EDGE IMPACT IN GRAPHS AND SOCIAL NETWORK MATRIX COMPLETION
By

Dennis Ross

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Computer Science — Doctor of Philosophy
2016

ABSTRACT
EDGE IMPACT IN GRAPHS AND SOCIAL NETWORK MATRIX COMPLETION
By

Dennis Ross

Every graph G can be associated with many well-known invariant properties along
with their corresponding values. Here, a framework is proposed to measure the change in
any particular invariant upon addition of a new edge e in the resulting graph G + e. In
graphs, the P-impact of an edge e is the ‘magnitude’ of the difference between the values
of the invariant P in graphs G + e from G.

An edge is said to be of maximum P-impact if it can be optimally added to G in
order to achieve a desired result on either the invariant’s value or graph’s structure. New
edges are added from the graph complement in simple graphs or between any pair of vertices
otherwise. In this work several invariants are explored including: number of spanning trees,
sum of distances between vertices, and vertex connectivity. A brief commentary on several
other famous invariants is also provided.

A number of questions about the P-impact of an edge on the structure of graphs
are presented. Also included is an attempt to efficiently determine an optimal set of edges
based on our invariant. Several restrictions and conjectures to determining this optimal set
are discussed. A proof towards optimal edge addition for distance-impact in trees is given.

A natural application to measuring the impact of edge addition to a graph is that
of link prediction problems. These applications are considered and an efficient algorithm
for link prediction even with cold-start vertices using a subspace sharing method that
decouples matrix completion and side information transduction is presented. This method
is extended to predict ratings in user-item recommender systems where both may be cold-
start. Mathematical guarantees and experimental results on real world publication and

social networks are provided.

Végén egy tutra.

1l

ACKNOWLEDGMENTS

Before anything else can be said, I must offer my most heartfelt thank you to my advisor Dr.
Abdol-Hossein Esfahanian. I have wanted to work with you from the day I finished your
algorithmic graph theory course. I cannot thank you enough for taking a chance on me as
your advisee, and it has truly been a privilege to earn my degree under your mentorship. I
have achieved so many professional goals thanks to your unending support and leadership.
I will miss the many cold Michigan afternoons consisting of drawing too many graphs on
your white board, but I look forward to continuing our collaborations and friendship in the

future.

I have been largely supported by working with USAID as part of the DSI. This would not
have been possible without the tireless work of Dr. Pouyan Nejadhashemi. Thank you for
taking the stress of maintaining funding off of my shoulders- not to mention exposing me

to many interesting biosystems and global aid data problems.

I further want to extend thanks to the rest of my committee: Drs. Pang-Ning Tan and
Guoliang Xing. Your guidance and insights made the process of completing a dissertation

much more achievable.

This work would not be possible without the wonderful help of several colleagues. To Dr.
Ronald Nussbaum, I greatly enjoyed the graph theory work we completed together. Also, a
massive thank you to both Dr. Rana Forsati and Iman Barjasteh for sharing your interest
and expertise in matrix completion problems (and enduring lots of silly questions). Finally,
thank you to Ashley Depottey for making the DSI lots more fun than it otherwise would

have been.

v

To my parents, Beth and Gary, thank you for encouraging intellectual curiosity through-
out my entire life. That along with your love and support were instrumental in finishing
this very challenging endeavor. Along with my sister, Valerie, I could always count on my

family when I needed it.

To my friends, you all have stood by me both personally and professionally throughout my
journey through graduate school. I would not have gotten through it without you all, nor
would my time at Michigan State been as much fun. Thank you Ben Hardin, Sara Vrede-
voogd, Dr. Josh Vredevoogd, Dr. Andrew Ratkiewicz, Erich Owens, Dr. Luke Williams,

Liz Wilson, Dr. Cheryl Jaeger Balm, Dr. Thomas Jaeger, and Dr. Tian Hao.

To my wife-to-be, Dr. Jennifer Cornacchione, you have the distinction of being just one
place above Farkas in this section. You are also likely the only person to read every single
word in this document, and your copy-editing was incredibly helpful. Thank you for being
such a wonderful partner, sharing so many experiences with me, and of course for gener-
ously giving me all of the best chairs in New Leaf. Let’s do some great things now that I

am done too! I suppose I can also thank Gus and Oliver here- albeit begrudgingly. . .

Finally, I have to thank my most loyal companion, Farkas. Nagyon koszonom. You were
the only one with me every day, for every high and low, through both my masters and

doctoral studies. Your fuzzy face always kept me going. Szeretlek kicsem!

TABLE OF CONTENTS

LIST OF TABLES e ix
LIST OF FIGURES e, xii
Chapter 1 Introduction 1
1.1 Definitions and Terminology 2
1.2 Motivation and Goals 6
1.3 Related Work 8
1.4 Overview e 14
Chapter 2 Problem Statement, 16
Chapter 3 The P-Impact Process 19
3.1 TheBasics 19
3.1.1 Time Complexity 20

3.1.1.1 Running Time of SPtree-Impact 21

3.1.1.2 Running Time of Distance-Impact 22

3.2 Random P-Impact Process 22
3.2.1 Random Distance-Impact Algorithm 23

3.3 Improvements 23
3.4 Conclusion 24
Chapter 4 Construction from Empty Graphs 25
4.1 Observations. e 25
4.2 Distance Invariantso 26
4.2.1 Count-Impact 26

4.2.2 Distance-Impact 28

4.3 Conclusion L 31
Chapter 5 Trees 32
5.1 Number of Spanning Trees L. 32
5.2 Distance 33
5.2.1 Tree Partitions 33

5.2.2 Counterexamples in Distance Impact 34

5.2.3 Non-Leaf Distance-Impact Edges in Trees 40

5.3 Conclusion 60
Chapter 6 P-Impact in Network Completion 61
6.1 Experimentation 61
6.1.1 Network Completion, 62

6.1.2 Evaluation Metrics L 62

6.1.3 The Process 63

6.1.4 Predictive Edges on Erdoés-Rényi Random Graphs 63

vi

6.1.5 Predictive Edges on Random Trees 65

6.1.6 Predictive Edges on Random Power Law Graphs. 67

6.2 Power Law Motivation 69
6.3 Conclusion e 71
Chapter 7 Network Completion in Graphs 73
7.1 The Assumptions 74
7.2 The Algorithm 75
7.2.1 Previous Approach 75
7.2.2 OVerview 76
7.2.3 Algorithm Details 76

7.3 Experimental Evaluation 80
7.3.1 Datasets 80
7.3.2 Evaluation Metricso 83
7.3.3 Baseline Algorithms oL 83
7.3.3.1 Link Prediction Baseline Algorithms 84

7.3.3.2 Network Completion Baseline Algorithms 85

7.3.4 Experiments on Synthetic Datasets 86
7.3.4.1 Effect of Noise in Side Information 86

7.3.4.2 Effect of Training Size 87

7.3.5 Evaluation of Link Prediction 88
7.3.5.1 Link Prediction on Epinions 88

7.3.5.2 Link Prediction on Weibo 90

7.3.6 Evaluation of Network Completion 92
7.3.6.1 Network Completion in Facebook 92

7.3.6.2 Network Completion in Google+ 92

7.4 Conclusion e 94
Chapter 8 Recommender Systems 95
8.1 The Assumptions 96
8.2 The Algorithm 97
8.2.1 Previous Approach 97
8.2.2 Overview 98
8.2.3 Algorithm Details 98

8.3 Experimental Evaluation 0oL 102
8.3.1 Datasets 103
8.3.2 Evaluation Metricso L oo 104
8.3.3 The Baseline Algorithms 105
8.3.4 Effectsof Noise 108
8.3.5 Existing Usersand Items 108
8.3.6 Cold-Start Items 113
8.3.7 Cold-start Users. 115
8.3.8 Cold-Start Users and Items 115

8.4 Conclusion 116

vii

Chapter 9 Conclusions

APPENDIX

REFERENCES e

viil

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 6.1

Table 6.2

Table 6.3

Table 7.1

LIST OF TABLES

Analysis of the counterexamples to the conjecture that the maximum
distance-impact edge joins components in T' — k where k is the max-
imum index edge. Lo

Analysis of the counterexamples to the conjecture that the maximum
distance-impact edge joins components in T' — k where k is the max-
imum distIndex edge.

Analysis of the counterexamples to the conjecture that the maximum
distance-impact edge joins components in 7" — ¢ or is incident to ¢
where c is the center vertex.

The distance-impact of all non-isomorphic edge additions in Py . . .

The distance-impact of all non-isomorphic edge additions in P . . .

The distance-impact of all non-isomorphic edge additions in P . . .

The distance-impact of all non-isomorphic edge additions in Tyeq . .

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.5)

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for random trees

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for random power
law graphso

Statistics of Weibo, Epinions, Facebook, and Google+ datasets . . .

1X

39

39

40

42

42

49

52

65

67

69

83

Table 7.2

Table 7.3

Table 7.4

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Table A.1

Table A.2

Table A.3

Table A.4

Link prediction results on Epinions dataset and the effects of training

Link prediction results on the Weibo dataset and the effects of varying
training sizeo

Comparison of different algorithms on the Google+ with different
percentages of observed nodes L

Statistics of the real world datasets

Results on MovieLens 100K and 1M and Epinions for neighbor-based
methods with no cold-start users/items

Results on MovieLens 100K and 1M and Epinions for latent factor
methods with no cold-start users/items

Results on all of the cold-start scenarios for real datasets

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.1)

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.2)

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.3)

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.4)

89

91

92

105

111

112

114

129

129

130

Table A.5

Table A.6

Table A.7

Table A.8

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.6)

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.7)

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.8)

The basal completion error and the percent of edges that produce
higher error for all percentages of edges removed for Erdés-Rényi ran-
dom graphs of the form G(25,0.9)

x1

131

131

132

Figure 1.1

Figure 3.1

Figure 4.1

Figure 4.2

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10 C,, (left) and DpC,,_o (right), each of order and size n

Figure 5.11 The regions of DpC),_o

LIST OF FIGURES

A graph where the dashed edges have their respective distance-
impact noted.

Maximum distance-impact does not yield an optimal solution

The Phases of the Maximum Count-Impact Process
The Phases of the Maximum Distance-Impact Process
Counterexample to conjecture 5.2.0.1
Counterexample to conjecture 5.2.0.2
Counterexample to conjecture 5.2.0.4
Counterexample to Conjecture 5.2.0.9
Counterexample to Conjecture 5.2.0.10
Counterexample to Conjecture 5.2.0.11
P, with all non-isomorphic possible edge additions as dashed edges

P5 with all non-isomorphic possible edge additions as dashed edges

Ps with all non-isomorphic possible edge additions as dashed edges

xii

21

27

29

35

35

36

37

37

38

42

42

43

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 7.1

Tyaq with all non-isomorphic possible edge additions as dashed edges

52

Proposed distance-impact edge when selected leaves are of distance 3 53

Proposed distance-impact edge when selected leaves are of distance 4 54

Proposed distance-impact edge when selected leaves are of distance
at least 5 . . . Lo

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p =0.5)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p =0.5)

RMSE on single edge addition for varied percentages of removed
edges for random trees graphs

MAE on single edge addition for varied percentages of removed edges
for random trees Lo

RMSE on single edge addition for varied percentages of removed
edges for random power law graphs

MAE on single edge addition for varied percentages of removed edges
for random power law graphso

RMSE caused by adjacency matrix element deletion for five random
power law graphs of order 15

RMSE caused by adjacency matrix element deletion (1’s only) for
five random power law graphs of order 15

Algorithm for network completion with side information via the pro-
posed algorithm for decoupled completion and transduction

xiil

59

64

64

66

66

68

68

70

70

7

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 8.1

Figure 8.2

Figure 8.3

Figure A.1

Figure A.2

Figure A.3

Figure A.4

Figure A.5

The recovery error of the proposed MC-DT algorithm noise variance
values

The recovery error of different algorithms on a synthetic dataset for
different sizes of partially observed submatrix with m nodes

The recovery of four algorithms on the Facebook dataset measured
in RMSE under different percentages of observed nodes

The recovery of four algorithms on the Facebook dataset measured
in MAE under different percentages of observed nodes

Algorithm for rating prediction using side information via the pro-
posed algorithm for decoupled completion and transduction

RMSE & MAE on the synthetic dataset for different noise variances
on similarity matriceso

RMSE & MAE of MovieLens 1M for different noise variances on
similarity matriceso Lo

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p=0.1)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p =0.1) L

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p=0.2)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p =0.2)

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p =0.3)

Xiv

86

87

93

93

99

109

110

121

121

122

122

Figure A.6

Figure A.7

Figure A.8

Figure A.9

Figure A.10

Figure A.11

Figure A.12

Figure A.13

Figure A.14

Figure A.15

Figure A.16

MAE on single edge addition for varied percentages of removed edges
for random graphs (p =0.3) Lo

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p=0.4)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p=0.4) L

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p =0.6)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p =0.6)

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p =0.7)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p=0.7) L

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p =0.8)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p =0.8) L

RMSE on single edge addition for varied percentages of removed
edges for random graphs (p=0.9)

MAE on single edge addition for varied percentages of removed edges
for random graphs (p=0.9)

XV

123

124

124

125

125

126

126

127

127

128

Chapter 1

Introduction

Graphs provide a simple and powerful mathematical construct in which both ab-
stract and real world models can leverage their structure to make compelling observations.
The structure of a graph is then measured by examining its invariant properties. We are
interested in maximizing or minimizing certain invariants, specifically distance-based mea-
sures, as a graph evolves under the addition of edges. Further applications will take a graph
to be a social network. Using these graphs both link prediction and recommender system
problems may be explored.

This work shows the progression of a pure graph theoretical problem into matrix
completion techniques in networks and recommender systems. As such, in this chapter
the important graph theoretical definitions and structures required for the introduction of
the P-impact process are provided. Within this framework we further give the necessary
motivation for codifying this new concept while providing an overview of the scope of this
work. Additionally, definitions and symbology for matrix completion, link prediction, and
recommender system problems will be necessary to examine the evolution of the impact

problem.

1.1 Definitions and Terminology

The graph theoretic terms and symbols of Bollabéas in Modern Graph Theory, unless
otherwise noted, are used throughout this dissertation. To begin, a graph is an unordered
pair, G = (V, E), with the set of edges, E or Eg, composed of pairs of elements in the
set of wertices, V or V. The elements in each edge e,,, where z,y € V, are called the
endpoints of the edge. In a weighted graph each edge is also assigned a real-valued label.
In an unweighted graph all edges are assigned a value of one. The order of the graph is
the cardinality of the vertex set and the size is the cardinality of the edge set. These are
denoted n = |V| and m = |E| respectively. G + z is understood as (V vz, E) or (V, E U x)
contextually when x is a vertex set or edge set.

A subgraph H = (V', E’) of a graph G = (V, E) is an ordered set where V' < V and
E' < E. An induced subgraph, G[V'], is the restriction of G to a vertex subset V'’ where
all edges with both endpoints in V' are included. Graphs G and H are isomorphic if there
exists bijective correspondence between their vertex sets that preserves adjacency under
the bijective map ¢ : G — H. A graph invariant is a property that remains unchanged up
to isomorphism between graphs.

An edge is called incident to a vertex if it contains that vertex as at least one of
its endpoints. Two vertices are called adjacent if they share an edge, and two edges are
adjacent if they share at least one endpoint. The neighborhood of a vertex is the set of all
adjacent vertices. The number of edges incident to a vertex is the degree of that vertex. The
minimum degree of G, 6(G), is the smallest degree in the graph. Similarly, the mazimum
degree of G, A(G), is the largest degree present in the graph.

If the set E contains repeated elements, GG is called a multigraph and the repeated
edges are called multiple edges. A loop is an edge where both endpoints are the same. A
graph is called simple if it contains no loops or multiple edges. All graphs will be considered

to be simple unless explicitly stated.

A path is a linear sequence of vertices where adjacent vertices in the sequence are
adjacent in the graph. The shortest path is the path between two vertices x and y with the
lowest total edge-weight sum connecting them. The length of this path is called the distance
denoted d(z,y) or dg(x,y). The diameter of a graph is the length of the longest shortest
path. The index of an edge is the number of shortest paths containing it. The dsitance
index, or distIndex, of an edge is the sum of the shortest paths containing multiplied by
their respective lengths. The two endpoints of the path created by the diameter are called
peripheral vertices. A cycle is the same as a path except the underlying sequence is cyclic.
The sum of the distance of all of the pairs of vertices is the all-pairs shortest path distance
or total distance.

A graph is called connected if there exists a path between all pairs of vertices and
disconnected otherwise. A component is a set of vertices that are connected and there
are no paths to vertices outside of this set. Any vertex v whose removal creates more
components in G — v is called a cut vertex.

”) is called the complete graph K,. The trivial

A graph of order n > 2 and size (2

graph K is a single vertex with no edges. The complement of G = (V,E) is a graph

G = (V,E(G)). A tree is a connected graph containing exactly n — 1 edges. A spanning
tree is a connected subgraph of G with n—1 edges and n vertices. A vertex is a pendant if it
is degree one, and it is a leaf if it is degree one in a tree. A bipartite graph is a graph where
the vertices can be partitioned into two sets U and V' such that the endpoints of all edges
lie in exactly one of the partitions. A complete bipartite graph, K,,,, is a bipartite graph
where every vertex in U is adjacent to every vertex in V. A special case of the complete

bipartite graph is the star, K .

Definition 1.1. The P-impact of an edge e is the difference between the values of the
invariant P in graphs G + e from G. With & = E(G) for simple graphs and & = E(K,,)

otherwise.

When the invariant is discrete-valued the definition of difference is understood con-
textually. The set €& may be restricted to any multiset of the edges of K,, and the result is the
set of permissible edges. If more than one edge is added to the graph the P-impact is mea-
sured with the addition of the entire set of edges. The method of adding edges to a graph
G using their P-impact is the P-impact-process. For simple graphs the P-impact-process
terminates when, after the addition of e, we have a complete graph. For a mulitgraph, this
process can be infinite or terminate after a prescribed number of edges is reached.

If the invariant P is taken to be the sum of the all-pairs distance in G, then the
P-impact is called the distance-impact of e on G. When P is the number of spanning trees
of GG, this is denoted as sptree-impact of e on G. The discrete version of the distance-
impact of an edge considers the number of pairs of vertices whose distance is reduced with
the addition of an edge. This problem is called the all-pairs shortest path distance count-
impact or count-impact. All of these processes and values can also similarly be considered

for edge deletion or edge evaluation in G — e and (G + e) — e respectively.

o——
~
~
~
~
~
~
N
4 "~
~
@
-
-
-
-
-
-
-
i 7
-
-
e—0@

Figure 1.1 A graph where the dashed edges have their respective distance-impact noted.

Moving into the application space, the common descriptions for link-prediction and
recommender system problems are described. Here the words graph and network will be
used interchangeably with a preference for graph in the mathematical space and network
in the application space. In general, the goal of these applications is to provide a list of
edges to add to a graph or a set of items to recommend to a user. The notation describing
the linear algebra structure is as follows. Lower case letters , such as u, are used to denote
scalars and the bolded versions, such as u, are instead vectors. Here R, is used as the

set of real non-negative numbers and [n] to denote a set on integers {1,2,...,n}. For

matrices upper case letters, such as M, are used. The transpose of vectors and a matrices
are denoted by m ' and MT, respectively. The scalar product, or dot product, between two
vectors m and m is denoted by m 'n.

The rank of a matrix is the dimension of the vector space spanned by the columns

of that matrix. The Frobenius norm of a matrix M € R™*™ is denoted by |M|r where

Mg = \/2?21 2o IM;[2. The spectral norm of M is |[M|; given by the square root
of the maximum eigenvalue of M*M. The nuclear norm, or trace norm, of a matrix is
denoted by |[M]||, = trace < MTM>. Finally the Moore-Penrose pseudo inverse of matrix
M is shown by (M),

For the applications, matrix completion problems are explored via collaborative
filtering. For network completion there is a set of n users, U = {uq,...,u,}. As an
extension, a set of m items, J = {iy,...,4,} is added for recommender system applications.
In the case with users and items each user, u;, may (or may not) provide some form of
feedback on subset of the item set. Examples of feedback can be varied, but in this work
it will be restricted to an explicit real-valued rating.

Although the graph notation is consistent with the impact problems, some further
definitions will be used to describe the graphical (network) structure of the applied prob-
lems. Given an order n graph G = (V,), the vertices are distinguishable as they represent
distinct users. The adjacency matriz, A € {0,1}"*", is such that every entry e; ; € {0, 1, ?}.
An entry of “0” is a known missing edge, “1” is a known extant edge, and “?” is an edge
that is unknown. There is further an induced subgraph of G called O = (V| E’) where
0e{0,1,7}™™ with 1 <m <nand £ c E.

When a row or column is completely unobserved, the corresponding node is con-
sidered a cold-start node. There are no assumptions as to the distribution of observed nor
unobserved entries in A. However, in O, the edges are sampled uniformally at random and
do not contain any cold-start entries. This is enforced even when such a restriction dictates

that m « n.

The objective of this work to fill out the missing entries of a matrix using the
observed entries and possible other information. The process of filling in the missing entries
is called matriz completion. Any external information about the nodes in a social network
graph beyond the adjacency matrix is called side information. Side information can be
widely varied, depending on the problem domain, and takes on many forms (e.g. human
demographic information, URL click patterns, protein folds in yeast). The process of
applying the side information to complete the adjacency matrix (or ratings matrix) is

called transduction.

1.2 Motivation and Goals

Graph invariants describe the nature of graphs and are at the core of graph theoret-
ical knowledge. Further, it is useful to examine the evolution of graphs over time via edge
addition and deletion. These facts motivated us to create a process in which the changes
in invariant values of graphs can be tracked or controlled via the P-impact process. By
adding edges to an empty graph and examining its evolution, definite patterns emerged.
This led to attempts to generalize and categorize the entire process. According to an ex-
tensive literature search, there is no previous work resembling the P-impact or P-impact
process.

The polynomial nature of the complexity of computation of many invariants is also
leveraged as testing the P-impact process can be fully computationally completed and
compared against known benchmarks. This computational advantage is imperative because
the determination of the optimal P-impact process is generally not trivial- even on basic
graph classes.

By creating a new definition and process there are several clear objectives to this
work. Primarily, the goal is understand as much of the fundamental mathematical nature
of the P-impact process as possible. To this end, the goal is to determine necessary and

sufficient conditions for efficient discovery of optimal P-impact edges in special graph classes

before considering the general case. This work settles many cases in trees and provides a
starting point for using graphical information to determine side information to be used in
link prediction and recommender system problems.

There are many results of these types in social media networks. Initially, distance-
impact was deployed as a way to bridge distinct groups of people for more effective mes-
saging. Messages tend to stay close to their sources in social networks [4]. Policy makers or
advertisers could pay to connect seemingly disparate users by a high impact edge so then
could release coordinated messages. This effectively reduces the distance that a message
would need to travel and creates an additional source for newly reduced-distance users to
receive the message.

These applications, from a pure graph theoretical concept to an initial application-
driven approach, led to an exploration of using side information to predict edges in partially
observed networks. This exploration pushed this work into the realm of matrix completion
problems in the realm of link prediction, recommender systems, and, finally, in item-based
taxonomy problems.

Real world networks, social or otherwise, are often modeled by graphs. However,
in real world networks it can be very difficult to gather the complete graph structure
that models many applications (e.g. social networks, biological networks, internet website
interactions). Such issues arise from the nature of these problems. Information may be
protected as a matter privacy, corporate knowledge, or may not be queried due to the sheer
size of the data. Further, actors in networks may try to deliberately obscure themselves,
or may have few measurable interactions. Although not all of these problems may be
alleviated, there are several mathematical techniques that have been successfully deployed
to complete the missing information from such partially observed graphs. These techniques
initially collect a partial sample of a network and then infer the networks structure. This,
admittedly broad, technique is referred to as network completion or less frequently as survey

sampling.

To improve on network completion and recommender system problems via matrix
completion side information is collected and analyzed. The work herein is used to solve
such problems in their most difficult case, namely when cold-start issues occur. Currently,
this is the least understood area of matrix completion applications to graph completion

and recommender systems.

1.3 Related Work

Although the concept of the edge impact process is new, graph invariants have been
widely studied using a variety of mathematical techniques. Even more similarly, many
results in extremal graph theory define a minimum addition of edges to achieve a desired
invariant value. Simple graph classes are examined to gain insight and follow extremal
work that was done using constructive and probabilistic tools.

To understand the P-impact in general graphs, first we consider particular graph
classes. Similar work was done by Ross et al. in the distance-preserving problem for regular
graphs [77]. Work in random graphs generation to make general observations was given by
Szemerédi’s Regularity Lemma [43]. This allows claims of randomness when the P-impact
process is used on large graphs.

Erdés published many results on extremal graph theory [22] and specifically graphs
containing certain structures [21]. These extremal problems try to define the smallest
number of edges or vertices that must be used for certain properties to be satisfied. The
P-impact process examines similar phenomena, yet restricts to the addition of edges to
preserve or achieve invariant values. Strictly working with the number of edges, other
extremal results also exist [15].

Some major invariants are understood through similar methods as the P-impact pro-
cess. Edge-connectivity can have a relationship with both distance and spanning tree ap-
plications. The problem itself is quite mature and many computational techniques for com-

puting edge-connectivity exist [54]. Algorithms and improved bounds for edge-connectivity

were also found by Esfahanian and Hakimi [23]. This is in addition to other bounds, com-
putational results [56, 25| and extremal results on the number of edges that can be added
to enforce k-edge-connectivity [13].

Although this work focuses more on the role edges play in effecting distances, often
the vertices of concern are highly central to the graph. Previous work has explored the
discovery and properties of central vertices. Nieminen examined and classified the centrality
of vertices in graphs [62]. Later work by Borgatti examined centrality’s role in social
networks [10]. These are examined in the practical applications as the impact of important
actors in social media graphs are explored.

The maximum distance-impact edges try to reduce either total distance or the dis-
tances of the largest number of shortest-paths in a graph. This process is similar to other
ideas that aim to create structurally important edges by measuring betweenness and cen-
trality. Freeman gave a framework for measuring betweenness centrality, and Brandes gave
a fast algorithm for computational finding it [26, 11]. This also leverages similar work
exploring the centers and centroids of graphs [63].

The applications contained herein use the modeling power of graphs for physical and
social networks. There has been much work in these fields that can guide these findings.
Several authors have found methods of measuring impact of messages in social media
[85, 37]. Others have explored the predictive powers of examing the social networks for
predicting: user activity [86], influenza propagation [18], and box-office revenue [3]. Bakshy
et al. also put forth a method for estimating the popularity of content by measuring distance
that URLs traveled through a network [4].

Graph (network) completion problems exist in a number of different settings where
incomplete graph information is present. The literature is deep with methods to solve
such instances with applications in information retrieval, social network analysis, and com-
putational biology [2, 66]. Some relevant examples involve large social networks such as

Facebook and Twitter. Because these networks have users that number in the billions,

to infer the full network topology describing the relationships between users (edges in the
network) is known to be difficult in many cases [66].

Extant learning algorithms for network completion problems commonly make struc-
tural assumptions on the nature of the underlying network. From here, there are many
methods to efficiently reconstruct the actual network. The classical network completion
implementations make an assumption that random entries of the adjacency matrix are
missing. However, in network completion is accomplished by randomly subsampling the
partially observed network. Specifically, in [41] it is assumed that the underlying network
follows the Kronecker graph model. An expectation maximization (EM) framework was
used to infer the unobserved pieces of the network.

A computational method that was used to find missing and spurious interactions
within complex network is given in [32]. Here these interactions were found using stochastic
block models which then captured the structural features of the network itself. The same
method was applied on the interactions of proteins in a yeast network. Further, a sampling
method that derives confidence intervals from sampled networks is given in [36].

A similar link prediction application that applies most similarly to the P-impact
process is given in [48]. This work predicts future edges that will be added to a network.
However, because no links can be observed for unsampled nodes, these statistical models
perform poorly in these cases. Such problems exist when extreme sparsity is present, and
fare even worse when presented with the cold-start scenario.

Maximum margin matrix factorization [83] was a method developed for collaborative
filtering. Several works show that, theoretically, this method may perfectly complete a
matrix [90, 58, 72]. Some extensions of this work include collaborative filtering [83] and
also allow the use of side information [1].

One principle method explored in the work is the use of transduction of side infor-

mation to complete matrices and recent work approaches matrix completion using a similar

10

tack. Some work considers matrix completion with transduction [24, 65] and even can be
expanded to the case where side information is of infinite dimension as described in [1].

To handle sparsity problems, several studies have given matrix factorization models
that try to optimize their results by taking fewer samples from the original matrices. Menon
et al. gave a logistic regression approach that added a logistic regression with a principled
confidence-weighting scheme to its objective function [58]. A Bayesian approach was taken
by Porteous et al. wherein regression is applied to the side information themselves [72].
One advantage to this Bayesian approach is that the mixture model for the prior of the
users/items provides a different regularization for each of the latent classes. Park et al.
examined recommenders as simple regression problems [67]. Here they used a combination
of both user and item metadata to create the side information.

A relaxation of the network completion problem can be seen as link prediction on
bipartite graphs with weights. These recommender sytems problems have also been widely
studied with many similar techniques to those used in link-prediction. There has also been
some work directly addressing cold-start problems.

Content-based filtering (CB) and collaborative filtering (CF) are well-known exam-
ples of recommendation approaches. As demonstrated by its performance in the KDD
Cup [19] and Netflix competition [8], the most successful recommendation technique used
is collaborative filtering. This technique exploits the users’ opinions (e.g., movie ratings)
and /or purchasing (e.g., watching, reading) history in order to extract a set of interesting
items for each user. In factorization based CF methods, both users and items are mapped
into a latent feature space based on observed ratings that are later used to make predictions.

Some methods are applied that try to predict item ratings using global, and easy to
calculate, item characteristics. Such algorithms have been based on the popularity of the
items [67] or even through random selection [51]. By approaching the cold-start users/items
in this global manner, any nuance between distinct groups of users is lost. With this lack

of filtering, a great amount of accuracy in the recommendations is lost.

11

To alleviate the concerns raised by the lack of historical data for users/items, meth-
ods were developed present users with a set of items that they must rate. These warm-
start methods may also import user preferences from side information. Such work has
been sucessful [51, 89, 17, 87], but as these methods explicitly force a new user to provide
ratings for k representative items (or a new item being forced on k users) there is signifi-
cant drawbacks in using warm-start methods. In commerce, the views spend learning item
characteristics could have better been spent on presenting items a user may want to have
purchased. For social networks, the site may be uninteresting to a new user because they
are not presented immediately with relevant or entertaining interactions.

To avoid the warm-start pitfalls, there has been a large amount of interest in using
side information to complete the rating or adjacency matrices [82]. This side information
can even provide context for cold-start users/items without requiring direct user feedback.
These methods of feature combination combine the features of the users and items to
increase the model’s accuracy. The determination of these features is found using available
user information (e.g. profile, location, web history) and item information (e.g. metadata,
manufacturer specifications, web traffic).

Because user-user (or user-item) feature spaces can be described using the features
extracted from the side information, there has been a push to develop methods that exploit
the overlapping subspaces therein. These methods are often called matrix co-factorization
and have been used to sucessfully exploit rich sources of side information to increase model
accuracy. In [52, 31, 35, 34| rating and side information matrices are decomposed at the
same time to expose shared latent features. The work of [64] imputed missing values and
used these in the matrix factorization to boost the performance on the cold-start problem.

A kernelized matrix factorization was given by Zhou et al. [90]. Here auxiliary
information is incorporated into matrix factorization to assess the similarity of the latent
features. Saveski et al. [79] developed a matrix factorization method that collectively

decomposed rating and side information matrices within a common space of low dimension.

12

By mapping the features from the side information into the latent features, another
group of feature combination methods have been found. Elbadrawy et al.’s approach is
made to learn a function that transforms the feature vectors of items into their latent space
[20]. Gantner et al. further gave a matrix factorization model that maps the features
directly to latent features [28]. Finally, Boltzmann machines [33] and aspect models [80]
also utilize side information to be used explicitly for cold-start recommendation problems.

Some other models compute similarity between users/item explicitly and use these
similarity matrices to apply feature combination methods [49, 84]. Specifically, Trevisiol
et al. studied users’ consumption of news articles and then built a special graph dubbed
BrowsGraph [84]. BrowsGraph included both structural and temporal properties that both
served news to its users but was also able to provide relevant articles to even cold-start
users.

Another common approach is to allow many different recommender algorithms to
execute on the data and combine their results using various methods. These approaches
require building and running several different models leading to necessarily higher compu-
tational overhead [33]. However, some success has been found in the combination of these
models due to weighted outputs [16], reapplying a rank function [12], applying different
recommenders at each phase [9], and creating a voting framework [70].

One of the more effective approaches for recommender systems is to efficiently factor
the adjacency or rating matrices into multiplicative of k-rank matrices. This approach
heavily influenced this dissertation. Considering the item recommendation case, the general
idea is to factor the rating matrix into user and item specific matrices such that their
product approximates the complete rating matrix. The two major approaches to this end
are optimization techniques [76, 50, 53, 46] and probabilistic [61] in nature.

As another form of side information, over the last five years several taxonomic
approaches to recommender systems have been attempted. These methods attempt to

extract implicit user preferences based on the hierarchy of the items themselves. The first

13

taxonomic matrix factorization approaches tried to grab these explicit taxonomies and
use them as side information. As the field evolved, sophisticated methods to learn the
taxonomies themselves from the item-user interactions were developed.

Zhou et al., using their Kernelized Probabalistic Matrix Factorization (KPMF) algo-
rithm, have leveraged side information within the item-taxonomic framework [91]. In their
work, they accurately make item recommendations using the users’ social network as side
information. Dror et al. created a matrix factorization scheme wherein the categorical and
temporal information about music was used as side information for music rating predictions
[42]. Kanagal et al. developed a taxonomy-aware dynamic latent feature model that not
only allowed such taxomonies to be used in finding items to recommend to users but also
provided a framework for finding similar latent features between parent and sibling items
in the taxonomy [40]. Zhang et al. automated the taxonomy creation process via learning
techniques that created taxonomies with no user input [88]. Their algorithm even performs
better than latent factor models on human-created taxonomies.

Finally, we note that although various hybrid methods such as factorization ma-
chines [74], content-boosted collaborative filtering [57], probabilistic models [71], pairwise
kernel methods [7], and filterbots-based methods [68] have been developed to blend collab-
orative filtering with side information, they are specifically designed to address the data
sparsity problem and fail to cope with cold-start users or items problem, which is the main

focus of this work.

1.4 Overview

In this introduction, we defined a new concept called the P-impact process in addi-
tion to our motivation for introducing this concept. In Chapter 2 we describe a detailed
problem statement while raising open questions about P-impact edges and describing im-
plications in network completion, link prediction, and recommender system problems. In

Chapter 3 the P-impact process is explored. In Chapter 4 distance and count impact are

14

compared in empty graphs. While in Chapter 5 P-impact is applied to trees. Chapter
6 serves as a bridge between P-problems and applications in social networks. Chapter 7
examines network completion in graphs. Chapter 8 extends to recommender systems and

Chapter 9 contains the conclusions of this work.

15

Chapter 2

Problem Statement

The goal of this work is optimize invariant values under edge addition and to use
such techniques to provide predictions for new edge additions in real world applications.
Because of this, the scope of this work focuses on two general facets. First, the mathematical
basis for the P-impact problem is described. Second, the applications to link prediction
and recommender systems are given.

For a general invariant, our meaning of P-impact optimization may not be clear.
Optimality as a measure of goodness where each added edge will try to optimally preserve
an invariant value, structure, or concept. Asinput a graph G, a target size k, are considered
and a graph H of size k with the desired invariant value is created. Given the wide and
varied nature of graph invariants, this may be understood to hold as each edge is added,
or only after the entire set of edges is added. There may not be an optimal set of edges for
a given G and k under a particular invariant; the prescribed value is approached as closely
as possible with the addition of k£ edges.

To begin this exploration the three invariants are considered. The first counts the
number of spanning trees and the other two are concerned with distance variants. For the
number of spanning trees, the goal is to maximize the total number of spanning trees via a

fixed number of edge additions. For the distance invariants, a goal is set to determine both

16

the set of edges that reduce the sum of all distances and the highest number of vertices
with reduced distances, respectively.

To discover the optimal set of edges to add in the case of a general graph, first
each of these invariants are considered under the P-impact process with G restricted to
specific graph classes. An empty graph is considered with k = (g) The process then adds
edges throughout its P-impact process to eventually reach K, in the simple case. Here, an
attempt probabilistically identify what graphs are created through this evolutionary process
with our chosen invariants is made. A further open problem is to introduce a function to
randomly add edges of highest and lowest impact in an attempt to create graphs with
interesting properties in a process similar to that which creates small-world networks.

The highest consideration is made for when G as a tree on n nodes with k£ = n.
A tree is chosen because it is a minimally connected graph and our invariants rely on
connectedness for reasonable results. In this case the spanning tree impact problem is
trivial and can be determined by only finding the diameter of the graph. However, the
count and distance impact edge sets are provably non-trivial and their determination is to
be explored with some results presented.

When dealing with trees in the P-impact problem, connectivity is heavily leveraged.
However, questions rise as to how to handle vertices that are disconnected from the graph.
Once connectivity was dropped vertices become cold-start (isolated). This lead to an
exploration of cold-start vertices and also determination of edges to be added to a graph.
From these link prediction exercises a practical application arose that considered matrix
completion techniques for adjacency matrices using graph invariants as side information.
From here the problems became more concrete and were explored on a variety of real world
datasets.

The initial aim of the work on network completion (link prediction) applications was
to exploit side information from the nodes. This side information is generally available in

some form from the social networks at hand. A problem thus arises wherein the choice of

17

side information and methods of transduction deeply affect the quality of the link prediction.
Variations are also included where there are cold-start nodes and differing choices for side
information.

Similar to link prediction problems, this work also explores the challenges of predict-
ing ratings in recommender systems. Again, efficient matrix factorization methods exist,
but are generally intolerant to cold-start problems. A further challenge is explored in rec-
ommender systems where cold-start users and items may be present. With sparsity and
cold-start issues present, this work seeks to provide a framework for incorporating side in-
formation using shared subspaces in the matrix completion techniques to provide accurate
rating prediction.

The results of this lay the groundwork for future exploration of P-impact edges. It
provides many insights about the difficulty of assessing distance-impact in graphs and shows
the non-trivial nature of distance-impact edges in trees with a collection of counterexamples
to various conjectures. The mathematical basis culminates with a proof that the maximum
distance-impact edge cannot be incident to two leaves in a tree. Considerable progress
was made when considering the application-based work in both network completion and
recommender systems. Both experimental and mathematical results are given showing a
decoupled transduction approach to incorporating side information in matrix completion
is efficient and accurate. The algorithms presented also handle cold-start problems and

non-randomly distributed sparse data sources.

18

Chapter 3

The P-Impact Process

The P-impact process refers to an algorithm that adds edges from the permissible
set to a graph while attempting to maintain some invariant value until a prescribed graph
size is achieved. The general P-impact process algorithm is described here as well as a
randomized variant. Although running times depend on the complexity of computing the
invariants themselves, computational improvements through meaningful reductions in the
permissible set are explored. These reductions are introduced here and further detailed in
later chapters. Generally, maximum or minimum P-impact edges are considered, but any
impact value of an edge may be used. Lastly, the underlying graphs may control much of

the P-impact process, and these are also discussed in later chapters.

3.1 The Basics

The P-impact process is most simply imagined as a brute force algorithm. Generally,
the concern is with single edge addition that at the time satisfies some invariant condition.
Here, once an edge is added it may not be removed. The algorithm itself is simple in that
it adds each edge from the permissible set one at a time, computes the invariant value,

and removes the edge. From this, it then takes the edge with the desired invariant value.

19

The maximum P-impact edge is usually the one most used, but the max function may be

replaced with any condition as required by the invariant.

Algorithm 1 The P-Impact Process
procedure FINDIMPACTEDGE

=()
for e e P do
ITu(P(G+e)e)
return maxcondition(P(G + €), €)
procedure FINDIMPACTFULSET
while |E(G)| < k do
e = FindImpactEdge(G)
P=">Pe

G=G+e
return F(G)

This is the case that we generally pursue. However, there is also interest in finding
an ‘optimal’ set of edges to add. Notice that the process generally picks the edge that is
best in any particular time, but does not consider its impact on future edges. This greedy
approach may not always choose the best edge set for a given invariant as a whole. A
relaxation of this addition will try to find the optimal set of edges to add all at once. For
this formulation of the problem we attempt to determine a single set of edges from the
permissible set that, when added, maintain or achieve an invariant value. These results

may be better, but they rely on a higher burden of calculation that will be discussed next.

3.1.1 Time Complexity

Notice that the P-impact process must compute the invariant value after the addition
of each edge of the permissible set, and then repeat this process for every edge addition
until G is size k. This cost is fixed by the number of times that the best known algorithm
to compute each invariant is called. If an invariant P(G) can be computed in f(n) time this
call must be made for each possible edge in the permissible set, which is O(n?), and k —n

times to choose all of the required edges. Thus, the algorithm will take O((k—n)-n?- f(n))

20

time to compute. Throughout this dissertation, this model will be used unless explicitly
stated otherwise.

Compare this to the relaxed case, and it is clear that the invariant calculations
are fixed but there is a need to consider all size k — n subsets of the permissible set. As
the permissible set can be up to O(n?) in the simple case this is O ((krfn) - f (n)) This
considers all possible subsets of size k — n of P. Looking for an optimal subset of a fized
size will generally be more time-consuming than the previous case, but is still polynomial
in n if f(n) is.

In Figure 3.1 the maximum distance-impact process on a random graph G with
n = 10, m = 14, and k = 17 is outperformed by finding an optimal set of three edges
to add. The added edges are shown in red dashed lines, and the order that the edges are

added are given.

Maximum Distance-Impact Process Optimal Three Edges

Total Distance: 150 Total Distance: 146

Figure 3.1 Maximum distance-impact does not yield an optimal solution

3.1.1.1 Running Time of SPtree-Impact

The sptree-impact of a graph G can be computed by calculating the number of
spanning trees under addition of each edge in the permissible set, respectively. On a given

graph the number of spanning trees is computed in O(V + E+ E-T') where T' is the number

21

of spanning trees [27]. This process can be repeated k — n times to find the desired graph
inO((k—n)- V+E+E-T)).

If the best overall set is taken, as in the relaxed case, there is a need to check the
number of spanning trees under the addition of all possible subsets of size & — n. This

would take O <(k7fn) -(V+E+FE- T)) time.

3.1.1.2 Running Time of Distance-Impact

To find an edge of particular count or distance-impact, each possible edge in the
permissible set must be checked and the all-pairs shortest paths after its addition must be
found. Using the FloydWarshall Algorithm, or several calls to Dijktra’s Algorithm, we can
compute all of the distances in a graph in O(n?). For the distance-impact the sum of the
total distance in each step is found, and for the count-impact the sum of the total number
of changes is found. Combining these, finding any one edge may be done in O(n®). This is
the special case when k = n + 1. In general, there is a need for this process to be repeated
k —n times and that gives a running time of O((k —n) - n®).

Again for the relaxed case, all of the distances under the addition of all possible

subsets of size kK — n must be checked. This would take O ((k’fn) : n3> time.

3.2 Random P-Impact Process

What happens if instead of adding the maximum distance-impact edge at each step,
a biased coin is flipped and then the decision to add the maximum or minimum-impact
edge is made? This is the question that may be solved by the random distance-impact

process.

22

3.2.1 Random Distance-Impact Algorithm

This process is quite straightforward. First, two properties are chosen along with
a probability threshold. Second, use the P-impact process as before, but choose the edge
to add based on which condition is randomly selected. Condition one is considered to be
a maximum impact edge and condition two to be a minimum impact edge under both
distance and sptree invariant. Here, consider two conditions and a threshold, 0 < t < 1,

for deciding between them.

Algorithm 2 The Random P-Impact Process
procedure FINDIMPACTEDGE

—{}
Choose random p € [0, 1]
for ee P do

ITu (PG +e)e)
if p <t then

return maxcondition 1(P(G + €), €)
else

return maxcondition 2(P(G + €), €)

procedure FINDIMPACTFULSET
while |E(G)| < k do
e = FindImpactEdge(G)
P ="Pe

G=G+e
return F(G)

Note that there is no reason to restrict to only two conditions. The minimum and
maximum and/or distance and count P-impact are often paired as our conditions, but

arbitrarily many conditions could be imposed.

3.3 Improvements

The costs of calculating invariants is considered to be fixed, and the time complexity
required to compute invariant values is given to the best algorithms available at the time.

Because of this, any improvements to running time must be achieved by reducing the size

23

of the permissible set meaningfully. If such improvements can be achieved, fewer edges
must be examined and, therefore, fewer calls to calculate the invariant values are made.
By determining which edges in the permissible set may be safely removed, the practical
running time can be reduced even in some cases where the worst-case time complexity is
unchanged. Most conjectures as to permissible set reductions are given in trees, but other

graph classes could be explored.

3.4 Conclusion

The P-impact process is a method for determining which edges to add to a graph
until a desired size is achieved. The algorithm for both the standard and random process is
described here along with running time observations. Provided an invariant can be found
in polynomial time, this process can be completed in polynomial time as well. The focus
on the remaining P-impact chapters will revolve around finding fast ways to reduce the

permissible set to improve the computational complexity of the process.

24

Chapter 4

Construction from Empty Graphs

In this chapter an empty graph is considered and a random impact process is used
to add in new edges. The minimal structure present in trees can be used to make sev-
eral observations, however, in this chapter there is no initial structure. Unless otherwise
stated, edges of the maximum impact for our P-impact process are considered at each step.
However, one variant of the random P-impact process will alternate between minimum and
maximum impact edges. The evolution of maximum distance and count-impact is also

described when the initial graph is empty.

4.1 Observations

Many invariants are not necessarily well defined on disconnected graphs. For one,
there are no spanning trees of a disconnected graph because the spanning tree itself must
be connected and contain all vertices. Conversely, the distance invariants can be defined
on disconnected graphs. If two vertices, x and y, have no path connecting them then it is
the case that d(x,y) = c0. For the purposes of this work, with the same vertices, consider
d(xz,y) = C. Here C will be an arbitrarily large constant. With this real-valued finite

distance, effectively a large penalty is set up for leaving a graph disconnected.

25

In the distance-impact case this restriction will force the first n + 1 edges added to

create a star, but in the count-impact version any tree will be initially created.

4.2 Distance Invariants

4.2.1 Count-Impact

The count-impact process from an empty graph moves through several fully classified
phases. In the first phase it is important to restate that disconnected vertices in a graph are
of arbitrarily large distance apart. This represents the infinite distance that they have from
each other and forces the first n—1 count-impact to create a tree. This is because whenever
at least one vertex is disconnected from the others, the maximum count-impact edge must
connect it to the rest of the graph because the distance reduction is ‘near-infinite’. This
implies that isolated vertices will be connected to each other or connected components, but
unlike the maximum distance-impact edge, which will be described later, these connections
do not have to occur on the highest degree vertices.

In the first phase a truly random tree is constructed. Once this random tree is
constructed, maximum count-impact edges mostly tend to fall into two general archetypes.
In phase two, new edges will generally be connected to peripheral vertices or to vertices of
maximum degree. Similar to the results on trees, there are counterexamples, but computa-
tional testing has shown that approximately 82% of the edges in the second phase will be
of one of these classes. This percentage was computed from all graphs up to order eleven,
but is not a claim for all graphs. Further, note that phase two will be skipped when the
random tree created in phase one produces a star. A conjecture here is that the length of
the diameter in the random tree will control how many edges will be added in phase two.

Once a graph is diameter two, phase three begins. No vertices, other than the newly
connected ones, will benefit from the additional edge. Thus, the count-impact of any edge

is again one. A graphical description of the phases is given in Figure 4.1.

26

Initial: Empty G
@ @

9] ©)

@) @)
Phase 1: Any Tree Phase 2: Diameter Reduction Phase 3: Graph Completion

Figure 4.1 The Phases of the Maximum Count-Impact Process

Proposition 4.2.1. After the addition of the first n — 1 maximum count-impact edges to
an empty graph of order n a tree is created from the collection of all possible trees on n

vertices.

Proof. Consider the set of disconnected vertices to be D of order d, 0 < d < n. The set
of vertices that make up the connected component are € of order ¢, 1 < ¢ < n. Because
the unlabeled graph is initially empty, the first edge connects two arbitrary vertices. There
is no choice to be made, however, once the initial edge is added, it must be shown that
all forthcoming distance-impact edges will create a tree. If there are only two vertices the
process is complete and a star K;; is created. Count-impact is fairly simple because it
only measures the number of vertices that have reduced. New edges can be added in one

of three cases.

27

Case 1: The edge is incident to two vertices in C. In this case the count-impact can be at
most ¢ because no vertices in D are added to the connected component.
Case 2: The edge is incident to two vertices in D. This has a count-impact of exactly two
because both vertices were in the disconnected set so only a Ky component is created.
Case 3: The edge e,, is added where v € D and u € C. The count-impact is ¢ + 1 because
all vertices in w € € have reduced their distance from f to d(w,u) 4+ 1. This is a reduction
of the distances of ¢ + 1 vertices.

Clearly case 3 is the optimal case because it has a count-impact of ¢ + 1 while case
two is at most ¢ and case 1 is exactly two. Further, the edges from D to C can be added
at random because the count-impact does not take into account the total distance. Thus,

a random tree of order n is created after the addition of n — 1 count-impact edges. O

4.2.2 Distance-Impact

The maximum distance-impact process initially appears as though it must move
through the same phases as the maximum count-impact process. However, significant
differences in phase one lead to the elimination of the diameter reduction phase from the
count-impact variant. Specifically, the distance-impact edge will always form a star after
tree-many edges are added. New edges will still try to minimize the total distance and must
be added from an unconnected vertex to the center of the largest component. Because of
this, the final phase remains the same and will add edges at random to the graph because
its diameter is two. This implies that all possible edges have distance-impact of one. This

process is described in Figure 4.2.

28

Initial: Empty G

© ©
@) o
@) @)
Phase 1: Star Emergence Phase 2: Graph Completion
® -9
¢ i e
& O
Output: K,

Figure 4.2 The Phases of the Maximum Distance-Impact Process

Proposition 4.2.2. After the addition of the first n — 1 maximum distance-impact edges

to an empty graph of order n the graph K, is created.

Proof. Consider the set of disconnected vertices to be D of order d, 0 < d < n. The set
of vertices that make up the connected component are C of order ¢, ¢ # 1 and 1 < ¢ < n.
The graph in question is T(V, E') where V' = D u €. Disconnected vertices are of arbitrarily
large distance apart denoted f. The total distance in € is the constant td(C).

As the unlabeled graph is initially empty the first edge connects two arbitrary ver-
tices. There is no choice to be made, however, once the initial edge is added, it must be
shown that all forthcoming distance-impact edges will create a tree. If there are only two
vertices the process is complete and a star K ; is created. After the initial K is created

there are three choices for a possible new distance-impact edge additions:

29

Case 1: The new edge is between two vertices in C. This is not possible. Either the set
D is empty in which case there have already been n + 1 additions, or there is at least one
vertex left in D. Because the vertices in D are of arbitrary distance from those of €, no
matter how much the reduction of the distances in €, the single reduction of e, with v € D
and u € €, from f to 1 makes such a edge have a higher distance-impact.

Case 2: Two vertices in D are connected. This reduces the distance of the set D from
(g) - f to ((g) —1)- f+1, a total difference of f —1. Note that the other distances in ¢d(C)
and the distances between D and Cis d - ¢- f and is unchanged.

Case 3: The new edge connects a vertex of D to one of €. This reduces the total distance
of the disconnected and connected sets from d - ¢ - f by at least (d — 1) - ¢- f. This is a
distance savings of ¢ - f.

Case 1 will not occur and it is also the case that the order of the connected compo-
nent is at least two. This implies that the reduction in case 3 of c¢- f is greater than that of
case 2 because it only has a reduction of f — 1 as ¢ = 2. Now all that remains to be shown
is that the case 2 edge additions always form a star.

Clearly, the only choices for the first two edges are K ; and K 5, respectively. These

are the base cases for induction. Consider now that ¢ edges are added creating an optimal
Ky,_1. Consider the addition of another edge. By the inductive hypothesis it must be
connected to the star K;;_;. This leaves no non-isomorphic choices.
Case 1: The new edge is connected to a leaf of K;;_;. The total distance in the star K ,;_;
is (1—1)+(i—2)(i—1) = (i—1). The added distance of the new vertex to that of Ky, is
comprised of the distance to the incident leaf, the distance to the center, and the distance
to the other i —2 leaves. This gives a total distance of (i—1)2+1+2+3(i—2) = (i+2)(i—1).
Case 2: The new edge is connected to the center of K;,;_;. The added distance of the new
vertex to that of K, ; is comprised of the distance to the center and the distance to the
other i — 1 leaves. Thisis (i — 1) + 1 +2(i — 1) = i*.

Comparing the cases the total distances are i*> < (i + 2)(: — 1) if and only if 4 > 2 which is

30

covered by the base cases. This new edge must always be added to the center and a star is

thus created.

4.3 Conclusion

The P-impact process on empty graphs provides some insight on the evolution of
invariants as graphs increase in size. However, at the moment much of this work is obser-
vational in nature. Note that maximizing distance-impact tends to reduce the diameter
whereas the maximum count-impact tends to increase the maximum degree. Both of these
claims have been supported by some computational results, but remain ‘rules of thumb’
rather than proven statements. Further observations can be made to some general trends
for graphs, but each stage of the process for distance and count-impact edge addition from

empty graphs is given.

31

Chapter 5

Trees

Many invariants are undefined or uninformative in disconnected graphs; trees pro-
vide connected graphs of the smallest size. Because of this minimal extremal structure
trees provide a reasonable initial graph for the P-impact process. This chapter also focuses
on the graph invariants of the number of spanning trees and the total distance because
they are computationally simple to compute and determine interesting graph properties.

It is shown that finding the maximum sptree-impact edge is trivial while contrasting
this with the more complex task of determining the maximum count and distance-impact
edge. Several conjectures and counterexamples to the a priori determination of the maxi-
mum distance-impact edge are provided and they provide some intuition to the role of the
maximum distance-impact edge in G +e. Finally, a proof is given that shows the maximum

distance-impact edge must not be incident to two leaves of a tree.

5.1 Number of Spanning Trees

Trees are acyclic and as such there is only one spanning tree of a tree T, namely T’
itself. Further, the addition of a single edge to a tree creates only one cycle. This makes the
task of finding an arbitrary sptree-impact edge quite simple because it reduces to finding

the distances between the vertices in a tree.

32

Lemma 5.1.1. The number of spanning trees in an order n connected graph with n edges

1s equal to the girth of the graph.

Proof. There must be exactly one cycle in a connected graph with n edges on n vertices.
Removing any single edge of this cycle creates a tree, and removing any other edges dis-
connects the graph. Thus we can create spanning trees only by removing one edge at a

time from the only cycle in G. The length of of this cycle is the girth. O]

As an immediate result of this lemma, to find a sptree-impact edge of value 7 in T’
the edge e,, where dr(z,y) = i — 1 must be added. This result is trivial, but it will be used

to highlight the difference between sptree-impact and distance-impact.

5.2 Distance

Where sptree-impact only must create a cycle of an appropriate length, the distance-
impact edge must balance the length of the cycle created with the distribution of vertices
along that cycle. Because tress are acyclic, total distance is again simple to compute.
However, when an extra edge is added, not only does the distance between the newly
connected vertices drop to one but a ‘shortcut’ may be created for many other vertices. This
problem becomes difficult because knowing whether any other vertices use this ‘shortcut’

is a non-trivial problem.

5.2.1 Tree Partitions

In the simple case any edge in G may be considered as an P-impact edge in the
permissible set. Thus, O(F) = O(n?) edges must be added individually along with the
invariant calculations. Again, as the complexity for invariant computation is fixed, the
goal will be to try and reduce the size of the permissible set instead. This can reduce

the practical, if not asymptotic, complexity of finding P-impact edges. To this end, graph

33

structures that would allow the examination very specific vertices of a tree a priori were
targeted.

Several observations can be made about what edges cannot be in the permissible
set for, say, calculating the maximum impact edge. However, many observations will take
at least a call to depth-first search to identify important structures. Such a call will nullify
any complexity savings in reducing the size of the permissible set. Instead, some structure
in the graph that is fast to compute and can partition the set of edges in G into edges to
consider and edges to immediately discount should be found.

In trees, several common graph invariants were considered to split the graph’s edges.
These included looking at degree, centers, and distance. For most of these considerations,
counterexamples were found and are given in the next section. However, these counterex-
amples helped to refine the basis for selecting partitions on the edge set, and led to a proof

regarding distance-impact edges among the leaves in Section 5.2.3.

5.2.2 Counterexamples in Distance Impact

To determine the appropriate location for the distance-impact edge several conjec-
tures were put forward, but counterexamples were found and are presented below. These
give insight as to what structure is important to finding the distance-impact of edges. In
each figure the solid lines represent the edges in G and the dashed lines are the edge(s)
of maximum distance-impact in G + e. An effort was made to provide the extremally

interesting counterexamples where the order is the smallest.

Conjecture 5.2.0.1. The maximum distance-impact edge is incident to a pair of peripheral

vertices.

Counterezample. In the graph in Figure 5.1 the maximum impact edges do not connect

the maximum degree vertices.

34

Figure 5.1 Counterexample to conjecture 5.2.0.1

]

Conjecture 5.2.0.2. The mazximum distance-impact edge is incident to two of the maxi-

mum degree vertices in trees.

Counterexample. In the graph in Figure 5.2 the maximum impact edges do not connect

the maximum degree vertices.

Figure 5.2 Counterexample to conjecture 5.2.0.2

O
Conjecture 5.2.0.3. The mazimum distance-impact edge is incident to a pair of leaves.

Counterezample. Figure 5.2 also provides a counterexample. O

Conjecture 5.2.0.4. The mazimum distance-impact edge is incident to at least one of the

mazimum degree vertices in trees.

Counterezample. Given the following graph G in Figure 5.3 the maximum impact edges do

not connect the maximum degree vertices.

35

Figure 5.3 Counterexample to conjecture 5.2.0.4

]

Conjecture 5.2.0.5. The maximum distance-impact edge is incident to at least on vertex

of maximum degree or at least one of the leaves.
Counterezample. Figure 5.3 also provides a counterexample. O

Conjecture 5.2.0.6. The maximum distance-impact edge is incident to the maximum

degree vertices with the long path between them in trees.
Counterezample. Figure 5.3 also provides a counterexample. O

Conjecture 5.2.0.7. The maximum distance-impact edge is incident to the maximum

degree vertices of the furthest distance from each other.
Counterexample. Figure 5.3 also provides a counterexample. O

Conjecture 5.2.0.8. The mazimum impact edge in a tree, T, is either incident to the

center, C, or its endpoints are in separate components in'lT — C.

Conjecture 5.2.0.9. The mazimum distance-impact edge joins components in T —k, where

k is the edge of maximum index.

Counterexample. In Figure 5.4 the maximum distance-impact edge does not join compo-

nents of T — k.

36

Figure 5.4 Counterexample to Conjecture 5.2.0.9

]

Conjecture 5.2.0.10. The maximum distance-impact edge joins components in T — k

where k is the maximum distIndez edge.

Counterexample. In Figure 5.5 the maximum distance-impact edge does not join compo-

nents of T — k.

Figure 5.5 Counterexample to Conjecture 5.2.0.10

O

Conjecture 5.2.0.11. The maximum distance-impact edge joins disjoint components in

T — C or is incident to C where C is the center vertexz.

37

Counterexample. In Figure 5.6, the maximum distance-impact edge is not incident to the
center, and (T — C') with the maximum distance-impact edge is disconnected. The vertex

labeled ‘C’ is the center.

Figure 5.6 Counterexample to Conjecture 5.2.0.11

]

Conjectures 5.2.0.8-10 yield very few counterexamples. The following tables show

the computational results for small trees.

38

Order 3 |4|15]6| 789|100 | 11
Number of Trees 1 12131611]23]47 106 | 235
Counterexample 1 (0]0J0] 0] 0|0 0 0
Adjacent to Max Index 1 1212149 (14]33] 63 | 151
Percent Counterexample || 100 [O [0 [0 | O | O | O 0 0

12 13 14 15 16 17

551 | 1301 | 3159 | 7741 | 19320 | 48629
0 0 3 1 2 16
310 | 732 | 1600 | 3919 | 8961 | 22760
0 0 0.095 | 0.012 | 0.010 | 0.033

Table 5.1 Analysis of the counterexamples to the conjecture that the maximum distance-
impact edge joins components in T" — k where k is the maximum index edge.

Order 3 45|67 8910 11
Number of Trees 1 2131611]23]47 106 | 235
Counterexamples 1 10]0/0] 0] 0] O 0 0
Adjacent to Max disIndex || 1 |22 |4 | 8 | 13|27 | 55 | 123
Percent Counterexamples || 100 |0 0[O0 O | O | O 0 0

12 13 14 15 16 17

551 | 1301 | 3159 | 7741 | 19320 | 48629
0 0 3 1 3 11
267 | 584 | 1334 | 3069 | 7248 | 17512
0 0 0.095 | 0.012 | 0.016 | 0.023

Table 5.2 Analysis of the counterexamples to the conjecture that the maximum distance-
impact edge joins components in T — k£ where k is the maximum distIndex edge.

39

Order 3 14|56 7|89 |10 11 | 12

Number of Trees 1 123611 |23]47 106 | 235 | 551

Counterexamples 1 {0]O0[0O] 0|00 0 0 0

Adjacent to Center O (1124 |7 |12] 25 | 48 | 112

Percent Counterexamples || 100 |0 |0 [0 | 0O | O | O 0 0 0
13 14 15 16 17 18 19 20

1301 | 3159 | 7741 | 19320 | 48629 | 123867 | 317955 | 823065

0 0 0 0 0 0 0 1
216 | 491 | 1112 | 2608 | 6266 8583 12401 17686
0 0 0 0 0 0 0 1.2x1076

Table 5.3 Analysis of the counterexamples to the conjecture that the maximum distance-
impact edge joins components in 7" — ¢ or is incident to ¢ where c is the center vertex.

These tables are not sufficient to prove the number of counterexamples to the con-
jectures are vansishingly small, but this appears to be the case. This is especially important
because the center can be quickly determined. This could imply that the permissible set
must be of the form described in 5.2.0.10 with only exceptionally rare cases falling into the

class of counterexamples.

5.2.3 Non-Leaf Distance-Impact Edges in Trees

The previous section highlights the underlying slippery nature of maximum distance-
impact edges. Specifically, they show how path length and degree can be misleading when
trying to find the maximum distance-impact edge. In many trees the maximum distance
edge is on the peripheral vertices or incident to the center, but unfortunately this is not
the case in general. These examples seem to indicate that a more sophisticated conjecture

is needed that will take into account path length and degree.

40

In this section a proof is presented to reduce the search space for maximum distance-
impact edges in trees. Such a reduction is useful in speeding computational evaluations of
distance-impact graphs and begins to move towards a method for finding the maximum

distance-impact edge in the general case.
Lemma 5.2.1. The mazimum distance impact edge in stars must be incident to two leaves.

Proof. Note that all vertices are leaves except for the single vertex that is connected to all
leaves. This central vertex is of maximum degree, thus any new edge must be between two
leaves in the simple case. Because this graph is diameter two, any added edge has edge

impact of exactly one. m

Path graphs will be considered to develop the central proposition for proving that
the maximum distance-impact edge must not be between two leaves in all but vanishingly

rare cases. Consider the path graph, P, and the following claim:

Claim 5.2.2. The mazximum distance-impact edge in P, for n € Z* is not incident to the

two leaves.

This claim needs refinement as some small cases do not hold. They are considered
exhaustively and Claim 5.2.2 will be refined into Lemma 5.2.7. These small cases encompass
0 <n <6. When n =0, Fis the empty graph and no edges may be added. When n =1
or n = 2 the graphs are the complete graphs K; and K, respectively. Again, these graphs
do not allow additional edges in the simple case.For n = 3 the graph P, ~ S; 2 and thus
the maximum distance-impact edges must be incident to two leaves.

The first non-degenerate case is Py (Figure 5.7). There are two non-isomorphic
edges that both have equal distance-impact of 2 as shown in Table 5.4. One of these edges
is incident to the two leaves and the other is not. Thus, the maximum distance impact
edge can be chosen so as not to be incident to two leaves. However, an edge between the

two leaves is also possible.

41

Figure 5.7 P, with all non-isomorphic possible edge additions as dashed edges

Edge Addition | Distance-Impact

1 2
2 2

Table 5.4 The distance-impact of all non-isomorphic edge additions in Py

The case of P; is a true exception. Considering the non-isomorphic edge additions in
Figure 5.8, the distance-impact is given in Table 5.5. The maximum distance-impact edge
is incident to the leaves, and every other possible edge addition yields lower distance-impact

values.

Figure 5.8 P5 with all non-isomorphic possible edge additions as dashed edges

Edge Addition | Distance-Impact
1 5
2 4
3 2
4 4

Table 5.5 The distance-impact of all non-isomorphic edge additions in P

42

The edge additions to Ps (Figure 5.9) do not violate Claim 5.2.2 as shown exhaus-
tively in Table 5.6. However, note that the maximum distance-impact edge is incident
to one leaf. For n > 6, it will be shown that the maximum distance-impact edge is not

incident to either leaf in paths to prove Lemma 5.2.7.

Figure 5.9 Fs with all non-isomorphic possible edge additions as dashed edges

To prove a modified version of Claim 5.2.2, the total distance in C), for n odd or
even is shown combinatorially. A general graph of C), is shown on the left of Figure 5.10

The distance values computed here will be used in a later proof.

{142

Figure 5.10 C,, (left) and DpC,,_5 (right), each of order and size n

Lemma 5.2.3. The total distance in C,,, where n s odd, is

Proof. Due to symmetry, only one vertex is considered, v. The maximum shortest-path

distance to any vertex in an odd cycle is ”T_l There are exactly two vertices of this distance

43

from v. Further, the distances to the vertices on these paths can be found as the summation
n—1
of >, 2 i. Because there are two such paths, the vertex v has distance, from every other

vertex, of:

‘:
| |
—
‘3
N |
—
‘3
| |
—
[}

Il
—
S
Il
—_
S
Il
—

i

There are n such vertices so the total distance in an odd cycle is:
n—1
2
n Yy 2i
i=1

Lemma 5.2.4. The total distance in C,,, where n is even, is

Proof. Due to symmetry, only one vertex is considered, v. The maximum shortest-path
distance to any vertex in an odd cycle is 5. There is exactly one vertex of this distance from
v. Further, the distances to the vertices on these paths can be found as the summation
of Z?:l 1. Because there are two such paths, the vertex v has distance, from every other

vertex, of:

However, this double counts only the single vertex of distance § from v. This is
corrected by the subtraction of § distance. Thus, considering the n such vertices in C;, the

total distance in an even cycle is:

n
2

n 222' —%

=1

44

O

One final auxiliary graph is needed. Given a cycle C,, where n > 5, the endpoints
of one edge are moved such that two pendants of distance 3 from each other are created.
This forms the graph on the right in Figure 5.10 dubbed the double distance-three-pendant
cycle denoted DpC),_5. The total distance for odd and even n are given in the following

lemmas:

Lemma 5.2.5. The total distance in DpC,,_o, for n > 5 odd, is:

n—1
2

n—3
(n—2) i‘gz +4| | > 2] -1|+6
i=1

=1

and is equivalent to:
n® —2n? + 11ln — 2
4

Proof. This proof will process combinatorially by assessing the distance between two sub-
graphs of DpC, 5. The two subgraphs of DpC,,_5 are the cycle part and the pendants.
They are denoted as ¢ and p, respectively, in Figure 5.11. To find the total distance in
this graph it suffices to find the total-distance in the cycle part, the total distance in the
pendant part, and the total distance between these subgraphs. Note that, although the
path between the pendants lies on the cycle, it is not counted twice in the calculations of

the total distance of the cycle.

Figure 5.11 The regions of DpC),

45

The three total distance calculations are as follows:

1. Pendant-Pendant Total Distance: The definition of the construction gives that
the pendants are of distance 3 from each other. Thus, the total distance for this

section is 3 + 3 = 6 exactly.

2. Cycle-Cycle Total Distance: The cycle is of length n — 2 with two pendants. Be-
cause n is odd, so is n—2. The total distance for odd cycles was given in Lemma 5.2.3.

Substituting in n — 2, the total distance is:

n—3

: 3 6n? + 11n — 6
(n—2) | Yai|=" "Z n
i=1

3. Pendant-Cycle Total Distance: The paths in this set are all of the paths to the
vertices on the cycle plus the single edge addition of the pendant. With this extra
edge the calculation of distance is almost identical to that of a cycle with an extra
correction term. From the pendant, the half-way point on the cycle is reached after
1+ ”7_3 = "T_l edges (reach the cycle and then traverse it). Because n — 2 is odd
(and the pendant is one edge from a the cycle) there are exactly two vertices of this

distance, however, this formulation double counts the path from the pendant to the

first vertex of the cycle. This sum is thus:

n—1
2

ZQz‘ —1=n%-5

i=1

Because total distance is being calculated, this value must be doubled to count all
pendant-to-cycle and cycle-to-pendant paths. Thus, for each pendant there is a total

distance of:

Finally, because there are two pendants of the same form, this expression must be

doubled again to give:

n—1

4 izz — 1| =n*-14

=1

The sum of all three parts gives the total distance for DpC), 5, n odd, as:

n—3 n—1
2 2

(n—2)| Y 2i|+4| | D 2i]|-1|+6
=1 1=1

Lemma 5.2.6. The total distance in DpC,,_o, for n > 5 even, is:

nT_Q, n—2 2 . n
(n —2) ;21 — |+ ;22 —(1+§) +6

and is equivalent to:
n® —2n% + 12n
4

Proof. This proof will process combinatorially by assessing the distance between two sub-
graphs of DpC,_5. The two subgraphs of DpC,,_, are the cycle part and the pendants.
They are denoted as ¢ and p, respectively, in Figure 5.11. To find the total distance in
this graph it suffices to find the total-distance in the cycle part, the total distance in the
pendant part, and the total distance between these subgraphs. Note that, although the
path between the pendants lies on the cycle, it is not counted twice in the calculations of
the total distance of the cycle.

The three total distance calculations are as follows:

47

1. Pendant-Pendant Total Distance: The definition of the construction gives that
the pendants are of distance 3 from each other. Thus, the total distance for this

section is 3 + 3 = 6 exactly.

2. Cycle-Cycle Total Distance: The cycle is of length n — 2 with two pendants.
Because n is even, so is n — 2. The total distance for even cycles was given in

Lemma 5.2.4. Substituting in n — 2, the total distance is:

n—2

s
9

(n—2) 2i | -2 -
=1 2

n3 —6n%+12n — 8
4

3. Pendant-Cycle Total Distance: The paths in this set are all of the paths to the
vertices on the cycle plus the single edge addition of the pendant. With this extra edge
calculation of distance is almost identical to that of a cycle with an extra correction
term. From the pendant, the half-way point on the cycle is reached after 1+ ”7_2 =3

edges (reach the cycle and then traverse it). Because n — 2 is even (and the pendant

is one edge from a the cycle) there is exactly one vertex of this distance. Thus, an
extra 5 path is double counted. The path from the pendant to the first vertex of
the cycle is also double counted as there is only one vertex of distance one from the

pendant. To correct this over counting, a correction term of 1 + 7 is subtracted. The

distance from the pendant to all of those in the cycle is thus:
>2i|-(1+%)
i=1 2

This expression is quadrupled (doubled to also count the cycle-pendant distances,
and doubled again for the second pendant’s distances). This gives a total distance in

this subgraph as:

48

2

3
4 2 —(1+ﬁ> —n?—5

The sum of all three parts gives the total distance for DpC,,_5, n even, as:

O
Edge Addition | Distance-Impact
1 8
2 9
3 6
4 4
5 8
6 6

Table 5.6 The distance-impact of all non-isomorphic edge additions in Fy

Proposition 5.2.7. The maximum distance-impact edge in P, for n = 6 is not incident

to both leaves. Forn > 6, the mazimum-distance-impact edge is not incident to either leaf.

Proof. The lemma is proven using the previous combinatorial results, and will be considered

in even and odd cases. Consider first that n > 6.

1. Odd Case: Consider an n-path, P,. The maximum distance-impact edge is not
between two leaves if the total-distance in C), is greater than the total distance in

Dp(]n_g.

Consider the following if and only if equivalences for n > 6. If the equivalences

hold, then the odd case is proven. On the left is the total distance in C,, (odd) from

49

Lemma 5.2.3 and on the right is the total distance of DpC},_» (odd) from Lemma 5.2.5.

n—1 n—3 n—1

2 3 2 2

n| 2 :”4_”>(n—2) Moi|val|Ya2i|-1]+6

i=1 i=1 i=1

n3—n>n3—6n2+11n—6
4 4
n—n>n—6n2+1ln—6+4n*>+4

+n>—5+4+6

n—n>nd—m*+1ln—2

n2—6n+1>0

The final inequality holds for n > 3+ 2+/2 ~ 5.828, thus the whole set of equivalences
are true for the given bounds of n > 6. The negative case is not considered because

n is a graph’s order.

. Even Case: Consider an n-path P,. The maximum distance-impact edge is not
between two leaves if the total-distance in (), is greater than the total distance in

DpC'n_Q.

Consider the following if and only if equivalences for n > 6. If the equivalences
hold, then the even case is proven. On the left is the total distance in C,, (even)
from Lemma 5.2.4 and on the right is the total distance of DpC,,_» (even) from
Lemma 5.2.6. The notation is long, so note that the total distance in an even cycle

is:
n

2 3

n Z?i —g :nz

=1

and the total distance in the even double distance-three pendant cycle is:

2, . n—2 2 , n
(m—2)| [Y 2| -5 |+4| [2 —(1+§> +6

20

and is equivalent to:
n —2n% 4+ 12n
4

Combining these into a series of inequalities, the following if and only if inequalities

are evaluated:

n3 - n®—2n%+ 12n
4 4

nd>n3—2n%+12n
0> —2n%+12n
n®>—6n>0

n(n—6) >0

The final inequality holds for n > 6, thus the whole set of equivalences are true for
the given bounds of n > 6. The negative case is not considered because n is a graph’s

order. Both cases are now evaluated.

With the even and odd cases, it is shown that the maximum distance-impact edge
is not incident to either leaf in P, with n > 6. Along with Figure 5.9 and Table 5.6, when
n = 6 the maximum distance-impact edge is not incident to both leaves, the proposition is

proven.]

There is one additional tree to note before proceeding with the theorem. The graph
in Figure 5.12 has no edge that has higher distance-impact than one incident to the leaves as
shown in Table 5.7. This graph will be denoted Ty, for reasons that will become apparent

in the statement of Theorem 5.2.8.

o1

Figure 5.12 Ty, with all non-isomorphic possible edge additions as dashed edges

Edge Addition | Distance-Impact
1 5
2 4
3 4
4 4
5 2
6 2

Table 5.7 The distance-impact of all non-isomorphic edge additions in Tjuq

With the development of Proposition 5.2.7 and the lemmas of this chapter, the

principle theorem can be proven.

Theorem 5.2.8. The maximum distance-impact edge is not incident to two leaves in all

trees except stars, P, and Ty (given in Figure 5.12).

Proof. The proof is greatly simplified with the inclusion of Proposition 5.2.7, namely C,,
has larger total distance than DpC,,_5. Consider a tree that is not a star, 7. This tree
must have two leaves, but it may have many more. Call any two leaves [; and [y where
li,ly € {E(Q))|ly # ly,deg(ly) = deg(ly) = 1}. An edge not incident to two leaves that
has higher distance-impact will be determined for every pair of leaves. The cases will be
partitioned based the value of dr(l1,l3). For ease of notation the subscript graph on the

distance function is suppressed when the graph is simply 7.

52

1. d(14,1z) = 2: Because the distance between these leaves is 2, the distance between
them, upon the addition of e; ;,, is reduced to one. However, because they are both
leaves, their neighborhood consists of the same vertex, v. This implies that no other
path through the tree will use the new edge. Suppose it did. Then for two vertices, x
and y, to use the new edge the path P(z,y) must be P(z,v)+ ey, +ei,1, +eno+P(v,y).
This is trivially shortened as P(x,v) + P(v,y). Because the tree is not a star, move
the added edge to any pair of non-leaf vertices that are not adjacent. Their new
distance is 1. This is a reduction of at least 1 as those vertices were not previously
connected. In the worst case, the total distance is the same, but the added edge is

not incident to two leaves.

2. d(13,13) = 3: When the distance between the selected leaves is 3, they are connected
by a copy of P;. If T is isomorphic to P, then, as in Figure 5.7, there is a maximum
distance-impact edge not incident to two leaves. In the general tree, because there
are no loops, any vertices not contained in the P, form subgraphs that only connect
to the cut vertices inside of the path. Consider this structure in Figure 5.13 where
the dashed edge is the potential non-double-leaf-adjacent candidate edge. The total
orders of the vertices connected to each path vertex are |A| and |B|. Note, the induced

subgraphs G[A] and G[B] are not necessarily connected.

Figure 5.13 Proposed distance-impact edge when selected leaves are of distance 3

If both A and B are empty the graph is P;. In this case, the dashed edge is of the

same distance-impact as the leaf-leaf edge and is only incident to one leaf. Consider

23

then that at least one of A and B is non-empty. Without loss of generality, A
contains at least one vertex. By moving the edge from [; to the path vertex v, the
distance from [y to Iy increased by 1. However, previously the distance from [y to
any vertex i € A was |P(i,v) + ey, + e,,| = |P(i,v) + 2|, but this was reduced to
|P(i,v) + ey,| = |P(i,v) + 1| for every vertex in A. This is a reduction of at least
1. The change of the edge does not affect any distances on P,;. No paths from A to
B can use the added edge as it would increase the distance between the subgraphs
by one. Therefore, there is always an edge of higher impact than one incident to two

leaves of distance 3.

3. d(l3,13) = 4: In this case the underlying path connected [; and Iy is Ps. From Fig-
ure 5.8 this graph is known to have a unique maximum distance-impact edge between
its leaves. Consider the underlying path as {l;,u,v,w, 5}, and candidate edges i and
j. Figure 5.14 details the graph and proposed edges. There are other edges that

could be considered, but these are sufficient for the proof.

Figure 5.14 Proposed distance-impact edge when selected leaves are of distance 4

Note that edge ¢ is incident to the leaves and should be avoided if possible. Using
Figure 5.14, the following three equations represent the total distance savings of each
edge addition and are derived from combinatorial methods. Further, |A| = a, |B| = b,
and |C| = ¢. Because all vertices in the sets A, B, and C' connect to the Ps path via a

cut vertex, any reduction in path (of length «) between the sets and a vertex on the

o4

reduced path improves the total distance by « for all possible paths. Without loss of

generality, consider the affected set to be A. Then the distance drop is a|A| from the

set to the vertex. This is 2a|A| in total distance.

(a)

Distance-Impact of i: The leaves were initially of distance 4, this has been
reduced to 1 via the edge e;,;,. The edge e;,;, also reduces d(l;,w) and d(ly, u)
from 3 to 2. Finally, the path P(l;,w) allows access to C' by a path that is 1
shorter. This is a reduction of 2|A|. By symmetry, with P(ly,u) there is also a
reduction in 2|C|. Considering all other paths in the graph, no other ones can

use the additional edge. The distance-impact of edge i is 2|A| + 2|C| + 10.

Distance-Impact of j: The leaves were initially of distance 4, this has been
reduced to 3 via the edge e,,, a savings of 1 for each. Similarly, the paths P(u, ls)
and P(l;,w) are also reduced by 1 each for a total of 4. The path between sets
A and C' are reduced to 1 as P(u,w) is now present. This yields 2|A||C| as all
vertices in A have a reduced path to C and vice versa. Further, this reduces
by 2 more for the P(u,w) path. The vertices [y and u are now one closer to
C via w. This is a distance-impact of 2|C| + 2|C| = 4|C|. By symmetry the
same reduction happens for I and w to A. Considering all other paths in the

graph, no other ones can use the additional edge. The total distance-impact of

7 is 2|A||C| + 4|A] + 4|C| + 8.

Distance-Impact of k: The addition of k is the only case where paths to B
are reduced. The distance from [; to Iy is reduced by 1 saving 2. Also, k = e, ,
so their distance is reduced by 1 saving an additional 2. The distance from [to
v and u are reduced by 1 so the sets A and B are also closer. This reduces the
total distance by 2|A| + 2| B|. Considering all other paths in the graph, no other

ones can use the additional edge. The distance-impact of edge i is 2| A|+2|B|+6.

95

From these combinational arguments three functions on the size of the partitions

A,B, and C were derived. These functions are:

fia,b,c) = 2a + 2¢ + 10
gjla,b,c) = 2ac+4a+ 4c + 8

hi(a,b,c) = 2a + 2b + 6

Here the function f;(a, b, c) computes the distance-impact of the addition of edge i to
a tree where at least two leaves are of distance 4 (similar for g; and hy). It suffices

to find all (a, b, c) such that for that triple one of the following is true:

gj(a,b,c) = fi(a,b,c) or hg(a,b,c) = fi(a,b,c)

because this implies the distance-impact of edges not incident to two leaves are of
higher impact. There are two triples where this does not hold corresponding to P
and Tp.q. Recall that a,b, and ¢ are simply the number of vertices in the sets A, B,

and C. Then the case of P5 occurs when the triple is (0,0,0). This gives:

gj(07070) }f’L(O?OaO)
2-0:0+44-04+4-04+8%2-0+2-0+10

8% 10

and

o6

2-042-0+46*%2-0+2-0+10

6% 10

Similarly for Th.q, consider the triple (0,1,0). There is only one graph of this form.

The inequalities again fail.

gj(07170) }f2<0,1,0)
2:-0:044-04+44-04+48%2-0+2-0+10

8+ 10

and

2-042-146*%2-0+2-0+10

8% 10

This confirms the counterexamples and also allows for proof that these are the only

two trees that force the additional of a leaf-leaf edge.

To show that there are the only such counterexamples first consider f;(a,b,c) =

2a + 2¢ + 10 and g;(a,b, c) = 2ac + 4a + 4c + 8. Because these entries correspond to

57

the size of sets in terms of vertices, all of a, b, c € Z%*. Then consider the following if

and only if conditionals:

fila,b,¢) < gj(a,b,c)
20 +2¢+ 10 < 2ac + 4a + 4c+ 8
20 +2c+ 10 < 4a + 4c+ 8

2 < 2a+ 2¢

The following holds whenever a > 0 or ¢ > 0. Note that 2ac could be safely dropped
as 2ac = 0. Regardless of the value of b, if a > 0 or ¢ > 0 adding edge j will always
have a at least the distance-impact of adding ¢. This single counterexample Ps is the

only one that holds in this case.

Finally, consider f;(a,b,c) = 2a + 2¢+ 10 and hg(a, b, c) = 2a + 2b+ 6. The following

if and only if conditionals give:

fila,b,c) < hy(a,b,c)
20 +2c+10<2a+2b+6
2c+10<2b+6
2c+4<2b

c+2<b

Comparing the inequality of f; and g;, it is known that if ¢ > 0 adding edge j is

sufficient. This implies that the only case of concern is when 2 < b. There are two

o8

such cases where a = 0,b < 2,¢ = 0. The first is a known counterexample, Tp,4, from
(0,1,0). All that must be considered is (0,2,0). However, in this case, equality holds

because of the following:

fi(0,2,0) =2x0+2x04+10=10=2-0+2-2+ 6 = ht(0,2,0)

Thus, for this triple the distance-impact of 7 and k is equal, and k is chosen to avoid a
leaf-leaf edge. Therefore, with the stated exceptions of Ps and Tyaq, if the d(ly,1) = 4

there is an edge of higher distance-impact than e; ;,.

4. d(13,13) = 5: In this case the underlying path connecting l; and ls in T" is Ps. This
allows the use of Proposition 5.2.7. Consider the underlying path as {l, u, v, w, x,l5}.
It is know from Proposition 5.2.7 that the adding the edge e, yields a larger reduction

of total distance than e;,;,. Figure 5.15 details the graph and proposed edge.

Figure 5.15 Proposed distance-impact edge when selected leaves are of distance at least
5

The distance from the leaves to the subsets A,B,C', and D, has not changed. This
implies there are no distance changes to, or from, the leaves and the subsets. Further,
if |[A| or |D] > 1 then the total distance reduces as the previous path for i € A and
J € D was reduced from |P(iu) + ey, + epy1, + €10 + P(2, j)| to |P(iu) + ey + P2, 7).

This is a reduction of two for all vertices in A and B. If d(l;,l) > 5, then there

29

are further total distance reductions among the other subsets, but in any case the

proposed edge is of greater distance-impact than a leaf-leaf edge where d(ly,13) = 5.

These cases have shown, for all but the degenerate trees (S1,-1, P5, and Tpeq), that
any edge that is adjacent to two leaves is not the unique maximum distance-impact edge
whenever d(ly,l) = 2. This covered all possible cases for the leaves and thus the theorem

is proven. O

Random trees are composed of approximately 30% leaves. Because of this fact and
Theorem 5.2.8, when finding the maximize distance-impact edge there is no need to search
the (”43)—many leaf-leaf possible edges. Because leaves can be quickly found in trees, this
result yields an appreciable computational time decrease- even if the asymptotic behavior

is unchanged.

5.3 Conclusion

Many aspects of tree structure were considered for the P-impact edges. Even as
determining the spanning-impact of edges is trivial, the distance-impact is not. Several
negative results along with their respective counterexamples were presented along with a
proof about the lack of maximum distance-impact edges incident to leaves in trees. Finding
the distance-impact of an edge, a priori, in a tree is still an open question, but settling this
question in trees is a useful starting point to explore the same question in general graphs.

It is clear that simple consideration of degree or distance separately is not sufficient
to determine the maximum distance-impact edge. From the observations and results here
the maximum distance-impact edge may be decided in trees based on an unknown function
that chooses an edge based on the degree and distance of its endpoints. Observation seems

to imply that distance is less important than degree, but this claim has not been proven.

60

Chapter 6

P-Impact in Network Completion

The P-impact process has been shown to use edge addition to maintain or optimize
a given invariant. Using the distance-related invariants, maximum P-impact edges reduced
the global distance measures in graphs. These specific edges seem to have some salient
properties regarding the graph structure. To explore this notion, a setting is considered
where a partially unobserved graph is taken. The feasibility of identifying missing edges
that most improve the accuracy of standard network completion algorithms when edges
are added to the graph is examined. This chapter serves as a bridge between the P-impact
process and the matrix completion work of the later chapters, and its results on small
random graphs should be viewed as motivation to explore matrix completion problems for
graph-modeled applications. These matrix completion problems will take the form of link

prediction and network completion in Chapter 7 and recommender systems in Chapter 8.

6.1 Experimentation

The P-impact question was designed to determine the most relevant edges to an
invariant value in a graph. Instead of finding the optimal edge sets to add to graphs,
these experiments measure the error that occurs when edges are obfuscated and network

completion is performed. The goal is to determine whether there is an inherent hierarchy

61

of predicative power among the edges of various graph classes. The classes used were:

Erdés-Rényi random graphs, random trees, and random power law (scale-free) graphs.

6.1.1 Network Completion

The network completion process was achieved by using matrix factorization with
regularization. Consider a graph G with adjacency matrix A. This method tries to learn
the latent features of the adjacency matrix of the graph in the form of two matrices where
their product approximates A. This process is detailed much further in Chapter 7, but the

results were found by solving the following optimization:

min |A = UVT| + A (U7 + [W]3)

6.1.2 FEvaluation Metrics

The performance of the different algorithms were measured by finding the discrep-
ancy between the original and completed matrices. The widely adopted Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) metrics [41] were used for evaluation.
Let A and A denote the full and estimated adjacency matrices, respectively. Let T be the
set of unobserved test links. Then,

Diger [Aij — Ayl

MAE = ,
|71

The RMSE metric is defined as:

~ 2
2i(ig)er (Az‘j - Az‘j)

RMSE =
9]

62

6.1.3 The Process

Five order 25 random graphs of each class were generated. From each of these, nine
other graphs were created. In each of these nine graphs, between 10-90% (step size of 10%)
of the entries in the adjacency matrix corresponding to potential edges were eliminated.
Note that for non-directed graphs the adjacency matrix is symmetric, so in practice only
the upper-triangle adjacency matrix was considered. From each of these adjacency matri-
ces two processes occurred. First, the adjacency matrix was completed as-is via matrix
factorization. Second, one entry at a time was revealed and replaced with its true value (0
or 1). At this point, the adjacency matrix was completed (again via matrix factorization).
In the first case, the basal error rates were calculated (i.e. error without revealing any
edges). In the second case, each time an entry was revealed the error of completion was
reported as in instance. For the ease of language, in the original graph both absent and
present edges will be referred to as ‘edges’. The difference being, absent ‘edges’ will have a

true value of 0 in the adjacency matrix while present edges will have a value of 1.

6.1.4 Predictive Edges on Erdos-Rényi Random Graphs

Erdés-Rényi random graphs are one of the most common random graph models. The
characterization considered herein was G(n,p). This probabilistic model creates a graph
of order n where each possible edge exists with probability p. The size of such graphs is
expected to be (’2‘) p. The value of n was fixed as 25 and p was allowed to vary from 0.1 to
0.9 with step size of 0.1. All results in this section are for G(25,0.5), while the results for
the other values of p are contained in Appendix A. The results for RMSE are reported in
Figure 6.1 while the MAE values are in Figure 6.2. The red bar in each of the runs is the
basal completion error. The basal completion error, along with the percent of added edges

that result in poorer network completion than the basal rate, are given in Table 6.1.

63

[Basal Error X Instances

100

90 X HO0KO 00K OO K XXX

80 XX X XXX saefaeom X% X Xxx x x
5 70 XXX X20¢ [] MHOXX X x
H
<]
£ 60 XX R WO [] OO KK R XX
&
8
& 50 XK OO HOK KX
i
s
£ 40 % HEX XM] OB X X X *
S
7
&

30 x X XM] IOC NN X

20 x X : & XX MM OK XX

10 x XK X RO [] MOLOOCH XX

0

1 1.05 11 115 12 1.25 13 135 14 1.45 15
RMSE

Figure 6.1 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.5)

[l Basal Error X Instances

100

9 30K XXX O MO XXX XK X X

80 3 KX 20R0X A K oo X X X %
o 70 XX XK XXX XX X
2
2 a
£ 60 XX 30OOROMIK KX OOKX XK X
&
g .
2 50 XK X M FOOWOK XK
i
k3
€ 40 x 2000] KX X x
g
&

30 X XX XK | KRR XK

20 X KO XBE SOKXBOOOK X

10 x XX MK] XXX x

0

0.85 0.95 1.05 115 1.25 135

MAE

Figure 6.2 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.5)

64

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10 1.2395 39.66 1.0962 45.66
20 1.2360 44 1.0961 50.66
30 1.2419 41.33 1.0850 37.33
40 1.2048 23.66 1.0474 19.33
50 1.3547 94.33 1.2188 95.33
60 1.2280 31 1.0670 25.66
70 1.2400 35.33 1.0819 30.0
80 1.3679 95.33 1.2317 95.66
90 1.1527 6 0.9886 5.333

Table 6.1 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdds-Rényi random graphs of the form G(25,0.5)

6.1.5 Predictive Edges on Random Trees

Trees are minimally connected graphs and they also form sparse adjacency matrices.
Because of this minimal structure, trees were the focus of the proofs and exploration in
Chapter 5. Trees are further explored here for the the predictive power of revealing their
edges. The results for RMSE are reported in Figure 6.3 while the MAE values are in
Figure 6.4. The red bar in each of the runs is the basal completion error. The basal
completion error, along with the percent of added edges that result in poorer network

completion than the basal rate, are given in Table 6.2.

65

Percent of Edges Removed

Figure 6.3 RMSE on single edge addition for varied percentages of removed edges for
random trees graphs

Percent of Edges Removed

Figure 6.4 MAE on single edge addition for varied percentages of removed edges for

random trees

100

90

80

70

60

50

40

30

20

10

100

920

80

70

60

50

40

30

20

10

1.25

1.25

X

X

I Basal Error X Instances

X IO08K JOK gk > X % X%
XXX : PPN XOC REK XXX x X
% XK X : MOCOCHK X XXX R X
X XKK § > %
XXX 0K MR ook xox x x X
XK 0K 3 K X X
SOUK MK HOOBO 1 SOCXHK XX XK *
XX RO KO [] M X XHE X X x

FOARKX X

135

1.45
RMSE

Jl Basal Error X Instances

1.55

1.65

KX

175

x XX K O] XOOK X X X
XXM [] MK X XK x
XK K 1 XK HOOOK KX X X

XX XK DMK

BOMOKC MBI X X

OBXXK XXX

DOOMRM MK XX

OB XK HXRK MK

BB K XX

XX ¥
XXK RO (]
XX XX 000K 1 =
XX ou0 g
XX X 1
1.35 1.45 1.55 1.65
MAE

66

SOMXX K KX

175

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10 1.5105 26.66 1.4515 24.0
20 1.4564 5.666 1.4094 6.333
30 1.5083 25.66 1.4488 23.0
40 1.5159 32 1.4682 33.33
50 1.6186 81.66 1.5582 79.0
60 1.5249 36.33 1.4619 32.33
70 1.3873 0.67 1.3292 0.666
80 1.4209 2.0 1.5662 69.0
90 1.5999 70.66 1.5442 69.33

Table 6.2 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for random trees

6.1.6 Predictive Edges on Random Power Law Graphs

Power law graphs are a common colloquialism for scale-free networks where the
degree sequence follows a power law distribution. This naming convention aligns with the
later chapters. Many degree sequences in social media network follow essentially power
law distributions [4]. Because of the real world utility of power law graphs, the predictive
power is measured here. The results for RMSE are reported in Figure 6.5 while the MAE
values are in Figure 6.6. The red bar in each of the runs is the basal completion error. The
basal completion error, along with the percent of added edges that result in poorer network

completion than the basal rate, are given in Table 6.3.

67

[l Basal Error X Instances

100

90 MK XX XK XK oo R O L3

80 X XX MK DORIERHBEK xiopox K X
5 70 XK XOCRROK K< [] HCHK RAKX XX X X
g
o
E 60 KX K | M OHHXNK X X XX
o
3
2 50 MK R i MHX X X X
&
o
€ 40 X XXX K ORK [] MK KX X
g
&

30 XXX X XXX 1 XX MK X X X

20 % X XK 3 MRIMOCBN X X

10 [X XXX XXX XM X R i X X X X

0

1.23 1.33 1.43 1.53 1.63 1.73

RMSE

Figure 6.5 RMSE on single edge addition for varied percentages of removed edges for
random power law graphs

[l Basal Error X Instances

100

90 XXX XX XXX 1 MORCK XX XXX

80 XXX XK JOROOMK OBORBBEORIONOX X000 X |- %%
5 70 X XM X [] MEOTMC KX MO XXX XX
$
2 n
E 60 X MK i DK SMBOEOONK SO MXX X X X
o<
»
14 -
-:?" 50 XK [] BRIOK X XX
s
o
€ 40 XX XXM 1 3K x
g
&

30 XXX 0K M oonmsfocnc MUK K DOBOKX X XX X

20 % o0 HOCHI K XX X

10 XX XO00K XX X MK i XX XXX

0

1.2 1.25 13 135 14 145 1.5 1.55 1.6 1.65

MAE

Figure 6.6 MAE on single edge addition for varied percentages of removed edges for
random power law graphs

68

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10 1.4787 43 1.3933 37.66
20 1.3979 8.666 1.3068 7.333
30 1.4077 13 1.3263 12.0
40 1.5287 71.66 1.4613 76.0
50 1.4853 37 1.3967 32.33
60 1.4819 39 1.4067 39.33
70 1.4920 50.66 1.4119 48.66
80 1.7013 99.66 1.6267 99.66
90 1.5256 63.66 1.4471 62.0

Table 6.3 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for random power law graphs

6.2 Power Law Motivation

This experimentation was motivated by examining behavior on power law (scale-
free) graphs. Because of their real world utility, another test was undertaken. Considering
five random power law graphs of order 15, each of the edges were removed in turn, and the
completion error was measured. The 105= (125) edges were then sorted from low-to-high
resultant error. The results are presented in Figure 6.7. Intuition seems to imply that the
entries of ‘1’ in the sparse adjacency matrix would carry more predictive power. However,

in Figure 6.8 the resulting error for only the ‘1’ entries is given showing that these entries

can sometimes be omitted without increasing the completion error.

69

-Graphl @Graph2 4 Graph3 Graph4 = Graph 5

0.40

0.35

0.25

RMSE
o
N
S

0.15
EEsEEENEEEEEEE

0.10

0.05

0.00 PRRENINCAARAM AN o -

0.00 10.00 20.00 30.00 40.00 50.00 60.00 90.00 100.00 110.00

Edgelabel (Sorted by RMSE Value)

Figure 6.7 RMSE caused by adjacency matrix element deletion for five random power law
graphs of order 15

=Graph1l ®Graph2 AGraph3 Graph4 = Graph5

0.45
0.40
0.35

0.30

A A A A
0.15 A a4 A A L 2 "

0.05

- A A . T e & & & 2 & &7 &
00 o oned & foos
0.00 5.00 10.00 15.00 20.00 25.00 30.00

Edge Label (Sorted by RMSE Value)

Figure 6.8 RMSE caused by adjacency matrix element deletion (1’s only) for five random
power law graphs of order 15

70

6.3 Conclusion

All of the different graph classes produced similar results in the edge removal ex-
periments. Further, the scope of testing was limited. However, as this chapter is meant to
serve as motivation for further exploration, there are still some useful observations to be
made. Specifically, the predictive power of edges in graphs seems to vary in standard ways
that may be proven in the future.

In all cases of edge deletion, approximately 5% of the edges produced significantly
better results after network completion was performed. This did not vary much over each
of the graph classes, nor was there a significant difference based on percent of obscured
edges. The should motivate future work to target those 5% of edges via graph theoretic
methods. It further showed that many edges fall below the basal error rate. This also
provides motivation to determine a set of edges to avoid adding to a graph.

For the second power law graph examples under single edge deletion, there is also
a useful caution given regarding the predictive power of individual edges. Although the
edges corresponding to the value of 1 in the adjacency matrix seem to hold more predictive
power than the 0 entries, there is a wide variation among the set of 1’s. Specifically, they
fell into what appears to be three classes of predictive power. What is most interesting
here is that these classes were consistent over the testing and had very sharp boundaries
between them. This further implies that in graphs there may be a set of highly predictive
edges that, by their discovery, network completion techniques would perform with much
higher accuracy. It is an open problem to discover the distribution of the predictive edges
in general.

Regarding the basal network completion error rate, some interesting observations
are made. Principally, the number of edges where their addition causes more error in
the matrix factorization than the basal rate is nontrivial. These limited experiments note

that the basal error threshold never is lower than the error reduction of the best edge

71

addition, but it varies wildly. In practical terms this implies that single edge addition can,
in many cases, actually make the network completion results worse than had that edge
remained unobserved. This may be due to the edges holding undue power in determining
graph structures in sparser graphs, thereby biasing the matrix factorization, however more
research to explore this must be done. Perhaps this process could be guided via the addition
of side information in form the P-impact edges extra-adjacency data sources, but this is
beyond the scope of this work.

This ends the exploration of edge impact, but by exploring the role that individual
edges play in graphs and matrix factorization techniques led to more questions about
network completion. Chapters 7 and 8 extend current matrix factorization algorithms
by incorporating side information. They are initially used for network completion, as
influenced by Chapters 3 through 6, but are also extended to consider link prediction and

recommender system problems.

72

Chapter 7

Network Completion in Graphs

The need for effective and efficient network completion algorithms occurs in a wide
variety of settings such an information retrieval, social network analysis, and computational
biology. With the massive growth of big data problems, mere collection of data is generally
simple while characterization of said data presents meaningful challenges. There may be
natural structure in the data, but only a small sampling may be feasibly obtained. Using
this sample, a question arises: can this small sample determine the rest of the network’s
links?

Because cold-start issues may be present, it is important to also consider side infor-
mation for transduction of knowledge to the network. Using this side information essentially
identifies similar users, and will assist in determining the graph structures that should exist
in the unobserved network edges. Using side information also benefits the calculations as
the network information is simultaneously incorporated. Thus, if either source has noise or
missing entries the other may be able to compensate.

To complete graphs of information in networked systems, an efficient algorithm
that significantly departs from the existing methods is proposed. This algorithm uses side
information and employs shared subspace learning. From this matrix completion with
transduction is applied. This algorithm differs from previous attempts as it decouples the

completion and transduction stages. Specifically in phase one, all cold-start nodes are

73

initially discarded and a sub-network is completed perfectly under some non-restrictive
conditions. In phase two, the available side information is used in the transduction stage
to complete the entire network— including the unobserved nodes. Although this method
is similar to subspace sharing, an important distinction does exist. Namely, a submatrix
is perfectly completed before transduction occurs. This allows the proposed algorithm to
avoid unbounded error propagation that can occur in subspace sharing methods.

The algorithm, along with theoretical analysis of its recovery error from Barjasteh
et al. [5], will be described. There is also extensive analysis on real world datasets that
compared the proposed algorithm with many state-of-the-art methods. The contents of

this chapter were adapted from the author’s contribution to a journal article .

7.1 The Assumptions

It is assumed that there is an undirected unweighted graph G = (V, E') where |V| = n
are distinguishable nodes. The resultant ground truth adjacency matrix is A € {0, 1}"*". To
approximate real world use, an assumption is made that there is only a partial observation
of A, namely O € {0,1, 7}""*™ 1 < m < n. Note that this sub-matrix is partially observed
and the rows and columns of index n — m to n represent cold-start users. The set of users
in O can be said to induce an edge-labeled sub-graph on G where edges are explicitly
present, explicitly absent, or unknown. Keeping with observations in real networks, no
assumption is made on the distribution of the missing entries. Many classical methods rely
on such uniform randomness. There is, however, an assumption that the entries within O
are sampled uniformally at random. If this is not the case, O may be subsampled, but
with abuse of notation for simplicity the subsampled O’ is still denoted O.

There is a further assumption that there is side information available about every

node via a social network graph. From this, features of the nodes are extracted and pairwise

l“Network Completion with Provable Guarantees by Leveraging Side Information”. Iman
Barjasteh, Rana Forsati, Dennis Ross, Abdol-Hossein Esfahanian, Hayder Radha, Farzan Masrour.
Springer Social Network Analysis and Mining (SNAM). 2016. Submitted.

74

similarity betwix each of the users is found. This information is stored in the similarity
matrix S € R"*",

Although it has not yet been stated, there is an assumption that the similarity
matrix and the networks structure are correlated. This assumption is further refined as
the row vectors of A share some subspace that is spanned by the leading eigenvectors of
the similarity matrix S. If such an assumption could not be made, there would be no
use in incorporating the side information into the predictions. The extent to which these

subspaces are shared will be parameterized later.

7.2 The Algorithm

7.2.1 Previous Approach

A similar method to the proposed algorithm casts the problem as a shared subspace
learning framework [79]. This method exploits knowledge from the similarity matrix and
transfers this to make structural predictions on the network. This is done by joint matrix
factorization where a common subset of basis vectors of A and S are learned.

These matrices are factored into three subspaces. The first is shared between the
adjacency and similarity, whereas the other two are specific to the matrices themselves. This
is formulated as the following optimization problem with A as the regularization parameter

for the norms of the solution matrices:

1 1
min - S[A—UV'[; + 2SS - UW[;

+ A (JU[E + IVIE + IWIE)

The main issue with the subspace sharing method is that the completion of un-

observed entries from the adjacency matrix are made from sampled observed ones, and

5

the transduction of knowledge from these entries to fully unobserved nodes is carried out
simultaneously. Because of this, completion and transduction errors are propagated repet-
itively and in an uncontrolled way that hinders the effectiveness of incorporating similarity

information.

7.2.2 Overview

Diverging from traditional approaches, the proposed algorithm fully recovers the
submatrix O before using similarity information to complete adjacency matrix. This tech-
nique decouples the matrix completion from side information transduction. More specif-
ically, the first phase completes the partially observed submatrix O perfectly due to the
assumptions of the distribution of known entries in O. Phase two transducts the links from
both the recovered submatrix O and the complete similarity matrix S. The algorithm is

described in Figure 7.1.

7.2.3 Algorithm Details

The first step in this algorithm extracts representative subspace from the similar-
ity matrix S. This has the effect of taking an orthogonal matrix, U, € R"**, from the
similarity matrix. Here the column space subsumes the column space of adjacency ma-
trix. Further, s is chosen so that it is larger than rank of adjacency matrix. To reduce
dimensionality and increase the salience of the similarity information, Uy takes only the
first s-many largest eigenvectors of the singular value decomposition (spectral clustering)
of the similarity matrix.

In the second step, the partially observed submatrix O is fully recovered. Note here,
with the presence of cold-start users, matrix completion techniques are not applicable to A.
However, because of the assumptions imposed on the distribution of known entries in O,
standard matrix completion techniques apply and it can be fully recovered. This completion

is done via a convex optimization algorithm [14]. O denotes the optimal solution to this

76

1. Input:

n: the number of nodes in netwrok § = (V, &)

O: the adjacency matrix of subgraph with m nodes

S: the partially observed pairwise similarity matrix

s = rank(A): number of eigenvectors in subspace [Extraction]
2. Extract U, from S by spectral clustering

3. Complete the submatrix O by solving the convex optimization problem in (8.1) to
get O [Completion]

4. Sample m rows of Uy € R™** uniformly at random to create matrix IAJS e R™*s
5. Set A = (USTUS> U700, (USTUS)

6. Output: A = U,AU] [Transduction]

Figure 7.1 Algorithm for network completion with side information via the proposed al-
gorithm for decoupled completion and transduction

optimization problem. If) is the set of observed links in the induced submatrix O, then

the matrix may be recovered by solving:

minimize || X],

s.t. Xij = Oij> \ (’l,j) e Q.

The third, and final, step is transduction of knowledge from the side information
and the completed O to A. The specific information to be used is the extracted subspace
U, and the optimal submatrix O. As both the social network adjacency matrix (of rank

r) and the recovered submatrix are low rank, a decomposition can be found as follows,

r r
A= Z aiaiT and O = ﬁzﬁj
i=1

i=1

7

To see this, we can consider a; € {1,0}" and a; € {1,0}™ as the corresponding membership
assignments to the ¢th hidden components of the graph. We note that if the similarity ma-
trix is set to be equivalent to the adjacency matrix, then the indicator vectors of connected
components are exactly a;,as,--- , a,.

To formalize the correlation of similarity information and the adjacency matrix, it
is assumed that both matrices share a common subspace. Because of this, each vector a;
with ¢ € [r] can be uniquely decomposed into parallel and orthogonal components to the

shared subspace. This is formalized as a; = a; + a; where a; is in the column span of Uj

and aj" is exactly orthogonal to column span of U,. Because ay belongs to column span of
U, it can be rewritten as a basis of the shared subspace and the left-singular coefficients

such that, for some b; € R*:
al = Ub;i=1,2-,r

The adjacency matrix can be related to the similarity matrix via ay and the decom-

position into parallel and orthogonal components.

A= iaia;
= Z a; +a; + a)’
= Z:a“alHT + a; aL + aﬁa”T + a; alT
_ Z ala HT +atal

=A,+ Ag

.
N Zau H

78

Here A, is fully captured by the similarity information, but the matrix Ag is pure
error as singular vectors are orthogonal to the subspace spanned by the similarity subspace.
Because of this, Ag does benefit from the side information. The error contributed by this
matrix into the recovery error of final inferred adjacency matrix is thus unavoidable, but,

by disregarding the error term, the adjacency matrix can now be written as:

ST 1T
AzZaiai + Ap ~ a;a;
=1

In an observation of the above algorithm, the key to the recovery of the matrix A is
in the estimation of the vectors b;,7 = 1,2, --- ,r. Given some reasonable conditions on the
number of sampled nodes available in G, the fully recovered submatrix O and extracted

subspace Uy can be utilized to estimate these b; vectors perfectly.

7

= U,b; cannot be directly solved for the values of b; to
Il

1

The linear system a

estimate a;. This is because U, and ay are not accessible. However, a; can be replaced

with a basis [AJS and an accessible vector a;. Together these can estimate the values of
the ay vectors perfectly (with high probability). The subspace IAJS is obtained by taking a
uniformly random permutation of U, where the selected rows correspond to the rows in O.

Then the corresponding ordinary least-squares regression may be solved for an estimation

A~

of bz

b; = min
beRs

A —Ust - (U;TUS) U3,
2

~_~\T A~
The last equality holds because <U;FUS) U/ is the optimal solution to the ordinary
least-squares regression problem above. Having computed an estimate for each b;, the

adjacency matrix can be fully computed as:

A=U, (Z BiBj) u’.

i=1

79

7.3 Experimental Evaluation

Two broad categories of experimentation are taken with the algorithm. Using well
known social network and synthetic datasets, the algorithm’s performance against standard
baseline is tested for link prediction problems. It is also compared against state-of-the art
algorithms for network completion. The main reason for splitting the experiments into two
parts is the unique challenges that exist in network completion due to the sparseness in the

information of the links, which makes it a difficult problem.

7.3.1 Datasets

Four real world datasets were used for the experiments. Two were used for link
prediction and the other two were used for network completion. For link prediction a
product rating social network site called Epinions and the popular Chinese microblogging
site Tencent Weibo were used. The network completion experiments were performed on

two large social networks: Facebook and Google—+.

1. Epinions: Epinions is an explicit trust/distrust social network that yields a directed
network. Because the number of distrust relations is very small, only explicit trust
relationships between users are considered. The statistics of this dataset are summa-
rized in Table 7.1. This dataset is available through Jiliang Tang at Arizona State
University 2. Generally, the Epinions dataset is used to predict ratings given the
trust graph of its users as side information. Here it used to predict the existence
of links via a link prediction process that the proposed algorithm found while using
the rating information as side information. To extract the features, each user was
endowed with a collection of their ratings of the items. These ratings contained scores
and timestamps. To extract more features, additional item information (e.g. names,

categories, ratings) was included when the users were interested in such items. A final

2http://www.public.asu.edu/~jtang20/datasetcode/truststudy.htm

80

feature included a normalized triple for each item category. This triple gave the total
number of reviews in that category, and the number of positive and negative reviews
per category (normalized by the maximum value of each present in the data). Again,
pairwise similarities between users were found via cosine similarity to generate the

similarity matrix of users.

2. Tencent Weibo: Tencent Weibo (Weibo) is a Chinese microblogging site similar to
Twitter. There is a network structure where users can ‘follow’ another to create a

link. In addition to the large network, the side information is quite rich.

Features for the anonymized users were extracted that included personal information
(age, gender, and interests), social information (number of messages sent, messages
reposted, users followed), and item classification (categories and keywords). Items
and users are distinguished by their features, but for all practical purposes items may
act like users in the social network. Items are generally understood to be corporate
entities or celebrities. A follower-followee directed graph is given, and the proposed
algorithm is used to determine the existence of a directed edge that represents whether
or not a given user will follow another. Only considered positive links (where a user
follows another) are used, and all negative links (where a user explicitl y choses not
to follow another) are ignored for prediction. The data is available from the KDD
cup 3. The original Weibo social directed graph has 1.4 million users and over 73
million links. A small subset of approximately 4,000 users with many observed links
among them, and a reasonable amount of side information, was chosen. Find such a
set in this large dataset, a modified breadth-first search that penalized adding nodes
that did not contain links going back into the explored nodes was deployed. Once

this process terminated, other (possibly isolated) nodes at random were added if they

had a large amount of side-information until the graph’s order threshold was met.

3http://www.kddcup2012.org/c/kddcup2012-trackl/data

81

The observed average ratio of directed links to nodes for random directed graphs of
order approximately 4,000 was 0.46. With this BF'S method the directed subgraph of
4,052 vertices that was found had a significantly higher-than-average ratio of directed
links to nodes at 0.98. The statistics of data-subsets are summarized in Table 7.1.
To generate the similarity matrix of users, cosine similarity between all pairs of users

was used.

3. Facebook: Facebook is one of the most popular real world social network datasets.
On Facebook, people have directed friendship relationships with each other and each
user has a profile containing information about themselves. For each user (a node
in the network) personal features (e.g. gender, job title, age) are extracted from
their profiles. The network of users was produced by combining ego-networks of
the Facebook dataset available at the Stanford Large network Dataset Collection *.
The statistics of datasets are summarized in Table 7.1. The pairwise similarities be-

tween users were found via cosine similarity to generate the similarity matrix of users.

4. Google+: Google+ is similar to Facebook in terms of relationships between users.
Features were also extracted from the individual user profiles in the same way as
Facebook. The ego-networks of users were combined together to have a network of
users along with their features. This dataset is also available at the Stanford Large
network Dataset Collection ® and the statistics are shown in Table 7.1. The pairwise
similarities between users were found via cosine similarity to generate the similarity

matrix of users.

‘http://snap.stanford.edu/data
Shttp://snap.stanford.edu/data

82

Dataset # of Nodes | # of Links | # of Node Features
Weibo 4,052 3,957 16,786
Epinions 90,879 365,422 90,087
Facebook 4,089 170,174 175
Google+ 250,469 30,230,905 690

Table 7.1 Statistics of Weibo, Epinions, Facebook, and Google+ datasets

7.3.2 Evaluation Metrics

The performance of the different algorithms was measured by finding the discrepancy
between the original and completed matrices. The widely adopted Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) metrics [41] were used for evaluation. Let
A and A denote the full and estimated adjacency matrices, respectively. Let T be the set
of unobserved test links. Then,

Diger [Aij — Ayl

MAE = ,
|71

The RMSE metric is defined as:

2

Ay — Aij>
|7

o
RMSE = {| =<7 (

7.3.3 Baseline Algorithms

To evaluate the performance of our proposed algorithm, a variety of baseline ap-
proaches were considered. The baseline algorithms fall into two categories. The first set
included those that were used in the link prediction experiments, and the second set in-

cluded those that were used in the network completion experiments.

83

7.3.3.1 Link Prediction Baseline Algorithms

The baseline algorithms are chosen from a wide variety of types of link prediction
algorithms to have a fair comparison to the proposed algorithm. All implementation are

available in the MyMediaLite Package [29].

1. BPRMF: Matrix factorization with Bayesian personalized ranking (BPR) from im-
plicit feedback produces rankings from pairwise classifications. The matrix factoriza-

tion model provides item prediction optimized for BPR.

2. BiPolar Slope One (BPSO): Slope One rating prediction methods weighted by

bipolar frequency.

3. Matrix Factorization (MF): Matrix factorization where learning is provided by
stochastic gradient descent factoring the observed ratings into user and item factor

matrices.
4. Slope One (SO) Slope One rating prediction method with frequency rating.

5. User-Item Baseline (UIB): Assigns an average rating value, and regularization,
for baseline predictions. Uses the average rating value, plus a regularized user and

item bias for prediction.

6. CoClustering (CC): Performs simultaneous clustering on both the rows and the

columns of the rating matrix.

7. Latent Feature log-linear Model (LFM): Rating prediction method that uses a

log-linear model on the latent features of the system.

8. Biased Matrix Factorization (BMF): Matrix factorization with parameters for

biases of users and items. Utilizes learning provided by stochastic gradient descent.

84

9. SVD Plus Plus (SPP): Singular value decomposition matrix factorization method
that makes use of implicit feedback. Further considered what items and users each

user has rated.

10. Sigmoid SVD Plus Plus (SSPP): Singular value decomposition matrix factoriza-

tion method that makes user of implicit feedback and utilizes a sigmoid function.

11. SigmoidItem Asymmetric Factor Model (SFM): Asymmetric factor model that

represents the items based on how the users rated them.

7.3.3.2 Network Completion Baseline Algorithms

The baseline algorithms were chosen from three different types of network comple-
tion algorithms. One method only utilize the observed links, one uses network structure as

well as node features, and third one learns the shared subspaces.

1. MF: Considers only the network structure and ignores the node features. Matrix

Completion (MF) algorithm in the standard in this class [83].

2. MF-NF: Employing both node features and the structure of network for network
completion, a matrix factorization based algorithm that factorizes the adjacency ma-
trix and combines the latent features with explicit features of nodes and links using a
bilinear regression model [60]. The implementation of this algorithm is provided by

the authors ©.

3. MF-SS: Combining the network structure with node features by sharing a subspace.
Matrix Factorization with Subspace Sharing (MF-SS) [24] is most like the proposed

algorithm.

4. MC-DT: This refers to the proposed algorithm formally called Matrix Completion
with Decoupled Transduction (MC-DT).

Shttp://cseweb.ucsd.edu/~akmenon/code/

85

o
©
T
~

I

Frobenius Norm
©
o]
N
A Y

e
=~
T
%

AY
L

L e i
0.6 > - %

1 1 1 1 1 1 1 1 1

A 0.2 0.3 04 05 06 07 08 0.9 1
Variance of Noise

Figure 7.2 The recovery error of the proposed MC-DT algorithm noise variance values

7.3.4 Experiments on Synthetic Datasets

To examine the algorithms on a synthetic dataset, an adjacency matrix A with
2,048 nodes was generated. To create this network, the rank was fixed at r = 10 yielding
ten components. The nodes were evenly distributed among these components. A pairwise
similarity matrix for the nodes was generated by adding a noise term to the adjacency
matrix S = A + N, where each entry of noise matrix follows a uniform distribution N;; ~
U(0,0.5). To generate an incomplete network, 20% of all links were randomly removed.

The network then had 119,999 links.

7.3.4.1 Effect of Noise in Side Information

To better understand the effect of similarity information on the recovery error, the
effect of noise in similarity matrix on the performance of MC-DT algorithm was investi-

gated. The added noise on the similarity matrix followed a zero-mean Gaussian distribution

86

o |
R ST
Tto LT TR
0.8 R i
L TO--r~r 0 ----- O -----0----_ 4
- 3% - MC-DT SN ° T
- -0 - MF-NF RS
£ MF Vel
o6l |- -MF-SS -)
Sos6 v Vel
3 4
c
8
20.4*\ |
(' AN
\\
0.2+ * |
o
Tt ----- *o-mm He- - - *------
0 1 | I L L : T
10 20 30 40 50 60 0 80
m/n (%)

Figure 7.3 The recovery error of different algorithms on a synthetic dataset for different
sizes of partially observed submatrix with m nodes

N(0, o) with different values of variance o. At the same time, the size of observed subma-
trix was fixed to m = 400. In particular, the variance ranged from o = 0.1 to o = 1 with
step size of 0.1. As Figure 7.2 shows, by increasing the noise, the recovery error increases

linearly. This is consistent with the theoretical result of Forsati et al. [55].

7.3.4.2 Effect of Training Size

Investigation on the size of observed submatrix O as it applies to recovery error
was also undertaken. The size of the observed submatrix was varied from 200 to 1600
with step-size of 200. The reported recovery error for the different algorithms is given
in Figure 7.3. It can be observed that by increasing m, the recovery error decreases for
all of the methods. The fewer unobserved elements we have, the lower the recovery error
is. The proposed MC-DT algorithm performs the best, verifying its reliable performance.
The significant difference between the recovery error of MC-DT and three other algorithms

implies the effectiveness of MC-DT in exploiting similarity information. Because MC-DT

87

ignores the missing entries of the network and completes the submatrix purely from the
observed part of the network, the completion error becomes zero and is not propagated
in transduction stage. It is of interest to note that, by increasing the size of observed
submatrix (as m approaches n), the effect of similarity information on decreasing recovery
error for all methods became less influential. This follows from the fact that existence of
links in the network provide much richer information than the pairwise similarity between

users.

7.3.5 Evaluation of Link Prediction

The results of applying the proposed algorithm along with different baseline algo-

rithms on the link prediction problem for Epinions and Weibo are contained in this section.

7.3.5.1 Link Prediction on Epinions

To perform the comparison with the baseline algorithms, first the user-user binary
trust matrix was created from the available dataset. In this matrix, a ‘1’ indicated a trust
relation between two users and ‘0’ indicated unobserved relations. Recall, distrust was not
considered. In each dataset, a fraction that varied from the set {40%, 50%, 60%, 70%, 80%}
was chosen to be training, with 10% as validation, and the remaining part was the test set.
The test set had its entries set to zero. The data were broken down randomly into five
different sets per test size.

The average values of the experiments are given in Table 7.2. The proposed algo-
rithm outperformed all other baseline algorithms in all training sizes. By increasing the
training size the error also reduced but there is not a significant drop in the error. This
allowed a conclusion to be drawn that by selecting smaller training sizes, accuracy can
be maintained. Added benefits of faster computations and overfitting avoidance are also
achieved. This further assists in situations where there is not enough data (or computa-

tional power) available to use large training sets.

88

RMSE

Train Percentage

Method Parameters
40% 50% 60% 70% 80%
BPSO r=20, \,=15, \;=10, T=50 0.7708 | 0.7683 | 0.7683 | 0.7626 | 0.7610
MF r=20, A=0.015, v=0.01, T'=50 0.7063 | 0.7127 | 0.7191 | 0.7173 | 0.7269
SO — 0.7851 | 0.7780 | 0.7726 | 0.7650 | 0.7611
UIB — 0.7026 | 0.7022 | 0.7032 | 0.6993 | 0.7022
cC C,=10,C;=20, T'=50 0.7849 | 0.7776 | 0.7712 | 0.7679 | 0.7625
LFM r=10, 8,=0.01, A, ;=0.05, v=0.01, T=50 || 0.7212 | 0.7110 | 0.7188 | 0.7150 | 0.7122
BMF r=10, £,=0.01, A, ;=0.05, T'=50 0.7086 | 0.7084 | 0.7094 | 0.7061 | 0.7087
SPP r=10, A=0.05, 5,=0.01, T'=50 0.6897 | 0.6903 | 0.6926 | 0.6892 | 0.6929
SSPP r=10, A=0.05, 5,=0.01, T'=50 0.9879 | 0.9867 | 0.9851 | 0.9836 | 0.9856
SFM r=10, A=0.015, £,=0.33, v=0.00, T=50 || 0.6738 | 0.6743 | 0.6770 | 0.6731 | 0.6777
MC-DT r =37 0.6623 | 0.6495 | 0.6428 | 0.6430 | 0.6551
MAE
Method Parameters Lrain Percentage
40% 50% 60% 70% 80%
BPSO r=20, \,=15, \;=10, T=50 0.9404 | 0.9318 | 0.9245 | 0.9156 | 0.9078
MF r=20, A=0.015, v=0.01, T=50 0.8363 | 0.8422 | 0.8474 | 0.8468 | 0.8543
SO — 0.9515 | 0.9370 | 0.9244 | 0.9129 | 0.9047
UIB — 0.8280 | 0.8278 | 0.8280 | 0.8259 | 0.8276
CC C,=10,C;=20, T=50 0.9285 | 0.9160 | 0.9071 | 0.9013 | 0.8932
LFM r=10, £,=0.01, X, ;=0.05, v=0.01, T=50 || 0.8425 | 0.8340 | 0.8402 | 0.8377 | 0.8342
BMF r=10, $,=0.01, A, ;=0.05, =50 0.8318 | 0.8317 | 0.8319 | 0.8302 | 0.8315
SPP r=10, A=0.05, 8,=0.01, T=50 0.8211 | 0.8215 | 0.8227 | 0.8206 | 0.8227
SSPP r=10, A=0.05, 8,=0.01, T=50 1.2617 | 1.2605 | 1.2599 | 1.2566 | 1.2596
SFM r=10, A=0.015, $,=0.33, v=0.00, T=50 || 0.8165 | 0.8167 | 0.8181 | 0.8155 | 0.8182
MC-DT r =237 0.7625 | 0.7591 | 0.7562 | 0.7562 | 0.7573

Table 7.2 Link prediction results on Epinions dataset and the effects of training size.

89

7.3.5.2 Link Prediction on Weibo

The Tencent Weibo dataset is given as a series of link recommendation for the users
along with side information. For the link recommendations a triple is presented that gives a
user, a recommendation of a user or item, and a Boolean. The Boolean represents whether
or not a user accepts the recommended user or item. An acceptance can be viewed as a
directed edge, from the user to the recommendation, in the social network graph.

To perform the comparison with the baseline algorithms, first the user-user binary
trust matrix was created from the available dataset. In this matrix, a ‘1’ indicated a trust
relation between two users and ‘0 indicated unobserved relations. Recall, distrust was not
considered. In each dataset, a fraction that varied from the set {40%, 50%, 60%, 70%, 80%}
was chosen to be training, with 10% as validation, and the remaining part was the test set.
The test set had its entries set to zero. The data were broken down randomly into five
different sets per test size.

The link prediction experiments on Weibo used different training sizes similar to the
Epinions experimentation. Table 7.3 shows the results of RMSE and MAE measures on
Weibo dataset. The results shown in the Table 7.3 confirmed that the proposed algorithm
is the best performing algorithm among the baseline algorithms. There is a significant
gap between the results of our proposed algorithm and other baseline algorithms. This
was not the case in Epinions dataset results. This significant difference in accuracy was
attributed to having more available side information available in Weibo than what was
available in Epinions. Again, after having 50% as training and 10% as validation, there is
not a significant drop in the accuracy of the results. These results support the efficacy of

the decoupled approach to link prediction.

90

RMSE

Method Parameters Lrain Percentage
40% 50% 60% 70% 80%
BPSO r=20, \,=15, \;=10, T=50 0.5023 | 0.5027 | 0.5017 | 0.5041 | 0.5063
MF r=20, A=0.015, v=0.01, T'=50 0.4992 | 0.4999 | 0.4991 | 0.5000 | 0.5018
SO — 0.5017 | 0.5034 | 0.4988 | 0.4999 | 0.5072
UIB — 0.5007 | 0.5002 | 0.4996 | 0.4983 | 0.5000
CC C,=10,C;=20, T'=50 0.5020 | 0.5004 | 0.5036 | 0.4950 | 0.5022
LFM r=10, 5,=0.01, A, ;=0.05, v=0.01, T=50 || 0.5008 | 0.5007 | 0.4997 | 0.4984 | 0.5000
BMF r=10, £,=0.01, X, ;=0.05, T'=50 0.5004 | 0.5003 | 0.4998 | 0.4986 | 0.5000
SPP r=10, A=0.05, £,=0.01, T'=50 0.4996 | 0.5002 | 0.4998 | 0.4987 | 0.5002
SSPP r=10, A=0.05, 5,=0.01, T'=50 0.4991 | 0.5015 | 0.4943 | 0.4885 | 0.4884
SFM r=10, A=0.015, $,=0.33, v=0.00, T=50 || 0.5001 | 0.5000 | 0.5001 | 0.4996 | 0.5000
MC-DT r =237 0.3454 | 0.3285 | 0.3232 | 0.3237 | 0.3266
MAE
Method Parameters {rain Percentage
40% 50% 60% 70% 80%

BPSO r=20, \,=15, \;=10, T=50 0.5509 | 0.5488 | 0.5444 | 0.5509 | 0.5496
MF r=20, A=0.015, v=0.01, T'=50 0.5012 | 0.5019 | 0.5013 | 0.5025 | 0.5053
SO — 0.5489 | 0.5496 | 0.5414 | 0.5436 | 0.5488
UIB — 0.5067 | 0.5066 | 0.5053 | 0.5038 | 0.5053
CcC C,=10,C;=20, T=50 0.5612 | 0.5574 | 0.5564 | 0.5511 | 0.5550
LFM r=10, £,=0.01, A\, ;=0.05, v=0.01, T=50 || 0.5093 | 0.5100 | 0.5083 | 0.5068 | 0.5082
BMF r=10, 8,=0.01, A, ,;=0.05, T'=50 0.5021 | 0.5022 | 0.5017 | 0.5006 | 0.5019
SPp r=10, A=0.05, £,=0.01, T'=50 0.5027 | 0.5036 | 0.5031 | 0.5020 | 0.5035
SSPP r=10, A=0.05, £,=0.01, T'=50 0.6987 | 0.7003 | 0.6951 | 0.6908 | 0.6908
SFM r=10, A=0.015, £,=0.33, v=0.00, T=50 || 0.5005 | 0.5002 | 0.5002 | 0.4997 | 0.5001
MC-DT r =37 0.4624 | 0.4457 | 0.4419 | 0.4421 | 0.4437

Table 7.3 Link prediction results on the Weibo dataset and the effects of varying training
size

91

7.3.6 Evaluation of Network Completion

Now the proposed algorithm is compared to the state-of-the-art algorithms for net-
work completion. The following results were found using the Facebook and Google+ social
network datasets. In this scenario, varying training sizes were again utilized. Again the
datasets were divided into training, validation, and testing as described in the last section.
When the training size is 20%, 20% of the nodes and the corresponding links from the each
social network are randomly selected to predict the rest of network. The performance of
MC-DT along with the baseline network completion algorithms on these two datasets was

evaluated.

7.3.6.1 Network Completion in Facebook

In Figures 7.4 and 7.5, the RMSE and MAE of different algorithms on Facebook
dataset are shown, respectively. In these plots the improvement of all methods gradually

decreased as more of the network structure was observed.

7.3.6.2 Network Completion in Google+

Table 7.4 shows the performance of the MC-DT in comparison with the other base-
line algorithms on Google+’s social network. The algorithm’s performance exhibits similar
behavior to the one presented in previous experiment with Facebook. Specifically, MC-DT

outperforms the other network completion algorithms.

Method || RMSE (30%) | MAE (30%) | RMSE (60%) | MAE (60%)
MF 0.97201 0.89132 0.81749 0.76601
MF-NF 0.86384 0.82094 0.71505 0.68935
MF-SS 0.81368 0.78820 0.58369 0.68160
MC-DT 0.78806 0.50186 0.50851 0.30011

Table 7.4 Comparison of different algorithms on the Google+ with different percentages
of observed nodes

92

0.8
-%-MC-DT
. -© -MF-SS
07k T MF-NF| |
A -v-MF
V-
0.6%~-__ __-6._ B AREEEEE % 1
e-"" TTHR \\e ..
L Te e o, N
05+ *\ S e e == m e oo 3
.. v
w ~
2] h o- -
= . T--e._
m *\ ~~‘~
0.4 A T q
S S~ o
~. T
*\\
03[% i
%o
0.2 Dt ST i
it 3
1 1 1 1 1 1
10 20 30 40 50 60 70 80

Observed Nodes (%)

Figure 7.4 The recovery of four algorithms on the Facebook dataset measured in RMSE
under different percentages of observed nodes

0.8
- % -MC-DT
- o -MF-SS
¥~ i
(ks SN MF-NF
-, - T -MF
061 N i
V-mmmma \A
0.5 i
[AR | ST
T R - -~y
<04 e i
______ o - S S~a
o x o ------ o
03 . .
02 o]
\\ BN
*\
041 RN i
e
e
0 1 | I L L ! _T
10 20 30 40 50 60 0 80

Observed Nodes (%)

Figure 7.5 The recovery of four algorithms on the Facebook dataset
under different percentages of observed nodes

93

measured in MAE

7.4 Conclusion

An effective algorithm in MC-DT was developed for network completion and link
prediction with auxiliary similarity information on the nodes. Its comparison to the state-
of-the-art baselines on synthetic and real datasets reveals that this algorithm exhibits im-
proved performance in terms of recovering the full network. This improvement is due to
the decoupled completion of the observed submatrix from transduction of knowledge while
exploiting similarity information.

MC-DT greatly outperformed the other baseline algorithms in of the evaluation met-
rics. Both the RMSE and MAE errors of the completed network are more than two times
smaller for MC-DT than the others. These experiments demonstrated the effectiveness
of MC-DT in exploiting the similarity information to recover the full network. Although
both use matrix factorization techniques, MC-DT does utilize node features while naive
MF does not. MC-DT achieves better performance, as it combines the information from
the node features and the network structure. The significant gap between the performance
of these two algorithms demonstrated the importance of similarity information in network
completion problems. When networks are incomplete, the performance of MC-DT degrades
gracefully. Because it can rely on the node features, the algorithm can compensate for the
lack of links in the overall network structure. Finally, by comparing the results for synthetic
and real datasets, in the synthetic dataset the decrease of error (by increasing the number
of observed nodes) is significant initially, but then slowly shrinks. This contrasts to real

world datasets where the decrease is roughly linear.

94

Chapter 8

Recommender Systems

As commerce has shifted to the internet, e-commerce websites (e.g. Amazon, Wal-
mart.com), media consumption (e.g. Netflix, Amazon Video), and news media (e.g. NY-
times.com, CNN.com) have experienced large growth in both users and available services.
With this growth, there became a demand for curated content for the end users. This
gave rise to efficient recommender systems that would present users with items of personal
relevance. However, just as in the network completion case, cold-start problems with the
users and items have not been adequately addressed.

The goal of the algorithm proposed in this chapter is to give an efficient matrix
factorization approach using similarity information derived from side information that is
accurate and can seamlessly incorporate sparse or cold-start datasets. This is an extension
of the work on network completion presented in Chapter 7. A two-stage algorithm that
decouples the completion and transduction stages during the matrix completion is presented
here. In the first phase cold-start items and users are excluded and a rating submatrix is
fully completed. In the next phase, this submatrix and a similarity matrix extracted from
the available side information are used to transduct information for the cold-start users
and items. Unlike most subspace sharing approaches, there is no error propagation of

completion during transduction.

95

The theoretical results are further enhanced with comprehensive experiments on a
few benchmark datasets to demonstrate the merits and advantages of proposed framework
in dealing with cold-start problems. The results demonstrate the superiority of the proposed
framework over several of state-of-art cold-start recommender algorithms. The contents of

this chapter were adapted from the author’s contribution to a published journal article !.

8.1 The Assumptions

There is some low-rank ratings matrix R € R™*™ where there are n users providing
real-valued ratings for m items. For the purposes of this work the ratings were taken to
be values from 1 to 5 inclusive; however, this assumption could be easily changed based
on the problem domain. There is a partially observed submatrix M € R where M € {0, 1,
7P* 1 < p<m,1 <q<q Therows of R with no values are users who are cold-start
(i.e. users who have not provided any historical ratings). The columns of R with no entries
are cold-start items (i.e. items where no feedback has ever been provided). As with the
network completion case, no assumptions have been made about the distribution of the
ratings.

There is a further assumption that there is side information available about every
user and item via a social network graph and item specification information. From this,
features of the users and items, respectively, are extracted and pairwise similarity is com-
puted for each. This information is stored in the similarity matrix A € R"*" for the users
and B € R™*™ for the items.

There is a final assumption that the rating matrix and the similarity matrices are
correlated. Thus, the pairwise share some latent information. Specifically, the row vectors
of R share an underlying subspace with the leading eigenvectors of A, and the column

vectors share an underlying subspace with the leading eigenvectors of B. The amount of

1«Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach”. Iman
Barjasteh, Rana Forsati, Dennis Ross, Abdol-Hossein Esfahanian, Hayder Radha. IEEE Transactions on
Knowledge and Data Engineering (TKDE). 2016. Accepted.

96

subspace sharing will be parameterized, but if no such subspace existed there would be no

benefit to applying this approach.

8.2 The Algorithm

8.2.1 Previous Approach

The previous methods [79] for predicting ratings via a shared subspace approach is
very similar to that of the network completion approach. Again, the problem is cast as a
shared subspace learning framework. This method exploits knowledge from the similarity
matrix and transfers it to make structural predictions on the network. This is achieved by
joint matrix factorization to learn a common subset of basis vectors for the rating matrix
R and the similarity matrices A and B for users and items as formulated in the following
optimization problem with A as the regularization parameter for the norms of the solution
matrices and common latent space representation is given by using the same matrices W

and Z:

. 1 T2 2 2
WERTLXT7Z€RW‘LXT

+5IA-UWT 4 B -2V}
+ A (W] + 1Z]%)
Again, this approach’s performance is impaired because the completion of the un-
observed entries in rating matrix R and transduction of knowledge from these entries to

cold-start users/items via similarity matrices is carried out simultaneously. Completion

and transduction errors are propagated repetitively and uncontrollably. The problem with

97

error propagation becomes even worse due to the non-convexity of optimization problems,

which will be described later.

8.2.2 Overview

As noted in Chapter 7, the proposed algorithm fully recovers the submatrix M before
using similarity information to complete the adjacency matrix. This technique decouples
the matrix completion from side information transduction. More specifically, the first
phase completes the partially observed submatrix M perfectly due to the assumptions of
the distribution of known entries in M. Phase two transducts the links from both the
recovered submatrix M and the complete similarity matrices A and B. The algorithm is

described in Figure 8.1.

8.2.3 Algorithm Detalils

An orthogonal matrix U, € R"*® was constructed where its column space subsumes
the row space of the rating matrix. Similarly, Ug € R™*® was constructed for the column
space. Both U and Ug were created by taking their leading s eigenvectors. The value
of s relates to the extent to which the extracted subspaces subsume the row and column
spaces of the rating matrix and is thus dependent on the quality of the side information.

This allowed the rank r matrix to be decomposed as:

,

-

R = Z wyv, .
i=1

Colloquially, this expressed the ratings matrix as its user and item components. Further,

the i-th user’s latent features vector u; can be decomposed in a unique way into two parts
I

i

Il 1

that are parallel and orthogonal to the shared subspace as u; = u; + u;. Here, u; is

spanned by Up while uj is orthogonal to U. For the j-th item’s latent features v; can

be written as v; + vi- where, v; is spanned by Ug while v} is orthogonal to Ug.

98

1. Input:

e R e R™™ r: observed matrix and its rank
e A € R™": the users’ similarity matrix

e B € R™*™: the items’ similarity matrix
2. Extract the maximal recoverable rating sub-matrix M e RP*¢
3. Complete the sub-matrix M to get M
4. Decompose M as M = S v/

5. Extract subspaces U and Ug by spectral clustering from similarity matrices A and
B, respectively

A~ A T~
6. Compute a; = (UXUA> Uptly,i=1,2,--- 7
. o NFA
7. Compute b; = (UEUB> Ugv;,i=1,2--,r
8. Compute R = U, (22:1 eAlZlA)lT) U}

9. Output: R

Figure 8.1 Algorithm for rating prediction using side information via the proposed algo-
rithm for decoupled completion and transduction

Having decomposed the latent features as above into two parallel and orthogonal

components, the rating matrix can be rewritten as:

99

RzZT:uivlT
—Z u) +uf) (vl V)T

.
_ Z ulv H + uHVJ_ T uJ_VH 4 uJ_VJ_

_211 \\T+Zull LT+Zu¢ HT—i—ZuL 1T
=R, + R, + Rr + Rg

T
< Tl

Here R, is fully spanned by the subspaces Up and Ug. The other matrices are
sources of error as Ryp’s right singular vectors are orthogonal to the subspace spanned
by Ug, and Ry ’s left singular vectors are orthogonal to the subspace spanned by Uj,.
Finally, Rg’s left and right singular vectors both are orthogonal to their respective similarity
subspaces. The error contributed by this matrix into the estimation error of final recovered
rating matrix is unavoidable, but is bounded by the results of Barjasteh et al. [6]. With

this in mind, the ratings matrix is rewritten as:
R=ulv]" + Ry +Rg + Rp ~ ulv]’

To begin the algorithm, a sub-matrix M e RP*? is extracted. To reconstruct M
perfectly, the number of observed elements must be at least Q(r(p + ¢) log? (2p)) [73]. To
meet these conditions, the rows are sorted by the number of ratings they contain. In this
way the top rows are the least sparse. Then, the largest possible submatrix that meets the

matrix completion conditions is taken for m. This submatrix is then fully recovered as M.

This is accomplished via off-the-shelf matrix completion techniques of [83, 61, 81, 14]. This

100

leads to the following convex optimization, with Qy € 2 as the set of observed ratings:

M = arg min |X],

XeRP*4q

s.t. Xij = Mij, \ (l,j) € QM (81)

This completed submatrix and the subspaces U o and Ug can then be used to recover
R = Y ,wyv,/ via transduction. Specifically, the rating information in the recovered
matrix M is transduced to the cold-start users and items.

Because uy and vy are fully spanned by the subspaces Up and Ug, fori =1,2,... 7

they can be rewritten as:

uy = Uxa; and vy = Ugb;

Here a; € R® and b; € R? are the orthogonal projection of the singular vectors onto
the corresponding subspaces. By substituting these equations into the decomposition of

R.; the following is true:

R, = ZTIUAaZ-biTUT =Ua <Z aibiT> Ug

i=1 i=1

To recover the matrix R, there must be an estimate for the vectors a;, b;. The
subspaces extracted from the similarity matrices and the recovered rating sub-matrix M
can be used to make these estimations.

—~

To this end, first consider the decomposition of the recovered matrix as M =
2;1 ﬁi‘A’z‘T :

The estimation of vectors a;, b; and the matrix R, now described. Let U A € RP** be
a random submatrix of U where the sampled rows correspond to the subset of rows in the
matrix M. Similarly, let ﬁB € R?** be created by sampling the rows of Ug corresponding

—~~~

to the columns in M. An estimation of a;, b;,i € [r] vectors can be obtained by the

101

orthogonal projection of left and right singular vectors of M onto the sampled subspaces

U A and ﬁB by solving two optimization problems, namely:

2

a; = arg min |U; — UAaH

acRs 2

N ~ 2
Vv, — UBbH
2

B = ar min’
! gbeRS

The solutions to these ordinary-least squares regression problems are known. They are:

A~ ~ T~ ~_ o~ T A~
(UXUA> U,1; and <U]T3UB) ULV;, respectively. This allows R, to be estimated by:

R, = U, (Z aiﬁj) UL
i=1

— U, ([AJX[AJA>TIAJX (

,
U ARSI
4,97 > Us (UgUB) Us

i=1

The estimated rating matrix R is found by now setting R = f{* There is dimension

reduction via the submatrices, and this leaves only the spectral clustering and orthogonal

projection as computationally expensive— even with a large rating matrix.

8.3 Experimental Evaluation

Several experiments were completed on multiple datasets. These compared DecRec
over a set of baseline algorithms to demonstrate the merits and advantages of DecRec. The
datasets are well-known and publicly available. These are: MovieLens (1M and 100K) 2,
Epinions ® and NIPS .

2http://www.grouplens.org/node/73
Shttp://www.trustlet.org/wiki/Epinions_dataset
“http://www.cs.nyu.edu/~roweis/data.html

102

Several fundamental questions were addressed. Principally, the proposed algorithm
is compared against state-of-the art methods for incorporating side information into rec-
ommendation of existing items to existing users. As this is a well researched area, the
interesting results occur during the cold-start cases. Results are presented when there are

cold-start items, cold-start users, and both cold-start users and items.

8.3.1 Datasets

Although this algorithm is made to provide recommendations, it is applicable to
any user-item setting. Because of this, experiments were performed on well-known movie
and item rating datasets for recommendation, and a further experiment was conducted on
an author-publication graph to solve a network completion problem. The recommendation
(including cold-start) experiments used MovieLens and Epinions while the NIPS dataset
was used for network completion. The descriptions are given along with a table of the
datasets’ statistics in Table 8.1. There is also a synthetic dataset included in some of the

experiments.

1. MovieLens: Two versions of the MovieLens datasets were used. They were the 100K
and 1M variants. They consist of ratings (1-5) from users on movies. In addition
to rating data, these datasets also contain features for both users and movies. For
each movie the features (e.g title, year, genre) are given. Further feature data was
extracted from the movie information website imdb.com. For each user, personal
features (e.g. gender, age, occupation, location) were extracted. Then for both users

and items we computed their cosine similarities to be used as side information.

2. Epinions: This dataset was obtained from a user-oriented product review website
that has a trust network of users. Users can specify whether they trust other users
or not explicitly. This trust network allows the creation of a 0/1 trust connectivity

vector for each user with all other users. From this, the cosine similarity of trust

103

vectors was computed and became the similarity matrix of users. The items have

categorical side information and the users can provide their ratings (1-5).

3. NIPS: For network completion, the co-author network at the NIPS conference [7§]
was taken. From this, the paper-author and paper-word matrices were extracted.
There is no side information for the authors, but the papers’ contents are pre-
processed such that all words are converted to lower cases and stop-words are re-

moved. Again, the cosine similarity is computed of the words between papers.

4. Synthetic: The synthetic dataset was generated by two matrices U € [0, 1]#%90%" and
V € [0,1]>%9%7 Then U and V were used to generate a rating matrix R*000%2000 —
UV'. In R, there were 4,000 users and 2,000 items. A similarity matrix A4000x4,000 —
UU" was generated for users and also B2900%2.000 — YV for items. Finally, random
noise was added to the all elements of A and B where the noise follows the Gaussian

distribution with N(0,0.5).

8.3.2 Evaluation Metrics

As is standard, the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE) metrics for prediction accuracy [38] were again used. If T denotes the set of ratings
to be predicted, i.e., T = {(i,j) € [n] x [m], R;; needs to be predicted}, and R denotes the
prediction matrix obtained by a recommendation algorithm, then MAE is:

_ Z(i,j)e‘J’ |Rij - Rij|
7]

MAE

RMSE is similarly defined as:

~ 2
2iig)er (Rz‘j - Rz‘j)

RMSE =
191

104

Statistics MovieLens 100K || MovieLens 1M || Epinioins || NIPS
Number of users 943 6,040 8,577 2,073
Number of items 1682 3,706 3,769 1,740
Number of ratings 100,000 1,000,209 203,275 || 3,990
Range of ratings 1-5 1-5 1-5 0-1

Table 8.1 Statistics of the real world datasets

Even small improvements in RMSE are considered valuable in the context of recommender
systems. For example, the streaming video service Netflix, that relies heavily on predicting
users’ ratings on content, offered a prize of $1,000,000 to the first researchers to achieve a
10% reduction of RMSE.

There is one other metric to be considered. Given an item ¢, let r; be the relevance
score of the item ranked at position i, where r; = 1 if the item is relevant to the i and
r; = 0 otherwise. The NDCG measure is a normalization of the Discounted Cumulative
Gain (DCG) measure. DCG is a weighted sum of the degree of relevancy of the ranked

users. The value of NDCG is between [0, 1] and at position k is defined as:

k

o 1
NDCG@Qk = Zk;)

In all experiments, the value of k is set as the number of rated items by each user.

8.3.3 The Baseline Algorithms

To evaluate the performance of the proposed DecRec algorithm, a wide variety of
baseline algorithms were deployed. The baseline algorithms were chosen from four types
of categories: state-of-the-art algorithms for rating predictions, recommenders with cold-

start items capacity, recommenders with cold-start users capacity, and algorithms with the

105

capacity to consider both cold-start items and users. The MyMediaLite implementations

were used throughout the testing [29].

10.

11.

RS (Random Strategy) [51]: A simple baseline that selects at random a subset of
users or items. The recommendation for cold-start users and items is a challenging

case, where RS is one of the baseline methods.

U-KNN (User KNN) [45]: Predicts the ratings using the similarity with the K

nearest neighbors where users have weights.

. I-KNN (Item KNN) [45]: Is a weighted item-based KNN approach for rate predic-

tion.

GA (Global Average): Uses the average of ratings over all ratings.

. I-A (Item Average): Uses the average rating of an item for its prediction.

U-A (User Average): Uses the average rating of a user for its prediction.

SO (Slope One) [47]: Pre-computes the average difference between two items that

are rated by users. SO is a frequency weighted slope one rating prediction.

. BPSO (BiPolar Slope One) [47]: Is a Bi-polar frequency weighted slope one rating

prediction.

SMF (Social Matrix Factorization) [39]: Is a matrix factorization algorithm that

incorporates the social network for prediction.

CC (CoClustering) [30]: Is a weighted co-clustering algorithm that involves simulta-

neous clustering of users and items.

LFLLM (Latent Feature Log Linear Model) [59]: Is a scalable log-linear model that

exploits the side information for dyadic prediction.

106

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

U-I-B (User Item Baseline) [45]: Is a rating prediction method that uses the average

rating value along with a regularized user and item bias.

FWMF (FactorWise Matrix Factorization): Is a matrix factorization based model

with a factor-wise learning.

BMF (Biased Matrix Factorization) [75]: Is a matrix factorization that learns by

stochastic gradient descent with explicit bias for users and items.

SVDPP (SVD++) [44]: Is a matrix factorization that takes into account what users

have rated and directly profiles users and items.

SSVDPP (Sigmoid SVD++) [44]: Is a version of SVD++ that uses a sigmoid func-

tion.

SU-AFM (Sigmoid User Asymmetric Factor Model) [69]: Is an asymmetric factor

model that represents the items in terms of those users that rated them.

SI-AFM (Sigmoid Item Asymmetric Factor Model) [69]: Is an asymmetric factor

model that represents users in terms of the items they rated.

SCAFM (Sigmoid Combined Asymmetric Factor Model) [69]: Is an asymmetric
factor model that represents items in terms of the users that rated them, and users

in terms of the items they rated.

CBF (Content Based Filtering) [79]: This algorithm builds a profile for each user

based on the properties of the user’s preferred items from the past.

LCE (Local Collective Embeddings) [79]: Is a matrix factorization method that
exploits properties of items and past user preferences while enforcing the manifold

structure exhibited by the collective embeddings.

LCE-NL(Local Collective Embeddings No Laplacian) [79]: Is LCE without laplacian

regularization.

107

23. ELCE (Extended LCE): Is an extended version of LCE meant to handle the challenge

of the presence of both cold-start users and items simultaneously.

24. KMF (Kernelized Matrix Factorization) [90]: Is a matrix completion based algo-
rithm, which incorporates external side information of the users or items into the

matrix factorization process.

25. DecRec: The proposed algorithm with decoupled completion and transduction.

8.3.4 Effects of Noise

The sensitivity to noise on the proposed algorithm is explored. With the synthetic
dataset, recall A and B as the two similarity matrices between users and items, respectively.
The variance of the Gaussian were varied by every 0.05 for 0.05 to 0.95. Figure 8.2 shows
the increase in RMSE and MAE of the results on test data as the noise increases. However,
the degradation of the results is graceful with respect to the incease of noise. The results
are similar to those in a real world dataset.

Examining MovieLLens 1M, noise was generated that also follows a Gaussian distri-
bution. This noise, N(0, 0.5), was added to the similarity matrices. The variance was varied
in the same way as in the synthetic dataset. Figure 8.3 shows the RMSE and MAE of the
predictions. Similar to the previous results, by adding noise to the similarity matrices, the

error grows gracefully.

8.3.5 Existing Users and Items

The standard case for recommender systems is that all users and items have a
history of rating and being rated, respectively. Generally, users only rate a small number
of items and the rest of the ratings are unknown. The stated goal of such recommender

systems is to provide a prediction for all of the ratings of the unrated items. There are two

108

—k—RMSE
—8—MAE

0 1 1 1 1 1
005 02 03 05 065 08 0095
Noise Variance

Figure 8.2 RMSE & MAE on the synthetic dataset for different noise variances on simi-
larity matrices

broad approaches to this problem: neighbor-based and latent factor models. Many baseline
algorithms from each type were used.

DecRec was deployed on the MovieLens 100K, MovieLens 1M and Epinions datasets.
GroupLens Research ® made five sets available, which are 80%/20% splits of the MovieLens
100K into training and test data. For MovieLens 1M and Epinions, the data were split
into 80%/20% train-test sets randomly five times (for 5-fold cross-validation). The average
results are reported. Table 8.2 shows this average RMSE and MAE resulting from the 5-
fold cross-validation for all baseline algorithms. DecRec had the smallest RMSE and MAE
values for each column (indicated by bold type-face). The results suggested that among
neighbor-based approaches, I-KNN is the best-performing algorithm for MovieLens 1M and
100K and U-KNN is the second best-performing one. That is because of the similarity be-
tween movies (genre, director, etc) and similarity between taste of users play an important

role in prediction accuracy. I-KNN and U-I-B outperformed other neighbor-based methods

Sgrouplens.org/

109

0.25 045 065 0.85
Noise Variance

0.45 0.65 0.85

Noise Variance

0.5 0.25

Figure 8.3 RMSE & MAE of MovieLens 1M for different noise variances on similarity
matrices

on Epinions in respect to RMSE measures, while BPSO and I-KNN outperformed others in
respect to MAE measures. Similarity of items and having the same pattern of ratings for
similar items on Epinions helped I-KNN’s results perform better than other neighbor based
methods. Table 8.3 further shows the comparison between latent factor methods in which
DecRec (KMF) algorithm achieved the first (second) best performance of RMSE and MAE
for MovieLens 100K and RMSE for MovieLens 1M. It also achieved the second (first) best
performance of MAE for MovieLens 1M. On Epinions, DecRec also outperformed other
latent factor methods.

Tables 8.2 and 8.3 show that DecRec achieved the best performance for all datasets
among all methods of both categories, latent factor and neighbor based methods (except for
MAE on MovieLens 1M), confirming the performance advantage of DecRec over all baseline
algorithms. Hence, the proposed decoupled method by incorporating side information
reveals the need for preventing error propagation along with using side information to

obtain more accurate predictions.

110

MovieLens 100K | MovieLens 1M Epinions

Algorithms Hyperparameters
RMSE MAE RMSE | MAE | RMSE | MAE
GA — 1.1190 0.9399 1.116 | 0.9327 | 1.1692 | 0.8878
I-A — 1.0220 0.8159 0.9759 | 0.7790 | 1.0695 | 0.8140
0
2 U-A — 1.0390 0.8350 1.034 | 0.8272 | 1.1276 | 0.8769
=
=
- U-KNN k=80 0.9355 0.7398 0.8952 | 0.7030 | 2.3999 | 2.2229
?
s
é [-KNN k=80, sh=10,A,=25, A\,=10 | 0.9241 0.7270 0.8711 | 0.6830 | 1.0279 | 0.6993
=
20
2 U-I-B Ay=D, \y=2 0.9419 0.7450 0.9081 | 0.7190 | 1.0290 | 0.8010
SO 0.9397 | 0.7403 0.9020 | 0.7120 | 1.0865 | 0.7067
BPSO — 0.9744 0.7482 0.9390 | 0.7199 | 1.0449 | 0.6813
CC C;=3, C,=3, T=30 0.9559 0.7526 0.9118 | 0.7134 | 1.0573 | 0.7890

Table 8.2 Results on MovieLens 100K and 1M and Epinions for neighbor-based methods
with no cold-start users/items

111

MovieLens 100K | MovieLens 1M Epinions
RMSE MAE RMSE | MAE | RMSE | MAE

Algorithms Hyperparameters

p=10, A\,=0.015, A\,=0.015, A\,=0.01
SMF 1.0134 0.7884 1.2284 | 0.9315 | 1.1224 | 0.8436
As=1, n=0.01, n,=1, T=30

FWMF p=>5, T=5, sh=150 0.9212 0.7252 0.8601 | 0.6730 | 1.5090 | 1.0597
p=160, A\,=0.003, n=0.07, T'=100
BMF 0.9104 0.7194 0.8540 | 0.6760 | 1.0240 | 0.7918
A=0.08,\,=0.1
p=10, T=T75
MF 0.9133 0.7245 0.8570 | 0.6751 | 1.0908 | 0.8372

A,=0.05, 7=0.005

KMF 0,=0.4, D=10, n=0.003, v=0.1 0.7947 0.6893 0.7492 | 0.6514 | 0.9015 | 0.7873

p=10, \y=0.01, \,=0.015, A,=0.015
LFLLM 0.9550 | 0.7617 | 0.9012 | 0.7082 | 1.2891 | 1.0386
n=0.01, T=30, n,=1

Mm=0.7, A;=0.015, n=0.001, p=10

Latent Factor Models

SI-AFM 0.9568 | 0.7628 | 1.035 | 0.8488 | 1.1534 | 0.8816
=0.33, T=1
m=0.7,,=0.015
SU-AFM 0.9569 | 0.7634 | 0.9062 | 0.7189 | 1.069 | 0.8398
p=0.33, T=1, n=0.001, p=10
SCAFM — 0.9499 | 0.7559 | 0.9121 | 0.7239 | 1.0600 | 0.8312
m=0.07,\,=1
SVDPP 0.9065 | 0.7135 | 0.8510 | 0.6680 | 1.0550 | 0.8220
X\p=0.005, p=50, =0.01, T=50
m=0.7, T=30
SSVDPP 1185 | 0.9147 | 0.9402 | 0.7352 | 1.3328 | 0.9022
p=10,),=0.015, n=0.001, A,=0.33
RS — 1.6960 | 1.3860 | 1.7070 | 1.3940 | 1.9096 | 1.5789
DecRec r=10 0.7002 | 0.6628 | 0.7157 | 0.6721 | 0.7157 | 0.6796

Table 8.3 Results on MovieLens 100K and 1M and Epinions for latent factor methods
with no cold-start users/items

112

8.3.6 Cold-Start Items

To simulate cold-start item problems, the items were divided into two disjoint train-
ing and test subsets. Here, 80% of the items were considered existing items for training
and the remaining 20% were cold-start items for testing.

This general framework can also be used on network completion challenges. The
NIPS dataset was chosen to not only simulate the cold-start item scenario, but also to show
the results of DecRec for network completion. NIPS has rich side information for the items
(papers) and shows the relationship (0 or 1) between papers and authors. Because the
values in NIPS are either 0 or 1, predicting the authors of new papers can be also perceived
as a link prediction problem.

Four competitive recommendation methods were considered on NIPS dataset. They
were CBF, KMF, LCE and LCE-NL. Table 8.4 shows the average RMSE and MAE of 5-
fold cross-validation for these algorithms for the cold-start item scenario. The parameters
from MyMedialLite are provided for reproduciblility.

These results indicate that DecRec is the best performing algorithm among all base-
line algorithms in the cold-start item scenario with respect to RMSE, MAE and NDCG.
Having the highest NDCG value among all competitive algorithms shows that DecRec can
present the top-ranked items to users better than other algorithms. DecRec also yields the
lowest RMSE and MAE values. From this, it may be concluded that DecRec’s predictions
of the ratings for cold-start items are more accurate than the other methods. DecRec can
better suggest the top-ranked cold-start items to users with higher accuracy. The running
times are also included in this instance. CBF must only create user profiles and is thus
very fast. KPMF and DecRec are acceptably efficient, but LCE and LCE-NL are much

slower due to their convergence conditions.

113

Measures

Datasets Method Hyperparameters

NDCG@k RMSE MAE Time(s)
CBF — 0.3861 0.7943 0.8881 0.17597

LCE k=500, A\,=0.5, ¢ = 0.001, T;,=500, 3=0.05 | 0.4240 0.7692 0.8675 709.869

NIPS LCE-NL k=500, A\;=0.5, €=0.001, T,,=500, 3=0 0.4186 0.7532 0.8562 1823.48
Cold-start item KMF 0,=0.4, D=10, n=0.003, y=0.1 0.1415 0.8804 0.9196 19.5413
DecRec r=1000 0.4626 0.5111 0.6805 23.8410

CBF — 0.2201 0.6644 0.7741 4.4800

LCE k=500, A\,=0.5, €=0.001, T,,=500, 3=0.05 0.2327 0.6713 0.7786 1067.11

Epinions LCE-NL k=500, A\;=0.5, e=0.001, T,,=500, 3=0 0.2319 0.6712 0.7785 11969.9
Cold-start user KMF 0,=0.4, D=10, n=0.003, v=0.1 0.2084 0.8522 0.8882 1196.32
DecRec r=1063 0.2343 0.6618 0.7716 144.660

RS 0.1022 1.1981 0.9782 0.0131

MovieLens 100K | KMF 0,=0.4, D=10, n=0.003, y=0.1 0.2423 0.9823 0.8730 11.540
Cold-start ELCE k=500, A\,=0.5, €=0.001, T,,=500, 3=0 0.2681 0.8934 0.7626 16.4683
user & item DecRec r=100 0.2641 0.8672 0.7230 4.8729
RS — 0.0652 1.3820 0.9326 0.0682

MovieLens 1M | KMF 0,=0.4, D=10, n=0.003, v=0.1 0.1834 0.9730 0.8442 63.732
Cold-start ELCE k=500, A\;=0.5, €=0.001, 7,,,=500, 5=0 0.2662 0.8849 0.7684 166.201
user & item DecRec r=100 0.2783 0.8524 0.7162 10.578

Table 8.4 Results on all of the cold-start scenarios for real datasets

114

8.3.7 Cold-start Users

To simulate cold-start user problems, the users were divided into two disjoint train-
ing and test subsets. Here, 80% of the users were considered existing users for training and
the remaining 20% were cold-start users for testing. To show the relative results of DecRec,
it was compared with several competitive algorithms: CBF, LCE, LCE-NL and KPMF.

Because Epinions has an explicitly given trust network among the users, it has
very useful side information. This set is used to experiment on the cold-start user scenario.
Table 8.4 shows the averaged (5-fold cross validation) performance results of the mentioned
algorithms. DecRec achieved the best performance of NDCG, RMSE and MAE on the
Epinions dataset.

These evaluations of DecRec and the baseline algorithms are close, but the con-
sistency in outperforming other competitive methods on both cold-start user and item
scenarios confirms the stability and performance advantage of DecRec over state-of-the-art

algorithms.

8.3.8 Cold-Start Users and Items

To simulate handling both cold-start users and items, 20% of the users and 20%
of the items where randomly chosen to be cold-start users and items, respectively. All
experiments were performed on the two MovieLens variants because they have rich side
information about both the users and the items. Both the ratings for cold-start users
and items were then predicted. This is a very challenging scenario because of all of the
completely empty rows and columns in the rating matrix. Very few baseline algorithms
exists that can even attempt a solution. DecRec was compared only with only RS, KMF,

ELCE because of this restriction.

115

Table 8.4 shows the results of applying RS, KMF, ELCE and DecRec algorithms on
MovieLens 100K and 1M. On both datasets, DecRec outperformed other baselines. The

nearest competitor was ELCE- a collaborative factorization method.

8.4 Conclusion

DecRec explicitly exploits the similarity information about users and items to alle-
viate cold-start problems. In particular, DecRec decouples the completion from the knowl-
edge transduction, thus preventing some error propagation as described. Experimental
results on real datasets clearly indicated that DecRec outperforms modern benchmark al-
gorithms in all of the permutations of the cold-start problems, and even performs well
when no cold-start users/items are present. Along with the dearth of algorithms that can
be applied to cold-start problems, this positions DecRec as one of the best recommendation

algorithms for cold-start scenarios.

116

Chapter 9

Conclusions

This work presented a new framework to study invariant evolution with the standard
and random P-impact process. Several invariants were explored and their impact in trees
and empty graphs was shown. The process of determining maximum distance-impact edges
was shown to be non-trivial through a series of counterexamples and a proof that these
edges must not be incident to two leaves in trees. Further experimentation seems to indicate
that some edges provide more accuracy when they are added before matrix factorization is
applied.

An effective algorithm for network completion with auxiliary similarity information
about nodes was also developed. Its comparison to the state-of-the-art baselines on syn-
thetic and real datasets reveals that proposed method exhibits improved performance in
terms of recovering the full network. This advantage is brought by the process in which
we decoupled the completion of observed submatrix from transduction of knowledge by
exploiting similarity information.

Finally, an algorithm that explicitly exploits the similarity information about users
and items to alleviate cold-start problems for recommendation was given. Similar to the
network completion algorithm, it completes sub-matrix of the rating matrix and transducts

knowledge from recovered sub-matrix along with the side information of the users and items.

117

This algorithm also performed well in experimentation with existing users/items and in all

three cold-start scenarios.

118

APPENDIX

119

APPENDIX

This appendix contains the results of the additional experimentation in Chapter 6.
Five order 25 random graphs of each class were generated. From each of these, nine other
graphs were created. In each of these nine graphs, between 10-90% (step size of 10%) of
the entries in the adjacency matrix corresponding to potential edges were eliminated. Note
that for non-directed graphs the adjacency matrix is symmetric, so in practice only the
upper-triangle adjacency matrix was considered. From each of these adjacency matrices
two processes occurred. First, the adjacency matrix was completed as-is via matrix factor-
ization. Second, one entry at a time was revealed and replaced with its true value (0 or 1).
At this point, the adjacency matrix was completed (again via matrix factorization). In the
first case, the basal error rates were calculated (i.e. error without revealing any edges). In
the second case, each time an entry was revealed the error of completion was reported as
in instance. For the ease of language, in the original graph both absent and present edges
will be referred to as ‘edges’. The difference being, absent ‘edges’ will have a true value of
0 in the adjacency matrix while present edges will have a value of 1.

The predictive power of individual edges are found by computing the completion
error that their addition yields for the resultant adjacency matrix. The basal error rate is
also reported. For all random graphs of the form G(25,p) for all 0.1 < p < 0.9,p # 0.5
step size 0.1 refer to Figures A.1-15. The tables comparing the basal RMSE and MAE
and the percent of edges who'’s addition degrades the matrix factorization results below the
basal rate are given in Tables A.1-8 for G(25,p) with 0.1 < p < 0.9,p # 0.5 step size 0.1,
respectively. For G(25,0.5), refer to Figures 6.1, 6.2, and 6.1 in Chapter 5 for the RMSE,

MAE, and basal comparison results, respectively.

120

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 | x XXX FCHON I xOamoonc X
5 70 KX XK 000k SOMBREX XXX XX
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
fru
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XK XXX
20 XM K SIS |
10 X X0 XK] FOROOK HRRX X
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.1 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.1)

[l Basal Error X Instances

100

90 XXX MK XK ¥ MK X SHK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| DO XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
"
g B
¥ 50 % XK X OXKKK X
&
o
e 40 X XK OB 1 XXX
g
& o
30 X XX X X0BK X XK K XK XX
20 XX S O |
10 XX K IR 1 XX XWX XK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.2 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.1)

121

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 | x XXX FCHON I xOamoonc X
5 70 KX XK 000k SOMBREX XXX XX
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
fru
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XK XXX
20 XM K SIS |
10 X X0 XK] FOROOK HRRX X
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.3 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.2)

[l Basal Error X Instances

100

90 XXX MK XK ¥ MK X SHK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| DO XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
"
g B
¥ 50 % XK X OXKKK X
&
o
e 40 X XK OB 1 XXX
g
& o
30 X XX X X0BK X XK K XK XX
20 XX S O |
10 XX K IR 1 XX XWX XK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.4 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.2)

122

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 | x XXX FCHON I xOamoonc X
5 70 KX XK 000k SOMBREX XXX XX
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
fru
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XK XXX
20 XM K SIS |
10 X X0 XK] FOROOK HRRX X
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.5 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.3)

[l Basal Error X Instances

100

90 XXX MK XK ¥ MK X SHK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| DO XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
"
g B
¥ 50 % XK X OXKKK X
&
o
e 40 X XK OB 1 XXX
g
& o
30 X XX X X0BK X XK K XK XX
20 XX S O |
10 XX K IR 1 XX XWX XK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.6 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.3)

123

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 | x XXX FCHON I xOamoonc X
5 70 KX XK 000k SOMBREX XXX XX
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
fru
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XK XXX
20 XM K SIS |
10 X X0 XK] FOROOK HRRX X
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.7 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.4)

[l Basal Error X Instances

100

90 XXX MK XK ¥ MK X SHK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| DO XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
"
g B
¥ 50 % XK X OXKKK X
&
o
e 40 X XK OB 1 XXX
g
& o
30 X XX X X0BK X XK K XK XX
20 XX S O |
10 XX K IR 1 XX XWX XK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.8 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.4)

124

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 | x XXX FCHON I xOamoonc X
5 70 KX XK 000k SOMBREX XXX XX
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
fru
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XK XXX
20 XM K SIS |
10 X X0 XK] FOROOK HRRX X
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.9 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.6)

[l Basal Error X Instances

100

90 XXX MK XK ¥ MK X SHK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| DO XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
"
g B
¥ 50 % XK X OXKKK X
&
o
e 40 X XK OB 1 XXX
g
& o
30 X XX X X0BK X XK K XK XX
20 XX S O |
10 XX K IR 1 XX XWX XK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.10 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.6)

125

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 | x XXX FCHON I xOamoonc X
5 70 KX XK 000k SOMBREX XXX XX
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
fru
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XK XXX
20 XM K SIS |
10 X X0 XK] FOROOK HRRX X
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.11 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.7)

[l Basal Error X Instances

100

90 XXX MK XK ¥ MK X SHK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| DO XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
"
g B
¥ 50 % XK X OXKKK X
&
o
e 40 X XK OB 1 XXX
g
& o
30 X XX X X0BK X XK K XK XX
20 XX S O |
10 XX K IR 1 XX XWX XK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.12 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.7)

126

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 | x XXX FCHON I xOamoonc X
5 70 KX XK 000k SOMBREX XXX XX
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
fru
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XK XXX
20 XM K SIS |
10 X X0 XK] FOROOK HRRX X
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.13 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.8)

[l Basal Error X Instances

100

90 XXX MK XK ¥ MK X SHK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| DO XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
"
g B
¥ 50 % XK X OXKKK X
&
o
e 40 X XK OB 1 XXX
g
& o
30 X XX X X0BK X XK K XK XX
20 XX S O |
10 XX K IR 1 XX XWX XK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.14 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.8)

127

[l Basal Error X Instances

100

90 XK XK & KR RN XK X
80 X XXX FCHON I e wocren X
5 70 KX XK 000k SO XXX X%
$
o
E 60 XXX X X X xoud ROMK XK X X
o
4
1:3" 50 XXX MRROK [] YOOI X X
p
o
€ 40 XX | XK X XX X
I
e
& 2
30 XXX SOCHX ik >OBOK XKXK XXX
20 XM K SIS |
10 X XN SR [] OO HRHRX XK
0
13 14 1.5 1.6 17 1.8
RMSE

Figure A.15 RMSE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.9)

[l Basal Error X Instances

100

90 XXX M XK 3 KX XK XK XX X
80 * XK X RKHKX O X X XHK XK X
5 70 X X x x x| XKROOK XX X X X
g
2 -
E 60 X XXX X XK 1 MOHHK XK XX X X
o
Py
g B
¥ 50 % XK X OXKKK X
pr
o
e 40 X XK OB 1 XXX
g
7
a Il
30 X XX X 00K MR K XK XX
20 XX S O |
10 XX K IR 1 XXX MK IOK X X
0
1.23 1.33 1.43 1.53 1.63 1.73
MAE

Figure A.16 MAE on single edge addition for varied percentages of removed edges for
random graphs (p = 0.9)

128

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10% 1.5763 78.33 1.5146 79.66
20% 1.7159 100.0 1.6573 100.0
30% 1.5616 62.0 1.4868 54.0
40% 1.5273 45.33 1.4555 41.66
50% 1.5427 54.33 1.4849 57.66
60% 1.4446 12.66 1.3757 11.33
70% 1.4411 9.666 1.3682 8.666
80% 1.6711 98.33 1.6178 99.0
90% 1.4727 14.33 1.4069 14.33

Table A.1 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdds-Rényi random graphs of the form G(25,0.1)

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10% 1.4106 24.66 1.3127 22.66
20% 1.3668 10.33 1.2707 10.0
30% 1.5186 81.0 1.4315 83.33
40% 1.4561 53.0 1.3610 50.66
50% 1.4525 46.66 1.3597 46.66
60% 1.4615 56.00 1.3687 95.33
70% 1.4758 60.0 1.3676 50.33
80% 1.4231 30.0 1.3252 26.66
90% 1.5231 80.0 1.4284 77.0

Table A.2 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erd6s-Rényi random graphs of the form G(25,0.2)

129

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10% 1.5350 91.66 1.4448 92.33
20% 1.5463 93.66 1.4490 92.33
30% 1.5396 88.0 1.4323 86.33
40% 1.5079 78.0 1.4160 78.33
50% 1.5263 86.33 1.4275 83.0
60% 1.4074 28.33 1.3015 25.0
70% 1.4692 61.0 1.3833 64.66
80% 1.6101 98.0 1.5218 97.33
90% 1.4333 39.33 1.3404 40.0

Table A.3 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdds-Rényi random graphs of the form G(25,0.3)

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10% 1.2241 10.33 1.0778 8.666
20% 1.4249 97.33 1.2985 97.0
30% 1.2825 35.0 1.1382 32.33
40% 1.3024 44.33 1.1746 53.33
50% 1.3004 39.33 1.1629 39.0
60% 1.2436 14.66 1.1080 15.66
70% 1.2742 26.66 1.1283 25.0
80% 1.3970 87.66 1.2568 84.66
90% 1.2930 38.33 1.1553 36.66

Table A.4 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erd6s-Rényi random graphs of the form G(25,0.4)

130

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10% 1.2341 76.66 1.0773 73.0
20% 1.2247 67.33 1.0782 70.66
30% 1.2711 82.33 1.1196 81.33
40% 1.2001 43.0 1.0291 35.0
50% 1.2378 72.33 1.0682 63.0
60% 1.2636 75.0 1.1118 75.33
70% 1.1872 28.99 1.0482 40.0
80% 1.1858 32.66 1.0333 34.33
90% 1.2866 88.0 1.1541 92.33

Table A.5 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdds-Rényi random graphs of the form G(25,0.6)

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)

10% 1.0719 26.66 0.8949 23.33
20% 1.1973 93.33 1.0316 91.66
30% 1.1397 66.33 0.9922 76.0
40% 0.9732 0.666 0.7849 0.666
50% 1.0772 27.33 0.9092 28.00
60% 1.0806 28.33 0.9108 27.66
70% 1.0205 6.666 0.8312 5.0

80% 1.0496 12.33 0.8719 11.66
90% 1.1522 67.66 0.9973 71.0

Table A.6 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erd6s-Rényi random graphs of the form G(25,0.7)

131

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10% 0.9445 40.33 0.7659 32.66
20% 0.8914 8.0 0.7412 17.66
30% 0.9826 62.66 0.8054 55.00
40% 1.0009 66.33 0.8357 65.33
50% 0.8383 1.666 0.6597 2.333
60% 0.9236 20.66 0.7791 34.0
70% 1.0246 76.66 0.8728 78.33
80% 0.9884 58.66 0.8203 54.0
90% 1.0583 88.33 0.9155 90.0

Table A.7 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erdds-Rényi random graphs of the form G(25,0.8)

Edges Removed (%) || Basal RMSE | Worse Edges (%) || Basal MAE | Worse Edges (%)
10% 0.8708 49.0 0.6840 31.0
20% 0.8533 34.0 0.6948 32.33
30% 0.9176 76.33 0.7621 73.0
40% 0.9716 94.0 0.8229 93.66
50% 0.8869 56.00 0.7358 53.66
60% 0.8449 27.0 0.7013 34.33
70% 0.8918 56.66 0.7316 52.33
80% 0.8154 10.0 0.6538 11.33
90% 0.8633 30.66 0.7021 28.99

Table A.8 The basal completion error and the percent of edges that produce higher error
for all percentages of edges removed for Erd6s-Rényi random graphs of the form G(25,0.9)

132

REFERENCES

133

1]

[10]

REFERENCES

Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-Philippe Vert. A new
approach to collaborative filtering: Operator estimation with spectral regularization.
The Journal of Machine Learning Research, 10:803-826, 2009.

A Annibale and ACC Coolen. What you see is not what you get: how sampling affects
macroscopic features of biological networks. Interface Focus, 1(6):836-856, 2011.

Sitaram Asur and Bernardo A Huberman. Predicting the future with social media. In
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM
International Conference on, volume 1, pages 492-499. IEEE, 2010.

Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. Everyone’s
an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM
international conference on Web search and data mining, pages 65-74. ACM, 2011.

Iman Barjasteh, Rana Forsati, Abdol-Hossein Esfahanian, and Hayder Radha. Cold-
start item and user recommendation with decoupled completion and transduction. In
RecSys, pages 91-98, 2015.

Iman Barjasteh, Rana Forsati, Dennis Ross, Abdol-Hossein Esfahanian, and Hayder
Radha. Cold-start recommendation with provable guarantees: A decoupled approach.

Justin Basilico and Thomas Hofmann. Unifying collaborative and content-based fil-
tering. In ICML, page 9. ACM, 2004.

Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. ACM
SIGKDD Ezxplorations Newsletter, 9(2):75-79, 2007.

Daniel Billsus and Michael J Pazzani. User modeling for adaptive news access. User
modeling and user-adapted interaction, 10(2-3):147-180, 2000.

Stephen P Borgatti and Martin G Everett. A graph-theoretic perspective on centrality.
Social networks, 28(4):466-484, 2006.

134

[11]

[17]

[18]

[19]

[20]

[21]

Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of Mathe-
matical Sociology, 25(2):163-177, 2001.

Robin Burke. Hybrid recommender systems: Survey and experiments. User modeling
and user-adapted interaction, 12(4):331-370, 2002.

Guo-Ray Cai and Yu-Geng Sun. The minimum augmentation of any graph to a k-
edge-connected graph. Networks, 19(1):151-172, 1989.

Jian-Feng Cai, Emmanuel J Candes, and Zuowei Shen. A singular value thresholding
algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956-1982,
2010.

Paul A. Catlin. A reduction method to find spanning eulerian subgraphs. Journal of
Graph Theory, 12(1):29-44, 1988.

Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry Netes, and
Matthew Sartin. Combining content-based and collaborative filters in an online news-
paper. In Proceedings of ACM SIGIR workshop on recommender systems, volume 60.
Citeseer, 1999.

Gabriella Contardo, Ludovic Denoyer, and Thierry Artieres. Representation learning
for cold-start recommendation. arXiv preprint arXiv:1412.7156, 2014.

Aron Culotta. Towards detecting influenza epidemics by analyzing twitter messages.
In Proceedings of the first workshop on social media analytics, pages 115-122. ACM,
2010.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The yahoo!
music dataset and kdd-cup’l1l. In KDD Clup, pages 818, 2012.

Asmaa Elbadrawy and George Karypis. Feature-based similarity models for top-n
recommendation of new items. 2014.

Paul Erdés. On some extremal problems in graph theory. Israel Journal of Mathe-
matics, 3(2):113-116, 1965.

135

[22]

[23]

[24]

[25]

[26]

[29]

[30]

[31]

[32]

Paul Erdos, Andréas Hajnal, and John W Moon. A problem in graph theory. American
Mathematical Monthly, pages 1107-1110, 1964.

Abdol-Hossein Esfahanian and S Louis Hakimi. On computing a conditional edge-
connectivity of a graph. Information Processing Letters, 27(4):195-199, 1988.

Yi Fang and Luo Si. Matrix co-factorization for recommendation with rich side infor-
mation and implicit feedback. In Proceedings of the 2nd International Workshop on
Information Heterogeneity and Fusion in Recommender Systems, pages 65-69. ACM,
2011.

Andrés Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
Journal on Discrete Mathematics, 5(1):25-53, 1992.

Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 3541, 1977.

Harold N Gabow and Eugene W Myers. Finding all spanning trees of directed and
undirected graphs. SIAM Journal on Computing, 7(3):280-287, 1978.

Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars
Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommenda-
tions. In ICDM. IEEE, 2010.

Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
MyMediaLite: A free recommender system library. In ACM, Recommender Systems,
2011.

Thomas George and Srujana Merugu. A scalable collaborative filtering framework
based on co-clustering. In ICDM, 2005.

Quanquan Gu and Jie Zhou. Learning the shared subspace for multi-task clustering
and transductive transfer classification. In ICDM’09, pages 159-168. IEEE, 2009.

Roger Guimera and Marta Sales-Pardo. Missing and spurious interactions and the
reconstruction of complex networks. Proceedings of the National Academy of Sciences,
106(52):22073-22078, 20009.

136

[33]

[34]

[39]

[41]

[42]

Asela Gunawardana and Christopher Meek. A unified approach to building hybrid
recommender systems. In Proceedings of the third ACM, Recommender systems, 2009.

Sunil Kumar Gupta, Dinh Phung, Brett Adams, Truyen Tran, and Svetha Venkatesh.
Nonnegative shared subspace learning and its application to social media retrieval. In
ACM SIGKDD, pages 1169-1178. ACM, 2010.

Sunil Kumar Gupta, Dinh Phung, Brett Adams, and Svetha Venkatesh. Regularized
nonnegative shared subspace learning. Data mining and knowledge discovery, 26(1):57—
97, 2013.

Steve Hanneke and Eric P Xing. Network completion and survey sampling. In AISTAT,
pages 209-215, 2009.

Thorsten Hennig-Thurau, Caroline Wiertz, and Fabian Feldhaus. Exploring the twitter
effect: an investigation of the impact of microblogging word of mouth on consumers
early adoption of new products. Awailable at SSRN, 2016548, 2012.

Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Evalu-
ating collaborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22(1):5-53, 2004.

Mohsen Jamali and Martin Ester. A matrix factorization technique with trust prop-
agation for recommendation in social networks. In Proceedings of the fourth ACM
conference on Recommender systems, pages 135-142. ACM, 2010.

Bhargav Kanagal, Amr Ahmed, Sandeep Pandey, Vanja Josifovski, Jeff Yuan, and
Lluis Garcia-Pueyo. Supercharging recommender systems using taxonomies for learn-
ing user purchase behavior. Proceedings of the VLDB Endowment, 5(10):956-967,
2012.

Myunghwan Kim and Jure Leskovec. The network completion problem: Inferring
missing nodes and edges in networks. In SDM, pages 47-58. SIAM, 2011.

Noam Koenigstein, Gideon Dror, and Yehuda Koren. Yahoo! music recommendations:
modeling music ratings with temporal dynamics and item taxonomy. pages 165-172.

ACM, 2011.

137

[43]

[44]

[45]

[46]

[47]

[49]

[51]

Jnos Komls and Mikls Simonovits. Szemerdi’s regularity lemma and its applications
in graph theory, 1996.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 426-434. ACM, 2008.

Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative filtering.
ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1):1, 2010.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, (8):30-37, 2009.

Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-based
collaborative filtering. In SDM, volume 5, pages 1-5. STAM, 2005.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social net-
works. Journal of the American society for information science and technology,
58(7):1019-1031, 2007.

Guang Ling, Michael R Lyu, and Irwin King. Ratings meet reviews, a combined
approach to recommend. In ACM Conference on Recommender Systems, pages 105—
112. ACM, 2014.

Juntao Liu, Caihua Wu, and Wenyu Liu. Bayesian probabilistic matrix factorization
with social relations and item contents for recommendation. Decision Support Systems,
2013.

Nathan N Liu, Xiangrui Meng, Chao Liu, and Qiang Yang. Wisdom of the better
few: cold start recommendation via representative based rating elicitation. In ACM
Conference on Recommender Systems, pages 37—44. ACM, 2011,

Mingsheng Long, Jianmin Wang, Guiguang Ding, Wei Cheng, Xiang Zhang, and Wei
Wang. Dual transfer learning. In SDM, pages 540-551. STAM, 2012.

Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. Sorec: social recommendation
using probabilistic matrix factorization. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 931-940. ACM, 2008.

138

[54]

[55]

[56]

[57]

[58]

[62]

[63]

[64]

Wolfgang Mader. A reduction method for edge-connectivity in graphs. Annals of
Discrete Mathematics, 3:145-164, 1978.

Farzan Masrour, Iman Barjesteh, Rana Forsati, Abdol-Hossein Esfahanian, and Hay-
der Radha. Network completion with node similarity: A matrix completion approach
with provable guarantees. pages 302-307. ACM, 2015.

David W Matula. Determining edge connectivity in 0 (nm). In Foundations of Com-
puter Science, 1987., 28th Annual Symposium on, pages 249-251. IEEE, 1987.

Prem Melville, Raymond J Mooney, and Ramadass Nagarajan. Content-boosted col-
laborative filtering for improved recommendations. In AAAI/IAAI pages 187-192,
2002.

Aditya Krishna Menon, Krishna-Prasad Chitrapura, Sachin Garg, Deepak Agarwal,
and Nagaraj Kota. Response prediction using collaborative filtering with hierarchies
and side-information. In ACM SIGKDD, pages 141-149. ACM, 2011.

Aditya Krishna Menon and Charles Elkan. A log-linear model with latent features for
dyadic prediction. In ICDM, pages 364-373. IEEE, 2010.

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization.
In Machine Learning and Knowledge Discovery in Databases, pages 437-452. Springer,
2011.

Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In Ad-
vances in neural information processing systems, pages 1257-1264, 2007.

Juhani Nieminen. On the centrality in a graph. Scandinavian Journal of Psychology,
15(1):332-336, 1974.

Juhani Nieminen. Distance center and centroid of a median graph. Journal of the
Franklin Institute, 323(1):89-94, 1987.

Uros Ocepek, Joze Rugelj, and Zoran Bosni¢. Improving matrix factorization recom-
mendations for examples in cold start. Fapert Systems with Applications, 2015.

139

[65]

Weike Pan, Evan Wei Xiang, Nathan Nan Liu, and Qiang Yang. Transfer learning
in collaborative filtering for sparsity reduction. In AAAI volume 10, pages 230-235,
2010.

Manos Papagelis, Gautam Das, and Nick Koudas. Sampling online social networks.
Knowledge and Data Engineering, IEEE Transactions on, 25(3):662—676, 2013.

Seung-Taek Park and Wei Chu. Pairwise preference regression for cold-start recom-
mendation. In RecSys, pages 21-28, 2009.

Seung-Taek Park, David Pennock, Omid Madani, Nathan Good, and Dennis DeCoste.
Naive filterbots for robust cold-start recommendations. pages 699-705, 2006.

Arkadiusz Paterek. Improving regularized singular value decomposition for collabo-
rative filtering. In Proceedings of KDD cup and workshop, volume 2007, pages 5-8,
2007.

Michael J Pazzani. A framework for collaborative, content-based and demographic
filtering. Artificial Intelligence Review, 13(5-6):393-408, 1999.

Alexandrin Popescul, David M Pennock, and Steve Lawrence. Probabilistic models for

unified collaborative and content-based recommendation in sparse-data environments.
In UAI pages 437444, 2001.

lan Porteous, Arthur U Asuncion, and Max Welling. Bayesian matrix factorization
with side information and dirichlet process mixtures. In AAAI 2010.

Benjamin Recht. A simpler approach to matrix completion. The Journal of Machine
Learning Research, 12:3413-3430, 2011.

Steffen Rendle. Factorization machines. In ICDM, pages 995-1000. IEEE, 2010.

Steffen Rendle and Lars Schmidt-Thieme. Online-updating regularized kernel matrix
factorization models for large-scale recommender systems. In Proceedings of the 2008
ACM conference on Recommender systems, pages 251-258. ACM, 2008.

140

[76]

[81]

[82]

[84]

[35]

[36]

Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization
for collaborative prediction. In Proceedings of the 22nd international conference on
Machine learning, pages 713-719. ACM, 2005.

Dennis Ross, Bruce E Sagan, Ronald Nussbaum, and Abdol-Hossein Esfahanian. On
constructing regular distance-preserving graphs. arXiv preprint arXiv:1405.1713, 2014.

S Roweis. Nips dataset (2002). http://www. cs. nyu. edu/” roweis.

Martin Saveski and Amin Mantrach. Item cold-start recommendations: learning local
collective embeddings. In RecSys, pages 89-96. ACM, 2014.

Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. Methods
and metrics for cold-start recommendations. In SIGIR, pages 253-260. ACM, 2002.

Hanhuai Shan and Arindam Banerjee. Generalized probabilistic matrix factorizations
for collaborative filtering. In ICDM, pages 1025-1030. IEEE, 2010.

Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges. ACM Computing
Surveys (CSUR), 47(1):3, 2014.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix fac-
torization. In Advances in neural information processing systems, pages 1329-1336,
2004.

Michele Trevisiol, Luca Maria Aiello, Rossano Schifanella, and Alejandro Jaimes. Cold-
start news recommendation with domain-dependent browse graph. In ACM Conference
on Recommender Systems, volume 14, 2014.

Omar Wasow, Alex Baron, Marlon Gerra, Katharine Lauderdale, and Han Zhang. 1
can tweets kill a movie? an empirical evaluation of the bruno effect. Awvailable at
SSRN, 2010.

Wouter Weerkamp and Maarten De Rijke. Activity prediction: A twitter-based ex-
ploration. In SIGIR Workshop on Time-aware Information Access, 2012.

141

[87] Xi Zhang, Jian Cheng, Shuang Qiu, Guibo Zhu, and Hanqing Lu. Dualds: A dual
discriminative rating elicitation framework for cold start recommendation. Knowledge-
Based Systems, 73:161-172, 2015.

[88] Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander Smola. Taxonomy dis-
covery for personalized recommendation. pages 243-252. ACM, 2014.

[89] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. Functional matrix factorizations
for cold-start recommendation. In ACM SIGIR, pages 315-324. ACM, 2011.

[90] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. Kernelized
probabilistic matrix factorization: Exploiting graphs and side information. In SDM,
pages 403-414, 2012.

91] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. Kernelized
p
probabilistic matrix factorization: Exploiting graphs and side information. volume 12,
pages 403-414. STAM, 2012.

142

