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ABSTRACT

ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANDOM

RANK STATISTICS UNDER THE ALTERNATIVES

BY

Janet Tolson Eyster

In this paper we study the problem of the asymptotic normality

of random signed rank statistics under the alternatives when the score

functions, m, are bounded. When the random variables are independent

and identically distributed, W is assumed to be square integrable.

This extends the work of Koul (1970) and (1972), Sen-Ghosh (1971) and

Ghosh-Sen (1972) to m which may be discontinuous. To relax the

assumptions of differentiability on m, restrictions are placed on

the distribution functions of the random variables similar to those

used by DupaE-Héjek (1969). This work is useful in generating

bounded length confidence intervals for the regression problems.
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CHAPTER I

INTRODUCTION

We consider the problem of the asymptotic normality of simple

linear signed rank statistics S+(¢) under the alternatives based on

a random number of observations. They are called random signed rank

statistics. Corresponding theorems are also presented for random rank

statistics. In particular suppose {Xi}' i :_l, is a sequence of in-

dependent random variables with continuous distribution functions

{Fi}, i :_1, and {Nr}, r :_1, is a sequence of positive integer

valued random variables. All random variables are assumed to be de-

fined on the same probability space. Let {Ci}, i :_1, be a sequence

of real numbers. We will be investigating the asymptotic distribution

of random signed rank and random rank statistics which correspond to

a :p and are defined as

n +

Z c.a (R. )s(X ) and

1 n 1n 1

S+

n(cp)

l
-
‘

:
5

Sn(m) El Cian(Rin)

where

(1.1) s(x) =I(x:0) -I(x:0), -°°<x<°°

+ n

.2 o = . n <(1 ) Rm 23:1 1(lle _ [xi|),



n
(1.3) Rin - Zj=1 I(Xj :_Xi), and

(1.4) an(i) m(i/(n + 1)) or

(1.5) an(i) E<¢<uni)), i = 1.....n

where Un1 :_... i-Unn is the order statistic of a sample of size

n from a uniform distribution on (0,1). When Xi' i :_l, have continuous

distribution functions Fi, i :_l, m is assumed to be bounded and

‘flq and to satisfy some other conditions presented later. These W

may be discontinuous. When Xi’ i :_l, are independent and identically

distributed (i.i.d.), m is assumed to be square integrable and .1!

Also presented are theorems related to the asymptotic normality

of 5(m) for non—random sample sizes and an application of.the theorems

for random sample size which are of interest by themselves.

This work is motivated by a desire to use m which are dis-

continuous to generate bounded length confidence intervals for the

regression problem as presented by Koul (1970) and (1972) and Ghosh-

Sen (1972). In particular the median test can be used since

¢(t) = 1(5 < t :_1) is bounded and discontinuous at t = 5.

This work should be compared to the papers by Pyke—Shorack

(1968a) and (1968b), Koul (1970) and (1972), Sen-Ghosh (1971) and

(1972) and Ghosh-Sen (1972).

Pyke-Shorack (1968a) and (1968b) presented a Chernoff-Savage

theorem on the asymptotic normality of the two sample linear rank

statistic for non-random and random sample sizes with a broad class

of m which include W with jumps. With slightly more restrictive



score functions, Braun (1976) shows that the two sample linear rank

statistic with random sample sizes converges weakly to a Wiener pro—

cess. Koul (1970) proved the asymptotic normality of the random signed

rank statistics when {an(i)} satisfy (1.4), {ci} satisfy Noether's

condition, {Xi} are i.i.d. and m is square integrable and absolutely

continuous with derivative T. which exists a.e. and has bounded

variation on [0,1]. Koul (1972) proved the asymptotic normality of

the random rank and signed rank statistics under the alternatives

when an satisfies (1.4) and m satisfies the conditions in Koul

(1970) and has a continuous derivative m'. These m are bounded

and uniformly continuous.

Sen-Ghosh (1971) presented the asymptotic normality of func-

tions of random signed rank statistics when ci 5 l, {an(i)} satisfy

either (1.4) or (1.5), m satisfy various smoothness conditions and

{Xi}' 1.: l, is a sequence of i.i.d. random variables having an

absolutely continuous distribution function F symmetric about zero

for which both the density function f and its first derivative f'

exist and are bounded for almost all x. These W include the normal'

scores and Wilcoxon, but not the median tests.

With essentially the same assumptions on m, {an(i)} and F,

except symmetry which is not assumed, Ghosh-Sen (1972) generalized to

the linear regressionrmxhalwith {ci} satisfies the boundedness con-

dition (2.2).

The results in Sen-Ghosh (1971) are used in obtaining bounded

length confidence intervals for the median while the results in Koul

(1972) and Ghosh-Sen (1972) are useful in obtaining sequential bounded



length confidence intervals for the regression coefficient 8.

In two of our main theorems we establish the asymptotic

normality of random signed rank and rank statistics under the alter-

natives for a class of bounded m which may be discontinuous.

In particular, in Theorems 2.1 and 2.2 we assume that m is

the difference of two non—decreasing bounded functions. To relax the

usual assumptions of differentiability oncp, we need to place restrictions

on Fi similar to those used by DupaE-Hajek (1969). In view of the

example in Hajek (1968), these conditions are close to being necessary.

As an application of these theorems, we present the regression problem.

To complete the proof of the main theorems, the appendix con-

tains the fixed sample size theorems. They are presented in-a form

which relaxes the boundedness condition on m by assuming m

satisfies Hoeffding's (1973) condition. By imposing Hoeffding's con-

dition on m we are able to eliminate condition D—H(2.12) and relax

condition D-H(2.l3) on Fi in DupaE-Héjek (1969).

Theorem 2.3 presents the weak convergence of random signed rank

statistics when xi, 1 :_l, are i.i.d., an is defined by (1.5) and

w is square integrable. The proof uses techniques similar to Sen-

Ghosh (1972). The essential step in proving the uniform continuity

in probability needed to apply the Anscombe theorem (1952) is the proof

that if Fn is the o-field generated by {(s(Xi), Ri)' 1 :_i :_n}

and the distribution F of {Xi} is symmetric about zero, then

{82, Fn} is a martingale sequence and the Kolmogorov inequality for

uartingales holds. Sen-Ghosh (1971) and Ghosh-Sen (1972) used this

technique to prove their results.



In general this technique cannot be used. If F is not

symmetric about 0 or if an is defined by (1.4) instead of (1.5),

the martingale property need not hold for 8;. Similarly if an is

defined by (1.4), the martingale property need not hold for Sn.

Since 5; and Sn are sums of dependent random variables, the uni-

form continuity in probability needed to apply the Anscombe theorem

is in general difficult to prove.

To prove the main theorems for an defined by (1.4), we

utilize the so called weak convergence technique as used by earlier

authors, Pyke-Shorack (1968a) and (1968b) and Koul (1970) and (1972).

We decompose the normalized random signed rank or rank statistic into

two parts and approximate each part by a fixed sample size sum of

independent random variables.

Chapter 2 contains the main theorems. In Chapter 3 Theorems

2.1 and 2.2 are specialized to the regression problem. Also some

sufficient conditions for Theorems 2.1 and 2.2 are presented.

Chapter 4 contains preliminary results for the empirical process

which are necessary for the proofs that follow. Chapters 5 and 6

contain the proofs of the main theorems. The asymptotic normality

of the non-random signed rank and rank statistics is presented in

the Appendix.



CHAPTER 2

MAIN THEOREMS

Suppose {Xi}, {Fi}' {Nr} and {ci} are defined as before.

About {Nr} we assume the following:

(2.1) there exist sequences of positive integers {ar} and {br}

such that ar + w, br + m, ar/br + l and if

A = [a :_N
r r :.b 1: then P[Ar] + l; or equivalently there

r r

exists an increasing sequence of positive integers {nr} such

that Nr/nr + l in probability as r tends to infinity.

For Theorems 2.1 and 2.2 we will assume that {Ci} satisfy

the boundedness condition for all n

(2.2) k < k < m where 02 = Zn c? and o-lng max lc.| = k .
n-— c n l i n . n

ljiin

. 2 -2 2 -2 .

Slnce 1 > o o > 1 - (b - a ) max |c Io , (2.1) and (2.2) imply
- a b -— r . b .

r r l<1<b r

--r

(2.3) 0 /o + l .

a b

r r

(2.1) and (2.3) imply

(2.4) ONr/Obr + l w.p. l and

0a /0N + l w.p. l .



For Theorem 2.3 we will only assume that {Ci} satisfy (2.3)

and Noether's condition

(2.5) max Ic.|o + 0 as n + w.
. 1 n

liiin

Define for any n

+ +

S (t) Zn c,I(R, < (n + l)t)s(X.), 0 < t < l,

n l 1 1‘- 1 -— -

and
|
AS (t) Zn c.I(R. (n+l)t), O<t< 1,

n 1 1 1 -— —

+

where s(xi), Ri and Ri are defined by (1.1), (1.2) and (1.3)

respectively. One observes that

+ 1 +

sn(¢) IO ¢(t)dsn(t)

and

l

sn(¢> f0 w<t>dsn(t) .

This representation makes it clear that one needs to study the

. .. +
standardized weighted empirical processes {SN (t), 0 :.t :_l} and

r

{SN (t), O :_t 5.1} in the cases in which m is bounded. This is

r

done in Chapter 4.

In the remainder of this chapter we will state our main

theorems for random signed rank and random rank statistics.

In Theorems 2.1 and 2.2 we assume

(am v=¢1-%

where (Pm is \ bounded on (0,1), m = 1,2.



For signed rank statistics we define for 0 :_x < +m and

0 i.t.i l,

-l n

K (x) = n z I{[x.| < x},
l 1 '—

-1 n

K (x) = n X [F.(X) - F.(-X)],

l 1 1

+ _ -l

(2.7) Linl(t) — Fi(§n (t)) - Fi(0)’

+ _ _ _ -1

Lin2(t) — Fi(0) Fi( 55 (t)).

+ + +

Lin(t) — Linl(t) + Lin2(t)'

+ + +

pin(t) — Linl(t) - Lin2(t)'

E+(t) = Zn c.uf (t). and
n l 1 1n

-+ n +

un(¢) — £1 cifm(t)dpin(t).

Obviously for any n

-1 n +

. Z L E .(2 8) n 1 in(t) t

Theorem 2.1. Let {an(1)}, {Nr}, {Ci}, m and qh, m = 1,2, sat1sfy
 

 

+

(1.4), (2.1), (2.2) and (2.6). Assume there exist functions Rijk(s),

0 < s < l, l :_i :_j, a §_j :_b , k = 1,2, and sets Er such that

r r

vd,0<d<oo,and Vn>0

(2.9) lim mh(Er) = O, m = 1,2,

r—wo

he e E = E E

XL_E;_ r rl U r2



(2.10) E = {s; max max max sup
rl (t)

k=l,2 aréjfibr 121:) It-slidj

.5 +

—%3 lLijk

+ +

- Lijk(8) - (t-S)£ijk(5)l > n}.

 

—1 .+ .+

(2.11) E = {8; 0 a% max lc.(S) - c (S)| > n},
r2 a r . a

r a <j<b r

r—- r

and for any integer n

“+- _ -1 n + +
(2.12) cn(t) — n Zlci(2inl(t) Rin2(t)), O < t < 1.

Finally for any n define
 

 

2 _ n ‘ _ 1+ -1 _
Tn+(o) - Zi=1Var{f[(ci cn)[I(O :_Xi ju§n (t)) Linl(t)]

2 l3 - ( + A+) I -K-1 t) < X < O) - L t))]d (t)

( ° ) Ci Cn ‘ ( —n ‘ —- i in2( v

- [s(X) - + 1)] (1)}
Ci i “1‘ W "

Then

(2 14) lim inf 12 ( )o'2 > o
' aJi-cP a

r r r

implies

-1 + -+

(2.15) Ta +(cp)[SN (m) - UN (¢)] + N(0,1) r.v.

r r r D

Proof: See Chapter 5.

For linear rank statistics we define for -w < x < w,

o :_t §_1



10

H (x) = n-1 2? I{Xi :_x},

_ -l n
H (x) - n 21 Fi(x),

_l .

(2.16) Lin(t) - Fi(§n (t)), l :_1 :_n and

n

un(¢) = Zlcifw(t)dLin(t).

 

Theorem 2.2. Assume {an(i)}, {Nr}, {Ci}, m and qh, m = 1,2

satisfy (1.4), (2.1), (2.2) and (2.6) respectively. Assume there
  

exist functions Rij(s), 0 < s < l, l :-i :_j, a :_j i-br' and sets
 

r

Dr such that 'v d, 0 < d < w, and 'v n > 0

(2.17) lim (pm(Dr) = o, m = 1,2,

M

h =w ere Dr Dr1 U Dr2'

D = {s; max max supr1 12|Li.(t) - Li.(s)

a <j<b l<i<j |t-s|<dj 3 3
r—-r __ _

-5j

- (t-S)£ij(S)I > n}.

 

(2.18) D = {5; o-lag max Ic.(s) - a (5)] > n}

r2 a r . a

r a <j<b r

r—-— r

and for any n

. _ -l n

Define for any n
 



11

2 n - -l

(2.l9) Tn(m) — Zi=1Var[f(ci - Cn)(I(Xi : an (t))

-Lin(t))d¢(t)].

2 -2 .

Then lim inf Ta (cp)oa > 0 implies

r r r

-1

Ta (<p)(SN (o) - uN (o)) + N(0,1) r.v.

r r r D

Proof: See Chapter 5.
 

Remark 1. Without loss of generality we may assume that

-l 2 n +

(2.20) n Zk=lzi=l Kink(t) — 1, 0 < t < l

+

and that gin (t) are measurable functions on (0,1). These follow

k

4.

from the fact that if there exist £in satisfying (2.9) then it is

k

- - + 8 + -% +
satisfied b 2 = -y ink(t) n [Link(t + n ) Link(t) 1.

Remark 2. When {Xi} are i.i.d. and F symmetric about zero,

2Ijk(t) E 5 (in i,j,k and 0 :.t :_1) and for any n, én(t) E 0.

Therefore Er = ¢ and (2.9) is automatically satisfied.

Remark 3. The theorems above allow a broader class of m than Koul

(1972) by removing the absolute continuity and uniform continuity

conditions on m, but we impose the conditions (2.9) through (2.11)

on the Fi'

Remark 4. In the fixed sample size problem when T is an indicator

function (2.17) and (2.9) reduce to D-H (2.13) in DupaE-Hajek (1969)

and a similar condition in Koul-Staudte (1972a).

The following corollary allows the application of Theorem

2.2 to the two sample Chernoff-Savage problem.

Define A0 such that O < A i-AO :_1 - A < l.
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Corollary 2.1. Theorems 2.1 and 2.2 hold when (2.2) i§_rep1aced by
 

(2.21) ci = I(i :_nr)

where nr i§_a_random variable and there exist positive integers

' and b' ch th t ' + w b' + m a' ' + l and if{ar} { r} su a ar ) r I r/br ,__

I = I I I ° I =
Ar [ar :_nr :_br], then PEAr] + 1 and 1:m ar/ar A 0.

Proof: See Chapter 5.

We now present a theorem for random signed rank statistics

with a different centering constant when T is square integrable and

{Xi} are independent and identically distributed.

Theorem 2.3. Assume X1'°°°'xn have the continuous distribution
 

function F satisfying F(x) = 1 - F(-x). Assume W i§_square
 

integrable in_ (0,1). Assume {an(i)}, {Nr} 229_ {Ci} satisfy

(1.5), (2.1), (2.3) 111d(2.5). Then (s; - Es; )(AUN )'1 4 N(0,1)

r r

r.v. where A2 = f3¢2(t)dt.

Proof: See Chapter 6.



CHAPTER 3

APPLICATIONS

The following lemma replaces (2.11) in Theorem 2.1 by a

stronger condition on Fi but perhaps an easily verifiable one. De-

fine

+ +

E 3 = {0 < s < 1; max max max I2..k(s) - 2i k(s)| > n} .

r k=1,2 a <j<b 1<i<a 3 a
r—--r -—-r

Lemma 3.1. Define Er4 = Er1 U Er3° Condition (2.9) £§ implied by

(3.1) lim ¢m(Er4) = 0, m = 1,2,

r

whe e he 2:. grg,defined in Theorem 2.1.

Prggf: Unless otherwise specified ar, Nr and br will be

denoted by r, N and b. To prove the lemma it is sufficient to

prove E D E

r3 r2'

In the following we use the fact that for all j and r

.-l -l . . -l

(3.2) 3 = r + (j - r)(rj) .

Since 5 will be fixed in (0,1) we will simplify notation by not

revealing the s. For fixed 5 6 (0,1) and r < j :_b we have

13
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-1 B
or r lg ql

0-1r5 -1 + + + +

5-0r Izricir (Elijl “ijzj [zirl £1r23)

j . _ . -1 + _ +
+ Zlci(3 r)(rj) (Zijl Eijz)

+ zj c r-l(2+ - 2+ )l b (3 2)
r+l i ijl ij2 Y '

- + +
:_o lrk max IciIEZ max max max I2"k - lirk|

r 111:1) k=1,2 r:j_<_b 1:i_<_r 13

— . .-1 j + +
+ - +r (J r)J 21(2ij1 £1j2)

-l r + +

' — E +r [J l‘gijl Rij2)]]

+

< 8kC max max max (1+ - l. I + o(l) by (2.2) and (2.20).

- ijk irk

Ck:l, 2 r<j<b 1<i<r

This completes the proof that Er3 D Er2°

Remark 5. Results similar to Lemma 3.1 hold for rank statistics. In

particular (2.18) may be replaced by

D = {o < s < 1 max max |2..(s) - 2. (s)| > n} and (2.17)
r3 . . 1] 1a

a <j<b l<j<a r

r—--r --r

by lim qh(Drl U Dr3) = 0, m = 1,2.

m

Theorems 2.1 and 2.2 can be applied to the regression problem.

The proof will be carried out for Theorem 2.1 although similar results

hold for Theorem 2.2.

_ 2
Assume for all n, Xin - 80 + CinB + Ei' cin =c2/Znc21, ci

satisfy (2.5) and 8i have a distribution function F which has a

uniformly continuous derivative f which is positive on (~w,m).

+—+

' ' . . F ' , L.Also assume Nr satisfies (2 l) or any n define un(¢) ink'



15

2

k = 1,2, Kh' Tn+(¢) and kn(t) by (2.7), (2.13) and

-1 n -l -l

k (t) = n 2[f(1< (t) - c. B) + f(-K (t) - c. 8)]. t e (0.1).
n l —n in —n in

Also define F*(x) = F(x) - F(-x), 0.: x < w .

2 -2 . . -l . + _+

Then Tr+(¢)or > 0 implies Ir+(¢)(SN(m) - uN(m)) + N(0,1).

The proof follows from Theorem 2.1 and Lemma 3.1 by showing

that (3.1) holds.

Fix t0 6 (0,1). For every h such that

(t - h, t + h) c (0,1) and n there exist en,gn (dependent on h,

0 O

O -1

t0 and n), < n < 9n < such that en K (tO h)

-l . _ . -1 -l ’

max CinB <<§n (tO + h) - min CinB -.gn. Since En (t) + F* (t) and

max Ici I + 0 as n + w, there exists e and g, -m < e < g < m

lfijn

such that for all n, e :_en < gn‘: g.

Since f is positive on (-m,m) and e and g are finite

there exists €2>0 dependent on t0 and h such that for all n.: 1

inf kn(t) > e.

It-t0|<h

Noting that [kn(t)]u1 represents the derivative of §;1(t), we obtain

for all n.: l

sup |d§;1(t)/dt| < 5'1 .

It-t0|<h

Therefore §;l(t), n': l, is uniformly continuous in a neighborhood

of to. The same is true of
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+ -1
dLinl(t)/dt f(§n (t) - cin8)/kn(t)

and

dL+ (t)/dt - f( K’l(t) s)/k (t)
in2 - —n Cin n

since f, kn and §;l(t) are uniformly continuous in a neighborhood

of t0 for all n :_1.

N f 2+ — dL+ /dt k — 1 2 ' < ' < ' < b how or ijk — ijk , — , , i __j, ar __j __ r' we ave

(3 3) max max max su 'IIL+ (t) - L+ (t )

' p -53 ijk ijk o
k=1,2 arjjibr 1:15j lt—tolidj

+

- (t - to)£ijk(t0)l + 0.

Since (3.3) holds for each t0 6 (0,1),

I(Erl) + 0.

Next we will show ¢(Er3) + 0 which completes the proof of

(3.1). For t0 6 (0,1) and n > 0 choose

-1 _

e > 0-3- 25[f(F* (t0)) - e] l < 5n. Then there exists rl-Bor > rl

implies

f(F;l(tO)) - 5

I
A min min f(§:l(t0) - ci.B)

rfjjb ljijr J

I
A max max f(§:l(to) - Ci'B)

rjjjb 151:; 3

f(F:l(tO)) + e.

|
A

Then for r > rl



max max [2

+

(t) - £.1(t0)|

1<i<r r<j<b 1r

(3.4) i ICf(F:1(tO)) + €][f(F:l(tO)) - eJ-l

- [f(F;1(tO)) - e][f(F:1(tO)) + sJ'll < n .

+

Since similar results hold for 2. (t ), i < r, r > r

ir2 0 —- 1

and (3.4) holds for each t0 6 (0,1), ¢(Er3) + 0 and (3.1) holds

Remark 6. By Corollary 2.1 the regression problem can be specialized

to the two sample Chernoff-Savage problem with random sample size.

Pyke-Shorack (1968b) obtain similar results for a broader class of m.



CHAPTER 4

RANDOM WEIGHTED EMPIRICAL CUMULATIVES

In this chapter we prove the relative compactness of the

weighted empirical cumulatives based on independent random variables

with improper but finite distribution functions. This extends the

results of Shorack (1973) and Koul (1974).

This result is used to establish the asymptotic normality

of random weighted empirical cumulatives based on signed ranks or

ranks by establishing that they have the same asymptotic distribu-

tion as non-random weighted empirical cumulatives. The asymptotic

normality of the latter is established through approximation by

their projection on independent random variables.

Define {Yi' 1 §_i :_n} to be a sequence of random vari-

ables on [0,1] with improper but finite and continuous distribution

functions {6. ,1 < i < n}. Also define 02 = in d? and

in - —- d l 1

(4.1) w (t) = o-lznd {I(Y < t) - G (t)} O < t < 1 .

d d l i i - in ' —- -—

In Proposition 4.1 and the remainder of this work, “f“

will be the sup norm for any function f on [0,1].

 

Proposition 4.1. Assume {di} satisfy a_condition similar tg_(2.2).
  

 

Assume for the Gin defined above that

n

(4.2) 21 Gin(t) - nt

18



l9

i§_a_non-increasing function on_ [0,1]. Then (is > 0
 

(4.3) lim lim sup p[ sup lwd(t) - wd(s)| 3 a] = o .

6+0 n+00 It-sl:§

Proof: The proof is presented in a lemma and remark.

Lemma 4.1. Assume the conditions g£_Proposition 4.1. Then
 

(4.4) Elwd(t) - Wd(s)|4 : k:{3(t - s)2 + n'llt - sl}.

Prgof: Without loss of generality assume 0 :_s :_t < 1.

Let Ei = I(s 5-Yi :_t) - pi where pi = Gi(t) - Gi(s), i = 1,...,n.

Then using the independence of Y1 and the fact that Egi ll

0 t (
D

have by (4.1)

4 -4 4
Elwd(t) - wd(s)| — 0d Elzi: digil

-4 4 4 2 2 2 2
= +
0d E? diEgi 3? § didngiEgj]

1 17‘]

-4 2 2 2 4 4 2 2
— 0d [301: diEii) + £1 di(E£:i — 3E (aiHJ

-4 2 2 4 2

od [3(2 dipi(1 - pi)) + 2 di(pi(l - pi)(1 - 6pi + 6pi))]

i 1

-4 4 2 4

< o [3 max Id.| (X p.) + max Idl Z P.]
- d . i . i . i . i

1§}§P i 1§}§P i

-4 4 2 — 2 -

< o max (d.|n [3(n 12 p.) + n 2 2 p.]

- d . i . i . i

liiin 1 i

4 _

§_kd[3(t - s)2 + n llt - SI]

which is (4.4). The last inequality follows because (4.2) implies
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Z(G.(t) - G (s)) < nt - ns.

1 i -—

This completes the proof of Lemma 4.1.

Remark 7. In Koul (1974), Proposition 4.1 was proved with (4.2) re-

placed with a stronger condition. Since (4.4), which was basic to the

proof in Koul (1974), is also true under the weaker condition, Proposi-

tion 4.1 also holds under the weaker condition.

We now present an application of Proposition 4.1 which is used

in proving Theorem 4.1. Whenever possible we suppress the subscript

n used in the notation of Chapter 2 and denote En be K.

Define for 0 :_t :_l

_ -l n -l +

Vn(t) - on 21 ci[I(IXi| :_x (t))s(xi) - ui(t)],

_ 5 -1 _ _ -% n -l +
Wn(t) — n [Kn(K (t)) t]— n zl{1(|xi| i K (t)) - Li(t)},

(4.5) an(t) 0'12“ c.[I(0 < x. < K'1(t)) - LI (t))
n 1 i - i-— 11

and

-1 n —l +

Vn2(t) on 21 ci[I(-K (t) fi-Xi :_0) - Li2(t)].

Note that for 0 :_t §_l

(4.6) Vn(t) = an(t) - vn (t)
2

and when ci 5 l

(4.7) Wn(t) = Vn1(t) + Vn (t) w.p. l.
2
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Corollary 4.1. Assume {Ci} satisfy (2.2). Then v e > 0
 

(4.8) lim lim sup pt sup |Vn(t) - Vn(s)| 3_€] = 0

5+0 n It-slfifi

and

(4.9) lim lim sup P[ sup |Wn(t) - Wn(s)| :_e] = 0 .

6+0 n It-s|:§

Proof: In Proposition 4.1 take Yi E K(Xi)I(0 :_Xi) and

d = c Then G (t) = L+ (t) nd f o (2 8) an+ (t) t -
i ‘ 1' in ‘ inl a r m ° 1 inl “ ‘

+

-2n L. (t). Hence (4.2) is satisfied for these G. '5. Moreover

l in2 in

Vn1(t) = wd(t). Hence an satisfies (4.3). Similar application of

Proposition 4.1 to Yi E K(-Xi)I(Xi < 0) and di 5 ci will yield (4.8)

in view of (4.6). Similarly by (4.7), (4.9) follows when di 5 l.

The following results which appear in Koul-Staudte (1972b)

and Koul (1972) are presented here without proof.

Lemma 4.2. The random variable { sup IW (t)I} §§_bounded in_

O<t<l

probability as_ n + m. Also
 

 

sup Ix (K;l(t)) - tl = o (1) and

OEtEI r r p

(4.10)

sup Iga (Eighth - tl = o (1).

Ofitjl r r p

In view of (4.10) and the fact that K (x) = H (x) - H (-x)

-n —n -n

we have

(4.11) sup lga (15;;th — t) = o (1) .

Ojtfil r r p



22

We now state the main theorem of the chapter. Its proof

will be presented in a series of lemmas which establish the asymptotic

normality of the random weighted empirical cumulatives based on

signed ranks by first establishing the asymptotic normality of non-

random weighted empirical cumulatives and then establishing that the

random and non-random weighted empirical cumulatives have the same

asymptotic distribution. Similar results are then presented for

random weighted empirical cumulatives based on ranks.

For signed rank statistics introduce for a fixed point

V 6 [0:1]

(4.12) T+(v) = 0'12“ c.{I(lx.| :K’1(v))s(x.) - LCM}
n n l i i n 1 i

where Kn is the empirical cumulative of {lxi|, 1 __i :_n} de-

fined by (2.7). Also define for v 6 (0,1)

-1 _

(4.13) 23w) on {2" ci[I(|Xi| 5. K 1(v))s(Xi) - 11:0»)
1

- nsc+(v)W (v)}
n n

+

where cm is defined by (2.12).

 

Theorem 4.1. Assume {an(i)}, {Nr} and {ci} satisfy (1.4), (2.1)

and (2.2) and for fixed v, 0 < v < 1, there exists numbers
 
 

+ . . .

Qijk(v), 1 :_i :_3, ar :_3 : br' k = 1,2, such that for any d,
 

0<d<°° and k=l,2,

(4.14) max sup -5|Link(t) - Link(v) - (t-v)£:nk(v)l = o(n-§)

1:i_<_n It-v lidn

and
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(4.15) o-lafi max |&[(v) - 6+ (v)| + 0 as r + m.
a r a

r a<j<b r

r

§2£.32X n define

12 (v) = “(a2[L:n (v) - (pf (v))2] + (6+(v))2Lf (v)[1 — LT (v)]
n+ in n in in

(4. 16)

.+ + +

— 2cicn(v)[uin(v)(l - Lin(V))]] .

Then

(4.17) lim inf T: +(V)/O: > 0

r+® ar+ ar

implies

(4 18) ‘1 T+ 4 o 1. TN +(v)ON N (v) D N( , ) r.v.

r r r

The proof of Theorem 4.1 utilizes Lemmas 4.3 through 4.6 and

is completed after them.

+ .

Lemma 4.3. Assume {Ci} satisfy (2.2) and Zirk(v), l :_1 :_r,

k = 1,2, satisfy (4.10). Then (4.17) implies

(4.19) l(\))0rT: (V) '* N(OI1)-

D

Proof: (4.19) will follow when we show

+ +

(4.20) IT (v) - z (v)! = o (1)
r r P

-1 +

and Tr+OrZr(v) D N(0,1).

(4.21) T:(v) = vr(K(K;1(v))) + a;lEu: (K(K;1(v))) - u(v)].

(4.8) and (4.10) imply
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-1 _

(4.22) sup IVr(K(Kr (t))) - Vr(t)| _ op(l) .

03:31

Now since IK (K—1(t)) - t] < r-l, we have by (4.5) and (4.9)

r r -

(4.23) r5[K(K'1(t)) - t] = r5[K(K’1(t)) - K (K"1(t))] + 0(r‘5)
r r r r

-1 -a _ _
=’wr‘K‘Kr (t))) + 0(r ) - Wr(t) + op(1).

Since the sequence file‘} is bounded in probability in the

limit a cha-

(4.24) P[Br] + l

where

—1 -%
B = {sup|K(K (t)) - tl :_dr }
r t r

Combining Assumption (4.14) and the above observations yield

-1 -+ -1 -+
(4.25) or lur(K(Kr (v))) - ur(v) + rgc:(v)wr(v)l = op(1).

Finally, combining (4.21), (4.22) and (4.25), we have shown

+ - -

(Tr(v) - Vr(v) + o 1r56:(v)wr(v)l = 0p(l).

Combining (4.22) and (4.13), we note that

(4.26) v (v) - o'lr*e+(v)w (v) = Z+(v)r r r r

which completes the proof of (4.20).

To complete the lemma, write
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Z+(v) = o'lzr{(c - 6+)[1(o < x < K'1(v)) - L+ (v)]
r r l i r - i —- irl

.+ -1 +

- (ci + cr)[I(-K (v) fi-Xi < 0) - Lir2(v)]}

r +

leri(v) (say).

+

Then since Iér(v)| :_max|cil follows from (2.20), we have

max (2+.(v)l j'4 maxIc.|0.-l = 0(1).

ljifir 1 1 r

+

Therefore I! e > 0 and r sufficiently large, max (Z .(v)l < e

1<i<r

and the Lindeberg-Feller theorem plus (4.17) yield that T-lorz:(v)

r+

is asymptotically normal with parameters (0,1). Therefore (4.19)

follows from (4.20).

Before proceeding with Lemma 4.4, we state an inequality

which is given in Fernandez (1970).

Inequality. Let D[0,l] pg_the space p£_functions pp_ [0,1], the
 

elements pf_which are right continuous and have left limits. Let

 

{Yi} p§_seqpence p§_independent random variables ip_ D[0,l] and

c = 2? , >j 1:1 Yi Then ‘v s O

1

V(4.27) p[ max [lgjl -2€] < PU g H > e](l - n )-

1:153) _ l n n

where

D

II max PHICP - cl|> e] .

 

Lemma 4.4. Assume {Nr} and {ci} satisfy (2.1) and (2.2). Then

Y e > O
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(4.28) HVN - va H = op(1).

r r

(4.29) “WN - wa H = op(l)

r r

229.

30 4 *(4. ) .thr“ — op(l)

 

where for any, n, V*(t) = V (K (K-l(t))) - V (t).

n n -n n n

Finally the sequence (“WN L} i§_bounded in probability 12_

r

  

Ppppf: Unless otherwise specified ar, Nr and br will be

denoted by r, N and b. First note that (4.29) and the fact that

{hwrh} is bounded in probability imply that the sequence (“WNh]

is bounded in probability. Since (4.29) can be proved by the same

methodology used to show (4.28), only the proof of (4.28) and (4.30)

will be presented here.

Define for 1 5.1 :_b

-1 -1 +
= I . . - .Yi(t) or ciE (lxll 5-52 (t))s(x1) u1r(t)]

and

V'(t) = 2r Y.(t)
r l i

To prove (4.28) we will first show that

(4.31) “v;q - Vr“ = op(l) .
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Note {Yi} are independent random variables and Yi E D[O,l]. Then

by (4.27), we have

. c
PLHVfi - Vr“ > zej]§_P[ max “v3 - vr“ > 2g] + P(Ar)

riJEP

(4.32)

I ‘ I I — l
< P[“Vb - Vrh > e](l - max P[[[Vb - Vj“ > 5]) + op(1) + O

r:1'_<.b

as r + m as the following argument shows. For any t and any j,

r :_j i'b, we have

I I 2

E(|Vb(t) - Vj(t>| )

-2 b 2 -1 + 2

(4.33) — or £j+l ciE[I{|Xi| i-Er (t)}s(Xi) - uir(t)]

< o-'(o2 - 02) +>O as r + w b (2 3)

- r b r y ' °

Noting that

sup [K.(K;1(t)) - tl = 0(1)

Oifiil

and

-1

V'.(t) = 0, 0V.(

‘ J J

K.(

r J ‘3

K’1(t))).r < j < b._.r _ _

we have by (4. 8) that

(434) PE sup I(vyt) -.v5(t)) - (vys) - vJ!(s))| > e] + o

It-s|<6

as r + w and then 6 + 0.

Combining (4. 33) and (4. 34) , we have
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max P[“V' - V!“ > e] + 0 as r + w.
. b j

rjjjb

Therefore (4.32) and consequently (4.31) hold. To complete the proof

of (4.28)) we start by combining (4.31) with (4.8) to get

(4.35) p[ sup IV&(t) - V§(s)| > e] + o .

It-slsS

. _ -l , -1

Noting that VN(t) - CrON VN(_K_r(KN (t))), we have

(4.36) “VN - vr“

:_| sup OrON
1 -l

(v'(K (K (t))) -v'(t))l
Qifiil N —r -N N

+ or0;1“V§ - VI“ + “Vrhlorogl - 1]

+ .R1 + R2 R3 (say)

(4.37) R3 = op(l) by (2.4) and the fact that {“vrn} are bounded

in probability.

(4.38) R2 = op(l) by (4.31) and (2.4).

+ —

Finally define D = [ sup (K (K 1(t)) - t] < 6] and note from (4.11)

r 0<t<1 -r -N

(4.39) P(D:) + 1.

Then by (4.35) and (4.39)

'1

(4.4(» P[Rl > 5].: P[ sup OrON |v'(t) - v'(s)| > e] + p(DC ) + 0.
lt-S|<5 N N r+

Combining (4.36) through (4.4C» yields (4.28).
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Finally, the proof of the lemma is complete when we show that

(4.30) holds. Since the sequence {thh} is bounded in probability,

there exists d such that

_ -1 -%
cr — {sip IKN(KN (t)) - tl :_dN }

and

(4.41) P[Cr] + 1 .

Then (4.30) follows by combining (4.8), (4.28) and (4.41)

lim p{nv;“ > 5}

pm

§_1im lim (P{ sup IVN(t) - VN(s)| > e} + P[CC]) = 0.

6+0 r+m It-sl<6 r

Lemma 4.5. Assume the conditions 9£_Theorem 4.1. Then aE_ v
  

I -1 -* (v) - 0-1 -* (v)| = o (l)

(4’42) ON uN a pa P

r r r r

where for any n

~* -+ -1 -+

= K - v).
(4.43) un(v) un(§h( n (v))) un(

Proof: Again we will write r, N, and b for ar, N and

r

+

br. We will repeatedly use the fact that since [irk 3.0, i :_r,

k = 1,2, (2.20) implies for any r 3_1

- +. - - +

(4.44) O lrkué‘: “ < o lrs max Ic.(r lhz Z 2. H < k .

r r -— r . i . irk — c

liiir i k

To prove (4.42) we will first show that

-1 5 A4' -1 g, A+ _

(4.45) loN Nr 6N (v)WN (v) - 0a ar ca (v)wa (v)! — op(1)

r r r r r r
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In particular we will show that

-1 B + -1 5 +
.46 = “ - “ =(4 ) R1 ION N cN(v) or r cr(v)| op(l)

which by (4.44) also implies

(4.47) lim P[o;lN5|c;(v)| i K < w] = l .

r

The proof of (4.45) will then be complete by the triangle in—

equality, (4.29) and the fact that the sequence {hWa H} is bounded

r

in probability. We now prove (4.46). By (2.1), (4.15) and (4.44)

—1 5 .+ .+

|R1| :_ON N lcN(v) - cr(v)l + op(l)

-1 5 + + ‘

_<_orb max Ic.(v)-c(v)|+o(l)=o(1) .

a <j<b r P P

r—-— r

To prove (4.42) we first observe that (4.14) implies that

8
V's > 0 there exists r-.9. if r > rE and It - VI fi_dj— o

e

r §_j §.b, then we have

'1 j + + -l r +
lo. 2 c.[u..(t) - u.. v — o z - +

J l 1 11 13( )3 r 1 Ci[“ir(t) “ir(“)]l

(4.48)

-l..+ -1 +
< o. c. v t - v - “ ___l J 1 J( )( ) or rcr(v)(t 6)] + 4ekc .

. -1 + +
+ 430. max Icil max max sup _ lLi'k(t) - L..k(v)

1515; k=1,2 15153 It-vljdj 3 13

' +

- (t - v)£ijk(v)l

< o'lje+(v)(t-v) - 6‘1 6+(v)(t )| +- 4th ‘
j j r r r . v c.

To proceed let Cr be defined by (4.41). Note on A H C . we have

r r

for r :.j :_b

-1 _

sup (K.(K. (t)) - tl < dj 1’

t J J '—
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We complete the proof of (4.42) by partitioning 9 based on {Nr}, apply-

ing (4.5), (4.23) and (4.48) and recombining. Let 60 > 4kce > 0. Then

-1

P[|0N

_* _1_*

uN(v) - or ur(v)| > 360]

< b [I -l'* 'l'* . n . — 'J ]__P[jgr( oj uj(v) - or ur(v)l > 3601;)[cr1 .[Kr — 3 )

+ P(AC) + P(Cc)
r r

b

-1.5 .+ -l 5 .+ _= --
PEjgr([loj 3 wj1v)cj(v) - or r wr(v)cr(v)| > eO]n[cr]n [Nr 31)]

|
A

+ o (1)

P

. -1 8 .+ -1 %.+

PL [ION N cN(V)WN(V) - or r cr(v)wr(v)| > 60] n [ArJJ + op(1)I
A

= 1 b 4.4 .op( ) y ( 5)

Lemma 4.6. Assume the conditions of Theorem 4.1. Then
 

 

 

-l

TN+(v)Tr+(V) + 1 w.p. 1 as r + m.

ngpf; As usual we will use r, N and b instead of ar,

N and br' Since v is fixed we will simplify notation by not

revealing v when possible.

We will repeatedly use the observations that (4.17) insures

that r;20: is bounded, that (2.8) and (4.11) yield

-1 r + + _ -1 _
(4.49) r (21(LiN(v) - Lir(v))l — | (KN (v)) - VI - op(1)K

-r

and that
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-1zr + +

l u1N uir

-1 r + +
(4.50) | :_r [21(LiN - Lir)|

To show that (4.50) holds assume K;l

easily shown that

L+ L+ < + + < L+

iN ir —-“iN uir —- ir

. . -l -1

Similarly when K < K

r - N

L+ _ L+ < + + < +

ir iN —-“ir “1N —- iN

Therefore

r + + r + + r

2 . - . < Z L - L, = L

lluiN “irl -' 1l ir 1Nl lzl(

Now by (2.1) and (4.16)

(451) 2()’2()—1+): 11+ (1). TN+ v Tr+ v — m=1 m op

where

-2 r 2 + +

R = L _ L

1 Tr+ £1Ci( iN ir)

-2 r 2 + 2 + 2

R = -

2 Tr+ Zlci((uir) (uiN) )

-2r2+ +

R: C _ _

3 Tr+ 21E N+LiN(l LiN)

-2r A++ +

= l- _"

R4 2Tr+ l 1 ruir( Lir) C

-2 N 2 + + 2
P: _

5 ”2+ Zr+1EC ( iN ( iN) ) +

+ + +

- .é - L .

2C NuiN(l iN)]

= o (l).

P

:_K; , then it is

iN'

+

L. 0

II

+ +

. — L. )|.
1r 1N

2 + +
L ..

r+ ir(l Lir)J

+ +
1 -

u N( LiN)]

2 + +. L _

N+ iN(l LiN)
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In View of (4.49) and (4.50)

(4.52) IR1I :_T;i mix CIIZI(L:N - L:r)I = op(l)

and

(4.53) IRZI 5,1}: max six: “Ir + “INIIuir - “:NI = o (1)

Next

|R3I :1;((22+)?- (6:)2I|z§L:N(1 — L:N)|

+ Tri(e6+)2I21L+LiN(l - L:N) - Z:L1r(l - Lir)l

= IR31I+ IR32I (say).

In view of (4.15), (4.44) and (4.49)

IR31I _ 1;: riggb Ioj - C:IIC;+¢:II21L+1NI = op(l)

and

IR32l :_3Tri(e:)2I21(L:N - Lir)l = °p(l)°

Therefore

(4.54) IR3I = o (1)

Similar techniques yield

(4.55) IR = o (1).

P

Finally in view of (4.47)
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— + +

22“ (a? + (e )2 + 2c.|e I) + o (1)
N 1 N p

(4.56) IRSI :_rr+ r+1 1

T—2(N — r)[ max Icgl + (6+)2 + 2Ié+I max Ic.I]
r+ . N . i

1:1_<_b 1:130

I
A

+0 (1) =0 (l).

p P

Combining (4.51) through (4.56) completes the proof of the lemma.

Proof 9£_Theorem 4.1. As usual we will use r, N and b

instead of a , N and b .

r r r

We prove (4.18) by using the decomposition

+ —1 -1-*
T (v) = V (K(K (v))) + 0 u (v)
n n n n n

-‘k

where un(v) is defined by (4.43). Note that from Lemmas 4.4 and

4.5 we have

+ + * *

(4.57) ITN(V) - Tr(v)I :_IVN(v) + VN(v) - Vr(v) - Vr(v)I

_ -* _ _*

+ I0 lu (v) - 0 In (v)I = o (l) . .
r r pN N

Combining (2.4) and (4.57) with the results of Lemmas 4.3 and 4.6

completes the proof of (4.18).
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For rank statistics we present Theorem 4.2 which is the

analog of Theorem 4.1. The proof of Theorem 4.2 is similar to the

proof of Theorem 4.1 with appropriate changes in notation. Define

-1 n -1
Tn(v) on 2:1ci{1(xi i Hn (0)) - Lin(\))}

and

T2(v) z“[(c. - e (v))2(1 - L.(v))L.(v)].
n l i n 1 i

 
Theorem 4.2. Assume {an(i)}) {Nr} apd_ {Ci} satisfy (1.4), (2.1)

 

  

and (2.2) and there exist numbers £ij(v), l :_i :_j, ar §_j fi-br

such that, ap_§_fixed point v, for any d, 0 < d < w

max sup _5ILin(t) - Lin(v) - (t - v)£.n(v)I = o(n“%)’

lfiifin It-indn l

and

-1 A A '-

o aL1 max Ic.(v) - c (v)I = o(a 5) as r + w .

a r . a r ——
r a <j<b r

r-- r

Then 1im inf 12 (V)/O: > 0 implies

r+°° ar

 

T;1(V)UN TN (v) D N(0,1) r.v.

r r r



CHAPTER-5

PROOF OF THEOREMS 2.1 AND 2.2

Proof of Theorem 2.1. As before we will use r, N and b
 

to represent ar, Nr and br' BY (2.6) we may assume o is \IJ-

Define for any n

+ -1 + -+ \ -

(5.1) Tn(m) = on [sn(¢) - un(¢)]_.

Since the assumptions of Theorem 2.1 are stronger than the assumptions

of Proposition A.1, we have by (A.28) and Remark 9

-1 +

rr+(v)orTr(m) B N(0,1) .

Thus to prove (2.15) it suffices, in view of (2.14), to prove

+ +

(5.2) ITN(@) - Tr(o)I — op(l) .

+

To prove (5.2) note that for all r.: l, Tr(o) =

fr/r+l
+ -

0 o(t)dT (r 1(r + l)t) w.p. l where T+(t) is defined by (4.12).

+

Since T (0) = 0 and m is bounded and \L, upon integration by

parts one has

36
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+ e -f:/r+1T:(r-l(r + l)t)de(t) + T:(1)6(1)

(5.3)

1 + . +
—fo T (t)dm(t) + Tr(1)¢(1) + op(1) -

The latter follows from the boundedness of m and the fact that

- +

sup IT:(r 1(r + l)t) - Tr(t)I = op(l). Similar results hold for

T;(o) by (4.57).

Now by (4.28), the boundedness of m, and the fact that

+

for any n, Tn(l) = Vn(l)' we have

+ +

6(1)ITr(1) - TN(1)I — op(l).

Thus to prove (5.2) it remains to show

1 + +
- T = .

IronN r)dcpl op(1)

* .*

Defining for any n, Vn and “n by (4.30) and (4.43)

respectively and using the decomposition presented at (4.57) we have

1 + + 1 * *
IfO(TN - Tr)deI : fOIVN+(t) + VN(t) - Vr+(t) - vr(t)|dm(t)

1 -1-* —1-*
(5.4) + IIO{6N uN(t) - or ur(t)}do(t)I

= R1 + R2 (say).

(5.5) IRiI = op(l)

by (4.28), (4.30) and the boundedness of m. Next we proceed to

prove R is op(l). Since (4.44) holds for any j 3_1
2
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-l *2..+
P[II0N N CNII _<_ kc]

PE u ([N = j] 0 [IIOleIc‘szI : x 1)] = 1.
j=l 1 J c

(5.6)

For any n, 0 < n < w, r sufficiently large and Er defined by

(2.9) we have by (2.4) and (4.44)

-1 + - +
sup ION N8&N(t) - Orlr%&r(t)l

tEE

r

- + +
< sup 0 lNIIE‘: (t) - & (t)I + o (l)
—- c N N r p

t€E

r

-1 5 .+ .+

(5.7) :_0 b max sup Ic (t) - cr(t)I + op(l) §_2n + op(l).

r<j<b tEEC

-- r

Define A and C as in (2.1) and (4.41). Let G = A n C .

r r r r r

Note

(5.8) P(G:) +0 as r+°° .

For an arbitrary e > 0, n > 0 (a function of e), we have for Er

l -l-* -l-*

IIOwN uN Or urhml

5 9 f { '1‘* ’1‘*}d + If { '1'* "1" d< — -( . ) __I Er ON uN or ur wI EC 0N UN or ur} ml

r

= + .R21 R22 .(say)

We first show R21 = op(l). For any j, r :_j :_b and t 6 (0,1)

we have on Gr
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Ifif(t)|
J

j + 1 _ + _ + -l +

Izlci(Lijl(Kj(KJ (t))) Lijl(t) Lij2(§j(Kj (t))) + Lij2(t))l

I
A Izic.(LI.(K.(K71(t))) - LI.(t))I

1 11 -3 J 11

I
A

I + -1 +

max Ic.I|£3(L..(K.(K. (t))) — L..(t))|
lfiijj i l ij —j j 1]

|
A d max Icins by (2.8) and (4.41).

lfifiij

Consequently on Gr we have

R21 :_0-1 max Ic.I(db11 + dr%)m(E )

ljiib r

:_3dkcm(Er),

Therefore by (2.9) and (5.8)

(5.10) R21 = 0p(l).

Next we show R = o (1). On G n [N = j]
22 p r r

-1.5 .+ -1 t .+ ,

IRZZI : sup I0. 3 Wj(t)cj(t) - or r wr(t)cr(tflno“ + 4nkchm“

tEE

r

-1 5 .+ -1 k .+ _

i.izg l0N N WN(t)CN(t) - or r wr(t)cr(tnnmu + as .

r

The first ineqUality follows from (2.10) by an argument similar to the

proof of (4.48). Therefore since “W“ is bounded we have on G .
- r
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-1 H
I :_sup IO N

22 tEE: N

.+ -1 5 .+ .

WN(t)cN(t) - or r wr(t)cr(t)I“mh + 56

o;1N*ne;nan - w.“ )4“ + 4.I
A

-1 s + ++ o N. IIW IIsup If: (t) " f: (t) I II‘PII

N r tEE: N r

= o (l).

P

- +

The first term on the right side is op(l) since oNlNkhéN“ is

bounded w.p. l and “W - W H = o (l). The second tenm is o (l)

N r p P

because “WI“ is bounded in probability in the limit and

+

sup I&;(t) - ér(t)I < n for n arbitrarily small. Consequently

c

t E

6 r

by (5.9)

(5.11) R22 = op(l).

Combining (5.5) and (5.9) through (5.11) completes the proof

1 + +

Of T - T - =
If0( N r)d4>I Op(l) and the theorem

Proof 9£_Theorem 2.2. With appropriate changes in notation
 

the proof of Theorem 2.2 is similar to that of Theorem 2.1. The

details are left to the reader.

Proof p£_Corollary 2.1. First note that {ci} defined by
 

(2.21) satisfy conditions similar to (2.2) and (2.3) since

-%

O b

r r

Since the proof of Corollary 2.1 parallels the proof of Theorem 2.1

5 .

(a/n) =1 +o(l) ando/o =a'/b'+o(l)=l+o(l).
r r p a r r P P

only the modifications will be discussed. Each place (2.2) or (2.3)

are used in the proof of Theorem 2.1 the conditions above may be used.

Similarly Corollary 4.1 and Lemma 4.6 hold as before for these {Ci}°

Therefore (5.5) holds. Finally (5.6) and (5.7) hold since for all r
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-B-l H. 5 -1

No l 0
r .

r arcrI _<_ (ar/nr) r IIzliirII : 1 + op(1) .

The remainder of the proof follows without change.

Similar arguments show that Theorem 2.2 also holds for these



CHAPTER 6

PROOF OF THEOREM 2.3

This proof is developed in Lemmas 6.1

through 6.3. Koul-Staudte (1972a) presents the asymptotic normality

of the nonrandom linear sign-rank statistics. The specialization of

their Theorem 2.2 to {Xi} which are iid with symmetric distribution

F is presented in Lemma 6.1. Lemmas 6.2 and 6.3 verify the meth-

odology developed by Anscombe (1952), thereby completing the proof.

Lemma 6.1. Let Xl"°"Xn b§_iid random variables with a_continuous
  

 

symmetric distribution function P. Let o(t) = ¢l(t) - ¢2(t),

  

t E (0,1), where Ii are nondecreasing, square integrable. Let an(i)

and {Ci} satisfy (1.5) 229 (2.5) and A2 = I; 42(t)dt. Then

- + +

A10nl(Sn - ESn) + N(0,1).

Lemma 6.2. Define {an(i)} py (1.5). Let Fn pp the o-field generated
 

+ , + , _
py {(s(xi), Rin)' l :_1 :_n}. Then {sn'Fn} i§_§_martingale.

 

Proof: Using the density of the ith order statistic of a

set of independent observations each distributed uniformly on (0,1)

one can show that

l
'1 )) + (n - i+1)(n+1)' E(q(ui(n+l) E(W(U i)) = E(w(Uni)).

n+1 i+1 n+1

Therefore

i) .(6.1) an(i) = [i/(n+l)]an+l(1+1) + [(n-i+l)/(n+1)]an+1(

42
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. . . +

Since F is symmetric, {s(xi), l :_1 :_n} and {Rni'

+

l :_i :_n} are independent. Therefore given {(s(Xi),Rni), l i'i :_n}

(6.2) s(Xn+l) = :_l with probability 5

and

6 3 R+ — R+ + 1 with b b'l't R+ /(n+l)
( ° ) n+1i _ ni pro a l l y ni

— R+ with b bil't ( +1 R+ )/(n+l)— ni pro a 1 y n ni .

Combining (6.1) and (6.3) we have for i = 1,...,n

+ + +

EEan+l(Rn+1i)an:I = (Rni/(n+l))an+l(Rni+l)

(6.4)
+ + +

+ ((n+l - Rni)/(n+l))an+l(Rni) - an(Rni).

Now by (6.2) and (6.4)

+ _ n+1a +

EESn+lanJ ‘ ED:1 biS(Xi)an+1(Rn+li)anJ

= c E[s(x )lF JEEa (R+ )IF 1 + ch s(X )EEa (R+ )IF 1
n+1 n+1 n n+1 n+li n l i i n+1 n+1i n

n + +

— Zlcis(Xi)an(Rni) - Sn .

+

Therefore {Sn'Fn} is a martingale. This completes the proof.

Lemma 6.3. Assume the conditions of Theorem 2.3. For any n let

 

+ .

Tn = Sn/Aon. Then.‘v e > O and n > 0, there ex1sts 6 > 0 such
 

  

that as r + w

 

PE max_ IT‘ - T. | > n] < e .

lr-j|:§r r 3

Proof: Denote r - [6r] by 2 and r + [6r] by u where

[r] is the largest integer smaller than r. Now since 5 can be

arbitrarily small, we have by (2.3)
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(6.5) max IO 2(02. - O )I :_Io-2(o - 02)] + O as r + m .

lj -r|<6r j u

+

Since S = A0 T

r r

-1 -1 -1 + +
(6.6) ITr - Tj | i [(0]. - arm]. llTrl + A 03. sr - sj .

Combining (6.5) and the fact that Tr is bounded in probability in

the limit, the first term on the right hand side is op(l).

- + +

Define 12 = r l Zr a2(i). Note that ES = 0, V(S ) =

r 1 r r r

12 fire? = 0212 and 32 = A2 + o(l). Since 0-202 + 1 as r + m,
r 1 1 r l u

(6.6) implies for a suitably chosen 6 and n1 < 5An

-l + +

P[ sup ITr - T, I > n] :_P[ sup 0. ISr - S_ I > n1] + o (1)

lr‘j |<6r ] Ir- jl<6r J 3 p

-2 +2 +2 -2 2 2 2 2
< - + < — < .__(nlog) E(Su Sfi ) op(1) —-(n10£) [cu]u ORJRJ e

The third inequality follows by the Kolmogorov inequality for martin-

gales (Loeve, 1963, pg. 386). This completes the proof of Anscombe's

condition and therefore the proof of Theorem 2.3.
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Proposition A.l presents the asymptotic normality for signed

rank statistics for :p satisfying Hoeffding's condition. These p

may be discontinuous. This proposition retains a simpler centering

constant similar to the centering constants used for rank statistics

presented in Dupac (1969), Hoeffding (1973) and Koul (1974). However,

it eliminates the condition D—H (2.12) which DupaE-Héjek (1969) and

Dupac (1969) used and relaxes the boundedness condition which Koul

(1974) used. No conditions are required on the alternatives for the

absolutely continuous part of :p as was shown by Héjek (1968) for

rank statistics and Huskova (1970) for signed rank statistics.

To prove Proposition A.l we first present a lemma for signed

rank statistics. This lemma is an analog of a similar lemma for rank

statistics in Hoeffding (1973).

Define

l5 1:

(A.l) 31?) e fit 41 - t) dm(t)

Lemma A.l. 2:; m i§_non-decreasing, then
 

(A.2) Z$|EP(R:/(n+l))s(xi) — fép(t)du:(t)| :_8n5Jcp) .

Proof: For x 6 I-m,w) define

45
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wi(x) = I(Ixil > lxl) + nKn(|x|).

Then

(A.3) Etp(R:/(n+1))||xi| = x} = Eh(wi<x)/(n+1)).

Consequently for 1 :_i :_n

IEp(R:/(n+l))S(Xi) - fip(t)dui(t)|

+ +

lEp(Ri/(n+l))I(Xi > 0) - f.p(t)dLin1(t)

+ +

(A.4) - (Ep(Ri/(n+l))I(Xi < 0) -.flp(t)dLin2(t))|

|
A f2Lp<wi<K'1<t>)/<n+1>) — w(t)|dL:n(t)

Since wi(x) :_nKn(x) + l and wi(x) §_n, we have

(A.5) @(wi(x)/(n+1)) _<_9(nKn(x)) 19(wi(x))

where

g(i) = min{;p((i+1)/(n+l)), '9 (n/(n+1))}, o i i 1 n.

Now by (A.4)

(A.6) ZilEp (RI/(n+l))S(Xi) - fép(t)du:(t)|

g_z$ fELp<wi<K’1(t))/(n+1)> - g<nxn(x‘1(t)))|dL:n(t)

+ z? fElg(nKn(K-l(t))) -2p(t)IdL:n(t)

= R1 + R2 (say)

But by (A.3) and (A.5)
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7
3

A

n -1 . -1 +

_ £1 fECgW]. (K (t))) - p (Wi (K (t))/(n+l))]dLin(t)

n + _ +
(A.7) £1 E[g(Ri) - p (Ri/(n+l))]

Z:{g(i) -:p(i/(n+l))}

:p(n/(n+l)) - ~p(l/(n+l)) .

Now the remainder of Hoeffding's proof of Proposition 2 holds with-

out change by considering K and Kn to be the distribution and

empirical distribution of the random variables IXll, |X2|'-°°'|Xn|

respectively. In particular by (2.8)

R +:p(n/(n+l)) -:p(l/(n+l))

(A.8)

= nfElg(nKn(K l(t))) - :p(t)|dt +cp(n/(n+l)) - <p(l/(n+1))

8nL'jJ (:p ) .

I
A

The last inequality follows from Hoeffding's proof. Combining (A.6)

through (A.8) yields (A.2), which completes the proof.

The asymptotic normality of signed rank statistics will

be established by approximating them by asymptotically equivalent sums

of independent random variables. For this purpose define

+. _ -l n _ -l _ +

zncp) — on [Zlciflp(t)d[l(lxil 5.x (t))s<xi) ui(t)]

(A.9)
1’ +

+ n fen(t)wn(t)dp(t)].

+ +

where CD is defined by (2.12). Obviously ZHCp) is a sum of in-

dependent random variables.
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Lemma A.2. Let {an(i)} and {Ci} satisfy (1.4) and (2.2). Let :p
 

.bg \* and bounded. Assume there exist measurable functions on (0,1),
 

{ifJmk,k=1,2,1_<_i:n} suchthat vd.0<d<°°.andv n>0.

lim;p(E ) = 0 where

n+w n

E { max sup n5IL+ (t) L+ (s)= s; max _ . - .

n k=1,2 ljiin It-slidn 5 Ink Ink

4.

—(t—s)£. (t)I > n}.
. ink

, +

Define TnCP) .by (5.1).

+ +

A.10 Th T - - Z ‘ = l .( ) en I n((0) n(WI op()

Proof: As in (5.3) we have

+. _ _ 1 + + _

Tn(~P) - f0 Tn(t)dp(t) + Tn(1)p(1) + 0p(l)

+

where Tn(t) is defined by (4.12). By integration by parts

+ + -1 n +

Zn(p) — -f anp + on {zlci[s(xi) - ui(1)]kp(1)

+

where Zn(t) is defined by (4-13) on (0,1). Then

T+cp) - z+cp) = fé(z+(t) - T+(t))dp(t) + op(1) .

-*

Define un(t) by (4.43). By the decompositions (4.21) and (4.26)

T+Cp) - Z+Cp) f[-Vh(K(K;1(t))) + vn(t)]dh<t)

’11['*(t) — “+(t)(x(x’1 ]on un Incn n (t)) - t) dp(t)

‘5 3:
(A.ll) - o'lfn 6+(t){w (t) + n (K(K-1(t)) - t)}dp(t)

n n n n

+ o (l)

P

Rl - R2 - R3 + op(l) (say).
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By (4.22) and the boundedness of m it follows that

. 2 R = 1 .(A 1 ) | °p‘ )

By (4.23), (4.44), and the boundedness of :p,

(A.13) |R3| = op(1) .

+ —

Now to show [R = o (1) define C. = C.I(C. > O) and C. =

p 1 1 1 - 1
2|

CiI(Ci < 0). Also define Bn and d by (4.24). Observe on Bn

that

1|K(K;1(t)) - ql :dn-11

and

0:11 5:6)” °

- n + -l +

unfilzlciminmmn (t)) - uinm)”

-1
II

A [zicftLT (K(K-l(t))) - LT (t)1|
1 1n n 1n

+

- n — + -1 +

onH121c1[Lin(K(Kn (t))) - Lin(t)1|

-l 5
+

20 max [c.ldn .

n . 1
1<1<n

I
A

The second inequality follows from (2.8) and the first from the fact

+ +

that for t > s, L, (t) -_L. (s) > O, k = 1,2, i < n. Therefore on

ink ink - -

B

n

- +

IR l < f c 1[2 max Ic.ldn% + dngé (t)]dp + f ndp
2 —' n . 1 n c

En 1§}EP En

The first term on the right hand side is o(l) since lim:p(E ) = O.

n+00 n

Since :p is bounded the second term can be made arbitrarily small by
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Finally since P(Bn) + l as n + mmaking n arbitrarily small.

IR = o (l) .

P

(A.14) 2|

Combining (A.11) through (A.14) yields (A.10).

Lemma A.3. Let {an(1)} and {ci} sat1sfy (1.4) and (2.2). Let

@ EEE\L , absolutely continuous and satisfy the Hoeffding's condition

pr(t)l(t(l - t))_%dt < m ,

(A.15) Then E(T;kp) - zch))2 + O as_ n + w .

Proof:

By Lemma 1 of Hoeffding (1973),<p can be decomposed into

:9 (t) = Yl(t) + y2(t) - 73(t)

and Y are \L, andwhere Y1 is a polynomial and Y2 3

J(Y2) + J(y3) < a(A.16)

where J(Ym), m = 2,3, is defined by (A.l).

NOW

E(T+Cp) - Z+Cp))2 :_2E(0;1(S+«p) - Es+«p)) - Z+«p))2

(A.17) + 20;2(ES+(;p) - n+(n))2

= 2R1 + 2R2 (say).

-1 + + + 2

IRll :_3E(on (s (wl) - ES (w1)) - z (w1))

3 -2 + + 2 + 2

[0 ms Wm) - ES WmH + M2 Wm” ]+ 62m=2
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Since W1 has a bounded second derivative the first term on the right

hand side goes to zero as n + m by applying Lemma 2 of Huskové (1970).

The second term goes to zero by applying Theorem 4 and Lemma 5 of

Huskova (1970). Therefore

(A-18) lRll +0 as n+co

(A.19) IES+¢p) — u+¢p)l

|
A

3 + +

zllhs (ym> - u (ym)|

= R21 + R22 + R23 (say).

For m = 22,23

(A.20) R
m

n + +

Izlci{Eym(Ri/(n+1))s<xi) - me(t)dui(t)}|

I
A

n + +
max IciIXllEYm(Ri/(n+l))s(Xi) — fym(t)dui(t)l .

15}£P

Combining (A.2), (A.16) and (A.20) yields

(A.2l) R + R < 8 max Ic Inga
22 23 . i °

1:}EP

Since 71 has a bounded second derivative, it follows from

Lemma 2 of Huskova (1970) that there exists K dependent only on

Y1 such that

-%
(A.22) R < Kn O .

Combining (A.19), (A.21), and (A.22), yields

+ + -5

IES (m) - u (WI/0 _<_n K + 8kca .

Finally for any a > O, a is selected so that l6kca < 6. Now K

is fixed. Then for n 3_(2K/e)2, we have
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+ +

IES (:p) - u (WI/o < 5.

Therefore

(A.23) |R2| + o as n + m .

Combining (A.17), (A.18) and (A.23) yields (A.15). This completes the

proof of Lemma A.3.

In the following propositions :p is assumed to satisfy

Hoeffding's condition on (0,1). To simplify the notation we will

assume that .p is non-decreasing on (0,1). This can be done without

loss of generality since :p may be written

:p =cpl -cp2 where '91 and :p2 are N,

and satisfying Hoeffding's condition on (0,1).

Decompose :p into

(A.24) m = ¢ + é

where (D1 and <1>2 are ‘2 and satisfy Hoeffding's condition on (0,1);

¢1 is the absolutely continuous part of m and satisfies

fcd¢1 = 0; ¢2 is the singular part of' m and satisfies

B

fdd>2 = O; and BC is acp-measurable set containing the singular set

E

of' p.

Proposition A.l. Let {an(i)} and {Ci} satisfy (1.4) and (2.2)
 

and :p be \L' and satisfy Hoeffding's condition
 

(A.25) félm(t)|(t(l - t))-%dt < m .

Let :p bg_decompgsed into ¢m' m = 1,2. Assume that there exist:
  

measurable functions
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}, i = 1,...,n, n :_1, k = 1,2, on (0,1) such that ‘V d,
 

 

0 < d < w, and. V n > O and k = 1,2,

 

 

, 5 + +

(A.26) 11m ¢ {5; max sup _ n ILink(t) - Link(s)

n ljifin It-slidn

+

- (t-sm. (s)| >n}=0.
1nk

Define

+ -l n + + c
A = — Ccn(t) n Zlci(£inl(t) lin2(t)), t._ B

and

.+ - +'

c (t) = l nc.L. (t), t e B

n l 1 1

+I

when the derivative Li (t) exists.

Then

(A 27) 1im inf 12 . )0-2 > o
' n+(P n

n

implies

-l + -+
T . - - .

(A.28) n+(p)[Sn(p) un(p)] 3 N(0,1) r.v.

4..

Remark 8. Since the Lni are absolutely continuous and (A.26)

+ -

holds, én(t) is well defined almost everywhere with respect to .9.

Consequently Tn+«p) is well defined. Also (2.8) implies

_ I

n lanf (t) = 1.
l 1

Proof of Proposition A.l. Given a > 0, there exists a
 

decomposition
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(A.29) w = ¢1 + $1 + $2

where

<I>2(b) O<t<b

¢l(t) = ¢2(t) b §_t §_1 - b

¢2(l-b) l - b < t < 1,

$1 and $2 are defined by (A.24) and

b is chosen so that fétfi(l — t)1§dw2 < a and

l 2 2

d < .f0 $2 t a

The choice of b is possible because :p satisfies Hoeffding's con-

dition and is therefore square integrable. Now ml is bounded on

(0,1) and satisfies the conditions of Lemma A.2. $1 is absolutely

continuous and satisfies the conditions of Lemma A.3.

, + + + + ,

Define T ($1), Z (¢l), T (mm) and 2 (mm), m = 1,2, as 1n

(5.1) and (A.9).

+ + 2 -2 + + 2

(A.30) BIT ($2) - z (w2)| = 40 Els (wz) - ES (wz)l

-2 + -+ 2 + 2

+ 4c lES (wz) -.u (wz)l + 23(z (¢Z)) = 4R1 + 4R2 + 2R3 (say).

By Theorem 4 in Huskova (1970)

- 2
(A.31) R < 800 2n max |c.|2 flw dt < 80k2a2

1 - n . 1 O 2 - c

ljifin

Also by (A.2)
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2 2 n + 1 + 2

R :_0 max Icil (leEw2(Ri/(n+l))s(xi) - f0w2(t)dui(t)l)

2 ljijp

- 2

(A.32) :_640 2na2 max Ic.|

liifin

2

< 64k a2 .
—- c

Now Lemma 5 of Huskové (1970) implies there exists K such

that

+ 2 2 2

o = < a(A 33) R3 Var(Z (wz)) __K Rea

Combining (A.30) through (A.33) yields

+ + 2 2 2

(A.34) EIT (wz) - z (w2)| : (320 + 2K + 256)kca .

Since a can be made arbitrarily small, (A.34) implies

+ +

(A.35) IT (wz) - z (w2)| = op(l).

Since Lemmas A.2 and A.3 imply IT+(¢1) — Z+(¢1)l = op(l)

and |T+(¢l) - z+(w1)| = op(1), we have by (A.29) and (A.35)

(A.36) |T+tp) - 2+6)! = 6pm .

4..

Therefore T 69) has the same asymptotic distribution as Z+¢p).

If :p is bounded, write

+. _ _ -1 n _ + -l _

ZnLP) - on Zl{f[(ci 6n) (I(0 _<_ Xi : K (t)) Linl(t))

-( + 2") <1:(-1<’l t) < x < 0) - 1
Ci Cn ( —- i Lin2(t)) dp(t)

- [ (x ) +(1 J- 1.}ci 5 i - Hi )~p( )

n +

_ ~21 znicp) (say).
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Since IIGHI :_lma: Ic I and .p is bounded we have

1 n

max |z+i<:p)| 1511;011le max Icil =o<1>-
igign n liiin

Therefore by (A.27), the Lindeberg-Feller theorem yields that

+

T itp)onzntp) 'is asymptotically N(0,1). Then by (A.36) for' m

bounded

(A 37) '1 ) 'T+- ) ' a t t' all N(O 1). Tn+(p on (p ‘15 symp 0 1c y , .

If :p is not bounded but is \L_ and satisfies Hoeffding's

condition, decompose cp into (9 =:pl +;p2 where cpl is bounded and

f4):(t)dt < 8. Then by (A.33)

(A.38) E(Z+(CP) - Z+(;p1))2 = Var(Z+(:p2)) _<_Kk:E

and

2 r
(A.39) ((Tn+(spl)/Tn+(:p)) - l) _<_LTn+(1P2)/Tn+(‘.p)]2 _<_ KR:ernftp) .

Therefore for large n if e is sufficiently small Tn+Cp1)/Tn+cP)

will be as close to l as we want.

Therefore combining (A.38) and (A.39) yields

(A.40) lz Cp)i1‘?) - 2 (pl )r;l(pl)| = op(l)

Since :pl 'is bounded (A.2?) and (A.40) imply T;:¢p)cnz+¢p) is

asymptotically N(0,1). Then by (A.36), (A.3?) holds for :9 not

bounded which completes the proof of (A.30).

Remark 9 . If m =.pl ~cp2 where W1 and $2 are\L and satisfy

Hoeffding's condition, the same proof whEn applied to T+(wl) and

+ . . .
T (m2) will prove Prop031tion A.l for W which satisfy Hoeffding's

condition.
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Proposition A.2. Let {an(i)} and {Ci} satisfy (1.4) and (2.2) and

cp b_e \ and satisfy Hoeffding's condition (A.25). Let :p be de-

composed into ¢k' k = 1,2, defined_by (A.24). Assume that there
 

 

exist measurable functions {Kin}, i = 1,...,n, n.: l, on (0,1) such

that vd,0<d<°°,and 'vn>0,

 

5
11m ¢ {8; max sup n IL. (t) - L. (s)

n+m 2 lfiifin It-s :dn 5 in in

- (t-s)Rin(s)I > n} = O ,

Define

6(t) = n'lznc IL (t) t6 BC
1 i in ’

and

x -1 n

C(t) =n >3 c.L!(t), t6 B
1 1 1

when the derivative Li(t) exists.

. 2

Define pep) and TnCp) by (2.16) and (2.19) respectively.

Then

2 ..

lim inf T (p)o 2 > O

n n

n

implies

T—ltp)[8 Cp) - U(?)] + N(O l) r.v.

n n D '

The proof is similar to Proposition A.l with appropriate changes and

is not presented here.
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