yq “ i´1 must be added. This result is trivial, but it will be used

to highlight the difference between sptree-impact and distance-impact.

5.2 Distance

Where sptree-impact only must create a cycle of an appropriate length, the distance-

impact edge must balance the length of the cycle created with the distribution of vertices

along that cycle. Because tress are acyclic, total distance is again simple to compute.

However, when an extra edge is added, not only does the distance between the newly

connected vertices drop to one but a ‘shortcut’ may be created for many other vertices. This

problem becomes difficult because knowing whether any other vertices use this ‘shortcut’

is a non-trivial problem.

5.2.1 Tree Partitions

In the simple case any edge in G may be considered as an P-impact edge in the

permissible set. Thus, OpEq “ Opn2q edges must be added individually along with the

invariant calculations. Again, as the complexity for invariant computation is fixed, the

goal will be to try and reduce the size of the permissible set instead. This can reduce

the practical, if not asymptotic, complexity of finding P-impact edges. To this end, graph

33

structures that would allow the examination very specific vertices of a tree a priori were

targeted.

Several observations can be made about what edges cannot be in the permissible

set for, say, calculating the maximum impact edge. However, many observations will take

at least a call to depth-first search to identify important structures. Such a call will nullify

any complexity savings in reducing the size of the permissible set. Instead, some structure

in the graph that is fast to compute and can partition the set of edges in G into edges to

consider and edges to immediately discount should be found.

In trees, several common graph invariants were considered to split the graph’s edges.

These included looking at degree, centers, and distance. For most of these considerations,

counterexamples were found and are given in the next section. However, these counterex-

amples helped to refine the basis for selecting partitions on the edge set, and led to a proof

regarding distance-impact edges among the leaves in Section 5.2.3.

5.2.2 Counterexamples in Distance Impact

To determine the appropriate location for the distance-impact edge several conjec-

tures were put forward, but counterexamples were found and are presented below. These

give insight as to what structure is important to finding the distance-impact of edges. In

each figure the solid lines represent the edges in G and the dashed lines are the edge(s)

of maximum distance-impact in G ` e. An effort was made to provide the extremally

interesting counterexamples where the order is the smallest.

Conjecture 5.2.0.1. The maximum distance-impact edge is incident to a pair of peripheral

vertices.

Counterexample. In the graph in Figure 5.1 the maximum impact edges do not connect

the maximum degree vertices.

34

Figure 5.1 Counterexample to conjecture 5.2.0.1

Conjecture 5.2.0.2. The maximum distance-impact edge is incident to two of the maxi-

mum degree vertices in trees.

Counterexample. In the graph in Figure 5.2 the maximum impact edges do not connect

the maximum degree vertices.

Figure 5.2 Counterexample to conjecture 5.2.0.2

Conjecture 5.2.0.3. The maximum distance-impact edge is incident to a pair of leaves.

Counterexample. Figure 5.2 also provides a counterexample.

Conjecture 5.2.0.4. The maximum distance-impact edge is incident to at least one of the

maximum degree vertices in trees.

Counterexample. Given the following graph G in Figure 5.3 the maximum impact edges do

not connect the maximum degree vertices.

35

Figure 5.3 Counterexample to conjecture 5.2.0.4

Conjecture 5.2.0.5. The maximum distance-impact edge is incident to at least on vertex

of maximum degree or at least one of the leaves.

Counterexample. Figure 5.3 also provides a counterexample.

Conjecture 5.2.0.6. The maximum distance-impact edge is incident to the maximum

degree vertices with the long path between them in trees.

Counterexample. Figure 5.3 also provides a counterexample.

Conjecture 5.2.0.7. The maximum distance-impact edge is incident to the maximum

degree vertices of the furthest distance from each other.

Counterexample. Figure 5.3 also provides a counterexample.

Conjecture 5.2.0.8. The maximum impact edge in a tree, T , is either incident to the

center, C, or its endpoints are in separate components in T ´ C.

Conjecture 5.2.0.9. The maximum distance-impact edge joins components in T´k, where

k is the edge of maximum index.

Counterexample. In Figure 5.4 the maximum distance-impact edge does not join compo-

nents of T ´ k.

36

k

Figure 5.4 Counterexample to Conjecture 5.2.0.9

Conjecture 5.2.0.10. The maximum distance-impact edge joins components in T ´ k

where k is the maximum distIndex edge.

Counterexample. In Figure 5.5 the maximum distance-impact edge does not join compo-

nents of T ´ k.

k

Figure 5.5 Counterexample to Conjecture 5.2.0.10

Conjecture 5.2.0.11. The maximum distance-impact edge joins disjoint components in

T ´ C or is incident to C where C is the center vertex.

37

Counterexample. In Figure 5.6, the maximum distance-impact edge is not incident to the

center, and pT ´ Cq with the maximum distance-impact edge is disconnected. The vertex

labeled ‘C’ is the center.

C

Figure 5.6 Counterexample to Conjecture 5.2.0.11

Conjectures 5.2.0.8-10 yield very few counterexamples. The following tables show

the computational results for small trees.

38

Order 3 4 5 6 7 8 9 10 11

Number of Trees 1 2 3 6 11 23 47 106 235

Counterexample 1 0 0 0 0 0 0 0 0

Adjacent to Max Index 1 2 2 4 9 14 33 63 151

Percent Counterexample 100 0 0 0 0 0 0 0 0

12 13 14 15 16 17

551 1301 3159 7741 19320 48629

0 0 3 1 2 16

310 732 1600 3919 8961 22760

0 0 0.095 0.012 0.010 0.033

Table 5.1 Analysis of the counterexamples to the conjecture that the maximum distance-
impact edge joins components in T ´ k where k is the maximum index edge.

Order 3 4 5 6 7 8 9 10 11

Number of Trees 1 2 3 6 11 23 47 106 235

Counterexamples 1 0 0 0 0 0 0 0 0

Adjacent to Max disIndex 1 2 2 4 8 13 27 55 123

Percent Counterexamples 100 0 0 0 0 0 0 0 0

12 13 14 15 16 17

551 1301 3159 7741 19320 48629

0 0 3 1 3 11

267 584 1334 3069 7248 17512

0 0 0.095 0.012 0.016 0.023

Table 5.2 Analysis of the counterexamples to the conjecture that the maximum distance-
impact edge joins components in T ´ k where k is the maximum distIndex edge.

39

Order 3 4 5 6 7 8 9 10 11 12

Number of Trees 1 2 3 6 11 23 47 106 235 551

Counterexamples 1 0 0 0 0 0 0 0 0 0

Adjacent to Center 0 1 1 2 4 7 12 25 48 112

Percent Counterexamples 100 0 0 0 0 0 0 0 0 0

13 14 15 16 17 18 19 20

1301 3159 7741 19320 48629 123867 317955 823065

0 0 0 0 0 0 0 1

216 491 1112 2608 6266 8583 12401 17686

0 0 0 0 0 0 0 1.2ˆ10´6

Table 5.3 Analysis of the counterexamples to the conjecture that the maximum distance-
impact edge joins components in T ´ c or is incident to c where c is the center vertex.

These tables are not sufficient to prove the number of counterexamples to the con-

jectures are vansishingly small, but this appears to be the case. This is especially important

because the center can be quickly determined. This could imply that the permissible set

must be of the form described in 5.2.0.10 with only exceptionally rare cases falling into the

class of counterexamples.

5.2.3 Non-Leaf Distance-Impact Edges in Trees

The previous section highlights the underlying slippery nature of maximum distance-

impact edges. Specifically, they show how path length and degree can be misleading when

trying to find the maximum distance-impact edge. In many trees the maximum distance

edge is on the peripheral vertices or incident to the center, but unfortunately this is not

the case in general. These examples seem to indicate that a more sophisticated conjecture

is needed that will take into account path length and degree.

40

In this section a proof is presented to reduce the search space for maximum distance-

impact edges in trees. Such a reduction is useful in speeding computational evaluations of

distance-impact graphs and begins to move towards a method for finding the maximum

distance-impact edge in the general case.

Lemma 5.2.1. The maximum distance impact edge in stars must be incident to two leaves.

Proof. Note that all vertices are leaves except for the single vertex that is connected to all

leaves. This central vertex is of maximum degree, thus any new edge must be between two

leaves in the simple case. Because this graph is diameter two, any added edge has edge

impact of exactly one.

Path graphs will be considered to develop the central proposition for proving that

the maximum distance-impact edge must not be between two leaves in all but vanishingly

rare cases. Consider the path graph, Pn and the following claim:

Claim 5.2.2. The maximum distance-impact edge in Pn for n P Z` is not incident to the

two leaves.

This claim needs refinement as some small cases do not hold. They are considered

exhaustively and Claim 5.2.2 will be refined into Lemma 5.2.7. These small cases encompass

0 ď n ď 6. When n “ 0, P0 is the empty graph and no edges may be added. When n “ 1

or n “ 2 the graphs are the complete graphs K1 and K2, respectively. Again, these graphs

do not allow additional edges in the simple case.For n “ 3 the graph Pn » S1,2 and thus

the maximum distance-impact edges must be incident to two leaves.

The first non-degenerate case is P4 (Figure 5.7). There are two non-isomorphic

edges that both have equal distance-impact of 2 as shown in Table 5.4. One of these edges

is incident to the two leaves and the other is not. Thus, the maximum distance impact

edge can be chosen so as not to be incident to two leaves. However, an edge between the

two leaves is also possible.

41

2
1

Figure 5.7 P4 with all non-isomorphic possible edge additions as dashed edges

Edge Addition Distance-Impact

1 2

2 2

Table 5.4 The distance-impact of all non-isomorphic edge additions in P4

The case of P5 is a true exception. Considering the non-isomorphic edge additions in

Figure 5.8, the distance-impact is given in Table 5.5. The maximum distance-impact edge

is incident to the leaves, and every other possible edge addition yields lower distance-impact

values.

2
1

3
4

Figure 5.8 P5 with all non-isomorphic possible edge additions as dashed edges

Edge Addition Distance-Impact

1 5

2 4

3 2

4 4

Table 5.5 The distance-impact of all non-isomorphic edge additions in P5

42

The edge additions to P6 (Figure 5.9) do not violate Claim 5.2.2 as shown exhaus-

tively in Table 5.6. However, note that the maximum distance-impact edge is incident

to one leaf. For n ą 6, it will be shown that the maximum distance-impact edge is not

incident to either leaf in paths to prove Lemma 5.2.7.

4 3
2
1

6 5

Figure 5.9 P6 with all non-isomorphic possible edge additions as dashed edges

To prove a modified version of Claim 5.2.2, the total distance in Cn for n odd or

even is shown combinatorially. A general graph of Cn is shown on the left of Figure 5.10

The distance values computed here will be used in a later proof.
...

.

Figure 5.10 Cn (left) and DpCn´2 (right), each of order and size n

Lemma 5.2.3. The total distance in Cn, where n is odd, is

n

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚“
n3 ´ n

4

Proof. Due to symmetry, only one vertex is considered, v. The maximum shortest-path

distance to any vertex in an odd cycle is n´1
2

. There are exactly two vertices of this distance

43

from v. Further, the distances to the vertices on these paths can be found as the summation

of
ř

n´1
2

i“1 i. Because there are two such paths, the vertex v has distance, from every other

vertex, of:
n´1
2
ÿ

i“1

i`

n´1
2
ÿ

i“1

i “

n´1
2
ÿ

i“1

2i “
n2 ´ n

4

There are n such vertices so the total distance in an odd cycle is:

n

n´1
2
ÿ

i“1

2i

Lemma 5.2.4. The total distance in Cn, where n is even, is

n

»

–

¨

˝

n
2
ÿ

i“1

2i

˛

‚´
n

2

fi

fl “
n3

4

Proof. Due to symmetry, only one vertex is considered, v. The maximum shortest-path

distance to any vertex in an odd cycle is n
2
. There is exactly one vertex of this distance from

v. Further, the distances to the vertices on these paths can be found as the summation

of
ř

n
2
i“1 i. Because there are two such paths, the vertex v has distance, from every other

vertex, of:
n´1
2
ÿ

i“1

i`

n´1
2
ÿ

i“1

i “

n´1
2
ÿ

i“1

2i

However, this double counts only the single vertex of distance n
2

from v. This is

corrected by the subtraction of n
2

distance. Thus, considering the n such vertices in Cn the

total distance in an even cycle is:

n

»

–

¨

˝

n
2
ÿ

i“1

2i

˛

‚´
n

2

fi

fl

44

One final auxiliary graph is needed. Given a cycle Cn where n ą 5, the endpoints

of one edge are moved such that two pendants of distance 3 from each other are created.

This forms the graph on the right in Figure 5.10 dubbed the double distance-three-pendant

cycle denoted DpCn´2. The total distance for odd and even n are given in the following

lemmas:

Lemma 5.2.5. The total distance in DpCn´2, for n ą 5 odd, is:

pn´ 2q

¨

˝

n´3
2
ÿ

i“1

2i

˛

‚` 4

»

–

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚´ 1

fi

fl` 6

and is equivalent to:

n3 ´ 2n2 ` 11n´ 2

4

Proof. This proof will process combinatorially by assessing the distance between two sub-

graphs of DpCn´2. The two subgraphs of DpCn´2 are the cycle part and the pendants.

They are denoted as c and p, respectively, in Figure 5.11. To find the total distance in

this graph it suffices to find the total-distance in the cycle part, the total distance in the

pendant part, and the total distance between these subgraphs. Note that, although the

path between the pendants lies on the cycle, it is not counted twice in the calculations of

the total distance of the cycle.

.

p p

c

cc

c

c c

Figure 5.11 The regions of DpCn´2

45

The three total distance calculations are as follows:

1. Pendant-Pendant Total Distance: The definition of the construction gives that

the pendants are of distance 3 from each other. Thus, the total distance for this

section is 3` 3 “ 6 exactly.

2. Cycle-Cycle Total Distance: The cycle is of length n´ 2 with two pendants. Be-

cause n is odd, so is n´2. The total distance for odd cycles was given in Lemma 5.2.3.

Substituting in n´ 2, the total distance is:

pn´ 2q

¨

˝

n´3
2
ÿ

i“1

2i

˛

‚“
n3 ´ 6n2 ` 11n´ 6

4

3. Pendant-Cycle Total Distance: The paths in this set are all of the paths to the

vertices on the cycle plus the single edge addition of the pendant. With this extra

edge the calculation of distance is almost identical to that of a cycle with an extra

correction term. From the pendant, the half-way point on the cycle is reached after

1 ` n´3
2
“ n´1

2
edges (reach the cycle and then traverse it). Because n ´ 2 is odd

(and the pendant is one edge from a the cycle) there are exactly two vertices of this

distance, however, this formulation double counts the path from the pendant to the

first vertex of the cycle. This sum is thus:

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚´ 1 “ n2
´ 5

Because total distance is being calculated, this value must be doubled to count all

pendant-to-cycle and cycle-to-pendant paths. Thus, for each pendant there is a total

distance of:

2

»

–

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚´ 1

fi

fl

46

Finally, because there are two pendants of the same form, this expression must be

doubled again to give:

4

»

–

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚´ 1

fi

fl “ n2
´ 4

The sum of all three parts gives the total distance for DpCn´2, n odd, as:

pn´ 2q

¨

˝

n´3
2
ÿ

i“1

2i

˛

‚` 4

»

–

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚´ 1

fi

fl` 6

Lemma 5.2.6. The total distance in DpCn´2, for n ą 5 even, is:

pn´ 2q

»

–

¨

˝

n´2
2
ÿ

i“1

2i

˛

‚´
n´ 2

2

fi

fl` 4

»

–

¨

˝

n
2
ÿ

i“1

2i

˛

‚´

´

1`
n

2

¯

fi

fl` 6

and is equivalent to:

n3 ´ 2n2 ` 12n

4

Proof. This proof will process combinatorially by assessing the distance between two sub-

graphs of DpCn´2. The two subgraphs of DpCn´2 are the cycle part and the pendants.

They are denoted as c and p, respectively, in Figure 5.11. To find the total distance in

this graph it suffices to find the total-distance in the cycle part, the total distance in the

pendant part, and the total distance between these subgraphs. Note that, although the

path between the pendants lies on the cycle, it is not counted twice in the calculations of

the total distance of the cycle.

The three total distance calculations are as follows:

47

1. Pendant-Pendant Total Distance: The definition of the construction gives that

the pendants are of distance 3 from each other. Thus, the total distance for this

section is 3` 3 “ 6 exactly.

2. Cycle-Cycle Total Distance: The cycle is of length n ´ 2 with two pendants.

Because n is even, so is n ´ 2. The total distance for even cycles was given in

Lemma 5.2.4. Substituting in n´ 2, the total distance is:

pn´ 2q

»

–

¨

˝

n´2
2
ÿ

i“1

2i

˛

‚´
n´ 2

2

fi

fl “
n3 ´ 6n2 ` 12n´ 8

4

3. Pendant-Cycle Total Distance: The paths in this set are all of the paths to the

vertices on the cycle plus the single edge addition of the pendant. With this extra edge

calculation of distance is almost identical to that of a cycle with an extra correction

term. From the pendant, the half-way point on the cycle is reached after 1` n´2
2
“ n

2

edges (reach the cycle and then traverse it). Because n´ 2 is even (and the pendant

is one edge from a the cycle) there is exactly one vertex of this distance. Thus, an

extra n
2

path is double counted. The path from the pendant to the first vertex of

the cycle is also double counted as there is only one vertex of distance one from the

pendant. To correct this over counting, a correction term of 1` n
2

is subtracted. The

distance from the pendant to all of those in the cycle is thus:

¨

˝

n
2
ÿ

i“1

2i

˛

‚´

´

1`
n

2

¯

This expression is quadrupled (doubled to also count the cycle-pendant distances,

and doubled again for the second pendant’s distances). This gives a total distance in

this subgraph as:

48

4

»

–

¨

˝

n
2
ÿ

i“1

2i

˛

‚´

´

1`
n

2

¯

fi

fl “ n2
´ 5

The sum of all three parts gives the total distance for DpCn´2, n even, as:

pn´ 2q

»

–

¨

˝

n´2
2
ÿ

i“1

2i

˛

‚´
n´ 2

2

fi

fl` 4

»

–

¨

˝

n
2
ÿ

i“1

2i

˛

‚´

´

1`
n

2

¯

fi

fl` 6

Edge Addition Distance-Impact

1 8

2 9

3 6

4 4

5 8

6 6

Table 5.6 The distance-impact of all non-isomorphic edge additions in P6

Proposition 5.2.7. The maximum distance-impact edge in Pn for n ě 6 is not incident

to both leaves. For n ą 6, the maximum-distance-impact edge is not incident to either leaf.

Proof. The lemma is proven using the previous combinatorial results, and will be considered

in even and odd cases. Consider first that n ą 6.

1. Odd Case: Consider an n-path, Pn. The maximum distance-impact edge is not

between two leaves if the total-distance in Cn is greater than the total distance in

DpCn´2.

Consider the following if and only if equivalences for n ą 6. If the equivalences

hold, then the odd case is proven. On the left is the total distance in Cn (odd) from

49

Lemma 5.2.3 and on the right is the total distance ofDpCn´2 (odd) from Lemma 5.2.5.

n

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚“
n3 ´ n

4
ą pn´ 2q

¨

˝

n´3
2
ÿ

i“1

2i

˛

‚` 4

»

–

¨

˝

n´1
2
ÿ

i“1

2i

˛

‚´ 1

fi

fl` 6

n3 ´ n

4
ą
n3 ´ 6n2 ` 11n´ 6

4
` n2

´ 5` 6

n3
´ n ą n3

´ 6n2
` 11n´ 6` 4n2

` 4

n3
´ n ą n3

´ 2n2
` 11n´ 2

n2
´ 6n` 1 ą 0

The final inequality holds for n ą 3`2
?

2 « 5.828, thus the whole set of equivalences

are true for the given bounds of n ą 6. The negative case is not considered because

n is a graph’s order.

2. Even Case: Consider an n-path Pn. The maximum distance-impact edge is not

between two leaves if the total-distance in Cn is greater than the total distance in

DpCn´2.

Consider the following if and only if equivalences for n ą 6. If the equivalences

hold, then the even case is proven. On the left is the total distance in Cn (even)

from Lemma 5.2.4 and on the right is the total distance of DpCn´2 (even) from

Lemma 5.2.6. The notation is long, so note that the total distance in an even cycle

is:

n

»

–

¨

˝

n
2
ÿ

i“1

2i

˛

‚´
n

2

fi

fl “
n3

4

and the total distance in the even double distance-three pendant cycle is:

pn´ 2q

»

–

¨

˝

n´2
2
ÿ

i“1

2i

˛

‚´
n´ 2

2

fi

fl` 4

»

–

¨

˝

n
2
ÿ

i“1

2i

˛

‚´

´

1`
n

2

¯

fi

fl` 6

50

and is equivalent to:

n3 ´ 2n2 ` 12n

4

Combining these into a series of inequalities, the following if and only if inequalities

are evaluated:

n3

4
ą
n3 ´ 2n2 ` 12n

4

n3
ą n3

´ 2n2
` 12n

0 ą ´2n2
` 12n

n2
´ 6n ą 0

npn´ 6q ą 0

The final inequality holds for n ą 6, thus the whole set of equivalences are true for

the given bounds of n ą 6. The negative case is not considered because n is a graph’s

order. Both cases are now evaluated.

With the even and odd cases, it is shown that the maximum distance-impact edge

is not incident to either leaf in Pn with n ą 6. Along with Figure 5.9 and Table 5.6, when

n “ 6 the maximum distance-impact edge is not incident to both leaves, the proposition is

proven.

There is one additional tree to note before proceeding with the theorem. The graph

in Figure 5.12 has no edge that has higher distance-impact than one incident to the leaves as

shown in Table 5.7. This graph will be denoted Tbad for reasons that will become apparent

in the statement of Theorem 5.2.8.

51

2
1

3
4

5 6

Figure 5.12 Tbad with all non-isomorphic possible edge additions as dashed edges

Edge Addition Distance-Impact

1 5

2 4

3 4

4 4

5 2

6 2

Table 5.7 The distance-impact of all non-isomorphic edge additions in Tbad

With the development of Proposition 5.2.7 and the lemmas of this chapter, the

principle theorem can be proven.

Theorem 5.2.8. The maximum distance-impact edge is not incident to two leaves in all

trees except stars, Pn, and Tbad (given in Figure 5.12).

Proof. The proof is greatly simplified with the inclusion of Proposition 5.2.7, namely Cn

has larger total distance than DpCn´2. Consider a tree that is not a star, T . This tree

must have two leaves, but it may have many more. Call any two leaves l1 and l2 where

l1, l2 P tEpGqq|l1 ‰ l2, degpl1q “ degpl2q “ 1u. An edge not incident to two leaves that

has higher distance-impact will be determined for every pair of leaves. The cases will be

partitioned based the value of dT pl1, l2q. For ease of notation the subscript graph on the

distance function is suppressed when the graph is simply T .

52

1. dpl1, l2q “ 2: Because the distance between these leaves is 2, the distance between

them, upon the addition of ei1i2 , is reduced to one. However, because they are both

leaves, their neighborhood consists of the same vertex, v. This implies that no other

path through the tree will use the new edge. Suppose it did. Then for two vertices, x

and y, to use the new edge the path P px, yqmust be P px, vq`evl1`el1l2`el2v`P pv, yq.

This is trivially shortened as P px, vq ` P pv, yq. Because the tree is not a star, move

the added edge to any pair of non-leaf vertices that are not adjacent. Their new

distance is 1. This is a reduction of at least 1 as those vertices were not previously

connected. In the worst case, the total distance is the same, but the added edge is

not incident to two leaves.

2. dpl1, l2q “ 3: When the distance between the selected leaves is 3, they are connected

by a copy of P4. If T is isomorphic to P4 then, as in Figure 5.7, there is a maximum

distance-impact edge not incident to two leaves. In the general tree, because there

are no loops, any vertices not contained in the P4 form subgraphs that only connect

to the cut vertices inside of the path. Consider this structure in Figure 5.13 where

the dashed edge is the potential non-double-leaf-adjacent candidate edge. The total

orders of the vertices connected to each path vertex are |A| and |B|. Note, the induced

subgraphs GrAs and GrBs are not necessarily connected.

l1

v w

l2

A B

Figure 5.13 Proposed distance-impact edge when selected leaves are of distance 3

If both A and B are empty the graph is P4. In this case, the dashed edge is of the

same distance-impact as the leaf-leaf edge and is only incident to one leaf. Consider

53

then that at least one of A and B is non-empty. Without loss of generality, A

contains at least one vertex. By moving the edge from l1 to the path vertex v, the

distance from l1 to l2 increased by 1. However, previously the distance from l2 to

any vertex i P A was |P pi, vq ` evl1 ` el1l2 | “ |P pi, vq ` 2|, but this was reduced to

|P pi, vq ` evl2 | “ |P pi, vq ` 1| for every vertex in A. This is a reduction of at least

1. The change of the edge does not affect any distances on P4. No paths from A to

B can use the added edge as it would increase the distance between the subgraphs

by one. Therefore, there is always an edge of higher impact than one incident to two

leaves of distance 3.

3. dpl1, l2q “ 4: In this case the underlying path connected l1 and l2 is P5. From Fig-

ure 5.8 this graph is known to have a unique maximum distance-impact edge between

its leaves. Consider the underlying path as tl1, u, v, w, l2u, and candidate edges i and

j. Figure 5.14 details the graph and proposed edges. There are other edges that

could be considered, but these are sufficient for the proof.

l1

u v w

l2

A
B

C

. . .

i

j
k

Figure 5.14 Proposed distance-impact edge when selected leaves are of distance 4

Note that edge i is incident to the leaves and should be avoided if possible. Using

Figure 5.14, the following three equations represent the total distance savings of each

edge addition and are derived from combinatorial methods. Further, |A| “ a, |B| “ b,

and |C| “ c. Because all vertices in the sets A,B, and C connect to the P5 path via a

cut vertex, any reduction in path (of length α) between the sets and a vertex on the

54

reduced path improves the total distance by α for all possible paths. Without loss of

generality, consider the affected set to be A. Then the distance drop is α|A| from the

set to the vertex. This is 2α|A| in total distance.

(a) Distance-Impact of i: The leaves were initially of distance 4, this has been

reduced to 1 via the edge el1l2 . The edge el1l2 also reduces dpl1, wq and dpl2, uq

from 3 to 2. Finally, the path P pl1, wq allows access to C by a path that is 1

shorter. This is a reduction of 2|A|. By symmetry, with P pl2, uq there is also a

reduction in 2|C|. Considering all other paths in the graph, no other ones can

use the additional edge. The distance-impact of edge i is 2|A| ` 2|C| ` 10.

(b) Distance-Impact of j: The leaves were initially of distance 4, this has been

reduced to 3 via the edge euw a savings of 1 for each. Similarly, the paths P pu, l2q

and P pl1, wq are also reduced by 1 each for a total of 4. The path between sets

A and C are reduced to 1 as P pu,wq is now present. This yields 2|A||C| as all

vertices in A have a reduced path to C and vice versa. Further, this reduces

by 2 more for the P pu,wq path. The vertices l1 and u are now one closer to

C via w. This is a distance-impact of 2|C| ` 2|C| “ 4|C|. By symmetry the

same reduction happens for l2 and w to A. Considering all other paths in the

graph, no other ones can use the additional edge. The total distance-impact of

j is 2|A||C| ` 4|A| ` 4|C| ` 8.

(c) Distance-Impact of k: The addition of k is the only case where paths to B

are reduced. The distance from l1 to l2 is reduced by 1 saving 2. Also, k “ ev,l2

so their distance is reduced by 1 saving an additional 2. The distance from l2 to

v and u are reduced by 1 so the sets A and B are also closer. This reduces the

total distance by 2|A|` 2|B|. Considering all other paths in the graph, no other

ones can use the additional edge. The distance-impact of edge i is 2|A|`2|B|`6.

55

From these combinational arguments three functions on the size of the partitions

A,B, and C were derived. These functions are:

fipa, b, cq “ 2a` 2c` 10

gjpa, b, cq “ 2ac` 4a` 4c` 8

hkpa, b, cq “ 2a` 2b` 6

Here the function fipa, b, cq computes the distance-impact of the addition of edge i to

a tree where at least two leaves are of distance 4 (similar for gj and hk). It suffices

to find all pa, b, cq such that for that triple one of the following is true:

gjpa, b, cq ě fipa, b, cq or hkpa, b, cq ě fipa, b, cq

because this implies the distance-impact of edges not incident to two leaves are of

higher impact. There are two triples where this does not hold corresponding to P5

and Tbad. Recall that a, b, and c are simply the number of vertices in the sets A,B,

and C. Then the case of P5 occurs when the triple is p0, 0, 0q. This gives:

gjp0, 0, 0q ğ fip0, 0, 0q

2 ¨ 0 ¨ 0` 4 ¨ 0` 4 ¨ 0` 8 ğ 2 ¨ 0` 2 ¨ 0` 10

8 ğ 10

and

56

hkp0, 0, 0q ğ fip0, 0, 0q

2 ¨ 0` 2 ¨ 0` 6 ­ě 2 ¨ 0` 2 ¨ 0` 10

6 ğ 10

Similarly for Tbad, consider the triple p0, 1, 0q. There is only one graph of this form.

The inequalities again fail.

gjp0, 1, 0q ğ fip0, 1, 0q

2 ¨ 0 ¨ 0` 4 ¨ 0` 4 ¨ 0` 8 ğ 2 ¨ 0` 2 ¨ 0` 10

8 ğ 10

and

hkp0, 1, 0q ğ fip0, 1, 0q

2 ¨ 0` 2 ¨ 1` 6 ­ě 2 ¨ 0` 2 ¨ 0` 10

8 ğ 10

This confirms the counterexamples and also allows for proof that these are the only

two trees that force the additional of a leaf-leaf edge.

To show that there are the only such counterexamples first consider fipa, b, cq “

2a` 2c` 10 and gjpa, b, cq “ 2ac` 4a` 4c` 8. Because these entries correspond to

57

the size of sets in terms of vertices, all of a, b, c P Z0,`. Then consider the following if

and only if conditionals:

fipa, b, cq ď gjpa, b, cq

2a` 2c` 10 ď 2ac` 4a` 4c` 8

2a` 2c` 10 ď 4a` 4c` 8

2 ď 2a` 2c

The following holds whenever a ą 0 or c ą 0. Note that 2ac could be safely dropped

as 2ac ě 0. Regardless of the value of b, if a ą 0 or c ą 0 adding edge j will always

have a at least the distance-impact of adding i. This single counterexample P5 is the

only one that holds in this case.

Finally, consider fipa, b, cq “ 2a` 2c` 10 and hkpa, b, cq “ 2a` 2b` 6. The following

if and only if conditionals give:

fipa, b, cq ď hkpa, b, cq

2a` 2c` 10 ď 2a` 2b` 6

2c` 10 ď 2b` 6

2c` 4 ď 2b

c` 2 ď b

Comparing the inequality of fi and gj, it is known that if c ą 0 adding edge j is

sufficient. This implies that the only case of concern is when 2 ď b. There are two

58

such cases where a “ 0, b ď 2, c “ 0. The first is a known counterexample, Tbad, from

p0, 1, 0q. All that must be considered is p0, 2, 0q. However, in this case, equality holds

because of the following:

fip0, 2, 0q “ 2ˆ 0` 2ˆ 0` 10 “ 10 “ 2 ¨ 0` 2 ¨ 2` 6 “ hkp0, 2, 0q

Thus, for this triple the distance-impact of i and k is equal, and k is chosen to avoid a

leaf-leaf edge. Therefore, with the stated exceptions of P5 and Tbad, if the dpl1, l2q “ 4

there is an edge of higher distance-impact than ei1i2 .

4. dpl1, l2q ě 5: In this case the underlying path connecting l1 and l2 in T is P6. This

allows the use of Proposition 5.2.7. Consider the underlying path as tl1, u, v, w, x, l2u.

It is know from Proposition 5.2.7 that the adding the edge euv yields a larger reduction

of total distance than el1l2 . Figure 5.15 details the graph and proposed edge.

l1

u

v w

x

l2

A

B C

D. . .

Figure 5.15 Proposed distance-impact edge when selected leaves are of distance at least
5

The distance from the leaves to the subsets A,B,C, and D, has not changed. This

implies there are no distance changes to, or from, the leaves and the subsets. Further,

if |A| or |D| ą 1 then the total distance reduces as the previous path for i P A and

j P D was reduced from |P piuq` eul1` el1l2` el2x`P px, jq| to |P piuq` eux`P px, jq|.

This is a reduction of two for all vertices in A and B. If dpl1, l2q ą 5, then there

59

are further total distance reductions among the other subsets, but in any case the

proposed edge is of greater distance-impact than a leaf-leaf edge where dpl1, l2q ě 5.

These cases have shown, for all but the degenerate trees (S1,n´1, P5, and Tbad), that

any edge that is adjacent to two leaves is not the unique maximum distance-impact edge

whenever dpl1, l2q ě 2. This covered all possible cases for the leaves and thus the theorem

is proven.

Random trees are composed of approximately 30% leaves. Because of this fact and

Theorem 5.2.8, when finding the maximize distance-impact edge there is no need to search

the
`

n{3
2

˘

-many leaf-leaf possible edges. Because leaves can be quickly found in trees, this

result yields an appreciable computational time decrease- even if the asymptotic behavior

is unchanged.

5.3 Conclusion

Many aspects of tree structure were considered for the P-impact edges. Even as

determining the spanning-impact of edges is trivial, the distance-impact is not. Several

negative results along with their respective counterexamples were presented along with a

proof about the lack of maximum distance-impact edges incident to leaves in trees. Finding

the distance-impact of an edge, a priori, in a tree is still an open question, but settling this

question in trees is a useful starting point to explore the same question in general graphs.

It is clear that simple consideration of degree or distance separately is not sufficient

to determine the maximum distance-impact edge. From the observations and results here

the maximum distance-impact edge may be decided in trees based on an unknown function

that chooses an edge based on the degree and distance of its endpoints. Observation seems

to imply that distance is less important than degree, but this claim has not been proven.

60

Chapter 6

P-Impact in Network Completion

The P-impact process has been shown to use edge addition to maintain or optimize

a given invariant. Using the distance-related invariants, maximum P-impact edges reduced

the global distance measures in graphs. These specific edges seem to have some salient

properties regarding the graph structure. To explore this notion, a setting is considered

where a partially unobserved graph is taken. The feasibility of identifying missing edges

that most improve the accuracy of standard network completion algorithms when edges

are added to the graph is examined. This chapter serves as a bridge between the P-impact

process and the matrix completion work of the later chapters, and its results on small

random graphs should be viewed as motivation to explore matrix completion problems for

graph-modeled applications. These matrix completion problems will take the form of link

prediction and network completion in Chapter 7 and recommender systems in Chapter 8.

6.1 Experimentation

The P-impact question was designed to determine the most relevant edges to an

invariant value in a graph. Instead of finding the optimal edge sets to add to graphs,

these experiments measure the error that occurs when edges are obfuscated and network

completion is performed. The goal is to determine whether there is an inherent hierarchy

61

of predicative power among the edges of various graph classes. The classes used were:

Erdős-Rényi random graphs, random trees, and random power law (scale-free) graphs.

6.1.1 Network Completion

The network completion process was achieved by using matrix factorization with

regularization. Consider a graph G with adjacency matrix A. This method tries to learn

the latent features of the adjacency matrix of the graph in the form of two matrices where

their product approximates A. This process is detailed much further in Chapter 7, but the

results were found by solving the following optimization:

min
U,V

}A´UVT
} ` λ

`

}U}2F ` }W}
2
F

˘

6.1.2 Evaluation Metrics

The performance of the different algorithms were measured by finding the discrep-

ancy between the original and completed matrices. The widely adopted Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE) metrics [41] were used for evaluation.

Let A and pA denote the full and estimated adjacency matrices, respectively. Let T be the

set of unobserved test links. Then,

MAE “

ř

pi,jqPT |Aij ´ pAij|

|T|
,

The RMSE metric is defined as:

RMSE “

g

f

f

e

ř

pi,jqPT

´

Aij ´ pAij

¯2

|T|
.

62

6.1.3 The Process

Five order 25 random graphs of each class were generated. From each of these, nine

other graphs were created. In each of these nine graphs, between 10-90% (step size of 10%)

of the entries in the adjacency matrix corresponding to potential edges were eliminated.

Note that for non-directed graphs the adjacency matrix is symmetric, so in practice only

the upper-triangle adjacency matrix was considered. From each of these adjacency matri-

ces two processes occurred. First, the adjacency matrix was completed as-is via matrix

factorization. Second, one entry at a time was revealed and replaced with its true value (0

or 1). At this point, the adjacency matrix was completed (again via matrix factorization).

In the first case, the basal error rates were calculated (i.e. error without revealing any

edges). In the second case, each time an entry was revealed the error of completion was

reported as in instance. For the ease of language, in the original graph both absent and

present edges will be referred to as ‘edges’. The difference being, absent ‘edges’ will have a

true value of 0 in the adjacency matrix while present edges will have a value of 1.

6.1.4 Predictive Edges on Erdős-Rényi Random Graphs

Erdős-Rényi random graphs are one of the most common random graph models. The

characterization considered herein was Gpn, pq. This probabilistic model creates a graph

of order n where each possible edge exists with probability p. The size of such graphs is

expected to be
`

n
2

˘

p. The value of n was fixed as 25 and p was allowed to vary from 0.1 to

0.9 with step size of 0.1. All results in this section are for Gp25, 0.5q, while the results for

the other values of p are contained in Appendix A. The results for RMSE are reported in

Figure 6.1 while the MAE values are in Figure 6.2. The red bar in each of the runs is the

basal completion error. The basal completion error, along with the percent of added edges

that result in poorer network completion than the basal rate, are given in Table 6.1.

63

Figure 6.1 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.5q

Figure 6.2 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.5q

64

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10 1.2395 39.66 1.0962 45.66

20 1.2360 44 1.0961 50.66

30 1.2419 41.33 1.0850 37.33

40 1.2048 23.66 1.0474 19.33

50 1.3547 94.33 1.2188 95.33

60 1.2280 31 1.0670 25.66

70 1.2400 35.33 1.0819 30.0

80 1.3679 95.33 1.2317 95.66

90 1.1527 6 0.9886 5.333

Table 6.1 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.5q

6.1.5 Predictive Edges on Random Trees

Trees are minimally connected graphs and they also form sparse adjacency matrices.

Because of this minimal structure, trees were the focus of the proofs and exploration in

Chapter 5. Trees are further explored here for the the predictive power of revealing their

edges. The results for RMSE are reported in Figure 6.3 while the MAE values are in

Figure 6.4. The red bar in each of the runs is the basal completion error. The basal

completion error, along with the percent of added edges that result in poorer network

completion than the basal rate, are given in Table 6.2.

65

Figure 6.3 RMSE on single edge addition for varied percentages of removed edges for
random trees graphs

Figure 6.4 MAE on single edge addition for varied percentages of removed edges for
random trees

66

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10 1.5105 26.66 1.4515 24.0

20 1.4564 5.666 1.4094 6.333

30 1.5083 25.66 1.4488 23.0

40 1.5159 32 1.4682 33.33

50 1.6186 81.66 1.5582 79.0

60 1.5249 36.33 1.4619 32.33

70 1.3873 0.67 1.3292 0.666

80 1.4209 2.0 1.5662 69.0

90 1.5999 70.66 1.5442 69.33

Table 6.2 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for random trees

6.1.6 Predictive Edges on Random Power Law Graphs

Power law graphs are a common colloquialism for scale-free networks where the

degree sequence follows a power law distribution. This naming convention aligns with the

later chapters. Many degree sequences in social media network follow essentially power

law distributions [4]. Because of the real world utility of power law graphs, the predictive

power is measured here. The results for RMSE are reported in Figure 6.5 while the MAE

values are in Figure 6.6. The red bar in each of the runs is the basal completion error. The

basal completion error, along with the percent of added edges that result in poorer network

completion than the basal rate, are given in Table 6.3.

67

Figure 6.5 RMSE on single edge addition for varied percentages of removed edges for
random power law graphs

Figure 6.6 MAE on single edge addition for varied percentages of removed edges for
random power law graphs

68

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10 1.4787 43 1.3933 37.66

20 1.3979 8.666 1.3068 7.333

30 1.4077 13 1.3263 12.0

40 1.5287 71.66 1.4613 76.0

50 1.4853 37 1.3967 32.33

60 1.4819 39 1.4067 39.33

70 1.4920 50.66 1.4119 48.66

80 1.7013 99.66 1.6267 99.66

90 1.5256 63.66 1.4471 62.0

Table 6.3 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for random power law graphs

6.2 Power Law Motivation

This experimentation was motivated by examining behavior on power law (scale-

free) graphs. Because of their real world utility, another test was undertaken. Considering

five random power law graphs of order 15, each of the edges were removed in turn, and the

completion error was measured. The 105“
`

15
2

˘

edges were then sorted from low-to-high

resultant error. The results are presented in Figure 6.7. Intuition seems to imply that the

entries of ‘1’ in the sparse adjacency matrix would carry more predictive power. However,

in Figure 6.8 the resulting error for only the ‘1’ entries is given showing that these entries

can sometimes be omitted without increasing the completion error.

69

Figure 6.7 RMSE caused by adjacency matrix element deletion for five random power law
graphs of order 15

Figure 6.8 RMSE caused by adjacency matrix element deletion (1’s only) for five random
power law graphs of order 15

70

6.3 Conclusion

All of the different graph classes produced similar results in the edge removal ex-

periments. Further, the scope of testing was limited. However, as this chapter is meant to

serve as motivation for further exploration, there are still some useful observations to be

made. Specifically, the predictive power of edges in graphs seems to vary in standard ways

that may be proven in the future.

In all cases of edge deletion, approximately 5% of the edges produced significantly

better results after network completion was performed. This did not vary much over each

of the graph classes, nor was there a significant difference based on percent of obscured

edges. The should motivate future work to target those 5% of edges via graph theoretic

methods. It further showed that many edges fall below the basal error rate. This also

provides motivation to determine a set of edges to avoid adding to a graph.

For the second power law graph examples under single edge deletion, there is also

a useful caution given regarding the predictive power of individual edges. Although the

edges corresponding to the value of 1 in the adjacency matrix seem to hold more predictive

power than the 0 entries, there is a wide variation among the set of 1’s. Specifically, they

fell into what appears to be three classes of predictive power. What is most interesting

here is that these classes were consistent over the testing and had very sharp boundaries

between them. This further implies that in graphs there may be a set of highly predictive

edges that, by their discovery, network completion techniques would perform with much

higher accuracy. It is an open problem to discover the distribution of the predictive edges

in general.

Regarding the basal network completion error rate, some interesting observations

are made. Principally, the number of edges where their addition causes more error in

the matrix factorization than the basal rate is nontrivial. These limited experiments note

that the basal error threshold never is lower than the error reduction of the best edge

71

addition, but it varies wildly. In practical terms this implies that single edge addition can,

in many cases, actually make the network completion results worse than had that edge

remained unobserved. This may be due to the edges holding undue power in determining

graph structures in sparser graphs, thereby biasing the matrix factorization, however more

research to explore this must be done. Perhaps this process could be guided via the addition

of side information in form the P-impact edges extra-adjacency data sources, but this is

beyond the scope of this work.

This ends the exploration of edge impact, but by exploring the role that individual

edges play in graphs and matrix factorization techniques led to more questions about

network completion. Chapters 7 and 8 extend current matrix factorization algorithms

by incorporating side information. They are initially used for network completion, as

influenced by Chapters 3 through 6, but are also extended to consider link prediction and

recommender system problems.

72

Chapter 7

Network Completion in Graphs

The need for effective and efficient network completion algorithms occurs in a wide

variety of settings such an information retrieval, social network analysis, and computational

biology. With the massive growth of big data problems, mere collection of data is generally

simple while characterization of said data presents meaningful challenges. There may be

natural structure in the data, but only a small sampling may be feasibly obtained. Using

this sample, a question arises: can this small sample determine the rest of the network’s

links?

Because cold-start issues may be present, it is important to also consider side infor-

mation for transduction of knowledge to the network. Using this side information essentially

identifies similar users, and will assist in determining the graph structures that should exist

in the unobserved network edges. Using side information also benefits the calculations as

the network information is simultaneously incorporated. Thus, if either source has noise or

missing entries the other may be able to compensate.

To complete graphs of information in networked systems, an efficient algorithm

that significantly departs from the existing methods is proposed. This algorithm uses side

information and employs shared subspace learning. From this matrix completion with

transduction is applied. This algorithm differs from previous attempts as it decouples the

completion and transduction stages. Specifically in phase one, all cold-start nodes are

73

initially discarded and a sub-network is completed perfectly under some non-restrictive

conditions. In phase two, the available side information is used in the transduction stage

to complete the entire network– including the unobserved nodes. Although this method

is similar to subspace sharing, an important distinction does exist. Namely, a submatrix

is perfectly completed before transduction occurs. This allows the proposed algorithm to

avoid unbounded error propagation that can occur in subspace sharing methods.

The algorithm, along with theoretical analysis of its recovery error from Barjasteh

et al. [5], will be described. There is also extensive analysis on real world datasets that

compared the proposed algorithm with many state-of-the-art methods. The contents of

this chapter were adapted from the author’s contribution to a journal article 1.

7.1 The Assumptions

It is assumed that there is an undirected unweighted graphG “ pV,Eq where |V | “ n

are distinguishable nodes. The resultant ground truth adjacency matrix is A P t0, 1unˆn. To

approximate real world use, an assumption is made that there is only a partial observation

of A, namely O P t0, 1, ?umˆm, 1 ď m ď n. Note that this sub-matrix is partially observed

and the rows and columns of index n´m to n represent cold-start users. The set of users

in O can be said to induce an edge-labeled sub-graph on G where edges are explicitly

present, explicitly absent, or unknown. Keeping with observations in real networks, no

assumption is made on the distribution of the missing entries. Many classical methods rely

on such uniform randomness. There is, however, an assumption that the entries within O

are sampled uniformally at random. If this is not the case, O may be subsampled, but

with abuse of notation for simplicity the subsampled O1 is still denoted O.

There is a further assumption that there is side information available about every

node via a social network graph. From this, features of the nodes are extracted and pairwise

1“Network Completion with Provable Guarantees by Leveraging Side Information”. Iman
Barjasteh, Rana Forsati, Dennis Ross, Abdol-Hossein Esfahanian, Hayder Radha, Farzan Masrour.
Springer Social Network Analysis and Mining (SNAM). 2016. Submitted.

74

similarity betwix each of the users is found. This information is stored in the similarity

matrix S P Rnˆn.

Although it has not yet been stated, there is an assumption that the similarity

matrix and the networks structure are correlated. This assumption is further refined as

the row vectors of A share some subspace that is spanned by the leading eigenvectors of

the similarity matrix S. If such an assumption could not be made, there would be no

use in incorporating the side information into the predictions. The extent to which these

subspaces are shared will be parameterized later.

7.2 The Algorithm

7.2.1 Previous Approach

A similar method to the proposed algorithm casts the problem as a shared subspace

learning framework [79]. This method exploits knowledge from the similarity matrix and

transfers this to make structural predictions on the network. This is done by joint matrix

factorization where a common subset of basis vectors of A and S are learned.

These matrices are factored into three subspaces. The first is shared between the

adjacency and similarity, whereas the other two are specific to the matrices themselves. This

is formulated as the following optimization problem with λ as the regularization parameter

for the norms of the solution matrices:

min
U,V,W

1

2
}A´UVJ

}
2
F `

1

2
}S´UWJ

}
2
F

` λ
`

}U}2F ` }V}
2
F ` }W}

2
F

˘

The main issue with the subspace sharing method is that the completion of un-

observed entries from the adjacency matrix are made from sampled observed ones, and

75

the transduction of knowledge from these entries to fully unobserved nodes is carried out

simultaneously. Because of this, completion and transduction errors are propagated repet-

itively and in an uncontrolled way that hinders the effectiveness of incorporating similarity

information.

7.2.2 Overview

Diverging from traditional approaches, the proposed algorithm fully recovers the

submatrix O before using similarity information to complete adjacency matrix. This tech-

nique decouples the matrix completion from side information transduction. More specif-

ically, the first phase completes the partially observed submatrix O perfectly due to the

assumptions of the distribution of known entries in O. Phase two transducts the links from

both the recovered submatrix O and the complete similarity matrix S. The algorithm is

described in Figure 7.1.

7.2.3 Algorithm Details

The first step in this algorithm extracts representative subspace from the similar-

ity matrix S. This has the effect of taking an orthogonal matrix, Us P Rnˆs, from the

similarity matrix. Here the column space subsumes the column space of adjacency ma-

trix. Further, s is chosen so that it is larger than rank of adjacency matrix. To reduce

dimensionality and increase the salience of the similarity information, Us takes only the

first s-many largest eigenvectors of the singular value decomposition (spectral clustering)

of the similarity matrix.

In the second step, the partially observed submatrix O is fully recovered. Note here,

with the presence of cold-start users, matrix completion techniques are not applicable to A.

However, because of the assumptions imposed on the distribution of known entries in O,

standard matrix completion techniques apply and it can be fully recovered. This completion

is done via a convex optimization algorithm [14]. pO denotes the optimal solution to this

76

1. Input:

• n: the number of nodes in netwrok G “ pV,Eq

• O: the adjacency matrix of subgraph with m nodes

• S: the partially observed pairwise similarity matrix

• s ě rankpAq: number of eigenvectors in subspace [Extraction]

2. Extract Us from S by spectral clustering

3. Complete the submatrix O by solving the convex optimization problem in (8.1) to

get pO [Completion]

4. Sample m rows of Us P Rnˆs uniformly at random to create matrix pUs P Rmˆs

5. Set pΛ “
´

pUJ
s
pUs

¯:
pUJ
s
pOpUs

´

pUJ
s
pUs

¯:

6. Output: pA “ Us
pΛUJ

s [Transduction]

Figure 7.1 Algorithm for network completion with side information via the proposed al-
gorithm for decoupled completion and transduction

optimization problem. If Ω is the set of observed links in the induced submatrix O, then

the matrix may be recovered by solving:

minimize }X}˚

s.t. Xij “ Oij, @ pi, jq P Ω.

The third, and final, step is transduction of knowledge from the side information

and the completed O to A. The specific information to be used is the extracted subspace

Us and the optimal submatrix pO. As both the social network adjacency matrix (of rank

r) and the recovered submatrix are low rank, a decomposition can be found as follows,

A “

r
ÿ

i“1

aiai
J and pO “

r
ÿ

i“1

paipa
J
i

77

To see this, we can consider ai P t1, 0u
n and pai P t1, 0u

m as the corresponding membership

assignments to the ith hidden components of the graph. We note that if the similarity ma-

trix is set to be equivalent to the adjacency matrix, then the indicator vectors of connected

components are exactly a1, a2, ¨ ¨ ¨ , ar.

To formalize the correlation of similarity information and the adjacency matrix, it

is assumed that both matrices share a common subspace. Because of this, each vector ai

with i P rrs can be uniquely decomposed into parallel and orthogonal components to the

shared subspace. This is formalized as ai “ a
‖
i ` aKi where a

‖
i is in the column span of Us

and aKi is exactly orthogonal to column span of Us. Because a
‖
i belongs to column span of

Us, it can be rewritten as a basis of the shared subspace and the left-singular coefficients

such that, for some bi P Rs:

a
‖
i “ Usbi, i “ 1, 2, ¨ ¨ ¨ , r.

The adjacency matrix can be related to the similarity matrix via a
‖
i and the decom-

position into parallel and orthogonal components.

A “

r
ÿ

i“1

aia
J
i

“

r
ÿ

i“1

pa
‖
i ` aKi qpa

‖
i ` aKi q

J

“

r
ÿ

i“1

a
‖
ia

‖J
i ` a

‖
ia
KJ

i ` aKi a
‖J
i ` aKi aK

J

i

“

r
ÿ

i“1

a
‖
ia

‖J
i ` aKi aK

J

i

“ A˚ `AE

«

r
ÿ

i“1

a
‖
ia

‖J
i

78

Here A˚ is fully captured by the similarity information, but the matrix AE is pure

error as singular vectors are orthogonal to the subspace spanned by the similarity subspace.

Because of this, AE does benefit from the side information. The error contributed by this

matrix into the recovery error of final inferred adjacency matrix is thus unavoidable, but,

by disregarding the error term, the adjacency matrix can now be written as:

A “

r
ÿ

i“1

a
‖
ia

‖
i

J

`AE « a
‖
ia

‖
i

J

In an observation of the above algorithm, the key to the recovery of the matrix A is

in the estimation of the vectors bi, i “ 1, 2, ¨ ¨ ¨ , r. Given some reasonable conditions on the

number of sampled nodes available in G, the fully recovered submatrix pO and extracted

subspace Us can be utilized to estimate these bi vectors perfectly.

The linear system a
‖
i “ Usbi cannot be directly solved for the values of bi to

estimate ai. This is because Us and a
‖
i are not accessible. However, a

‖
i can be replaced

with a basis pUs and an accessible vector pai. Together these can estimate the values of

the a
‖
i vectors perfectly (with high probability). The subspace pUs is obtained by taking a

uniformly random permutation of Us where the selected rows correspond to the rows in O.

Then the corresponding ordinary least-squares regression may be solved for an estimation

of pbi.

pbi “ min
bPRs

›

›

›
pai ´ pUsb

›

›

›

2

2
“

´

pUJ
s
pUs

¯:
pUJ
s pai

The last equality holds because
´

pUJ
s
pUs

¯:
pUJ
s is the optimal solution to the ordinary

least-squares regression problem above. Having computed an estimate for each bi, the

adjacency matrix can be fully computed as:

pA “ Us

˜

r
ÿ

i“1

pbipb
J
i

¸

UJ
s .

79

7.3 Experimental Evaluation

Two broad categories of experimentation are taken with the algorithm. Using well

known social network and synthetic datasets, the algorithm’s performance against standard

baseline is tested for link prediction problems. It is also compared against state-of-the art

algorithms for network completion. The main reason for splitting the experiments into two

parts is the unique challenges that exist in network completion due to the sparseness in the

information of the links, which makes it a difficult problem.

7.3.1 Datasets

Four real world datasets were used for the experiments. Two were used for link

prediction and the other two were used for network completion. For link prediction a

product rating social network site called Epinions and the popular Chinese microblogging

site Tencent Weibo were used. The network completion experiments were performed on

two large social networks: Facebook and Google+.

1. Epinions: Epinions is an explicit trust/distrust social network that yields a directed

network. Because the number of distrust relations is very small, only explicit trust

relationships between users are considered. The statistics of this dataset are summa-

rized in Table 7.1. This dataset is available through Jiliang Tang at Arizona State

University 2. Generally, the Epinions dataset is used to predict ratings given the

trust graph of its users as side information. Here it used to predict the existence

of links via a link prediction process that the proposed algorithm found while using

the rating information as side information. To extract the features, each user was

endowed with a collection of their ratings of the items. These ratings contained scores

and timestamps. To extract more features, additional item information (e.g. names,

categories, ratings) was included when the users were interested in such items. A final

2http://www.public.asu.edu/~jtang20/datasetcode/truststudy.htm

80

feature included a normalized triple for each item category. This triple gave the total

number of reviews in that category, and the number of positive and negative reviews

per category (normalized by the maximum value of each present in the data). Again,

pairwise similarities between users were found via cosine similarity to generate the

similarity matrix of users.

2. Tencent Weibo: Tencent Weibo (Weibo) is a Chinese microblogging site similar to

Twitter. There is a network structure where users can ‘follow’ another to create a

link. In addition to the large network, the side information is quite rich.

Features for the anonymized users were extracted that included personal information

(age, gender, and interests), social information (number of messages sent, messages

reposted, users followed), and item classification (categories and keywords). Items

and users are distinguished by their features, but for all practical purposes items may

act like users in the social network. Items are generally understood to be corporate

entities or celebrities. A follower-followee directed graph is given, and the proposed

algorithm is used to determine the existence of a directed edge that represents whether

or not a given user will follow another. Only considered positive links (where a user

follows another) are used, and all negative links (where a user explicitl y choses not

to follow another) are ignored for prediction. The data is available from the KDD

cup 3. The original Weibo social directed graph has 1.4 million users and over 73

million links. A small subset of approximately 4,000 users with many observed links

among them, and a reasonable amount of side information, was chosen. Find such a

set in this large dataset, a modified breadth-first search that penalized adding nodes

that did not contain links going back into the explored nodes was deployed. Once

this process terminated, other (possibly isolated) nodes at random were added if they

had a large amount of side-information until the graph’s order threshold was met.

3http://www.kddcup2012.org/c/kddcup2012-track1/data

81

The observed average ratio of directed links to nodes for random directed graphs of

order approximately 4,000 was 0.46. With this BFS method the directed subgraph of

4,052 vertices that was found had a significantly higher-than-average ratio of directed

links to nodes at 0.98. The statistics of data-subsets are summarized in Table 7.1.

To generate the similarity matrix of users, cosine similarity between all pairs of users

was used.

3. Facebook: Facebook is one of the most popular real world social network datasets.

On Facebook, people have directed friendship relationships with each other and each

user has a profile containing information about themselves. For each user (a node

in the network) personal features (e.g. gender, job title, age) are extracted from

their profiles. The network of users was produced by combining ego-networks of

the Facebook dataset available at the Stanford Large network Dataset Collection 4.

The statistics of datasets are summarized in Table 7.1. The pairwise similarities be-

tween users were found via cosine similarity to generate the similarity matrix of users.

4. Google+: Google+ is similar to Facebook in terms of relationships between users.

Features were also extracted from the individual user profiles in the same way as

Facebook. The ego-networks of users were combined together to have a network of

users along with their features. This dataset is also available at the Stanford Large

network Dataset Collection 5 and the statistics are shown in Table 7.1. The pairwise

similarities between users were found via cosine similarity to generate the similarity

matrix of users.

4http://snap.stanford.edu/data
5http://snap.stanford.edu/data

82

Dataset # of Nodes # of Links # of Node Features

Weibo 4,052 3,957 16,786

Epinions 90,879 365,422 90,087

Facebook 4,089 170,174 175

Google+ 250,469 30,230,905 690

Table 7.1 Statistics of Weibo, Epinions, Facebook, and Google+ datasets

7.3.2 Evaluation Metrics

The performance of the different algorithms was measured by finding the discrepancy

between the original and completed matrices. The widely adopted Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) metrics [41] were used for evaluation. Let

A and pA denote the full and estimated adjacency matrices, respectively. Let T be the set

of unobserved test links. Then,

MAE “

ř

pi,jqPT |Aij ´ pAij|

|T|
,

The RMSE metric is defined as:

RMSE “

g

f

f

e

ř

pi,jqPT

´

Aij ´ pAij

¯2

|T|
.

7.3.3 Baseline Algorithms

To evaluate the performance of our proposed algorithm, a variety of baseline ap-

proaches were considered. The baseline algorithms fall into two categories. The first set

included those that were used in the link prediction experiments, and the second set in-

cluded those that were used in the network completion experiments.

83

7.3.3.1 Link Prediction Baseline Algorithms

The baseline algorithms are chosen from a wide variety of types of link prediction

algorithms to have a fair comparison to the proposed algorithm. All implementation are

available in the MyMediaLite Package [29].

1. BPRMF: Matrix factorization with Bayesian personalized ranking (BPR) from im-

plicit feedback produces rankings from pairwise classifications. The matrix factoriza-

tion model provides item prediction optimized for BPR.

2. BiPolar Slope One (BPSO): Slope One rating prediction methods weighted by

bipolar frequency.

3. Matrix Factorization (MF): Matrix factorization where learning is provided by

stochastic gradient descent factoring the observed ratings into user and item factor

matrices.

4. Slope One (SO) Slope One rating prediction method with frequency rating.

5. User-Item Baseline (UIB): Assigns an average rating value, and regularization,

for baseline predictions. Uses the average rating value, plus a regularized user and

item bias for prediction.

6. CoClustering (CC): Performs simultaneous clustering on both the rows and the

columns of the rating matrix.

7. Latent Feature log-linear Model (LFM): Rating prediction method that uses a

log-linear model on the latent features of the system.

8. Biased Matrix Factorization (BMF): Matrix factorization with parameters for

biases of users and items. Utilizes learning provided by stochastic gradient descent.

84

9. SVD Plus Plus (SPP): Singular value decomposition matrix factorization method

that makes use of implicit feedback. Further considered what items and users each

user has rated.

10. Sigmoid SVD Plus Plus (SSPP): Singular value decomposition matrix factoriza-

tion method that makes user of implicit feedback and utilizes a sigmoid function.

11. SigmoidItem Asymmetric Factor Model (SFM): Asymmetric factor model that

represents the items based on how the users rated them.

7.3.3.2 Network Completion Baseline Algorithms

The baseline algorithms were chosen from three different types of network comple-

tion algorithms. One method only utilize the observed links, one uses network structure as

well as node features, and third one learns the shared subspaces.

1. MF: Considers only the network structure and ignores the node features. Matrix

Completion (MF) algorithm in the standard in this class [83].

2. MF-NF: Employing both node features and the structure of network for network

completion, a matrix factorization based algorithm that factorizes the adjacency ma-

trix and combines the latent features with explicit features of nodes and links using a

bilinear regression model [60]. The implementation of this algorithm is provided by

the authors 6.

3. MF-SS: Combining the network structure with node features by sharing a subspace.

Matrix Factorization with Subspace Sharing (MF-SS) [24] is most like the proposed

algorithm.

4. MC-DT: This refers to the proposed algorithm formally called Matrix Completion

with Decoupled Transduction (MC-DT).

6http://cseweb.ucsd.edu/~akmenon/code/

85

Variance of Noise

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
r
o

b
e
n

iu
s

N

o
r
m

0.6

0.7

0.8

0.9

1

Figure 7.2 The recovery error of the proposed MC-DT algorithm noise variance values

7.3.4 Experiments on Synthetic Datasets

To examine the algorithms on a synthetic dataset, an adjacency matrix A with

2,048 nodes was generated. To create this network, the rank was fixed at r “ 10 yielding

ten components. The nodes were evenly distributed among these components. A pairwise

similarity matrix for the nodes was generated by adding a noise term to the adjacency

matrix S “ A`N, where each entry of noise matrix follows a uniform distribution Nij „

Up0, 0.5q. To generate an incomplete network, 20% of all links were randomly removed.

The network then had 119,999 links.

7.3.4.1 Effect of Noise in Side Information

To better understand the effect of similarity information on the recovery error, the

effect of noise in similarity matrix on the performance of MC-DT algorithm was investi-

gated. The added noise on the similarity matrix followed a zero-mean Gaussian distribution

86

m/n (%)

10 20 30 40 50 60 70 80

F
ro

b
e

n
iu

s
 N

o
rm

0

0.2

0.4

0.6

0.8

1

MC-DT

MF-NF

MF

MF-SS

Figure 7.3 The recovery error of different algorithms on a synthetic dataset for different
sizes of partially observed submatrix with m nodes

Np0, σq with different values of variance σ. At the same time, the size of observed subma-

trix was fixed to m “ 400. In particular, the variance ranged from σ “ 0.1 to σ “ 1 with

step size of 0.1. As Figure 7.2 shows, by increasing the noise, the recovery error increases

linearly. This is consistent with the theoretical result of Forsati et al. [55].

7.3.4.2 Effect of Training Size

Investigation on the size of observed submatrix O as it applies to recovery error

was also undertaken. The size of the observed submatrix was varied from 200 to 1600

with step-size of 200. The reported recovery error for the different algorithms is given

in Figure 7.3. It can be observed that by increasing m, the recovery error decreases for

all of the methods. The fewer unobserved elements we have, the lower the recovery error

is. The proposed MC-DT algorithm performs the best, verifying its reliable performance.

The significant difference between the recovery error of MC-DT and three other algorithms

implies the effectiveness of MC-DT in exploiting similarity information. Because MC-DT

87

ignores the missing entries of the network and completes the submatrix purely from the

observed part of the network, the completion error becomes zero and is not propagated

in transduction stage. It is of interest to note that, by increasing the size of observed

submatrix (as m approaches n), the effect of similarity information on decreasing recovery

error for all methods became less influential. This follows from the fact that existence of

links in the network provide much richer information than the pairwise similarity between

users.

7.3.5 Evaluation of Link Prediction

The results of applying the proposed algorithm along with different baseline algo-

rithms on the link prediction problem for Epinions and Weibo are contained in this section.

7.3.5.1 Link Prediction on Epinions

To perform the comparison with the baseline algorithms, first the user-user binary

trust matrix was created from the available dataset. In this matrix, a ‘1’ indicated a trust

relation between two users and ‘0’ indicated unobserved relations. Recall, distrust was not

considered. In each dataset, a fraction that varied from the set t40%, 50%, 60%, 70%, 80%u

was chosen to be training, with 10% as validation, and the remaining part was the test set.

The test set had its entries set to zero. The data were broken down randomly into five

different sets per test size.

The average values of the experiments are given in Table 7.2. The proposed algo-

rithm outperformed all other baseline algorithms in all training sizes. By increasing the

training size the error also reduced but there is not a significant drop in the error. This

allowed a conclusion to be drawn that by selecting smaller training sizes, accuracy can

be maintained. Added benefits of faster computations and overfitting avoidance are also

achieved. This further assists in situations where there is not enough data (or computa-

tional power) available to use large training sets.

88

RMSE

Method Parameters
Train Percentage

40% 50% 60% 70% 80%

BPSO r=20, λu=15, λi=10, T=50 0.7708 0.7683 0.7683 0.7626 0.7610

MF r=20, λ=0.015, γ=0.01, T=50 0.7063 0.7127 0.7191 0.7173 0.7269

SO — 0.7851 0.7780 0.7726 0.7650 0.7611

UIB — 0.7026 0.7022 0.7032 0.6993 0.7022

CC Cu=10,Ci=20, T=50 0.7849 0.7776 0.7712 0.7679 0.7625

LFM r=10, βλ=0.01, λu,i=0.05, γ=0.01, T=50 0.7212 0.7110 0.7188 0.7150 0.7122

BMF r=10, βλ=0.01, λu,i=0.05, T=50 0.7086 0.7084 0.7094 0.7061 0.7087

SPP r=10, λ=0.05, βλ=0.01, T=50 0.6897 0.6903 0.6926 0.6892 0.6929

SSPP r=10, λ=0.05, βλ=0.01, T=50 0.9879 0.9867 0.9851 0.9836 0.9856

SFM r=10, λ=0.015, βλ=0.33, γ=0.00, T=50 0.6738 0.6743 0.6770 0.6731 0.6777

MC-DT r “ 37 0.6623 0.6495 0.6428 0.6430 0.6551

MAE

Method Parameters
Train Percentage

40% 50% 60% 70% 80%

BPSO r=20, λu=15, λi=10, T=50 0.9404 0.9318 0.9245 0.9156 0.9078

MF r=20, λ=0.015, γ=0.01, T=50 0.8363 0.8422 0.8474 0.8468 0.8543

SO — 0.9515 0.9370 0.9244 0.9129 0.9047

UIB — 0.8280 0.8278 0.8280 0.8259 0.8276

CC Cu=10,Ci=20, T=50 0.9285 0.9160 0.9071 0.9013 0.8932

LFM r=10, βλ=0.01, λu,i=0.05, γ=0.01, T=50 0.8425 0.8340 0.8402 0.8377 0.8342

BMF r=10, βλ=0.01, λu,i=0.05, T=50 0.8318 0.8317 0.8319 0.8302 0.8315

SPP r=10, λ=0.05, βλ=0.01, T=50 0.8211 0.8215 0.8227 0.8206 0.8227

SSPP r=10, λ=0.05, βλ=0.01, T=50 1.2617 1.2605 1.2599 1.2566 1.2596

SFM r=10, λ=0.015, βλ=0.33, γ=0.00, T=50 0.8165 0.8167 0.8181 0.8155 0.8182

MC-DT r “ 37 0.7625 0.7591 0.7562 0.7562 0.7573

Table 7.2 Link prediction results on Epinions dataset and the effects of training size.

89

7.3.5.2 Link Prediction on Weibo

The Tencent Weibo dataset is given as a series of link recommendation for the users

along with side information. For the link recommendations a triple is presented that gives a

user, a recommendation of a user or item, and a Boolean. The Boolean represents whether

or not a user accepts the recommended user or item. An acceptance can be viewed as a

directed edge, from the user to the recommendation, in the social network graph.

To perform the comparison with the baseline algorithms, first the user-user binary

trust matrix was created from the available dataset. In this matrix, a ‘1’ indicated a trust

relation between two users and ‘0’ indicated unobserved relations. Recall, distrust was not

considered. In each dataset, a fraction that varied from the set t40%, 50%, 60%, 70%, 80%u

was chosen to be training, with 10% as validation, and the remaining part was the test set.

The test set had its entries set to zero. The data were broken down randomly into five

different sets per test size.

The link prediction experiments on Weibo used different training sizes similar to the

Epinions experimentation. Table 7.3 shows the results of RMSE and MAE measures on

Weibo dataset. The results shown in the Table 7.3 confirmed that the proposed algorithm

is the best performing algorithm among the baseline algorithms. There is a significant

gap between the results of our proposed algorithm and other baseline algorithms. This

was not the case in Epinions dataset results. This significant difference in accuracy was

attributed to having more available side information available in Weibo than what was

available in Epinions. Again, after having 50% as training and 10% as validation, there is

not a significant drop in the accuracy of the results. These results support the efficacy of

the decoupled approach to link prediction.

90

RMSE

Method Parameters
Train Percentage

40% 50% 60% 70% 80%

BPSO r=20, λu=15, λi=10, T=50 0.5023 0.5027 0.5017 0.5041 0.5063

MF r=20, λ=0.015, γ=0.01, T=50 0.4992 0.4999 0.4991 0.5000 0.5018

SO — 0.5017 0.5034 0.4988 0.4999 0.5072

UIB — 0.5007 0.5002 0.4996 0.4983 0.5000

CC Cu=10,Ci=20, T=50 0.5020 0.5004 0.5036 0.4950 0.5022

LFM r=10, βλ=0.01, λu,i=0.05, γ=0.01, T=50 0.5008 0.5007 0.4997 0.4984 0.5000

BMF r=10, βλ=0.01, λu,i=0.05, T=50 0.5004 0.5003 0.4998 0.4986 0.5000

SPP r=10, λ=0.05, βλ=0.01, T=50 0.4996 0.5002 0.4998 0.4987 0.5002

SSPP r=10, λ=0.05, βλ=0.01, T=50 0.4991 0.5015 0.4943 0.4885 0.4884

SFM r=10, λ=0.015, βλ=0.33, γ=0.00, T=50 0.5001 0.5000 0.5001 0.4996 0.5000

MC-DT r “ 37 0.3454 0.3285 0.3232 0.3237 0.3266

MAE

Method Parameters
Train Percentage

40% 50% 60% 70% 80%

BPSO r=20, λu=15, λi=10, T=50 0.5509 0.5488 0.5444 0.5509 0.5496

MF r=20, λ=0.015, γ=0.01, T=50 0.5012 0.5019 0.5013 0.5025 0.5053

SO — 0.5489 0.5496 0.5414 0.5436 0.5488

UIB — 0.5067 0.5066 0.5053 0.5038 0.5053

CC Cu=10,Ci=20, T=50 0.5612 0.5574 0.5564 0.5511 0.5550

LFM r=10, βλ=0.01, λu,i=0.05, γ=0.01, T=50 0.5093 0.5100 0.5083 0.5068 0.5082

BMF r=10, βλ=0.01, λu,i=0.05, T=50 0.5021 0.5022 0.5017 0.5006 0.5019

SPP r=10, λ=0.05, βλ=0.01, T=50 0.5027 0.5036 0.5031 0.5020 0.5035

SSPP r=10, λ=0.05, βλ=0.01, T=50 0.6987 0.7003 0.6951 0.6908 0.6908

SFM r=10, λ=0.015, βλ=0.33, γ=0.00, T=50 0.5005 0.5002 0.5002 0.4997 0.5001

MC-DT r “ 37 0.4624 0.4457 0.4419 0.4421 0.4437

Table 7.3 Link prediction results on the Weibo dataset and the effects of varying training
size

91

7.3.6 Evaluation of Network Completion

Now the proposed algorithm is compared to the state-of-the-art algorithms for net-

work completion. The following results were found using the Facebook and Google+ social

network datasets. In this scenario, varying training sizes were again utilized. Again the

datasets were divided into training, validation, and testing as described in the last section.

When the training size is 20%, 20% of the nodes and the corresponding links from the each

social network are randomly selected to predict the rest of network. The performance of

MC-DT along with the baseline network completion algorithms on these two datasets was

evaluated.

7.3.6.1 Network Completion in Facebook

In Figures 7.4 and 7.5, the RMSE and MAE of different algorithms on Facebook

dataset are shown, respectively. In these plots the improvement of all methods gradually

decreased as more of the network structure was observed.

7.3.6.2 Network Completion in Google+

Table 7.4 shows the performance of the MC-DT in comparison with the other base-

line algorithms on Google+’s social network. The algorithm’s performance exhibits similar

behavior to the one presented in previous experiment with Facebook. Specifically, MC-DT

outperforms the other network completion algorithms.

Method RMSE (30%) MAE (30%) RMSE (60%) MAE (60%)

MF 0.97201 0.89132 0.81749 0.76601

MF-NF 0.86384 0.82094 0.71505 0.68935

MF-SS 0.81368 0.78820 0.58369 0.68160

MC-DT 0.78806 0.50186 0.50851 0.30011

Table 7.4 Comparison of different algorithms on the Google+ with different percentages
of observed nodes

92

Observed Nodes (%)

10 20 30 40 50 60 70 80

R
M

S
E

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MC-DT

MF-SS

MF-NF

MF

Figure 7.4 The recovery of four algorithms on the Facebook dataset measured in RMSE
under different percentages of observed nodes

Observed Nodes (%)

10 20 30 40 50 60 70 80

M
A

E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MC-DT

MF-SS

MF-NF

MF

Figure 7.5 The recovery of four algorithms on the Facebook dataset measured in MAE
under different percentages of observed nodes

93

7.4 Conclusion

An effective algorithm in MC-DT was developed for network completion and link

prediction with auxiliary similarity information on the nodes. Its comparison to the state-

of-the-art baselines on synthetic and real datasets reveals that this algorithm exhibits im-

proved performance in terms of recovering the full network. This improvement is due to

the decoupled completion of the observed submatrix from transduction of knowledge while

exploiting similarity information.

MC-DT greatly outperformed the other baseline algorithms in of the evaluation met-

rics. Both the RMSE and MAE errors of the completed network are more than two times

smaller for MC-DT than the others. These experiments demonstrated the effectiveness

of MC-DT in exploiting the similarity information to recover the full network. Although

both use matrix factorization techniques, MC-DT does utilize node features while naive

MF does not. MC-DT achieves better performance, as it combines the information from

the node features and the network structure. The significant gap between the performance

of these two algorithms demonstrated the importance of similarity information in network

completion problems. When networks are incomplete, the performance of MC-DT degrades

gracefully. Because it can rely on the node features, the algorithm can compensate for the

lack of links in the overall network structure. Finally, by comparing the results for synthetic

and real datasets, in the synthetic dataset the decrease of error (by increasing the number

of observed nodes) is significant initially, but then slowly shrinks. This contrasts to real

world datasets where the decrease is roughly linear.

94

Chapter 8

Recommender Systems

As commerce has shifted to the internet, e-commerce websites (e.g. Amazon, Wal-

mart.com), media consumption (e.g. Netflix, Amazon Video), and news media (e.g. NY-

times.com, CNN.com) have experienced large growth in both users and available services.

With this growth, there became a demand for curated content for the end users. This

gave rise to efficient recommender systems that would present users with items of personal

relevance. However, just as in the network completion case, cold-start problems with the

users and items have not been adequately addressed.

The goal of the algorithm proposed in this chapter is to give an efficient matrix

factorization approach using similarity information derived from side information that is

accurate and can seamlessly incorporate sparse or cold-start datasets. This is an extension

of the work on network completion presented in Chapter 7. A two-stage algorithm that

decouples the completion and transduction stages during the matrix completion is presented

here. In the first phase cold-start items and users are excluded and a rating submatrix is

fully completed. In the next phase, this submatrix and a similarity matrix extracted from

the available side information are used to transduct information for the cold-start users

and items. Unlike most subspace sharing approaches, there is no error propagation of

completion during transduction.

95

The theoretical results are further enhanced with comprehensive experiments on a

few benchmark datasets to demonstrate the merits and advantages of proposed framework

in dealing with cold-start problems. The results demonstrate the superiority of the proposed

framework over several of state-of-art cold-start recommender algorithms. The contents of

this chapter were adapted from the author’s contribution to a published journal article 1.

8.1 The Assumptions

There is some low-rank ratings matrix R P Rnˆm where there are n users providing

real-valued ratings for m items. For the purposes of this work the ratings were taken to

be values from 1 to 5 inclusive; however, this assumption could be easily changed based

on the problem domain. There is a partially observed submatrix M Ď R where M P t0, 1,

?upˆq, 1 ď p ď n, 1 ď q ď q. The rows of R with no values are users who are cold-start

(i.e. users who have not provided any historical ratings). The columns of R with no entries

are cold-start items (i.e. items where no feedback has ever been provided). As with the

network completion case, no assumptions have been made about the distribution of the

ratings.

There is a further assumption that there is side information available about every

user and item via a social network graph and item specification information. From this,

features of the users and items, respectively, are extracted and pairwise similarity is com-

puted for each. This information is stored in the similarity matrix A P Rnˆn for the users

and B P Rmˆm for the items.

There is a final assumption that the rating matrix and the similarity matrices are

correlated. Thus, the pairwise share some latent information. Specifically, the row vectors

of R share an underlying subspace with the leading eigenvectors of A, and the column

vectors share an underlying subspace with the leading eigenvectors of B. The amount of

1“Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach”. Iman
Barjasteh, Rana Forsati, Dennis Ross, Abdol-Hossein Esfahanian, Hayder Radha. IEEE Transactions on
Knowledge and Data Engineering (TKDE). 2016. Accepted.

96

subspace sharing will be parameterized, but if no such subspace existed there would be no

benefit to applying this approach.

8.2 The Algorithm

8.2.1 Previous Approach

The previous methods [79] for predicting ratings via a shared subspace approach is

very similar to that of the network completion approach. Again, the problem is cast as a

shared subspace learning framework. This method exploits knowledge from the similarity

matrix and transfers it to make structural predictions on the network. This is achieved by

joint matrix factorization to learn a common subset of basis vectors for the rating matrix

R and the similarity matrices A and B for users and items as formulated in the following

optimization problem with λ as the regularization parameter for the norms of the solution

matrices and common latent space representation is given by using the same matrices W

and Z:

min
UPRnˆr,VPRmˆr,
WPRnˆr,ZPRmˆr

1

2
}R´UVJ

}
2
F ` λ

`

}U}2F ` }V}
2
F

˘

`
1

2
}A´UWJ

}
2
F `

1

2
}B´ ZVJ

}
2
F

` λ
`

}W}
2
F ` }Z}

2
F

˘

Again, this approach’s performance is impaired because the completion of the un-

observed entries in rating matrix R and transduction of knowledge from these entries to

cold-start users/items via similarity matrices is carried out simultaneously. Completion

and transduction errors are propagated repetitively and uncontrollably. The problem with

97

error propagation becomes even worse due to the non-convexity of optimization problems,

which will be described later.

8.2.2 Overview

As noted in Chapter 7, the proposed algorithm fully recovers the submatrix M before

using similarity information to complete the adjacency matrix. This technique decouples

the matrix completion from side information transduction. More specifically, the first

phase completes the partially observed submatrix M perfectly due to the assumptions of

the distribution of known entries in M. Phase two transducts the links from both the

recovered submatrix M and the complete similarity matrices A and B. The algorithm is

described in Figure 8.1.

8.2.3 Algorithm Details

An orthogonal matrix UA P Rnˆs was constructed where its column space subsumes

the row space of the rating matrix. Similarly, UB P Rmˆs was constructed for the column

space. Both UA and UB were created by taking their leading s eigenvectors. The value

of s relates to the extent to which the extracted subspaces subsume the row and column

spaces of the rating matrix and is thus dependent on the quality of the side information.

This allowed the rank r matrix to be decomposed as:

R “

r
ÿ

i“1

uiv
J
i .

Colloquially, this expressed the ratings matrix as its user and item components. Further,

the i-th user’s latent features vector ui can be decomposed in a unique way into two parts

that are parallel and orthogonal to the shared subspace as ui “ u
‖
i ` uKi . Here, u

‖
i is

spanned by UA while uKi is orthogonal to UA. For the j-th item’s latent features vi can

be written as v
‖
i ` vKi where, v

‖
i is spanned by UB while vKi is orthogonal to UB.

98

1. Input:

• R P Rnˆm, r: observed matrix and its rank

• A P Rnˆn: the users’ similarity matrix

• B P Rmˆm: the items’ similarity matrix

2. Extract the maximal recoverable rating sub-matrix M P Rpˆq

3. Complete the sub-matrix M to get xM

4. Decompose xM as xM “
řr
i“1 puipv

J
i

5. Extract subspaces UA and UB by spectral clustering from similarity matrices A and
B, respectively

6. Compute pai “
´

pUJ
A
pUA

¯:
pUJ

Apui, i “ 1, 2, ¨ ¨ ¨ , r

7. Compute pbi “
´

pUJ
B
pUB

¯:
pUJ

Bpvi, i “ 1, 2, ¨ ¨ ¨ , r

8. Compute pR “ UA

´

řr
i“1 pai

pbJi

¯

UJ
B

9. Output: pR

Figure 8.1 Algorithm for rating prediction using side information via the proposed algo-
rithm for decoupled completion and transduction

Having decomposed the latent features as above into two parallel and orthogonal

components, the rating matrix can be rewritten as:

99

R “
r
ÿ

i“1

uiv
J
i

“

r
ÿ

i“1

pu
‖
i ` uKi qpv

‖
i ` vKi q

J

“

r
ÿ

i“1

u
‖
iv

‖J
i ` u

‖
iv
KJ

i ` uKi v
‖J
i ` uKi vK

J

i

“

r
ÿ

i“1

u
‖
iv

‖J
i `

r
ÿ

i“1

u
‖
iv
KJ
i `

r
ÿ

i“1

uKi v
‖J
i `

r
ÿ

i“1

uKi vKJi

“ R˚ `RL `RR `RE

«

r
ÿ

i“1

u
‖
iv

‖J
i

Here R˚ is fully spanned by the subspaces UA and UB. The other matrices are

sources of error as RL’s right singular vectors are orthogonal to the subspace spanned

by UB, and RR ’s left singular vectors are orthogonal to the subspace spanned by UA.

Finally, RE’s left and right singular vectors both are orthogonal to their respective similarity

subspaces. The error contributed by this matrix into the estimation error of final recovered

rating matrix is unavoidable, but is bounded by the results of Barjasteh et al. [6]. With

this in mind, the ratings matrix is rewritten as:

R “ u
‖
iv

‖J
i `RL `RR `RE « u

‖
iv

‖J
i

To begin the algorithm, a sub-matrix M P Rpˆq is extracted. To reconstruct M

perfectly, the number of observed elements must be at least Ωprpp ` qq log2
p2pqq [73]. To

meet these conditions, the rows are sorted by the number of ratings they contain. In this

way the top rows are the least sparse. Then, the largest possible submatrix that meets the

matrix completion conditions is taken for m. This submatrix is then fully recovered as xM.

This is accomplished via off-the-shelf matrix completion techniques of [83, 61, 81, 14]. This

100

leads to the following convex optimization, with ΩM Ď Ω as the set of observed ratings:

xM “ arg min
XPRpˆq

}X}˚

s.t. Xij “ Mij, @ pi, jq P ΩM. (8.1)

This completed submatrix and the subspaces UA and UB can then be used to recover

R “
řr
i“1 uiv

J
i via transduction. Specifically, the rating information in the recovered

matrix xM is transduced to the cold-start users and items.

Because u
‖
i and v

‖
i are fully spanned by the subspaces UA and UB, for i “ 1, 2, . . . , r

they can be rewritten as:

u
‖
i “ UAai and v

‖
i “ UBbi

Here ai P Rs and bi P Rs are the orthogonal projection of the singular vectors onto

the corresponding subspaces. By substituting these equations into the decomposition of

R˚ the following is true:

R˚ “

r
ÿ

i“1

UAaib
J
i UJ

B “ UA

˜

r
ÿ

i“1

aib
J
i

¸

UJ
B

To recover the matrix R˚, there must be an estimate for the vectors ai,bi. The

subspaces extracted from the similarity matrices and the recovered rating sub-matrix xM

can be used to make these estimations.

To this end, first consider the decomposition of the recovered matrix as xM “

řr
i“1 puipv

J
i .

The estimation of vectors ai,bi and the matrix R˚ now described. Let pUA P Rpˆs be

a random submatrix of UA where the sampled rows correspond to the subset of rows in the

matrix xM. Similarly, let pUB P Rqˆs be created by sampling the rows of UB corresponding

to the columns in xM. An estimation of ai,bi, i P rrs vectors can be obtained by the

101

orthogonal projection of left and right singular vectors of xM onto the sampled subspaces

pUA and pUB by solving two optimization problems, namely:

pai “ arg min
aPRs

›

›

›
pui ´ pUAa

›

›

›

2

2

pbi “ arg min
bPRs

›

›

›
pvi ´ pUBb

›

›

›

2

2

The solutions to these ordinary-least squares regression problems are known. They are:
´

pUJ
A
pUA

¯:
pUJ

Apui and
´

pUJ
B
pUB

¯:
pUJ

Bpvi, respectively. This allows R˚ to be estimated by:

pR˚ “ UA

˜

r
ÿ

i“1

paipb
J
i

¸

UJ
B

“ UA

´

pUJ
A
pUA

¯:
pUJ

A

˜

r
ÿ

i“1

puipv
J
i

¸

pUB

´

pUJ
B
pUB

¯:

UB

The estimated rating matrix pR is found by now setting pR “ pR˚. There is dimension

reduction via the submatrices, and this leaves only the spectral clustering and orthogonal

projection as computationally expensive– even with a large rating matrix.

8.3 Experimental Evaluation

Several experiments were completed on multiple datasets. These compared DecRec

over a set of baseline algorithms to demonstrate the merits and advantages of DecRec. The

datasets are well-known and publicly available. These are: MovieLens (1M and 100K) 2,

Epinions 3 and NIPS 4.

2http://www.grouplens.org/node/73
3http://www.trustlet.org/wiki/Epinions_dataset
4http://www.cs.nyu.edu/~roweis/data.html

102

Several fundamental questions were addressed. Principally, the proposed algorithm

is compared against state-of-the art methods for incorporating side information into rec-

ommendation of existing items to existing users. As this is a well researched area, the

interesting results occur during the cold-start cases. Results are presented when there are

cold-start items, cold-start users, and both cold-start users and items.

8.3.1 Datasets

Although this algorithm is made to provide recommendations, it is applicable to

any user-item setting. Because of this, experiments were performed on well-known movie

and item rating datasets for recommendation, and a further experiment was conducted on

an author-publication graph to solve a network completion problem. The recommendation

(including cold-start) experiments used MovieLens and Epinions while the NIPS dataset

was used for network completion. The descriptions are given along with a table of the

datasets’ statistics in Table 8.1. There is also a synthetic dataset included in some of the

experiments.

1. MovieLens: Two versions of the MovieLens datasets were used. They were the 100K

and 1M variants. They consist of ratings (1-5) from users on movies. In addition

to rating data, these datasets also contain features for both users and movies. For

each movie the features (e.g title, year, genre) are given. Further feature data was

extracted from the movie information website imdb.com. For each user, personal

features (e.g. gender, age, occupation, location) were extracted. Then for both users

and items we computed their cosine similarities to be used as side information.

2. Epinions: This dataset was obtained from a user-oriented product review website

that has a trust network of users. Users can specify whether they trust other users

or not explicitly. This trust network allows the creation of a 0/1 trust connectivity

vector for each user with all other users. From this, the cosine similarity of trust

103

vectors was computed and became the similarity matrix of users. The items have

categorical side information and the users can provide their ratings (1-5).

3. NIPS: For network completion, the co-author network at the NIPS conference [78]

was taken. From this, the paper-author and paper-word matrices were extracted.

There is no side information for the authors, but the papers’ contents are pre-

processed such that all words are converted to lower cases and stop-words are re-

moved. Again, the cosine similarity is computed of the words between papers.

4. Synthetic: The synthetic dataset was generated by two matrices U P r0, 1s4,000ˆr and

V P r0, 1s2,000ˆr. Then U and V were used to generate a rating matrix R4,000ˆ2,000 “

UVJ. In R, there were 4,000 users and 2,000 items. A similarity matrix A4,000ˆ4,000 “

UUJ was generated for users and also B2,000ˆ2,000 “ VVJ for items. Finally, random

noise was added to the all elements of A and B where the noise follows the Gaussian

distribution with Np0, 0.5q.

8.3.2 Evaluation Metrics

As is standard, the Mean Absolute Error (MAE) and the Root Mean Squared Error

(RMSE) metrics for prediction accuracy [38] were again used. If T denotes the set of ratings

to be predicted, i.e., T “ tpi, jq P rns ˆ rms,Rij needs to be predictedu, and pR denotes the

prediction matrix obtained by a recommendation algorithm, then MAE is:

MAE “

ř

pi,jqPT |Rij ´ pRij|

|T|

RMSE is similarly defined as:

RMSE “

g

f

f

e

ř

pi,jqPT

´

Rij ´ pRij

¯2

|T|

104

Statistics MovieLens 100K MovieLens 1M Epinioins NIPS

Number of users 943 6,040 8,577 2,073

Number of items 1682 3,706 3,769 1,740

Number of ratings 100,000 1,000,209 203,275 3,990

Range of ratings 1 - 5 1 - 5 1 - 5 0-1

Table 8.1 Statistics of the real world datasets

Even small improvements in RMSE are considered valuable in the context of recommender

systems. For example, the streaming video service Netflix, that relies heavily on predicting

users’ ratings on content, offered a prize of $1,000,000 to the first researchers to achieve a

10% reduction of RMSE.

There is one other metric to be considered. Given an item i, let ri be the relevance

score of the item ranked at position i, where ri “ 1 if the item is relevant to the i and

ri “ 0 otherwise. The NDCG measure is a normalization of the Discounted Cumulative

Gain (DCG) measure. DCG is a weighted sum of the degree of relevancy of the ranked

users. The value of NDCG is between r0, 1s and at position k is defined as:

NDCG@k “ Zk

k
ÿ

i“1

2ri ´ 1

logpi` 1q

In all experiments, the value of k is set as the number of rated items by each user.

8.3.3 The Baseline Algorithms

To evaluate the performance of the proposed DecRec algorithm, a wide variety of

baseline algorithms were deployed. The baseline algorithms were chosen from four types

of categories: state-of-the-art algorithms for rating predictions, recommenders with cold-

start items capacity, recommenders with cold-start users capacity, and algorithms with the

105

capacity to consider both cold-start items and users. The MyMediaLite implementations

were used throughout the testing [29].

1. RS (Random Strategy) [51]: A simple baseline that selects at random a subset of

users or items. The recommendation for cold-start users and items is a challenging

case, where RS is one of the baseline methods.

2. U-KNN (User KNN) [45]: Predicts the ratings using the similarity with the K

nearest neighbors where users have weights.

3. I-KNN (Item KNN) [45]: Is a weighted item-based KNN approach for rate predic-

tion.

4. GA (Global Average): Uses the average of ratings over all ratings.

5. I-A (Item Average): Uses the average rating of an item for its prediction.

6. U-A (User Average): Uses the average rating of a user for its prediction.

7. SO (Slope One) [47]: Pre-computes the average difference between two items that

are rated by users. SO is a frequency weighted slope one rating prediction.

8. BPSO (BiPolar Slope One) [47]: Is a Bi-polar frequency weighted slope one rating

prediction.

9. SMF (Social Matrix Factorization) [39]: Is a matrix factorization algorithm that

incorporates the social network for prediction.

10. CC (CoClustering) [30]: Is a weighted co-clustering algorithm that involves simulta-

neous clustering of users and items.

11. LFLLM (Latent Feature Log Linear Model) [59]: Is a scalable log-linear model that

exploits the side information for dyadic prediction.

106

12. U-I-B (User Item Baseline) [45]: Is a rating prediction method that uses the average

rating value along with a regularized user and item bias.

13. FWMF (FactorWise Matrix Factorization): Is a matrix factorization based model

with a factor-wise learning.

14. BMF (Biased Matrix Factorization) [75]: Is a matrix factorization that learns by

stochastic gradient descent with explicit bias for users and items.

15. SVDPP (SVD++) [44]: Is a matrix factorization that takes into account what users

have rated and directly profiles users and items.

16. SSVDPP (Sigmoid SVD++) [44]: Is a version of SVD++ that uses a sigmoid func-

tion.

17. SU-AFM (Sigmoid User Asymmetric Factor Model) [69]: Is an asymmetric factor

model that represents the items in terms of those users that rated them.

18. SI-AFM (Sigmoid Item Asymmetric Factor Model) [69]: Is an asymmetric factor

model that represents users in terms of the items they rated.

19. SCAFM (Sigmoid Combined Asymmetric Factor Model) [69]: Is an asymmetric

factor model that represents items in terms of the users that rated them, and users

in terms of the items they rated.

20. CBF (Content Based Filtering) [79]: This algorithm builds a profile for each user

based on the properties of the user’s preferred items from the past.

21. LCE (Local Collective Embeddings) [79]: Is a matrix factorization method that

exploits properties of items and past user preferences while enforcing the manifold

structure exhibited by the collective embeddings.

22. LCE-NL(Local Collective Embeddings No Laplacian) [79]: Is LCE without laplacian

regularization.

107

23. ELCE (Extended LCE): Is an extended version of LCE meant to handle the challenge

of the presence of both cold-start users and items simultaneously.

24. KMF (Kernelized Matrix Factorization) [90]: Is a matrix completion based algo-

rithm, which incorporates external side information of the users or items into the

matrix factorization process.

25. DecRec: The proposed algorithm with decoupled completion and transduction.

8.3.4 Effects of Noise

The sensitivity to noise on the proposed algorithm is explored. With the synthetic

dataset, recall A and B as the two similarity matrices between users and items, respectively.

The variance of the Gaussian were varied by every 0.05 for 0.05 to 0.95. Figure 8.2 shows

the increase in RMSE and MAE of the results on test data as the noise increases. However,

the degradation of the results is graceful with respect to the incease of noise. The results

are similar to those in a real world dataset.

Examining MovieLens 1M, noise was generated that also follows a Gaussian distri-

bution. This noise, Np0, 0.5q, was added to the similarity matrices. The variance was varied

in the same way as in the synthetic dataset. Figure 8.3 shows the RMSE and MAE of the

predictions. Similar to the previous results, by adding noise to the similarity matrices, the

error grows gracefully.

8.3.5 Existing Users and Items

The standard case for recommender systems is that all users and items have a

history of rating and being rated, respectively. Generally, users only rate a small number

of items and the rest of the ratings are unknown. The stated goal of such recommender

systems is to provide a prediction for all of the ratings of the unrated items. There are two

108

Noise Variance
0.05 0.2 0.35 0.5 0.65 0.8 0.95

E
rr

or

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
RMSE
MAE

Figure 8.2 RMSE & MAE on the synthetic dataset for different noise variances on simi-
larity matrices

broad approaches to this problem: neighbor-based and latent factor models. Many baseline

algorithms from each type were used.

DecRec was deployed on the MovieLens 100K, MovieLens 1M and Epinions datasets.

GroupLens Research 5 made five sets available, which are 80%/20% splits of the MovieLens

100K into training and test data. For MovieLens 1M and Epinions, the data were split

into 80%/20% train-test sets randomly five times (for 5-fold cross-validation). The average

results are reported. Table 8.2 shows this average RMSE and MAE resulting from the 5-

fold cross-validation for all baseline algorithms. DecRec had the smallest RMSE and MAE

values for each column (indicated by bold type-face). The results suggested that among

neighbor-based approaches, I-KNN is the best-performing algorithm for MovieLens 1M and

100K and U-KNN is the second best-performing one. That is because of the similarity be-

tween movies (genre, director, etc) and similarity between taste of users play an important

role in prediction accuracy. I-KNN and U-I-B outperformed other neighbor-based methods

5grouplens.org/

109

Noise Variance
0.5 0.25 0.45 0.65 0.85

R
M

S
E

0.724

0.726

0.728

Noise Variance
0.5 0.25 0.45 0.65 0.85

M
A

E

0.69

0.692

0.694

Figure 8.3 RMSE & MAE of MovieLens 1M for different noise variances on similarity
matrices

on Epinions in respect to RMSE measures, while BPSO and I-KNN outperformed others in

respect to MAE measures. Similarity of items and having the same pattern of ratings for

similar items on Epinions helped I-KNN’s results perform better than other neighbor based

methods. Table 8.3 further shows the comparison between latent factor methods in which

DecRec (KMF) algorithm achieved the first (second) best performance of RMSE and MAE

for MovieLens 100K and RMSE for MovieLens 1M. It also achieved the second (first) best

performance of MAE for MovieLens 1M. On Epinions, DecRec also outperformed other

latent factor methods.

Tables 8.2 and 8.3 show that DecRec achieved the best performance for all datasets

among all methods of both categories, latent factor and neighbor based methods (except for

MAE on MovieLens 1M), confirming the performance advantage of DecRec over all baseline

algorithms. Hence, the proposed decoupled method by incorporating side information

reveals the need for preventing error propagation along with using side information to

obtain more accurate predictions.

110

Algorithms Hyperparameters
MovieLens 100K MovieLens 1M Epinions

RMSE MAE RMSE MAE RMSE MAE

N
e
ig

h
b

o
r-

B
a
se

d
M

e
th

o
d

s

GA — 1.1190 0.9399 1.116 0.9327 1.1692 0.8878

I-A — 1.0220 0.8159 0.9759 0.7790 1.0695 0.8140

U-A — 1.0390 0.8350 1.034 0.8272 1.1276 0.8769

U-KNN k=80 0.9355 0.7398 0.8952 0.7030 2.3999 2.2229

I-KNN k=80, sh=10,λu=25, λv=10 0.9241 0.7270 0.8711 0.6830 1.0279 0.6993

U-I-B λu=5, λv=2 0.9419 0.7450 0.9081 0.7190 1.0290 0.8010

SO — 0.9397 0.7403 0.9020 0.7120 1.0865 0.7067

BPSO — 0.9744 0.7482 0.9390 0.7199 1.0449 0.6813

CC Ci=3, Cu=3, T=30 0.9559 0.7526 0.9118 0.7134 1.0573 0.7890

Table 8.2 Results on MovieLens 100K and 1M and Epinions for neighbor-based methods
with no cold-start users/items

111

Algorithms Hyperparameters
MovieLens 100K MovieLens 1M Epinions

RMSE MAE RMSE MAE RMSE MAE

L
a
te

n
t

F
a
ct

o
r

M
o
d
e
ls

SMF
p=10, λu=0.015, λv=0.015, λb=0.01

1.0134 0.7884 1.2284 0.9315 1.1224 0.8436
λs=1, η=0.01, ηb=1, T=30

FWMF p=5, T=5, sh=150 0.9212 0.7252 0.8601 0.6730 1.5090 1.0597

BMF
p=160, λb=0.003, η=0.07, T=100

0.9104 0.7194 0.8540 0.6760 1.0240 0.7918
λu=0.08,λv=0.1

MF
p=10, T=75

0.9133 0.7245 0.8570 0.6751 1.0908 0.8372
λg=0.05, η=0.005

KMF σr=0.4, D=10, η=0.003, γ=0.1 0.7947 0.6893 0.7492 0.6514 0.9015 0.7873

LFLLM
p=10, λb=0.01, λu=0.015, λv=0.015

0.9550 0.7617 0.9012 0.7082 1.2891 1.0386
η=0.01, T=30, ηb=1

SI-AFM
ηb=0.7, λg=0.015, η=0.001, p=10

0.9568 0.7628 1.035 0.8488 1.1534 0.8816
λb=0.33, T=1

SU-AFM
ηb=0.7,λg=0.015

0.9569 0.7634 0.9062 0.7189 1.069 0.8398
λb=0.33, T=1, η=0.001, p=10

SCAFM — 0.9499 0.7559 0.9121 0.7239 1.0600 0.8312

SVDPP
ηb=0.07,λg=1

0.9065 0.7135 0.8510 0.6680 1.0550 0.8220
λb=0.005, p=50, η=0.01, T=50

SSVDPP
ηb=0.7, T=30

1.185 0.9147 0.9402 0.7352 1.3328 0.9022
p=10,λg=0.015, η=0.001, λb=0.33

RS — 1.6960 1.3860 1.7070 1.3940 1.9096 1.5789

DecRec r=10 0.7002 0.6628 0.7157 0.6721 0.7157 0.6796

Table 8.3 Results on MovieLens 100K and 1M and Epinions for latent factor methods
with no cold-start users/items

112

8.3.6 Cold-Start Items

To simulate cold-start item problems, the items were divided into two disjoint train-

ing and test subsets. Here, 80% of the items were considered existing items for training

and the remaining 20% were cold-start items for testing.

This general framework can also be used on network completion challenges. The

NIPS dataset was chosen to not only simulate the cold-start item scenario, but also to show

the results of DecRec for network completion. NIPS has rich side information for the items

(papers) and shows the relationship (0 or 1) between papers and authors. Because the

values in NIPS are either 0 or 1, predicting the authors of new papers can be also perceived

as a link prediction problem.

Four competitive recommendation methods were considered on NIPS dataset. They

were CBF, KMF, LCE and LCE-NL. Table 8.4 shows the average RMSE and MAE of 5-

fold cross-validation for these algorithms for the cold-start item scenario. The parameters

from MyMediaLite are provided for reproduciblility.

These results indicate that DecRec is the best performing algorithm among all base-

line algorithms in the cold-start item scenario with respect to RMSE, MAE and NDCG.

Having the highest NDCG value among all competitive algorithms shows that DecRec can

present the top-ranked items to users better than other algorithms. DecRec also yields the

lowest RMSE and MAE values. From this, it may be concluded that DecRec’s predictions

of the ratings for cold-start items are more accurate than the other methods. DecRec can

better suggest the top-ranked cold-start items to users with higher accuracy. The running

times are also included in this instance. CBF must only create user profiles and is thus

very fast. KPMF and DecRec are acceptably efficient, but LCE and LCE-NL are much

slower due to their convergence conditions.

113

Datasets Method Hyperparameters
Measures

NDCG@k RMSE MAE Time(s)

NIPS

CBF — 0.3861 0.7943 0.8881 0.17597

LCE k=500, λg=0.5, ε “ 0.001, Tm=500, β=0.05 0.4240 0.7692 0.8675 709.869

LCE-NL k=500, λg=0.5, ε=0.001, Tm=500, β=0 0.4186 0.7532 0.8562 1823.48

Cold-start item KMF σr=0.4, D=10, η=0.003, γ=0.1 0.1415 0.8804 0.9196 19.5413

DecRec r=1000 0.4626 0.5111 0.6805 23.8410

Epinions

CBF — 0.2201 0.6644 0.7741 4.4800

LCE k=500, λg=0.5, ε=0.001, Tm=500, β=0.05 0.2327 0.6713 0.7786 1067.11

LCE-NL k=500, λg=0.5, ε=0.001, Tm=500, β=0 0.2319 0.6712 0.7785 11969.9

Cold-start user KMF σr=0.4, D=10, η=0.003, γ=0.1 0.2084 0.8522 0.8882 1196.32

DecRec r=1063 0.2343 0.6618 0.7716 144.660

MovieLens 100K

RS — 0.1022 1.1981 0.9782 0.0131

KMF σr=0.4, D=10, η=0.003, γ=0.1 0.2423 0.9823 0.8730 11.540

Cold-start ELCE k=500, λg=0.5, ε=0.001, Tm=500, β=0 0.2681 0.8934 0.7626 16.4683

user & item DecRec r=100 0.2641 0.8672 0.7230 4.8729

MovieLens 1M

RS — 0.0652 1.3820 0.9326 0.0682

KMF σr=0.4, D=10, η=0.003, γ=0.1 0.1834 0.9730 0.8442 63.732

Cold-start ELCE k=500, λg=0.5, ε=0.001, Tm=500, β=0 0.2662 0.8849 0.7684 166.201

user & item DecRec r=100 0.2783 0.8524 0.7162 10.578

Table 8.4 Results on all of the cold-start scenarios for real datasets

114

8.3.7 Cold-start Users

To simulate cold-start user problems, the users were divided into two disjoint train-

ing and test subsets. Here, 80% of the users were considered existing users for training and

the remaining 20% were cold-start users for testing. To show the relative results of DecRec,

it was compared with several competitive algorithms: CBF, LCE, LCE-NL and KPMF.

Because Epinions has an explicitly given trust network among the users, it has

very useful side information. This set is used to experiment on the cold-start user scenario.

Table 8.4 shows the averaged (5-fold cross validation) performance results of the mentioned

algorithms. DecRec achieved the best performance of NDCG, RMSE and MAE on the

Epinions dataset.

These evaluations of DecRec and the baseline algorithms are close, but the con-

sistency in outperforming other competitive methods on both cold-start user and item

scenarios confirms the stability and performance advantage of DecRec over state-of-the-art

algorithms.

8.3.8 Cold-Start Users and Items

To simulate handling both cold-start users and items, 20% of the users and 20%

of the items where randomly chosen to be cold-start users and items, respectively. All

experiments were performed on the two MovieLens variants because they have rich side

information about both the users and the items. Both the ratings for cold-start users

and items were then predicted. This is a very challenging scenario because of all of the

completely empty rows and columns in the rating matrix. Very few baseline algorithms

exists that can even attempt a solution. DecRec was compared only with only RS, KMF,

ELCE because of this restriction.

115

Table 8.4 shows the results of applying RS, KMF, ELCE and DecRec algorithms on

MovieLens 100K and 1M. On both datasets, DecRec outperformed other baselines. The

nearest competitor was ELCE– a collaborative factorization method.

8.4 Conclusion

DecRec explicitly exploits the similarity information about users and items to alle-

viate cold-start problems. In particular, DecRec decouples the completion from the knowl-

edge transduction, thus preventing some error propagation as described. Experimental

results on real datasets clearly indicated that DecRec outperforms modern benchmark al-

gorithms in all of the permutations of the cold-start problems, and even performs well

when no cold-start users/items are present. Along with the dearth of algorithms that can

be applied to cold-start problems, this positions DecRec as one of the best recommendation

algorithms for cold-start scenarios.

116

Chapter 9

Conclusions

This work presented a new framework to study invariant evolution with the standard

and random P-impact process. Several invariants were explored and their impact in trees

and empty graphs was shown. The process of determining maximum distance-impact edges

was shown to be non-trivial through a series of counterexamples and a proof that these

edges must not be incident to two leaves in trees. Further experimentation seems to indicate

that some edges provide more accuracy when they are added before matrix factorization is

applied.

An effective algorithm for network completion with auxiliary similarity information

about nodes was also developed. Its comparison to the state-of-the-art baselines on syn-

thetic and real datasets reveals that proposed method exhibits improved performance in

terms of recovering the full network. This advantage is brought by the process in which

we decoupled the completion of observed submatrix from transduction of knowledge by

exploiting similarity information.

Finally, an algorithm that explicitly exploits the similarity information about users

and items to alleviate cold-start problems for recommendation was given. Similar to the

network completion algorithm, it completes sub-matrix of the rating matrix and transducts

knowledge from recovered sub-matrix along with the side information of the users and items.

117

This algorithm also performed well in experimentation with existing users/items and in all

three cold-start scenarios.

118

APPENDIX

119

APPENDIX

This appendix contains the results of the additional experimentation in Chapter 6.

Five order 25 random graphs of each class were generated. From each of these, nine other

graphs were created. In each of these nine graphs, between 10-90% (step size of 10%) of

the entries in the adjacency matrix corresponding to potential edges were eliminated. Note

that for non-directed graphs the adjacency matrix is symmetric, so in practice only the

upper-triangle adjacency matrix was considered. From each of these adjacency matrices

two processes occurred. First, the adjacency matrix was completed as-is via matrix factor-

ization. Second, one entry at a time was revealed and replaced with its true value (0 or 1).

At this point, the adjacency matrix was completed (again via matrix factorization). In the

first case, the basal error rates were calculated (i.e. error without revealing any edges). In

the second case, each time an entry was revealed the error of completion was reported as

in instance. For the ease of language, in the original graph both absent and present edges

will be referred to as ‘edges’. The difference being, absent ‘edges’ will have a true value of

0 in the adjacency matrix while present edges will have a value of 1.

The predictive power of individual edges are found by computing the completion

error that their addition yields for the resultant adjacency matrix. The basal error rate is

also reported. For all random graphs of the form Gp25, pq for all 0.1 ď p ď 0.9, p ‰ 0.5

step size 0.1 refer to Figures A.1-15. The tables comparing the basal RMSE and MAE

and the percent of edges who’s addition degrades the matrix factorization results below the

basal rate are given in Tables A.1-8 for Gp25, pq with 0.1 ď p ď 0.9, p ‰ 0.5 step size 0.1,

respectively. For Gp25, 0.5q, refer to Figures 6.1, 6.2, and 6.1 in Chapter 5 for the RMSE,

MAE, and basal comparison results, respectively.

120

Figure A.1 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.1q

Figure A.2 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.1q

121

Figure A.3 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.2q

Figure A.4 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.2q

122

Figure A.5 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.3q

Figure A.6 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.3q

123

Figure A.7 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.4q

Figure A.8 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.4q

124

Figure A.9 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.6q

Figure A.10 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.6q

125

Figure A.11 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.7q

Figure A.12 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.7q

126

Figure A.13 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.8q

Figure A.14 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.8q

127

Figure A.15 RMSE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.9q

Figure A.16 MAE on single edge addition for varied percentages of removed edges for
random graphs pp “ 0.9q

128

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 1.5763 78.33 1.5146 79.66

20% 1.7159 100.0 1.6573 100.0

30% 1.5616 62.0 1.4868 54.0

40% 1.5273 45.33 1.4555 41.66

50% 1.5427 54.33 1.4849 57.66

60% 1.4446 12.66 1.3757 11.33

70% 1.4411 9.666 1.3682 8.666

80% 1.6711 98.33 1.6178 99.0

90% 1.4727 14.33 1.4069 14.33

Table A.1 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.1q

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 1.4106 24.66 1.3127 22.66

20% 1.3668 10.33 1.2707 10.0

30% 1.5186 81.0 1.4315 83.33

40% 1.4561 53.0 1.3610 50.66

50% 1.4525 46.66 1.3597 46.66

60% 1.4615 56.00 1.3687 55.33

70% 1.4758 60.0 1.3676 50.33

80% 1.4231 30.0 1.3252 26.66

90% 1.5231 80.0 1.4284 77.0

Table A.2 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.2q

129

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 1.5350 91.66 1.4448 92.33

20% 1.5463 93.66 1.4490 92.33

30% 1.5396 88.0 1.4323 86.33

40% 1.5079 78.0 1.4160 78.33

50% 1.5263 86.33 1.4275 83.0

60% 1.4074 28.33 1.3015 25.0

70% 1.4692 61.0 1.3833 64.66

80% 1.6101 98.0 1.5218 97.33

90% 1.4333 39.33 1.3404 40.0

Table A.3 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.3q

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 1.2241 10.33 1.0778 8.666

20% 1.4249 97.33 1.2985 97.0

30% 1.2825 35.0 1.1382 32.33

40% 1.3024 44.33 1.1746 53.33

50% 1.3004 39.33 1.1629 39.0

60% 1.2436 14.66 1.1080 15.66

70% 1.2742 26.66 1.1283 25.0

80% 1.3970 87.66 1.2568 84.66

90% 1.2930 38.33 1.1553 36.66

Table A.4 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.4q

130

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 1.2341 76.66 1.0773 73.0

20% 1.2247 67.33 1.0782 70.66

30% 1.2711 82.33 1.1196 81.33

40% 1.2001 43.0 1.0291 35.0

50% 1.2378 72.33 1.0682 63.0

60% 1.2636 75.0 1.1118 75.33

70% 1.1872 28.99 1.0482 40.0

80% 1.1858 32.66 1.0333 34.33

90% 1.2866 88.0 1.1541 92.33

Table A.5 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.6q

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 1.0719 26.66 0.8949 23.33

20% 1.1973 93.33 1.0316 91.66

30% 1.1397 66.33 0.9922 76.0

40% 0.9732 0.666 0.7849 0.666

50% 1.0772 27.33 0.9092 28.00

60% 1.0806 28.33 0.9108 27.66

70% 1.0205 6.666 0.8312 5.0

80% 1.0496 12.33 0.8719 11.66

90% 1.1522 67.66 0.9973 71.0

Table A.6 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.7q

131

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 0.9445 40.33 0.7659 32.66

20% 0.8914 8.0 0.7412 17.66

30% 0.9826 62.66 0.8054 55.00

40% 1.0009 66.33 0.8357 65.33

50% 0.8383 1.666 0.6597 2.333

60% 0.9236 20.66 0.7791 34.0

70% 1.0246 76.66 0.8728 78.33

80% 0.9884 58.66 0.8203 54.0

90% 1.0583 88.33 0.9155 90.0

Table A.7 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.8q

Edges Removed (%) Basal RMSE Worse Edges (%) Basal MAE Worse Edges (%)

10% 0.8708 49.0 0.6840 31.0

20% 0.8533 34.0 0.6948 32.33

30% 0.9176 76.33 0.7621 73.0

40% 0.9716 94.0 0.8229 93.66

50% 0.8869 56.00 0.7358 53.66

60% 0.8449 27.0 0.7013 34.33

70% 0.8918 56.66 0.7316 52.33

80% 0.8154 10.0 0.6538 11.33

90% 0.8633 30.66 0.7021 28.99

Table A.8 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdős-Rényi random graphs of the form Gp25, 0.9q

132

REFERENCES

133

REFERENCES

[1] Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-Philippe Vert. A new
approach to collaborative filtering: Operator estimation with spectral regularization.
The Journal of Machine Learning Research, 10:803–826, 2009.

[2] A Annibale and ACC Coolen. What you see is not what you get: how sampling affects
macroscopic features of biological networks. Interface Focus, 1(6):836–856, 2011.

[3] Sitaram Asur and Bernardo A Huberman. Predicting the future with social media. In
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM
International Conference on, volume 1, pages 492–499. IEEE, 2010.

[4] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. Everyone’s
an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM
international conference on Web search and data mining, pages 65–74. ACM, 2011.

[5] Iman Barjasteh, Rana Forsati, Abdol-Hossein Esfahanian, and Hayder Radha. Cold-
start item and user recommendation with decoupled completion and transduction. In
RecSys, pages 91–98, 2015.

[6] Iman Barjasteh, Rana Forsati, Dennis Ross, Abdol-Hossein Esfahanian, and Hayder
Radha. Cold-start recommendation with provable guarantees: A decoupled approach.

[7] Justin Basilico and Thomas Hofmann. Unifying collaborative and content-based fil-
tering. In ICML, page 9. ACM, 2004.

[8] Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. ACM
SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[9] Daniel Billsus and Michael J Pazzani. User modeling for adaptive news access. User
modeling and user-adapted interaction, 10(2-3):147–180, 2000.

[10] Stephen P Borgatti and Martin G Everett. A graph-theoretic perspective on centrality.
Social networks, 28(4):466–484, 2006.

134

[11] Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of Mathe-
matical Sociology, 25(2):163–177, 2001.

[12] Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling
and user-adapted interaction, 12(4):331–370, 2002.

[13] Guo-Ray Cai and Yu-Geng Sun. The minimum augmentation of any graph to a k-
edge-connected graph. Networks, 19(1):151–172, 1989.

[14] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding
algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982,
2010.

[15] Paul A. Catlin. A reduction method to find spanning eulerian subgraphs. Journal of
Graph Theory, 12(1):29–44, 1988.

[16] Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry Netes, and
Matthew Sartin. Combining content-based and collaborative filters in an online news-
paper. In Proceedings of ACM SIGIR workshop on recommender systems, volume 60.
Citeseer, 1999.

[17] Gabriella Contardo, Ludovic Denoyer, and Thierry Artieres. Representation learning
for cold-start recommendation. arXiv preprint arXiv:1412.7156, 2014.

[18] Aron Culotta. Towards detecting influenza epidemics by analyzing twitter messages.
In Proceedings of the first workshop on social media analytics, pages 115–122. ACM,
2010.

[19] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The yahoo!
music dataset and kdd-cup’11. In KDD Cup, pages 8–18, 2012.

[20] Asmaa Elbadrawy and George Karypis. Feature-based similarity models for top-n
recommendation of new items. 2014.

[21] Paul Erdős. On some extremal problems in graph theory. Israel Journal of Mathe-
matics, 3(2):113–116, 1965.

135

[22] Paul Erdős, András Hajnal, and John W Moon. A problem in graph theory. American
Mathematical Monthly, pages 1107–1110, 1964.

[23] Abdol-Hossein Esfahanian and S Louis Hakimi. On computing a conditional edge-
connectivity of a graph. Information Processing Letters, 27(4):195–199, 1988.

[24] Yi Fang and Luo Si. Matrix co-factorization for recommendation with rich side infor-
mation and implicit feedback. In Proceedings of the 2nd International Workshop on
Information Heterogeneity and Fusion in Recommender Systems, pages 65–69. ACM,
2011.

[25] András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
Journal on Discrete Mathematics, 5(1):25–53, 1992.

[26] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

[27] Harold N Gabow and Eugene W Myers. Finding all spanning trees of directed and
undirected graphs. SIAM Journal on Computing, 7(3):280–287, 1978.

[28] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars
Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommenda-
tions. In ICDM. IEEE, 2010.

[29] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
MyMediaLite: A free recommender system library. In ACM, Recommender Systems,
2011.

[30] Thomas George and Srujana Merugu. A scalable collaborative filtering framework
based on co-clustering. In ICDM, 2005.

[31] Quanquan Gu and Jie Zhou. Learning the shared subspace for multi-task clustering
and transductive transfer classification. In ICDM’09, pages 159–168. IEEE, 2009.

[32] Roger Guimerà and Marta Sales-Pardo. Missing and spurious interactions and the
reconstruction of complex networks. Proceedings of the National Academy of Sciences,
106(52):22073–22078, 2009.

136

[33] Asela Gunawardana and Christopher Meek. A unified approach to building hybrid
recommender systems. In Proceedings of the third ACM, Recommender systems, 2009.

[34] Sunil Kumar Gupta, Dinh Phung, Brett Adams, Truyen Tran, and Svetha Venkatesh.
Nonnegative shared subspace learning and its application to social media retrieval. In
ACM SIGKDD, pages 1169–1178. ACM, 2010.

[35] Sunil Kumar Gupta, Dinh Phung, Brett Adams, and Svetha Venkatesh. Regularized
nonnegative shared subspace learning. Data mining and knowledge discovery, 26(1):57–
97, 2013.

[36] Steve Hanneke and Eric P Xing. Network completion and survey sampling. In AISTAT,
pages 209–215, 2009.

[37] Thorsten Hennig-Thurau, Caroline Wiertz, and Fabian Feldhaus. Exploring the twitter
effect: an investigation of the impact of microblogging word of mouth on consumers
early adoption of new products. Available at SSRN, 2016548, 2012.

[38] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Evalu-
ating collaborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22(1):5–53, 2004.

[39] Mohsen Jamali and Martin Ester. A matrix factorization technique with trust prop-
agation for recommendation in social networks. In Proceedings of the fourth ACM
conference on Recommender systems, pages 135–142. ACM, 2010.

[40] Bhargav Kanagal, Amr Ahmed, Sandeep Pandey, Vanja Josifovski, Jeff Yuan, and
Lluis Garcia-Pueyo. Supercharging recommender systems using taxonomies for learn-
ing user purchase behavior. Proceedings of the VLDB Endowment, 5(10):956–967,
2012.

[41] Myunghwan Kim and Jure Leskovec. The network completion problem: Inferring
missing nodes and edges in networks. In SDM, pages 47–58. SIAM, 2011.

[42] Noam Koenigstein, Gideon Dror, and Yehuda Koren. Yahoo! music recommendations:
modeling music ratings with temporal dynamics and item taxonomy. pages 165–172.
ACM, 2011.

137

[43] Jnos Komls and Mikls Simonovits. Szemerdi’s regularity lemma and its applications
in graph theory, 1996.

[44] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[45] Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative filtering.
ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1):1, 2010.

[46] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, (8):30–37, 2009.

[47] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-based
collaborative filtering. In SDM, volume 5, pages 1–5. SIAM, 2005.

[48] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social net-
works. Journal of the American society for information science and technology,
58(7):1019–1031, 2007.

[49] Guang Ling, Michael R Lyu, and Irwin King. Ratings meet reviews, a combined
approach to recommend. In ACM Conference on Recommender Systems, pages 105–
112. ACM, 2014.

[50] Juntao Liu, Caihua Wu, and Wenyu Liu. Bayesian probabilistic matrix factorization
with social relations and item contents for recommendation. Decision Support Systems,
2013.

[51] Nathan N Liu, Xiangrui Meng, Chao Liu, and Qiang Yang. Wisdom of the better
few: cold start recommendation via representative based rating elicitation. In ACM
Conference on Recommender Systems, pages 37–44. ACM, 2011.

[52] Mingsheng Long, Jianmin Wang, Guiguang Ding, Wei Cheng, Xiang Zhang, and Wei
Wang. Dual transfer learning. In SDM, pages 540–551. SIAM, 2012.

[53] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. Sorec: social recommendation
using probabilistic matrix factorization. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 931–940. ACM, 2008.

138

[54] Wolfgang Mader. A reduction method for edge-connectivity in graphs. Annals of
Discrete Mathematics, 3:145–164, 1978.

[55] Farzan Masrour, Iman Barjesteh, Rana Forsati, Abdol-Hossein Esfahanian, and Hay-
der Radha. Network completion with node similarity: A matrix completion approach
with provable guarantees. pages 302–307. ACM, 2015.

[56] David W Matula. Determining edge connectivity in 0 (nm). In Foundations of Com-
puter Science, 1987., 28th Annual Symposium on, pages 249–251. IEEE, 1987.

[57] Prem Melville, Raymond J Mooney, and Ramadass Nagarajan. Content-boosted col-
laborative filtering for improved recommendations. In AAAI/IAAI, pages 187–192,
2002.

[58] Aditya Krishna Menon, Krishna-Prasad Chitrapura, Sachin Garg, Deepak Agarwal,
and Nagaraj Kota. Response prediction using collaborative filtering with hierarchies
and side-information. In ACM SIGKDD, pages 141–149. ACM, 2011.

[59] Aditya Krishna Menon and Charles Elkan. A log-linear model with latent features for
dyadic prediction. In ICDM, pages 364–373. IEEE, 2010.

[60] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization.
In Machine Learning and Knowledge Discovery in Databases, pages 437–452. Springer,
2011.

[61] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In Ad-
vances in neural information processing systems, pages 1257–1264, 2007.

[62] Juhani Nieminen. On the centrality in a graph. Scandinavian Journal of Psychology,
15(1):332–336, 1974.

[63] Juhani Nieminen. Distance center and centroid of a median graph. Journal of the
Franklin Institute, 323(1):89–94, 1987.

[64] Uroš Ocepek, Jože Rugelj, and Zoran Bosnić. Improving matrix factorization recom-
mendations for examples in cold start. Expert Systems with Applications, 2015.

139

[65] Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang Yang. Transfer learning
in collaborative filtering for sparsity reduction. In AAAI, volume 10, pages 230–235,
2010.

[66] Manos Papagelis, Gautam Das, and Nick Koudas. Sampling online social networks.
Knowledge and Data Engineering, IEEE Transactions on, 25(3):662–676, 2013.

[67] Seung-Taek Park and Wei Chu. Pairwise preference regression for cold-start recom-
mendation. In RecSys, pages 21–28, 2009.

[68] Seung-Taek Park, David Pennock, Omid Madani, Nathan Good, and Dennis DeCoste.
Näıve filterbots for robust cold-start recommendations. pages 699–705, 2006.

[69] Arkadiusz Paterek. Improving regularized singular value decomposition for collabo-
rative filtering. In Proceedings of KDD cup and workshop, volume 2007, pages 5–8,
2007.

[70] Michael J Pazzani. A framework for collaborative, content-based and demographic
filtering. Artificial Intelligence Review, 13(5-6):393–408, 1999.

[71] Alexandrin Popescul, David M Pennock, and Steve Lawrence. Probabilistic models for
unified collaborative and content-based recommendation in sparse-data environments.
In UAI, pages 437–444, 2001.

[72] Ian Porteous, Arthur U Asuncion, and Max Welling. Bayesian matrix factorization
with side information and dirichlet process mixtures. In AAAI, 2010.

[73] Benjamin Recht. A simpler approach to matrix completion. The Journal of Machine
Learning Research, 12:3413–3430, 2011.

[74] Steffen Rendle. Factorization machines. In ICDM, pages 995–1000. IEEE, 2010.

[75] Steffen Rendle and Lars Schmidt-Thieme. Online-updating regularized kernel matrix
factorization models for large-scale recommender systems. In Proceedings of the 2008
ACM conference on Recommender systems, pages 251–258. ACM, 2008.

140

[76] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization
for collaborative prediction. In Proceedings of the 22nd international conference on
Machine learning, pages 713–719. ACM, 2005.

[77] Dennis Ross, Bruce E Sagan, Ronald Nussbaum, and Abdol-Hossein Esfahanian. On
constructing regular distance-preserving graphs. arXiv preprint arXiv:1405.1713, 2014.

[78] S Roweis. Nips dataset (2002). http://www. cs. nyu. edu/˜ roweis.

[79] Martin Saveski and Amin Mantrach. Item cold-start recommendations: learning local
collective embeddings. In RecSys, pages 89–96. ACM, 2014.

[80] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. Methods
and metrics for cold-start recommendations. In SIGIR, pages 253–260. ACM, 2002.

[81] Hanhuai Shan and Arindam Banerjee. Generalized probabilistic matrix factorizations
for collaborative filtering. In ICDM, pages 1025–1030. IEEE, 2010.

[82] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges. ACM Computing
Surveys (CSUR), 47(1):3, 2014.

[83] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix fac-
torization. In Advances in neural information processing systems, pages 1329–1336,
2004.

[84] Michele Trevisiol, Luca Maria Aiello, Rossano Schifanella, and Alejandro Jaimes. Cold-
start news recommendation with domain-dependent browse graph. In ACM Conference
on Recommender Systems, volume 14, 2014.

[85] Omar Wasow, Alex Baron, Marlon Gerra, Katharine Lauderdale, and Han Zhang. 1
can tweets kill a movie? an empirical evaluation of the bruno effect. Available at
SSRN, 2010.

[86] Wouter Weerkamp and Maarten De Rijke. Activity prediction: A twitter-based ex-
ploration. In SIGIR Workshop on Time-aware Information Access, 2012.

141

[87] Xi Zhang, Jian Cheng, Shuang Qiu, Guibo Zhu, and Hanqing Lu. Dualds: A dual
discriminative rating elicitation framework for cold start recommendation. Knowledge-
Based Systems, 73:161–172, 2015.

[88] Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander Smola. Taxonomy dis-
covery for personalized recommendation. pages 243–252. ACM, 2014.

[89] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. Functional matrix factorizations
for cold-start recommendation. In ACM SIGIR, pages 315–324. ACM, 2011.

[90] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. Kernelized
probabilistic matrix factorization: Exploiting graphs and side information. In SDM,
pages 403–414, 2012.

[91] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. Kernelized
probabilistic matrix factorization: Exploiting graphs and side information. volume 12,
pages 403–414. SIAM, 2012.

142

