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ABSTRACT

ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANDOM
RANK STATISTICS UNDER THE ALTERNATIVES

By

Janet Tolson Eyster

In this paper we study the problem of the asymptotic normality
of random signed rank statistics under the alternatives when the score
functions, ¢, are bounded. When the random variables are independent
and identically distributed, ¢ is assumed to be square integrable.
This extends the work of Koul (1970) and (1972), Sen-Ghosh (1971) and
Ghosh-Sen (1972) to ¢ which may be discontinuous. To relax the
assumptions of differentiability on ¢, restrictions are placed on
the distribution functions of the random variables similar to those
used by DupaE-Héjek (1969) . This work is useful in generating

bounded length confidence intervals for the regression problems.
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CHAPTER I

INTRODUCTION

We consider the problem of the asymptotic normality of simple
linear signed rank statistics S+(¢) under the alternatives based on
a random number of observations. They are called random signed rank
statistics. Corresponding theorems are also presented for random rank
statistics. In particular suppose {Xi}, i >1, is a sequence of in-
dependent random variables with continuous distribution functions
{Fi}, i>1, and {Nr}' r > 1, is a sequence of positive integer
valued random variables. All random variables are assumed to be de-
fined on the same probability space. Let {Ci}’ i > 1, be a sequence
of real numbers. We will be investigating the asymptotic distribution
of random signed rank and random rank statistics which correspond to

a p and are defined as

n +
Zl cian(Rin)s(Xi) and

+
S, (¢)

o]

1]

Sn(w) Zl Cian(Rin)

where

(1.1) s(x) = I(x > 0) - I(x <0), -»<x<=
+ n

(1.2) R, = zj=1 1(|xj| < [xil),



n
(1.3) Rin = Ijop I(Xy <X), and

(1.4) an(i) @(1/(n + 1)) or

(1.5) an(i) E((P(Uni))l i=1,...,n

where Unl < ... < Unn is the order statistic of a sample of size
n from a uniform distribution on (0,1). When Xi, i > 1, have continuous
distribution functions Fi, i > 1, ¢ 1is assumed to be bounded and

‘ﬂ‘ and to satisfy some other conditions presented later. These ¢

may be discontinuous. When Xi, i > 1, are independent and identically
distributed (i.i.d.), ¢ 1is assumed to be square integrable and 'W‘

Also presented are theorems related to the asymptotic normality
of S(¢) for non-random sample sizes and an application of the theorems
for random sample size which are of interest by themselves.

This work is motivated by a desire to use ¢ which are dis-
continuous to generate bounded length confidence intervals for the
regression problem as presented by Koul (1970) and (1972) and Ghosh-

Sen (1972). 1In particular the median test can be used since
¢@(t) = I(% < t < 1) is bounded and discontinuous at t = %,

This work should be compared to the papers by Pyke-Shorack
(1968a) and (1968b), Koul (1970) and (1972), Sen-Ghosh (1971) and
(1972) and Ghosh-Sen (1972).

Pyke-Shorack (1968a) and (1968b) presented a Chernoff-Savage
theorem on the asymptotic normality of the two sample linear rank
statistic for non-random and random sample sizes with a broad class

of ¢ which include ¢ with jumps. With slightly more restrictive



score functions, Braun (1976) shows that the two sample linear rank
statistic with random sample sizes converges weakly to a Wiener pro-
cess. Koul (1970) proved the asymptotic normality of the random signed
rank statistics when {an(i)} satisfy (1.4), {ci} satisfy Noether's
condition, {Xi} are i.i.d. and ¢ 1is square integrable and absolutely
continuous with derivative ¢' which exists a.e. and has bounded
variation on [0,1]. Koul (1972) proved the asymptotic normality of
the random rank and signed rank statistics under the alternatives

when a satisfies (1.4) and ¢ satisfies the conditions in Koul
(1970) and has a continuous derivative ¢'. These ¢ are bounded

and uniformly continuous.

Sen-Ghosh (1971) presented the asymptotic normality of func-
tions of random signed rank statistics when c; = 1, {an(i)} satisfy
either (1.4) or (1.5), ¢ satisfy various smoothness conditions and
{Xi}' i > 1, is a sequence of i.i.d. random variables having an
absolutely continuous distribution function F symmetric about zero
for which both the density function f and its first derivative f'
exist and are bounded for almost all x. These ¢ include the normal
scores and Wilcoxon, but not the median tests.

With essentially the same assumptions on ¢, {an(i)} and F,
except symmetry which is not assumed, Ghosh-Sen (1972) generalized to
the linear regresshx1modelﬁith {Ci} satisfies the boundedness con-
dition (2.2).

The results in Sen-Ghosh (1971) are used in obtaining bounded
length confidence intervals for the median while the results in Koul

(1972) and Ghosh-Sen (1972) are useful in obtaining sequential bounded



length confidence intervals for the regression coefficient 8.

In two of our main theorems we establish the asymptotic
normality of random signed rank and rank statistics under the alter-
natives for a class of bounded ¢ which may be discontinuous.

In particular, in Theorems 2.1 and 2.2 we assume that ¢ is
the difference of two non-decreasing bounded functions. To relax the
usual assumptions of differentiability on gy, we need to place restrictions
on F, similar to those used by Dupad-Hajek (1969). In view of the
example in Héjek (1968) , these conditions are close to being necessary.
As an application of these theorems, we present the regression problem.

To complete the proof of the main theorems, the appendix con-
tains the fixed sample size theorems. They are presented in a form
which relaxes the boundedness condition on ¢ by assuming ¢
satisfies Hoeffding's (1973) condition. By imposing Hoeffding's con-
dition on ¢ we are able to eliminate condition D-H(2.12) and relax
condition D-H(2.13) on F, in Dupa®-Hajek (1969).

Theorem 2.3 presents the weak convergence of random signed rank
statistics when xi' i>1, are i.i.d., a, is defined by (1.5) and
¢ 1is square inteérable. The proof uses techniques similar to Sen-
Ghosh (1972). The essential step in proving the uniform continuity
in probability needed to apply the Anscombe theorem (1952) is the proof
that if Fn is the o-field generated by {(S(Xi)' Ri), 1<i<n}
and the distribution F of {Xi} is symmetric about zero, then

{S;, Fn} is a martingale sequence and the Kolmogorov inequality for
martingales holds. Sen-Ghosh (1971) and Ghosh-Sen (1972) used this

technique to prove their results.



In general this technique cannot be used. If F is not
symmetric about O or if a, is defined by (1.4) instead of (1.5),
the martingale property need not hold for S:. Similarly if a, is
defined by (1.4), the martingale property need not hold for Sn.
Since S; and Sn are sums of dependent random variables, the uni-
form continuity in probability needed to apply the Anscombe theorem
is in general difficult to prove.

To prove the main theorems for a defined by (1.4), we
utilize the so called weak convergence technique as used by earlier
authors, Pyke-Shorack (1968a) and (1968b) and Koul (1970) and (1972).
We decompose the normalized random signed rank or rank statistic into
two parts and approximate each part by a fixed sample size sum of
independent random variables.

Chapter 2 contains the main theorems. In Chapter 3 Theorems
2.1 and 2.2 are specialized to the regression problem. Also some
sufficient conditions for Theorems 2.1 and 2.2 are presented.

Chapter 4 contains preliminary results for the empirical process
which are necessary for the proofs that follow. Chapters 5 and 6
contain the proofs of the main theorems. The asymptotic normality
of the non-random signed rank and rank statistics is presented in

the Appendix.



CHAPTER 2

MAIN THEOREMS

Suppose {Xi}, {Fi}' {Nr} and {ci} are defined as before.
About {Nr} we assume the following:
(2.1) there exist sequences of positive integers {ar} and {br}
such that ar > o, br > o, ar/br + 1 and if

A =1[a_ <N

. . < b_], then P[Ar] -+ 1; or equivalently there

r r
exists an increasing sequence of positive integers {nr} such
that Nr/nr -+ 1 in probability as r tends to infinity.

For Theorems 2.1 and 2.2 we will assume that {ci} satisfy

the boundedness condition for all n

(2.2) k < k < o where 02 = Zn c? and o_ln5 max |c.| =k .
n— ¢ n 1 i n R n
1<i<n
. 2 =2 2, -2 .
Since 1> 0" 0, " >1- (b_-a) max |c:|o, °, (2.1) and (2.2) imply
— a b -— r . i'"b
r r 1<i<b r
——r
(2.3) o /o > 1.
a b
r r
(2.1) and (2.3) imply
(2.4) ch/obr -1 w.p. 1l and

9, /0N -+ 1 w.p. 1.



For Theorem 2.3 we will only assume that {ci} satisfy (2.3)

and Noether's condition

(2.5) max |ci|0n +0 as n > =,
1<i<n

Define for any n

+
S (t) g" c.I(Rf < (n+1)t)s(X.), 0 <t <1,
n 1 i i— i — -

and

S (t) Zn c.I(R. < (n + 1)t), 0 < t<1,
n 1 i i— - -

where s(Xi), RI and Ri are defined by (1.1), (1.2) and (1. 3)

respectively. One observes that

+ 1 +
S, (¢ fO p(t)ds (t)

and

1
s (¢) = [ w(t)ds_(t) .

This representation makes it clear that one needs to study the
o +
standardized weighted empirical processes {SN (t), 0 <t <1} and

r

{SN (t), O <t< 1} in the cases in which ¢ 1is bounded. This is
r

done in Chapter 4.
In the remainder of this chapter we will state our main
theorems for random signed rank and random rank statistics.

In Theorems 2.1 and 2.2 we assume

(2.6) P =9 "%

where O is \k bounded on (0,1), m = 1,2.



For signed rank statistics we define for 0 < x < +» and

0<tc<l,
-1_n
K (x) =n I, I{|X,| < x},
1 i’ —
-1l_n
K (x) =n "I [F.(x) - F.(-x)],
1 1 i
2.7) Y ) =F k) - F. (0
(2. inl =P« ) 1490
+ _ _ _ -1
Lin2(t) = Fi(O) Fi( En (t)),
+ + +
Lin(®) =Ly (8) + Ly (8,
+ + +
Hin(®) = Ly (8) = Ly o (8D,
) = e’ (b)), and
n 1 i in

-+ n +
W (@) = I, cfoplt)du, (t).

Obviously for any n

-1 _n _+ _
(2.8) n Zl Lin(t) =t .

Theorem 2.1. Let {a (i)}, {N_}, {c;}, ¢ 2nd ¢, m=1,2, satisfy

+
(1.4), (2.1), (2.2) and (2.6). Assume there exist functions lijk(s),

0<s<l1l,1<i<j,a <Jj<b, k=1,2, and sets Er such that

r r

¥vd, 0 <d<wo, and ¥n>20
(2.9) 1lim qh(Er) =0, m=1,2,
>

h 5 = E E
where Er el U 2



(2.10) Erl =

(2.11)

5{ +

{s; max max max sup _%j Lijk(t)
k=1,2 a <j<b_ 1<i<j | t-s|<dj
+ +
- - (t- ) >
Lijk(S) (t s)lijk(s)I n},
- + +
E, = {s; o la% max |&.(s) - & (s)| > n},
r a r . a
r a <j<b r
r——r

and for any integer n

2.12) &t
n

-1 .n + +
=n Zlci(linl(t) - Qinz(t)), 0 <t<l1.

Finally for any n define

Ti+(¢)
(2.13)
Then
(2.14)
implies
(2.15)
Proof:

= Zi=lVar{f[(Ci Cn)[I(O < Xi <K, (t)) Linl(t)]
- + oY rx? t) < X. <0) - L t)) Jde(t)
(ci cn)( ( K ( X in2( P

+
- e s(x)) - w (M) Je)} .

L 2 -2
lim inf Ta+j¢)oa >0
r r r

-1 + -+
T +(cp)[SN (@) = ny ()] » N(0,1) r.v.
b o r r D

See Chapter 5.

For linear rank statistics we define for - < x < =,

0<t<1
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-1l _n
n Zl I{Xi ﬁ_x},

e}
3
1]

-1 _n
gn(x) =n Zl Fi(x),

_l .
(2.16) Lin(t) = Fi(§n (t)), 1 <i<n and

n
un(q) = Zlcifw(t)dLin(t).

Theorem 2.2. Assume {an(l)}, {Nr}, {ci}, ¢ and Gy M= 1,2

satisfy (1.4), (2.1), (2.2) and (2.6) respectively. Assume there

exist functions lij(s), 0<s<1l,1<i<j,a_ <] i_br, and sets

r

Dr such that ¥ d, 0 < d<», and ¥ n > O

(2.17) lim @ (D) =0, m = 1,2,
oo
where D = D 1 U Do
D ., = {s; max max sup j%IL .(t) = L..(s)
rl -4 ij ij

a <j<b  1<i<j |t-s|<dj

- (t-S)Rij(S)l > n},

(2.18) D__ = {s; o la?  max |e.(s) - & (s)] > n}
r2 a r . B) a
r a <j<b r
r——r
and for any n
A _ -1 .n
cn(t) =n Xl cilin(t) .

Define for any n
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2 n A -1
(2.19) 7t (¢) =L, _ Var[f(c, = E)(I(X; < H (t))

-L;, (8))de(t) J.

2 -2 .
Then 1lim inf T, (cp)oa > 0 implies
r r

-1
T, (cp)(SN (@) - Hy (p)) -~ N(O,1) r.v.
r r r D

Proof: See Chapter 5.

Remark 1. Without loss of generality we may assume that

-1.2 n +
(2.20) n zk=lzi=1 Rink(t) =1, 0< t<1

+
and that zin (t) are measurable functions on (0,1). These follow

k

+
from the fact that if there exist link satisfying (2.9) then it is
isfi + Yoo+ -k +
satisfied b = -
Y L () =n [Link(t +n ) Link(t)].

Remark 2. When {Xi} are i.i.d. and F symmetric about zero,
zzjk(t) =% (in i,j,k and O <t < 1) and for any n, én(t) = 0.
Therefore Er = ¢ and (2.9) is automatically satisfied.
Remark 3. The theorems above allow a broader class of ¢ than Koul
(1972) by removing the absolute continuity and uniform continuity
conditions on ¢, but we impose the conditions (2.9) through (2.11)
on the Fi’
Remark 4. In the fixed sample size problem when ¢ is an indicator
function (2.17) and (2.9) reduce to D-H (2.13) in Dupa&-H&{jek (1969)
and a similar condition in Koul-Staudte (1972a).

The following corollary allows the application of Theorem
2.2 to the two sample Chernoff-Savage problem.

Define Ao such that 0 < A < AO <1l-Ac<1.
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Corollary 2.1. Theorems 2.1 and 2.2 hold when (2.2) is replaced by

(2.21) c. = I(i < n)
i - 'r

where n_ is a random variable and there exist positive integers

(al} and (b!} such that al > =, bl +«, al/b! > 1 and if
A; = [a; <n i.b;]' then P[A;] + 1 and lim az'_/ar = AO.
Proof: See Chapter 5.
We now present a theorem for random signed rank statistics
with a different centering constant when ¢ is square integrable and

{xi} are independent and identically distributed.

Theorem 2.3. Assume xl""'xn have the continuous distribution

function F satisfying F(x) =1 - F(-x). Assume ¢ ii square

integrable in (0,1). Assume {an(i)}, {Nr} and {ci} satisfy

(1.5), (2.1), (2.3) and (2.5). Then (s; - Es; ) (Ao )1 5 N(o,1)

r r r
r.v. where A° = Ié¢2(t)dt.

Proof: See Chapter 6.



CHAPTER 3

APPLICATIONS

The following lemma replaces (2.11) in Theorem 2.1 by a

stronger condition on Fi but perhaps an easily verifiable one. De-

fine
+ +
E 3 = {0 < s <1; max max max |Ri.k(s) - li k(s)l > n}
r k=1,2 a_<j<b_ l<i<a 3 ar
r——r ——r
Lemma 3.1. Define Er4 = Erl U Er3' Condition (2.9) is implied by
(3.1) lim qh(Er4) =0, m=1,2,

r
+ . .
where the 2..k are defined in Theorem 2.1.
Proof: Unless otherwise specified a s Nr and br will be

denoted by r, N and b. To prove the lemma it is sufficient to

e E > E
prov r

r3 2°

In the following we use the fact that for all j and r

(3.2) 5Lty 5 - e

Since s will be fixed in (0,1) we will simplify notation by not

revealing the s. For fixed s € (0,1) and r < j < b we have

13
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-l ;1| '

-1 % r -1  + + + +
<o r |Zlcir ([lijl Rijzj (2,1 = %00
j . nol, o+ o+
+ Zlci(J r) (rj) (zijl lijz)
j -1, + +
- b 5
+Ipa0T (g zijz)l y (3.2)
- + +
<o lrs max |c,[[2 max max  max |2,. - %, |

1<i<b * k=1,2 r<j<b 1l<i<r ijk irk

-1 . =13+ +
r (jJ -xrj Zl(zijl + lijz)

-1_. r, +
- +
+r [j 21(21j1 lijz)]]

< 8k max max max Ill x - EI k| + o(l) by (2.2) and (2.20).
€ k=1,2 r<j<b l<i<r ) r

This completes the proof that Er3 > Er2°

Remark 5. Results similar to Lemma 3.1 hold for rank statistics. 1In

particular (2.18) may be replaced by

D.={0<s<1 max max |%.,.(s) - 2. (s)| > n} and (2.17)
r3 . . i ia

a _<j<b_ 1<j<a r

r——r ——r

by 1lim qh(Drl U Dr3) =0, m=1,2.
r>o

Theorems 2.1 and 2.2 can be applied to the regression problem.
The proof will be carried out for Theorem 2.1 although similar results
hold for Theorem 2.2.

Assume for all n, xin = BO + B + el, c = c2/2 c i’ c1
satisfy (2.5) and €5 have a distribution function F which has a

uniformly continuous derivative £ which is positive on (-«,®).

Also assume Nr satisfies (2.1). For any n define u (@), ink’
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2
k=1,2, Kh' Tn+(¢) and kn(t) by (2.7), (2.13) and
-l.n -1 -1
kn(t) =n El[f(l(_n (t) - cinB) + f(-En (t) - CinB)]. t € (0,1).

Also define F, (x) = F(x) - F(-x), 0 < x < =,

2 -2 . . -1 o+ -+
Then T _ (plo = > 0 implies 1t ' () (S (@) = Hy(g)) > N(O,1).

The prcof follows from Theorem 2.1 and Lerma 3.1 by showing
that (3.1) holds.

Fix tO € (0,1). For every h such that

(t0 - h, to + h) ¢ (0,1) and n there exist en,gn (dependent on h,

_1
-00 e o = - -
to and n), < n < Qn < such that en K (t0 h)

-1 . . -1 -1
< + - =, .
m?x cinB En (tO h) m;n CinB 9, Since En (t) - F,(t) and
max |ci [ + 0 as n + o, there exists e and g, - < e < g < ®
1<i<n

such that for all n, e < e < 9, < g.

Since f 1is positive on (-»,») and e and g are finite

there exists ¢ > 0 dependent on tO and h such that for all n > 1

inf kn(t) > €.
|-t |<h

Noting that [kn(t)]-l represents the derivative of E;l(t), we obtain

for all n>1

sup [aK T(t)sat] < 7.

|t-t,[<h -

Therefore E;I(t), n > 1, is uniformly continuous in a neighborhood

of to. The same is true of
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aLy  (t)/at = £ (6) = ¢, B)/k_ ()
and
aL} (t)/at = £(-K_1(t) - c; B)/K_(t)
-1

since f£, kn and (t) are uniformly continuous in a neighborhood

K
-n

of t for all n > 1.

0 —_—
Now for &1, =art, sat, x =1,2, i <3 <3 <b h
ow for ik " ijk ’ =1,2,i<j,a <3<b, wehave
(3.3) max max max su '%IL+ (t) - Lt (t.)
: P M5k ijk ‘%o

k=1,2 a_<j<b_ 1<i<j |t-t |<dj

+
- (t - to)zijk(to)l > 0.
Since (3.3) holds for each to € (0,1),
¢(Erl) -+ 0.

Next we will show @(Er3) »+ 0 which completes the proof of

(3.1). For to € (0,1) and n > 0 choose

€ > 0.3 2£[f(F:l(t0)) - e]-l < 4n. Then there exists rl-a-r > rl

implies

| A

-1 . . -1
f£(F, (to)) - € min min f(Ej (to) - cijB)

r<j<b 1l<i<r

| A

max max f(§:1(to) - ci.B)
r<j<b 1l<i<r ]

| A

f(F:l(tO)) + €.

Then for r > rl
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+ +

max max |2, ..(t.) - &, _(t)]|
1<i<r r<j<b ij1 o irl" 0
(3.4) < lre ey + elle, e - e

- LE(E, M (k) - eJLE(F,T(e ) + el <.

. c s + .
Since similar results hold for lirz(to), i<r, r> rl
and (3.4) holds for each to € (0,1), ¢(Er3) + 0 and (3.1) holds
Remark 6. By Corollary 2.1 the regression problem can be specialized

to the two sample Chernoff-Savage problem with random sample size.

Pyke-shorack (1968b) obtain similar results for a broader class of ¢.



CHAPTER 4

RANDOM WEIGHTED EMPIRICAL CUMULATIVES

In this chapter we prove the relative compactness of the
weighted empirical cumulatives based on independent random variables
with improper but finite distribution functions. This extends the
results of Shorack (1973) and Koul (1974).

This result is used to establish the asymptotic normality
of random weighted empirical cumulatives based on signed ranks or
ranks by establishing that they have the same asymptotic distribu-
tion as non-random weighted empirical cumulatives. The asymptotic
normality of the latter is established through approximation by
their projection on independent random variables.

Define {Yi, 1 <i<n} to be a sequence of random vari-

ables on [0,1] with improper but finite and continuous distribution

2 n _2

functions {G, ,1 < i < n}. Also define o, = I d, and
in’ 7 — 7 — d 1 i
(4.1) W.(t) = o R {I(Y, <t) -G, ()}, 0<t<1.
d d 11 i-— in ! - -

In Proposition 4.1 and the remainder of this work, [f||
will be the sup norm for any function f on [O0,1].

Proposition 4.1. Assume {di} satisfy a condition similar to (2.2).

Assume for the Gin defined above that

n
(4.2) Gin(t) - nt

51

18



19

is g_non-increasing function on [0,1]. Then we >0

(4.3) 1lim lim sup P[ sup de(t) - Wd(s)l >el=0.
§+0 o |t-s| <8

Proof: The proof is presented in a lemma and remark.

Lemma 4.1. Assume the conditions of Proposition 4.1. Then

(4.4)  E|W,(t) - wd(s)|4 5_k3{3(t -9 n'llc - s|}.

Proof: Without loss of generality assume 0 < s < t

Let Ei = I(s i_Yi <t) - Py where p, = Gi(t) - Gi(s), i

Then using the independence of Yi and the fact that Egi

have by (4.1)

4 -4 4
Elwd(t) - wd(s)| =04 E]i digil

= o4z a%ee? 4 3r 1 a%a®ee e
d -, 1°i . 4. 13 7173
i i#j

-4 2 22 4,4 2.2
=04 [3(2 dEE.) + i di(EEi 3E (&i))]

-4 2 2 4 2
= d - - -
o3 [3(§ ipi(l pi)) + i di(pi(l pi)(l 6pi + 6pi))

-4 4 2 4
<04 (3 max |a| (2 p)° + max |a,| zp,]

1<i<n i 1<i<n i
-4 4, 2 - 2 -
<g max |d,|n“[3(n 1y p.)” +n 2y p.]
—°d . i A | . 1
1<i<n i b

< kg[3(t - s)2 + n-llt - s|]

< 1.

l,...,n.

0, we

]

which is (4.4). The last inequality follows because (4.2) implies
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Z(Gi(t) - Gi(S)) < nt - ns.

This completes the proof of Lemma 4.1.
Remark 7. 1In Koul (1974), Proposition 4.1 was proved with (4.2) re-
placed with a stronger condition. Since (4.4), which was basic to the
proof in Koul (1974), is also true under the weaker condition, Proposi-
tion 4.1 also holds under the weaker condition.

We now present an application of Proposition 4.1 which is used

in proving Theorem 4.1. Whenever possible we suppress the subscript

n used in the notation of Chapter 2 and denote En be K.

Define for 0 < t <1

_ =l.n -1 +
v (e) =0 TE) el lT(x | < KT () s(x) - (6)],
W(t) = nk (K1(t)) - t1=n Mrx. | < x ey - Lt
n n 1 i! — i '
(4.5) V__(t) =0 5T c.[I(0 <X, <K 1(t) -1 (0]
: nl n “1 i R il
and
_ -1.n -1 o+
V ,(t) =0 "I . [T(-K " (t) <X, <0) - L (t)].

Note that for 0 <t <1

(4.6) v (£) =V (t) -V o (¢)

and when ci =1

(4.7) wn(t)

an(t) + Vn (t) w.p. 1.

2
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Corollary 4.1. Assume {ci} satisfy (2.2). Then ¥V € > O

(4.8) lim lim sup P[ sup |Vn(t) - Vn(s)| >e]l =0

§+0 n | t-s|<s
and
(4.9) lim lim sup P[ sup |Wn(t) - Wn(s)| >e]l =0.
60 n | t-s| <6
Proof: In Proposition 4.1 take Yi = K(Xi)I(O i_xi) and
4, = Then G, (t) = L' _(t) and from (2.8) IL' _(¢) - nt =
i~ S %Y T M and trom f{<. 1 inl nt =
+
-Zn L, _(t). Hence (4.2) is satisfied for these G. 's. Moreover
1l in2 in

an(t) = wd(t). Hence V_, satisfies (4.3). Similar application of

Proposition 4.1 to Yi = K(-Xi)I(xi < 0) and di

c, will yield (4.8)
in view of (4.6). Similarly by (4.7), (4.9) follows when di = 1.

The following results which appear in Koul-Staudte (1972b)
and Koul (1972) are presented here without proof.

Lemma 4.2. The random variable { sup Iw (t)I} is bounded in
0<t<1

probability as n - «. Also

sup |K (K;l(t)) -t] =0 (1) and
0<t<1 r r P
(4.10)
sup |H_ (5" () - t] = o (1).
0<t<1 r r p
In view of (4.10) and the fact that K (x) = H (x) - H (-x)
- - -n
we have
(4.11) sup |k (€H(6)) - t] =0 (1) .
0<t<l r '« P
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We now state the main theorem of the chapter. Its proof
will be presented in a series of lemmas which establish the asymptotic
normality of the random weighted empirical cumulatives based on
signed ranks by first establishing the asymptotic normality of non-
random weighted empirical cumulatives and then establishing that the
random and non-random weighted empirical cumulatives have the same
asymptotic distribution. Similar results are then presented for
random weighted empirical cumulatives based on ranks.

For signed rank statistics introduce for a fixed point
ve [0,1]

lzn

(4.12) ™) =0
n n 1

-1 +
ci{I(lxi| <K T(W)sK) - u )}

where K = is the empirical cumulative of {Ixil, 1<i<n} de-
fined by (2.7). Also define for v ¢ (0,1)
+ -1l,.n -1 +
.13 = : . ) -
(4.13) 2 (v) =0 "{I] c1[1(|x1| S K TS = )]

- n”e+(v)w (v)}
n n

+
where én is defined by (2.12).

Theorem 4.1. Assume {an(i)}, {Nr} and {ci} satisfy (1.4), (2.1)

and (2.2) and for fixed v, 0 < v < 1, there exists numbers

+ . . .
£ijk(v), l<ic<j, a <3j<b, k=1,2, such that for any 4,

0<d<e and k =1,2,

+ + + _ -k
(4.14) max sup _%ILink(t) - L V) - (t—v)zink(v)l = o(n )

1<i<n |t-v|§§n

and
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- + +
(4.15) oala3 max |&. (v) - éa V)| >0 as r > o,
r a _<j<b r
r——r

For any n define

2 _on_ 2__+ + 2 + 2_+ _*
Tn+(V) = Zl[Ci[Lin(v) - (uin(v)) ]+ (én(v)) Lin(v)[1 Lin(v)]
(4.16)
s + +

- 2cicn(v)[uin(v) (1 - Lin(v))]] .
Then
(4.17) lim inf 12 +(\))/02 > 0

¥ ar ar

implies

-1 +
(4. 18) TN +(v)oN TN (v) B N(0,1l) «r.v.

r r r

The proof of Theorem 4.1 utilizes Lemmas 4.3 through 4.6 and

is completed after them.

+ .
Lemma 4.3. Assume {ci} satisfy (2.2) and lirk(v), 1<ic<r,

k = 1,2, satisfy (4.10). Then (4.17) implies

-1 +
N(O0,1).
(4.19) rr+(v)orTr(v) g' (0,1)
Proof: (4.19) will follow when we show

+ +

(4.20) [T (v) =2 (V)] =0 (1)
r r P

-1 +

and Tr+0rZr(v) B N(O,1).

+ -1 -1 -+ -1 _ -+
(4.21) Tr(v) = Vr(K(l(r v))) + o [ur(K(Kr v))) ur(v)].

(4.8) and (4.10) imply
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..1 _
(4.22) sup |V (K(K "(£))) - v (o] = o, (1) -
0<t<l

Now since |K (K-l(t)) -t] < r-l, we have by (4.5) and (4.9)
r'r -

L y

L -1 _ -1 _ -1 -
(4.23) r [1((1<r (t)) - tl =«r [K(Kr (t)) Kr(Kr (t))] + o(xr )

-1 kN
='wr(K(Kr (t))) + o(xr °) = wr(t) + op(l).

Since the sequence ﬂ[wjl} is bounded in probability in the

limit 4 49 -

(4.24) P[Br] > 1

where
-1 -k
B_ = {sup|K(K_~(t)) - t| < dr 7}
r t r

Combining Assumption (4.14) and the above observations yield

-1, -+ -1 -+ Lo+
(4.25) o, '“:‘K‘Kr VI = u )+ rle (MW _(v)] = 0, (1).

Finally, combining (4.21), (4.22) and (4.25), we have shown

+ - =1 %+ _
lTr(v) - Vr(v) +0°r cr(v)wr(v)| = op(l).

Combining (4.22) and (4.13), we note that

-1 % + +
4.26 - =
( ) Vr(v) o'r ér(v)wr(v) Zr(v)

which completes the proof of (4.20).

To complete the lemma, write



25

+ -1l.r At -1 _ .t
z (v) =0 21{(ci - cr)[I(O X <K TV Lirl(v)]

K> -1 +
- (e, + € [I(-K "(v) < X, <0) - Lirz(v)]}

r +
= leri(v) (say) .

+
Then since [er(v)| i_max|ci| follows from (2.20), we have

max |z+.(v)| < 4 maxlc.|o-1 = o(l).
1<i<r * vor

+
Therefore ¥ € > 0 and r sufficiently large, max IZ i(v)l <e
1<i<r

and the Lindeberg-Feller theorem plus (4.17) yield that t—lo Z+(v)

r+ rr
is asymptotically normal with parameters (0,1). Therefore (4.19)
follows from (4.20).
Before proceeding with Lemma 4.4, we state an inequality

which is given in Fernandez (1970).

Inequality. Let D[0,1] be the space of functions on [0,1], the

elements of which are right continuous and have left limits. Let

{Yi} be sequence of independent random variables in D[0,1] and
= J >
Cj 2i=1 Yi' Then Vv ¢ 0

1

v

(4.27) P[ max ‘.leﬂ

2e] < plg |l > €d@-n)"
1<j<n

where

3
]

max P(|z - gll> €l .
1<j<n n 3

Lemma 4.4. Assume {Nr} and {ci} satisfy (2.1) and (2.2). Then

¥Y¥e>0
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(4.28) vy - v, Il =0 ),
r ba P
(4.29) Iy =W, | = o_(1)
r r P
and
0 *
(4.30) .thru = o (1)

where for any n, V*(t) =V (K (K_l(t))) -V (t).
n n-—n n n

Finally the sequence {hwN h} is bounded in probability in
r

Proof: Unless otherwise specified a s Nr and br will be
denoted by r, N and b. First note that (4.29) and the fact that
{hwrh} is bounded in probability imply that the sequence {thhj
is bounded in probability. Since (4.29) can be proved by the same
methodology used to show (4.28), only the proof of (4.28) and (4.30)

will be presented here.

Define for 1 <i <b
-1 -1 +
= I . L) = M.
Y (t) =0 Te [T(]x;| < K T(t))s(x)) - u; (8)]

and

VI(t) = T Y, (t) .

r 1 i

To prove (4.28) we will first show that

(4.31) vy - vr“ = op(l) .
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Note {Yi} are independent random variables and Y, € D[0,1]. Then
by (4.27), we have
. c
PLIv, -V [l > 2¢3< Pl max “v; - vr“ > 2] + P(a)
r<j<b

(4.32)
< PL|Vy - Vrh > el(l - max P[] - V%“ > et s o (1) » 0

r<j<b
as r + o as the following argument shows. For any t and any 3,

r < j < b, we have

L] L] 2
E(|v)(t) - Vj(t>l )

=2 b 2 -1 + 2
(4.33) =0 zj+l ciE[I{lXi| <K T(B))s(x) - u, (6)]

<0 2062 -5 20 as roo by (2.3)

—r b r as r Y Tt

Noting that

-1
sup |K, (K " (t)) - t| = o(1)
o<t<1 ) %

and
Vi(t) = o Y0 V. (K K1), r<j<b
] IR R e rE=) =P
we have by (4.8 that
(4.39 PL sup [(v)(t) - V!(t)) - (Vi(s) = Vi(s))| > el >0
|t-s|<86 J J

as r » o and then § - O.

Combining (4. 33 and (4. 39, we have
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max PL|v! - V!||> €l >0 as r >,
r<j<b b J
<3<

Therefore (4.32) and consequently (4.31) hold. To complete the proof

of (4.28), we start by combining (4.31) with (4.8) to get

(4.35) P[ sup [VI:I(t) - v&(s)l >el>0.
|t—s|§§

-1
. - ,
Noting that VN(t) 0 Oy VN(EI(K (t))), we have

(4.36) | -V |

_l . -l _ .
< | sup o o T(VEK (K T(£))) - V()]

o<t<1 TN

+

-1 - -1
o oy “v& - vr“ + hvrhloroN - 1]

Rl + R2 + R3 (say) .

(4.37) Ry =o (1) by (2.4) and the fact that {|v |} are bounded

in probability.

(4. 38) R2 = op(l) by (4.31) and (2.4).

+ -
Finally define D = [ sup |K (K 1(t)) - t| < 8] and note from (4.11)
o o<t<1 T N

(4. 39) P(D;) - 1.
Then by (4. 35 and (4. 39

-1, R c
(4.40 P[R, > el < P[ltlel)w o oy |vN(t) vi(s)| > el + P(D_) > 0.

Combining (4. 36) through (4.40) yields (4. 28).
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Finally, the proof of the lemma is complete when we show that
(4.30) holds. Since the sequence {hWN“} is bounded in probability,

there exists d such that

_ -1 -1
c = {sEp [R (RT(8)) = tf < an 7}
and

(4.41) P[Cr] > 1.
Then (4.30) follows by combining (4.8), (4.28) and (4.41)

Lin BV || > €}
o

< lim lim (P{ sup IVN(t) - VN(s)| > e} + P[C°]) = 0.
640 ro  |t-s|<6 r

Lemma 4.5. Assume the conditions of Theorem 4.1. Then at v

-] -* -1 -*%

- = o (1)

(4. 42) IoN ny () -0 ) | o,
r r r r

where for any n
~* -+ -1 -+
(4.43) un(v) = un(_lsn(l(n (v))) - un(v)-

Proof: Again we will write r, N, and b for ar, Nr and

br' We will repeatedly use the fact that since erk >0, ix<r,

k = 1,2, (2.20) implies for any r > 1

-1k 1k l

(4. 44) o r “é:[ :_o; r° max

-1 +
c.lr 7| L g, <k .
1<i<r ' ik il £ %

To prove (4.42) we will first show that

-1 % + -1 % .+
(4.45) IoN Nogy (MW (V) -0 T arE (W v | = o, (1)
r r r r r r
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In particular we will show that

(4.46) R = [o-IN"et (v) - o;1r5

+
n Ve e (| = 0, (1)

which by (4.44) also implies
. - +
(4.47) lim P[0N1N5|&N(v)l < K<wo] =1.
r
The proof of (4.45) will then be complete by the triangle in-
equality, (4.29) and the fact that the sequence {hwa “} is bounded

r
in probability. We now prove (4.46). By (2.1), (4.15) and (4.44)

=14+ o+
IR, | <o Ne v - cr(v)| + o (1)

-1 % + ~+ _
<o b’ max |el(v) -e (] + op(1) =0 (1) .

a _<j<b
r——r

To prove (4.42) we first observe that (4.14) implies that
h

¥e >0 there exists r - if r > T and It - v| j_dj_ ’
€

2]
|A
J
A

< b, then we have

-1 .3 + + -1 _r + +
o," I c.[ul . (t) - - -
| ;0 °1[“13‘ A 0 B S M uir(v)]l
(4.48)

-1..+ -1 .+
< |0, jc.(v)(t - - ¢ -
< | j 9 J( ) ( V) o, T (V) (t v)| + dek -

R |
+ 4jo,” max |c.| max max sup _ ILIjk(t) - L+ (v)

1<i<j © k=1,2 1<i<j |t-v|<dj 13k
' +
- (t - v)zijk(v)|

-1, .+ -1+, T .
< Jo.7je, t-v) - & - + .
5 3&; ) (E=v) -0 Tre (v)(t v) | dek

To proceed let Cr be defined by (4.41). Note on A (1 C . we have
r r

for r <j <b

sup |K, (K.T(t)) - t| < a57"
g 33 =
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We complete the proof of (4.42) by partitioning Q based on {Nr}' apply-

ing (4.5), (4.23) and (4.48) and recombining. Let eo > 4kcg > 0. Then

-1

P[IoN

—-% -1-*
g - o ur(v)l > 3e,]

b .
<Pl U (ot ) - | > 3edarcIn N = D]
. J 73 rr 0 - r r

(e c
+ P(Ar) + P(Cr)

b
-1.% A+ -1k + s
< P[jgr([loj JW; V) =0 Tx W (e (] > e e In N =3n]
+0o (1
op( )
< Bl Cloin? &b (v - o e T V| >eINnCa]l+o (1)
- N N N r r r 0 r P

1 b 4.45).
op( ) y ( 5)

Lemma 4.6. Assume the conditions gf Theorem 4.1. Then

-1
TN+(v)Tr+(v) +1w.p.1 as r > =,

Proof: As usual we will use r, N and b instead of a
Nr and br. Since v 1is fixed we will simplify notation by not
revealing v when possible.

We will repeatedly use the observations that (4.17) insures

that r;zoi is bounded, that (2.8) and (4.11) yield

-1, .r _+ + _ -1 _ _
(4.49) r IZl(LiN(v) - Lir(v))l = | (K~ (v) v| = o, (1)

K
r

and that
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-1.r, + + -1ly.r, + +
. - < T (L.. - L, = .
(4.50) rz fuge - w | <l - L) 0, (1)
-1 -1 s
To show that (4.50) holds assume Kr Z-KN , then it is
easily shown that
+ L+ <t + < L+ L+
iN T Pir SN T Mie S e T NN
.. -1 -1
Similarly when K < K
r — N
L+ L+ <t + Lt L+
ir iN = Mir T Hin = YN ir’
Therefore
r, + + r, _+ + r,_+ +
z . - . < L - L, = L, - L, .
llulN u1r| le ir Nl lZ ( ir 1N)I
Now by (2.1) and (4.16)
2 -2 5
.51 =
(4.51) TN+(V)Tr+(V) 1+ Zm=1Rm + op(l)
where
-2 r 2, + +
R, = L - L
17 Tps 0G5y T L)
- r 2 + 2 + 2
R, = -
> Tr+ Zlci((uir) (uiN) )
-2 r. 2 _+ + 2 _+ +
R = ¢ L - -
3 Tr+ zl[ N+ iN(1 LiN) er+L r(1 Lir)]
-2.r o+ + + +
R = . . (1= - & -
4 Tr+ 11 rulr( Llr) CNuiN(1 L N)]
2 _N 2 _+ + 2 2 _+ +
R_= - & -
5 T4 b +l[ (LiN ( N) ) + N+LiN(l LiN)
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In view of (4.49) and (4.50)

(4.52) |R1| f-T;i mix ci|£i(LIN - Lzr)l = op(l)
and
(4.53  [Ry| < T-ri m?x Cizi ”:;Lr * “IN' I“Ir - “IN' = op(h)-
Next
Iryl <ol HEp® - @I a - 1]
s reD a-n) - ot a1l
= |R31|+ |R32| (say) .
In view of (4.15), (4.44) and (4.49)
IR, | < T;Z r,in?;b |e;,L - é:llé; + é:HZ;L;NI = o, (1)
and
IRy,l < 3 en? s wly - 1i )] = o ).
Therefore
(4.54) |R3| = o, (1).

Similar techniques yield
(4.55) IR, | = o, (1)

Finally in view of (4.47)
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-2.N 2 L+ 2 o+
(4.56) [RSI S TAT a0 ZCilcN|) + o, (1)

< r;i(N - r)[ max |c?[ + (é;)2 + 2|é+[ max |c.|]
1<i<b 1<i<b

+ 0 (1) = o (1).
p p

Combining (4.51) through (4.56) completes the proof of the lemma.

Proof of Theorem 4.1. As usual we will use r, N and b

instead of a , N and b .
r r r
We prove (4.18) by using the decomposition

oh ) = v ok T + o )
n n n n n

-
where un(v) is defined by (4.43). Note that from Lemmas 4.4 and

4.5 we have

+ + * *
(4.5 [T ) = T ()| < vy + V) -V () - v ()|

_1_* _1_*
+ o vy =0 Tu | = o, (1) .

Combining (2.4) and (4.57) with the results of Lemmas 4.3 and 4.6

completes the proof of (4.18).
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For rank statistics we present Theorem 4.2 which is the
analog of Theorem 4.1. The proof of Theorem 4.2 is similar to the

proof of Theorem 4.1 with appropriate changes in notation. Define

-1.n -1
T (V) =0 "IcAI(X; <H (W) - L (W}

and

2 _ on _ 2 _
Tn(V) = 21[(0i én(v)) (1 Li(v))Li(v)].

Theorem 4.2. Assume {an(i)}, {Nr} and {ci} satisfy (1.4), (2.1)

and (2.2) and there exist numbers zij(v), l1<ic<j, ar <j :_br
such that, at a fixed point v, for any 4, 0 <d <
max sup _%|L. () =L, (v) = (£t =)L, (W] = o(n-%),
1<i<n [t-v|<an”® " m m
and
—1 ~ - -
o, a: max |&.(v) - &, M| = o(ar%) as r > .
r argggpr r
. . 2 2 . .
Then 1lim inf 1t~ (v)/0~ > 0 implies
o ar o
Hvo, T (v) = N(0,1)
N N Ty > ' r.v.

r r r



CHAPTER 5

PROOF OF THEOREMS 2.1 AND 2.2

Proof of Theorem 2.1. As before we will use r, N and b

to represent a_, Nr and br' By (2.6) we may assume ¢ 1is \1J-

Define for any n

+ -1- + -+ a-
(5.1) Tn(w) = On [Sn(w) - un(wa]_-

Since the assumptions of Theorem 2.1 are stronger than the assumptions

of Proposition A.l, we have by (A.28) and Remark 9
-1 +
T N .
'rr+(\))0r r((p) B (0,1)
Thus to prove (2.15) it suffices, in view of (2.14), to prove

+ +
(5.2) | (@) - Tr(cp)l = o (1) .

+
To prove (5.2) note that for all r > 1, Tr(w) =

fr/r+l

+ -
0 @(t)dT (r 1(r + 1)t) w.p. 1 where T+(t) is defined by (4.12).

+
Since T (0) = 0 and ¢ is bounded and \L, upon integration by

parts one has

36
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+ r/r+l + -1 + .
T (@) = =/ T (r “(r + 1)t)dg(t) + T (1)g(l)

(5.3)

1 + ' +
=fy T (t)de(t) + T (De(l) + op(l) .

The latter follows from the boundedness of ¢ and the fact that
sup ITI(r-l(r +1)t) - T:(t)[ = o (1). similar results hold for
T\ (@) by (4.57).

Now by (4.28), the boundedness of ¢, and the fact that

for any n, T;(l) = Vn(l), we have
+ +
¢(1)|Tr(1) - TN(l)I = op(l).
Thus to prove (5.2) it remains to show
1, _+ +
|75 (T = T do| = o, (1) -

* -
Defining for any n, Vn and un by (4.30) and (4.43)

respectively and using the decomposition presented at (4.57) we have

1+ + 1, * *
[75(Ty = T el < S|V () + Vv (e) =V (£) -V _(t)]dg(t)

1, -1-* -1-*

(5.4) + [Solog ug () =0 “u (1) }de(t) |
= Rl + R2 (say) .

(5.5) IR | = o, (1)

by (4.28), (4.30) and the boundedness of ¢. Next we proceed to

prove R, is op(l). Since (4.44) holds for any j > 1
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P[“o;lNHé;“ < k]
(5.6) Pl UN=3Iu )t e <xD1=1.
521 j 3550 ="c

For any n, 0 < n < =, r sufficiently large and Er defined by

(2.9) we have by (2.4) and (4.44)

-1.% + -1 % +
sup lo N°& (t) - o "r'ée (t)l
tEEC N N r r
r
< su o-lN%[“+(t) - “+(t)| + o (1)
< SuP. 9% °N “r p
t€E
r
-1 % .+ At
(5.7) <o b’ max sup ch(t) ér(t)| +o, (1) < 2n + 0 (1).

r<j<b te€E"
- r

Define A and C as in (2.1) and (4.41). Let G =AaA NC.
r r r r r

Note
(5.8) P(Gi) +0 as r » = ,

For an arbitrary € > 0, n > 0 (a function of ¢€), we have for Er

1, =1-*  -1-*

|f0{0N Mg T 9, ur}dq|
-1-* —1-* -1-* ~1-%
(5.9) < |J’Er{0N Wy T O pr}d¢| + IIEC{GN My T 0, ur}d¢l
r
= + .
Ryy ¥ Ry, (say)
We first show R21 = op(l). For any j, r < j <b and t € (0,1)

we have on Gr
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15+ ) |
J

j + -1 _ .t _ .t -1 +
lzlci<Lijl(5j(xj (£0)) = Ly (€)= Lo (KA(KT(0) + Lijz(t))l

| A

3 + -1 _ .t
|zlci(Lij(5j(xj (t))) Lij(t))l

| A

max Icillzi(LI.(K.(le(t))) - LZ.(t))I
1<i<j 3 =33 j

| A

d max |cilj5 by (2.8) and (4.41).
1143

Consequently on Gr we have

R ., < o_l max |c.|(db12 + dr5)¢(Er)

21 1<i<b

| A

3dkc¢(Er).

Therefore by (2.9) and (5.8)

(5.10) R21 = Op(l).
Next we show R, = op(l). Oon Gr n [Nr = 3]
IR,,| < sup_ |05, (@&t (0) - o7l (el o]l + ank_|o]
22" — j 3 j r r r A cli®
tcE
r
-1 % A1 -1 % ~t+
:':ZECION NW (£)e () - o r wr(t)cr(tH“¢“ + 4e .
r

The first inequality follows from (2.10) by an argument similar to the

proof of (4.48). Therefore since |¢|| is bounded we have on G -
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-1 % A+ -1k
N wN(t)cN(t) - Ur r

A+ )
N W o(t)e (t) [ lef| + %e

< sup_ |o

|
22
t&Er

o N len g = Wl ll + ke

| A

-1 % + +
+ 0 NT[W_|sup_ |& (t) - & (t) ]|yl
N rl e N r

=0 (1).
p

. . S0 T TIPC R
The first term on the right side is op(l) since ON N th“ is
bounded w.p. 1 and HWN - Wr” = op(l). The second term is op(l)
because “wr“ is bounded in probability in the limit and

sup Ié;(t) - é:(t)l < n for n arbitrarily small. Consequently
t&Er
by (5.9)

(5.11) R22 = op(l).

Combining (5.5) and (5.9) through (5.11) completes the proof
of lfé(T; - T:)dpl = op(l) and the theorem

Proof of Theorem 2.2. With appropriate changes in notation

the proof of Theorem 2.2 is similar to that of Theorem 2.1. The

details are left to the reader.

Proof of Corollary 2.1. First note that {ci} defined by

(2.21) satisfy conditions similar to (2.2) and (2.3) since

-k

b o_ : = At ke -
(ar/nr) = AO + op(l) and o /0 = ar/br + op(l) =1+ Op(l)-

b
r r

Since the proof of Corollary 2.1 parallels the proof of Theorem 2.1
only the modifications will be discussed. Each place (2.2) or (2.3)
are used in the proof of Theorem 2.1 the conditions above may be used.
Similarly Corollary 4.1 and Lemma 4.6 hold as before for these {ci}.

Therefore (5.5) holds. Finally (5.6) and (5.7) hold since for all r



41

-1 %, r - -k
” Izl’q‘irh :. A0 + Op(l) °

-1
or arcr“ :_(ar/nr) r [

The remainder of the proof follows without change.

Similar arguments show that Theorem 2.2 also holds for these



CHAPTER 6

PROOF OF THEOREM 2.3

This proof is developed in Lemmas 6.1
through 6.3. Koul-Staudte (1972a) presents the asymptotic normality
of the nonrandom linear sign-rank statistics. The specialization of
their Theorem 2.2 to {Xi} which are iid with symmetric distribution
F 1is presented in Lemma 6.1. Lemmas 6.2 and 6.3 verify the meth-
odology developed by Anscombe (1952), thereby completing the proof.

Lemma 6.1. Let xl""'xn be iid random variables with a continuous

symmetric distribution function F. Let ¢l(t) = ¢l(t) - wz(t),

t € (0,1, where ¥, are nondecreasing, square integrable. Let an(i)

and {ci} satisfy (1.5) and (2.5) and A2 = Ié Wz(t)dt. Then

-1l -1 _+ +
A L (Sn - Esn) -+ N(O,1).

Lemma 6.2. Define {a (i)} by (1.5). Let Fn be the o-field generated

+ . + . .
by {(s(xi), R,)s 12 < n}. Then {Sn,Fn} is a martingale.
Proof: Using the density of the ith order statistic of a
set of independent observations each distributed uniformly on (0,1)

one can show that

1 1

i(n+l) "E(¢(U )) + (n - i+1) (n+1) E((P(Un li)) = E(W(Uni))-

n+l i+l +

Therefore

(6.1) an(i) = [i/(n+l)]an+l(i+l) + [ (n-i+l)/(n+l1) Ja (i) .

42

n+l
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+
Since F is symmetric, {s(xi), 1<i<n} and {Rni’

+
1 < i < n} are independent. Therefore given {(s(Xi),Rni), 1 <ic<n}

(6.2) S(Xn+l) = + 1 with probability %

and

6.3) R .. =R'. +1 with probability R ./(n+l)

(6.3) n+li ni * probabllity Rni
=R with probability (n+l - R'.)/(n+l)
=R, ith probability (n i .

Combining (6.1) and (6.3) we have for i =1,...,n

+

+
(R .)an] = (R ./(n+l))a_

E[am»l n+li

+
+1 Bt
(6.4)

+ + +
+ (04l = R )/(n+l))a (KD ) = a (R ).

Now by (6.2) and (6.4)

+ _ n+l_ +
E[Sn+1|Fn] - ED:l bis(xi)an+l(Rn+li)|Fn]
+ .1 +
= Bl D IFIBla (R OIF T+ ey s(xEla) ) (R D FD
n + +
= Elcis(xi)an(Rni) = Sn .

+
Therefore {Sn,Fn} is a martingale. This completes the proof.

Lemma 6.3. Assume the conditions of Theorem 2.3. For any n let

+ .
Tn = Sn/Acn. Then v € > 0 and n > 0, there exists &§ > 0 such

that as r > «

P[ max |T_-T | >nl<ce.
lr-3l<c © 3

Proof: Denote r - [6r] by & and r + [6r] by u where
[r] is the largest integer smaller than r. Now since 6 can be

arbitrarily small, we have by (2.3)



44

(6.5) | max |o;2(o§ - oi)[ §_|0;2(0§ - oj)l -0 as r > > .
|3 -r|<ér
+
Since S_ = Ao T
r rr
-1 -1 -1+ +
(6.6) |T_ - T, | < l(oj - oo, [T | +a oy ls, - sy |-

Combining (6.5) and the fact that Tr is bounded in probability in

the limit, the first term on the right hand side is op(l).

- + +
pefine J2 = r % z¥ a%(i). Note that Es’ = 0, v(s*) =
r l r r r
Jz Zrc? = 0212 and 12 = A2 + o(l). Since 0—202 +1 as r + «,
r 1li rr r 2 u

(6.6) implies for a suitably chosen 6 and ny < LAn

-1, + +
pl sup |T - T, | >n] <Pl sup o, |S -s. | >n 1+ 0 (1)
|r-j |<6r o J |r- j[<6r J o J 1 p

2

-2 + +2 =2, 2,2 2,2
< (njop) TE(S T - s, 7) + op(l) < (o) Lo J -0 Jl<e.

The third inequality follows by the Kolmogorov inequality for martin-
gales (Loeve, 1963, pg. 386). This completes the proof of Anscombe's

condition and therefore the proof of Theorem 2.3.
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Proposition A.l presents the asymptotic normality for signed
rank statistics for §p satisfying Hoeffding's condition. These @
may be discontinuous. This proposition retains a simpler centering
constant similar to the centering constants used for rank statistics
presented in Dupaé (1969), Hoeffding (1973) and Koul (1974). However,
it eliminates the condition D-H (2.12) which Dupaé-Héjek (1969) and
Dupaé (1969) used and relaxes the boundedness condition which Koul
(1974) used. No conditions are required on the alternatives for the
absolutely continuous part of p =2s was shown by Hajek (1968) for

rank statistics and Huskovad (1970) for signed rank statistics.

To prove Proposition A.l we first present a lemma for signed
rank statistics. This lemma is an analog of a similar lemma for rank

statistics in Hoeffding (1973).

Define

k b
(a.1) Jip) = fét-(l - t) ldg(t) .

Lemma A.1. If P is non-decreasing, then

n + 1 + L
(A.2) zllr:pmi/(nm)s(xi) - J'O:p(t)dui(t)| < 8n'Jlp) .

Proof: For x € (-»,») define

45
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W, (x) = 1(|xi| > |x[) + nx_(]x]).
Then
(A.3) E{p(R:/(n+l))||Xi| = x} = Bp W, (x)/(n+D)).
Consequently for 1 < i <n
+
lEp(Ri/(n+l))s(Xi) - Jp (v)ay, (v) |
= |Bp (RT/(n+1)1(x, > 0) - fp(B)ALT _ (t)
i i inl
4 R./(n+1))I(X, < 0) - [p (t)dL, _(t))]
(A.4) - (B (R/(n N -/ o
< JElp W, kK T(t)) /1)) - 9 (v)[ant (o)
—_— ‘P 1 ‘p in *
Since W, (x) < nK (x) + 1 and wi(x) < n, we have
(A.5) ?Wﬂﬂ/mﬂJ)iQM%bd)SQWﬁﬂ)
where
g(i) = min{p ((i+1)/(n+1)), p(n/(n+l))}, 0 < i < n .

Now by (A.4)

n + 1 +
(a.6) I |Bp(R./(n+1))s(X,) - Jp(t)du (t)]

|A

n ) -1 -1 +
I fElp<wi<x (£))/(n+1)) - g(nk_(K (t)))ldLin(t)

n -1 ) +
+ I JElg(nKk_(K 7 (£))) - p () |aL, (t)

= Rl + R2 (say) .

But by (A.3) and (A.5)
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o)
A

n -1 . -1 +
< &) JELgW, (x 7 (£))) - P (W, (x (£))/(n+1))JdL, (t)

n + ot
(A.7) I E[g(Ri) -9 (Ri/(n+1))]

I{g() -9 (i/(n+1)))

]

p(n/(n+l)) - ¢ (1/(n+l)) .

Now the remainder of Hoeffding's proof of Proposition 2 holds with-
out change by considering K and Kn to be the distribution and
empirical distribution of the random variables |X1|, |X2|,...,|Xn|

respectively. In particular by (2.8)

R, + P (n/(n+l)) - p (1/(n+l))

(A.8) )
= n/E[gink_(KH(6))) - 9 (£)|dt +@ (n/(n+1)) - 9 (1/(n+1))

< 8nl"J(p) .

The last inequality follows from Hoeffding's proof. Combining (A.6)
through (A.8) yields (A.2), which completes the proof.

The asymptotic normality of signed rank statistics will
be established by approximating them by asymptotically equivalent sums

of independent random variables. For this purpose define

+ _ -1 _n_ -1 _ Lt
z ) = o [Icfp)dlr(x]| <k (£))s(x) = u (t)]

(A.9) L+
+n fén(t)wn(t)dp(t)].

+ +
where Cn is defined by (2.12). Obviously chP) is a sum of in-

dependent random variables.
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Lemma A.2. Let {an(i)} and {ci} satisfy (1.4) and (2.2). Let 9

be \* and bounded. Assume there exist measurable functions on (0,1),

+

{2, x» k¥ =1,2, 1 <i<n} such that vd, 0 <d <= and ¥ n>0,

lim 9(E_) = 0 where
n->e n

1Lt o -1t (s

E = {s; max max sup y 0 ltink ink

n k=1,2 1<i<n It-sli@n_
+
| -(t-s)Zink(t)l >nkh
+
Define Tn(p) by (5.1).
+ +
(A.10) Then |Tn¢p) - zncp)l = op(l).
Proof: As in (5.3) we have
+, 0 _ _ 1+ + .
Tncp) = IO Tn(t)dp(t) + Tn(l)v(l) + Op(l)
where T:(t) is defined by (4.12). By integration by parts
+ + -1,.n +
z ) = -/ z g + o {zlci[s(xi) - ui(l)]kp(l)

+
where Zn(t) is defined by (4.13) on (0,1). Then

@) - 2 ) = o o - THeg e + o (1) .

-
Define un(t) by (4.43). By the decompositions (4.21) and (4. 26)

) - 2t ) f[—vn(K(K;l(t))) +V_(£)1dp ()

it ey - net o) (kxt ]
o LILi ne’ (£) (K1 (6) - £ Jap (6)

-1, k. + i -1
(A.11) -0 /n cn(t){wn(t) +n (K(Kn (t)) - t)}dp ()

+ o (1)
p

]

Rl - Rz - R3 + op(l) (say) .
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By (4.22) and the boundedness of ¢ it follows that
(A.12) |R1| = o M .

By (4.23), (4.44), and the boundedness of ¢,

(A.13) |R3| = o (1) .

+ -
Now to show [R | = o (1) define <¢, = ¢, I(c, > 0) and ¢c, =
2 P i i i- i
CiI(ci < 0). Also define Bn and d by (4.24). Observe on Bn

that

llK(K;l(t)) -t < an?

and

- -%
o Y (]

- n + -1 +
cnﬂlzlci(uin(x(xn (£)) = u, ()

-1, .n + _+ -1 + |
“zlci[Lin(K(Kn (t))) - Lin(t)Ju

- n - _+ -1 +
+ o frje i, o) - 1l )]

-1 Y

20 max ]c.ldn+ .
n R i
1<i<n

|A

The second inequality follows from (2.8) and the first from the fact

+ +
that for t >s, L, (t) - L, (s) >0, k=1,2, i < n. Therefore on
ink ink - —

B
n

-1 b
|R2| < é On [2 max Ici]dn
n

+ dn%é+(t)]dp + fcndp .
1<i<n n E

n
The first term on the right hand side is o(l) since lim:p(En) = 0.

n--o
Since P is bounded the second term can be made arbitrarily small by
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Finally since P(Bn) +1 as n+®

making n arbitrarily small.

(A.14) |R2| = op(l) .

Combining (A.11) through (A.14) yields (A.10).

Lemma A.3. Let {an(l)} and {ci} satisfy (1.4) and (2.2). Let

P Eg\t , absolutely continuous and satisfy the Hoeffding's condition

flip(t)l(t(l - t))_%dt < @

(A.15) Then E(T. (@) - z;(:p))2 >0 as n o .

Proof:
By Lemma 1 of Hoeffding (1973), ¢ can be decomposed into

PE) = v (B) + v (6) - y ()

where Y, is a polynomial and Yz and Y3 are \b and

.16
(A.16) J(yz) + J(Y3) <a
where J(ym), m = 2,3, is defined by (A.1).

Now

+ -
E(r o) - 27907 < 2800 M 5T - BT i) - 2t )2

=2 <t +, .2
(A.17) + Zon (ES () = u (p))
= 2Rl + 2R2 (say).
-1, + + + 2
IR | < 3EG (s (b)) - ES (W) = 2 (b))

3 -2 + + 2 + 2
+6r Lo “E(s (y) - ES (4 )" + E(Z (y )]
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Since wl has a bounded second derivative the first term on the right
hand side goes to zero as n + ® by applying Lemma 2 of Huskovd (1970).
The second term goes to zero by applying Theorep 4 and Lemma 5 of

Huskovad (1970). Therefore
(A.18) lRll -0 as n + «

(A.19) lEsT¢p) - uh )

| A

3 + +
rlES (v ) = Ty |
= R2l + R22 + R23 (say) .

For m = 22,23
. + +
(A.20) R = |Zc {Ey (R/(n+1))s (X)) - Jy (B)au (0)}]

< max |c, |t0|Ey_(RT/(n+1))s(x,) - fy_(Dau. ()] .
l<i<n i''l m i i m i I

Combining (A.2), (A.16) and (A.20) yields
(A.21) R, + R _, <8 max ]c |n%a
22 23 . i :
1<i<n
Since Yl has a bounded second derivative, it follows from
Lemma 2 of Huskovd (1970) that there exists K dependent only on

Yy such that

(a.22) R < Kn 0o .

Combining (A.19), (A.21), and (A.22), yields
lEsT ) - v )| /o i'n-gx + 8k a .

Finally for any € > 0, a is selected so that 16kca < €. Now K

is fixed. Then for n > (2K/e)2, we have
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|ES+(<P) - u+(cp)|/o < €.

Therefore
(A.23) |R2| +0 as n*>o .,

Combining (A.17), (A.18) and (A.23) yields (A.15). This completes the
proof of Lemma A.3.

In the following propositions P is assumed to satisfy
Hoeffding's condition on (0,1). To simplify the notation we will
assume that ¢ is non-decreasing on (0,1). This can be done without

loss of generality since P may be written

=9, "9, where Py -and P, are \b

and satisfying Hoeffding's condition on (0,1).

Decompose P into
(A.24) P =0 + ¢

where ¢l and ¢2 are \*’ and satisfy Hoeffding's condition on (0,1l);

®1 is the absolutely continuous part of ¢ and satisfies

S dad, =0; ¢
Bc 1

fd¢2 = 0; and B® is a p-measurable set containing the singular set
B
of 9.

2 is the singular part of P and satisfies

Proposition A.l. Let {an(i)} and {ci} satisfy (1.4) and (2.2)

and P be \L and satisfy Hoeffding's condition

(A.25) félq) (€] (£ - £)) "at < = .

Let p be decomposed into ¢m' m = 1,2. Assume that there exist-

measurable functions
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+

{zink}, i=1,...,n, n>1, k=1,2, on (0,1) such that ¥ g,

0<d<®ow®,and ¥ n>0 and k =1,2,

. b+ +
(A.26) 1lim ¢ _{s; max sup _,n |Link(t) =L, . (s)

n 1<i<n It-s|§§n nk

+
- (t - s)zink(s)| >n} =o0.

Define
+ -1l.n + + c
o = - c
cn(t) n Zlci(linl(t) linz(t)), tc B
and
-+ _ .~1n_ _+'
cn(t) =n lciLi (t), t &€B

+l
when the derivative Li (t) exists.

Then
(A.27) lim inf 12, )0 2 > 0
. im in Tn+(p o
n
implies
-1 + -+
T Ny - .
(a.28) n+¢p)[Sn(p) un(p)] 3 N(0,1) r.v.

+
Remark 8. Since the Lni are absolutely continuous and (A.26)
+ -
holds, én(t) is well defined almost everywhere with respect to ¢.

Consequently Tn+«p) is well defined. Also (2.8) implies

- [ ]
izt (v = 1.
1l1i

Proof of Proposition A.l1l. Given a > 0, there exists a

decomposition
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(a.29) P = ¢1 + wl + ¢2
where
d>2(b) 0<t<b
by (B) = ¢, (%) b<t<l-b

¢2(l—b) l-b<t<l,
wz(t) = ¢2(t) - wl(t),

¢l and ¢2 are defined by (A.24) and

b is chosen so that fét%(l - t)lidlp2 < a and

1 2 2
<
IO wzdt a”.
The choice of b is possible because P satisfies Hoeffding's con-
dition and is therefore square integrable. Now wl is bounded on
(0,1) and satisfies the conditions of Lemma A.2. ¢l is absolutely
continuous and satisfies the conditions of Lemma A.3.
) + + + + .
Define T (¢1), 2 (¢l), T (wm) and 2 (wm), m=1,2, as in

(5.1) and (A.9).

+ + 2 -2_ .+ + 2
(A.30) E[T (¥,) - 2 (¥,)|" = 40 “E[s"(v,) - ES"(y,)|

-2 + -+ 2 + 2
+ 40 T|EST (W) - w7+ 2B ()7 = 4R + 4R, + 2R (say).

By Theorem 4 in Huskova (1970)

-2 2 .12 22
. < . < .
(A.31) R, <800 “n max |c,| S dt < 80k a

1 1<i<n

Also by (A.2)
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R, <0’ max lcil2(2;|Ew2(R;/(n+1))s(Xi) - I;wz(t)duz(t)l)z

2 1<i<n
(A.32) i640-2na2 max |c2|
1<i<n
< 64k2a2 .
- (e}

Now Lemma 5 of Huskovd (1970) implies there exists K such

that

(A.33) R, = Var(Z+(1p2))2 <K kiaz i

Combining (A.30) through (A.33) yields
@a.30)  ElTTw) - 27w |% < G20 + 2 + 256)K7a” .
Since o can be made arbitrarily small, (A.34) implies

+ +
(A.35) 77w, - 27w, = o (1)

Since Lemmas A.2 and A.3 imply IT+(¢1) - Z+(¢1)| = op(l)

and |T+(¢1) - z+(upl)| = 0,(1), we have by (A.29) and (A.35)
(A.36) T ) - 2zt @) ]| = o (1) .

+
Therefore T (p) has the same asymptotic distribution as Z+¢p).

If p is bounded, write
+ _ -1l._n ; + -1 _
Zn(-p) = -0, Zl{f[(ci én) (I(0 < Xi < K 7(t)) Linl(t))
- (e, + e @kt <x, <o) - ]
°i * ¢, X Lina(t)) o (¥)
- c.[s(X,) - u (1) (1)}
c;ls(x, H P

n _+
= -El Zniw) (say) .
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Since lléjl < max |ci| and p is bounded, we have

1<i<n
+ -1
max |Z _tp)l < §Yjyljo max |c.| = o(1).
1<i<n ni qlll n 1<i<n N

Therefore by (A.27), the Lindeberg-Feller theorem yields that
- +
Tnitp)onzn(y) is asymptotically N(O,l1). Then by (A.36) for 3

bounded
-1 + . \
(A.37) Tn+}p)0ﬁT tp) is asymptotically N(O,1).

If p is not bounded but is \L and satisfies Hoeffding's
condition, decompose ¢ into =P, *te, where Py is bounded and

ﬁp;(t)dt < €. Then by (A.33)

(A.38) E(Z+tp) - Z+(:pl))2 = Var(Z+&p2)) j_Kkie

and

2, 2 2 -2
(8.39)  ((t_, )/t @) =1 <t @)/t ()] < Kklet “) .

Therefore for large n if € is sufficiently small Tn+(p1)/rn+(p)
will be as close to 1 as we want.

Therefore combining (A.38) and (A.39) yields
+ —l_ _ + —l_ _
(A.40) |z @IT_L6) - 2 (,pl)Tn+(.pl)| = o 1) .

since p, ‘is bounded (A.27) and (A.40) imply T_ ()0 2z ) is
asymptotically N(O,l). Then by (A.36), (A.37) holds for § not
bounded which completes the proof of (A.30).

Remark 9 . If ¢ = P, "9, where %, and 9, are\$ and satisfy
Hoeffding's condition, the same proof when applied to T+(wl) and

+ . cas . .
T (¢2) will prove Proposition A.l1 for % which satisfy Hoeffding's

condition.
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Proposition A.2. Let {an(i)} and {ci} satisfy (1.4) and (2.2) and

@ be Y, and satisfy Hoeffding's condition (A.25). Let @ be de-

composed into Qk' k=1,2, defined_gz (A.24). Assume that there

exist measurable functions {lin}, i=1,...,n, n>1, on (0,1) such

that ¥ d, 0 <d <», and '¥n > 0,

&
lim ¢ _{s; max sup n’|L, (t) - L, (s)
n>e 2 1<i<n |t-sl§§n & in in
- (=), ()| >n} =0 |
Define
c(t) = n-anc L. (), t€ B¢
17i"in !
and
a -l.n
¢é(t) = n "I, c L'(t), t€ B
1 i7i

when the derivative Li(t) exists.

. 2
Define wu(p) and Tncp) by (2.16) and (2.19) respectively.

Then
L. 2, =2
lim inf Tn('P)on >0
n

implies

T e)ls ) - uep)l 2 N(O,1)  r.v.

n n D !
The proof is similar to Proposition A.l with appropriate changes and

is not presented here.
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