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ABSTRACT

THE ANISOTROPIC ANTIFERROMAGNET-
THEORY AND EXPERIMENT

By

Christopher Warren Fairall

The phase transitions of the two sublattice antiferro-
magnet with general second order anisotropy have been studied
in the molecular field approximation. The interactions
included were the isotropic and anisotropic exchange, uni-
axial crystal field anisotropy and Dzyaloshinski-Moriya
antisymmetric exchange anisotropy of the form B-§1X§2. The
D vector was chosen perpendicular to the antiferromagnetic
axis and the phase transitions induced by applied magnetic
field were calculated numerically from the equations of
equilibrium and stability. The antiferromagnetic to spin
flop transition remains first order while the second order
paramagnetic transition is destroyed by the D-M interaction
unless the field is applied parallel to D.

The principal axis susceptibilities were calculated,
revealing an inflection point corresponding to a quasipara-
magnetic transition and an infinite anamoly at the spin flop

critical field. 1Included is a calculation of the angle
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dependence of the susceptibility of the uniaxial antiferro-
magnet in applied field.
Magnetic susceptibility measurements were made on

Cs,MnCl,*2H.,0, Rb_MnCl,+2H

2 4 2 2 4 2

bility was measured as a function of temperature and

0 and CuC12-2H20. The suscepti-

magnitude and orientation of applied field in liquid He4.

2MnCl4'2H20 and

RbZMn014-2H20 were measured and no spin flop boundaries

The magnetic H-T phase diagrams of Cs

were found to exist above 1.2 Kelvins.
The molecular field theory developed in the text was
used to interpret the data including data taken from the

literature on MnC12-4H20. The results are as following:

1. CszMnCl4°2H20 and szMnCl4'2H20 exhibit an

unusually large anisotropy that is significantly larger in
the ordered state than in the paramagnetic state. Molecular

field calculations indicate CszMnC14-2H20 will spin flop

below Ttp=0.55 K at a critical field H, =17 kOe and

tp

=0.83 K at a critical

Rb MnCl4°2H20 will spin flop below Ttp

2
field Htp=21 kOe.
2. Excellent agreement between theory and experiment
was found for the susceptibility as a function of magnitude
and orientation of applied field for CuC12-2H20.
3. Molecular field theory gave consistent results

for phase diagram and susceptibility data on MnC12-4H20.
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INTRODUCTION

Magnetic ordering, though known at least experimentally
for centuries, was first understood with the development of
quantum mechanics in the 1920's. It is now known that the
magnetic moments associated with magnetic ions in crystals can
take on many possible arrangements including ferromagnetic, anti-
ferromagnetic, canted antiferromagnetic, ferrimagnetic and spiral
configurations. The arrangement a given lattice of spins will
acquire depends upon the interactions of the system. The inter-
action that has been most successful in describing the arrange-
ment and properties of magnetic insulators is the general
Heisenberg interaction, second order in the spin operators.

Magnetic materials can be studied by a number of experi-
ments including resonance, specific heat, neutron diffraction
and susceptibility. Antiferromagnets are particularly inter-
esting because in applied magnetic fields they can undergo var-
ious phase transitions corresponding to realignment or satura-
tion of the spin system. The basis of these transitions is
the interplay between the isotropic and anisotropic parts of
the interaction.

The first successful theory describing these magnetic sys-
tems was the molecular or effective field approximation where
one considers the interaction of a given spin with its neigh-
bors to be an average effect that can be replaced by an effect-
ive magnetic field. Although more sophisticated theories now
exist, our primary concern in this work is to explore the abil-

ity of molecular field theory to explain the properties of the

1






anisotropic magnetic insulator. Specifically, we wish to accomp-
lish the following:

l. Unify the existing theoretical base of the Heisenberg
interaction and the magnetic ordering it produces.

2. Extend the theory of the magnetic phase diagram to a
general second order interaction for the canted antiferromagnet.

3. Write a theoretical description of the magnetic sus-
ceptibility as a function of orientation, applied field and temp-
erature. Particular emphasis is placed on the anisotropic prop-
erties of canted or uniaxial antiferromagnets in applied fields
and the behavior of the susceptibility near critical points.

4. Describe the construction and use of apparatus capable
of measuring suceptibility as a function of orientation, applied
field and temperature.

5. Present the results of susceptibility measurements
made with this apparatus and their theoretical interpretation.

We also apply the theory to previously existing data on a mater-
ial that is well understood. The purpose is to evaluate the

consistency and accuracy of the theory.



I. THE HEISENBERG HAMILTONIAN

The interactions that govern the behavior of a system of
electron spins in an insulating solid are multitudinous, but
one can describe many of the magnetic properties by considering
two separate but not wholly orthogonal interactions: exchange

and anisotropy.

A. Exchange
l. The two electron system.

Exchange is a purely quantum mechanical effect and, having
no classical analogue, it is difficult to employ physical intui-
tion when discussing it. However, the next best thing to phys-
ical intuition is history, so I will describe a simple example
demonstrated by Heisenbergl in 1926.

Suppose we have two electrons in similar potentials. The

Hamiltonian for the pair is

2 2
__h 2 _h 2 2
H = m Vl >m V2 + V(1) + V(2) + e /r12 (1.1)

where 1 and 2 refer to coordinates of the respective electrons

-+ -

and r;, = Irl - I,].

Let
A o= H_+e%/r (1.2)
o 12
and assume ez/r12 is a perturbation on 4,

7 v°., = EC.v°, (1.3)
oij ij ij



where
o _ ,O o)
wij = Wi(l)Wj(Z)
(1.4)
E°. = EC + E°
ij i j

We can make this separation because HO contains no interaction

between 1 and 2.

First order perturbation theory gives a correction to the

energy
E.. =E2. + B
ij ij ij
(1.5)
2 o o)
= (o) o
By fﬁi(l) $j(2)e /r15 ¥3 (D) ¥(2)d

where Bij is the average repulsive coulomb interaction of the
electrons in states i and j.

The Pauli exclusion principle requires the total wave
function to be antisymmetric under "exchange" of particles 1
and 2. The appropriate wave functions including spin are given

by the Slater determinant

wg(l)a(l) W2(2)a(2)

¥..(1,2)= = (1.6)

-
J
o

o o
Wj(l)a(l) ?j(Z)a(Z)

where alpha is the "spin up" wave function. There are three
more possible wave functions Wz, W3, W4 corresponding to differ-
ent spin configurations. Diagonalization of the matrix elements

of H with these wave functions results in a singlet of energy

E =E.. + B.. + J.. (1.7)






and a triplet of energy
E = E-n + B.. - J-. (1-8)
where

_ *0 *o 2 o o
Ji5 = [ ¥ ) ¥j(2)e%/r), ¥y ¥;(2)ar (1.9)

is called the direct exchange integral.

2. Many electron exchange
Unfortunately, one cannot describe the behavior of a crys-
tal in terms of two electron wave functions. If we consider N

electrons (designated ;i) on N reasonably localized lattice

-’
sites (Ralpha)' the Hamiltonian is
2
P. 2 2
_ i _z Z @ 1le”
H=3i 7nm i,a lri—ﬁal iy 2 s (1.10)

. . . . 2
and a convenient set of wave functions are Wannier functions

th

¢nk(; - ﬁa) which resemble the n atomic orbital with spin A

on lattice site a but drop off through the lattice in such a

way as to be orthogonal. If one rewrites the Hamiltonian in

nd 3,4

2 , one can show that the

quantized field operator form

exchange term can be expressed

r N
[ Z b= o > v -]:_ > .+ > ' .
Hex = Taa' Jnn'(Ra.'Ra ) "4 + S(Ra) S(Ra )‘( (1.11)
nn' '
where
> >
Jont (RyRT) = (ar;a'n'|V]|a'n';an)
(1.12)
V=H-T

Equation 1.11 is referred to as the Heisenberg exchange






Hamiltonian, originally derived for two electrons by Diracs.

3. Superexchange
In most insulating crystals the magnetic ions are separated
by large distances with intervening ligands; it follows that the
direct exchange of equation 1.12 is very small and cannot ac-
count for the much larger interactions that are usually observed.
Let us consider a system of two Mn++ ions joined by an

0 ion. The ground state is illustrated by

mntt o™ mntt

' (a)
9 PP dz

where p and d refer to atomic orbital states. The excited
state corresponds to promotion of one 0 p electron into the

d shell of Mn't.

mn* 0~ mntt

(B)

o))

L}
dldl P

The wave functions for the configurations are writtens’7

e 3]
"

A Wdl(l)wp(2)wp.(3)wd2(4)
(1.13)
Yo =Y. (L)Y +(2)Y (3)Y, (4)
B d1 d1 P d2
The perturbing Hamiltonian is assumed to consist of a spin inde-

pendent part, V_, connecting states A and B, and a spin depend-

t
ent part, Var diagonal with respect to orbital states. Spin
dependence shows up first in the 3rd order energy correction as
] . ] .
_ & aYve[s%) (8" |ve|BY ) (BY |vi]a")
E, = : (1.14)
3 t,u t

t u' u
(Ep - Ex) (Eg - Ep)






t, u denoting spin configurations.

One rewrites the wave functions in states of definite
parity in terms of the spin coupling of the Mn to one 0 elec-
tron. For example WA[(pdl)B(p'dz)l] is a ground state wave
function with the d1 electron of Mn, and the p electron of

0 in a triplet state and the d., electron of Mn, and the p'

2
electron of 0 in a singlet state. The energy of this system

can be written

_ 11 |2 2
E = {AE(t)‘ EE(S)‘} 2b%3 4 (3 °8))

(1.15)
1 3 1 2
3 [Azltiz + AE(Sfé] 2b°J 4
where the transfer integral is
b = jwdl(l)wp(l)vtdr (1.16)
and
*
Ia =1 wp(l)ﬁd(z)vewp(z)wd(l)dr (1.17)

is the exchange of the Mn++ 0 system. The energy of the Mn+
in the singlet and triplet states is given by AE(s) and AE(t)
respectively.

Let us suppose that Mnl has spin up. Now assume that

J_.,>0, therefore, the p electron associated with Mnl will have

pd
spin up. The p' electron will have spin down and therefore an
will have spin down - the interaction is antiferromagnetic.
Another way of describing this process is to assume de>0 implies

AE (s)*>= and AE(t)~U, the average coulomb interaction of an

electron with another electron on the same ion






8
2b? > 2
Espin = [;5- Jpé] (Sl-Sz) (1.18a)
Since de>0, the coupling is antiferromagnetic.
Now we assume de<0, the p electron associated with Mn,
will have spin down, p' will have spin up and an will have spin
down - the interaction is antiferromagnetic if de<0, let

AE (t)»> and AE(s)-+U. Consequently

2
_ _2b i
Egpin = (de)(§l 8,) (1.18b)
but now de<0 [Yo)
E = +393 lg_.]3,-8.) (1.18
spin U2 pd' *°1°%°2 -18¢)

which is an antiferromagnetic coupling. We therefore express
the superexchange in the form of equation 1.18 and note that it
is always antiferromagnetic.

It is customary8 to define direct exchange and superexchange

as

o _ * 2
gy = f@i(l)wj(z)e /x5 ()Y (2)ar (1.19a)

J2j>0, always ferromagnetic and

2
s 2b
Ii5 = % |de| (1.19b)
U
Jij<0 always antiferromagnetic.
The Hamiltonian is written
Hij = (|Jij[ Ji575:°8;5 (1.20)

Of course there exist many other exchange interactionse,
of either sign, but these rarely dominate the magnetic properties.

Theoretical calculations of J are very difficult so one usually






considers J to be an experimentally determined quantity.

B. Anisotropy
It is a fact of life that magnetically ordered single crys-
tals are anisotropic. Although many of their properties can be
described purely on the basis of exchange, we are particularily
interested in their anisotropy. I will consider three sources
of anisotropy: dipolar, crystal field, and spin-orbit inter-

actions.

1. Dipolar anisotropy
The interaction between two magnetic dipoles a distance
r apart is

_ 3 > > _ —>.A ->.A
Hij = l/rij[ui uj 3(ui rij)(uj rij)] (1.21)

The magnetic moment of an electron is

uo_ UV LV
u; = uggs Si (1.22)

Let us assume an isotropic g tensor and define

uv _ 2 2 =3 . uv _ H .V _
Cij =g uBrij[G 3yijyij](l Gij) (1.23)

where ng is the direction cosine of ;ij with the u axis. The

9,10

total Hamiltonian can now be written to lowest order

H.. =L I cUVgHgV (1.24)
dipolar ij w,v "ij71i7)

If one knows the structure of a crystal with magnetic ions,
one assumes a magnetic arrangement and performs the sums of

equation 1.24 on the ubiquitous computer. A typical calculation

might be over 10,000 neighbors with 75 per cent of the interaction
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10
being due to nearest neighbors.

2. Crystal field anisotropy

Cryétal field anisotropy is intimately connected with the
spin-orbit interaction, but I feel it warrants individual dis-
cussion. The coulomb interaction between each unpaired electron
and the charge distribution of the crystal can be described by
an electrostatic potential V(?). The charge distributions sur-
rounding the magnetic ion may overlap the electrdn and analysis
of this rather hairy problem is called ;igand field theoryll.
It is much easier, and still very educational, to consider the
neighbors as point charges, a consideration I shall designate

as crystal field theory. This has the advantage that V(;) can

be expanded in spherical harmonics Ylm(6,¢).

V(r,8,0) = soa, rtv, (6,0) (1.25)

The symmetry of the crystal field resides in the Alm' Because
the electrons will be in nearly atomic orbital &' states, the
£>2"' terms in the expansion will be negligible. The spherical
harmonic ylm(6,¢) is a spherical tensor of rank %, order 2&+1.
The spin operator Sg is a spherical tensor operator of rank one
and order three, the elements being Sz, S+, and S . The Wigner-
Eckart theorem justifies an expansion of Yzm(6,¢) in a linear
combination of the products of 2 spin operators. In the absence
of applied magnetic field, time reversal invariance allows us

to eliminate odd product terms in our expansion. The crystal
field can be written as a bilinear expansion of spin operators,

the second order part can be written

H. = 3. -K..-8. (1.26)
1 i 1l 1
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3. Spin-orbit anisotropic effects
Suppose we express the interaction of an electron spin with

the field produced by its orbital motion in a potential V(;) as12

i = h2/2m2c?3- Yv(r) x B) = 22-3 (1.27a)

In a magnetic field we add a Zeeman term and the total Hamil-

tonian is

H, = AIi-Ei + UB(ii+z§i)-§ (1.27b)

Assuming that the states of the unperturbed system can be
reasonably described by orbitally nondegenerate wave functions,

a second order perturbation calculation gives

Heffective _Z

= AZpMVgHgY
1 U,V

- UV BV _
g9  H'S
- w2AMVeMe (1.28)

where
g"V = 2(&"Y - a"Y)
represents the admixture of orbital angular momentum into a

spin only ground state.

AWV I (Olzu]n)(nIQBJO) (1.29)

n#o En—EO

n represents excited states and 2AA"Y is called the g-shift, Ag.
The second term of equation 1.28 is the single ion aniso-

tropy. Note that, as mentioned in section 2, the AMY reflects

the crystal field symmetry. The wave functions we used can be

writtenl3

In) = [T,v)[s,M,)
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where I' is the irreducible point group symmetry representation
and is orbitally nondegenerate.

The most interesting effect of spin orbit interactions is
their ability to couple with superexchange to produce anisotropic
exchange effects. Moriya14 has done a rather general calculation
of this effect but I prefer to examinre a simplification employed
by Nagamiya et al6. Assume that the unperturbed states for two
magnetic ions are crystal field split orbitally nondegenerate

states. Let our perturbation be

vV = A(Ii-si) + A(Ej-sj) - 3(5;°5,) (1.30)

The second and third order energy corrections are, respectively,

> -> > -> 3 >
H.. = D..*(S.XS.) + S.+*K..-S. (1.31)
ij ij i™73 i"ij 73
where
s Jm. (0%, |m. Jm. (0%, |m.)
N m, (0] lIml) oz mJ( ] J| 3) 1.32)
ij amy Eoi-Emi mj on-Emj (
IRY A2 (1 uvZ  .nn nn uv uv
Kij =5 136 n(Fi + Fj ) - (I‘i + Fj )} (1.33)
Jm, (0] 2% |m,) (m, |2)]0)
ng - i i i'71 ; i (1.34)
i (Eoi - Emi)

and Jm is the superexchange between the i th ion in its m th
i 1
excited state and the j th ion. Comparing equations 1.34, 1.32

and 1.29 we may roughly estimate D and K as
D = 32 3 K = (é‘-‘l)2 3 (1.35)

The Bij.(gixgj) anisotropy is called Dzyaloshihsky-Moriya

antisymmetric exchange anisotropy because it is antisymmetric
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under exchange of coordinates. The Kij term is called anisotropic
exchange and is symmetric.

The D-M interaction is particularly interesting because it
exists only when the crystal symmetry is low. Moriya14 has de-
vised criteria for determining the directiocn of D based on
crystal symmetry. Consider atoms 1 and 2 located at lattice
sites A and B, the line connecting them is AB.

(i) When a center of inversion is located at the point
halfway between A and B,

D=0
(1ii) When a mirror plane perpendicular to AB bisects AB,
D is parallel to the mirror plane
(iii) When there is a mirror plane including A and B
D is perpendicular to the mirror plane
(iv) When a two-fold rotation axis perpendicular to AB
passes through the midpoint of AB
D is perpendicular to the two-fold axis
(v) When there is an n-fold axis along AB
D is parallel to AB

The total Hamiltonian for our system is written

H = Hex + Hdd + HDM + HCF + HAK + Hz (1.36)

The terms are respectively isotropic exchange, dipolar, D-M
antisymmetric exchange, crystal field anisotrcpy, anisotropic

exchange and Zeeman interactions.

C. The general second order interaction

The general second order interaction between a spin on a

lattice site i with a spin on lattice site j is given by6'9'10
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.= - L aWvgugy (1.37)
ij M,V i3 175

Let us decompose the tensor Ag; into symmetric and antisymmetric

partsls'16
uv = L1,.HV VU
MV = LaHv _ aVH
Aij(a) 2(Aij Aij) (1.38b)
where

A"y = a¥V(s) + atV(a)
ij ij ij

We define the isotropic exchange by the trace of Agy(s)

- v
Ii5 = 1/3 trai(s)) (1.39)

The anisotropic part of the symmetric exchange is

K¥Y

_ MY
ij Jij Aij(s) (1.40)

The antisymmetric coefficient is defined by

(1.41)

where Euvk is the completely antisymmetric tensor of rank 3.

The Hamiltonian 1s written

3
H.. = -J..9.-3. + D..-(3.x3.) + 3.-K..-3. (1.42)
ij ij°i %3 ij i3 i Tij %5

which represents the decomposition of a second order Heisenberg

Hamiltonian. Note that when i = j
H, = $.°K..-8S, (1.43)

which is a general second order crystal field interacticn.

Finally,






) (1.44)

D. The question of generality

The Heisenberg Hamiltonian has been successful to the point
of exceeding one's best expectations in describing, at least
qualitatively, a host of different magnetic effects. There
exists only a handful of materials that require more than second
order terms to explain their gross features. The crystals
MnFZ,Fer and CoF2 which have orthorhombic coordination and d
orbitals permitting fourth order anisotropy are very well under-
stood on a basis of second order terms onlys.

The most important failure of the spin Hamiltonian occurs
when the crystal field interaction is too weak to raise the
excited states significantly above the ground state, a situation
common in rare-earths. Even more disastrous is the non-Kramers,

or even number of electrons, case in which the ground state

may be orbitally degenerate and all bets are off.






II. MAGNETIC ORDERING

The theory of magnetic ordering is fraught with difficulty,
in fact the most complicated problem yet to be solved exactly
is the two dimensional Ising latticel7. The fact that one's
beginning Hamiltonian is an approximation makes one reluctant to
worry abouF exact solutions. However, before discussing the

various magnetic ordering theories, I wish to examine a very simple

magnetic system.

A. The simple paramagnet
Consider a system of N identical noninteracting spins with
total angular momentum S and magnetic moment ug- The Hamil-

tonian for one spin in an applied magnetic field is

+> >
H = -Uc-H = -ugzH (2.1)
If we let ugz = gugm, then
B = -gugmH (2.2)
The partition function is
s P N
= L ¢
Z, = ni-g expiguBmH/kBTj (2.3)
which we can write
. 2S+1 _° . x
z_(s) = sinh (255 x) /sinn (%5) (2.4)
where
X = guBSH/kT (2.5)
The magnetization is
M = Ngu,<m> (2.6)

1
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which can be written18

M= NguBSBS(x) (2.7)

Bs(x) is called the Brillouin function.

Bg(x) = iz%gll coth (x (25+1)/2S) - %g coth (x/2S) (2.8)

The susceptibility of this system is

av  N(aug)?s?B .t (x)

X =38 ~ kT

The zero field susceptibility we obtain by letting H+0

and expanding Bs(x) for x<<l.

BS(x) =~ (S+1)x/3S (2.10)
Bg(x) = (S+1)/3s (2.11)
Consequently
X, = Ng2U2S(S+1)/3kT (2.12)
Written in the form
Xo = Cc/T (2.13)

it is known as Curie's law for paramagnetic susceptibility.

. ' z
Since <m> = <§%>

<s?> = SBS(x)

(2.9)

(2.14)

or <Sz> = 0 for H=0

B. The Ordered State
A more realistic appraisal of N spins in a crystal will

suggest that one must include interactions between spins. In
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chapter I we discussed the Heisenberg Hamiltonian as a general
second order spin-spin interaction. For simplicity, the present
consideration of magnetic ordering may use only the isotropic
exchange part of the Hamiltonian. Given a system of magnetic
ions we ask the obvious questions: at what temperature does

the system order and what is the nature of the ordered state?

l. Molecular field theory
The MFT was employed in the earliest solutions to magnetic
ordering problems. The interactions of all the ions in the crys-
tal with a given spin are replaced by an effective field. This
is equivalent to letting <§ig§j> = <§i>-<§j> and ignores all
correlation effects.

Consider the interaction of the i th spin

H, = -8, - .3, (2.15)

i i"3743°55
orx
> >

H, = -guBSi-Hi (2.16)

> 1 }:-’ ->

H. = — %3...8. 2.17
i~ guy 37i3 73 ( )

where H, is the molecular field. The average of 3 is

M § exp(3, -H, quy/k ST}/ Y ex {3, %, § B (2.18)
1 P guB P 1k ‘
The molecular field approximation is made by letting
=123 .3 (2.19)

i~ gu; 3 Yi37%

Equation 2.18 is written

o, = s (guBH -3, ;1/%gT) (2.20)
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The disordered state is represented by 0=0. If we are in the
ordered state, near the ordering temperature Tc' 0 will be small

so we expand the exponentials and keep the first order termslg.

> >
5 913 oj = 3kBTc/S(s+l)oi . (2.21)

This coupled set of equations is solved by letting gi(ﬁ) repre-

sent the i th sublattice ion in the primitive cell at R. We

now must sum over primitive cells

}:1 T S . - <
j,ﬁ'Jij(R'R ) oj(R ) = Aoi(R) (2.22)

where
A= 3kBTc/S(S+l) (2.23)

Suppose we let the u th component of the spin be written

ik-R

=

¥ (R) = og(O)e (2.24)

-

where the k's are appropriate propagation vectors consistent
with periodic boundary conditions. Equation 2.23 is now writ-

ten in component form

ik-R'

L Juv o 2y H o,V
3.0y 3y o,k o (0)e = 10 (0) (2.25)
let
WV k) = L, g¥V(0,R") ik-R' (2.26)
ij = g YijylieRle .
jfusg;<i)og<o> = Ao} (0) (2.27)
> R ‘
jfu {;;;<k> - 6"V )} af(0) =0 (2.28)

Solutions to 2.27 exist if the determinant is zero

MV &y _ sHV £yl =
detlgij(k) ) Gijl(k)l 0 (2.29)



A
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The transition temperatures are proportional to the eigenvalues

of the Fourier transform of the exchange operator.
A(K) = 3kpT_/S(S+1) (2.23)

Let us consider the following example, suppose we have a
simple cubic lattice with lattice parameter a. Let J be iso-

tropic and nearest neighbor only. Considering two sublattices

0 J[cos(kxa)+cos(kya)+cos(kza)]

£ (k)

J [cos (k*a) +cos (k¥a) +cos (k%a) ] 0
The eigenvalues of this matrix are
A (k) = %J[cos (k*a)+cos (k¥a)+cos (k%a)] (2.30)
Consequently, the ordering temperatures are given by

Tc = S(S+1)J[cos(kxa)+cos(kya)+cos(kza)]/3kB (2.31)

Since the system will order in the mode with the highest transi-
tion temperature, we maximize the eigenvalues with respect to k.

If J>0 then E=0, corresponding to ferromagnetism. If J<0 then

-

k = (1,1,1)n/a, corresponding to antiferromagnetism. The ordering

temperature is
T, = s(s+1)|J|/3kB (2.32)

The general molecular field theory that we have discussed
here is particularly poor for large crystal field anisotropy
because it assumes <S?s®> = <s%><s%>. If one suspects crystal

field terms to be large, a better approximation should be usedzo



21

2. Green function theory
The main fault of molecular field theory is that it neg-
lects correlation and short range order effects. Green func-
tions are statistical mechanical generalizations of the concept
of correlation. For a general review of Green functions I recom-

22

mend a paper by Zubarev21 or books by Kadanoff and Baym and

Abrikosov et a123.
The double-time temperature dependent retarded Green func-

tion involving two Heisenberg operators21 A(t) and B(t') is

<<A(t);B(t')>> = -if(t-t')<[A(t),B(t")]> (2.33)

where 6 (t-t') is the step function, <> denotes the thermal aver-
age and [] denotes a commutator. We can Fourier transform this

quantity into a function of E = hw, whose equation of motion is

1
E<<A;B>>, = 5= <[A,B]> + <<[A,H];B>> (2.34)
The correlation function of A and B is
. <<A;B>> .. = <<A;B>> .
<B(t')A(t)> = Lim Im A;B w+ie A;B w-i€
€+0 /- m7kBT
e -1
(2.35)
-3 -
X e iw(t-t )dw

For simplicity we choose the isotropic Heisenberg Hamiltonian

13 +
H=-3 ijJij§i S, (2.36)

Choosing A and B as sSpin operators, equation 2.34 becomes

+ - 2S z
E<<Sg,S >> = 5= 8gh - ¢ Jfg {
(2.37)
+.2 - Zt o~
<<sfsg,s >>E - <<sfsg,sh>>E}
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where g, h denote lattice sites and S is the average value of

s%?. The equation will be solved in the Tyablikov or random

phase decoupling approximation where

+.z2 .- _ z + -
<<sfsg,s >>E = <sg><<sf,sh>>E (2.38)
Using this decoupling scheme the equation of motion is24
+ - _ 28 _z z + -
E<<Sg,s >>p = 55 6gh - ¢ Jfg<sg><<sf;s >>e
(2.39)
z z + -
+ ¢ Jfg<sf><<sg,s >>e

We now assume we have n sublattices and define Fourier transforms

of the Green functions
>
Gl(k,E) =g <<S

-» 3
for igand Rh on sublattice 1 and

Gi(i,E) = L <<S

- - <>
+ ik~ (Rg"‘Rh)
g,h g

:S.>>e (2.41)

for ﬁg on sublattice i and ﬁh on sublattice 1.

We define the Fourier transform of the exchange operator as
2y = 4 E ik- (R_-R )

for ﬁg on the i sublattice and ﬁh on the j sublattice.
We define the parameter ei = <S;>/S for ﬁg on sublattice i,

and

|
. ™M

£ = . Eij(O)Giej (2.43)

Equation 2.39 can be written in matrix form25

z

> - >
3 {Eij(k) - (& - GjE/Zw)Gij}Gj(k,E) = +6ij/2 (2.44)

L
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In order to find the ordering temperature we need only GI(E,E)

evaluated at E=0. If ki(ﬁ) is the i th eigenvalue of &ij(i),

then
> -11 o 1
and
T = S15+) 1 (2.46)
B <Gl(k,0)>k

There are two points worthy of comment. The average ex-
change interaction of equation 2.43 is defined assuming that
all magnetic sublattices are crystalographically equivalent
(called a Bravais system). The molecular field result for this

system can be obtained by setting Ai(f)=0.

3. Other methods
Molecular field theory gives a good qualitative descrip-
tion of many magnetic systems but has two serious shortcomings:
quantitatively, MFT is only an order of magnitude theory and it
contains no discussion of effects based on correlation between
spins. The MFT takes no account of short range order and fails

to predict the correct behavior of the magnetization near T=0 and

T=Tc26. GFT is much better quantitatively but suffers from a

complexity requiring elaborate approximation schemes such as

27 28

Callen decoupling and moment conserving“®. These are essent-

ially all temperature theories; Green function theory becoming

29

equivalent to spin wave theory at low temperatures. Some

other methods are:

(a) The Lyons-Kaplan30 or generalized method of Luttinger

31,15

and Tisza is a method for finding the classical ground



24

state configuration by minimizing the Hamiltonian subject to a

"weak constraint"

n,v Snv.snv) = stnv (2.47)

or

r 2 3 3 _ Zz a2 Sz

o . = 2.48
n,v nv.nv “nv n,v nv- nv ( )

The ground state spin configuration is found by solving the
eigenvalue problem for the Fourier transform of the exchange oper-
ator subject to conditions on the a e

(b) Probably the best available method for calculation
transition temperatures involves high temperature expansions32.
At temperatures above the ordering temperature the thermodynam-
ical quantities are expanded in powers of J/kBT. Given the

Heisenberg Hamiltonian with Zeeman interaction

z = trlexp(-H/kgT)] (2.49)
02 [k_T%nz] (2.50)

X = 2= [k.TLnz 2.50
3H2 B

Defining reduced susceptibility and temperature we find

[+ ]

- X n
X = 1/3 S(S+1)n=oan/e (2.51)
where
X = —3—3 X (2.52)
Ng"~uy

The real work is involved in finding the an's. For a simple

cubic ferromagnet with nearest neighbor interactions only,

32

Rushbrooke and Wood quote the relation
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kBTc/J = (5/96) (z-1) (11s(s+1l) -1) (2.54)

for z nearest neighbors.

i

The high temperature expansion is exact in the limit of
including enough coefficients (for the interaction assumed).
Ordering temperatures by HTE are 30 per cent to 50 per cent

lower than the MFT values.






III. THE MAGNETIC PHASE DIAGRAM

Antiferromagnets have very interesting behavior in applied
magnetic fields. Suppose we have an antiferromagnet with iso-
tropic exchange and uniaxial anisotropy L. The energy of the
system with applied field H in the easy, or parallel, direction

is, using MFT33

2

e" = -2x" (") 2-nLs (3.1)

where N is the total number of spins. The energy for H perpend-

icular to the antiferromagnetic axis is
b = LxtmH? (3.2)

Since antiferromagnets in the ordered state are characterized
by x*>x", when H = H" becomes large enough, the perpendicular
configuration will be energetically favorable and the spins will
flop perpendicular to the field - called spin-flop. The crit-

ical field is found by equating the energies
et =¢" (3.3)

which yields

Hgp = V2NLS?/ (x*+ —x") (3.4)

If one continues to increase the field, the spins will saturate
and the system is said to be in a paramagnetic state. We are
interested in investigating in detail the behavior of antifer-

romagnets with a more general anisotropic interaction.

26
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A. The Classical Energy
Let us consider the properties of an antiferromagnet at
T=0. We will rewrite the Hamiltonian, in the molecular field
approximation, as a free energy and solve the problem classic-
ally. We assume a simple Hamiltonian but one which includes

each type of second order anisotropy.

H = Hex + HaL + HaK + HD + Hz (3.5)
where
12z 2 . .
H = -z %.3..8.-8. isotropic (3.6a)
ex 2 1ij ij371 73 exchange
Ha, = -31.' ; sZs? uniaxial (3.6b)
- anisotropy
12 2.2 . .
Ha, = 5 ¢ .S'S anisotropic (3.6¢c)
K 2137137173 exchange
17z Z.X_ X.2Z .
H. = = .D..(S8.8.-8.8%) Dzyaloshinsky- (3.64)
D 2 137137473 7173 Moriya anti-
symmetric exchange
Hz = -guBﬁ-igi Zeeman (3.6e)
interaction
where Kii = Jii = 0 and Dij = —Dji. We now express the Hamil-
tonian as a free energy, considering the spins to be classical
34

vectors interacting with molecular fields™ .

= g2 -
e E/NS = S°{J cos(al “2)

1 2 2
—EL(cos alfcos az) + K cosalcosa2
+ D cos 8 51n(alja2)} -guBS{ (3.7)
Hx(sinol+ sinaz)cos 0 + Hy(sinai+ sinaz)sin 0

+ HZ (cosa .+ cosaz)}

1l
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where N is the number of spins per sublattice, ay denotes sub-

lattice A, aeA, and a, denotes sublattice B, beB (Fig. 1).

- z _ _ X
J = aeAJab = beBJab (3.8a)
L =1L'(1-1/28) (3.8b)
K= L Kab = . *_Kab (3.8c)
acA beB ¢
D=L pab = .~ _pab (3.8c)
acA beB °

We define the molecular fields as

Hp = JS/guB
H = LS/guB
(3.9)
HK = KS/guB
Hy = Ds/guB

The angles are expressed in a more convenient set by the trans-

formation

a, =a + ¢

(3.10)

a mT+a-=-9¢

2

The energy is expressed as a dimensionless quantity by dividing

out the exchange field

E/NJS2 = -cos(2¢) - hL[c08(2¢)cosza

™
"

+ sin2¢] - hK[cosza - sin2¢]
(3.11)
- hDsin(2¢)cos 8 - 2h®sin ¢ cos a cos O

- 2h¥sin ¢ cos a sin 6 + 2h%sin ¢ sin a
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Figure 1. Definition of the angles describing the spin array
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Figure 1
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where hL = HL/HE, etc.
Our problem is now thermodynamical - we must solve the equa-

tions of equilibrium and stability. The equilibrium equations are

(%]

€

= =0 (3.12)
ani
The stability equations are
2
2 2 2
9d°e 0d7¢ >
- = =s(n,,n;) >0 (3.13)

ani2 anj2 an;ony ]

where
-T; = (¢,2,0)

B. The Zero Temperature Phases
The zero temperature phases of the uniaxial antiferromagnet
(hD=0) have been studied in the molecular field approximation6'34,
in the spin wave approximation35, and in the RPA and Callen

36 More recently37'38'39,

decoupled Green function approximations.
the solutions to equation 3.11 have been considered in the limit
of hD<<1. However, three subjeéts need to be investigated in
detail: the nature of the spin flop discontinuity, the effects

of large hD and the paramagnetic boundaries.

1. The zero field equilibrium configuration
‘If we let h=0 and evaluate equation 3.12 for a, 6 and ¢

we find the equilibrium conditions are

8 =a_=0 (3.14a)
(o] o)
and
¢ = Ytan1{2h /(2 + h, + h_)} (3.14b)
o 2 . D/ K L N
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The spins lie in the xz plane, perpendicular to the D vector,
"antiferromagnetically" aligned on the Z axis but tipped an angle

¢o toward the X axis. This produces a net moment

Mz = sin ¢o

in the X direction

2. The parallel configuration
If we let h = (0,0,h) the applied field is parallel to the
easy axis, from symmetry we see 6=0. The spin flop transition
described in the beginning of Chapter III is actually a first
order transition. The first order phase transition is charac-

terized36

by discontinuities in the energy or magnetization and

a magnetic hysteresis. There is no unique spin flop field but

a region in which both the AF state and the SF state are stable.
The upper boundary of this region is hsh and the lower is hsc’

If one increases the applied field from zero, the AF state re-
mains stable up to hsh' analogous to the superheated liquid-gas
transition. If one then reverses the process, reducing the field,
the SF state remains stable down to hsc’ analogous to the super-
cooled gas-liquid transition. The energies of the AF and SF
states are equal at the thermodynamical transition hth implying

that if h <h<hsh, the AF state is metastable, and if hsc<h<h

th
the SF state is metastable. Let us examine the equations of

th'

the parallel configuration. The equilibrium equations are

2e/9¢

[2+hK+thos(2a)]sin(2¢)—2thos(2¢)+2h cos¢sina = 0 (3.15)

9e/d3a = [hK+thos(2¢)]sin(2a)+2h singcosa = 0 (3.16)
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The stability function is
S(¢,a) = {[2 + hy + h cos(2a)]cos(2¢) + 2h;sin(2¢)

-h sin ¢ sin a}{[hK + thos(2¢)]cos(2a)

(3.17)
-h sin ¢ sin a}—{thin(2¢)sin(2a)
2
-h cos ¢ cos al“ =0
If cos (a)#0, ¢ and o are related by equation 3.16
sin & = -h sin ¢/(hK+thos(2¢)) (3.18)

The transition from AF to SF states, called the super-
heated transition, is defined by S(a,¢)=0. The solution for

h =0 is well known and is given by

h_, (0) = [(2+h +h_) (A +h_) (3.19)

The hD=0 case is characterized by a=¢=0 for h<hsh(0) and
a=—% for h>hsh(0). When thO, the net moment is pulled from the
X axis, increasing in magnitude as it approaches the z axis.
Therefore, when hD#O, h<hsh(hD), a and ¢ are not zero. As h
approaches h_,, || becomes larger and approaches a critical
angle ash(hD) (Fig. 2). When h exceeds hsh' then a=-%~with an
accompanying discontinuity. The hD#O equations were solved by
computer (Fig. 3) using Newton's method for three unknowns
(Appendix A).

The spin flop state is defined by letting a=—%. The bound-
aries of this phase occur at S(-l,¢)=0. When hD=0, there are
two phase boundaries, a first order spin flop to antiferromagnetic,

called the supercooled boundary, and a second order spin flop to
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Figure 2. The superheated critical angle ash(hD) vs. hD with
hK=0 and hL=0.l
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Figure 3. The spin flop critical fields vs. hD with hK=0 and
hL=o.1
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paramagnetic boundary at higher field. The hD=0 solutions are

hsc(O) = (2+hK-hL) /(hK+hL)772+hK+hL) (3.20)
hp(O) = 2 + hK - hL (3.21)

Consequently, the spin flop state is stable for hsc<h<h;.

The hD#O solutions were found numerically (Fig. 3). The
paramagnetic transition, which corresponds to ¢=%, does not
occur at finite fields, since the D-M interaction will lower the
energy of the spins if they cant slightly. To see this, examine
the energy when h is large, but finite, and ¢=% -§. From

equation 3.15 we see that 6=HQ so the energy, to order hg/h, is

e =1+ hK - hL - 2h - hDG

No matter how large h is, 6#0 will give a lower energy.
Experimentally, one almost always observes the thermody-

namic transition defined by € = € This is because for

AF SF*
fields in the metastable regions, a slight disturbance foments
the transition. One usually argues that nucleation centers in
the crystal prevent metastable states from being long lived4°.
The procedure for finding the thermodynamic critical field hth

is to define

and solve for A=0. When hD=0, the solution is

hth(o) = Q(2+hK-hL)(hK+hL) (3.22)

which is equivalent to equation 3.4. The hD#O equations were

solved numerically (Fig. 3) and as one would expect % <%sp e
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Figure 4. A comparison of numerically calculated hsc with the

approximation of equation 3.27
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The critical fields obey hsc<hth<hsh but

hth = V“schsh

only when hD=0.
Suppose we let 6=0 and a=—%, then if hD<<1 and hL<<l, we

can solve equations 3.15 and 3.17 to obtain an approximation

for hsc(hD).
(2+hK—hL)sin(2¢)- Zthos(2¢)-2h cos ¢ =0 (3.23)
hK + thos(2¢) - h sin ¢ =0 (3.24)

Assuming ¢ is small, equation 3.23 gives
sin(¢) = (h+hD)/(2+hK—hL) (3.25)

It is important to notice that the term (h)sin(¢) is second

order in ¢, so we write equation 3.24
.2 . _
hK + hL - 2hL51n ¢ - hsin ¢ =0 (3.26)

Substituting sin(¢) and neglecting hg terms we get, assuming

hD<hL,

o g 2 2 '
hsc(hD) = ( h, + /hD + 4hsc(0) )/2 (3.27)
In Figure 4 we have a comparison of the numerically calculated

solutions and the approximate solution of equation 3.27.

3. The perpendicular configuration
The magnetic field applied perpendicular to both D and the
easy axis, ﬁ=(h,0,0), results in 6=a=0. When hD=0, a second
order paramagnetic transition occurs at

h;(O) = 2+hK+hL (3.28)
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As in the previous case, hD#O destroys the second order paramag-

netic transition

4. The D configuration
When ﬁ=(0,h,0) is parallel to D and perpendicular to the
plane of the spins (for zero field), we can solve the equations
exactly. For hpy=0 the problem is equivalent to the perpendicular
configuration (section 3). For hD#O, the equilibrium equations

are, for a=0
/3¢ = (2+hK+hL)sin(2¢) —Zthos(2¢)cose
(3.29)
-2h cos ¢ cos 6 = 0
and
9e/960 = 2hDsin¢ cos¢ sinb - 2h sin¢ cos6 = 0 (3.30)
The stability function is
S(¢,6) = {(2+hK+hL)cos(2¢) + 2h;sin(2¢) cos6
+h sin¢ sin6} {h sin¢ sin6 + thos¢ sin¢ cos6 (3.31)
—{hDsine cos(2¢) - h cos¢ cosb} 2> 0
Equation 3.30 yields the immediate result

cosf = (hD/h) cos¢ sinb (3.32)

We see that the magnetic field pulls the net moment an angle 6
from the x axis. The solution to equations 3.29 and 3.31 is

9=¢=% at a critical field

2 1

2 /2 (3.33)

1 - 1 1 2
hp (hp(O) + J[hp(O)] +4h
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5. Discussion of the effect of hD on the zero
temperature phases

The antisymmetric canting interaction has had an inter-
esting effect on our system. The net moment produced by the
canting is rotated toward a magnetic field. For h applied par-
allel to the easy axis, the spin flop transition is still
first order, but as hD increases the transition occurs at great-
er angles and the hysteresis is reduced until the metastable re-
gion becomes extremely narrow. The effect of hD is to reduce the

spin flop fields; we can see this by examining equation 3.25

sin ¢ =(h+hD)/(2+hK - h.) (3.25)

L

Imagine that hD=0, hL<<l and h=hsc(0)+6h, where 6h<<l, so that
the spins are in the spin flop state. We can simultaneously
decrease h and increase hD without changing ¢, consequently,

for small hD

The paramagnetic transition occurs at h== unless h is
parallel to D. If h is parallel to D the D-M .interaction is
weakened as 6+% and the hD ter