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ABSTRACT
STRAIN FAILURE OF APPLE MATERIAL
By

Inacio Maria Dal Fabbro

The objective of this work was to define a failure
criteria for apple material. Cylindrical apple specimens
were tested under uniaxial and triaxial state of stress
and stress rate controlled uniaxial loading. Cubic apple
specimens were subjected to uniaxial, biaxial and triaxial
states of stress.

Linear elastic and viscoelastic material properties
were used to calculate the stress and strain components
within the apple flesh.

Uniaxial loading of cylindrical specimens showed that
normal stress at failure varied for different strain rates.
This eliminated the maximum normal stress failure criteria.
Triaxial loading of cylindrical specimens indicated that
maximum shear stress and normal stress at failure vary for
different levels of cylindrical stress. Failure was also
observed at zero maximum shear stress, which excludes the
maximum shear stress failure criteria. Uniaxial, biaxial
and rigid die loading of cubic and cylindrical specimens

also excluded the maximum normal stress failure criteria.



Inacio Maria Dal Fabbro

Stress rate controlled uniaxial loading showed significant
variations of normal stress at failure which again discarded
the maximum normal stress failure criteria. Experimental
results from these tests indicated that the maximum normal
strain at failure remained relatively constant for all the
loading situations. Total strain energy and its spherical
and deviatoric components obtained from stress and strain
values calculated from the linear elastic and viscoelastic
theories exhibit significant variations. This eliminates
the strain energies failure criterium.

A non-linear viscoelastic formulation was proposed
for apple material based on the convected derivative repre-
sentation for the time derivative appearing in the linear
viscoelastic equations.

The most significant conclusion of this research is
that apple material fails when the normal strain reaches

a critical value.
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CHAPTER I
INTRODUCTION

Bruising is a major problem in the development of new
machines for the mechanical harvesting and handling of large
quantities of fruits. Bruising is the rupture of the tissue
and consequent exposure of the cell sap. The oxidation of
the cell sap gives a darkened color to the softened tissue.
This undesirable phenomenon is somehow related to the mé;h-
anical loading of the fruit. The knowledge of the fruit
tissue response to known loadings may provide the basis of
bruise prediction when the fruit is subjected to other
loading conditions.

Many investigators have studied the mechanical proper-
ties of apple tissue through a very broad theoretical formu-
lation bringing about non-specific results. It would be
reasonable to say that the overall objective of the majority
of the research work conducted on apple tissue was to iden-
tify its mechanical behavior.

Little of the relevant work on the mechanical properties
of apples has been directed toward establishing the failure
parameters of apple tissue. The failure phenomenon is
believed to be an indicator of bruise occurrence. It means

that a bruise is the result of a tissue failure. This



implies that bruises can be predicted in terms of failure
parameters. Before this problem can be solved, it is necess-
ary to define failure. Failure by yielding or by fracture
may occur beyond the elastic limit for common engineering
materials (Juvinall, 1967). Vegetative materials exhibit
a rupture point close to the elastic limit, which has been
referred to as the bio-yielding point (Mohsenin, 1970).
The parameters correlated to the bio-yielding point of
apple flesh can be studied by imposing different loading
conditions on apple specimens.

The specific objective of this study was to establish

the parameters involved in the failure of apple material.



CHAPTER II
LITERATURE REVIEW

2.1 General Remarks

Research on the mechanical behavior of vegetative mat-
erial has as one objective the minimization of bruise damage.
Material property determination and a stress-strain analysis
seem to be the steps toward complete information on failure
parameters. Vegetative material has been generally considered
either as an isotropic continuous medium or as a multi-phase
medium (Akyurt, 1969; Brusewitz, 1969; Gustafson, 1974;
Murase, 1977). Elastic and viscoelastic models had been
used to represent the mechanical response to a variety of
loading conditions. Mohsenin (1971) cites ample literature
on the importance of mechanical properties of agricultural

products and the need for study and research in this area.

2.2 Elastic Behavior of Vegetative Material

Determination of elastic constants is a frequent subject
of research due to the need for basic information on material
properties. Modulus of elasticity, bulk modulus, and elastic
Poisson's ratio have been determined on cylindrical and whole
specimens of potato by uniaxial and hydrostatic compression

(Finney, 1963; Finney and Hall, 1968). Modulus of elasticity



can also be determined by radial compression of cylindrical
specimens (Sherif et al., 1976). Bulk compression tests
directly obtaining the bulk modulus and the calculation of
Poisson's ratio yielded reliable results for fruits (White
and Mohsenin, 1967). Elastic Poisson's ratio and elastic
uniaxial modulus can be simultaneously determined from
elastic bulk modulus and Boussinesq solution for cylindrical
plunger on a half-space (Morrow, 1965). Elastic Poisson's
ratio can also be determined by comparing the axial force-
deformation on free and restrained cylindrical specimens

of apple (Hughes and Segerlind, 1972). Results from radial
co;pression loading of cylindrical specimens can be inter-
preted using Hertz contact theory to obtain values for the
modulus of elasticity (Snobar, 1973). Bulk modulus of a
whole-apple specimen can be determined by considering the
principle of buoyancy (Chen and Lam, 1975).

The stress and strain distribution in an elastic body
is also of practical interest for further study on bruise
location. Plate and plunger tests have been conducted on
whole specimens of peaches and pears correlating deforma-
tion and stress distributions with those predicted by elas-
tic models (Fridley et al., 1968). Stress and strain
distributions on apples under static axi-symmetric load
are similar to those in an elastic sphere subjected to the
same conditions (Apaclla, 1973). Potatoes have been consi-
dered a nearly incompressible non-linear elastic material

to analyze the stress distribution in hemi-spherical



specimens (Sherif, 1976).

In recent years a more complex approach has started
to replace the elastic theory for describing fruits and
vegetables. Vegetative material is now considered as a
multi-phase medium, having gas, solid, and liquid components
(Akyurt, 1969; Gustafson, 1974). A finite element method
is then used to obtain strain and stress distributions in
spherical bodies under axisymmetric conditions (Gustafson,
1974). Potato tissue was viewed as an interacting combina-
tion of solid and liquid phases in determining material
properties (Brusewitz, 1969). Cellular and intercellular
spaces were interpreted as porous and solid-liquid media
(Murase, 1977). Linear elastic stress and strain constitu-
tive equations were then derived, analogous to Duhamel's

relations (Murase, 1977).

2.3 Linear Viscoelastic Behavior of Vegetative Material
Many experimental investigations have indicated a time
dependency of the mechanical behavior of plant tissue.
Strain rate affects the fesponse to an impact test in biol-
ogical materials (Zoerb, 1958). The mechanical damage of
potatoes subjected to compressive loads is highly affected
by strain rate (Finney, 1963). Non-linear viscoelastic
behavior of apples was reported by Morrow and Mohsenin (1966)
who approximated it by linear constitutive relations. The
stress dependence of material properties of apple material
made it impossible to accept a linear approximation (Chappell

and Hamann, 1968). Further works have dealt with the



non-linear behavior of apple tissue, but the results were
interpreted by linear viscoelastic relations (Hamann, 1967,
1970). Tensile tests conducted on apple skin suggested a
viscoelastic behavior (Clevenger and Hamann, 1968). The
viscoelastic Poisson's ratio can be determined indirectly
from the elastic Poisson's ratio constant by the correspon-
dence principle (DeBaerdemaeker, 1975). Time dependence

of Poisson's ratio was directly noted by measuring lateral
and axial displacement of cylindrical specimens (Chappell
and Hamann, 1968). Similar results have been reported from
tests carried out on sweet potatoes (Hammerle and McClure,
1970).

Relaxation functions can be determined by bulk and
uniaxial loading (Morrow and Mohsenin, 1966). Similarly,
creep functions were determined by applying hydrostatic
loads to whole specimens (Morrow, 1965, and Sharma, 1970).
Uniaxial loading of cylindrical specimens was reported to
yield reliable results for relaxation functions (Finney,
1963; Chappell and Hamann, 1968; Morrow et al., 1971;
Hammerle et al., 1971). Bulk and shear relaxation functions
were experimentally determined for apple tissue and the
results were used in a viscoelastic sphere loaded by a flat
surface (DeBaerdemaeker, 1975). Rumsey and Fridley (1974)
assumed constant bulk modulus and time dependent shear
relaxation function. Dynamic methods had also been used
to determine viscoelastic properties of biological material

(Morrow and Mohsenin, 1968).



The parameters of a generalized Maxwell model have been
experimentally determined for several different fruits and
vegetables (Mohsenin, 1970; Hammerle and Mohsenin, 1970;
Chen and Fridley, 1972). Results from bulk loading of
apples were compared with a simple Kelvin model to obtain
an expression for the creep function. The relationship
between the complex moduli and the relaxation functions
can be used to calculate the dynamic relaxation and shear
relaxation functions from experimental results (Hamann,
1969). Force and deformation dependence on strain rate was
reported by Mohsenin et al. (1963).

Creep behavior of papaya was determined under dead
load conditions imposed by parallel plates (Wang and Chang,
1969). A viscoelastic stress-strain analysis is the next
step once the basic time dependent properties have been deter-
mined. A simple Maxwell model can be used to represent the
response of two viscoelastic spheres falling onto one
another (Hamann, 1970). The viscoelastic sphere subjected
to a contact load can be experimentally studied and numer-
ically simulated (DeBaerdemaeker, 1975). Vibration analysis
in a non-uniform viscoelastic beam has been used to predict
the stress-strain distribution in tomato blossoms subjected

to similar conditions (De Tar, 1971).

2.4 Failure Criteria
One objective of research conducted on the mechanical
behavior of vegetative material is to minimize bruise occur-

rence. Determination of elastic constants and viscoelastic



functions is performed to obtain the constitutive laws for
the material. The material properties are needed in order
that the stress resulting when external loads are applied
to the fruit can be calculated.

Impact testing has been used to determine whether a
bruise occurs because of the maximum energy absorbed, the
maximum stress applied, or the maximum deformation (Mattus
et al., 1960). In this sense it was found that the energy
required for bruising was greater under impact conditions
than under quasi-state loading conditions (Mohsenin and
Gohlich, 1962; Mohsenin et al., 1965; Nelson et al., 1968;
Fridley et al., 1964) for apples and peaches. However, for
pears and sweet potatoes, it requires more bruising energy
under quasi-static loading (Wright and Splinter, 1968;
Fridley and Adrian, 1966). Apple-limb impact and its influence
in the bruising of apples was investigated by David and
Rehkugler (1971). The impact of apples on cushioning mat-
erial was studied by Hammerle and Mohsenin, 1966; Simpson
and Rehkugler, 1972. Results from impact tests on whole
specimens did not reveal any dominance of the force or energy
parameter (Fluck and Ahmed, 1972). Analysis of bruise loca-
tion indicates a strong possibility of bruise occurrence at
maximum shear stress (Fridley and Adrian, 1966). Bruising
in peaches due to impact loading can be modeled by applying
similar conditions to an elastic sphere (Horsfield et al.,
1972). The problem of potato cracking during handling was

experimentally studied using tensile tests (Huff, 1967).



However, impact tests had been extensively carried out
(Finney, 1963; Park, 1963). Flat plate loading of hemi-
spherical specimens of apple and potato have indicated the
existence of maximum shear stress near the contact region
as well as a tensile stress at the circular boundary of the
contact region (DeBaerdemaeker, 1975; Sherif, 1976). There
is also indication of a maximum tensile stress or combina-
tion of this and shear stress near the center of the white
potato (Sherif, 1976). Bruises in peaches may occur at
the maximum shear stress on the axis of symmetry (Sherif,
1976). White potatoes and peaches did not fail until large
displacements had taken place (Sherif, 1976). Failure
strength of apples, referred to as the bio-yield point,
have been determined by indentor test as well as by plunger
and uniaxial ramp-loading of cylindrical specimens (Van
Lancker et al., 1975). Bruise energy of peaches and apples
can be evaluated by measuring the rebounding force in an
impact test (Diener et al., 1977). Attempts have been made
in correlating bruise occurrence location to mechanical,
thermal, and electrical properties of apples (Holcomb
et al., 1977). Tensile strength of potato and apple tissues
increases with increasing water potential levels. The
compressive strength of these products, however, decreases
with increasing water potential (DeBaerdemaeker et al., 1978).
Maximum shear stress was reported to be the failure
parameter of apple flesh (Miles, 1971). Cylindrical speci-

mens of apple were subjected to several levels of hydrostatic
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stress superimposed on a uniaxial loading. Failure depended
on loading rate and confining pressure; those parameters,

however, act independently (Miles, 1971).

2.5 Summary

Material properties and stress-strain analysis have
been used to characterize the mechanical behavior of vege-
tative bodies. The literature discloses a significant amount
of research starting from simple assumptions such as a
continuous isotropic medium and linear elastic behavior,
extending into multi-phase medium, linear viscoelastic, and
non-linear elastic behavior. Nevertheless, the failure
parameters for a vegetative material have not yet been
determined.

The triaxial loading of cylindrical specimens (Miles,
1971) can be considered the best attempt toward the deter-
mination of failure criteria. In spite of time dependent
non-linearities that had been noticed (Hamann, 1967, 1970),
no investigation had been reported which assumed non-linear

viscoelastic behavior.



CHAPTER III

FAILURE THEORIES

3.1 General Remarks

The limit of the elastic behavior of a body is deter-
mined by the existing state of stress, as well as by its
material properties. Beyond this limit the material may
suffer permanent deformations or fail by fracture. It is
commonly agreed that vegetative materials have a rupture
point very close to the elastic 1limit without experiencing
any plastic deformations (Mohsenin, 1970). In such condi-
tions, failure, yielding, or rupture would have nearly
identical meanings.

Earlier investigators have attempted to formulate
generic yield criteria for metals assuming homogeneous
and isotropic condition (Prager, 1942). Some of those
theorie§ predict failure under hydrostatic stress conditions
(Nadai, 1950). Loading tests conducted on specimens of solid
material under high hydrostatic stress did not result in
failure (Nadai, 1950). The assumption that hydrostatic
loads do not cause failure has a purely experimental basis
(Mendelson, 1965). Theories which do not assume failure
under pure hydrostatic loads have been modified to fit

experimental data from triaxial loading of soil specimens

11
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(Bishop and Henkel, 1962). Those extended theories assume
a contribution of hydrostatic stresses on failing soil
specimens (Terzaghi and Peck, 1967).

Non-homogeneous materials can exhibit different values
for tensile yield stress and compressive yield stress. Under
that condition the difficulties in obtaining tensile yield
stress values for vegetative materials is the major obstacle
in making full use of theories which can account for differ-
ences between compressive and tensile yield values.

Existing failure criteria by yielding can be formulated
in terms of stress, strain, or energy considerations.

The theories of failure mentioned and their discussion
in this chapter by no means exhaust the available literature.

Only those topics pertinent to the present study are included.

3.2 The Haigh-Westergaard Hyper-space

Failure theories can be generalized by considering the
complete state of stress at a point. Since the stress
tensor is symmetric, it is possible to describe yielding as
a function of the six independent stress components (Mendel-
son, 1965). For a material specimen loaded to yield, this

function can be written as follows (Prager, 1942):
F(o..) =0 (3.1)

Equation (3.1) represents a hypersurface in the six-
dimentional stress space formed by yield points. In other
words, any point inside of this solid figure represents an

elastic state and all the points located on the surface
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represent the beginning of the plastic deformation or failure
(Nadai, 1931). If isotropy is assumed, the rotation of axis
will not affect yielding and equation (3.1) would be written

in terms of principal stresses, as

F (o (3.2)

11> %227 %33) = O
Furthermore, since hydrostatic stresses do not affect
yielding, the yielding function can be expressed in terms of
stress deviators. Since the stress diviators can be written
in terms of the invariants, the yielding function can also
be expressed in terms of invariants of the stress deviator,

as follows

F (J J3) =0 (3.3)

Equation (3.3) is symmetric in the principle axis which
indicates that all principle stresses are equally important
to the yield condition (Mendelson, 1965). Thus, whatever
yield function is proposed it should be symmetric in the
principal axis (Hill, 1964). The geometry of the yield sur-
face in the Haigh-Westergaard stress-space is a cylinder
whose main axis is the hydrostatic axis. Any point Pn
(011, 099 033) on this surface will have the same deviatoric
stress components and different spherical components.

Figure 3.1 represents the Haigh-Westergaard yield surface,
showing the points P1 and P2 representing state of stress
decomposed into spherical parts A1 and A2 and deviatoric

parts B1 and Bz, respectively. Plane 7 is the (oll + 099

+ 033) = 0 plane where the hydrostatic stress equals zero.
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The intersection of the yield cylinder with any plane perpen-
dicular to it will produce the same curve. This curve is
called yield locus (Mendelson, 1965). Yield locus will be
sufficient to study the yielding conditions since it is known
that hydrostatic stresses do not contribute to failure. The
yield locus then can be taken on the plane wn. The projec-
tions of the principal stress axis on the plane w7 are lines
60° apart from each other, as shown on Figure 3.2. Since

the material is isotropic, the locus is symmetrical about
QQ', RR', and SS'. 1In other words, the yield criteria is

a function of the invariants J2 and J3. Similarly, the yield
locus will be symmetric about the orthogonal lines to the
stress axis projections passing through the origin (Hill,
1964). If the Bauschinger effect is neglected, any line.
representing unloading, drawn from the locus through the
origin, will meet the locus again at the same distance from
the origin. This is equivalent to saying that it is only

necessary to analyze one of the twelve segments. It is very

helpful to think in terms of Lode's parameter vy,

20 -0 -0
Y= 33 11 22 _ _ 3 tan 6 (3.4)

911~ 922

Where 8 is the angle which defines the stress vector OP.
Stress locus can be completely determined by applying stress
states such that y varies from zero to -1 or 6§ varies from
zero to m/6 radians (Hill, 1964).

Existing failure theories do not always agree with the

Haigh-Westergaard yield surface. Also, experimental data can
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Figure 3.2. Yield locus for an isotropic material which does
not exhibit Bauschinger effect (Hill, 1964).
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show yield points whose locus is not symmetric with respect

to the axes of principal stresses.

3.3 Stress Conditions

3.3.1 Maximum normal stress theory

The literature contains famous names from early times
associated with this theory. Galileo Galilei and Leibniz
were the first scientists to propose the failure criteria
based on the maximum normal stress value (Prager, 1942).
Later on, L. Navier, G. Lame, B. P. E. Clapeyron, and Rankine
each presented a mathematical formulation for this condition.
This theory assumes that yield occurs when the largest of
the principal stresses reaches the value of the tensile yield

stress 0ot OT the yield stress value Ooc” For a three-

t
dimensional compressive stress configuration, the theory is

formulated as:

911 = %oc
Ogg = 9%c (3.5)
933 = %0c

depending on which one of the principal stresses is the larg-
est. For a tensile stress state, equation (3.5) can be

written as:

(3.6)

Q
w
w
|
Q
o}
t
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3.3.2 Maximum shear stress theory

The names of Tresca and Coulomb are related to this
theory (Marin, 1953, and Mendelson, 1965). This condition
assumes that yielding occurs when the maximum shear stress
in the body reaches the shear stress value associated with

yielding in simple tension, o Mathematically, this theory

ot’
"can be expressed as:

911 = 992 = *9%¢
999 ~ 933 = *9¢ (3.7)
033 ~ 011 = *%¢

This condition does not predict failure under hydro-

static loading conditions (Hill, 1964).

3.3.3 Modified maximum shear stress theory

This theory is a generalization of the maximum shear
stress condition, formulated by Mohr. Tresca and Mohr's
criteria assume that only the largest and smallest principal
stresses influence failure. While the first states that the
largest principal circle on the Mohr diagram should have
constant radius, the latter assumes that this radius should
be a function of the normal stress. The failure will be
defined by the envelope of all circles representing yield
at different states of stress (Nadai, 1950). This can be

analytically expressed as:
(077 = 05)/2 = F[(01 + 099)/2] (3.8)

If the envelope lines are parallel and horizontal, equation

(3.8) will be transformed back into equation (3.7), which
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represents the maximum shear stress condition.

3.3.4 Internal friction theory

This condition is related to the names of Mohr, Coulomb,
Guest, and Duguet. It can be considered as a special case
of Mohr's theory in which the envelopes are two straight
lines equally inclined to the normal stress axis (Marin,
1962). In other words, the limiting shear stress can be

expressed as a linear function of the normal stress, written

as:
911 ~ 933 _ 9%t ~ %c . %%t%ec 911 * 933
2 5. +Fo_ 5. +o 2 (3.9)
ot oc ot oc
It can be observed that when oc = ot’ this condition

is reduced to the maximum shear stress theory.

3.4 Strain Conditions

3.4.1 Maximum strain theory

This condition was independently proposed by Saint Venant
and Poncelet (Prager, 1942). 1In a case of combined stress,
yielding starts when the maximum value of the principal strains
equals the value of the compressive or tensile yielding strain.

The analytical expression of this statement can be expressed

as:
011 = V(ggg * 033) = 2o,
Ogg = v(c33 + 011) = 0, (3.10)
033 = V(o) * 0gp) = 2o,

where Oy = e = cot and v is the Poisson's ratio. This yield

condition does not predict failure under hydrostatic stress
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3.4.2 Maximum shearing strain theory

This condition was proposed by G. Sandel (Prager, 1942).
The maximum shearing strain is assumed to be a linear func-
tion of the mean strain. The analytical expression for this
theory is:

€1 - €11 = c¢c” - b"e (3.11)

3.5 Energy Conditions

3.5.1 Constant total strain energy theory

This condition was proposed by Beltrami (Mendelson, 1965).
Elastic strain energy is the factor impeding failure. 1In
terms of principal stress it can be expressed as:

2 2 2 2
* Ogg * 033 = 26(017059 * 055044 * 034077) = 0

(3.12)

%11
This condition predicts failure under hvdrostatic stress

conditions. The representation of the yield surface in

stress space is an ellivsoid of revolution whose main axis

is coincident with the hydrostatic axis (Prager. 1942).

3.5.2 Energy of distortion theory

This condition appears related to the names of Hencky,
Von Mises, Hueber, and Maxwell, and it is also known as
maximum octahedral stress theory (Juvinall, 1967). This
theory assumes that yielding begins when the distortion
energy equals the distortion energy at yield in simple

tension or compression. Analytically it can be stated in
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terms of principal stresses as:

BL(opy - 0907 + (opp = 033)° + (o35 = 03)%1= 0,F (3.13)

where'oo==cOt = Oge” This condition does not predict failure
under hydrostatic stress states. The failure surface in
three-dimensional stress space is a circular cylinder whose

main axis is coincident with the hydrostatic axis.

3.5.3 Combined total strain energy and distortion energy
theory

This condition was proposed by Huber (Prager, 1942). It
is assumed that yielding will occur when the energy of dis-
tortion reaches the value of the energy of distortion at
uniaxial loading when Op < O or when the total strain energy
reaches the value of the total strain energy at uniaxial
loading for Om > 0. In terms of principal stresses it is

stated as:

2 2 _ 2
B(oqy = 09)" * (095 = 033)" + (035 = 077)1=
for o_ < 0 (3.14
0112 + 0ol + Gpnl = 2G(0,7099 * O550nn * Toa0q4)

11 ¥ %92 * 933 11922 * 92293 * 933911
=4 2 :
= 0, for Op > 0 (3.15)

The failure surface for this condition is represented

by a cylinder prolonged by an ellipsoid.

3.5.4 Modified energy of distortion theory
This condition assumes that the energy of distortion
level which causes failure is also a function of Om (Nadai,

1950). This modification was proposed by R. Von Mises and
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F. Schleicher (Prager, 1942). The mathematical expression
for this condition can be written in terms of principal

stresses as:

2 2

3[(0y; - 0,507 + (o + (045 = 077)%1= Flop)

22 ~ 933)
(3.16)
Depending on the function F(om), equation (3.16) can

represent a circular cone or a paraboloid of revolution (Nadai,
1950).
Figure 3.2 shows the projection of some failure surfaces

on the 011 ~ %99 plane.
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Figure 3.3. Comparison of failure surfaces as viewed on the
011 - 022 plane.



CHAPTER IV
BASIC THEORY

4.1 General Remarks

In the preceeding chapter the failure theories were
classified by the parameters, stresses or strains, which are
considered to produce a failure. The experimental data,
however, must be combined with constitutive equations in
order to obtain values for these parameters. Both elastic
and viscoelastic equations have been used to represent the
mechanical behavior of a vegetative material.

The objective of this chapter is to outline the calcu-
lation of the stress and strain components and the strain
energy stored in the apple flesh for different types of
experimental loads. The equations for the triaxial, rigid
die, biaxial, and uniaxial tests are presented, first assuming
a linear elastic material and then assuming a linear visco-

elastic material.

4.2 The Strain Energy Stored in an Apple Specimen for
Different Loading Situations
It is known from the theory of mechanics of continuous

medium (Malvern, 1969) that the deviatoric stress and

strain tensors are

Sij = Oip ~ (1/3) dij Ok (4.1)

24
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ij €. . =

1J

where oij

(1/3) 835 e

is the stress tensor, ¢,

25

ij is the strain tensor,

(4.

2)

Ok and Ex 2Te the spherical components of the total stress

and strain tensors, respectively, and Gi

delta.

J

If a body in equilibrium is deformed by the action of

external forces, so that none of the work done goes into

kinetic energy,

of deformation.

then this work is stored as strain energy

The total strain energy can be expressed

as the summation of the distortional energy and spherical

energy components, as

U=10, + US

d

(4.

or in terms of strain and stress tensors

U= (1/2) oij eij

Equations (4.1), (4.2),

bined to yield the following

distortion
Ud = Sij eij/z
which can be developed into
Ud = (1/4) [(011 -
+ (017 - 933)
+ (022 - 033)

Similarly the expression the
energy becomes

U 6

s = 911513/
which yields

Ug = (071%055%033)

(4.

(4.3), and (4.4) can be com-

expression for the energy of

(4.
Og2) (€77 = €93)
(e11 - €33)
(622 - €33)] (4-

spherical component of strain

(4.

(e)1%€ga%e33)/6

is the Kronecker'

(4.

S

3)

4)

S)

6)

7)

8)
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In a stress state in which 022 = 033 and €9 = €335
(4.6) and (4.8) reduce to
U

a = (1/2) (917 = 099) (17 = €33) (4.9)

U (1/6) (011 + 2022) (Ell + 2522) (4.10)

S

If the conditions Ogg = Ogq # 0 and €99 = €33 = 0 hold,
(4.6) and (4.8) yield
Ud = (1/2) (011 - 022) €91 (4.11)
Us = (1/86) (011 + 2022) €14 (4.12)

For the biaxial state of stress in which Og9 # 0,

Og3 = 0, €99 = o, €a3 # O, o1 # 0, and €11 #0
Us = (1/6)(0y; * 0g5)(€q; *+ €33)
Uy = (1/4) [(01;-0p5)€ ) + (€17-€33)07;] (4.13)

When a uniaxial loading is applied, the conditions
oy1 # O,ell # O, Ogg = Og3 = 0 and €99 = €33 # 0 define the
state of stress. When this occurs, the equations for Ud and

Us are

(@}
]

d (1/2) (611 - 822) €11 (4.14)
(1/6) oll(e11 + 2522) (4.15)

and U

4.3 ' Maximum Shear Stress Conditions
The loading tests described in Chapter V develop only
normal stresses within the material. For this type of stress
state, the maximum shear stress is given by Timoshenko (1970)
as
Tmax - °I1I ~ °I / 2 (4.16)

where CIII and GI are the maximum and minimum values of the

principle stresses, respectively.
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4.4 The Linear Elastic Model

The stress and strain tensors given in (4.1) and (4.2)
can be related to each other through a linear material law
known as generalized Hooke's law. The stress and strain

tensors are related by

Sij = 2G eij (4.17)
Opx = 3K €k (4.18)
cij = A €k Gij + 2G eij (4.19)

The bulk modulus K and shear modulus G are related to
the Lame constant A, the modulus of elasticity E and Poisson's

ratio v as

K = E/3(1-2v) (4.20)
K = (3\ + 2G)/3 (4.21)
E = 9GK/(3K + G) (4.22)

In a triaxial loading test in which the state of stress
is characterized by holding Ogg = 0Ug3> €99 = €33 and imposing
011 and €11- Equations (4.1), (4.2), (4.18), and (4.19) yield

= Eg + 2vag (4.23)

911
and €99

11 22
(1/E) [622 = VOgy - vclll (4.24)

In a rigid die loading, the strains €99 and €45 are zero and

the expressions for 011 and Ogg are

E(1-v)
911 T (T+v)(1-2v)

€ (4.25)

11

2
099 (K + 3 G)e:11 (4.26)

In a biaxial state of stress, 911 and €11 are imposed

while 099 # 0, o = 0, €9y = 0, €33 # 0. The expressions

33
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for o and 022 in this situation become

11
0,7 = (E/(1-v®)) e, (4.27)
€gq = (-v/(1-v)) &, (4.28)
g = %%% €11 (4.29)

The state of stress which describes the uniaxial loading of
a specimen (011 # 0, €91 # O, Ogg = Ogg = o, €99 = €33 # 0)
combined with equations (4.1), (4.2), (4.17), and (4.18)
yield

- E ¢ (4.30)

%11 11

(-v/E) €11 (4.31)

€29

4.5 The General Viscoelastic Model

The stress and strain tensors formulated by the equations
(4.1) and (4.2) can be also related to each other through the
relaxation functions Gl(t) and Gz(t) (Christensen, 1971).
The function Gl(t) is the deviatoric relaxation function or
the function appropriate to the state of shear while the func-
tion Go is the bulk relaxaticn function. If a body is in
equilibrium and there is no load applied before the time t = 0,

the stress and strain relationship can be written as

t eij
= _-y 4 (1) drt
Sij J[ Gl(t T) e (4.32)
o
‘ 4Kk g
and Ok = Gz(t-‘l’) a7 (4.33)
o

Functions Gl(t) and Gz(t) can be related to each other by
the Laplace transform operation as (Christensen, 1971, and

Flugee, 1975):
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E

and X

(36162)/(§1+262) (4.34)

(261+62)/3 (4.35)
where the bar indicates that the function is expressed in
terms of the Laplace parameter s instead of time t. The
function E(t) is called uniaxial relaxation function and

X(t) is called constrained relaxation function. Experimental
determination of E(t) was carried out in conditions where

Ogg = Ogg = 0, corresponding to a uniaxial loading of cylin-
drical specimens. In similar situations X(t) is determined

by holding €99 = = 0. The functions E(t) and X(t)

€33
are expressed as a summation of exponential terms as given

in the generalized Maxwell model relaxation function

n
E(t) = £ E,e %t (4.36)

jOJJ
Experimental values of E(t) and X(t) have been determined
for Red Delicious apples and are given by an experimental

series representation (DeBaerdemaeker, 1975) as

E(t) 0.744 EXP(-4.152t) + 2.863 EXP(-0.029t) (4.37)

X(t) = 2.011 EXP(-4.630t) + 3.325 EXP(-0.028t) (4.38)
Discrete values for G1 and G2 were obtained from the relaxa-
tion functions X(t) and E(t) DeBaerdemaeker, 1975). Those
values were modeled by an exponential representation as
follows (in all those equations t is minutes)

G, (t)

and Gy (t)

2.554 EXP(-0.318¢t) (4.39)

10.665EXP(-0.27t) (4.40)
The time dependent Poisson's ratio determined by DeBaer-

demaeker (1975) can also be represented by a similar equation
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as v(t) = 0.330 EXP(-0.27t) (4.41)
The convolution integrals (4.32) and (4.33) can be expressed
in terms of the Laplace transform parameter s, as (Christen-

sen, 1971)

i3 S Gl e

=S?}2

13 (4.42)

and (4.43)

Ekk Ekk
The triaxial loading case expressed by the eduations
(4.23) and (4.24) can be derived from those equations by
the correspondence principle or directly from (4.1), (4.2),
(4.42), and (4.43). In either case, the resulting expres-
sions for 011 and €99 in the Laplace domain are (Fodor, 1965):
G517 =S Eey; +2V 0, (4.44)

and Top = [3/32(2G2+61)1022 - (4.45)

VEqy1
Equations (4.44) and (4.45) can be expressed in the time
domain as follows

cll(t) = éll [98.903 - 0.179 EXP(-4.152t)

- 98.724 EXP(-0.029t)]

+ 0.660 EXP(-0.270t) Ooo (4.46
€22 = [0-126 + 0.103t ] 022
- 1.222 [1 - EXP(-0.27t) ] éll (4.47)

The state of stress described by (4.25) and (4.26) for
loading in a rigid die can be used to obtain its viscoelastic
counterpart, resulting in the following expression for 011
and 099

011 = (l/S) X éll (4-48)



31

The inversion of 011 and 099 results in
Gll(t) = é11[119.180 - 0.434 EXP(-4.630t)
- 118.75 EXP(-0.028t)] (4.50)
Ogg = éll [11.183 - 11.183 EXP(-0.9t)

+ 8.031 - 8.031 EXP(-0.318t)] (4.51)

The biaxial state of stress associated with (4.27),

(4.28), and (4.29) can be represented in the Laplace domain

by
G = LSE)/(1-(v8)®)1e (4.52)
€33 = [(-v8)/(1-v8)] &y, (4.53)
Ogg = [VS/(1-V8)] (Gy) &q,y . (4.54)

The inversion of (4.52), (4.53), and (4.54) to the time

domain gives

011(t) = (0.03 + 3.099t) &, (4.55)
e33(t) = 1.225[EXP(-0.4t) - 1] ¢, (4.56)
0go(t) = -14.800 ¢, [EXP(-0.318t)

- EXP(-0.403t] (4.57)

Similarly, (4.30) and (4.31) associated with the case of

uniaxial loading of a cylindrical specimen yields

01 = S E €11 (4.58)
= = _. VS
€99 - éll (4.59)
s
The inversion of the above equations yields
cll(t) = é11[98.903 - 0.179 EXP(-4.15t)
-98.724 EXP(-0.029t)] (4.60)

€99(t) = -¢,7[1.222 (1 - EXP(-0.270t))] (4.61)
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4.6 Stress Controlled Uniaxial Loading
For a uniaxial loading of cylinder, the elastic represent-
ation is given by (4.30) and (4.31). The Laplace transforms

of these equations are

€11 E S_foo11 (4.62)

- -V 11

and £ S —_— =
22 T Sz (4.63)

In the time domain they become

= 4 2
ell(t) = 011[—0.021 + 0.347t + 0.006t
+ 0.021 EXP(-3.302t)] (4.64)
- 1 2
Ezz(t) =3 [0.292t + 0.018t7] .éll (4.65)

4.7 The Non-linear Viscoelastic Formulation for Apple
Material

It was seen in Chapter II that the non-linear visco-
elastic behavior of vegetative tissues had been approximated
by linear viscoelastic constitutive equations for certain
cases (Morrow and Mohsenin, 1966; Hamann, 1967, 1970).
However, Chappell and Hamann (1968) have reported cases in
which such an approximation was not possible. In either
case, the real behavior of vegetative tissue in reality is
non-linear viscoelastic.

Non-linear behavior of viscoelastic bodies is not as
well understood as it is for the linear case. The first
attempt in giving a mathematical formulation for non-linear
viscoelastic phenomena was to represent the time derivatives
of the linear operator form by convected derivatives (0ld-

royd, 1950). This model was criticized by the resulting
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differences when contravariant or covariant tensors are
used and does not predict non-newtonian viscous flow
(Fredrickson, 1964). Further modification of this formula-
tion was proposed by the same author by including non-linear
terms on the convected operator form as gij’ cij(i#j),
and ;ikoﬂ. The resulting equation would reduce to the
linear operator form in cases of small strain rates. The
objections raised against this formulation are related to
its lack of generality as well as the covariant and contra-
variant effects (Fredrickson, 1964).

A further step was taken by expressing the stress tensor
ij

. . . * .
o in terms of a non-linear function of €5 and its N-1

J

convected derivatives (Rivlin and Ericksen, 1955). The
condition that oij = 0 whenever gij =D Eij/Dt = 0 was assumed
in order to derive the non-linear relations. Instead of
convected derivatives, one could use Jaumann derivatives
(Fredrickson, 1964; Prager, 1961, and Oldroyd, 1950). The
covariant and contravariant tensors are equivalent expressions
in terms of Jaumann derivatives.

Another approach to describe non-linear behavior is
to formulate a non-linear superposition principle (Noll,
1958). However, this new theory sometimes yields the same
result as the proposed Rivlin-Ericksen model (Coleman and
Noll, 1959). This theory had been followed by similar
approaches (Green and Rivlin, 1960). Non-linear behavior of

anisotropic fluids had been treated with a very different

approach, by introducing relaxation effects (Ericksen, 1960).
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Further development on non-linear viscoelastic behavior has
been presented by Bychawski (1974), Lockett (1974), and
Sobotka (1975). Comparison of experimental data with
theoretical results was reported by Yoshiaki (1977).

A non-linear viscoelastic formulation for apple material
by representing the time derivatives appearing on the here-
ditary integral forms by convected time derivatives is
proposed in the following discussion. Although it was not
used to isolate the failure parameters, it is included to
stimulate the possibility of using a non-linear viscoelastic

theory for apple flesh.

4.7.1 The convected derivative of a covariant strain
tensor

The convected coordinate system can be understood as a
reference frame which moves and deforms with the deforming
| body (Fredrickson, 1964). Some authors use material coordi-
nates as a synonym of convected coordinates (Green and
Adkins, 1970).

If the strain tensor is written as a covariant cartesian

tensor €4 its convected derivative D eij/Dt can be expressed

J"
as (Fredrickson, 1964)

D e../Dt = ge,./ot + Vks + vki € + vkj € (4.66)

ij ij ij,k ’ kj ’ ik :

where the commas in the subscripts indicate differentiation.
The term vk is a velocity along the Xl’ Xz, and X3 axes.
The differentiations v%i and v%j are gradient velocities

expressed as (Eringen, 1962)
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to.o= (1/2) (V. . + V. ) (4.67)
ij i,J J,1

If symmetrical conditions are held in respect to the axis X1

and €19 = €91 €13 = €3> equation (4.66) can be written as

Peyy _ Po11, (1) 211, L, (2) P11
3t 3t 3t 3%,
(1) (2)
v ov
N> sl DR > Sl P (4.68)

1 1
Recalling the definition of the infinitesimal strain

tensor
eij = (1/2) (an/axi + an/axj) (4.69)
A strain function of time and strain rate ell(ell,t) is
imposed on the linear viscoelastic model in the X, direction.

1
This means that deformation should also be function of time,

Ui(Xi,t). The X1 direction is the only important one due
to the fact that the strain and deformation parameters are
imposed in this direction.

If the deformation is considered a linear function with

respect to time and X, coordinate, equation (4.68) reduces

1
to

(1) (1) °€11

Del1 Bell .y
€11 3%,

Dt ot 3X (4.70)

Once the deformation function has been determined, the non-
linear viscoelastic expression for the different loading
situations could be found by replacing the linear strain

x*
rate tensor Eij by its convected counterpart €4 where

J')
« _Deyy
€11 Dt (4.71)



CHAPTER V
EXPERIMENTAL PROCEDURE

5.1 General Remarks

In the first group of experiments the apple specimens
were subjected to compressive loads up to failure. Failure
was determined by the point on the loading curve which
indicates the end of the elastic behavior. As mentioned
previously, cylindrical and cubic specimens were loaded uni-
axially, biaxially, or triaxially. All specimens were
subjected to a uniaxial strain rate (éll) unless a radial
stress failure occurred prior to the axial loading. Displace-
ment and force values at failure were recorded on a strip
chart recorder. The axial load was applied using an Instron
TM model testing machine which had several different loading
speeds, allowing a wide range of strain rates to be imposed
on the specimen. The tests were dividqd into seven groups
according to the loading conditions, and the shape and size
of the specimens. Table 5.1 shows the loading conditions,
shape, and dimensions of the specimens. The mean and
standard deviations of the basic dimensions are given.
These were calculated from ten measurements taken from each
type of specimen. Twenty replications of each individual

type of test were conducted. The individual stress (011)
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TABLE 5.1.
radial stresses.

Tests
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carried on apple material,Imposed strain rates and
Shape and dimensions of the specimens,

TEST €
(stby
-0.002
-0.007
-0.017
UNIAXIAL {-0.035
-0.173
-0.347
UNIAXIAL {~0.007
TRIAXIAL |-0.007
RIGID -0.007
DIE

3IAXIAL [-0.007
- - - w afun  -w-
RIGID -0.007
DIE

(*)standard deviation
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and strain (ell) values at failure for those replications
are given in the appendices. In the second group of experi-
ments, cylindrical specimens of apple were subjected to

stress rate controlled uniaxial loading.

5.2 Apple Selection and Storage

The varieties Red Delicious, Jonathan, and McIntosh
were harvested during the 1977 growing season and were stored
at 0-2°C in plastic bags. They were removed from storage

24 hours before being tested.

5.3 Specimen Preparation

The specimens were prepared by driving a corkborer
into the apple parallel to the stem-calyx axis. The specimen
was then placed in a cylindrical hole in a plexiglass bar
and the ends were cut parallel to the faces of the bar by
using a sharp blade. The same procedure was used to obtain
cubic specimens. In this case, a square corkborer and a

square trimming hole were used.

5.4 Uniaxial Loading of Cylindrical Specimens at Different
Strain Rates

Cylindrical specimens with a height of 12.20 + 0.08 mm,
a diameter of 12.58+0.17 mm, and a cross-sectional area of
124.29+4.84 mm2 were uniaxially loaded to failure in the
Instron testing machine at the following strain rates:
-0.002, -0.007, -0.017, -0.035, -0.069, -0.137, and -0.347

-1

sec ©~. This first group of tests is summarized in Table

5.1.
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5.5 Uniaxial Loading of Cylindrical Specimens of Different
Height at a Constant Strain Rate
Cylindrical specimens with a constant cross-sectional

area of 292.55+6.06 mm°

and heights of 8.32:0.06, 12.13:0.12,
19.17+0.13, 26.55+0.16, 34.98+0.12 mm were uniaxially loaded
in the Instron testing machine at a strain rate of -0.007
sec°1. For these tests the deformation was obtained for
each height with a constant force of 36.38 N. This was done
to obtain the variation of the deformation with the height

(H) at a fixed load level.

5.6 Triaxial Loading of Cylindrical Specimens at a Constant
Strain Rate, aqd Different Radial Stresses

This group of specimens is the third row of Table 5.1.
In order to impose a constant strain rate of -0.007 sec'1
along the X1 axis and at the same time impose a radial
stress, Oggr 2 special apparatus was developed. Figure 5.1
shows the details of this device. The specimen is contained
in a very thin wall rubber tube (6). Two aluminum rods
(1 and 11) are in contact with the bottom and top of the
specimens. Those aluminum rods are axially and radially
perforated in order to allow any small quantity of air
that might be trapped between the specimen and the rubber
tube to escape. Trapped air would transmit the load applied
on the outer surface of the rubber tube to the bottom and
top surfaces of the specimen. This situation would create a

hydrostatic stress state before the specimen was axially

loaded. This test creates a radial stress, 0223<311.



Figure 5.1.

Legend:

Triaxial loading device, showing the longi-
tudinal cross-sectional view (a) and top
view (b).

- Aluminum rod
- Brass tube

- Bolts

- Steel frame
Rubber cork
- Rubber tube
- Specimen

- Plexiglass tube
- Brass tube
10 - Rubber cork
11 - Aluminum rod
12 - Opening

QOO0 Ui wWN K
[

13 - Plexiglass frame

14 - Steel frame

15 - Plexiglass frame

16 - Plexiglass tube-frame
17 - Air pressure valve

18 - Air pressure release
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tudinal cross-sectional view (a) and top
view (b).
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In a hydrostatic stress situation, the axial stress 011
would be always larger than the radial stress 099 (in
this case equal to the hydrostatic stress).

The aluminum rods are fitted inside of two brass tubes
(2 and 9) which were glued to the rubber tube. Two rubber
corks (5 and 10) were inserted in the top and bottom of the
plexiglass tube (8). The brass tubes (2 and 9) are fitted
in the circular holes made in the rubber corks (5 and 10).

The cylindrical specimen was placed between the alumi-
num rods and lubricated with vaseline to avoid friction.
The apparatus was placed on the load cell of the Instron
testing machine, keeping the upper aluminum rod in contact
with the compressive head. A strain of -0.007 sec-1 was
imposed to the specimen through the aluminum rod.. The radial
stresses acting as the outer surface of the rubber membrane
were created by connecting the opening (12) on the plexiglass
tube to an air pressure line before the axial load was applied.
The cylindrical specimens had a diameter of 12.58+0.17 mm,
a height of 12.22+0.08 mm, and a cross-sectional area of

2

124.29+4.84 mm~. The selected radial stresses were equal

to 0.000, -0.069, -0.138, -0.207, and -0.345 MPa.

5.7 Rigid Die Loading of Cylindrical Apple Specimens

A rigid die as shown in Figure 5.2 was used to obtain
axial deformation while constraining the sample in the radial
direction. This made it possible to impose an axial strain
rate, éll’ while keeping €99 = €g3 = 0. The specimen was

placed in the cylindrical hole, topped by an aluminum rod.



(a)

(b)

Figure 5.2.
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The die was then placed on the load cell of the testing
machine and a constant strain rate of -0.007 sec°1 was
imposed on the specimen through the aluminum rod. The
specimens used in this test had a height of 12.22:0.08 mm,
diameter of 12.58x0.17 mm, and a cross-sectional area of

124.29+4.84 mm2.

5.8 Uniaxial Loading of Cubic Specimens at a Constant
Strain Rate

Cubic specimens having a dimension of 12.37:0.09 mm
and cross-sectional area of 153.02+5.25 mm2 were uniaxially
loaded in a testing machine under the conditions given in

Table 5.1.

5.9 Biaxial Loading of Cubic Specimens at a Constant
Strain Rate

In the biaxial test, a cubic specimen is loaded axially
along the X1 axis while constraining the side orthogonal to
the X1 axis (522 = 0). ?he side orthogonal to the X3 axis
was free to move. The apparatus designed to allow these
features is shown in Figure 5.3. The two blocks (1 and 2)
kept the bars (3 and 4) at a constant distance from each
other (12.37+0.09 mm). The specimens had a dimension of
12.37+0.09 mm and a cross-sectional area of 153.02+5.25 mmz.
This apparatus was then placed on load cell of the testing
machine and the strain rate is imposed to the specimen

through the square cross-sectional area steel bar (5)

(see the sixtieth row of Table 5.1).
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Steel block
Steel block
Aluminum plate
Aluminum plate
Steel bar
Cubic specimen

Ok wWwNH

Figure 5.3. Exploded view of the device used for biaxial and
rigid loading of cubic specimens.
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5.10 Rigid Die Loading of Cubic Specimens

The cubic specimens used in this test had the same
dimensions as the uniaxial and biaxial specimens. The appar-
atus described in 5.9 was used. This time, the block (2)
was aligned such that a constant distance between the bars
(3 and 4) was obtained. The cubic specimen was the biaxially
constrained. The force orthogonal to the axis Xl was loaded
by the steel plunger, to which the strain rate of -0.007 sec-1

was imposed. The bottom row of the Table 5.1 summarizes

the conditions of this test.

5.11 Stress Rate Controlled Loading of Cylindrical Specimens
of Red Delicious

This experiment was designed to control stress and give
freedom to the state of strain. Cylindrical specimens of
Red Delicious with a height of 12.22+0.08 mm, a diameter of
12.58+0.17 mm, were uniaxially loaded to failure by control-
ling the stress rate. 8Six different stress rates were chosen,
from 0.0005 MPa/sec to 0.013 MPa/sec (see Table 6.7). Figure
5.4 illustrates the apparatus designed for this test. The
specimen is placed between the plate of a scale (1) and a
rigid plate (2). Deformation on X1 direction is measured
by a LVDT device (3) and recorded on a strip chart recorder.
The second plate of the scale supports the loading water
container (4). The water reservoir (5) was kept at a constant
level by the outlet (6) and inlet (7). By controlling the
valve (8) it was possible to control the stress rate being

applied to the apple specimen (9).
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CHAPTER VI
RESULTS AND DISCUSSION

6.1 General Remarks

Values of 01 and €11 at failure were experimentally
obtained for all the loading cases discussed in Chapter V.
In the case of triaxial loading, the values of 0gp Were also
known. Remaining parameters such as €99 for uniaxial and
triaxial tests, €33 and 099 for biaxial and 099 for rigid
die loading were determined using elastic and viscoelastic
formulations. This allowed the experimental and theoretical
values of 011 to be compared. The availability of 099 also
made possible the calculation of Tnax and €99 which was
needed for the calculation of the strain energy components.

Viscoelastic relaxation functions were not available
~for the McIntosh and Jonathan varieties. The functions
E(t), X(t), Gl(t), Gz(t) and v(t) determined by DeBaerde-
maeker, 1975, apply only to Red Delicious. However, the
experimental data obtained for McIntosh and Jonathan varie-
ties are presented in parallel with those from Red Delicious

with the purpose of comparison.

47
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6.2 Uniaxial Loading of Cylindrical Specimens at Different
Strain Rates

In the uniaxial compression test of cylindrical speci-
mens, strain rates of -0.002 sec-1 to -0.347 sec-1 were
imposed. Average values and standard deviations of stress
and strain to failure are shown in Table 6.1. This data
is also illustrated on Figures 6.1, 6.2 and 6.3, respectively.
The axial stress increases exponentially as strain rate
increases while strain values at failure do not exhibit
significant changes.

Figure 6.2 suggests that strain at failure can be
represented by a straight line parallel to the horizontal
axis. The average axial strain values for the various strain
rates are -0.11+0.008 mm/mm, -0.13+0.017 mm/mm and -0.12:0.012
mm/mm for Red Delicious, Jonathan and McIntosh, respectively.
Standard deviations for the axial stress at failure varies
from 10 to 15 percent. The standard deviation for strain
at failure was about 10 percent of its average value.

The value of o1 calculated using the viscoelastic
formulation has the same general form as the experimental
data. A constant value of 0;1 ¥Was not obtained because the
strain rate is a parameter in the viscoelastic formulation.

Lateral strain €99 at failure was calculated from the
elastic equation (4.31) and its viscoelastic counterpart
(4.61). The values obtained from the elastic formulation
are higher than the viscoelastic values, however both of

them are relatively constant. From Table 6.2 one can see
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that the values of Ud are quite constant; this seems reason-
able when we consider that Ud is calculated from strain
parameters. Remaining parameters, Tmax’ US, and U vary as
strain rate changes. Strain at failure presents a relatively
constant value as strain rate varies. From these results

it appears that the axial strain is a possible failure

parameter.

6.3 Triaxial Loading of Cylindrical Apple Specimens

The average values of axial stress, axial strain and
time at failure as well as the values of the imposed radial
stresses during the triaxial loading studies are displayed
on Table 6.3 and illustrated on Figures 6.4, 6.5 and 6.6,
respectively. The average normal stress 011 decreases while
the normal strain €11 remains felatively constant when the
radial stress increases. McIntosh and Jonathan varieties
failed for a radial stress loading between -0.345 and -0.414
MPa and Red Delicious failed between -0.414 and -0.483 MPa
when 011=O MPa. This means that radial stress at failure
is twice or three times larger than the axial stress at
failure, which eliminates the maximum normal stress failure
criteria.

Table 6.4 shows the values of the maximum shear stress
calculated from experimental data as well as the strain
energy components obtained from elastic and viscoelastic
theory. Maximum shear stress decreases to a minimum of
-0.028 MPa and increases for consecutive values of radial

stress. This indicates that during a continuous variation
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of radial stress, the maximum shear stress would reach values
close to zero or even possibly zero at failure. This elimi-
nates the possibility of the apple flesh failing when the
maximum shear stress exceeds a critical value.

Table 6.4 presents a relative constant value for the
spherical component of the total strain energy at failure
as calculated by the elastic theory. However, the visco-
elastic results show a relative variation for the spherical
energy component. Remaining strain energy components vary
with increasing values of radial stress. Results from tri-
axial loading of cylindrical specimens strongly point to
the conclusion that apple flesh fails when a critical value

of normal strain reaches a critical value.

6.4 Uniaxial, Biaxial and Rigid Die Loading of Cubic
Specimens. Uniaxial and Rigid Die Loading of Cylindrical
Specimens.

Uniaxial, biaxial and rigid die loadings of cubic
specimens are formulated by the elastic equations (4.25) to
(4.31) and by the viscoelastic equations (4.50) to (4.57),
(4.60) and (4.61), respectively. Table 6.4 gives the
experimentally obtained pa¥ameters and Table 6.6 gives the

calculated values for ¢ and the values for the remaining

11
parameters as calculated by the above equations, in addition
to maximum shear stress values. The axial normal stress
varies for the different loading cases, for both the cubic
and cylindrical specimens, while the axial normal strain

remains relatively constant. This supports the conclusion
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drawn from the experimental results presented in 6.2 and 6.3
that axial normal strain is a possible failure parameter.
This group of tests discards the possibility of the maximum

normal stress being considered as the failure parameter.

6.5 Stress Controlled Loading of Cylindrical Specimens of
Red Delicious

Normal stress at failure decreases from -0.391 MPa
to -0.139 MPa as the stress rate increases from -0.0005 MPa/
sec to -0.013 MPa/sec, while the strain at failure remains
relatively constant, averaging -0.12 mm/mm, Table 6.7 and
Figures 6.7 and 6.8. Table 6.7 also gives the values of
the maximum shear stress and strain energy components at
failure. The fact that a creep failure can be induced in
apple specimens is additional support to the hypothesis
that apple flesh fails when normal strain reaches a critical

value.

6.6 The Non-linear Viscoelastic Formulation for Apple
Material

Cylindrical specimens of apples of different lengths
were axially compressed. For each different length, the
axial deformation Ul(Xl,t) at a predetermined stress level
041 < -0.11 MPa, was obtained as explained in Section 5.5.
Table 6.9 shows these deformation values for each of the
five lengths. These values are also illustrated on Figures
6.9 and 6.10, respectively. 1Ideal conditions are assumed,

i.e., axial stress does not change along the X1 coordinate
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which is the same as to say that the deformation at 011 =
-0.11 MPa for the specimens of different height each,
represents the deformation along the X1 axis for the tallest
specimen. In this case, X1 assumes values equal to the
heights of each individual specimen. Time parameter is
referred to the deformation of the tallest specimen
(H = 34.98 mm).

Data from Table 6.9 can be fitted in the following

power function for McIntosh, Jonathan and Red Delicious,

respectively,
U.(X,) = (-1.007 X.-0.036X,2+0.007X.-0.0004%. %) (6.1)
1(%4 : 170 1 YO 1 0. 1 .
U.(X.) = (-3.099X.+0.454%X.2-0.031X. 3+0.001X, %) (6.2)
1% . 1%0- 1 -0 1 ¥0. 1 .
U.(X,) = (-3.088X.+0.579X. 2-0.049X. 3+0.002X. %) (6.3)
1%y . 1%0- 1 0. 1 Y0. 1 '

with the following respective coefficient of determination:
0.99, 0.99 and 0.99.

If the deformation rate of -0.085 mm/sec is imposed at
X1 = 34.98 mm (top of the specimen) and time t = 15.84 sec
at 011 = -0.11 MPa are computed, equation 6.1 can be rewritten
as:

2 3 4

Ul(Xl,t) = (-0.195X,+0.036 X1 -O.OOSXl +O.0001X1 )t (6.4)

1

With the deformation function written in terms of spatial
and time coordinates the elements of equation (4.70) can be

determined as:
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_ 2 3
e11(X;,t) = (-0.195+0.072X, -0.009%, *+0.0004X, °)t
afll = (-0.195+0.072X,-0.009X. 2+0.0004X. 3)
ot : . 1 1 1
vi1) = (-0.195%,+0.036% %-0.003%, 3+0.0001x %)
211 . (0.072 - 0.018%, + 0.0012X 2t
5K, ' -018%, + 0. 1
oD _ (-0.195 + 0.072X, - 0.009X.2 + 0.0004X.3)
3%, : -072X, - 0.009%, : 1

From equations (4.66), (6.1), (6.2, (6.3), (6.4), (
(6.6), (6.7), (6.8), and (6.9), the convected axial stra

rate can be written as:

11 _ ) 2 3
il = (-0.195 + 0.072K; - 0.009X,% + 0.0004X,°)
2 3
+ 2(-0.195 _ 0.072K, - 0.009X,2 + 0.0004%,°)
2 3 4
+ (-0.195 + 0.036%,2 - 0.003X,% + 0.0001X, %)
. (0.072 - 0.018%, + 0.0012X12)t

Equation (6.4) should be rewritten if the specimen
total height different from 34.98 mm and it is subjected
a deformation ratio different from -0.085 mm/sec. Equat

(6.5) describes the variation of strain along the X, coo

1
and according to time. Equation (6.10) is the convected

strain rate to be substituted on linear viscoelastic equ

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

6.5),

in

2

(6.10)

has a
to
ion

rdinate

ations.
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The introduction of the spatial coordinate in the visco-
elastic equations enables one to relate the strain and strain
rate parameters to a fixed point in the body being loaded.

A valid question could be raised against such experi-
mental procedure. By loading different sizes of specimens,
contact stress is developed on the surface being loaded.

If only the taller specimens were tested and the deformations
were obtained at several axial positions, the question raised
could be neglected. A quite useful technique to circumvent
this problem would be to mark several points along the

height of the specimen and to record the positions of the
points by taking pictures during several steps of the loading
procedure. Further analysis of those pictures would yield
the data to describe the deformation function. Another
second question is related to the Poisson's ratio effect.

If lateral deformation is measured, the chosen stress level
could be found to be slightly different for each specimen.

Equation 6.5 indicates that strain is larger for higher
values of Xl' In other words, strain is higher at the top
of the specimen. If normal strain is the failure parameter,
failure should start on the surface where the load is being
applied. Figure 6.10 illustrates the variations of axial

strain for different specimen height.

6.7 Summary
Experimental results from uniaxial, biaxial, triaxial,

rigid die and creep loading were used to study the parameters
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involved in the failure phenomena of apple material. Elastic
and viscoelastic formulations were used to calculate the
parameters not experimentally obtained.

From the parameters considered -- maximum normal stress,
maximum shear stress, maximum normal strain and strain energy
components -- the maximum normal strain was found to be the
most likely factor producing a failure in apple flesh.

A non-linear viscoelastic formulation has been proposed,
based on the model described by Oldroyd (1950) and Fredrickson
(1964). Such modeling procedure consists in obtaining the
deformation vector as a function of time and space from
which the convected strain rate tensor was obtained. The
substitution of the strain rate tensor from linear visco-
elastic equations by the convected strain rate tensor com-

pletes the non-linear viscoelastic formulation.



CHAPTER VII
SUMMARY AND CONCLUSIONS

A failure criteria for apple flesh was presented. A
new experimental technique has been developed in order to
apply biaxial and triaxial loadings on apple specimens.
Uniaxial loading of apple specimens showed that normal
stress at failure varies with strain rate while the normal
strain turned to be relatively constant. This eliminates
the possibility of considering normal stress as failure
parameter. Triaxial loading of cylindrical specimens also
indicates a constant value for normal strain at different
levels of cylindrical stress. This experiment also showed
significant variations of shear stress and normal stress
at failure, including failure of the specimens at zero level
of shear stress, which eliminates the maximum shear stress
as a failure criteria.

Uniaxial, biaxial, and rigid die loadings of cubic
and cylindrical specimens indicated that normal strain at
failure remained relatively constant for these different
loading cases, meanwhile the normal stress at failure varied.
This group of experiments also eliminates the maximum
normal stress as a failure criteria. Stress controlled

uniaxial loading shows decreasing values of normal stress

75
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at failure and constant values for normal strain at different
stress rate values. This test also eliminates the maximum
normal stress failure criteria.

Calculated values of total strain energy and its spheri-
cal and deviatoric components, obtained from viscoelastic
and elastic equations showed significant variationms.

A non-linear viscoelastic constitutive equation, based
on the substitution of the strain rate tensor by a convected
strain (Oldroyd, 1950) was proposed. For this accomplish-
ment a deformation function in terms of time and space had
been obtained. This resulted in a time and space dependent
strain and strain rate tensors.

The following conclusions can be drawn from this study:
1. Apple tissue fails when a normal strain exceeds a limiting
value. The average normal strain values at failure for all
the tests conducted was 0.116 0.007 mm/mm for Red Delicious,
0.126 0.014 mm/mm for Jonathan and 0.122 0.013 mm/mm for
McIntosh.

2. There exist a noticeable difference in the mechanical
behavior of the three apple varieties tested.

3. The developed experimental procedure yields reliable data.
4. The proposed non-linear viscoelastic constitutive equation
can be considered as a preliminary step toward more complete

formulations.



CHAPTER VIII
SUGGESTIONS FOR FUTURE RESEARCH

In spite of positive conclusions concerning the failure
of apple material that has been reached, certain points still
remain unclear.

The present work shows a visible difference on the
mechanical behavior of the varieties tested. It was seen
that viscoelastic anctions are available only for Red
Delicious (DeBaerdemaeker, 1975). The determination of the
time dependent functions Gl(t), Gz(t), E(t) and v(t) for
varieties of economical importance would provide a better
understanding of their mechanical behavior.

The strain level at failure possibly varies with the
physiological state of the apple tissue. This includes
ripening, time and conditions of storage, as well as water
potential level. DeBaerdemaeker (1975) reported that the
failure of cylindrical apple specimens under compressive
uniaxial loads varies from -0.49 MPa at the beginning of
the storage period up to -0.34 MPa after four months of
storage. This information can be useful in determining
the best physiological state for mechanical handling of
apples. In other words, a certain amount of bruise damage

can be expected for different stages of maturation, water
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potential level and time of storage. These factors should
be included in future experimental works.

Apple material has been considered homogeneous within
the same experimental specimen. For the time being this
assumption can be considered satisfactory, however the varia-
tion of mechanical properties inside of the fruit should
be investigated. This topic should encompass the development
of a more realistic shape for the apple fruit. The average
size and shape for a specific variety should be determined.
Now the whole fruit is divided into elements and for each
element specific mechanical properties are allotted. This
finite element model would yield the strain level distri-
bution in the fruit. This concept will guide the handling
of whole fruits since bruise could now be predicted and
located.

The present experimental technique has proved to be
successful and viscoelastic theory supports the interpreta-
tion of experimental data. The concept of strain failure
can be extended to remaining vegetative material.

Suggestions to improve the non-linear viscoelastic

formulation have already been presented in Section 6.7.
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TABLE Al. STRESS, STRAIN AND
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TIME AT FAILURE FOR UNIAXIAL LCAIING

SF CYLINDRICAL SPECIMENS CF APPLE. ¢,,2-0.002 SEC-L.
MC INTOSH JONATHAN RED DELICICUS

‘1 11 t 1 €11 t 11 €11 ¢
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
<0.21 =0.127 63.79 =0.16 =0.137 58.69 =0.23 =0.091 43.90
~0.19 =0.132 66.24 =-0.23 =-0.1%9 79.73 =-0.31 =0.127 &3.33
~0. 18 =0.130 &5.01 =0.17 =0.142 T1.1% =0.30 =0.132 46.28
~0.20 =0.147 73.40 =0.23 =-0.151 80.96 =2.70 =0.117 %8 %2
-0.20 =0.147 73.50 =0.16 =0.1%2 75.0%5 =2.39 =-0.111 925 37
~0.17 =0.137 &8.69 =0.16 =0.161 90.96 =0.27 =0.120 53.30
-0.20 =0.142 71.1% =0.1% =0.147 73.&0 =0.29 =-0.11& =8.19
~0.1% =0.137 48.69 =0.14 =-0.16&6 33.41 =0.31 =0.120 &0.329
~0.17 =0.147 73.60 =0.14 =0.174 88.32 -0.22 -0.114 37 a3
-0.13 -0.137 &B.69 =0.21 =0.181 90.77 =0.23 =J.114 9%7. 44
~0.17 =0.137 68.69 =-0.26 =0.161 80.96 =0.27 =0.1!5 $%7. 93
-0.17 =0.1%2 76.0% =0.22 =-0.1%7 738.%1 =0.26 =0.13% &5.73
-0.18 =0.142 71.1% =0.22 =0.132 66.24 -0 29 -0.122 51.37
~0.195 =0.142 71.1% =-0.24 =-0.152 76.0% =3.21 =0.126 &3.33
=0.17 =0.127 63.79 =0.18 =0.147 73.60 =).26 =0.120 &0.14
~0.16 =0.142 71.19% =0.21 =-0.19%7 78.9%1 =3.27 =0.129 %2.40
-0.18 =0.1%7 78.51 =0.1% =0.127 &3.79 =1.33 =0.13% 57.%1
=0. 1% =0.1%7 78.51 =0.21 =0.142 71.13% =0.27 =0.137 48.74
-0.17 =0.137 68.69 =0.14 =-0.137 68.69 -0 41 =0.1%2 75.10
-0.16 =0.134 47.47 =0.17 =0.197 73.91 =0.27 =0.117 9%8.92

TABLE A2. STRESS, STRAIN AND

TIME AT FAILURE FOR UNIAXIAL LCADING

OF CYLINDRICAL SPECIMENS OF APPLE. QLL--O.OO7 SEC ™
MC INTOSH JONATHAN RED DELICICUS

911 11 t 11 €11 t n 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
-0.2% =0.123 17.96 =0.27 =-0.119% 16.77 =0.29 =-0.111 15,17
-0.2% =0.123 17.96 =0.30 =-0.148 21.% =0.29 =0. 107 15 %7
-0.24 -0.148 21.% =-0.26 =-0.144 20.98 =-0.133 =0 :2 13. %36
=-0.24 =-0.123 17.96 =-0.27 =-0.144 20.96 =0.33 =GC. 197 1% 37
-0.24 -0.111 16.17 =-0.2% =-0.136 19.76 =0.30 =0 1% 1&.77
-0.2% =0.136 19.76 =-0.27 =-0.148 21.% =-0.31 =-0.11% 16.77
=0.24 =-0.:34 20.96 =-0.24 -0.136 19.76 =0.31 =0.107 19 %7
=-0.2% -0.119 17.37 -0.26 =0.144 20.96 =0.33 -0 122 17 74
-0.23 =0.136 19.76 =-0.26 =0.130 20.36 =0.34 =0.107 i% %7
-0.2% -0.136 19.76 =-0.238 =-0.132 19.14 =-0.34 =-0.111 16.:7
=0.20 -0.136 19.76 =0.24 =0.111 16.17 =0.29 =-0.107 19 37
-0.18 =0.103 14.97 -0.26 =-0.140 20.36 =0.29 =0.11! 16.17
=-0.19 =0.103 13.97 =0.29 =0.123 17.%6 =-0.33 -0.11% 1&. 77
-0.24 =0.i23 17.96 =-0.28 =-0.132 1$. 18 =0.33 =-0C. 107 19 %7
-0.23 -0.111 16.17 =0.2 -Q.119 1:17.37 =-0.30 =0.11% 14.77
-0.22 -0.123 17.96 =-0.28 =0.1%7 22.748 =0.31 =0.107 19 9%7
-0.22 -0.123 17.96 =0.346 =-0.132 (¥.15 =-0.23 -0. 123 17. %5
-0.24 -0.119 17.37 =0.31 =-0.144 20.56 =0.2 -0. 119 7. 27
-0.23 -0.111 16.17 =-0.27 =-0.132 19.15 =0.34 =0 .1:!% 15 77
=-0.23 =-0.107 18.37 =-0.23 =0.123 i7.9 =0.34 =0.0999 14 27
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TABLE A3. STRESS, STRAIN AND TIME AT FAILURE FOR UN{AXIAL LOADING
OF CYLINDRICAL SPECIMENS OF APPLE. 511'-0.017 SEC”

MC INTOSH JONATHAN RED DELICIDUS
a € o € o, €
11 11 t 11 11 t 11 11 t

(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
-0.22 -0.121 7.03 -0.30 -0.121 7.03 -0.28 =-0.106 &.15%
-0.19 =0.131 7.62 -0.28, -0.101 95.86 =-0.31 -0.10&6 &.1%
-0.22 -0.116 6.74 =-0.30 -0.091 85.27 -0.31 -0.116 &.74
-0.24 =-0.126 7.33 =0.26 =-0.101 9.8 =-0.28 -~0.086 4.98
-0.18 =-0.101 9.86 =-0.28 -0.111 &.33 -0.2% -0.101 95.86
-0.22 =-0.111 6.4% -0.28 -0.132 8.21 =-0.2% -0.101 9.8s
-0.26 =-0.106 6.1% =0.26 =-0.106 6.1% =0.30 =0.131 7.62
-0.20 -0.111 6.4% =-0.28 -0.131 7.42 =-0.29 -0.142 8.21
-0.20 ~0.131 7.62 -0.24 -0.101 5.8 =-0.28 -0.137 7. 91
-0.26 =-0.106 &6.19% -0.32 -0.121 7.03 -0.27 =-0.101 5.86
-0.2% -0.111 6.4% -0.28 -0.101 9.8 =-0.30 =-0.121 7.03
-0.18 =-0.111 6.4% -0.29 -0.101 3.86 =-0.30 =-0.126 7.33
-0.18 =-0.126 7.33 -0.26 -0.132 8.21 -0.2% -0.1268 7.33
-0.14 -0.142 8.21 -0.26 -0.106 6.1%5 =-0.2%5 =-0.116 &.74
-0.18 -0.111 6.4% -0.28 =-0.121 7.03 =-0.2% -0.1:121 7.03
-0.29 -0.116 &4.74 =-0.30 -0.111 6.4% -0.28 =-0.106 &.15
-0.28 -0.121 7.03 -0.31 -0.101 5.8 =-0.28 -0.101 S5.86
-0.2% -0.1%52 @.79 -0.24 -0.07% 4.39 =-0.36 -0.121 7.03
-0.27 =-0.123 7.1% -0.26 -0.101 9.86 -0.36 =-0.128 7.33
-0.26 -0.126 7.33 -0.36 -0.111 4.4%3 -0.37 -0.106 ~ & 193

TABLE A4. STRESS, STRAIN AND TIME AT FAILURE FOR UEIAXIAL LCAL IS
OF CYLINDRICAL SPECIMENS OF APPLE. élll-0.0SS SEC

MC INTUSH JONATHAN " 7 RED DELICIOUS
%11 €11 t %11 €11 t 11 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (YPa) (mm/mm) (sec)

-0.26 =-0.138 3.99 -0.28 -0.138 3.99 =0.32 -0.099 2. 8%

.29 =0.138 3.99 -0.30 -0.099 2.8% -0.33 -0.10°9 3.14
-0.28 -0.109 3.14 -0.31 -0.089 2.%57 =0.37 -0.109 3.14
-0.31 =0.128 3.7t -0.36 =-0.109 3.14 -0.39 -0.118 3. 42
-0.29 -0.138 3.99 =0.35 -0.109 3.14 =-0.36 =0.099 2. 835
-0.29 =0.118 3.42 -0.39 -0.118 3.42 -0.26 -0.118 3.42
-0.2% -0.128 .71 =-0.29 -0.109 3.14 -0.34 -0.109 3.14
-Q.29 <=0.138 3.99 -0.23 =-0.109 3.14 =0.3% =0.109 3.14
-0.27 =0.138 3.71 -0.25 -0.118 3.42 =0.3236 =0.089 2. 57
-0.26 =-0.128 3.71 =-0.2%9 -0.1238 3.71 -0.35 =0.099 2. 85
-0.27 -0.128 3.7t -0.2% -0.118 3.42 -0.29 =0.099 2. 89
-0.28 -0.138 3.99 -0.26 -0.109 3.14 -0.33 -0.128 3.7t
-0.22 -0.10%9 3.14 -0.28 -0.138 3.99 -0.34 -0.109 3.14
-0.23 -0.109 3.14 -0.24 -0.138 4.57 =-0.33 =-0.05% 2. 85
-0.23 -0.109 3.14 -0.29 =-0.118 3.42 -0.34 -0.109 3. 14
-0.18 -0.148 4.28 -0.31 -0.1:18 3.42 -0.34 -0.099 2. 35
-0.22 -0.109 3.14 -0.32 =-0.118 .42 -0.37 -0.Q99 <. 895
-0.22 -0.109 3.14 -0.30 -0.128 3.7t -0.37 =-0.111 3. 19
-0.23 =~-0.099 2.8%5 -0.26 -0.138 3.99 =-0.37 -0.138 3. 99
-0.23 -0.109 3.14 -0.27 -0.118 3.4 =0.37 =0.09° 2. 83
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TABLE AS. STRESS. STRAIN AND TIME AT FAILURE FOR UNiAXIAL LSADING
OF CYLINDRICAL SPECIMENS OF APPLE.éll =-Q. 069 SEC™

MC INTOSH JONATHAN RED DELICICUS
11 11 t 11 11 t 11 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)

=0.28 -0.124 1.79 -0.29 -0.149 2.39 =-0.34 -0.082 1.1°
=0.2% -0.165 .39 =0.39 =0.163 .39 -0.34 -0.124 1.79
=Q.29 -0.144 2.09 -0.34 -0.144 2.09 -0.3% -0.124 1.79
-0.27 -0.1434 2.09 =-0.28 -0.144 2.09 -0.29 -0.144 2. 09
-0.29 -0.144 2.09 -0.27 -0.124 1.79 =0.33 =-9. 124 1.79
-0.29 =0.124 1.79 -0.38 =-0.186 2.68 =0.41 -0.124 1.79
=0.24 -0.124 1.79 =0.33 -0.082 1.19 -0.34 -0.103 1. 49
-0.27 -0.124 1.79 -0.31 =-0.103 1.49 -0.31 -0.124 1.79
-0.24 -0.1248 1.79 =0.40 -0.144 2.09 =-0.32 -0.103 1. 49
=-0.25 -0.144 2.09 -=0.233 =0.124 1.79 =0.32 -0.124 1.79
-0.27 =0.124 1.79 =0.32 -0.124 1.79 =0.30 =-0.124 1.79
-0.26 =-0.103 1.49 -=0.34 =0.165 .39 -0.34 -0.119 1. &7
-0.2% -0.124 1.79 =0.31 =0.144 2.09 -0.26 -0.124 1. 79
-0.23 -0.124 1.79 -0.31 -0.124 1.79 =-0.33 -0.103 1. 49
-0.27 =0.124 1.79 -0.27 -0.103 1.49 -0.34 -0.124 1.79
-0.24 -0.124 1.79 -0.31 =-0.124 1.79 -0.38 -0.124 1.79
-0.24 -0.124 1.79 -0.28 -0.144 2.09 =-0.37 =-0.124 1.79
-0.2% _-0.124 1.79 -0.26 -0.124 1.79 -0.37 -0.124 1.79
-0.24 -0.103 1.49 -0.30 -0.124 1.79 =-0.37 =0.1:124 1.79
-0.24 -0.124 1.79 -0.30 -0.123 1.79 =0 1.7

-0. 38 -0. 124

TABLE A&. STRESS, STRAIN AND TIME AT .FAILURE FOR UNJAXIAL LOADING
OF CYLINDRICAL SPECIMENS OQF APPLE. 511.-00173 SECT .

MC INTOSH JONATHAN RED DELICIOUS
711 ‘11 t °11 11 t  ‘n 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
-024 -0.090 0.52 -0.384 -0.099 0.37 =-0.37 -0.090 0. %52
-0’23 -0.099 0.37 -0.33 -0.090 0.52 -0.41 -0.090 0. 932
-0.2%5 -0.090 0.52 -0.36 -0.126 0.73 -0.43 -0.099 0.37
-0.28 -0.081 0.47 -0.32 -0.090 0.%2 -90.343 -0.090 0.52
-0.23 -0.090 0.3%2 -0.28 -0.090 0.52 -0.41 -0.108 0.82
-0.28 -0.081 0.47 -0.28 -0.081 0.47 -0.43 -0.108 0.6é2
=0 -0.090 0.52 -0.28 -0.090 0.52 -0.28 -0.081 0.47
-0’26 -0.090 0.52 -0.37 -0.090 0.52 -0.26 -0.072 0.41
-0.26 -0.099 0.57 -0.41 -0.126 0.73 -0.28 -0.072 0.41
=0.34 -0.099 0.%7 -0.37 -0.081 0.47 -0.30 -0.10% 0.40
-0.32 -0.099 0.37 -0.37 -0.117 0.8 -0.28 -0.090 0.°%2
-0.32 -0.090 0.%2 -0.31 -0.099 0.57 -0.28 -0.099 0.57
-0.29 -0.090 0.52 -0.32 -0.099 0.57 -0.28 -0.099 0.57
-0.30 -0.099 0.57 -0.30 -0.099 0.57 -0.34 -0.081 Q.47
=0.30 -0.108 0.62 -0.31 =-0.099 0.%7 -0.33 -0.099 0.%7
-0.28 -0.099 0.57 -0.34 -0.108 0.42 -0.34 -0.099 0.57
-0.24 ~0.108 0.62 -0.32 -0.099 0.37 -0.32 -0.108 0.2
-0.27 -0.090 0.52 -0.36 =-0.099 0.3%7 -0.37 -0.099 0.57
-0.25 -0.108 0.62 -0.37 -0.090 0.352 -0.36 -0.099 0.57
-0.28 -0.099 0.57 -0.34 -0.108 0.82 -0.36 -0.09¢ 0.54
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TABLE A7. STRESS, STRAIN AND TIME AT FAILURE FOR UNJAXIAL LOADING

OF CYLINDRICAL SPECIMENS OF APPLE.Ell =-9J. 348 SEC

MC INTOSH VONATHAN RED DELICICUS

%11 11 ¢t %11 €11 t °11 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)

-0. 27 =0.067 0.19 =0.30 -0.134 0.39 =0.37 -0.134 0.39
-0.28 +-0.134 0.39 =-0.32 =-0.134 0.39 =0.37 -0.112 0. 32
=-0.24 -0.1:12 0.32 -0.34 -0.134 0.39 -0.37 =0.134 0. 39
-0.26 =0.134 0.39 =-0.34 -0.134 0.39 =0.37 =-0.1:2 0.32-
-0.24 -0.134 Q.39 =0.28 -0.12% 0.36 -0.41 -0.134 0. 39
-0.23 -0.112 0.32 =-0.2% -0.112 0.32 =-29.37 -0.1.2 Q.32
-0.26 =0.134 0.39 -0.30 -0.157 0.43 =-0.36 =-0.1l1d 0. 32
-0.26 =0.112 0.32 -0.30 -0.112 0.32 -9.34 -0.793 Q.27
-0.28 -0.134 0.39 -0.33 -0.134 0.39 =-0.34 -0.112 0. 32
-0.28 -=0.1%7 0.4%5 =-0.34 =0.157 0.4%3 =-0.34 -0.134 0.39
-0.26 -=0.134 0.39 -0.32 -0.134 0.39 =-2.22 =-0.112 0.3
-0.26 =0.157 0.4% -0.34 -0.12% 0.36 =0.3C =-0. .12 Q.32
-0.30 =-0.134 0.39 -0.34 -0.112 0.32 -0.32 -0.134 0.39
=0.28 -0.157 0.45 -0.30 -0.134 0.3¢ -2.22 =2 112 0. 32
-0.26 -0.134 0.39 -0.33 -0.112 0.38 =3.32 =0.1lz o 22
-0.30 =0.134 0.39 -0.33 -0.1%2 0.32 -0.32 =0.11a J. 32
-0.28 -0.134 0.39 =-0.30 =-0.1349 0.39 =-0.30 -0.112 9.32
-0.28 -0.134 0.39 =-0.37 =-0.134 .92.39 =-3.32 =0.134 Q.39
-0.28 -0.112. 0.32 -0.34 -0.134 0.39 =-0.30 =0.089 0. 26
-0. 26 =-0.134 0.39 -0.37 =0.134 0.39 =-0.32 -0.134 Q.39

TABLE A8. STRESS, STRAIN AND TIME AT FAILURE FOR IAXIAL LOADING
OF CYLINDRICAL SPECIMENS OF APPLE. ¢;,=-0. 007 SEC"*,022 =0. 000 MPa.

MC INTOSH JONATHAN RED DELICICUS

‘1 11 t ‘n 11 t ‘1 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)

-0.2% =-0.133 17.96 =0.27 =-0.1:13% 15.77 =0.2% =-0.11! 16.17
-0.2% =-0.123 17.96 -0.30 =-0.1348 2!. % =0.29 =0.107 13.9%7
-0.2¢ -0.138 21.5% =-0.26 =0.144 20.96 =-0.323 =-0.1:128 13.3%
-0.23 -0.123 17.96 =-0.27 -0.144 20.96 -0.33 =0.107 183.57
-0.24 =-0.111 16.17 =-0.24 =-0.134 19.76 =0.30 =0.1195 16.77
-0.2@3 -0.136 19.76 -0.26 =-0.148 2:.5 =-0.31 =0.113 16.77
-0.24 -0.144 20.96 =-0.24 -0.136 19.76 =-0.31 -0.107 135.97
-0.@23% =0.119 17.37 =-0.268 -0.144 20.96 =-0.33 =0.123 17.96
-0.23 =-0.136 19.76 =0.26 =-0.140 20.36 =0.34 =0.107 19.97
-0.2% -0.136 19.76 -0.28 -0.132 19.16 =0.34 -0.111 146.17
-0.24 =-0.123 17.96 =-0.24 -0.111 16.17 =0.29 =-0.107 185. 957
-0.19 =0.103 14.97 =-0.26 -0.140 20.38 =0.29 =0.111 16.17
-0.24 =-0.103 14.97 -0.25 =-0.123 17.96 -0.33 -0.113 14&.77
-0.23 =0.123 17.96 =-0.29 -0.132 19.16 =-0.23 =-0.107 S. 57
-Q0.22 =-0.111 16.17 =0.2% =0.119 7.37 =-0.20 -0.11% 16.77
-2.29 =0.123 17.96 =-0.28 =-0.157 22.75 =-0.21 =0.107 135.9%7
-0.24¢ -0.123 17.96 =-0.26 =-0.132 19.16 =0.31 =-0.123 17.96
-0.23 -0.119 17.37 =-0.30 -0.144 20.96 -0.23 -0 (19 17.37
-0.23 =0.111 16.17 =0.27 =-0.132 19.16 =0.34 =-0.11% 16.77
-0.23 =-0.107 15.97 =-0.23 -0.123 17.96 =-0.34 =-0.099 13.37
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TABLE A9. STRESS, STRAIN AND TIME AT FAILURE FOR IAXTAL LOADING
OF CYLINDRICAL SPECIMENS OF APPLE.§11=-0.007 SECT Jgg==0. 067 MPa.

MC INTOSH JONATHAN RED DELICICUS

11 11 t 11 11 t 11 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)

-0.21 -0.119 16.77 =0.26 =-0.113 156.77 =0.30 =0.13%7 22.75
-0.26 =-0.136 19.76 =0.28 -0.119 16.77 =0.34 =0.148 21. Se
-0.24 =-0.148 21.3% =0.26 =-0.119 15.77 =0.33 =0.144 30 9%
-0.26 =-0.140 20.36 =-0.27 -0.1:15 16.77 =0.2a% =0.1135 16.77
-0.26 =-0.132 19.16 =0.2% =-0.115 16.77 =0.26 =0.113 146.77
-0.24 -0.144 20.96 =-0.21 -0.103 13.97 =0.30 =-0.:22 19 1&
-0.22 -0.132 19.16 =0.38 =-0.136 19. 76 =0.27 =9.134 20.9s
-0.24 =-0.132 19.16 =0.30 =-0.144 20.96 =0.22 =0.103 14 97
=-0.2% =-0.123 17.96 =-0.26 -0.132 1(9.16 =0.39 -0.1469 24 3%
-0.22 =-0.133 17.96 =0.27 -0.103 14.97 =0.34 -0.1:40 20.3s
-0.25 <-0.123 17.96 =0.23 =-0.132 19.16 =0.30 =0.133 17 3%
=0.17 =0.103 14.97 -0.2% =0.144 20.96 =0.27 =0.1323 17.°95
=0.23 -0.123 17.96 =0.22 -0.123 17.96 -0.24 =-0.099 13.77
-0.23 -0.132 19.18 =-0.27 =-0.132 i9.16 =-0.31 =-0.115 1677
-0.19 =-0.103 14.97 =0.26 =0.148 21.% =-0.31 =-0.1i9 17.37
-0.24 =-0.11% 16.77 =0.24 =-0.119 16.77 =0.29 =0.128 18.°%s
-0.22 -0.1135 16.77 -0.28 =-0.123 17.96 =0.31 =0.123 17 9%
-0.2% =0.197 22.76 =-0.23 -0.132 1?2.16 =0.26 -0.:19 7.37
-0.20 -0.107 15.357 -0.2% -0.123 17.96 -0.24 =-0.107 13. %57
-0 -0.21 -0.132 19.16 =0.2 =0.115 16.77

.22 =0.115 16.77

TABLE A10. STRESS, STRAIN AND TIME AT FaILURE FOR TRIAXIAL LOADING

OF CYLINDRICAL SPECIMENS OF APPLsSsll--o.oo7 sscd.pzﬁ--o.xaa MPa.

MC INTOSH JONATHAN RED DELICICUS
11 €11 t ‘11 €11 t ‘11 €11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (XPa) (mm/mm) (sec)

=-0.26 -0.140 20.36 -0.24 =-0.123 17.96 -0.189 =0.103 14 =7
-0.29 -0.1%5Q 22.16 =-0.22 -0.107 15.37 =0.20 =0.140 20 35
=0.17 =0.136 19.76 =-0.27 =-0.132 19.16 =0.3%3 =-0.165 23.9%
=0.13 =-0.1Q3 14.97 =0.22 -0.144 20.94 =-0.36 =0.11%3 16.77
-0.18 =-0.140 20.36 =-0.23 =-0.123 17.94 =-0.30 =0.1635 23.95
=-0.13 -0.111 146,17 =0.29 =-0.123 17.9¢ =-0.22 -0.:107 15.9%7
-0.22 -0.119 17.37 -0.29 -0.107 135.%57 =-0.33 -0.130 21.326
=-0.20 =-0.123 17.96 =0.28 =0.132 19.168 =-0.26 =0.128 18.9%6
=-0.20 =-0.123 17.96 =0.268 =-0.123 17.96 =-0.23 =0.107 13. %57
-0.22 -0.132 19.16 =-0.28 =-0.136 19.76 =0.27 =0.123 17 %>
-0.23 -0.123 17.96 =0.28 -0.09% 12.77 =-0.2% <=0.128 18. %6
-0.2%5 -0.132 19.16 =0.23 -0.132 19.16 =-0.2?8 =0.:122 17.%%
-0.2% =-0.132 19.16 =-0.26 =0.140 20.36 =-0.23 =0.123 17 °»
-0.26 -0.132 19.16 =-0.2% =-0.148 21.% -0.29 =-0.1465 23.°9°%
-0.24 -0.165 23.99% =-0.22 =-0.173 5.1% =-0.22 -0.!z 17. 9%
=-0.22 -0.136 19.76 =-0.25 =-0.132 19.16 =0.34 =~0.183 26.°5
=-0.22 =-0.123 17.96 =0.26 =0.169 22.99 =-0.29 =0.1465 23.°%
=-0.20 -0.152 22.16 =-0.2% =-0.157 2. 76 =-0.a8 =-0.132 19 1>
-0.19 =-0.243 33,34 -0.12 =-0.237 33.93 -0.12 =-0.Q7a 10.7

=0.15 =0.:163 23.99 =-0.22 -0.163 3.7 =-0.24 =-0.14C ZO.3>
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TABLE All. STRESS, STRAIN AND TIME AT FAILURE FCR TRIAXIAL LOADING
OF CYLINDRICAL SPECIMENS OF APPLE. €,,=-0.007 SEC Opo==0. 207 MPa.

MC INTOSH JONATHAN RED DELICIOUS
%11 €11 t %11 €11 t 11 11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)

-0.21 =0.123 17.96 =0.24 =-0.132 19.16 =0.17 =0.090 13.17
-0.13 -0.078 11.38 -0.22 =-0.103 14.97 -0.27 =-0.134 19.46
-0.18 =0.090 13.17 =0.27 =-0.123 17.96 =-0.27 =0.1:19 17.37
-0.18 =0.090 13.17 =0.20 =0.144 20.96 =-0.28 =-0.144 20.96
-0.22 -0.107 195.%7 =0.17 =0.107 135.57 -0.2% -0.123 17.96
-0.23 =-0.132 19.16 =-0.22 =-0.103 14.97 =-0.27 =-0.107 13.9%7
-0.20 =-0.103 14.97 =-0.24 -0.144 20.96 =0.30 =0.136 19.76
-0.20 =-0.103 14.97 -0.29 =-0.132 19.16 -0.15 =-0.070 10.18
-0.20 =0.103 14.97 =0.17 =0.128 18.% -0.29 =-0.132 19.16
-0.18 =0.107 195.%7 =0.20 =0.123 17.96 =0.28 =-0.144 20.96
~0.22 -0.111 16.17 =-0.28 =0.1%7 22.76 =-0.27 =0.119 17.37
-0.20 =-0.09% 13.77 -0.18 =-0.095 13.77 =-0.20 =0.107 15.957
-0.20 =-0.099 14.37 -0.18 -0.107 1%5.%7 =0.146 =0.074 10.78
-0.20 =-0.09% 13.77 =-0.18 =-0.132 19.16 =-0.28 =0.148 21.56
-0.21 =0.107 1%.%7 =-0.17 =-0.082 11.97 =-0.30 =-0.134 19.46
-0.30 =-0.144 20.96 =-0.17 =-0.082 11.97 -0.29 =-0.140 20.36
-0.30 =-0.144 20.96 =-0.2% =0.099 14.37 =0.29 =0.136 19.746
-0.23 =-0.111 16.17 =-0.20 =-0.09% 13.77 -0.26 =0.103 14.97
-0.29 =-0.132 19.16 =-0.22 -0.099 14.37 -0.26 =0.107 15.57
-0.22 -0.101 14.57 =-0.24 -0.107 15.%7 =-0.23 -0

136 19.76

TABLE Al2. STRESS, STRAIN AND TIME AT FAILURE FOR IAXTIAL LOADING
OF CYLINDRICAL SPECIMENS OF APPLE.511=-0.007 SEC dgo==0. 276 MPa.

MC INTOSH JONATHAN RED DELICIOUS
‘11 11 t 11 1 t ‘11 €11 t
(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)

-0.18 =-0.144 20.96 -0.12 -0.123 17.96 -0.17 -0.070 10.13
-0.18 -0.080 11.68 =-0.16 =-0.115 16.77 =-0.18 =0.086 12.57
-0.18 -0.119 17.37 -0.12 -0.082 11.97 -0.:3 =-0.09%7 3. 38
-0.18 =-0.082 11.97 -0.18 =-0.123 17.%96 =-0.28 -0.123 17.96
-0.23 -0.095 13.77 =0.19 =-0.09% 13.77 =0.17 -0.078 10.78
=-0.14 <-0.093 13.77 =0.16 =0.115 16.77 =0.1S5 =0Q.066 9.9%8
-0.14 -0.086 12.357 =-0.23 -0.074 10.78 -0.22 -0.095 13.77
-0.18 =-0.107 13.57 <-0.20 --0.090 13.17 =0.20 =0.123 17.96
=0.17 =0.092 13.47 =0.22 -0.113 16.77 =0.27 =0.11%5 16.77
=0.13 =-0.074 10.78 =0.17 =0.1:15 16.77 =-0.31 =-0.128 18.36
-0.18 =0.095 13.77 =0.17 =0.115 146.77 =-0.28 -0.11% 16.77
-0.17 =0.099 14.37 -0.20 =-0.099 14.37 =-0.26 -0.111 16.17
-0.21 -0.080 11.488 =0.23 -0.107 1S5.57 =-0.28 =0.:28 18. 56
-0.23 =0.111 16.17 =-0.33 -0.107 13.%7 =-0.17 =-0.074 10.78
-0.321 -0.074 10.789 =-0.19 =0.1:13 16.77 =-0.23 =-0.103 14.97
=0.19 =-0.103 14.97 =0.17 =0.103 14.97 =0.26 =0.123 17.96
=-0.22 -0.123 17.96 =-0.20 =0.103 14.97 =0.20 =0.099 14.37
=0.17 =0.097 14.07 =0.18 =-0.173 295.15 -0.21 -0.099 14.37
-0.14 =0.09% 13.77 =-0.18 -0.123 (7.96 =-0.13 =-0.061 8. 98
-0.18 =0.103 14.97 =0.1% =0.107 13.57 =0.1s% =0.074 10.78
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TABLE A13. STRESS, STRAIN AND TIME AT FAILURE FOR TRIAXIAL LOADING
OF CYLINDRICAL SPECIMENS OF APPLE.E,, =-0.007 SEC Fg==0. 393 MPa.

MC INTOSH JONATHAN RED DELICIOUS

‘1 11 t ‘1 11 t °11 11 t

(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
0.00 0.000 0.00 0.00 0.000 0.00 =0.13 =0.039 8.4&8
0.00 0.000 0.00 0.00 0.000 0.00 =0. .16 =-0.046 9. 98
0.00 0.000 0.00 000 0000 0.00 =-0.09 -0.066 9. 358
0.00 0,000 0.00 000 0.000 0.00 =-0.135 =-0.078 11.38
0.00 0.000 0.00 0.00 0.000 0.00 -0 18 =-0.070 101

0.00 0.000 0.00 000 0.000 0.00 =-0.22 =-0.082 11.97
0.00 0.000 0.00 000 0.000 0.00 -0 .29 =-0.082 11.97
0.00 0.000 000 0.00 0000 0.00 -0.30 -0.103 1497
0.00 0.000 0.00 0.00 0.000 0.00 -0 22 =-0.082 11.97
0.00 0.000 0.00 0.00 0.000 0.00 -0 .22 =-0.09% 13.77
0.00 0.000 0.00 0.00 0.000 0.00 =-0.2% =-0.11% 16.77
0.00 0.000 0.00 000 0.000 0.00 =0 22 =-0.082 11.97
0.00 0.000 0.00 0.00 0.000 0.00 =-0.26 -0.103 14.97
0.00 0.000 0.00 0.00 0000 0.00 =0 11 =-0.086 12 97
0.00 0,000 0.00 0.00 0.000 0.00 -0.22 -0.107 18.57
0.00 0.000 0.00 0.00 0.000 0.00 =0.26 =-0.107 1%.57
0.00 0.000 0.00 0.00 0.000 0.00 =0.19 =0.082 11.97
0.00 0.000 '0.00 0.00 0.000 0.00 -0.22 =-0.082 11.97
0.00 0.000 0.00 0.00 0.000 0.00 -0 18 =0.066 .98
0.00 0.000 0.00° 0.00 0.000 0.00 =-0.11 =0.041 .98

TABLE Al4. STRESS, STRAIN AND TIME AT FAILURE FCR LOADING IN RIGID
DIE OF CYINDRICAL APPLE SFECIHENS.élll-0.007 secl.

MC INTOSH JONATHAN RED DELICICUS

11 11 t 1 11 t 1 €11 t

(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
-0.24 =-0.103 14.97 =-0.32 =-0.134 19.45 -0.31 =0.111 16.17
-0.36 =-0.111 16.17 =0.42 =0.107 15.57 =0.33 =-0.086 12.97
-0.28 =-0.099 14.37 -0.3% -0.10% 15.27 -0.40 =-0.092 13.47
-0.2% -0.136 19.76 =0.49 -0.119 17.37 =-0.42 -0.111 164.17
-0.32 -0.128 18.% =-0.28 =-0.144 20.96 =-0.%7 =-0.103 14.97
-0.30 =0.103 14.97 =0.41 =0.1%7 22.76 =0.44 -0.099 14.37
-0.36 =0.119 17.37 =0.66 =-0.14%5 23.99%9 -0.3&6 =0.086 12.57
-0.34 =~0.099 14.37 =-0.40 =-0.130 20.3& =-0.36 =-0.11% 16.77
-0.37 -0.119 17.37 =0.27 =0.103 14.97 =-0.34 =-0.101 14.67
~0.36 =0.11% 16.77 =0.49 =-0.144 20.96 =0.23 -0.113 16.47
-0.43 -0.107 19%.%7 =0.26 =0.103 14.97 =0.42 =0.107 15.9%7
-0.% =~0.144 20.96 =0.30 ~-0.09% 13.77 =-0.44 -0.119 17.37
-0.32 =-0.111 16.17 =0.% =-0.138 21.% =0.%3 -0.128 18.36
-0.37 =0.11% 16.77 =0.31 -0.099 14.37 -0.4% =0.117 17.07
-0.37 =0.111 16.17 =0.28 =0.099 14.37 -0.9%7 =0.103 14.97
-0.47 =0.140 20.36 =0.34 =-0.107 15.3%7 =0.47 =0.111 16.17
-0.40 =0.119 17.37 =-0.37 =-0.09% 13.77 =-0.3%3 -0.109 15.87
-0.36 =-0.123 17.96 =0.34 =-0.099 14.37 =-0.49 -0.128 18.356
-0.40 =0.111 14.17 =0.32 =-0.113% 1477 =0.%56 =-0.111 16.17
-0.334 =-0.11r t4.17 =0.29 =0.123 17.96 =0.34 =-0.103 14.97
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TASLE AL13. STRESS, STRAIN AND TIME AT FAILURE
OF CUBIC APPLE SPECIMENS. ¢

FOR UNIAXIAL LOADING

=-0. 007 SEC-1.

11 -
MC INTOSH JONATHAN RED DELICIOUS

%911 11 t %911 €11 t 1 €11 t

(MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
=0.27 -0.11% 146.77 =0.29 =0.113 16.47 -0.27 =-0.123 17.96
=0.26 =0.123 17.96 =0.24 =-0.099 13.37 =0.27 =0.123 17.9%
=-0.27 -0.123 17.96 =-0.28 -0.11% 16.77 -0.29 -0.111 14.17
-0.29 =-0.121 17.67 -0.24 =-0.092 13.47 =-0.22 =0.097 14.07
=-0.26 =0.119 16.77 =-0.2% =-0.082 11.97 =0.26 =-0.070 10.18
=0.29 =0.123 17.96 =-0.26 -0.123 17.96 =-0.2%5 -0.099 14 37
-0.2% -0.090 13.17 =-0.30 =-0.09% 13.77 -0.2% -0.128 18.9%6
=-0.2% -0.121 17.67 =-0.26 =-0.107 15 %7 =-0.2% =0.107 15.%7
-0.25 =-0.111 16.17 =-0.28 -0.090 13.17 =-0.29 =-0.111 16.17
-0.23 -0.119 16.77 =-0.33 -0.111 16.17 =-0.26 =-0.109 15.87
=-0.26 -0.111 16.17 =-0.26 =-0.119 17.37 =0.24 -0.1289 18.9%
=-0.30 =0.136 19.76 =0.26 =-0.119 17.37 -0.27 -=-0.111 16.17
-0.29 -=0.123 17.96 =-0.26 =-0.123 17.96 =Q.27 =-0.119 17.37
-0.30 -0.1346 19.76 =-0.235 =-0.082 11.97 =-0.23 -0.1:19 17.37
-0.26 =0.144 20.96 =0.23 -0.097 13.07 -0.26 =-0.123 17.96
-0.26 =-0.134 19.46 =-0.23 -0.132 19.16 =-0.2% -0.103 14.97
-0.29 =-0.144 20.96 =-0.25 =-0.090 13.17 =-0.21 -0.132 19.1&
-0.29 =0.103 14.97 -0.28 -0.088 12.%7 -0.19 =-0.074 10.78
-0.2%5 =-0.128 18.% =-0.29 -0.09% 13.77 -0.23 -0.09% 13.77
-0.26 =-0.132 19.16 =-0.28 =-0.11% 15.77 =-0.26 =0.103 14.97

TABLE Al14. STRESS. STRAIN

OF CUBIC APPLE SPECIMENS.

AND TIME AT FAI&URE FOR BIAXIAL LOADING
Ell-O. 007 SEC™-.

MC INTOSH JONATHAN RED DELICIOUS
1 11 t %11 €11 t °11 i1 t
(dPa) (mm/mm) (sec) (MPa) (mm/mm) (sec) (MPa) (mm/mm) (sec)
-0.24 -0.128 19.% =-0.33 -0.144 20.96 -0.30 =-0.136 19.75
-0.29 -0.123 17.96 =-0.37 ~0.126 18.26 =-0.3&6 =0.132 19. 16
-0.2% =-0.117 17.07 =-0.37 =-0.132 19.16 =-0.26 =-0.119 17.37
-0.22 -0.107 15.57 =-0.31 -0.123 17.96 =-0.43 -0.119 17.37
-0.30 =0.119 17.37 =-0.34 =0.140 20.36 =-0.36 =0.107 15.9%7
-0.2% =-0.099 14.37 -0.30 -0.123 17.96 -0.39 =-0.111 16.17
-0.28 -0.103 14.97 -0.34 -0.119 17.37 -0.33 -0.123 17.9%
-0.23 =-0.11% 16.77 =0.37 =0.144 20.968 =0.43 -=0.119 17.37
‘-0.28 -0.103 14.97 ~-0.34 -0.119 17.37 -0.43 -0.119 17.37
-0.29 =-0.140 20.36 =-0.44 -0.1%2 22.1% -0.40 =-0.128 18.%
-0.29 =-0.136 19.76 =-0.31 =0.140 20.36 =0.40 =-0.119 17.37
-0.27 =-0.111 16.17 =-0.42 =-0.144 20.96 =-0.33 -0.11% 16.77
-0.26 =-0.119 17.37 -0.42 -0.161 23.36 -0.33 -0.09% 13.77
-0.34 -0.11% 16.77 =-0.33 -0.103 14.97 -0.31 =0.123 17.9%6
-0.26 =-0.090 13.17 =0.29 =0.111 16.17 =0.34 =-0.13& 19.7%
-0.24 -0.11% 16.77 =-0.26 =-0.111 14.17 =-0.38 =-0.111 16.17
-0.23 -0.11% 146.77 =-0.29 -0.107 1% .37 -0.39 -0.128 18. %
-0.23 =-0.11% 14.77 =0.30 =-0.123 17.96 =-0.36 =-0.111 16.17
-0.26 =-0.123 17.96 =-0.34 =-0.132 19.16 =-0.34 -0_.132 19.16
-0.23 -0.103 14.97 =-0.31 =-0.113 16.47 -0.41 -0.1%2 22.16
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TABLE A17. STRESS, STRAIN AND T]ME AT FAILURE FOR LOADING IN RIGID

=-0. 007 SEC1.

DIE OF CUBIC APPLE SPECIMENS. €

‘11
(MPa)
26
29
29
26
27
36
3a
29
34
23
34
30
33
38
39
53
31
a9
a9
as

L6888888488888888888

$8448848844844884445444

MC INTOSH

11
(mm/mm)

Q97
111
103
111
099
115
140
107
1135
119
119
107
123
119
140
161
113
144
165
132

(sec)

14.
16.
14,
16..
14,
16.
<0.
13.
16.
17.
17.
13.
17.
17.
<0.
23.
16.
<0.
23.
19.

t

o7
17
97
17
37
77
36
7
77
37
37
57
%6
37
36
36

%11

11
JONATHAN
11

(MPa) (mm/mm)
37 -0.123
47 -0.18%
29 -0.119%
58 -0.149
54 =0. 165
38 -0.11%
34 -0.144
34 -0.281
37 -0.149%9
34 -0.119
33 -0.119
43 -0. 144
46 -0.163
34 -0.123
36 -0.132
29 -0.111
38 -0.119
34 -0.123
34 -0.111
31 -0.082

$486444444848488544448

t

(sec)

RED DELICIQUS

9911 €11
(MPa) (mm/mm)
-0. 36 =0.09%
-0.%0 -0.103
-0.%0 =0.119
-0.51 =0.11%
-0.%2 -0.148
-0.33 -0.128
-0.63 =-0.123
-0.%2 -0.103
-0.%4 -0.107
-0.43 =-0.128
-0.63 -0.128
-0.%2 -0.103
-0.%8 -0.128
-0. 48 %-0. 152
-0.%0 =-0.132
-0.%3 -0.128
-0.%3 -0.128
‘~0. 9% =0.111
-0.3%0 =-0.136
-0.43 -0.136

t

(sec)

13.
14,
17.
16.
a1.
18.
17.
14,
18.
18.
18.
14.
18,
2.
19.
18.
18.
16.
19.
19.

77
97
37
77
56
56
?6
97
S7
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TABLE A18. UNIAXIAL COMPRESSION OF CYLINDRICAL SPECIMENS OF
MC INTOSH . AXIAL DEFORMATION VALUES AT 0, ==0.11 MPa FOR
FIVE SPECIMEN HEIGHT. €,,=-0.007 SEC!

H
(mm)

8. 32 12. 13 19. 17 26. 35 34. 758

0. 06» - 0. 12#» 0. 13» 0. 16» 0.11»

Ul Ul (V3 Ut Ul

(mm) (mm) (mm) (mm) (mm)
- &.60 -10. 16 -13. 71 -13. 71 -15. 74
- 7.62 - 8.12 -14. 22 -16.76 -17. 27
- 8.12 - 8. 12 -11. 68 . =14 22 -18. 79
-11. 68 - 7.62 -12. 70 -12. 19 -19. 81
- 8.643 - 8. 63 -15. 74 -18. 28 -24. 89
- 9. 69 -11.17 -11.17 -19. 30 -20. 32
- 8.12 -10. 92 -12.70 -18. 28 -18. 28
- 9. 65 - 9. 469 -18. 79 -22. 86 -19. 30
- 7.62 -13. 20 -13. 71 -16. 76 -20. 82
- 9.65 -12. 70 -11.17 -19. 24 -2b6. 92
- &. 40 -14. 22 -13. 20 -17. 27 -21.84
- 7.11 -10. 66 -13. 20 -13. 71 -19.81 .
-10. 16 - 9. .14 -12. 44 -14. 22 -20. 82
- 8.12 -11. 68 -12. 70 -14 22 -21. 32
- 6. 60 -14. 22 -13. 20 -13. 71 -21. 33 .
- 8.63 - 7. 62 -11.17 -17.78 -21. 84
- 95.958 -12. 19 -15.74 -16. 2% -20. 32
- 9. 69 -10. 16 -20. 32 -15. 24 -22. 39
- 7. 11 -13. 20 -19. 24 -16.76 -22. 3%
- 7. 62 -11. 68 -13. 71 -16.76 -20. 32

(#) standard deviation
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TABLE A19. UNIAXIAL COMPRESSICN OF CYLINDRICAL SPECIMENS OF
JONATHAN. AXIAL DEFORMATION VALUES AT 91 =-Q.11 MPa FOR
FIVE SPECIMEN HEIGHT.€)) =—0. 007 SEC-

H
{mm)

8. 32 12. 13 19.17 ab. 35 34. 98

Q. 06# 0. 12» 0. 13» 0. 16# 0.11»

Ul (V3§ Ul (V) Ul

(mm) (mm) (mm) (mm) . (mm)
- 9.9 -7 11 - 8.12 -193. 24 -21.84
-7.11 - 8. 89 -15. 49 -13. 20 -20. 32
-12.19 -12. 19 -17.27 -13. 71 -16.76
- 7.62 -7.11 -12. 19 -17. 27 -13. 24
-13. 20 - 9.635 -14. 22 -17. 27 -19. 30
-13. 20 - 8.43 - 9.469 -14 22 -20. 32
- 8.63 -13. 71 -12. 70 -13. 20 -14. 22
- 7.62 -10. 16 -12. 70 -14. 73 -19. 30
- 7.11 - 9.14 -11.17 -195. 24 -23. 87
- 5.58 - 9. 14 -10. 92 -12. 19 -20. 82
- 5.358 - 8. 43 -13. 20 -11. 68 -17. 27
- 9.63 -7.11 -13. 20 -193. 24 -21.84
-7.11 -7.11 -14.73 B -12. 70 -17. 52
- 6. 60 - 8.12 -11.17 -12. 19 -18. 79
- 8.12 - 8.12 - 9.63 -16. 29 -17. 27
- 7. 11 - 8.463 -10. 46 -13. 71 -19. 30
- 8.12 -10. 16 -12.70 -12. 70 -193. 74
- &. 60 - 6. 60 -10. 16 -17.27 -19. 24
- 8.63 -10. 16 -12. 19 -13. 71 -195. 24
- &.60 -12. 19 -11.17 -13.74 -21. 84

(#) gtandard deviation
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TABLE AQ0. UNIAXIAL COMPRESSICN OF CYLINDRICAL SPECIMENS OF
RED DELICIOUS. AXIAL DEFORMATION VALYES At011'~0.11 MPa FOR
FIVE SPECIMEN HEIGHT.6118-0.007 SEC™*.

H
{mm)

8. 32 12. 13 19.17 ab. 9% 34. 98

0. 06» 0. 12%# 0. 13 0. 16+ 0. 11»

Ut (V31 (V3 Ul V53

(mm) (mm) (mm) (mm) (mm)
- 7. 11 - 95.84 -7.11 -12. 70 -15. 24
- 95.98 - 9.58 -10. 14 - 9.14 -13.71
- 95.08 - 95.08 - 7.11 -10. 66 -12. 19
- 6. 09 - 3.99 -7.11 -12. 19 -14. 73
-10. &6 - 7.62 -7.11 -10. 66 -14.73
- 9.98 - 7. 62 - 8.63 -11.17 -11. 48
- 9.9%8 - 4 06 - 8.12 -11.17 -12. 19
- 6.09 - 3,97 -8.12 ™~ =-10.16 -13. 71
- 5.08 - 8.12 - 9.14 - = 8.63 -12. 70
- 35.08 - 4 06 - 4.09 - 9.45 -12. 19
- 9.%58 - 5.08 - 8.463 -12. 19 -14, 22
- 4 06 - 4,97 -13. 20 -12. 19 -13. 20
- 8.12 - 8.12 - 9.469 -10. 16 -13. 71
- 9.98 - 7.62 - 9.14 -12. 70 -17.78
- 5.08 - 4.60 - 9.46%5 -10. 156 -13. 20
- 8.12 - 4. 97 - 7.62 - 8. 63 -11.17
- 4 37 - 9.08 - 5.98 - 9 14 -13. 71
- 4 .06 - 4. 60 -12. 19 - 9.14 -12. 70
- 95.08 -10. 66 -12. 19 - 9. .14 -12. 19
- 35.08 - 4.39 - B.&3 - 9. .14 -13. 20

(#) standard deviation






