
 

.PRfiPERTiES OF ‘L p DERIVATIVES

Thesis for the Degree of Ph. D”

MIDI-WAN. STATE UNIVERSFTY

MICHAEL JON EVANS

197.0



(HES'S

0-169

This is to certify that the

thesis entitled

Properties of Lp Derivatives

presented by

Michael Jon Evans

has been accepted towards fulfillment

of the requirements for

PhoDo degree in Mathematics

C Q amigo? 
Major professor

Date Max 15' 1970

runs-numb?!

LIBRARY

Michigan Stem

Univ rsicy

....,.. r w I" K" ‘ Zi-

A"

 





ABSTRACT

PROPERTIES OF Lp DERIVATIVES

BY

Michael Jon Evans

Suppose a real valued function f, defined

on an interval I, possesses an ordinary derivative

f'(x) at each point of I. Then f' need not be a

continuous function. However, A. Denjoy, J.A.

Clarkson, and Z. Zahorski have shown that f'

possesses the following four properties, defined

here for an arbitrary function g.

l. A function g is said to be of Baire

class one if g is the pointwise limit of a sequence

of continuous functions.

2. A function 9, defined on an interval I,

is said to have the Darboux property if, on every

subinterval [a,b] of I, 9 takes on all intermediate

values.

3. A function g is said to have the Denjoy

property if for every open interval (a,b), g—1((a,b))

either is empty or has positive measure.
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4. A function g is said to have the

Zahorski property if for every open interval (a,b),x

in g-1((a,b)), and {In} a sequence of closed

intervals converging to x with

-1

lg ((a.b>) n Inl = o

for every n, then

III
' ____fl__ _

11m d(x,I ) — 0'
n"0° n

where IEI denotes the Lebesgue measure of a set

E, and

d(x,In) = inffl x - yI : y E In}.

H;W. Oliver showed more generally that if a

function f has a kth Peano derivative fk(x) at

each point of an interval, then fk has properties

1, 2, and 3 listed above. C.E. Weil showed,

furthermore, that f has property 4.
k

In Chapter I of this paper we look at the

h
definition of a kt Lp derivative for a function

as given by A.P. Calderon and A. Zygmund. This type

of differentiation is a generalization of the Peano

type. In Chapter II it is shown that if a continuous

L

function f possesses a kth Lp derivative fkp(x)
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at each point of an interval, then f:p has the

above listed properties 1, 2, 3, and 4. We also

prove some other properties of f:p dealing with

its relationship to approximate and ordinary

derivatives. In Chapter III we show that if we

assume only that f is measurable and possesses a

kth Lp derivative at each point of an interval,

L

then fkp still has property 1.
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Chapter I. Introduction and Definitions

Suppose a real valued function f, defined on

an interval I, possesses an ordinary derivative f'(x)

at each point of I. Although f' need not be continu—

ous under these circumstances, it does possess certain

properties which make it closely related to continuous

functions. Consider the following definitions of

these properties.

Definition 1.1. A function g is said to

belong to Baire class one if g is the pointwise limit

of a sequence of continuous functions.

Definition 1.2. A function 9, defined on an

interval I, is said to have the Darboux property if, on

every subinterval [a,b] of I, g takes on all inter-

mediate values, i.e. if g(a) # g(b), and if c lies

between 9(a) and g(b), there is a number d, a < d < b,

for which g(d) = c.

Definition 1.3. A function g is said to have

the Denjoy property if for every open interval (a,b),

g-1((a,b)) either is empty or has positive measure.





Definition 1.4. A sequence of closed intervals

{In} is said to converge to a point x if x is not

in the union of the In and if every neighborhood of

x contains all but a finite number of the intervals

I .
n

Definition 1.5. A function g is said to have

the Zahorski prOperty if for every Open interval (a,b),

x in g‘1((a,b)) and {In} a sequence of closed

intervals converging to x with

lg-1((a.b)) n Inl = o,

for every n, then

d(x,I ) = 0’

where [E] denotes the Lebesgue measure of a set E,

and

d(x,In) = inf[Ix-yl : y 6 In}.

If f' is the derivative of f at each point

of an interval I, it is well known that f' .is of

Baire class one and that f' has the Darboux property.

Although f' need not be continuous, Denjoy and

Clarkson have shown that f' has the Denjoy property

(see [6] and [3]). Zahorski refined this property in

[19] and proved that f' possesses what we have named



 



the Zahorski property. These four properties do not

classify derivatives. Indeed, they are possessed by

more general types of derivatives. Consider the

following definition.

Definition 1.6. A function f, defined on an
 

interval I, is said to have a kth Peano derivative at

x0, k = 1,2,..., if there exist numbers

fl (x0) , f;2 (x0) , . . . , fk (x0) such that

hk k
f(x0+h) — f(xo) - hfl(XO)-...— ET fk(x0) = o(h)

as h fl 0.

The numbers fl(x0),...,fk(xo) can easily be

shown to be unique, and if f has a kth Peano deriva-

tive fk(x0) at x0, then it also has an nth Peano

derivative fn(xo). n = 1,2,...,k—1. Notice that

f1(xo) = f'(x0), the ordinary first derivative. If

f has an ordinary kth derivative, f(k)(xo), at x0,

then Taylor's theorem shows that fk(x0) exists and

(k)
equals f (x ). However fk(xo) may exist without

0

f(k)(xo) existing.

Example 1.1 Let f(x) = x3 sin i for x # O,
 

and f(0) = 0. Then fl(0) = f'(O) = O, and since



 



4
s

3
h sin = o(hz),l

h

(2) (0)as h d O, we have f2(O) = 0. However, f

does not exist.

Suppose now that a function f, defined on an

h
interval I possesses a kt Peano derivative at each

point of I. Denjoy [5] and Oliver [13] have shown that

under these circumstances fk belongs to the first Baire

class. Oliver also has shown that fk has the Darboux

property and the Denjoy property. Weil [18] has given

another proof that fk has the Denjoy property, as well

as proving that f has the Zahorski property.
k

Calderon and Zygmund [2] have introduced a

generalization of the kth Peano derivative as follows:

Definition 1.7. A function f, defined on an

interval I, is said to have a kth Lp derivative at

x l g p < m, k = 1,2,..., if there exist numbers
0’

Lp Lp Lp

fO (x0), fl (x0),...,fk (x0) such that

1
L L k L -

l h _ p p _ __ p p p{h f0 |f(xo+t) f0 (xO)-tfl (x0) ...- k: fk (x0)| at}

= o(hk).

as h ~ 0.



As with the kth Peano derivative, the numbers

L L L

P P P
fO (X0), fl (x0)....,fk (x0) can be shown to b:

unique, and if f has a kth Lp derivative fkp(xo)

at x0, then it also has an nth Lp derivative

L

f P(x ) at x for n = l,2,...,k—l. In this last

n O 0

definition it appears that the value of f at x is

O

irrelevant. However, if we know that f has a kth

Lp derivative everywhere on an interval I, then we

can show that f(x) = f:p(x) for almost every x in

I by the following reasoning. Call x a Lebesgue

point of f if

lim

h

f(x+t)dt = f(x)

h-o I O

:
J
‘
I
H

By Lebesgue's theorem we know that almost every point

in I is a Lebesgue point of f (see [11] for a detailed

discussion.) Using the fact that f has a kth Lp

derivative at each point x in I, it is not difficult

to show that

1 11 Lp
lim - I f(x+t)dt = f (x),

11 O O

h~O

L

for each x in I. Hence fop(x) = f(x) for each

Lebesgue point x of f.

Another useful fact that is easy to show is that

if f has a kth Peano derivative at a point x, then



f has a kth Lp derivative at x for any 1.3 p < w.

L

and fk(x) = fkp(x). Furthermore if 1 g_q < p < m,

and f has a kth Lp derivative at x, then f has

th
L L

a k Lq derivative at x, and fkp(x) = fkq(x).

One of the first differences to be noticed

between the Peano and Lp types of differentiation

h
is that while the existence of the kt Peano deriva-

tive of a function f at each point of an interval

implies that f is continuous on that interval, the

same is not true for the kth Lp derivative as the

following example shows. This example also shows that

the kth Lp derivative is a true generalization of the

kth Peano derivative, i.e. a kth Lp derivative is

not necessarily a kth Peano derivative.

Example 1.2. Here we construct a function on
 

the interval I = [0,1] which has a first Lp deriva—

tive at each point of I (indeed it will have an

ordinary derivative on (O,l]), but which is discon-

tinuous at O. For each positive integer n, let

__l_._1__1_ -n — 2n, 2n + 8Pn]. On In we W111 choose f so



l) f has an ordinary derivative at

each point of In'

2) “—334 = f(—lr-1 + 745;) = o.
2 2 8

. __ _ ..j; ._L_ _ . .
3) f+(2n) — f_(2n + 8Pn) — 0, where f+(or f_)

denotes the right (or left) derivative at X,

4) max f(x) = l.

xEIn

00

For X in I — U In, we let f(x) = 0. Since f(0) = 0,

n=1

and since every right neighborhood of 0 contains

infinitely many of the intervalS‘ In’ f is not conti—

nuous at O. f clearly has an ordinary derivative at

each point in (O,l]. Next we will show that

L L

fop(O) = flp(O) = O, i.e. we will show that

l

. h. p \i5 _
11m f0 |f(t)| at] — 0.

Let 0 < h < l, and choose the positive integer N so

th

S
u
e

D
‘
I
I
—
l

 

1 1
that <h_<_ .

2N+1 2N

Then 1 ‘3; +._L_ 1

1 f1 hIf t) pd‘p N+l{2N+l 2N BPth) pd\p

h r h ICD ( l ti -3 2 [0 I ( I t}

l

n=N n
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1

S 2N+l{2N+l I 1 dt}p

n=N n

a, l

‘ n=N 8

l

P P
= 2N+112N+1< N8 p )}

k 8P (8 —1)

= 16-21/p . 1

(8p_1)1/b 22N-N/p

g 16°21/P . EL.

(Sp-1)”p 2N

Now as h ~ 0, N d m, and -;§ ~ 0; so the example is

2

established.

In Chapter II of this paper we will show that

if, as in the case of the Peano derivative, we start

with a continuous function f defined on an interval

I, and assume the existence of the kth L derivative

L

of f at each point of I, then fkp also possesses

the four properties mentioned above as belonging to

ordinary derivatives and Peano derivatives. In Chapter

III we will show that if we dispense with the

assumption that f be continuous on I, we can still

L

show that fkp belongs to Baire class one.



Before beginning the proofs of these results,

we should look at yet another type of differentiation

which will be quite useful in what follows. This is

the notion of an approximate derivative which was

introduced by Denjoy [4]. Consider the following

definitions.

Definition 1.8. Let E be a set of real

numbers, and let x be any real number. We say that

x is a point of density one, or just a point of

density, of E if

1im E O I

IxEI

lIl~o

We say that x is a point of dispersion of E if

lim E O I

XEI I

III-‘0

Definition 1.9. We say that a function f has

A as an approximate limit at x i.e.
0’

lim f(x) = A,

aP

X"XO

if there is a set E having xO as a point of density

one such that
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lim f(x) = A;

xex

O

xEE

or equivalently, if for each e > O, the set

F€ = {x : IF(X) - Al‘g S} has xO as a point of

dispersion.

Definition 1.10. A function f is said to have
 

an approximate derivative f (x0) at x if
5p 0

f (X) - f (x0)

= f' (x ).
ap x - x ap

O

O

 

lim

X"X

Suppose that f is a real valued function,

defined on an interval I, possessing an approximate

derivative at each point of I. Tolstoff [15] has shown

that under these circumstances fép is of Baire class

one. Khintchine [8] has shown that Rolle's theorem

holds for approximate derivatives. It then readily

follows that fép has the Darboux property. The proofs

of Khintchine and Tolstoff are long and complicated. A

shorter proof of the fact that fép is of Baire class

one and has the Darboux property has been given by

Goffman and Neugebauer [7]. Marcus [10] has shown that

fép has the Denjoy property. Weil [18] gave another

proof that fép has the Denjoy property and, further—

more, showed that it has the Zahorski property.



Chapter II. Properties of kth L

Derivatives of Continuous Functions

The following theorem and its proof are due to

Neugebauer [12].

Theorem 2.1. Let f be a measurable function
 

defined on an interval I. Then at almost all points

x at which f has a first Lp derivative,

LP
fl (x) = fap(x).

Proof. Let x be a point at which f has a

L

first Lp derivative, i.e. there exist numbers fop(x)

L

and f1p(x) such that

1 h L L l

{E f0|f(x+t) - fop(x) — t flp(x)lpdt}p = o(h).

Let S > O, and set

L L

E = {t > o: lf(x+t) - fop(x) - t flp(x)l _>_ at} and

L L

E6 = {t < o: |f(x+t) - f0p(x) - t flp(x)|.2 eltl}. We

need to show that ES and Fe have 0 as a point of

dispersion. Let h > O and set Eh = E6 0 [0,h].

Then we have

1
L L _

{fl-1 jg If(x+t) - fop(x) — t flp(x) |Pdt}P

ll
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l L L l

_>_ { HI lf(x+t) - fop(x) - t flp(x)|pdt}P

Eh

1

2 { 1111‘]. eptp dt}p

En

1
| _

_>.{11-1 fth eptp dt}P

1

_ '._EE ..LEQL}I5 I

— i p+l 11 Eh ’

and this is o(h), i.e.

l

P - E

{e1— LEEP Hi"
h-o P

Hence

1im IEhl _ O

hfiO 11 — '

i.e. E has 0 as a point of dispersion. Similarly

F has 0 as a point of dispersion. So

L

f(x+t) - fop(x) Lp

11map t = fl (X)-

tdO

 

If x also belongs to the Lebesgue set of f, then

L L

P = P = . -
fO (x) f(x), and hence fl (x) fap(x). Since

almost every x at which f has a first Lp derivative

belongs to the Lebesgue set of f, the theorem is

proved.
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Remark. Suppose that in the statement of the

above theorem measurability is replaced by continuity.

Then since every point of continuity of a function is a

Lebesgue point of the function, we have f(x) = f:p(x)

for each point where f has a first Lp derivative.

L

Hence at each such point flp(x) = fép(x).

Corollary 2.1. Let f be a measurable function,
 

defined on an interval I, possessing a first L

derivative at each point of I. Then ftp

1) belongs to Baire class one,

2) has the Darboux property,

3) has the Denjoy property,

and 4) has the Zahorski property.

Proof. In the above theorem we saw that

L

f(x+t) — fop(x)

ap t

t~O

 

L

1im flp(x)

L

at each point x in I. Since f(y) fop(y) for

almost every y in I, we have

LP LP
fO (x+t) - fO (x) L

. = p

llmap t fl (X) I

t‘O

 

L

flp(x)

A

H
)

O
II

'I

'
U

V m
-

'
U

3
3

II
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for each x in I. As pointed out in Chapter I, an

approximate derivative satisfies 1), 2), 3) and 4).

So the proof is complete.

If we now consider higher order Lp derivatives,

we obtain the following result.

Theorem 2.2. Let f be a measurable function

possessing a kth Lp derivative at each point of an

L

interval I. Then fkp(x) is the approximate derivative

L

of kal(x)L at almost every point x in I, i.e.

P(x) =:§_’(f1a)p (x) a.e. in I.

Proof. Without loss of generality we may assume

that III < m. Let s > 0 be given. By the corollary

to theorem 9 in [2] there exist a closed set E C I

with II - E] < e and a decomposition f = g + h,

where

1) g E Ck(I), i.e. g has k continuous

derivatives on I,

2) h(x) = O for all x E E,

and
1

{éfglh(x+t)lpdt}p =o(hk) as h-+O

for each x in E.
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NOW let X be a point of density of E. If

X + u E E, then by 3)

Lp Lp

hk_1(x+u) = hk_l(x) = O.

 

So

LP LP
_ (x+u) — h (x)

1im hk 1 k—l = O,

u~O u

x+u€E

LP
i.e. (bk-1)ap (X) = 0.

Hence

LP LP LP
fk (X) = 9k (x) + h.k (x)

= g(k)(x) + O

= (9‘k'l’)gp<x> + (hifl);p<x>
L

= \fk81)ap(x)'

L

P _ P .
So fk (X) — (fk-1)ap(x) for almost every

x E E, and since this is true for each 3 > O, we have

LP LP

fk (X) = (fk—l>ap (X)

for almost every X E I.

The conclusion of this theorem cannot be

strengthened to an "everywhere type" result, even if we

assume that f is continuous, as the following example

shows.



l6

3 . 1

Example 2.1. Let f(x) =‘{x 51“ g' 0 < X 3,1.

0 , X = O.

L

We will show that f2(x) (and hence f2p(x)) exists for

each X, 0 g_x g_1, but f2(O) #’(fl)ép(0). we have

1 2 . 1
f'(x) = { —X cos §_+ 3x Sln X' 0 < X g_1,

O , x = O .

Also f"(X) exists routinely for O < X's 1, and since

f(h) = h3 sin % = o(h2),

we have f2(O) = 0.

Now if (f1)ép(0) = 0, then for each s > O,

the set E6 = [h : If'(h)l > 611} has 0 as a point

of dispersion. We will show that this is not the case.

Let F€ = [h : loos %l > e} for e > O. In

particular consider

F
l

:5

l l
{h . lcos El >-—;}

  ll

I
I
C
8

(1 l)l nw+g ' nw-I .

n 4 4

For a fixed positive integer N,
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°° 1

|F_1_n[O'NTr-T_r__]|=IngN<mT+TI’nTr—1I>l

2 4 4
fl

_ °° 1 \
— ngg l ( nv + I ' nw - I) I

_ 4 4

=Z( 1 )
n=N 2n W - 8

1 °° 1
>—Z(

4 n=N nzw — E)
4

l °° 1 1

= 4 n§;l( nw + E ’ nw — E>l

‘ 2 2

_ l l

_ 4 l [0' NW — E J I

2

80 F1 does not have 0 as a point of dispersion.

fl

Let c > O, and consider

’ 1
El =[h: lf'(h)| >[——-e)h}
_-€ fl

fl

1 . l l
= {h : Icos — + 3h Sln —| >-—- - e}

h h x/i

For a sufficiently large N,



l8

-€n[0, WJDFJ-OLO, #:1'

E_1_

fl 2 fl

So El does not have 0 as a point of dispersion.

——-- 6

fl

Consequently, f2(O) # (fl ap(O).

Although a kth Lp derivative of a continuous

function need not be an approximate derivative, we will

show that it has the four properties of derivatives

mentioned in Chapter I. We will need a few preliminary

results.

In [13] Oliver introduced certain types of

h
mean value prOperties for kt Peano derivatives. We

will find it beneficial to exploit these prOperties,

defined here in terms of kth Lp derivatives.

Definition 2.1. If f has a kth Lp derivative

at each point of an interval I, we say f has properties

M?’ j = O,1,...,k-l, if for each X and x+h in I,

there is an x' between X and x+h such that:

LP LP
0 + - c —000-f1 (X h) f1 (X) .

ESL
(k-j):

k-j-l Lp

f (x) L

1"]. = fkp(xl) .

h

(k-i-l l



19

The special case of property M? when the left side

of this inequality is equal to O, we refer to as

property R? .

The proof of the following lemma is due to

Oliver [13].

Lemma 2.1. Let an interval I and a positive

integer k be fixed.

1) Let j be an integer from O to k-l.

If every function which possesses a kth L derivative

at each point of I has property R?’ then every such

function also has property M:

2) If a function f has property Ri—l and

properties M? , for each j = O,l,...,k—2, then f

has property R? for each j = O,l,...,k—l.

Proof. Statement 1) is proved in the usual

manner by adding an appropriate polynomial to f.

Suppose y and y+h belong to I. Set

 

Lp LP hk-j—l p )
15' (Y+h)'f' (Y)"°-‘ “YT“:— f _ (y

g(x) = f(x) — 1 2| k_j (k 3 1). k 1

L..._

(k-j):

x- )k
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Then

Lp LP LP hk—j-l Lp

gj (y+h) - gj (Y) " hgj+l (Y)-ooo- (k-j‘l): gk-l(y) = OI

k

i.e. 9 satisfies the hypotheses of Rj ; and

k—j-l L

- h f p (y)
kaifiLl} krl

 

L L

fip(y+h)—fjp(y)—...

bk"j

(k-j)3

 

Applying the conclusion of R? to g, i.e., replacing

L

X by X' and gkp(x') by O, the conclusion of M?

follows for f.

To prove statement 2), let j be an integer,

O g_j g_k-2, and suppose x and x+h are two points

in I with

 

 

 

 

Lp Lp hk-j—l Lp

O = fi_(x+h) - fj (X)-...- (k-j—l)! fk_1(x)

2‘22...
(k-j)3

So __ __

Lp Lp hk—j-2 Lp

. + - . —...- . LO: 1 f1(x h) f] (x) lk-J-Z): fk_2(x) _ f p (x)

._;R__ k-l

(k'j) I

  

Since f has property ME—l, there is an X' between

X and x+h such that
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Lp Lp hk-j-2 Lp

. + — . —...— ———w————-fJ (x h) f1 (x). (k-J-2)1 fk-Z = pr (X')

hij—l k-l '

(k-j-l)!

Consequently,-

LP P P LP

0 = fk-1(X ) ' fk—1(X) = fk—1(X ) ' fk-I‘X) . (X'—x)

h (X' — x) h °

k-j k-j

Since f has property Ri-l’ there exists an x"

between x' and x such that fk(x") = 0. Hence f

has property R: .

 

Lemma 2.2. Suppose f has a kth Lp derivative

at a point X. Then

L

. k-l f.p(x) . L

1im 5%— J‘g f(x+t) — Z ——?-—,-—-— t1 dt = f P(x)
. 1. k

th h 1=O

Proof. Let c > 0 be given. Since f has a

kth Lp derivative at X, there exists a 6 > 0 such

that for o < lhl < 6

1
k p . — k

1. h f. (X) 1 I) p elhl

{[3] f()|f(x+t) - 12g 1i: t dtl } < (k+1):

Let h be such that O < Ihl < 6. Then

L

' k-l f.p(x) - L

HEEL)... I2 f(x+t) _ 23 1., t1 dt - hkfkp(x)l

i=0 1'

Lp
]< fi (x)

= l-U-<%]L2—:- f2 f(x+t) - Z T- ti dtl

i:
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L

k f.p(x) .
k+l): h 1 1

311—,— lf(X+t) - Z ——.. t dt
h f0 i=0 1. l

L

k f.p(x) . l
. l h 1 1 p p

kl. f t — , t dts<+>{m.rol<x+)i§0 1. I}

< 6 wk,

where the next to the last inequality results from an

application of Holder's inequality.

Lemma 2.3. Let f be continuous on an interval

I and have the following properties:

1) f has property M§_l on I,

2) f has a kth Lp derivative at each point

in I,

L L

3) fkp(x) > O for each x in I (or fkp(x) 2 O

for each x in I),

L

4) f is upper semicontinuous on I.
P

k—l

Then kal is increasing on I (or nondecreasing on I).

Proof. As a first case suppose that f:p(x) > O

for all X in I. Let a and b belong to I with

a < b. We want to show that f:p(a) < f:€l(b). Since

fifl is upper semicontinuous on [a,b], it :ttains a

maximum on [a,b]. Let X 6 [a,b). Since fkp(x) > O,

and since by lemma 2.2



L

. k—l f.p(x) . L

lim 13%;— jg f(x+t) - Z —i.—,——— t1 dt = ka(x) > o

h—«o h 1: 1'

there exists an O < h' < b—x such that

L

k-l fip(x) i

f(x+h') - Z) '—§T——* (h') > 0.

i=0 '

So

L

k-2 f.p(x)

[f(x+h') - E —1———

i=0

gmk 1

(k-1)£

uni]
i! Lp

- fk—l(X) > 0.

Since f has pr0perty Mg—l, there is an X' such

that X < X' < x+h' < b, and

 

L

k-2 f.p(x) i

[f(x+h') —Z‘. ———-—-—1i. (h') J L

i=0 . P I

= f (X ).
h')k l k—l

(k—l)!

Hence

LP LP
fk-1(X ) - fk-1(X) > OI

i.e

Lp Lp

fk_l(x ) > fk_l(X).

L

So fkgl must attain its maximum at b, which implies

Lp Lp Lp

that fk_l(a) < fk_l(b), i.e. fk—l ls 1ncreas1ng on I.
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L

If fkp(X)‘2 O on I, then for any 3 > 0, set

( ) - f( ) + k h )Lp — pr k' 096 X — X e X . T en (ge k (x) — k (X) + .e >

for all x 6 I. Hence if a and b belong to I and

a < b, then by the above argument,

L L

(g€)kEl(a) < (g€)kfl(b).

LL

P u_ p .
fk_1(a) + k. as < fk_l(b) + k. be,

or

L L

kal (a) < kal (b) + k: (b‘a) e:

and since 6 is arbitrary,

LP LP
fk_1(a) g fk_l(b).

So fkgl is nondecreasing on I.

Definition 2.2. As in [9] we define differences

Dk(x,h;f) for a function f as follows:

D1(X,h;f) = f(x+h) - f(x),

and for k = 2,3,...,

k-l
Dk(X,h;f) = Dk_l(x,2h;f) — 2 Dk_l(x,h;f).

When no confusion seems likely, we will write Dk(x,h)

for Dk(x,h;f). The following lemma appears in [9]

and is not difficult to prove by induction on k.
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Lemma 2.4. For each k = 1,2,..., there exist
 

numbers ak j’ j = O,l,...,k such that for any f,

k .

. _ 3—1
1) Dk(x,h,f) — ak'0f(x) +jEé ak,j f(x+2 h),

k

2) Z) a . = O,

i=0 1"]

k i(j-l)
3) Z} 2 a . = O for i = 1,2,...,k-1,

j=1 1"]

k i(j—l)
4) Z) 2 akj>0 for i=k,k+l,-°°.

J=l

k .

We set iL-= Z) ZkU-‘Dak ..

k j=1 '3

Lemma 2.5. Suppose f is continuous on an

interval I and has a kth Lp derivative at a point X

 

in I. Then

lim -————-——— D X ,t dt = f (X .
h~0 hk+1 (3 k 0 k 0

Proof. As a first case suppose f(xo) = O.

L

Since f is continuous fop(x0) = 0 also. Let 6 > 0

be given. Then there exists a 5 > 0 such that if

0 < lhl < 6. then
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L

. k f.p(x )
1 h —

{WT fo|f<xo+23 1t) - Z "fr—'9-

1

j-1 i p ‘E3
k i: 1: (2 t) | at)

< Elfh'fit A I
(k+l).kkkTakIj|

for each j = 1,2,...,k. An application of Holder's

inequality yields

L

P
fi (X0). k . .

T%T I:;If(xo+23-lt) -.21 i. (23‘1t)1|dt
1:

eLh[k

< (k+l)3k[ak'j] '

for each j = 1,2,...,k.

Now let 0 < [h] < 6. Then

 

(k+1):x L

k h _ k p
-———<H——— f(D Dk(xo,t)dt h fk (X0)

(k+1):x k L

_ k 11 _.:___ p_ h (0 Dk(XO,t) k1). fk (x0) dt|

k

(k+l)' |l 1‘ E) f( +2j‘1t) --—E—— pr( )dtl
.xk E f<>j=lak.j XO k' k Xo.Xk
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k .

= (k+1):tk{ l% (E; .Z)[ak j f(x0+23‘1t)
j:

 

 

1

LP
k f. (x ) ._ .

'3 i=1 '

LP
k k f. (x ) k L

1 0 3—1 1]_ t p

+ jEQIak,3 IE: it (2 t) kzx fk (XOIdtII

k

. l h J
g (k+1).xk{j§=31 h ‘I‘OIak, f(x0+2 t)

LP
k f. (x )

'3 1=l '

LP
f. (x ) k .

l h 1 O 3-1 1
+ _I—I- ., Z a (2 t)

k L

_ t p

k

k k

hI
< (k+1)11 2: 8L i

LPk-l f. (x) k .
l h 1 O 1 j 1 1

+ h (0 _ i: t :43 ak’j(2 )Idt

1—1 3—1

LP
f (X‘) k

1 11 k 0 k 3-1 k
+ W I . t Z a (2 )

k L .
t

‘ I k: fk (XOIIdtI
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L

k k f p(X )
h] 1 h k 0 k

=<k+1m z €Ii +o+ —-—,-———t
kIj=1 (k+1).kxk |hl Io k.Ik

Lp

_ ———-—fk(x0) tkldt}
kuk

(k+1) :tk{ 215 ——9I3I-k——}

3
=1 (k+1):kxk

eIhIk.

Hence the lemma is proved for the case where

f(xo) = O.

For the general case we set g(x) = f(x) — f(XO).

Then

D(x0,t;g) = ak,Og(XO) + j=1 k,j g(xo+2 t)

k j l k

=Za.f(x+2—t)-Za.f(x)
j=l k,j O j=1 k,j O

k j l k

=2a.f(x+2‘t)—Za.f(x)
j=1 k,j O j=O k,j O

+ ak,O f(xo)

= D(X0,t;f).

By the previous considerations

(k+1):). L
. k 11 . _ P

hfiO h
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L

but clearly gkp(xo) = fkp(XO), and hence

(k+1):1 L
. k 11 p

11m -—————~—— D (X ,t;f)dt = f (X ).
h.: hk+1 ~IO k 0 k 0

Theorem 2.3. Let f be a continuous function,

defined on an interval I, possessing a kth Lp deriva—

L

tive at each point of I. Then fkp is of Baire class

one 0

Proof. For each positive integer n let

_ , k+l 11
fn(x) _ (k+l).xkn Ic: Dk(x,t)dt.

By lemma 2.5 we have

L

' _ P
11m fn (X) — fk (X)

n"00

for each x in I. Since f is continuous, we clearly

have that each fn is also, and the proof is complete.

Definition 2.3. As in [14] we call a sequence

{fn} of functions, defined on an interval I, quasi-

nonincreasing if for each X in I there exists a

number N(X) such that for all n > N(X),

fn_l(X)‘2 fn(X).
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Lemma 2.6. Suppose f is continuous and

possesses a kth Lp derivative everywhere on an

interval I, with f:p(x) > O at each point in I.

Then there exists a quasi-nonincreasing sequence {fn}

of continuous functions such that

L

- _ P
11m fn(x) — fk_l(x) for each X E I.

n-wo

Proof. For each positive integer n define

functions fn and gn byl

nk
n

_ n 2
fn(x) — k. 2 xk—l IO Dk_l(x,t)dt,

_l_

_ . n(k+1) 2n
gn(x) _ (k+l). 2 (k f0 Dk(x,t)dt.

Clearly fn and gn are continuous functions of X,

and by lemma 2.5

LP
lim fn(x) = fk_l(x) for each x in I,

n—om

and

L

1im gn(X) = fkp(x) for each X in I.

n-ooo

Let an X0 in I be fixed. There exists a

positive integer N(xo) such that for n > N,gn(xo) > 0.

Now let n > N.
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l

-1

_ I (n_l)k 2n

_l(x0) — fn(xo) — k.2 Xk—l IO Dk_l(x0,t)dt

l

, nk 2n

- k.2 *k—l f0 Dk_l(xo,t)dt

J;

_ , nk—k+l 2n
_ k.2 Ik_l f0 Dk_l(xo,2t)dt

EL

nk 2n
— k.2 *k-l f0 Dk_l(xo,t)dt

l

n

= k:2nk—k+l)\k_l[ $02 2t)

Dk—1(XO'

k—l
- 2 Dk_l(XO,t)dt]

J;

I n
_ k—l . n(k+l) 2
_ EE:E:T?;:I;;— [(k+l).2 Ak f0 Dk(XO,t)dt]

k

=—— g my
2 (k+l)xk n

>0.

So fn_l(xo) > fn(x0), and the proof is complete.
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The following lemma and its proof are due to

Saks [14].

Lemma 2.7. If [fn} is a quasi—nonincreasing

sequence of continuous functions with fn(x) converging

to f(x) for each x in an interval I, then for each

closed set P, there exists an interval (a,b) such

that (a,b) n P # O, and f, restricted to P, is

upper semicontinuous on (a,b) n P.

Proof. For each positive integer m, let

Pm = [x 6 P: fn(x) g fn_l(x) for all n > m}. Since

a)

[fn] is quasi—nonincreasing, P = mpl Pm’ and since

each fn is continuous, each Pm is closed.

According to the Baire category theorem, there is an

interval (a,b) and an integer mO such that

¢ # P n (a,b) C Pmo. On Pmo {fn : n > mo} 18 a

nonincreasing sequence of continuous functions con—

verging to f. So f is upper semicontinuous on Pm

O

and hence on (a,b) n P.

The next lemma and proof are due to Oliver

[13].
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Lemma 2.8. Let f be defined on an interval

[a,b]. Let P be a closed subset of [a,b] and let

f, restricted to P, be upper semicontinuous on P.

For each component interval (c,d) of the complement

of P, let f be nondecreasing and upper semicontinuous

on the closure [c.d]. Then f is upper semicontinuous

on [a,b].

Proof. If x does not belong to P, then f

is upper semicontinuous at x by hypothesis. If x

belongs to P and is isolated on the right (or left)

from P, then X is the left (or right) endpoint of

a component interval of the complement of P, and so

is upper semicontinuous on the right (or left). If x

belongs to P and is an accumulation point from the

right of P, choose 6 > 0 so that f(y) < g(x) + e,

for all y in P such that X g y g x + 6. Since X

is an accumulation point from the right of P, 5 may

be chosen so that x + 6 belongs to P. Let X' be

any point such that X < x' g x + 5. If x' is in

P, f(x') < f(x) + e by the choice of 6. If X' is

in the complement of P, x' belongs to a component

interval, say (c',d'), of the complement of P. Since

x + 6 and d' both belong to P, d' g x + 6, so
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that f(d') < f(x) + 8. But f is nondecreasing on

[c',d'], so that g(x') g g(d') < g(x) + 6. So f is

upper semicontinuous on the right at each accumulation

point from the right of P. Similarly f is upper

semicontinuous on the left at each accumulation

point from the left of P. Hence f is upper

semicontinuous on [a,b].

The next lemma has been proved for the kth

Peano derivative by Oliver [13]. The proof given

here for the kth Lp derivative is based on his proof.

Like Oliver, we shall use without specific reference

in this and subsequent proofs several well known results

dealing with functions that are of Baire class one and/

or have the Darboux property. ‘We list these results

here without proof (see [13] for a more complete list

of such properties):

If f is monotone on (a,b), and has the

Darboux prOperty on [a,b], then f is monotone on

[a,b].

If f is monotone and has the Darboux pro-

perty on an interval, then it is continuous on the

interval.
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If f belongs to Baire class one on an

interval, then the points of continuity of f are

everywhere dense in the interval.

If f belongs to Baire class one, then f

has the Darboux property if, and only if, for each

number a, the sets Ea = [X : f(x) 3 a}, and

Ea = [X : f(x) 2 a} have closed connected components.

Lemma 2.9. Let f be continuous on an interval

I and have the following properties:

1) f has property Mg—l,

h
2) f has a kt Lp derivative everywhere

L

3) fkp(x) > O for each x in I

L

(or fkp(x) 2 O for each x in I)

L

4) kal has the Darboux property.

L

Then fkgl is increasing (or nondecreasing) and

continuous on I.

L

Proof. Suppose first that fkp(x) > 0 every—

L

where. Let G = [x 6 I: f p is upper semicontinuous
k—l

and increasing in some neighborhood of X]. G is

clearly an open set. Let P = I - G. By lemmas 2.6

and 2.7 there exists an interval (a,b) such that
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L

(a,b) n P # O, and fkgl is upper semicontinuous on

L

(a,b) n P. If (c,d) c (a,b) —— P, then fkf’l is

upper semicontinuous and increasing on (c,d). Since

L

it possesses the Darboux property, kal is actually

increasing on [c,d].

L

Now if we apply lemma 2.8, we see that fkfl

is upper semicontinuous on (a,b). Therefore, by

lemma 2.3 fkfl is increasing on (a,b), and so

(a,b) C G. Hence P = ¢, and ka1 must be increasing

and upper semicontinuous on I. Furthermore, since

L

P

fk-l

continuous on I.

L

has the Darboux property, fkgl is actually

L

The case where fkp(x) 2 O on I can now be

obtained from the above case as in lemma 2.3.

The following theorem was proved for the kth

Peano derivative by Oliver [13].

Theorem 2.4. Let f be continuous and possess

a kth Lp derivative at each point of an interval I.

Then

L

l) fkp has the Darboux property

2) f has properties Mé' j = O,l,...,k-l.



 



37

Proof. We prove this theorem by induction on

k. For k = l we have from theorem 2.1 together with

its following remark and corollary that

L L

f p(x) = fép(x) for each X in I, and that flp

has the Darboux property. Goffman and Neugebauer [7]

have shown that if f has an approximate derivative

everywhere on an interval, then f has prOperty Mg.

So the theorem is proved for the case k = 1.

Assume that the theorem is true for k-l. We

want to show it is true for k. Since by theorem 2.3

LL

fkp is of Baire class one, in order to show that fkp

has the Darboux prOperty we need only Show that the

L

connected components of {x : fkp(x) 2 a} and

L

[X : fkp(x) g a} are closed for every number a. By

considering the function g(x) = f(X) — f? xk, we

may reduce this to showing that the connected components

L L

of {X : fkp(x) 2 O} and IX : fkp(x)_g O} are closed.

L

So suppose fkp(x) 2 O for all X in the interior

L

of an interval J. We must show that fkp(x) 2 O on

.. L

the closure J of J. By lemma 2.9, if fkp(x)_2 O

L

P

k-l

the interior of J. Since by the inductive hypothesis

L L

fkgl has the Darboux prOperty, fkgl is increasing on

on the interior of J, then f is increasing on
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J. Let c be the left endpoint of 3, and suppose

L

that fkp(c) < 0. Then by lemma 2.2 there is an

h > 0 such that c + h belongs to J and

 

L

k-l fip(c) i

f(c+h) - Z ———.-T——h < O.

. 1.
i=0

L

k—2 fip(c) 1

f(c+h) - Z T—h L

i=0 ' _ p
So hk-l fk_1(c) < O.

(k-l)!

By the inductive hypothesis f has property Mg‘l,

and so there exists an X' with c < x' < c + h, such

 

that

L

k-2 fip(c) i

f(c+h) - Z)-—rT——— h L

i=0 1. p '

k—l
= fk-l (X )o

L.

(k—l):

Hence

LP LP
fk_l(x ) - fk_l(c) < o.

L

but this contradicts the fact that fkgl is increasing

L

on J. So we must have kalIC)-2 O.
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If d is the right endpoint of J, we can

similarly show that f:p(d) 2 0. So {X : f:p(x) 2 O}

has closed connected components. Similarly we can

show that the connected components of

[X : f:p(X) 3.0) are closed, and hence pr has the
k

Darboux property.

By lemma 2.1 we know that in order to show

that f has properties M?’ j = O,l,...,k—l, it

suffices to show that f has prOperty Rt-l’ So let

x and x+h be such that

LP LP
fk_1(x+h) — fk_1(x) = O.

L 0

Let J = [x,x+h]. If fkp is identically zero on J,

L

the interior of J, we are done. fkp cannot be

0

positive everywhere in J because that would imply

L

that fkgl is increasing on 3 as seen in lemma 2.9,

L

and since fkgl has the Darboux property, this would

LP LP LP
imply that fk_l(x+h) > fk_l(x). Similarly fk

L
. . 0

cannot be negative everywhere in J. So fkp must be

0

either identically zero on J, or assume both positive

and negative values. But the latter situation implies

L
0

that there is a point x' in J' where fkp(x') = O

L

since fkp has the Darboux property.
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Lemma 2.10. Let f be measurable and have

L

a kth Lp derivative at O with fip(0) = O,

L

i = O,l,...,k-1, fkp(0) = A. Then

lim -£LEL =-i¥
ap h k.

h~0

Proof. we will show here that

l
u
—
J

H a
D
J

“
U

H
)

”
5
5

II

I
I
»

The proof that

I
—
J

P a
D
J

.
U

I
‘
h

W
2
:

II

T
I
»

is analogous.

Let c > 0 be given, and let

k

E6 = It > 0: [f(t) — A'ETI > e tk}. We must show that

E€ has 0 as a point of dispersion from the right.

For any positive h let Eh = E6 0 [O.h]. Then we

have

r I1 - 54-9 }E’ l _ .E_ P }I>

IEIoIfIt) AMI dt ZIhIEhIf(t) AMI dt

1

— f 6p tkp dt}p

Eh

h
/

r
—
*
-

U
'
H
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{ 6p . IEhI }p

kp+l h '

and as h d 0+, this must be o(hk), i.e.

 

l

e . IEhI k+£—D _

l/p 1”“ (T ‘0
(kp+1) h~0+

Hence lim 0, and so
13.1-.-

h-0+

1im Elhl =-i¥ .
ap hk k.

h-0+

Besides the use that is made of the above

lemma in this chapter, it has some other interesting

consequences, which will be explored in Chapter III.

Lemma 2.11. Let 0 be a point of density
 

of a set E. Then there are sequences {an} C E and

[bn} c E such that

1) lim a = lim b = 0,
n n

ndm new

2) an+1 \ an and bn+l > bn for each n,
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b

and 3) lim —§ii = lim “+1

11"00 n n"’00 I1

 

Proof. Here we construct the sequence {an}.

The sequence‘ {hm} can be constructed in a similar

 

 

fashion. First we define a sequence Iém}. Choose

61 > 0, so that if 0 < h g 61' then

IEO.h In EL > g

h 3

In general, hav1ng chosen 6m. choose 6m+l so that

m .
O < 5m+l < m+2 6m, and so that 1f 0 < h 3-5m+1’ then

h m+2

Now pick a E [ 2 6 6 I O E Such an a
l 3 1’ 14 ° 1

exists since

2
[[0,61] 0 El > g 51

2. 3 ' .

Pick a2 6 [ 4 a1, 4 a1] 0 E. Such an a eXISts

2

since

3 ] < 2 > Z _ Z
IIO'4 a1 n El > 4 a1 3 — 4 a1

. . 2 3
Keep this process up, ch0031ng an+1 E 4 an’Z an n E,

until we come to the smallest integer kl such that

akl g 62. Notice that
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(
M
N

\
/

fi
l
m

62 (by the choice of kl)

> 63 (by the choice of 6 ).
3

. 3 4

Pick akl+l E [ 5 akl. § akl] O E. Such a number

exists since

4 1 4 3 3

I[O.- a 0 El > < - a > — = - a
5 k1 5 k1 4 5 k1

The process is as follows:

Having chosen a choose a E I 3 a g a ] O E
n’ n+1 5 n’5 n ’

and keep this up until arriving at the smallest

integer k such that a Again we easily see2 k2 g_53.

that ak2 > 64.

In general, having found 6 < a g 6
m+2 k m+l by

m

the above process we choose

m+2 m+3

ak +1 6 I m+4 ak ' m+4 ak I n E'
m m m

which we can do since

F m+3 m+3 m+2 _ m+2

IIO ’ m+4 akmI O El>>< m+4) akm < m+3) — m+4 akm
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' m+2 m+3
Keep ch0051ng an+1 E [ m+4 an, m+4 an] 0 E until we

come to the smallest integer km+l such that

ak g_5m+2, and so on.

m+l

In this way we arrive at a sequence {an}. We

clearly have for each n, and
an+1 < an

lim an = 0. Now fix an n, and choose the smallest

n—ooo

 

of the integers in the sequence {km};=l such that

an g_ak . If ak g an+l’ then

m m+l

a
m+2 < n+1 m+3

m+4 —- a —- m+4 ’
n

and on the other hand, if akm+l > an+l' then

m+3 _ §m+l)+2 < an+1 < {m+1)+3 _ m+4

m+5 _ (m+l)+4 a ‘—- (m+l)+4 — m+5

 

Now as n ~ w, m ~ m, and as m ~ m

LIE—é”,

and fig; ~ l.

Hence 1im —§il- = l.

1'1'":> n
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Lemma 2.12. Let f be measurable and have a

L

kth Lp derivative at O with fip(0) = O,

L

i = O,l,...,k-l, fkp(0) = A. If f is monotone on

a right neighborhood of O and monotone on a left

neighborhood of 0, then A = fk(0), the kth Peano

derivative of f at 0.

Proof. From lemma 2.10 we have

lim_ ELEL =-fi¥ ,

h~0 h °

hEE

where E is a set of density 1 at 0.

As a first case suppose that f is monotone

nondecreasing on a right neighborhood of 0. Let

[an} C E 'be a sequence as described in lemma 2.ll.

Let h be in the given right neighborhood of 0.

Choose n so that an+1 g h i an. Then

  

f(an+1) f(h) f(an)

()k S hk S( )k’
an an+1

so

< an+1)k . f(an-I-l) < fgh) < f(an) < an >k

a k —- k ‘— k

n (an+l) h (an) n+1
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+ .

Now as h 4 O , n fl m and the two outSide

members of the above inequality tend to 1‘ - 1 --%¥ .

TE:—

Hence

JJJI £3%;-= 1% .

+h 1"
th

All other cases are treated analogously, and

we conclude that

lim.£ihl -_ .3:

h—o hk 1"

I

fk(0) = A.

We are now in a position to prove a theorem

. th . . th .
which relates k Lp derivatives to k ordinary

derivatives. This result will then be used to

establish the Denjoy property and the Zahorski property

for kth Lp derivatives of continuous functions.

The theorem is patterned after a result by Oliver [13]

in which he shows that if a kth Peano derivative fk

is bounded either above or below on an interval, then

f (k)
fk(x) = (x), the ordinary kth derivative of f

at x, for each x in the interval.
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Theorem 2.5. Let f be continuous and possess
 

a kth Lp derivative at each point of an interval I.

L

If fkp is bounded either above or below, then

L

fkp(x) = f(k)(x), the ordinary kth derivative of f

at x, for each x in I.

Proof. Assume that fkp is bounded below on

L

I; say fkp(x) > M for all x in I. (The proof for

L

the case where fkp is bounded above is analogous).

Let xO be any point in I. we will show that the kth

Peano derivative of f at xO exists and that

L

p _ . . .

fk (x0) — fk(xo). Hav1ng done this for all X0 in I,

we will use Oliver's result mentioned above to conclude

) exists for each x in I andthat f(k)(x O
O

(k)
L

P _
fk (X0) — f (x0) .

For a fixed X0 in I, let

L 2

g(x) = f(x+x0) - (f(xo) + xflp(xo) + gT-f2(xo)+...

k—l L k
x

f p (x ) + ET M) .
+ (k—l)! k-l

Then

L L

9(0) = glp(0) =...= gk§1(0) = o,
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and if we let J represent the interval obtained by

translating I in such a way that x0 is moved to the

origin, then

L L

9kp(X) = fkp(X) - M > O for all x E J.

L L

In particular set A = fkp(xo) — M = gkp(0).

L

p _ .

In order to show that fk (x0) — fk(x0), 1t

L

suffices to show that gkp(0) = gk(0), i.e. it suffices

to show that

lim 113-)— = “A.“ .

h~o h k'

L

Since gkp is positive on J, lemma 2.9

L

together with theorem 2.4 imply that gkgl is non—

decreasing on J. Suppose J = [a,b], and let

L
O _ . p

yk_l — sup {y E J. 9k-1(Y) g 0}.

o _ o 1 _ 0
Let Jk__l — [a,yk_l], Jk_l — [yk_l.b].

L
p 1

Now gk_l(x) 2.0 on Jk-l’ and so by the same

L

argument used directly above, gk€2 is nondecreasing on

J1 and similarl Lp is nonincreasin on J0
k-l' Y gk—2 g k—l'

So let
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L
l

yk_2 = sup [y 6 Jk-l = gk§2.g 0}.

and

O _ O

Jk-Z "' [al Yk_2 J t

l _ O O

Jk-Z ‘ l:Yk-z' Yk-lJ

2 _ O l
Jk_2 _ [Yk-l' Yk_2]

3 _ l

Jk—Z [Yk—z' b]

Then

/' d . 0

non ecrea51ng on Jk—2'

. . l

nonincrea81ng on Jk-2

gk_3 IS < . 2

nondecreaSing on Jk—2

nonincreasin on J3
K g k—2

Continuing this process for a total of k—l

times, we arrive at Zk-l intervals Ji,

k—l

k-l . 2 ‘1 i
i = O,l,...,2 — 1, With J = L) J1. On each

i=0

of these intervals g is monotone and continuous.

The point 0 can belong to at most two of these

intervals (with the possible exception of degenerate

intervals). Hence g is monotone on a right neighborhood

of O and monotone on a left neighborhood Of 0- 30 by
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lemma 2.12

1im 9121. = i?

th h °

which is what we wanted to show.

In [18] Weil proved that a function g of

Baire class one has the Denjoy property on an interval

I if, for every subinterval J of I on which g is

bounded either above or below, g restricted to J

has the Denjoy property. Using this result along

with the fact that an ordinary kth derivative has

the Denjoy property, we have the following corollary

to the last theorem.

Corollary 2.5. If f is a continuous function

having a kth Lp derivative at each point of an interval

 

I, then fkp has the Denjoy prOperty on I.

Theorem 2.6. Let f be continuous and possess
 

a kth Lp derivative at each point of an interval I.

L

Then fkp has the Zahorski prOperty.

Proof. Following along the lines of the proof

in [18] we first consider a special case where

Lp Lp Lpf0 (0) = fl (0) =...= fk (0) = o.



51

and assume that {In = [an, bnj} is a sequence of

closed intervals, with positive endpoints, converging

to O in such a way that, for each n, x in In

implies fkp(x) 2_c, where c is a fixed positive

number. Let n be a positive integer. Then the

same inductive proof as that given in [18] will show

that, for each positive integer j with 1 g_j g_k,

there is a partition

. . = b

Jlm(]) n

a = t. < ... < t

of In such that m(j) ;_23 and, for each

i = 1,...,m(j), one of the following holds for every

t. .]:x in [tj,i-l' 3’1

L L
'. . p _ P ii — 3

L

P
and fk-j(tj,i-1)'2 O

- LP LP c j
2(3): fk‘j (X) - fk-j (tj,i) g —(T) (tj,i-X) I

L

P
and fk-j(tj,i) g_o

L L '
' . P _ P _ J; _ 3

L

P
and fk-j(tj,i-l)-i O
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L L .

4(j) : fk§j(x) - fk€j(tj’i)‘2 C§%)(tj’i—X)J.

_2 o.

L

P
and fk-j(tj,i)

In particular if we examine the situation when

L

j = k and recall that f0p = f, then we can say that,

for each n, there is a partition,

an = t0 < ... < tm = bn

of In such that m.g 2k, and for each i = 1,...,m,

one of the following holds for every x in

 

[ti_1. ti]:

(1) f(x) 2 (f?) (x-tH)k

(2) f(x) 3 455—) (ti-wk

c k

(3) f(x) 3-‘(ET)(X'ti—1)

(4) f(x) _>_ (if?) (ti-x)k.

In case (1) or (3) holds on [ti_l,ti] we

have

t. a t k a
1 p p _g_ ’ i P P

{Iti_llf(x)l dx} '2 (k1) ifti—1(X—ti_l) dx}

kp+l

= ( C ) (t1 t1 1) p ;
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and in case (2) or (4) holds on [ti—l'ti]

 

 

l l
t. — t. _

{1; If<x>lpdx}P .>. a) {Li <ti-x)kpdx}P
1—1 1-1

kp+1

P
c

= (t t )
( k.(kp+l)1/p) 1 1 1

Hence

kp+1 t 1

c p i E) P
(t.-t ) < ( f(X) dx

( k:(kp+l)1/p) 1 1 1 ~— kfo ' I }

kE+l

t.p e (t):

1 l

where e(ti) approaches 0 as ti approaches 0,

L L

because f(0) = flp(O) =...= fkp(O) = 0. With this

estimate we can make the following approximation:

 

 

 

 

(bn_an) = E) (ti—ti—l)

b ._ b
n 1—1 n

m (t.-t )

< Z) 1t 1—1

i=1 i

k +1

. l/p p

< m <k.(kp+l) ) < max e(t.))

_ c i=l,...,m 1

k+l

. 1/p p/.3 2k k.(k£+l) ) < max €(ti))

i=l,ooo’m

kp+1

kp+1



 



Since I

n

t.~O

1

lim

n~m

Hence

1im

n~m

(bu-an)

But _1-3—— = l

n

1im

n"00

and hence

lim

ndw
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converges to O,

max

tiEIn

€(ti)

= lim

nfloo

and since

= O.

This completes the proof of the special case.

The procedure for reducing the general case

to the special one is the same as that employed by Weil

in [18] and will not be repeated here.

We have thus shown that kt Lp

h . .

derivatives

of continuous functions possess the four basic properties
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mentioned in Chapter I as being shared by ordinary

derivatives, kth Peano derivatives, and approximate

derivatives. We now show that kth Lp derivatives

share a couple of other properties with kth Peano

derivatives and approximate derivatives. These

properties deal with the relationship between these

generalized derivatives and ordinary derivatives.

In [17] Weil showed that if f has a kth Peano

derivative (or an approximate derivative) at each

point of an interval I, and if, for some interval

(a,b), f]:1((a,b)) is not empty (or (f' )-l((a,b))

aP

is not empty), then

[{x : f (x) exists and lies in (a,b)}l > O

(or [(x : f'(x) exists and lies in (a,b)}l > O).

In his proof of these results Weil used only those

properties of fk (or fép) which we have also shown

L

P
k .

proof we state the following theorem.

to be possessed by f So without repeating Weil's

Theorem 2.7. If f is a continuous function

possessing a kth Lp derivative at each point of an

 

interval I, and if, for some interval (a,b),

L

(fkp)-l((a,b)) is not empty, then

(k)
]{x : f (x) exists and lies in (a,b)}l > O.
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The following theorem is already known to

hold for kth Peano derivatives and approximate

derivatives (see [5] or [13], and [7] or [16]).

Theorem 2.8. Let f be continuous and possess

a kth Lp derivative at each point of an interval I.

Then there is an everywhere dense, open set G C I

at each point of which the ordinary kth derivative

exists.

Proof. Let U = [x e I: for every right

neighborhood of x or for every left neighborhood of

x, f:p is unbounded both above and below]. Let G

be the complement of U. Then G = {x E I: there is

a right neighborhood of x and a left neighborhood of

L

x in each of which f p is bounded above or below}.

k

(k)
G is open in I, and by theorem 2.5 f (x) exists

at each point x 6 G. Since f:p is in Biire class

one, the set of points of continuity of fkp is

everywhere dense. But each point in U is a point

of discontinuity of fip; and so U can contain no

interval. Hence G is everywhere dense.

Next we show that in a sense this result is

the best possible.
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Theorem 2.9. If an interval I, an everywhere

dense, open set G C I, and an integer k.2 l are

given, there is a continuous function f which has

a kth Lp derivative at every point of I and for

which the set F of points where the ordinary kth

derivative exists contains G, and furthermore, if

S is an open set with G C S C F, then G = S.

Proof. For k.2 2 Oliver constructs a function

f which has a kth Peano derivative at each point of I,

and hence a kth Lp derivative at each point of I,

and which satisfies the theorem. Here we will treat

the remaining case, namely k = 1.

Denote by P the closed, nowhere dense set

I — G. Let {(an,bn)}n=l denote the sequence of

intervals contiguous to P. Fix a particular integer

bn-an 3(bn-an)

n. Let c = a + , and d = a +-——-———~—.

n n 4 n n 4

 

Choose an integer mn‘Z 2 so that

.______ _ 3P
(2.9.1) m p < (cn an) ,

and choose an integer jn so that

n n n n
2 2
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and

1 1

b-——.--——'——-.—->d.

n J m P] n
2n 2nn

We shall first define f on (an,cn) as follows:

For every integer jig jn, let I . =
n,j

[ l l l J
a + —- a a + _—-' + . ,

n 23 n 23 2mnp] . On each In,j we define

 

a function g so that

l) g has an ordinary derivative at each

point of I .,

 

 

n,]

l __ ___ l _

2) g(an + j) g(an + 3 m p3) o,

2 2 n
2

l l

3) g'(a +-—T) - g'(a +-—- + .) - O,

+ n 23 n 23 zmnpj

4) max g(x) = 1.

x61 .

n,j

For x E (an,cn) - U I., we set g(x) = 0. Then

j=jn

for any x E (an,cn), we set f(x) = (x—an)g(x). We

set f(x) = O for x E [cn,dn]. Next we will similarly

define f on (dn,bn). For every integer j.2 jn.
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l l 1‘
let J 0 = [b - —T - O ’ b _ _1‘] o

Hp] n 23 Zmnpj n 2]

we define a function g so that

1) g has an ordinary derivative at each point

of J .,

n,j

l _ ;L._.__£._ _
2) g(bn j) — g(bn J m p3) — O,

2 2 n

2

I __:_L_. _ ' _i.._—_._—_l —
3) 9 (bn j) — 9+(bn j mp3) — o

2 2 n

2

4) max g(x) = 1.

XEJ .

11,]

For x E (dn,bn) — U Jj’ we set g(x) = 0. Then

j=j
n

for x E (dn,bn), we set f(x) = (bn-X)g(x). Now f(x)

has been defined for each x E (an,bn). We do this for

each n and set f(x) = O for x 6 P to arrive at a

function f defined on all of I.

We first show that f is continuous on I. f

is clearly continuous on each interval (an,bn). Now

suppose an is a left endpoint of an interval (an,bn)

contiguous to P. If h > O and sufficiently small,

then

[f(an+h) - f(an)l = f(an+h),
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I ., thenand if a + h 6 (a ,c ) -
n n n n,j

II
C
8

3 3n

f(a +h) = 0; whereas if a + h E I ., for some

n n n j

j‘g jn' then f(an+h) = h§;(an+h) g_h, by condition

4) on 9. So f is continuous from the right at an.

and similarly f is continuous from the left at each

bn' Next suppose that x is an accumulation point

of P from the right, and let h > 0. If x + h E P,

[f(x+h) — f(x)| = |o - 0| = o;

and if x + h E G, then x + h e (an,bn) for some

n, and so x + h = an + h' for some 0 < h' < (bn—an);

SO

[f(x+h) — f(x)l = f(x+h) = f(an+h') g_h' < (bn-an).

As h ~ 0+, (bn-an) ~ 0 since x is an accumulation

point of P. So f is continuous from the right at

x. Similarly f is continuous from the left at each

point x which is an accumulation point of P from

the left. Hence f is continuous on I.

By the way f was defined, it clearly has an

ordinary first derivative at each point in G. However,

if S is another Open set such that G g S, then S

must contain at least one of the endpoints an or bn
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for some n. We now show that f is not differentiable

in the ordinary sense at any endpoint an or bn. Fix

an an. Choose a sequence {bk} such that hk d O as

I . for each k.k q m, and an + hk E (an,cn) — n,j

j

ll
C
8

3n

Then

f(an+hk) - f(an)

lim = lim '51 = O.

k~m hk kem hk

Now according to condition 4) which we placed on the

 

function g defined on In j' we may find a number

hj > 0 such that g(an+hj) = 1. Doing this for each

j.2 jn’ we have a sequence {hj] with hj ~ 0 as

f(a +h.) - f(a ) f(a + h.)

1im n %» n = lim n

j“00 j jtm j

 

= lim

:')-'co j

= lim 1

jtm

So f does not have an ordinary derivative at an.

Similary f does not have an ordinary derivative at

any bn’



62

In order to complete the proof, we must now

show that f has a first Lp derivative at each

point in I. As noted above, f has an ordinary

derivative at each point x E G, and so it has a

first Lp derivative at each point x E G. The

following calculation shows that at each left end—

point an of an interval contiguous to P, the right-

L

hand first Lp derivative flp(an) = 0. Let a

 

n

be such an endpoint, and let 0 < h <-—;— +'——J;T— .

3n mnPJn

2 2

. 1 1

Choose an integer J so that -— < h < Then
2J — 2J-l

1

(2.9.2) %{% jg [f(an+t) [pdt}p

l

2J{2J fon-

 

1 it

p p
(f(an+t)) at}

I
/
\

|
/
\

M

q

P
M

M

q

M

L
—
)

H

r
u
f
-

0
.
:

(
1
"

W

W
I
H

 

|
/
\

A
)

F
L

$ P
.

5
:

L .
:
: W
I
H

 



 

 

- (2 )P 2"mnp an

2 —1 2

22p+1 1' 2J

_<_( 2p )p 73 (since In 22)

2 -1 2

 

< K11

So we have

1

{%fglf(an+t)lpdt}p = o(h),

as h ~ 0+. Similarly it can be shown that at each

right endpoint bn of an interval contiguous to P,

L

the left—hand first Lp derivative flp(bn) = 0.

Next suppose that x E P is an accumulation

point of P from the right. Let h > O, and let

34h) = [n : x < an, and bn < x + h}. There are two

possible situations to consider here, namely

x + h E P and x + h E G. If x + h E P, then

{

1 1

(2.9.3) 1&1; jg|f(x+t)|pdt}P f:+h(f(t))pdt}p
E 5

H
4

D
fl
H

S
fl
H

b . 1

Z f“(f(t))pdt}p

n€.&(h) an

P
-
A
fi

fi
n
e



I
/
\

I
/
\

S

3
‘
!

)
—
I

F
—
A
“

U
n
a

3
1
1
—
!

r
—
"
-
\

U
n
a

D
‘
H
—
J

r
—
*
-
\

:
I
'
I
N

’
J
‘
l

)
—
-

/
-
*
-
\

D
fl
w

:
3
'
I
H

A D
‘
I
N

:
S
‘
H
-
I

l
-
‘
L
fi

D
‘
I
N

21/p
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. l

nEJM) j=jnUImj(f(mpdt+ fJn’j(f(t))pdt]}I—D

o. l

3.291.) (.11):

oo 1 .1.

£201) 321 2,1,11ij

1 l

.2...) ‘17:}

l

nEMh) (cn—an)3p}§ (by (2.9.1))

1

. h3p}p

h2 - l/p

Zl/ph.

On the other hand, if x + h E G, then there is an

integer N(h) = N such that x + h E (aN,bN). So



 



65

1 1

f3lf<x+t)|pdt}p = %{1 fx+h(f(t))pdt}p
(2'9'4) %'{% h x

1 1 b l
_<_- - 23 n(f(t))pdt P

h‘{h nGJKh)fan }

1

+ %{% Jim (f(t))pdt}p

N

1

l/p 1 1 x+h ;p 5
_<_2 h+fi{}—1 faN (f(t)) at} ,

according to calculation (2.9.3). We now must estimate

the second term on the right hand side of the last

We consider three cases:inequality.

), then proceeding asCase 1. If h'2 (cN-aN

in calculation (2.9.3), we have

1 b

éfi; ffh (f(t))pdt}f’ _<_

N

l
—
J

I
A

fi
n
e

”
a
.
“

D
fl
w

6
‘

z
) w

2
v

Case 2. Assume that h < cN - aN, and that

h' <'—;—‘+-—~JL7— , where h' = x + h — a . Choose

JN manN N
2 2

J(h') = J as in calculation (2.9.2) to obtain
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l l
_ h' _

1 1 +h 1 1 51*
E{}_1~r: (f(t))pdt}p gfififE-J‘aN (f(t))pdt}p

N ' N

_gKh'

SKh.

Case 3. Again here assume that h < cN — aN,

but now that h' > -—l:-— + -——]-'—-.— . Then

2 2

-1-{-1- (x+h(f(t))pdt}% <_l_[l_ aN+h'(f(t))pdt‘%’
h h aN —h' ..h' faN ]

l

j —l
a + N

rill—{El— ff 2 (f(t))pdt

N

l
a +h' —

4.517(1) 1 (f(t))Pdt}P
aN+ jN'l

2

l

j —l l
, a + N -

efilri—é: faN 2 (f(t))pdt + o}P

N

3 K-—;— (as in calculation (2.9.2))

3N
2

_<_Kh'

gKh.
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Now if we let h~o+, with x+h es, then

l

%I% Ig|f(x+t)|p}pdtg[21/p +max(21/p,K)] h -O

So the right—hand first Lp derivative of f at x

is 0. Similarly it can be shown that if x is an

accumulation point of P from the left, then the

left-hand first Lp derivative of f at x is O.

L

Combining these results we have that flp(x)

exists everywhere on I, and the theorem is proved.



Chapter III. A Property of kth L

and kth Approximate Peano Derivatives

of Measurable Functions

In this chapter we consider some further

consequences of lemma 2.10. If we combine the notions

of a kth Peano derivative and an approximate deriva—

tive we have the following concept.

Definition 3.1. We will say that a function
 

f has a kth approximate Peano derivative at a point

x k = 1,2,..., if there exist numbers f:p(xo).O,

aP ap
f2 (x0),...,fk (x0) such that

k

- .1. _ _ap __h_ap}
11map hk {f(xo+h) f(xo) hfl (x0) ... k! fk (x0)

hfio

Theorem 3.1. Let f be a measurable function

possessing a kth Lp derivative at a point x0. Then

 

L

fkp(x0) is a kth approximate Peano derivative at

(x ); specifically,
O

L ap

f:p(xo) = (fop>k (X0)'

68
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Proof.

Set

Lp Lp Lp Xk Lp ,

g(x) = fO (x—xo) - (f0 (x0) + xfl (x0) +...+ k? fk (xo)) .

In order to prove the theorem, it suffices to show

that

L ap

gkp(0) = gk (0)-

But since

L L

g(o) = 919(0) =...= gkp<0) = o,

it will suffice to show that

lim HiEihl. = 0,

ap h

th

and this follows immediately from lemma 2.10.

We want to show that the kth approximate Peano

derivative of a measurable function is of Baire class

one if it exists on an interval, thus generalizing

theorem 2.3. We need a couple of preliminary results.

Definition 3.2. As in [9] we define differences

Ak(x,h;f) for a function f, k = 1,2,... by

k .

Ak(x,h;f) = Z (—1)k‘3(]j?)f(x+jh — .1. kh).

j=o 2
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The following lemma is not difficult to prove

using induction on k (see [1] or [9]).

Lemma 3.1. Let 1 be any real number. Then
 

Lemma 3.2. If f has a kth approximate Peano
 

derivative at a point x, then for any fixed number

1 there is a set F().X) of density 1 at 0 such

 

that

A (X+1h,h:f)

1im k k = f:p(x).

h~O h

h€F(l,x)

Proof. Let E be a set of density 1 at 0

such that

aP

k fi (X) i k
f(x+h) - Z Th =O(h)

i=0

as h e O, h E E. Let 1 be given, and define

F(),x) = {h : )h + jh - ékh 6 E for each j = O,l,...,k}.

Then F(),x) is of density one at O. Let c > 0 be

given. There exists a 6 > 0 such that if h E E and

|h| < 5, then
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span 1 .
[f(x+h) — Z) ——;T——'h | < |h

i=0 ° k2

 

and furthermore if I is an interval containing 0

and III < 6. then

Consequently we can find a O < 5'.g 6, such

that if h e F(1,x) and [h] < 5', then

 

1 k f?p(x) 1 . .
. l . l 1

(3.2.1) |f(x+)h+jh— —kh) — Z)-—-eT——(1+3 — —k) h |
2 ._ 1. 2

1—0

6 . l k k

< k-l [6+3 ' fikl 'hl

k2

for each j = O,l,...,k, and if I is an interval

containing 0 with III < 6', then

1F11.x) n Il > 1 _

TIT 6*

If we now consider the right hand side of (3.2.1L'we

have

 

r
a
w 7
:

e . l k k e h

_ |1+3 - -k| hl .: _
kzk 1 2 I k2k

elhlk g; k n

< k (n)|1l

2 n=0
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elhlkmk if l1|>1

elhlk. if mgl.

Let us first suppose that [1| > 1 and that

h e F(),x) with lhl < 6'. Then

 

h

k

 

k .
- . l

- f:p(x) = (it Z)(-l)k j(1?)f(x+)(h+jh — ikh)

h j=O 3

ap
— fk (x)|

    

k .
— . 1

g_ 4%- Z)(—1)k j(1?)[f(x+>(h+jh — -kh)

. j 2

h j=O

ap
k f. (x) .

1 l 1 1

l:

k . k £39m) . .
- . 1

+ _Jk Z (-l)k 3(3) Z} —L-1".——'().+j — 5k)lhl

h j=o 3 1—0 '

.. ap
fk (X)

k
k

3, Z} (.) e Illk

j=o 3

ap
k f. (x) k _.

+ '4? 1., hl Z)(—1)k j(Hj 1k)l
. 1. . 2

h 1: j:

_ aP
fk (x)
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g_2k|1|ke + If:p(x) — f:p(x)| (by lemma 3.1)

= Zklxlke.

In considering the case where '1] g_1 we

similarly Obtain

A (x+1h.h;f)
k

k k — fipm) < 2e,
h

 

if h e F(1.x) and |h| < 5'.

In either case we have

Ak (X+)\hl h; f)

 

 

1im k = f:p(x)

h~O h

hEF().X)

Theorem 3.2. If f is measurable and has a

kth approximate Peano derivative at each point of an

interval I, then fip belongs to Baire class one.

Proof. For each positive integer n and each

integer p set

  

and
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I = [_ _31_ __1__]
n 211+]. 211+].

For each point 1% E I, define

2

. Ak(X,h;f)

n,p' hk

> a} | > g(xn pl} 1 > 5 |1n1} .

For each fixed n extend fn linearly to arrive at a

continuous function fn on I.

Let XO 6 I. We want to show that

fn(xo) e f:p(xo). From lemma 3.2 we know that there

is a set F(O,xo) of density 1 at 0 such that

lim Ak(xo'h’f) = fap(X )

hfio hk k 0

hEF(O,XO)

Set G = [%kh : h E F(O,XO)]. G clearly is of density

1 at 0.

Let e > 0 be given. We shall find it

convenient later to suppose that e is so small that

31 — (k+1)e > 4

and QL

l - 262k — e > g .
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Then there exists a 6 > 0 such that if we let

 
k fip k

E6 = {h: [f(x+h) - Z) hik|< llhl},

i=0

_ 1 A;k(x0,h f) ap k

as _ { 5kh. |———;k—-———— fk (xo)l < 2 e},

l . l . ‘

and Fe_ I §J<h . 311 — §J<h 6 Es for each 3 — O,l,...,k},

where we have seen that Fe C G€ in lemma 3.2, then

 

IF ()Il IE nIl

——ffT——— > 1 - e, and ——§TfT—— > 1 — e

for any interval I containing 0 with II) < 6.

Now choose a positive integer N so large

that -;E < 2. Let n > N, and find the unique

2

integer p so that

11 Bil

2n<xog 2n

The situation is shown in the following diagram



 

 

    

 

I

n,p

f __ W

F F I - 1 . 1 ,
L i L T 1 i J I 1

3 1 3 5

p E p-l p 2 2 X0 2+1 p + 2 2+2 p + 5

n n n n n n n n

2 2 2 2 2 2 2 2

L_Lll__~ __l___l\/_l__ ____11J

In,p+l

_1_

2k

1 1___ :8—

Let 21<h E {[._ 2n+1 ' 2n+1

2L

2k

6 l

M .41)2n+1 2n+1 e

 

and hold it fixed. For each j = O,l,...,k we have

- _ l [___l._ __Je_]

3h 21<h E 2n+1 ’ 2n+1 fl Ee'

Let Bj = {y - j11 + élch : y E Ee}' Then for each

j = Oll’c-opk we have

-3 l

lBj fl [2n+l ’ 2n+1]I

> 1 - el .

 

k

If we set B = fl Bj, then
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1 .

IB n 1 2n+1 ’ 2n+11‘

2n—l

 
> 1 - (k+1)e.

 

thenFurthermore, if 111 G B O [- 2n3+l . 2n+l]'

. 1
x0 + 111 6 In,p’ and 111 + 311 — alch E E6 for

each j = O,l,...,k. So performing calculations as

in lemma 3.2 we have the following:

1) If lxl : 1.

A (X + 1h, h; f)
k 0 _ ap k

I hk fk (x0)‘ < 2 e
 

2) If [1| > 1,

A (x + 1h, h; f)
k 0 _ ap k k

I hk fk (x0)| < 2 (1|
 

= (3k)k e1/2

If we set. C = (3k)k, then regardless of the absolute

value of X we have

 



A (x + 1h. h; f)

k 0 -f:p(xo)l<cel/2. 

h

We have shown so far that for a fixed

 

 

€_1_21

2kl

k k11 E 1 [ 2nl+l ’ “1 [e2n+1 ’ 2n+1] } fl Fe

we have

A (X + Ah! h7 f)

[{x0 + )h 6 In,p : I k 0 hk — f:p(xo)|

_:__l___
< C 61/2} I > 1 n_];+l)€ .

2

So

- A (X.h7f)
1

|{ §1<h e In : |{ x e In’p: |—5—;E———— — f:p(xo)l < c el/2}|

l

:(k+l)ea}! l—2€:E-€ .

In the beginning of this proof we specified that

e be so small that

l

1 - (k+l)e > i and 1 — 2e2k — e > g .

So we have the following:
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A (x,h;f)

l .I ._k______|{2kh€In.l[x€I .l .619
n,p hk fk (x0)|

1/2 1 } 1
<ce }|>2 lIn’pl |>2 IInl-

This then implies that

f:p(x0) — cal/2 < fn< :%> < f:p(xo) + cal/2.

In a similar manner we can find an N' such

that for n > N' and p such that JL < x g_Eil
2n 0 2n

we have

f:p(xo) - c 81/2 << fn < B:%-) < f:p(x0) + c el/Z.

We then let N0 = max(N,N') and have that for

n> NO,

lfn(Xo) - f:p(xo)| < eel/2.

a 3P .
Hence fn(xo) fk (x0), and the theorem is proved.

Corollary 3.1. If f is measurable and has

a kth Lp derivative at each point of an interval I,

L

then fkp belongs to Baire class one.

 



 

B IBLIOGRAPHY



BIBLIOGRAPHY

J.M. Ash, "Generalizations of the Riemann derivative",

Trans. Amer. Math. Soc., 126 (1967),

pp. 181—199.

A.P. Calderon and A. Zygmund, "Local properties of

solutions of elliptic partial differential

equations", Studia Math., 20 (1961),

pp. 171—225.

J.A. Clarkson, "A property of derivatives", Bull.

Amer. Math. Soc., 53 (1947), pp. 124—125.

 

A. Denjoy, [Memoire sur la totalisation des nombres

derivés nonsommables", Ann. Sci. Ecole

Norm., 33 (1916), pp. 127—222.

 

, "Sur l'integration des/coefficients

differentiels d'ordre superieur", Fund.

Math., 25 (1935), pp. 320—328.

, "Sur une propriété des fonctions derivées",

L'Enseignement Mathematigue, 18 (1916),

C. Goffman and C.J. Neugebauer, "On approximate

derivatives”, Proc. Amer. Math. Soc., 11

(1960), pp. 962—966.

 

A. Khintchine, "Recherches sur la structure des

fonctions mesurables", Fund. Math., 9

J. Marcinkiewicz and A. Zygmund, ”On the differentia-

bility of functions and summability of

trigonometric series", Fund. Math., 26

(1936), pp. 38-69.

S. Marcus, "On a theorem of Denjoy and on approximate

derivatives", Monatsh. Math., 66 (1962),

pp. 435-440.

80



ll.

12.

13.

14.

15.

l6.

17.

18.

19.

81

I. Natanson, Theory of Functions of a Real Variable,

(translated by L.F. Boron), Ungar, New

York, 1960, v.1, pp. 255—263.

C.J. Neugebauer, "Smoothness and differentiability

in LP", Studia Math., 25 (1964), pp. 81-91.

H.W. Oliver, "The exact Peano derivative", Trans.

Amer. Math. Soc., 76 (1954), pp. 444—456.

S. Saks, "0n the generalized derivatives", g. London

Math. Soc., 7 (1932), pp. 247-251.

G. Tolstoff, "Sur la dérivée approximative exacte",

Rec. Math. (Mat. Sbornik) N.S. 4 (1938),

pp. 499-504.

, "Sur quelques propriétés des fonctions

approximativement continues", Rec. Math.

(Mat. Sbornik) N.S. 5 (1939), pp. 632-645.

 

C.E. Weil, "0n approximate and Peano derivatives",

Proc. Amer. Math. Soc., 20 (1969),

pp. 487-490.

 

, "On properties of derivatives", Trans.

Amer. Math. Soc., 114 (1965), pp. 363—376.

Z. Zahorski, ''Sur la premiere derivée", Trans. Amer.

Math. Soc., 69 (1950), pp. 1-54.

 



 



 



      
    

ATE UNIVERSITY L B

IN | I! | | 11111155
3 1 293 03056 2585

     

 

 

 

    

 

 


