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ABSTRACT

THE ANISOTROPIC ANTIFERROMAGNET-

THEORY AND EXPERIMENT

BY

Christopher Warren Fairall

The phase transitions of the two sublattice antiferro-

magnet with general second order anisotropy have been studied

in the molecular field approximation. The interactions

included were the isotrOpic and anisotrOpic exchange, uni-

axial crystal field anisotropy and Dzyaloshinski-Moriya

antisymmetric exchange anisotrOpy of the form B'§1X§2' The

3 vector was chosen perpendicular to the antiferromagnetic

axis and the phase transitions induced by applied magnetic

field were calculated numerically from the equations of

equilibrium and stability. The antiferromagnetic to spin

flop transition remains first order while the second order

paramagnetic transition is destroyed by the D-M interaction

unless the field is applied parallel to B.

The principal axis susceptibilities were calculated,

revealing an inflection point corresponding to a quasipara—

magnetic transition and an infinite anamoly at the Spin flop

critical field. Included is a calculation of the angle
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dependence of the susceptibility of the uniaxial antiferro-

magnet in applied field.

Magnetic susceptibility measurements were made on

CszMnCl4'2H20, szMnCl4-2H20 and CuClz-ZHZO. The suscepti-

bility was measured as a function of temperature and

magnitude and orientation of applied field in liquid He4.

2MnCl4-2H20 and

RbZMnCl4-2H20 were measured and no spin flop boundaries

The magnetic H-T phase diagrams of Cs

were found to exist above 1.2 Kelvins.

The molecular field theory developed in the text was

used to interpret the data including data taken from the

literature on MnC12-4H20. The results are as following:

1. CsZMnCl4-2H20 and szMnCl4-2H20 eXhlblt an

unusually large anisotrOpy that is significantly larger in

the ordered state than in the paramagnetic state. Molecular

field calculations indicate CszMnCl4-2H20 will spin flop

below Ttp=o'55 K at a critical field Htp=l7 kOe and

szMnCl4-2H20 will spin flop below Ttp=o'83 K at a critical

field Htp=21 k0e.

2. Excellent agreement between theory and experiment

was found for the susceptibility as a function of magnitude

and orientation of applied field for CuClz-ZHZO.

3. Molecular field theory gave consistent results

for phase diagram and susceptibility data on MnC12-4H20.
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INTRODUCTION

Magnetic ordering, though known at least experimentally

for centuries, was first understood with the development of

quantum mechanics in the 1920's. It is now known that the

magnetic moments associated with magnetic ions in crystals can

take on many possible arrangements including ferromagnetic, anti-

ferromagnetic, canted antiferromagnetic, ferrimagnetic and spiral

configurations. The arrangement a given lattice of spins will

acquire depends upon the interactions of the system. The inter-

action that has been most successful in describing the arrange-

ment and pr0perties of magnetic insulators is the general

Heisenberg interaction, second order in the spin operators.

Magnetic materials can be studied by a number of experi-

ments including resonance, specific heat, neutron diffraction

and susceptibility. Antiferromagnets are particularly inter-

esting because in applied magnetic fields they can undergo var-

ious phase transitions corresponding to realignment or satura-

tion of the spin system. The basis of these transitions is

the interplay between the isotrOpic and anisotropic parts of

the interaction.

The first successful theory describing these magnetic sys-

tems was the molecular or effective field approximation where

one considers the interaction of a given spin with its neigh-

bors to be an average effect that can be replaced by an effect-

ive magnetic field. Although more saphisticated theories now

exist, our primary concern in this work is to explore the abil-

ity of molecular field theory to explain the properties of the

1
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anisotropic magnetic insulator. Specifically, we wish to accomp-

lish the following:

1. Unify the existing theoretical base of the Heisenberg

interaction and the magnetic ordering it produces.

2. Extend the theory of the magnetic phase diagram to a

general second order interaction for the canted antiferromagnet.

3. Write a theoretical description of the magnetic sus-

ceptibility as a function of orientation, applied field and temp-

erature. Particular emphasis is placed on the anisotropic prOp-

erties of canted or uniaxial antiferromagnets in applied fields

and the behavior of the susceptibility near critical points.

4. Describe the construction and use of apparatus capable

of measuring suceptibility as a function of orientation, applied

field and temperature.

5. Present the results of susceptibility measurements

made with this apparatus and their theoretical interpretation.

we also apply the theory to previously existing data on a mater-

ial that is well understood. The purpose iS-tO evaluate the

consistency and accuracy of the theory.



I. THE HEISENBERG HAMILTONIAN

The interactions that govern the behavior of a system of

electron spins in an insulating solid are multitudinous, but

one can describe many of the magnetic properties by considering

two separate but not wholly orthogonal interactions: exchange

and anisotropy.

A. Exchange

1. The two electron system.

Exchange is a purely quantum mechanical effect and, having

no classical analogue, it is difficult to employ physical intui-

tion when discussing it. However, the next best thing to phys-

ical intuition is history, so I will describe a simple example

demonstrated by Heisenberg1 in 1926.

Suppose we have two electrons in similar potentials. The

Hamiltonian for the pair is

where l and 2 refer to coordinates of the respective electrons

+ +

and r12 = Ir1 - er-

Let

H = H + e2/r (1.2)
o 12

and assume e2/r12 is a perturbation on ”0'

H W9. = 29.??. (1.3)
o 13 1] 1]



where

(1.4)

o _ o o

E0 =E‘?+E
1] 1 3

We can make this separation because HO contains no interaction

between 1 and 2.

First order perturbation theory gives a correction to the

energy

E.. = ER. +
13 l]

= *0 O 2

where Bij is the average repulsive

electrons in states i and j.

The Pauli exclusion principle

function to be antisymmetric under

and 2.

by the Slater determinant

w‘i’umm

I
-
‘

W..(l,2)= -

6
1

 
w‘j’um (1)

where alpha is the "spin up" wave function.

2
more possible wave functions W , W , W4

ent Spin configurations.

(1.5)
o o

Wi(l) Wj(2)dr

coulomb interaction of the

requires the total wave

"exchange" of particles 1

The apprOpriate wave functions including spin are given

w‘i’(2)a(2)

(1.6)

 9"]?(2) (1(2)

There are three

corresponding to differ-

Diagonalization of the matrix elements

ch'with these wave functions results in a singlet of energy

(1.7)
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and a triplet of energy

E = E.. + B . - J.. (1.8)

where

_ *o *o 2 o o
Jij — f wi(1) wj(2)e /r12 wj(1) wi(2)dr (1.9)

is called the direct exchange integral.

2. Many electron exchange

Unfortunately, one cannot describe the behavior of a crys-

tal in terms of two electron wave functions. If we consider N

electrons (designated :1) on N reasonably localized lattice

+

sites (R ), the Hamiltonian is
alpha

2
P. 2 2

_ Z 1 _ Z Ze Z ‘1 e

H — i 2m i.a Iri-Ral + ij 2 rij- (1'10)

. . . . 2

and a convenient set of wave functions are Wannier functions

th
¢nl(; - Ra) which resemble the n atomic orbital with spin 1

on lattice site a but drop off through the lattice in such a

‘way as to be orthogonal. If one rewrites the Hamiltonian in

nd 3,4
, one can show that the2 quantized field Operator form

exchange term can be expressed

.I’ '\

_.2 ++. ;l__ +.++|'

Hex — aa' Jnn'(Rc'Ra )‘34 + S(Ra) 8(Ra ){ (1.11)

nn' “

where

J ,(R ,R ') = (an;a'n'|VIo'n';an)

(1.12)

Equation 1.11 is referred to as the Heisenberg exchange
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Hamiltonian, originally derived for two electrons by Diracs.

3. Superexchange

In most insulating crystals the magnetic ions are separated

by large distances with intervening ligands; it follows that the

direct exchange of equation 1.12 is very small and cannot ac-

count for the much larger interactions that are usually observed.

Let us consider a system of two Mn++ ions joined by an

0 ion. The ground state is illustrated by

++ -- ++

(A)

where p and d refer to atomic orbital states. The excited

state corresponds to promotion of one 0-— p electron into the

d shell of Mn++.

Mn+ 0’ Mn++

' (B)

dldl p 62

The wave functions for the configurations are writtens'7

WA wdl(1)wp(2)wp.(3)wd2(4)

(1.13)

‘l’ =‘I’ (l)‘l’ 1(2)!I (3)‘lt (4)
B d1 (11 p d2

The perturbing Hamiltonian is assumed to consist of a spin inde-

pendent part, V , connecting states A and B, and a spin depend-

 

t

ent part, Ve’ diagonal with respect to orbital states. Spin

dependence shows up first in the 3rd order energy correction as

I I I I

E _ 2 (AtIVtIBt )(3t [2213“ )(B“ IvtIA“) (1.14,
3 t,u (Et' _ EtHEu' _ Eu)

B A B A
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t, u denoting spin configurations.

One rewrites the wave functions in states of definite

parity in terms of the spin coupling of the Mn-to one 0 elec-

tron. For example WA[(pdl)3(p'd2)l] is a ground state wave

function with the d1 electron of Mnl and the p electron of

0-- in a triplet state and the d electron of Mn
2 2

electron of 0-- in a singlet state. The energy of this system

and the p'

can be written

— .__l_ - 1 . 2 .+
E - [AE(t)2 m2] 2b de(§l 52)

(1.15)

1 3 1 2

" If [AEZtIZ + AE(S)2] 21’ de

where the transfer integral is

b = fwdl(1)wp(1)vtdr (1.16)

and

*

de = ] wp(1)§d(2)vewp(2)wd(1)dr (1.17)

is the exchange of the Mn++ 0 system. The energy of the Mn+

in the singlet and triplet states is given by AE(S) and AE(t)

respectively.

Let us suppose that Mnl has Spin up. Now assume that

J >0, therefore, the p electron associated with Mn1 will have

Pd

spin up. The p' electron will have spin down and therefore an

will have spin down - the interaction is antiferromagnetic.

Another way of describing this process is to assume de>0 implies

AE(S)+00 and AE(t)+U, the average coulomb interaction of an

electron with another electron on the same ion
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E — 393 J (S E 1 18
spin _ U2 pd l. 2) ( ' a)

Since de>0, the coupling is antiferromagnetic.

Now we assume de<0, the p electron associated with Mnl

will have spin down, p' will have spin up and Mn will have spin
2

down - the interaction is antiferromagnetic if de<0, let

AE(t)+00 and AE(s)+U. Consequently

E = -§—33- (J )(S -S ) (1 18b)
spin U2 pd 1 2 '

but now J <0 so
pd

E - sz IJ |(§ § ) (1 1e )
spin ‘ U2 pd 1 2 ' c

which is an antiferromagnetic coupling. We therefore express

the superexchange in the form of equation 1.18 and note that it

is always antiferromagnetic.

It is customary8 to define direct exchange and superexchange

as

o _ * 2
Jij — f§i(1)wj(2)e /r12wj(1)wi(2)dr (1.19a)

Jij>0, always ferromagnetic and

2
s _ _2b

J1] — ——2 ldel (1.19b)

U

Jij<0 always antiferromagnetic.

The Hamiltonian is written

H.. = (IJ?.|-J?.)§.-§. * (1.20)
l] (13' l] 1 3

Of course there exist many other exchange interactionsa,

of either sign, but these rarely dominate the magnetic prOperties.

Theoretical calculations of J are very difficult so one usually
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considers J to be an experimentally determined quantity.

B. AnisotrOpy

It is a fact of life that magnetically ordered Single crys-

tals are anisotropic. Although many of their properties can be

described purely on the basis of exchange, we are particularily

interested in their anisotrOpy. I will consider three sources

of anisotrOpy: dipolar, crystal field, and spin-orbit inter-

actions.

1. Dipolar anisotropy

The interaction between two magnetic dipoles a distance

r apart is

_ 3 +.+ - +.A +.A

Hij — 1/rij[ui uj 3(ui rij)(uj rij)] (1.21)

The magnetic moment of an electron is

H _ HV V
ui - uBgi Si (1.22)

Let us assume an isotrOpic g tensor and define

uv _ 2 2 -3 uv _ u v _

where ng is the direction cosine of Eij with the u axis. The

9,10
total Hamiltonian can now be written to lowest order

H . = E. 2 CRYSRSY (1.24)
dipolar 1] u,v 13 1 3

If one knows the structure of a crystal with magnetic ions,

one assumes a magnetic arrangement and performs the sums of

equation 1.24 on the ubiquitous computer. A typical calculation

might be over 10,000 neighbors with 75 per cent of the interaction
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10

being due to nearest neighbors.

2. Crystal field anisotrOpy

CryStal field anisotrOpy is intimately connected with the

spin-orbit interaction, but I feel it warrants individual dis-

cussion. The coulomb interaction between each unpaired electron

and the charge distribution of the crystal can be described by

an electrostatic potential V(?). The charge distributions sur-

rounding the magnetic ion may overlap the electron and analysis

of this rather hairy problem is called ligand field theoryll.

It is much easier, and still very educational, to consider the

neighbors as point charges, a consideration I shall designate

as crystal field theory. This has the advantage that V(;) can

be expanded in spherical harmonics Y£m(6,¢).

V(r.e.¢) = iiafimrzyzm(e.¢) (1.25)

The symmetry Of the crystal field resides in the Alm' Because

the electrons will be in nearly atomic orbital 2' states, the

£>£' terms in the expansion will be negligible. The spherical

harmonic y2m(6,¢) is a spherical tensor of rank R, order 22+l.

The spin Operator 5: is a spherical tensor Operator Of rank one

and order three, the elements being 32, 8+, and 8-. The Wigner-

Eckart theorem justifies an expansion Of Y2m(6,¢) in a linear

combination of the products Of 2 spin Operators. In the absence

Of applied magnetic field, time reversal invariance allows us

tO eliminate Odd product terms in our expansion. The crystal

field can be written as a bilinear expansion of spin operators,

the second order part can be written

a. = S.- ..-s. (1.26)
l 1 ll 1



 

t
n
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ll

3. Spin-orbit anisotropic effects

Suppose we express the interaction of an electron spin with

the field produced by its orbital motion in a potential V(;) aslz

HS = hZ/szCZE-(TV(r) x E) = AI-S (1.27a)

In a magnetic field we add a Zeeman term and the total Hamil-

tonian is

H. = Ali-E. + U (Ei+2§.)-fi (1.27b)

Assuming that the states Of the unperturbed system can be

reasonably described by orbitally nondegenerate wave functions,

a second order perturbation Calculation gives

Heffective = 2 -u guvHuSv _ A2Auvsusv

1 u,v B

- UgAuvHqu-. (1.28)

where

gUV = 2(6W - 1A“V)

represents the admixture Of orbital angular momentum into a

Spin only ground state.

Auv _ 2 (OIRUIn)(nI£VIO) (1.29)
n#o En-Eo

n represents excited states and 2AA1N is called the g-Shift, Ag.

The second term Of equation 1.28 is the single ion aniso-

tropy. Note that, as mentioned in section 2, the Auv reflects

the crystal field symmetry. The wave functions we used can be

written13

In) = IFIY) ISIMS)





12

where F is the irreducible point group symmetry representation

and is orbitally nondegenerate.

The most interesting effect of spin orbit interactions is

their ability to couple with superexchange.to produce anisotrOpic

exchange effects. Moriyal4 has done a rather general calculation

Ofthis effect but I prefer to examine a simplification employed

by Nagamiya et a16. Assume that the unperturbed states for two

magnetic ions are crystal field split orbitally nondegenerate

states. Let our perturbation be

v = A(Ii.si) + 1(Ij-sj) - J(Si-Sj) (1.30)

The second and third order energy corrections are, respectively,

3 +

  

 

+ + + +

H.. = D..-(S.XS.) + S.-K..-S. (1.31)

13 1] 1 j 1 1] j

where

r J . o I. m. Jm. o I. m. \

B = 11(2 ml( I ll 1) - Z ‘3( I 3' 1)I (1.32)
ij Lmi EOi-Emi mj EOj-Emj I

HV )2 (l uvZ nn nn uv uv
= '- f- . + . - . + o oKij 2 136 n(Fl P3 ) (P1 P3 )} (1 33)

Jm. (0|!LPIm.) (m. IQYIO)
rpv = i 1 1 1 g 1 (1 34)

1 (EOi - Emi)

and Jm is the superexchange between the i th ion in its m th

1 1

excited state and the j th ion. Comparing equations 1.34, 1.32

and 1.29 we may roughly estimate D and K as

D = g9 J K 2 ($3)2 J (1.35)

The Dij-(SiXSj) anisotrOpy is called Dzyaloshinsky-Moriya

antisymmetric exchange anisotropy because it is antisymmetric
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under exchange Of coordinates. The Kij term is called anisotropic

exchange and is symmetric.

The D-M interaction is particularly interesting because it

exists only when the crystal symmetry is low. Moriya14 has de-

vised criteria for determining the direction of 5 based on

crystal symmetry. Consider atoms 1 and 2 located at lattice

sites A and B, the line connecting them is AB.

(i) When a center Of inversion is located at the point

halfway between A and B,

B=o

(ii) When a mirror plane perpendicular to AB bisects AB,

D is parallel to the mirror plane

(iii) When there is a mirror plane including A and B

D is perpendicular to the mirror plane

(iv) When a two-fold rotation axis perpendicular to AB

passes through the midpoint Of AB

D is perpendicular to the two-fold axis

(v) When there is an n-fold axis along AB

+

D is parallel to AB

The total Hamiltonian for our system is written

H = Hex + Hdd + HDM + HCF + HAK + Hz (1.36)

The terms are respectively isotropic exchange, dipolar, D-M

antisymmetric exchange, crystal field anisotropy) anisotropic

exchange and Zeeman interactions.

C. The general second order interaction

The general second order interaction between a spin on a

lattice site i with a spin on lattice site j is given by6'9'lo





14

X uv u v

o. = - .0803. O

1] Uvall 1 J (1 37)

Let us decompose the tensor Ag; into symmetric and antisymmetric

partsls'16

uv _ 1 uv vu
Aij(s) — 2(Aij + Aij) (1.38a)

uv =‘1 uv _ vu
Aij(a) 2(Aij Aij) (1.38b)

where

AP? = APY(s) + APY(a)
1] 13 13

We define the isotrOpic exchange by the trace of A:;(s)

- uv
Jij — 1/3 tr(Aij(s)) (1.39)

The anisotropic part Of the symmetric exchange is

uv _ _ uv

The antisymmetric coefficient is defined by

bi. = APY(a)e (1.41)
13 13 uvA

where Euvl is the completely antisymmetric tensor Of rank 3.

The Hamiltonian is written

1

3.. = -J..§.-§. + E..-(§.x§.) + S.-K..-S. (1.42)
13 13 1 J 13 1 J 1 13 3

which represents the decomposition of a second order Heisenberg

Hamiltonian. Note that when i = j

H. = §.-x .-s. (1.43)

which is a general second order crystal field interaction.

Finally,
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w (1.44)

D. The question Of generality

The Heisenberg Hamiltonian has been successful to the point

of exceeding one's best expectations in describing, at least

qualitatively, a host Of different magnetic effects. There

exists only a handful Of materials that require more than second

order terms to explain their gross features. The crystals

and CoF which have orthorhombic coordination and d
2 2

orbitals permitting fourth order anisotropy are very well under—

14an , FeF

stOOd on a basis Of second order terms only6.

The most important failure of the spin Hamiltonian occurs

when the crystal field interaction is too weak to raise the

excited states significantly above the ground state, a situation

common in rare-earths. Even more disastrous is the non-Kramers,

or even number Of electrons, case in which the ground state

may be orbitally degenerate and all bets are off.



 



II. MAGNETIC ORDERING

The theory Of magnetic ordering is fraught with difficulty,

in fact the most complicated problem yet tO be solved exactly

is the two dimensional Ising latticel7. The fact that one's

beginning Hamiltonian is an approximation makes one reluctant to

worry about exact solutions. However, before discussing the

various magnetic ordering theories, I wish to examine a very simple

magnetic system.

A. The simple paramagnet

Consider a system Of N identical noninteracting spins with

total angular momentum S and magnetic moment us. The Hamil-

tonian for one spin in an applied magnetic field is

+ +

H = -US'H = ”uSzH (2.1)

If we let usz = guBm, then

Hm = -guBmH (2.2)

The partition function is

if ’ ‘~
ZS = m=—s exp(guBmH/kBT (2-3)

which we can write

. 28+1 ' . x
23(8) = S1nh -§§— x) /51nh (EEI (2.4)

where

x = guBSH/kT (2.5)

The magnetization is

M = NguB<m> (2.6)

1‘
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wh1ch can be wr1tten

M = NguBSBS(x) (2.7)

BS(x) is called the Brillouin function.

Bs(x) = 13§§11 coth(x(2$+1)/2$) — %§ coth(x/ZS) (2.3)

The susceptibility Of this system is

2 2
dM N(gUB) S

x = 55 = kT

BS'(X)

 (2.9)

The zero field susceptibility we Obtain by letting H+0

and expanding BS(x) for x<<l.

BS(x) = (S+1)x/3S (2.10)

Bé(x) 2 (s+1)/3s (2.11)

Consequently

x0 = Ngzu§S(s+1)/3kBT (2.12)

'Written in the form

x0 = C/T (2.13)

it is known as Curie's law for paramagnetic susceptibility.

Since <m> = <sz>

<sz> = SBS(x)

(2.14)

or <Sz> = 0 for H=0

B. The Ordered State

A.more realistic appraisal Of N spins in a crystal will

suggest that one must include interactions between spins. In
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chapter I we discussed the Heisenberg Hamiltonian as a general

second order spin-spin interaction. For simplicity, the present

consideration Of magnetic ordering may use only the isotrOpic,

exchange part Of the Hamiltonian. Given a system Of magnetic

ions we ask the Obvious questions: at what temperature does

the system order and what is the nature of the ordered state?

1. Molecular field theory

The MFT was employed in the earliest solutions to magnetic

ordering problems. The interactions of all the ions in the crys-

tal with a given spin are replaced by an effective field. This

. . . + + + .
18 equivalent to lett1ng <Si¢Sj> = <§i>o<sj> and 1gnores all

correlation effects.

Consider the interaction of the i th spin

1

H. = -§.-§J..-§. (2.15)
1 1 J 13 3

or

+ +

Hi = -guBSi°Hi (2.16)

+

E = '1_’ 23 .go (2017)

i guB j ii 3

where H1 is the molecular field. The average Of S is

+ _2 + )3 39°13
01 - 1 Si exp{Si-HiguB/kBT}/i exp{§i HiEET} (2.18)

The molecular field approximation is made by letting

I

E. = —l— E J..-O. (2.19)
1 guB J 13 3

Equation 2.18 is written

+ + ++

oi — iBS(guBni-oi/kB'I-) (2.20)



I
v

v
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I a + O

The disordered state is represented by 0:0. If we are in the

ordered state, near the ordering temperature Tc' 0 will be small

so we eXpand the exponentials and keep the first order termslg.

+ +

j ij oj — 3kBTC/S(S+l)oi 3 (2.21)

This coupled set of equations is solved by letting 31(R) repre-

sent the i th sublattice ion in the primitive cell at R. We

now must sum over primitive cells

.(§,§')-3j(§') = 131(8) (2.22)

where

A = 3kBTc/S(S+l) (2.23)

Suppose we let the u th component of the spin be written

,->->

a 1k R (2.24)

1
»
:

(fi) = 02(0)e

where the k's are apprOpriate prOpagation vectors consistent

with periodic boundary conditions. Equation 2.23 is now writ-

ten in component form

j,§. J““(o,R' )0; (0)eik’fi' = 102(0) (2.25)

let

€§;(i) = g. J§;(o,§')eii'§' (2.26)

j:ug:;(k)ag (0) = 102(0) (2.27)

j2” {§"V(k) - 6““61j1(ii} 03(0) 5 o (2.28)

Solutions to 2.27 exist if the determinant is zero

uv + _ uv + =
detlgij(k) 5 eij)(k)| 0 (2.29)
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The transition temperatures are prOportional to the eigenvalues

of the Fourier transform Of the exchange Operator.

1(E) = 3kBTc/S(S+l) (2.23)

Let us consider the following example, suppose we have a

simple cubic lattice with lattice parameter a. Let J be iso-

trOpic and nearest neighbor only. Considering two sublattices

0 J[cos(kxa)+cos(kya)+cos(kza)]

HE)

J[cos(kxa)+cos(kya)+cos(kza)] 0

The eigenvalues of this matrix are

1(k) = iJ[cos(kxa)+cos(kya)+cos(kza)] (2.30)

Consequently, the ordering temperatures are given by

Tc = S(S+1)J[cos(kxa)+cos(kya)+cos(kza)]/3kB (2.31)

Since the system will order in the mode with the highest transi-

tion temperature, we maximize the eigenvalues with respect to I.

If J>0 then i=0, corresponding to ferromagnetism. If J<0 then

+

k = (l,l,l)n/a, corresponding to antiferromagnetism. The ordering

temperature is

To = 3(s+1)|J|/3kB (2.32)

The general molecular field theory that we have discussed

here is particularly poor for large crystal field anisotrOpy

because it assumes <SzSz> = <Sz><Sz>. If one suspects crystal

field terms tO be large, a better approximation Should be usedzo.
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2. Green function theory

The main fault Of molecular field theory is that it neg-

lects correlation and short range order effects- Green func-

tions are statistical mechanical generalizations Of the concept

Of correlation. For a general review of Green functions I recom-

22
mend a paper by Zubarev21 Or books by Kadanoff and Baym and

Abrikosov et a123.

The double-time temperature dependent retarded Green func-

tion involving two Heisenberg Operators21 A(t) and B(tl) is

<<A(t);B(t')>> = “19(t-t')<[A(t))B(t')l> (2.33)

where 6(t-t') is the step function, <> denotes the thermal aver-

age and [] denotes a commutator. We can Fourier transform this

quantity into a function Of E = hm, whose equation Of motion is

 

_ 1 .

The correlation function Of A and B is

. <<A;B>> . - <<A;B>>

, _ Lim m w+ie w-

<B(t )A(t)> - 6+0 I-.. w7kBT

e - l

(2.35)

-- - u

x e lwIt t )dw

For simplicity we choose the isotrOpic Heisenberg Hamiltonian

1 z ->
H = --2- ijJijSi sj (2.36)

Choosing A and B as spin Operators, equation 2.34 becomes

- 2S 2:
E<<S ;S >> = 5? dgh - J {

+

9 ffg

(2.37)
+ z - z +. -

<<sfsg,s >>E <<sfsg,sh>>E}
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where g, h denote lattice Sites and S is the average value of

82. The equation will be solved in the Tyablikov or random

phase decoupling approximation where

+ z - _ z +. -
<<sfsg,s >>E _ (sg><<sf,sh>>E (2.38)

Using this decoupling scheme the equation Of motion isz4

I
N

S->>

+

(S f; E

><<S

(
Q

K
I
N- 2

E<<S ;s >>E = dgh - f Jf
k
)

+

g N

(2.39)

<Sz><<S

+ fg f
J ;S >>

Em
e
d

Q
+

We now assume we have n sublattices and define Fourier transforms

of the Green functions

.+

+ o

for Egand Rh on sublattice l and

Gi(R,E) = 2 <<S

+ iE-(fig—fih)

9.h 9

;s'>>e (2.41)

for R9 on sublattice i and Rh on sublattice 1.

We define the Fourier transform of the exchange Operator as

+ _ z ii~(§ 1 )
gij(k) ‘ fig-fih Jghe .9 §h (2.42)

for R9 on the i sublattice and Rh on the j sublattice.

we define the parameter 6i = <S;>/S for R9 on sublattice i,

and

I

U
M

E = . gij(0)010j (2.43)

Equation 2.39 can be written in matrix form25

E {gij(i) - (E -ejE/2n)eij}cj(i,s) = +513.”Tr (2.44)



co
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In order to find the ordering temperature we need only 61(E,E)

evaluated at E=0. If 11(E) is the i th eigenvalue of Eij(i),

 

then

-11‘“ 1
G (k,0) = -—1— .§ . _ (2.45)
1 2n n 1-1 A1(E)'§

and

Tc = Séfi+1I i (2.46)

B <Gl(k,0)>k

There are two points worthy Of comment. The average ex-

change interaction Of equation 2.43 is defined assuming that

all magnetic sublattices are crystalOgraphically equivalent

(called a Bravais system). The molecular field result for this

system can be Obtained by setting Ai(i)=0.

3. Other methods

Molecular field theory gives a good qualitative descrip—

tion of many magnetic systems but has two serious shortcomings:

quantitatively, MFT is only an order of magnitude theory and it

contains no discussion Of effects based on correlation between

spins. The MFT takes no account Of short range order and fails

tO predict the correct behavior of the magnetization near T=0 and

T=Tc26. GFT is much better quantitatively but suffers from a

complexity requiring elaborate approximation schemes such as

27 28
Callen decoupling and moment conserving ..7 These are essent-

ially all temperature theories, Green function theory becoming

29
equivalent tO spin wave theory at low temperatures. Some

other methods are:

(a) The Lyons-Kaplan3o or generalized method Of Luttinger

31,15
and Tisza is a method for finding the classical ground
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state configuration by minimizing the Hamiltonian subject to a

”weak constraint"

2+,+ _):2

n,v nv Snv) — stnv (2'47)

or

z 2 I E - z 62 52 (2.48)a - —
n,v nv nv nv n,v nv nv

The ground state spin configuration is found by solving the

eigenvalue problem for the Fourier transform Of the exchange Oper-

ator subject to conditions on the anv'

(b) Probably the best available method for calculation

transition temperatures involves high temperature expansions32.

At temperatures above the ordering temperature the thermodynam-

ical quantities are expanded in powers of J/kBT. Given the

Heisenberg Hamiltonian with Zeeman interaction

Z = tr[exp(-H/kBT)] (2.49)

32(1) ~ ()x = -—— k T nz 2.50
3H2 B

Defining reduced susceptibility and temperature we find

on

- _ 2 n
x — 1/3 S(S+1)n=oan/6 (2.51)

where

Q = -%—-§-x (2.52)

N9 “8

6 = kBT/J (2.53)

The real work is involved in finding the an's. For a simple

cubic ferromagnet with nearest neighbor interactions only,

32
Rushbrooke and WOOd quote the relation
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kBTc/J = (5/96)(z-1)(11$(S+1) -l) (2.54)

for z nearest neighbors.

I

The high temperature expansion is exact in the limit Of

including enough coefficients (for the interaction assumed).

Ordering temperatures by HTE are 30 per cent to 50 per cent

lower than the MFT values.



 



III. THE MAGNETIC PHASE DIAGRAM

Antiferromagnets have very interesting behavior in applied

magnetic fields. Suppose we have an.antiferromagnet with iso-

trOpic exchange and uniaxial anisotrOpy L. The energy Of the

system with applied field H in the easy, or parallel, direction

is, using MFT33

2
e" = -%x"(H")2-NLS (3.1)

where N is the total number Of spins. The energy for H perpend-

icular to the antiferromagnetic axis is

J. 11. 1’2
5 = -5x (H (3.2)

Since antiferromagnets in the ordered state are characterized

by xt>x", when H = H" becomes large enough, the perpendicular

configuration will be energetically favorable and the spins will

flOp perpendicular to the field - called spin-flOp. The crit-

ical field is found by equating the energies

6": e" (3.3)

which yields

 

HSF =VIZNLSZ/(X‘L-x")'
(3.4)

If one continues to increase the field, the spins will saturate

and the system is said to be in a paramagnetic state. We are

interested in investigating in detail the behavior of antifer-

romagnets with a more general anisotropic interaction.

26
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Let us
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A. The Classical Energy

consider the prOperties Of an antiferromagnet at

T=0. we will rewrite the Hamiltonian, in the molecular field

approximation, as a free energy and solve the problem classic-

ally. We assume a simple Hamiltonian but one which includes

each type Of second order anisotrOpy.

where

Hex

HaL

HaK

HD

Hz

where Kii =

tonian as a

H = Hex + HaL + HaK + an + Hz (3.5)

= -l §.J,,§.-§. isotropic (3.6a)

2 13 13 1 3 exchange

= -%L' i SIS: uniaxial (3-6b)

anisotrOpy

= %.i. 1.8:8? anisotrOpic (3.6c)

3 3 3 exchange

= I'EDDi (S.sz_stz) Dzyaloshinsky- (3.66)

j j 3 Moriya anti-

symmetric exchange

= -9uBfi°i§i Zeeman (3.66)

interaction

J.. = 0 and D.. = -D. We now express the Hamil-
ii Ii 31

free energy, considering the spins tO be classical

34
vectors interacting with molecular fields .

' — =e — E/NS S2{J cos(a1a2)

-lL(coszo +cosza ) + K cosa cosa
2 l 2 l 2

+ D cos 6 Sin(a1fo2)} -guBS{ (3.7)

Hx(sinolf Sinaz)cos 0 + Hy(sinaif sindz)sin 0

+ Hz(cosa + cosa2)}
1



28

where N3 is the number Of Spins per sublattice, 01 denotes sub-

lattice A, aeA, and c2 denotes sublattice B, beB (Fig. l).

X Z

J = -aeAJab = -b€BJab (3.8a)

L = L'(1-1/2s) (3.8b)

K = z Kab = Z Kab (3 8c)
aeA beB '

D = 2 Dab = Z Dab (3 8 )
aeA beB ' c

We define the molecular fields as

HE = JS/guB

HL = LS/guB

(3.9)

HK = KS/guB

HD = DS/guB

The angles are expressed in a more convenient set by the trans-

formation

a = a + 6

(3.10)

a n + a - ¢

2

The energy is expressed as a dimensionless quantity by dividing

out the exchange field

e = E/NJS2 = -cos(2¢) - hL[cos(2¢)coszo

+ sin20] - hK[cosza - sinzel

(3.11)

- hDsin(2¢)cOS 0 — thsin ¢ cos 0 cos 0

- Zhysin ¢ cos a sin 6 + thsin 0 sin a
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Figure 1. Definition of the angles describing the spin array
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Figure l
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where hL = HL/HE, etc.

Our problem is now thermodynamical - we must solve the equa-

tions of equilibrium and stability. The equilibrium equations are

 

  

-§%— = 0 (3.12)

i

The stability equations are

2
2 2 2

3 e 3 e 3 e

‘ "rr?—— = (n..n.) > 0 (3-13)
2 2 an.an. S i 3

ani anj i j

where

a = (¢Iale)

B. The Zero Temperature Phases

The zero temperature phases of the uniaxial antiferromagnet

(hD=0) have been studied in the molecular field approximation6’34,

in the spin wave approximation35, and.in the RPA and Callen

36 Mere recently37'38'39,decoupled Green function approximations.

the solutions to equation 3.11 have been considered in the limit

Of hD<<l. However, three subjects need to be investigated in

detail: the nature Of the spin flop discontinuity, the effects

Of large hD and the paramagnetic boundaries.

1. The zero field equilibrium configuration

‘If we let h=0 and evaluate equation 3-12 for a, 6 and o

we find the equilibrium conditions are

and

_ 1 —1
90 - Etan [{ZhD/(Z + bx + hL)} (3.14b)
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The Spins lie in the xz plane, perpendicular to the D vector,

"antiferromagnetically" aligned on the Z axis but tipped an angle

¢o toward the X axis. This produces a net moment

M: = sin do

in the X direction

2. The parallel configuration

If we let E = (0,0,h) the applied field is parallel to the

easy axis,1rom symmetry we see 6:0. The spin flOp transition

described in the beginning of Chapter III is actually a first

order transition. The first order phase transition is charac-

36 by discontinuities in the energy or magnetization andterized

a magnetic hysteresis. There is no unique spin flOp field but

a region in which both the AF state and the SF state are stable.

The upper boundary of this region is hSh and the lower is hsc'

If one increases the applied field from zero, the AF state re-

mains stable up to hsh' analogous to the superheated liquid-gas

transition. If one then reverses the process, reducing the field,

the SF state remains stable down to hsc' analogous to the super-

cooled gas-liquid transition. The energies Of the AF and SF

states are equal at the thermodynamical transition hth implying

that if h <h<hsh, the AF state is metastable, and if hsc<h<hth,
th

the SF state is metastable. Let us examine the equations Of

the parallel configuration. The equilibrium equations are

ae/3¢ = [2+hK+thos(2a)]sin(2¢)—2thOS(2¢)+2h cososina = 0 (3.15)

ae/aa = [hK+thOS(2¢)]sin(2a)+2h sinocosa = 0 (3.16)
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The stability function is

S(¢,a) = {[2 + hK + thos(2o)]cos(2¢) + 2hDsin(2¢)

-h sin ¢ sin a}{[hK + thos(2¢)]cos(2a)

(3.17)

-h Sin ¢ sin aI-{thin(2¢)sin(2a)

2
-h cos 0 cos a} = 0

If cos (d)#0, o and a are related by equation 3.16

sin a = -h sin ¢/(hK+thos(2¢)) (3.18)

The transition from AF to SF states, called the super-

heated transition, is defined by S(a,¢)=0. The solution for

hD=0 is well known and is given by

 

hsh(0) = 4R2+hx+hL)(hK+hL) (3.19)

The hD=0 case is characterized by a=¢=0 for h<hsh(0) and

a=-%-for h>hsh(0). When th0, the net moment is pulled from the

x axis, increasing in magnitude as it approaches the z axis.

Therefore, when hnfio, h<hsh(hD), a and o are not zero. As h

approaches hsh' Ial becomes larger and approaches a critical

angle ashIhD) (Fig. 2). When h exceeds hsh' then a=-%-with an

accompanying discontinuity. The hnio equations were solved by

computer (Fig. 3) using Newton's method for three unknowns

(Appendix A).

The spin flOp state is defined by letting a=-%u The bound-

aries of this phase occur at S(-%,¢)=0. When hD=0, there are

two phase boundaries, a first order spin flop tO antiferromagnetic,

called the supercooled boundary, and a second order spin flap to
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Figure 2. The superheated critical angle ash(hD) vs. hD with

hK=0 and hL=0.1
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Figure 3. The Spin flOp critical fields vs. hD with hK=0 and

hL=0.l



 

 
.45

.40

.35

.30
 
 

I l I I I— l l I l T

hsh

"" hm

\\

- \ _ "" hsc

\ \

.. ‘\ \\

.\ \

_ .\ \

.\ \

I" .\\

- '\\
o\$

b ‘\.»

\o

.. \.

L

l 1 n 1 I I 1 1 1 I

.02 .O4 .06 .08 .IO .l2 .l4 .l6 .I8 .20

h0

Figure 3

 



38

paramagnetic boundary at higher field. The hD=0 solutions are

 

hsc(0) = (2+hK—hL) /(hx+hL)772+hx+hn) (3.20)

hp(0) = 2 + hK - hL (3.21)

Consequently, the Spin flOp state is stable for hsc<h<h;.

The tho solutions were found numerically (Fig. 3). The

paramagnetic transition, which corresponds to ¢=%, does not

occur at finite fields, since the D-M interaction will lower the

energy Of the Spins if they cant slightly. TO see this, examine

the energy when h is large, but finite, and ¢=%,-5. From

equation 3.15 we see that 5:52.80 the energy) to order hg/h, is

e = 1 + hK - hL - 2h - hDG

No matter how large h is, 6#0 will give a lower energy.

Experimentally, one almost always Observes the thermody-

namic transition defined by e = s This is because for
AF SF‘

fields in the metastable regions, a Slight disturbance foments

the transition. One usually argues that nucleation centers in

the crystal prevent metastable states from being long lived4o.

The procedure for finding the thermodynamic critical field hth

is tO define

and solve for A=0. When hD=0, the solution is

 

hth(0) = {(2+hK-hL)(hK+hL) (3.22)

which is equivalent to equation 3.4. The hD#0 equations were

solved numerically (Fig. 3) and as one would expect ath<ash'
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Figure 4. A comparison Of numerically calculated hSC with the

approximation Of equation 3.27
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The critical fields Obey hsc<hth<hsh but

hth = Vfischsh

only when hD=0.

Suppose we let 6:0 and a=-%q then if hD<<1 and hL<<l, we

can solve equations 3.15 and 3.17 to Obtain an approximation

for hsc(hD).

(2+hK-hL)sin(2¢)- ZthOS(2¢)-2h cos ¢ = 0 (3.23)

hK + thos(2¢) — h sin ¢ = 0 (3.24)

Assuming ¢ is small, equation 3.23 gives

Sin(¢) = (h+hD)/(2+hK-hL) (3.25)

It is important to notice that the term (h)sin(¢) is second

order in 0, SO we write equation 3.24

. 2 . __
hK + hL 2hL31n ¢ - h Sin ¢ - 0 (3.26)

Substituting sin(¢) and neglecting h: terms we get, assuming

hD<hL,

 

hsc(hD) = (-hD + «h: + 4h:c(0) )/2 (3.27)

In Figure 4 we have a comparison Of the numerically calculated

solutions and the approximate solution Of equation 3.27.

3. The perpendicular configuration

The magnetic field applied perpendicular to both D and the

easy axis, E=(h,0,0), results in 6=o=0. When hD=0, a second

order paramagnetic transition occurs at

h;(0) = 2+hK+hL (3.28)
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As in the previous case, hD#0 destroys the second order paramag-

netic transition

4. The D configuration

When E=(0,h,0) is parallel to B and perpendicular to the

plane Of the spins (for zero field), we can solve the equations

exactly. For hD=0 the problem is equivalent to the perpendicular

configuration (section 3). For hnfio, the equilibrium equations

are, for c=0

ee/e¢ = (2+hK+hL)Sin(2¢) —2thos(2¢)cose

(3.29)

-2h cos ¢ cos 6 = 0

and

35/86 = 2hDsin¢ coso sine - 2h sin¢ cose = 0 (3.30)

The stability function is

S(¢,6) = {(2+hK+hL)cos(2¢) + 2hDsin(2¢) cose

+h sine sine} {h sin¢ sine + thOS¢ sin¢ cose (3.31)

-{hDsin9 cos(2¢) - h coso cose} 2 Z 0

Equation 3.30 yields the immediate result

cose = (hD/h) cosd sine (3.32)

We see that the magnetic field pulls the net moment an angle 0

from the x axis. The solution to equations 3.29 and 3.31 is

6=¢=§ at a critical field

 

2 T

D )/2 (3.33)
.L = .1 ‘L 2

hp (hp(0) + Jmpwn +4h
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5. Discussion Of the effect Of hD on the zero

temperature phases

The antisymmetric canting interaction has had an inter—

esting effect on our system. The net moment produced by the

canting is rotated toward a magnetic field-. For h applied par-

allel to the easy axis, the Spin flOp transition is still

first order, but as hD increases the transition occurs at great-

er angles and the hysteresis is reduced until the metastable re-

gion becomes extremely narrow. The effect of hD is tO reduce the

spin flOp fields; we can see this by examining equation 3.25

sin ¢ z(h+hD)/(2+hK - h (3.25)L)

Imagine that hD=0, hL<<1 and h=hsc(0)+dh, where 6h<<1, so that

the spins are in the Spin flOp state. we can simultaneously

decrease h and increase hD without changing ¢p consequently,

for small hD

h (h
sc 0’ ' hSC(0) m-hD

The paramagnetic transition occurs at h=w unless E is

parallel to 3.1 If E is parallel to D the.D—M-interaction is

weakened as 6+; and the hD term in the energy Of equation 3.22

becomes second order in (hD/h) and isoverpowered by lower order

terms in h.

C. The Temperature Dependence Of the Critical Fields

and the H-T Magnetic Phase Diagram

One can calculate with little difficulty the temperature

dependence Of the critical fields for a uniaxial antiferromagnet

in the molecular field approximation. The quantitative results
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(all be inaccurate but we can get a gOOd picture Of the qualita-

tive behavior .

We assume a Hamiltonian of the form

_ 1 Z + .+ _ 1 ,2 z 2_ .2+
H — 2 IJIijSi sj 2 L i(si) guBfi isi (3.34)

l. The paramagnetic boundaries

Consider an antiferromagnet in the ordered state in an ap-

{flied field H. The effective fields acting on the respective

sublattices are, where M0=nguBS

+effective _ + _ + +

(3.35)
+effective _ + _ + +

The equilibrium condition for H perpendicular to the easy axis

 

gives 41

+effective _ +effective _ +
H1 — H2 — (HE + HL)M1/Mo (3.36)

+ + . . . 41
where M1 = -M2. The AF to paramagnetic tran31tion occurs at

L —

HP(H) - (2HE + HL)Ml(0,T)/M.0 (3.37)

If T=TN(0), then41

2 § _1_

Ml(0,T) = MO«(10(S;1) . (l-T/TN)2 (3.38)

L3(2$ +zs+1),

We can express the field dependence of the critical temperature as

TN(0)-TN(H)

TN (0)

 = B[H/H;(0)]2 (3.39)

where

B = (3/10)(2s2 + 25 + 1)/(S + 1)2 (3.40)
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A similar treatment for H parallel to the easy axis gives

TN(0)-TN(H)

 

 

_ 1 2
TN(0) — 38[H/Hp(0)l (3.41)

for H<HSF and

T (0)-T"(H)
N N _ " 2

Tu‘O) — BBIH/Hp(0)] (3.42)

for H>HSF. We can also express this as a temperature depend-

ence Of the critical field, for T=T

N

e
HP(T) = Hp(0)[(l-T/TN)/BI l (3.43)

. _ , _ 2
Hp(T) - Hp(0)[(l T/TN)/3B] (3.44)

For T20, we write, assuming H>HSF

Hp' (T) = Hp' (0)Ml(0,T)/Mo (3.45)

2. The Spin flop boundaries

If we neglect the hysteresis effects, we can write the Spin

flop critical field

1

HSF = [ZNSLSZ/(XJ'anz (3.46)

If we examine the equations we used to derive this result, we

see that the anisotrOpy term is actually the difference of the

L'<(Sz)2> term in the Hamiltonian for the spin flOp and anti-

ferromagnetic states.

L52 = L'[<(sz 2>AF (3.47)- <(sz)2>éF]

Since the spin flop corresponds tO a spin axis reorientation, let

<(sz)2>S =<(sY)2> = §IS(s+1)—<(sz)2>AF1 (3.48)
F AF
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Therefore

2 . z 2 .. 1
LS = (L /2)[3<(S ) >AF-S(S+l)] = L S(S-§)F(T) (3.49)

Yosida42 has Shown that F(T) can be written

F(T) = (S/(S-%))[(S+1)/S—BBS(x)coth(x/2S)/28] (3.50)

x = JS<Sz>/kBT

and <Sz>=SBs(x). The susceptibility in the AF state in the

moleculariield approximation is given by (see section IV)41

xL -x" = x‘10)(1—T/TN) '(3.51)

SO we can express the temperature dependence Of the spin flOp

field as

. .1.
2

HSF(T) = HSF(0)[F(T)/(1-T/TN)] (3.52)

Where F(0)=l and F(TN)=0. At T=0, equations 3.8b and 3.49 are

equivalent.

The temperature dependence Of-F(T) is such that, in the

present approximation, H increases slightly with temperature,
SF

increasing by 12 per cent at the Néel point. In practice, HSF

can increase or decrease with increasing temperature.



IV. THE THEORETICAL DEPENDENCE OF SUSCEPTIBILITY

ON APPLIED FIELD AND TEMPERATURE -

THE ANTIFERROMAGNET

There are a number of techniques for studying magnetic in-

sulators: nuclear and electron spin resonance43, specific heat44,

45, and susceptibility to name a few. Theneutron diffraction

primary advantage of susceptibility measurements is their Sheer

simplicity and minimal equipment requirements.

Our goal is to theoretically describe the_behavior of sus-

ceptibility as a function Of H and T SO that we can determine

the interactions dominating a given crystal by interpreting sus-

ceptibility data. The three parameters Of interest are T, H,

and the orientation of H with respect to the magnetic axes.

We will limit our treatment to the two sublattice antifer-

romagnet with second order anisotrOpy. In order to lay the ground-

work, we will first consider the zerO field susceptibility and

then the field dependence.

A. Zero Field Susceptibility

l. Susceptibility as a function of temperature for H=0

we will be considering only the antiferromagnet, SO we

write the exchange as a positive quantity in the Hamiltonian

1 Z_ l_£ _ ,__ z 2 _ +.2
— 2 ijJijsi 53. L 2 i {(51) } guBH i§i (4.1)

The partition function Z is defined as

Z = tr[exp(-H/kBT)] (4.2)

47
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The susceptibility for small H is

x = (kT/H)(aZ/6H)/z
(4.3)

a. The paramagnetic susceptibility is found by expand-

ing Z in terms Of H/kBT<<l, which is the condition that TN<<T.

In order to make this expansion converge more rapidly, we

write the Hamiltonian as a traceless quantity.

_ + .+ _ , z 2

H. — J si s. (L /2)[(Si )
1 3 -S(S+l)/3] - guBfi.§i (4.4)

The partition function is expanded

z = tr(I) - (l/kBT)tr(H) + (l/kBT)2tr(H2/2) . . . . (4.5)

where tr(I) = S(S+l) and tr(H) = 0. Neglecting terms in

(l/kBT)3 and H2, we find42

NgzuBS(S+1)/3kB

 

 x =

P T + J 5(s+1)/3kB + (l-3cosze)L'(ZS+3)(ZS-l)/60kB (4.6)

which we write

x = C 2 (4.7)
P T + o + y(l-3cos e)

 

where cos(6)=l for xp and cos(6)=0 for x;. The two constants

are given by

e Js(s+l)/3kB = guBHE(s+1)/3kB (4.8)

.
< ll _ v =

(28+3)(2$ l)L /60kB guBHL(ZS+3)/30kB (4.9)

Using equation 4.5, we can Show that

1/xp - l/xp = (28+3)guBHL/10kBC (4.10)
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Moriya46 has calculated the paramagnetic susceptibility for

a canted antiferromagnet with Dzyaloshinsky-Moriya interaction

included in H. Although his calculation is for D parallel to

the easy axis, whereas our previous work assumed D perpendi-

cular to the easy axis, one expects the existence of a weak

moment to be the most important factor. The paramagnetic

susceptibility is given by

x; = C"/(T+To) (4.11)

xp = c [l + (TN-To)/(T-TN)l/(T+TN) (4.12)

N

xp = C Ta/[(T+TN)(T-TN)] (4.13)

where denotes parallel to the easy axis, N denotes parallel

to the net moment and J-denotes the perpendicular to these

directions. The temperatures are given by

To = JS(S+1)/3kB (4.14)

Ta = DS(S+l)/3kB (4.15)

2 2 k
TN — (To + Ta) (4.16)

Note that in the canted antiferromagnet the paramagnetic

susceptibility measured perpendicular to D increases much

faster than l/T as one approaches the critical temperature.

b. The susceptibility in the antiferromagnetic state

is calculated by writing the effective field acting on the i th

Spin and expanding the Brillouin function about a small applied

field. The effective field acting on the i th spin is

fifffeCtlve = E - H <§.>/s + H.<s?>/s z (4.17)
1 E j 1.. 1
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If we let H = H2, Si and Sj will remain parallel to the z axis,

with thermal average values

<si> = SBS{[guBS/kBT][H-H <Sj>/S + HL<Si>/S]} . (4.18)
E

we now expand the Brillouin function6 about H=0, letting

681 = GSj and <Si>o = -<Sj>o ,

<Si> = SBS(xO) + 55x Bs(xo) (4.19)

Combining equations 4.18 and 4.19 we can write

_ 2 _ .
58 - (guBS /kBT)[H + ( HE+HL)5S/S]Bs(xo) (4.20)

Therefore, if we define

em = NguBGS (4.21)

and

x = 6M/6H (4.22)

then the parallel susceptibility is

2 2n _ 2 . _ .
x - [Ng uB s Bs(xo)]/[kBT+guBS(HE HL)BS(xo)] (4.23)

where x0 = guB(HE+HL)<S>o/kBT. A Similar treatment Shows the

perpendicular susceptibility to be approximately temperature

independent

I _

x — NguBS/(ZHE+HL) (4.24)

Since the derivative Of the Brillouin function goes to zero

exponentially as T goes to zero, the parallel susceptibility

is zero at T=0. The results for the zero field susceptibility

are summed up in Figure 5 for the antiferromagnet with negli—

gible paramagnetic anisotrOpy.
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Figure 5. Susceptibility vs. temperature in the molecular

field approximation
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2. Susceptibility as a function Of angle for H=0.

Consider a system whose susceptibility is uniaxial.

If a magnetic field is applied at an angle.6 with respect to

the easy axis, then the magnetizations produced will be,

assuming H is very small,

M" = x"Hcos(6) (4-25)

.L

M

The magnetization in the direction Of the applied field is

the sum Of the components Of M" and M; in this direction.

MH

or

MH

The susceptibility measured in the direction given by e is

XLHsin(6) (4.26)

M"cos(6) + MTsin(6) (4.27)

x"Hcosz(6) + XLHSin2(6) (4.28)

x(6) = dMa/dH = X"cos2(e) + x‘sin2(e) (4.29)

B. The Susceptibility in Applied Field

We will first consider the susceptibility in applied field

along the principal axes for the canted antiferromagnet. we

are particularly interested in the directions perpendicular

to D in which we discovered that no second order paramagnetic

critical field exists at T=0. Since the behavior for T>TN is

that Of a Simple paramagnet, that is a gradual saturation with

increasing H, we will limit our discussion to the ordered

state at T=0. The behavior of the susceptibility with the

applied field Off the principal axes is more difficult SO we

will consider it only for the uniaxial antiferromagnet.
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l. Susceptibility vs. H for the canted antiferromagnet

at T=0.

The canted antiferromagnet has easy, medium and hard

axes. The components of the magnetization written in reduced

form.are

mx = sin(¢)cos(a)cos(6) (4.30)

my = sin(¢)cos(a)sin(6) » (4.31)

m2 = —Sin(¢)sin(a) (4.32)

where 0 designates the location of the spin plane in the xy

plane,o designates the orientation of the antiferromagnetic

axis relative to the z axis and o is the angle Of cant (Fig. l).

The zero field equilibrium Of this system is

do = 0

6o 3 0 (4.33)

tan(2¢o)= ZhD/(2+hK+hL)

The zero field reduced susceptibilities are found by evaluating

dml/dhl = x1 (4.34)

in the limit that h + 0.

x: = coszoo/[h;(0)cos(2¢0)+2hDSin(2¢o)] (4.35)

y J .1

X0 = 2/[hp(0) + hp(hD)] (4-36)

x: = sin240/[hx+thos(2¢o)l (4.37)

The most interesting point is that the parallel susceptibility

x3 is not zero at T=0.

The parallel susceptibility xz is written from equations

4.32 and 4.34 as
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x" = -sin¢coso da/dh - cososina do/dh (4.38)

If we let hD=0, we can find the exact solutions for three

possible states

i) Antiferromagnetic state

o=0 ¢=0 and

(4.39)

Xir=°

ii) Spin flOp state

a=-n/2 Sln¢ = h/(2+hK-hL)

(4.40)

ng = l/(2+hK-hL)

iii) Paramagnetic state

a = -n/2 ¢ = n/2

(4.41)

"=0

xp

The susceptibility is zero until the field reaches hSF' it is

a delta function at hSF' then it is a step function out to

h;(0) (Fig.6).

The hD#0 solutions were calculated numerically by computer.

we see that the step function has become rounded (Fig.7) and

x” remains finite until h+¢, indicative of the fact that the

paramagnetic transition has been destroyed by the D-M term.

However, we note that a quasi-paramagnetic transition can

be defined as an inflection point in the susceptibility.

we have calculated dx"/dh numerically and.we see broad maximum

(Fig.8) that becomes narrower as we decrease hD.

The perpendicular susceptibility xx is calculated from

equations 4.30 and 4.34 as

xL’= cos(¢) cos(a) do/dh - Sin¢ sin(a) do/dh (4.42)
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If we let hD=0, the exact solutions for the two possible

states are

i) Antiferromagnetic state

a = 0 Sln¢ = h/(2+hK+hL)

xAF = l/(2+hK+hL) , (4.43)

ii) Paramagnetic state

a = 0 o = n/2

= 0
(4.44)

The hD=0 perpendicular susceptibility is a step function out

tO hp(0)(Fig.6). The hnfio solutions were calculated numerically

by computer. The perpendicular susceptibility is also rounded

(Fig.7) and we can calculate de/dh (Fig.8) for the inflection

point.

The susceptibility xy for hD=O is the same as the perpendi-

cular susceptibility. Since the system undergoes a phase

transition even when hD#O, the susceptibility in the y direction

goes to zero at h;(hD) Of equation 3.33.

The quasiparamagnetic transition which manifests itself

as an inflection point in the susceptibility can be defined

by the criteria

dzx/dh2 | h = 0 (4.45)

qp

The equilibrium equation for h>hSh can.be written from

equations 3.15 and 3.29 as

hp(0) Sin(2¢) - Zthos(2¢) - 2h cos¢ = O (4.46)

where hp(0)

hp(0)

hp(0) = 2+hK-hL for h in the z direction

h;(0) = 2+hK+h for h in the x direction
L
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Figure 6. Susceptibility vs. applied field with hD=0, hK=0

and hL=0.l
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Susceptibility vs. applied field with hD=0.05, hK=0

and hL=0.l
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Figure 8. Numerical calculation of dx/dh vs. h with hD=O.05,

hK=0 and hL=O.l
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We divide the equilibrium equation by cos(¢)

hp(0) sin¢ — h - thos(2¢)/cos(¢) = 0 (4.47)

and write the magnetization as

m = sin(¢) (4.48)

The susceptibility is then written

x = 0080 d¢/dh (4.49)

Differentiating the equilibrium equation (4.47) we obtain

an expression for d¢/dh

-1 + {hp(0) - hDsin¢[4-cos(2¢)/cos3¢)] cos¢ d¢/dh=0 (4.50)

From equation 4.49 we express the susceptibility as

x = l/[hp(0)+hDsin¢(4-cos(2¢)/cos3¢)] (4.51)

If we consider hD<<l, we can solve equations 4.51 and 4.45 to

calculate the quasiparamagnetic critical field. This transition

occurs at a field hqp and an angle of cant ¢qp given by

3 _
cos (0g ) - (4/5)hD/hp(0) (4.52)

P

hqp = hp(0) + (3/5)hD/cos(¢qp) (4.53)

For the case hD=O.05, hK=O’ and hL=O.l the numerically

calculated quasiparamagnetic points are

hz = 1.990 02 = 74.44°

qp QP

h“ = 2.195 ¢x = 74.97°

qp qp

The approximate equations (4.52 and 4.53) give

hz = 2.009 02 = 74.0°

qp qp

hx = 2.212 x = 74.5°

qp ¢qp
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2. The susceptibility vs. angle in applied field for

the uniaxial antiferromagnet at T=O.

The angle dependence of susceptibility in applied

fields is more difficult to treat than the zero field case of

part A, primarily because the field is strongly affecting the

system. Fortunately, a simple calculation for the uniaxial

antiferromagnet will shed considerable light on the subject.

Let us consider an antiferromagnet with uniaxial crystal field

anisotrOpy, with a magnetic field applied at an angle 6 with

respect to the 2 (easy) axis. The energy at T=O can be

written from equation 3.11 as

e = -cos(2¢) -hL(cos(2¢)coszc+sin2¢) - 2h sin¢coscsin6

+ 2h sin¢sinccose (4.54)

The equilibrium equations are

[2+thos(20)]sin(2¢) + 2h cos¢[sinacose-coscsin6] = 0

(4.55)

thos(2¢)sin(2a) + 2h sin¢lcosacose+sincsin91 = 0

The susceptibility is written

The components of the magnetization are

x .
m = cosc31n¢ (4.57)

m2 = -sincsin¢ (4.58)

The magnetization in the direction of the applied field is

m = mxsin(8) + mzcos(9) (4.59)
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The reduced susceptibility is

x(e,n) = d/dh [sin¢sin(6-a)] ‘ (4.60)

The susceptibility was calculated for various applied fields

using Newton's method on the computer47. The behavior of

the susceptibility can be described in four regions (Fig.9).

Region I 0 < h < hsh(0) AF

Region II hsh(0) < h < hp(0) AF-SF

Region III h§(0) < h < h;(0) SF-P

Region IV h;(0) < h P

The points in the figure are identified by equations 4.39

through 4.44 with hK=0

XA = XXF = O
(4.61)

XB = Xgr a l/(2+hL)
(4.62)

xC = xgF = l/(2-hL) (4.63)

The reduced susceptibility we have been using can be converted

to cgs units by multiplying by the total saturation magnetiza-

tion

x = NguBSx lHE
cgs reduced

where N is the total number of spins.
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Figure 9. Numerical calcualtion of susceptibility vs. angle in

applied field
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V. EXPERIMENTAL APPARATUS - THE MEASUREMENT

OF ANISOTROPIC SUSCEPTIBILITY

Susceptibility measurements are well suited to observing

magnetic anisotrOpy because they are inherently directional,

as Opposed to, for instance, specific heat measurements. In

this section, our primary aim is to discuss the apparatus

required to measure susceptibility and vary the three

parameters mentioned in chapter IV: temperature, applied field

and orientation. First, we will attempt to clear up one of the

great mysteries of physics - what are the units of suscepti-

bility?

A. The Great Unit Debate

If one considers the magnetic permeability of a substance

and wishes to express it in terms of the susceptibility, then

(using c.g.s. units throughout)

u=1+x (5.1)

where x is a dimensionless quantity measured in "electromagnetic

! .

units per cubic centimeter" or e.m.u./cm3. In the literature

one can find susceptibility expressed in the following units:

cm3/mole, cm3/gm, c.g.s. units/mole, c.g.s. units/gm, e.m.u./mole,

e.m.u./gm, dimensionless, and arbitrary units. One can obtain

a consistent relation among these systems with the following

three definitions. The total magnetic energy of a system is

E = affi-fidv or erg = gauss-Oersted cm3 (5.2)

The magnetization is written

M = NguB<S> . (5'3)

68
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and the Bohr magneton is defined as

20
= 0.927 x 10- erg/gauss (5.4)

“13

Since 9 and S are dimensionless and

_ N(erg/gauss)

X — dM’dH Oersted

we see that the units of susceptibility are N(erg)/(gaussOersted)

which can be converted using equation 5.2 to the equivalent

unit: N(cm3) where the units of N have yet to be chosen. Since

we have previously stated that e.m.u./cm3 is-a dimensionless

unit, we let

1 e.m.u. = l c.g.s. unit = 1 cm3 (5.5)

The susceptibility as expressed in equation 5.1 is dimensionless

so we must choose N as the number of spins per unit volume.

The following table shows possible other choices for N and

the resulting susceptibility units, assuming one spin S per

molecule.

ChOice of No No/Mw Nop/M.w

N

Units of #/mole #/gm. #lcm3

N

. 3 3
units of cm /mole cm /gm. 1

x e.m.u./mole e.m.u./gm e.m.u./cm3

Where No is Avagadro's number, M.W is the gram molecular

weight, and p is the density in gm/cm3.
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B. The Measurement of Susceptibility

There are at least four methods of measuring magnetic

susceptibility: Faraday or Gouy balance48, vibrating magneto-

meter49, nuclear magnetic resonance4 and ac mutual inductanceso.

Since we have used only the mutual inductance technique for the

measurements to be discussed, the description will be limited

to this method.

The ac mutual inductance method utilizes the fact that

the mutual inductance of two concentric solenoids is proportional

to the magnetic susceptibility of a material within the solenoids.

If we let AM be the change in mutual inductance of the coils

upon introduction of a sample of mass m, then

AM 51—”. x (5.6)

where W is a constant that is a characteristic of the coil.

The susceptibility coils used consist of a primary and two

Oppositely wound secondaries. The number of turns on the

opposing secondaries is adjusted to make the mutual inductance

approximately zero. The change of mutual inductance produced

by the introduction of a sample into one secondary is measured

with a Cryotronics51 Model 17B electronic mutual inductance

bridge, Operating at 17 Hertz. With the range switch (R) on

0.1, the coarse dial (c) and the fine dial (f) balanced, the

mutual inductance is given by

M = Rcf(50xlO-5) microHenries (5.7)

The susceptibility of a sample is given by combining equations

5.6 and 5.7

x = Ron/m(50x10'5)cm3/gm (5.3)
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which we write

x = Rcf K/m cm3/gm (5.9)

The constant K is a property of the coils being used.

Since the coils are never exactly balanced to zero without a

sample, and since their balance changes with magnetic field

and temperature, it is necessary to take readings with the sample

in (fi, sometimes called "full") and with the sample out (f0,

sometimes called "empty") of the coils. Consequently

x = Rc(fi-fo)K/m cm3/gm (5.10)

The constant K is determined by measurement of a known

paramagnet, in this case Ferric Ammonium.Alum,.whose suscepti-

bility is given by52

_ -3 3
XFAA — 9.02 x 10 /T cm /gm (5.11)

The constant K can be determined to at least 1% accuracy. If

we assume that the practical limit of measurement with a typical

set of coils is 10 fine units with c=lO and R=0.l, then in terms

of susceptibility of a 0.lgm sample this practical limit (see

Table I for K) is

7 3
x . = 2 x 10_7 cm3/gm or about 10- e.m.u./cm
min

C. The Parametric Apparatus

We have discussed the theoretical behavior of susceptibility

as a function of the parameters H, T, and 0. we now wish to

describe the design, construction, and use of the apparatus

necessary to vary these parameters.



*v
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l. Susceptibility vs. temperature.

All experiments were done in conventional Helium four

cryostatssz'53 between 4.8 and 1.2 Kelvins.. The temperature

was determined from vapor pressure measurements using the

T 58 temperature table.

Measurements of susceptibility vs. temperature are

generally done with the hope of attaining accurate values for

chi. It is essential that each data point shall consist of

a balance taken with and without the sample in the coil because

the empty value of the coils is a function of temperature,

applied field, and time. The zero field measurements are made

with quartz sample holders eliminating the need for background

corrections (see part C). The zero field data is taken with

coil #2, which has a small inside diameter and enough turns of

wire to make it very sensitive. The susceptibility vs. T

measurements done in applied field are, naturally, made in the

superconducting solenoid apparatus (see section 3) where one is

usually interested in the transition temperature or field rather

than absolute susceptibility.

2. Susceptibility vs. orientation.

In order to vary the orientation of a crystal while

measuring the susceptibility one needs apparatus capable of

rotating a crystal inside the susceptibility coils while immersed

in liquid helium. The crystal rotation device (Fig. 10) shall

be referred to as the rotator and the small axle on which the

crystal is mounted shall be referred to as the rotor. The

rotator essentially consists of two perpendicular threaded
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Figure 10. The crystal rotation device
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shafts, a vertical shaft that is passed through an O-ring vacuum

seal and a horizontal shaft (the rotor) to which the crystal is

attached. The vertical shaft has a simple screw thread that mates

a thread cut around the circumference of the horizontal rotor with

a tap set perpendicular to the rotor axis. When the vertical

shaft is turned by hand at room temperature, a corresponding

rotation is produced in the rotor. The turns ratio for the

rotator in coil #5 is 29:1, the original rotator for coil #6 was

19:1, the present rotator is 29:1. The rotors are made of nylon

with fiberglass-epoxy bearings to allow for thermal contraction.

The body of the rotator is made of a low susceptibility material

(see part C) to reduce the background. The vertical shaft is

indexed at the dewar head, the 29:1 ratio allows one to easily

change the orientation of the crystal by less than one degree.

Measurement of susceptibility vs. angle for various tempera-

tures is an excellent method of determining the principal magnetic

axes of the crystal and the type of ordering it undergoes.54

Many of these experiments in zero field can be understood from

equation 4.29 for the uniaxial antiferromagnet

x(0) = x"c0528 + x’sinze

where the easy or hard axes correspond4to extrema in the sus—

ceptibility. Using equations 4.10 and 4.23 we see that the

parallel axis susceptibility is a maximum in the paramagnetic

state and a minimum in the antiferromagnetic state. Two

independent rotations allow one to determine the easy direction

with an accuracy that depends on the amount of anisotrOpy and

the actual magnitude of the susceptibility.



Table I. Physical parameters
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of the susceptibility coils.

 

 

 

 

 

 

Coil Number 2 5 6

Function x vs. T x vs. x vs. H

Sensitivity, x 108 1.35 2.20 2.73

Type Secondary double triple triple

Primary Turns 2093 3285 ' 1100

Gauge #30 #34 #36

Length 7" 14" 4"

I.D. 5/8" 15/16" 5/8"

R,300Kelvins 35 220 100

Secondary Turns 10,946 34,208 8,255

Gauge #36 #36 #38

Length 3" 8" 2"

0.D. l" 2" 29/32"

R,300Kelvins 1100 4400 1100

Rotator Ratio none 29:1 29:1
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Since most of the rotator is actually in the susceptibility

coils and since it has some susceptibility, measurements of chi

are not extremely accurate. The best x vs. 8 data is taken

with coil #5 (Fig. 11) which is very long and has uniform sensi-

tivity over an approximately one centimeter length. This is

necessary becuase the rotors produce some up and down motion

of the sample.

3. Susceptibility in applied magnetic fields.

The magnetic fields for our experiments are generated

by a superconducting solenoid wound on a coil form of Synthane55

type G-ll fiberglass epoxy. The solenoid itself has an i.d.

of 2.61 cm, and o.d. of 5.02 cm and a length of 10.0 cm. The

wire is 0.0178 cm diameter Niobium - Zirconium with copper

coating and nylon insulation. The solenoid is wound with two

pieces of wire with a total length of 1700 m giving 14,712

turns. The field at the center of the solenoid is given by56

‘.a + «a: + b2 )

H = [41rIAb/(10aw)] 1n n 2 2 2 ,~ (5.12)

a + 72 + b i
. 1 l =

where A is the filling factor

2

A — N(1r/4)(dw)/[L(a2 al)] (5.13)

and

dw = 0.0178 cm the diameter of the wire

aw = 2.48 x 10_4cm the cross sectional area of the wire

a1 = 1.31 cm the inside radius of the solenoid

a = 2.51 cm the outside radius of the solenoid

b = 5.00 cm the half length of the solenoid

I is the current



Figure 11.
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Coil #5 with rotator
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The result of this calculation is

H = 1720 Oersted/ampere

The magnetic field is measured with a Bismuthmagnetoresistor57

that is calibrated in place (Fig. 12) against the spin flop

critical field58 of copper chloride mounted on the rotor.

This calibration gives

Hmr = 1680 t 10 Oersted/ampere

The homogeneity is estimated from an RCA Magnet Design

Aid59 as 0.3% on a 1 cm diameter sphere.) The magnet is

usually capable of reaching 12.0 amperes before quenching

producing a field of 20.0 kiloOersted.

The spin flOp transition can be quite narrow in angle,

for instance in copper chloride the spin flOp transition can

only be observed with magnetic fields applied within one degree

of the easy axis, so measurements of parallel and perpendicular

susceptibility require very careful orientation. Consequently,

the apparatus for measuring susceptibility in applied field

includes a crystal rotator similar to that described in section

2 (Fig. 13).

The present rotators have only one axis of rotation, so

one must mount the crystal with the easy axis in the plane

perpendicular to the axis of rotation. Assuming that this is

done prOperly, the crystal is rotated in some constant magnetic

field Ho' If we examine the results of the theoretical calcula-

tion of chi vs. 9 in applied field (chapter IV, part BZ) we see

that if no is slightly greater than H the susceptibility will
SF

be strongly peaked around the easy axis with a precipitous dip

at the easy axis (see Fig. 9). As one approaches HSF from
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above, the peak becomes nearer to the axis and the dip becomes

sharper, providing an excellent guide to orient the crystal.

We have used this apparatus primarily for plotting the

H-T phase diagrams described in chapter III. In general, the

boundaries are easier to see at lower temperatures while spin

flOp boundaries, representing greater changes in the magnet-

ization, are much easier to see than paramagnetic boundaries.

Spin flOp boundaries are usually found by orienting the crystal

as described above and measuring susceptibility-as a function

of applied field at constant temperature. The very strong

peak in the susceptibility (the theoretical results are shown

in Fig.'s 6 and 7) occurs at the spin flOp field. The para-

magnetic boundaries, especially at temperatures near the Néel

point, can only be observed by measuring the susceptibility

as a function of temperature at fixed field, the transition

occurring at the point of maximum dx/dTGo.

The apparatus has two characteristics that make absolute

measurement of susceptibility impractical: (the empty value of

the coils is a strong function of field, and the noise induced

by current instabilities and flux jumps greatly reduces the

accuracy.

D. Low Susceptibility Materials

Accurate measurement of susceptibility is dependent upon

the ability to measure the susceptibility of the sample of

interest and only the sample of interest. Our attempts to

subtract background due to extraneous materials such as

rotators or sample holders degraded the results by an
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Figure 12. Calibration of resistance vs. H for the magnetore-

sistor
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Figure 13. A cross section of the apparatus for measuring

susceptibility in applied field
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objectionable amount. Consequently, material in the coils

must have very low susceptibility. In general, metals should

be avoided because of eddy current effects—andunonemetals should

be easily machinable (eliminating quartz from.most applications).

The following is a list of the approximate susceptibilities

of various materials at four Kelvins, those available from

Synthane Corporation55 are denoted with an R. The.materials

are divided into four groups according to desirability.

SUSCEPTIBILITY 0F MISCELLANEOUS MATERIALS AT

FOUR KELVINS

I. 0<x<1 x 10.6 cm3/gm

l. Quartz

2. xxXP-IR* . paper phenolic

3. C-M* cotton melamin

4. EP-22* paper epoxy

5. Black nylon

6
II. l<x<5 x 10- cm3/gm

1. White nylon

2. XP* paper phenolic

3. XXP* paper phenolic

4. C* cotton phenolic

5..L* cotton phenolic

6. Hardwood(Birch)

7. Pure epoxy

8. Epibond 100A
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III. s<x<10 x 10’6 cm3/gm

1. G-ll* glass epoxy

2. Glastic

3. Pyrex

IV. x>10 x 10.6 cm3/gm

1. xx* paper phenolic

2. L—XB* cotton phenolic and graphite

3. G-3* glass epoxy

4. G-5* glass epoxy

5. N-l* nylon phenolic

6. Lavite

The best material by far is EP-22 epoxy and paper which

has almost unmeasureable susceptibility and is an excellently

machining material, second best is C-M. The superconducting

solenoid and all susceptibility coils were wound on forms of

6-11 glass epoxy which is an unusually strong material.



VI. EXPERIMENTAL RESULTS AND DISCUSSION

Susceptibility measurements have been made on RbZMnCl4'2H20,

CsZMnC14-2H20 and CuClzflZHZO. We have measured zero field

susceptibility as a function of temperature and angle in

CszMnCl4-2H20 and szMnC14-2H20. We have also measured suscepti-

bility in applied field for all three crystals and in the cases

of Cs and szMnC14-2H20 we have used this data to plot the H-T

magnetic phase diagram. Our goal is to compare these results

with the theory and to evaluate the molecular field constants.

In addition, we have taken from the literature data on MnC12°4H20,

a very thoroughly investigated material, and applied the molecular

field theory to these results. For crystallographic details

concerning these crystals, see Appendix B.

'2H 0A. Cs MnCl '2H 0 and szMnC14 2

2 4 2

Cs MnCl °2H O and Rb MnCl '2H

2 4 2 2 4 2

crystals with one chemical formula per unit cell. Nuclear

O are isostructural triclinic

magnetic resonance61 and specific heat62 measurements indicate

that they order antiferromagnetically with TN = 1.84 K for the

cesium salt and TN = 2.24 K for the rubidium salt.. They are

two sublattice antiferromagnets, which our susceptibility

measurements indicate are essentially uniaxial. The manganese

ion resides in the center of a distorted square of chlorines

with oxygen atoms above and below. The easy direction was

determined by measuring chi vs. 6, (Fig. 14) to be approximately

10° from the O-Mn-O direction, in agreement with earlier measure-

61
ments by Spence et al. The angle dependence of the zero field

susceptibility is well represented by equation 4.29.

88



89

The temperature dependence of the zero field suscepti-

bility is typical of antiferromagnetic ordering (Fig.'s 15,16).

We can compare this data with the molecular field result

shown in Figure 5. Note that the molecular field calculation

for the paramagnetic susceptibility included the assumption

that T>>T and does not apply near the transition.
N

The paramagnetic susceptibility has been fit to the

I

Curie-Weiss law (equation 4.7)

x = C/(T+F) cm3/mole (6.1)

where the theoretical value of C is

c = NgzuBZS(S+l)/(3kB) = 4.39 cm3K/mole (6.2)

The experimental results (Table II) show a large deviation from

this value, indicating that the measurements were made sufficient-

ly near T to be affected by both short range order and neglected
N

terms in the expansion42.

The paramagnetic data can be used with equation 4.7 to

obtain a value for the crystal field anisotrOpy

_ u _ i:

Q — l/xp l/xp (28+3)guBHL/(10kBC) (6.3)

Solving for the anisotropy field

HL = lOkBCQ/((ZS+3)guB) (6.4)

and using the experimental values of C and Q we find the

anisotropy to be approximately 8 kOe (Table II) for both

materials. The exchange field can be calculated from the

experimental value of the perpendicular susceptibility at

the transition temperature. we solve equation 4.24 for the

exchange field (Table II)
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Figure 14. Susceptibility vs. angle for szMnCld-ZHZO in the

paramagnetic and antiferromagnetic states with zero

applied field
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Figure 15.
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Zero field susceptibility Vs. temperature for

CsZMnCl4.2H20 in the parallel and perpendicular

orientations
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Figure 16. Zero field susceptibility vs. temperature for

szMnCl4-2H20 in the parallel and perpendicular

orientations
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HE = NoguBS/(Zx‘(TN)) - HL/Z (6.5)

Since these materials have essentially spin only 9 values of

2.0, we have assumed that HK and HD are zer063.. Neglecting

the anisotropic term in equation 6.5, Smith andeFriedberg63

have calculated HE = 20 kOe from susceptibility data for

CsZMnCl4-2H20. Excellent agreement with our valueHE = 16.7 kOe

can be obtained by subtracting HL/Z = 3.8 kOe from Friedberg's

value.

We have measured the H—T magnetic phase diagrams for both

materials (Fig.'s 17, 18) using the temperature dependence of

the susceptibility in applied field. In this temperature

range (1.2 - 4.2 K) we have found only paramagnetic boundaries.

An example of the chi vs. T data in applied field for

CszMnC14'2H20 is shown in Figure 14. A log-log plot of the

phase boundaries (Fig.'s 20, 21) shows excellent agreement

with the T35 dependence of the critical fields predicted in

equations 3.43 and 3.44.

we have extrapolated the phase boundaries to zero tempera-

ture and used equations 3.21 and 3.28 (assuming HK=0) to

evaluate the molecular fields.

HE = (116(0) + H;(0))/4 (6.6)

1" ll

HL = (Hp(0) - Hp(0))/2 (6.7)

The exchange fields are in good agreement with the paramagnetic

values but the anisotropy fields are almost a factor of two

larger (Table II). From the phase boundary results we find

the reduced anisotropy field
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Figure 17. Magnetic phase diagram of Cs MnC14-2H O. The pre-
2 2

dicted spin flop boundary is represented by a dotted

line
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Figure 18. Magnetic phase diagram of szMnCl4-2H20. The pre-

dicted spin flop boundary is represented by a dotted

line
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hL = HL/HE

is approximately 0.8 for both materials. A calculation of the

zero temperature spin flop field from equation 3.22

_ _ k
ch — ((ZHE HL)HL) (6.8)

gives

ch = 16.7 kOe CsZMnCl4-H20

ch = 20.0 kOe RbZMnC14-H20

If we assume the temperature dependence of equation 3.52, we

find the theoretical value of the triple point to be

Htp 17.4 k0e Ttp 0.55 K CSZMnCI4'H20

Htp 21.0 ROe Ttp 0.83 K RbZMnC14'H20

The predicted spin flop boundaries are shown as dotted lines

in Figures 17 and 18.

The anisotrOpy of these two salts has several unusual

features:

1. The easy axis is approximately 10° from the local

coordination axis formed by O-Mn-O.

2. The anisotrOpy appears to be much larger in the

ordered state than in the paramagnetic state.

Friedberg63 has shown that the dipolar anisotropy

is negligible in the paramagnetic state but this

calculation has not been done in the ordered state.
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Figure 19. Susceptibility vs. temperature in applied field for

CsZMnC14-ZHZO, typical data used for obtaining

phase boundaries
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Figure 20. Extrapolation of the phase boundaries to T=0 for

~2H OCszMnCl4 2
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Figure 21. Extrapolation of the phase boundaries to T=0 for

RbZMnC14'2H20
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3. The anisotropy is an order of magnitude greater64

than any obtained by paramagnetic resonance of Mn++

ions as impurities in diamagnetic lattices. Unfortun-

ately, no diamagnetic host has been found with the

same local coordination.

B. CuClz'ZHZO

COpper chloride has been studied extensively and is believed

to be a four sublattice antiferromagnetss. We have chosen this

crystal in order to study the behavior of the susceptibility

in applied field particularly near the spin flOp critical field.

COpper chloride is a good choice to test our zero temperature

theory because at 1 Kelvin T/TN = k.

We have measured chi vs. T at constant field from the spin

flOp region at low temperatures to the antiferromagnetic region

at high temperatures. The prominent peaks in the susceptibility

(Fig. 22) occur at the spin flop-antiferromagnetic boundary

and are in sharp contrast to the small effects seen in the

paramagnetic transition of CszMnCl4°H20 (Fig. 19). we can

extrapolate the transition to the limit of zero amplitude (Fig.

23) to estimate the triple point temperature as T = 4.31 K

tP

in excellent agreement with the values Ttp = 4.31 K and Htp =

8.50 kOe quoted by Butterworth and Zide1158.

C0pper chloride has orthorhombic symmetry and may have a

D-M interaction, so we take great liberties in applying our

uniaxial theory to it. We have measured the zero field sus-

ceptibility in the perpendicular direction and find

2
x*(TN) = 3.3 x 10‘ cm3/mole
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Table II. Experimental data and molecular field calculations

 

 

 

 

 

for CszMnCl4-2H20 and szMnCl4'ZHZO.

CSZMnCl4'2H20 szMnCI4'2H20

TN K 1.84 2.24

x*(TN) om3/mo1e 0.68 0.58

Q mole/cm3 0.16 0.16

c" KcmB/mole 5.2 5.7

C"Kcm3/mole 5.1 5.8

F" K 4.0 6.5

F‘ K 4.9 7.8

H;(0) kOe 20.0 25.0

Hé(0) kOe 48.0 56.0

HE paramagnetic 16.7 20.0

kOe phase diagram 17.0 20.3

HL paramagnetic 7.7 8.5

kOe phase diagram 14.0 15.5

Theoretical

HSF(0) kOe 16.7 20.0

Htp kOe 17.5 22.5

T K 0.53 0.77

tP
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Figure 22. Susceptibility vs. temperature in applied field for

CuClz-ZHZO
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Figure 23. Extrapolation of the amplitude of the spin flop

transition vs. temperature for CuClZ-ZHZO
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Figure 24. Magnetic phase diagram of CuC12-2H20 (Ref. 58)
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From Butterworth's phase diagram (Fig. 24) we estimate the

zero temperature spin flOp field as

ch = HSF = 6.0 kOe

Solving for the exchange and anisotrOpic exchange fields using

equations 3.22 and 4.43 (HL=0 for spin 8) we find

H 85 kOe

E

HK = 0.21 kOe

CuC12°H20

We have measured chi vs. 8 for various fields and fit the

data to the theoretical curves of chapter IV by normalizing

the experimental parallel and perpendicular susceptibility at

zero field to the theoretical zero field values. If the

anisotrOpy is much less than the exchange, crystal field

anisotropy or anisotrOpic exchange give the same angle depend-

ence of the susceptibility so we apply the calculations of

chapter IV by substituting hK for hL' The theoretical values

were calculated assuming

hK = HK/HE = 2 x 10"3

There is surprisingly good agreement between the theoretical

and experimental behavior of the susceptibility in applied

field (Fig. 25).

we have measured x vs. H at constant temperature (Fig. 26)

for this crystal and again the agreement with the theory of

chapter IV is very good. Notice that the susceptibility

remains very small above the spin flOp transition in agreement

with equation 4.40

xgp = Mo/(ZHE+HK)

Here HE is very large.
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Figure 25. Susceptibility vs. angle for various applied fields

for CuC12-2H20; experimental and theoretical results

normalized to the zero field parallel and perpendicu-

lar values
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Figure 26. Susceptibility vs. applied field at constant temp-

erature for CuClZ-ZHZO
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C. MnC12°4H20

Manganese chloride is a particularly good candidate to

which to apply the molecular field theory. A great deal of

data is available and the phase diagram is quite complete.

The crystal symmetry is monoclinic with rather odd local

coordination. Manganese chloride orders antiferromagnetically

66
at TN = 1.62 K. Rives

diagram (Fig. 27) by measuring x vs. H at constant temperature.

has plotted the parallel phase

An example of his data (Fig. 28) can be compared with the

theoretical results of chapter IV (Fig.'s 6, 7). Gisjman

et al.67 have used proton and electron spin resonance to

determine the perpendicular paramagnetic boundary and Giauque

et al.68 have measured the entire phase diagram employing

isentropic and specific heat techniques. A summary of their

results extrapolated to zero temperature is given in Table III.

Assuming that ch = HSF' equations 3.21, 3.22, and 3.28

can be solved for the molecular fields69

.. -" __ 2 u

HE - slnp<0) Hsp‘°’/Hp‘°’] (6.9)

BL = %[H§(0) - H;(0)] (6.10)

_ 2 n _ L _ u

“x — HSF(O)/Hp(o) lep(0) Hpco>1 (6.11)

The results of these calculations are given in Table III.

The zero field perpendicular susceptibility and the spin

flop parallel susceptibility measured by Lasheen et al.70 and

66
Rives , respectively, are compared with the values calculated

from equations 4.40 and 4.44 using the molecular fields
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Figure 27. Magnetic phase diagram of MnC12-4H20 (Refs. 66

and 67)
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Figure 28. Susceptibility vs. applied field at constant

temperature for MnC12-4H20 (Ref. 66)
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Table III. The zero temperature phase boundaries and molecular

fields for MnClz°4H20

Rives-Gisjman Giauque et a1.

HSF(O) kOe 7.55 7.30 I

Hg(0) kOe 20.6 19.0

Hé(0) kOe 25.5 . 25.9

HE kOe 11.6 11.5

HL kOe 2.50 3.45

H kOe -0.24 -O.26
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determined from the Rives-Gisjman phase diagram.

EXPERIMENTAL $HEORETICAL

XX? 1.09 CRIB/mole 1.09 c103/mole

ng 1.2 cm3/mole 1.35 cm3/mole

One should note that fix could well be zero to within

experimental accuracy.

D. Conclusions

The molecular field theory developed in chapter III and

IV has been applied to Cs MnCl ‘2H 0, Rb MnCl °2H 0,
2 4 2 2 4 2

20 and MnC12°4H20. The data used.for the first three

was taken in apparatus described in chapter V. The analysis

CuClz-ZH

of MnC12-4H20 was based on data taken from the literature.

The results are very encouraging but not conclusive.

Molecular field theory gave consistent results for MnC12°4H20

within the accuracy of the data. In the case of CuC12'2H20

we correctly described the behavior of the susceptibility in

applied field. The theory gave different results for the

4'2H20 from data taken

in the paramagnetic or ordered state. It is possible this

anisotrOpy of CsZMnCl4°2H20 and szMnCl

difficulty can be resolved by a dipolar anisotrOpy calculation

in the ordered state.

It is of particular interest to compare the theoretical

and experimental values for the ordering temperature. Using

the experimentally determined values for H in the molecular
E

field equation (4.8)

TN = guBHE(S+l)/3kB
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and Rushbrooke and Wood's equation for the two sublattice

32
cubic antiferromagnet with z nearest neighbors (assumed to

be 6) derived by high temperature expansion

TN = (J/ZkB)(5/96)(z-l)(llS(S+1)-1)(1+2/(3zS(S+l))

we calculate the transition temperatures for isotrOpic anti-

ferromagnets. Using Lineszo calculations of TN(L')/TN(0) 2

employing molecular field and Green function theory we obtain

transition temperatures for the anisotropic antiferromagnets

m4

TN(MFT) K TN(HTE-GF) K TN(Exp.) K

MnClz°4H20 1.85 1.60 1.62

CszMnCl4-2H20 2.85 2.53 1.84

RbZMnCl4°2H20 3.45 3.05 2.24

CuClZ-ZHZO 5.70 4.10 4.33

These transition temperatures are calculated using exchange

and anisotropy constants determined by molecular field inter-

pretation of experimental susceptibility and phase diagram

data. The discrepancies for the cesium and rubidium suggest

two things: applying a simple cubic theory to a triclinic

lattice may be overly Optimistic (z=4 greatly improves the

results) and the difference in the anisotropy above and below

the transition implies that our understanding of these crystals

is very incomplete.

We have used molecular field theory expressions for the

phase diagram and susceptibility of the.antiferromagnet to

determine the exchange and anisotrOpy of four magnetic salts.
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We have tested the consistency of the molecular field by using

these results to accurately predict the behavior of the sus-

ceptibility in applied for CuClz'ZHZO and MnC12’4H20. Similarly,

we have predicted the existence of a spin flop transition in

CszMnCl4°2H20 and szMnCl4'2H20. An experimental test of this

prediction cannot be made with our present apparatus. The

transition temperatures were calculated and, as expected, the

molecular field theory overestimated TN by 30%-50%. .A combina-

tion of high temperature expansion and Green function theory was

also used and the results of TN for CuCl2 20 and MnC12-4H20

were very good. In conclusion, molecular field theory has given

'2H

a reasonable description of the behavior of the susceptibility

of the antiferromagnet as a function of temperature, magnitude

and orientation of applied field.
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APPENDICES

 



APPENDIX A

NEWTON'S METHOD

Newton's method is a numerical process for finding the

zeroes of sets of functions. If we consider the equations

f(x) = 0 (A1)

Newton's method consists of evaluating f(x) and f'(x) at an

arbitrary point x0 and approximating the solution to A1 by find—

ing the intersection with the x axis of a striaght line con-

structed tangent to the curve f(x) at x0. The line intersects

the x axis at a point given by

l _ _ l

x - xO f(xo)/f (x0) (A2)

Newton's method is usually used in an iterative process where

each successive x' is employed in equation A2 as an x0.

If we have N equations in N unknowns

2
fn(x°,x ,...xN) = 0 (A3)

and we define

i _ i
fn - dfn/dx (A4)

The approximation to a simultaneous root of N equations is

.i _ i_ i
x — x0 x (A5)

where x:L is the solution to the set of N linear equations

Exifi(xo) = fn(xo) (A6)
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The parameter x1 of equation A5 can be represented by

  
 

fi fi...fi-l fi fi+l f?

xi = f3 f2 : f?

I; . . . fN . . . f:

det (F)

where F is the matrix formed by the coefficients of f;(xo).

Newton's method is very rapidly convergent but one can have

difficulty inducing convergence to a particular solution of

interest.



APPENDIX B

CRYSTALLOGRAPHY

1. CszMnCl4 2H20 and szMnCl4 2H20

These crystals are grown by evaporation from aqueous solu-

tions of XC1 and MnCl2 4H20. They are whitish pink in color

and fairly stable in air. The structure is triclinic, P1 with

one chemical formula per unit ce117l. The lattice parameters

are

Cs2Mnc14 2H20 szMnC14 2H20

a A 5.74 5.66

b " ' 6.66 6.48

c " 7.27 7.01

deg. 67.0 66.7

" 87.8 87.7

" 84.3 84.8

2. MnCl2 4H20

Manganese chloride tetrahydrate is grown by evaporation of

aqueous solutions of manganous chloride and HCl. The crystals

are reddish pink in color and fairly stable in air. The struc-

ture is monoclinic, P2/m with four chemical formulae per unit

ce1172. The lattice parameters are

MnCl2 4H20

a A 11.19

b " 9.51

c " 6.19

deg. 99.74

136



137

3. CuCl2 2H20

Copper chloride dyhydrate is grown by evaporation of aqueous

solutions of CuClz. The crystals are blue-green in color and

fairly stable in air. The c axis defines an excellent cleavage

plane. The structure is orthorhombic, Vz(Pbmn) with two chem-

ical formulae per unit ce1173.

CuCl2 2H20

a A 7.38

b " 8.04

c " 3.72

”
‘
3
3
,



APPENDIX C

COMPUTER PROGRAMS

RUN(S)

LGo.

oooooooooooooooooooooo

. PROGRAM ANIS(INPUT.DUTPUT.TAPE61=DUTPUTI

c THIS PROGRAM CALCULATES THE EQUILIBRIUM ANGLES FOR A Two SPIN

c SYSTEM HITH GENERAL ANISOTROPY. IT ALso CALCULATES THE

c NAGNETIZATIDN. ENERGY. AND STABILITY or EACH STATE NITR AN

c APPLIED FIELD.

c

c

c

c

c DEFINE FUNCTIONS

c

c AF STATE

EBAFIAIBIHoHKoHLoHDI=(ZoHKOHL'COSIZ'A))‘SIN(2‘B)-2*HD'COS(2'I)

IoZiH¢SIN(AI0CDS(8)

EAAFIAoavHoHKgHLoHO)=I(HKOHL'COS(2*B))'SIN(A)0 H'SINIB))'COS(A)

EBAFB(AoBcHoHKcHLoHD)=2*((ZOHKOHL*COS(2'A))8C05(2'B)62*HD*SIN(2‘B)

l-H*SIN(A)*SIN(B))

EAAFB(AIBIHoHKoHLoHD)=COS(A)“(H‘COSI8)-2*HL*SIN(2*B)”SINIA)I

EBAFA(AoBoHoHKoHLoHD)=2'IH’COSIA)’COS(B)-HL'51NI2*B)'SIN(2*A)I

EAAFA(AoBoHoHKoHLoHD)=COS(A)‘ (HKOHL'COSIZ'B))‘COS(A)-SIN(A)“((

1HK0HL'COSIZ‘B))‘SINIAIOH'SIN(B))

SAF(A980H9HK9HL9HD) = ((2 . HK . HL‘COSIZ'A))'COS(2*B) . 2*ND-SIN

1(2’8) - H’SIN(A)*SIN(B))’I(HK ¢HL*COS(2*B))‘COSIZ'AI-H‘SINIA)

2*SIN(B)) - (HL'SIN(2*A)’SIN(2'B) - H'COS(A)*COS(B))**2

UAF(AIBIHoHKoHLoHD)I-COS(2*B)-HL9(COS(2*8)*COS(A)*COSIA)OSINI8)*

lSINIB))-HK*(COS(A)’COS(A)-SIN(B)'SIN(B))-HD'SIN(2*B)

2o2»H951N(A)9SIN(8)

c SF STATE

ESFIBvHoHKoHLoHD) = (2 . HK - HL)’SIN(2*B) - Z'HD'COSIZ'B) - 2*

1H'COS(B)

usr(8.N.HK.HL.ND)s—IoSIN(8)¢((aoHK-HL)PSIN(8)-2*N-2*HD¢c05(8)I

SSF(BoHoHK7HLoHD) = -((2 . HK -HL)*COS(2*B) . 2*HD'SINI2'B) . H”

ISINIB))*(HK 4HL9CDS(2¢8)-HPSIN(8))

ESF8(8.H.RK.HL.HDI s 29(2 . HK'- HL)*COS(2*8) + 4'HD'SINI2'B)

Io 2*H'SINIB)

c

c PERPENDICULAR STATE

EPIBQHQHKOHLOHDI = (2 0 HK 0 HL)'SINI2*B) - Z'HD'COS(2'BI - 2'H'

1005(8)

SPIBOHOHKOHL’HD) 3 (2 O‘HK 0 HL)’COSI2*B) 0 ZPHD'SINIZPB) O H'SIN

1(8)
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UPIBOH’HK’HL’HD) 31-(20HKOHLI’ICOSIB)IPPZ-HD'SINIZPB) 'ZPH'SINIBI

PARAMAGNEIIC SIAIE

UPMRLIBOHDHK'HLOHDI 3 1 3 "K - HL '2’H

UPHDRIBDHDHKQHLIHDI 3 1 O MK 0 HL '2.H

L 3 0

CHIP 3 1/IZOHKOHLI

CHIAF 3 0

SHZAF 3 0

SHYP 3 0

PI 3 301415926536

HK30.1

HL 3 001

HD30.1

SHD 3 H0

SHK 3 HK

SHL 3 HL

A3000

B3HD/(ZOHK0HLI

C 3 8

”3.00005

00 100 J 3 19500

H3H300005

SH 8 H

K = ‘J '

10 ASA'IEAAFIA.BOH9HK0HLIHDI*EBAFB(AOBDHQHKOHLvHDI-EBAF(AOBDHQHKOHLQ

1H0).EAAFBIAOBOHOHKOHLVHD)I/(EAAFA(AOBOHQHKOHLQHDI.EBAFB(AOBOHOHK’

2HL9HD,’EAAFB(AOBIHOHKOHLOHDI.EBAFA(AOBOHQHKOHLOHD)1

B3B-IEBAF(ADBOHOHKQHLOHDI“EAAFAIAofloHDHKoHLDHDI’EAAF(AoBvHvHKoHLo

‘IHDIPEBAFAIA.B.H.HK.HL.HD)II(EAAFA(A.8.H.HK.HL.HDI°EBAFB(A.8.H.HK.

ZHLDHD’“EAAFBIAOBIHOHKOHLQHDI.EBAFA(AOBOHOHKOHLOHDII

K = K01

EAAFX= ABSIEAAFIAOBOHOHKOHLOHD)I

EBAFX 3 ABSIEBAFIADBOHDHKDHLOHD)I

S 3 EAAFXOEBAFX '

IFIK.GT.50)GO TO 35

IFISoGEoOGOOOOOOIIGO T0 10

3S SEAF I S

SSAF 3 SAFIAQBOHOHKOHLOHD)

SUAF 3UAFIA980H9HK9HLIHDI

XSSMZAF

SMZAF 3 -SINIAI'SIN(8)

CHIAF 3(SMZAF-X)/0.OOS

KSKAF 3 K

SA 3 A'18000/PI

SBA? 3 8.18000/P1

K 8 0

BIC

50 B 3 B‘ESFIBOHOHKOHLOHDIIESFB(BOHOHKOHLOHDI

K s K 01

ESFX 3 ESFIBOHOHKIHLQHDI

.
1
5
,

“
’
1
!

I
"
‘

l
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S 3 ABSIESFX)

IFIK.GT.SO)GO T0 60

IFIS.GE.0.00001)GO T0 50

60 SESF 3 ESFIBOHDHKIHLOHD)

SSSF 3 SSFIBDHOHKQHLOHDI

SUSF 3 USFIBOHOHKOHLOHD’

SMZSF 3 SINIB)

SBSF 3 8.180.0/PI

KSKSF = K

C38

K80

70 B 3 B-EP(BIHOHKQHLIHD)lIZ’SPIBoHoHKoHLoHD)I

K=K91

EPX 3 EPIBOHGHKOHLOHD)

S 3 ABSIEPX)

IFIK.GT.50)GO T0 80

IFIS.GE.0.0000IIGO T0 70

80 SEP 3 EPIBOHQHKOHLOHD)

SSP 3 SPIBOHOHK’HLOHD’

SUP 3 UPIBOHDHKQHLOHDI

Y=SMYP

SMYP = SINIB)

CHIP=ISMYP-Y)/0.005

SBP = 8'180.0/PI

SUPMRL 3 UPMRLIB'HOHKQHL0Hn)

SUPMDR = UPMDRIBSHOHKQHLDHDI

KSKP = K

HRITE OPERATIONS

L 3 L'l

IFIL.LE.0)2000300

200 HRITEI619210)

210 PDRHAT(IHI . HK HL HD H EAF BAF

IEP 8P SAP SSF SPY HzAP HZSP

2HIP O)

L = 60

A K ESF 85F

MVP CHIAF C

300 HRIIEIOIO310)ISHKOSHL’SHDOSHQSEAFQSBAF!SA9KSKAFOSESFOSBSFOSEPQSBPO

lSSAFoSSSFoSSPoSMZAFoSMZSFCSMYPICHIAFoCHIP)

310 FORMAT(X9F4.292E5.Zorbo3oF4.192F7.Zo139F4.19F7.29F4.I0F7.206F7.49

IZF9.4)

100 CONTINUE

120 CONTINUE

130 CONTINUE

END

0000000000000000000000
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FAIRALLQTJO 9 CM441009 P2. FAIRALL

MAP(0FFI

RUN(S)

L60.

0000000000000000000000

10

35

N0 LIST

PROGRAM HSC(INPUTIOUTPUTDTAPE613OUTPUTI

USE(CPHIHKOHLPHD)3’IOSINIC)'((ZOHK-HL)*SIN(C)'2'H-2.HD.COS(C)I

ESFICOHOHKQHLOHD) 3 (Z O HK - HL)‘SIN(2'C) ' Z'HD'COS(2*CI ' 2’

1H“C0$(CI

ESFH(C9H9HK9HL9HD) '2'C05(C)

ESEC(C9H0HK9HL9HD) 3 29(2 9 HK - HLI‘COS(2.CI O “PHD'SINIZPCI

lo Z'H'SINIC)

SSFC(C9H9HK9HLOHD) 3 '2’HL'SIN(2'CI'H'COS(CI

SSFHICDHPHKoHLvHDI 3 “SIN(C)

SSFICOHOHKOHLOHD) 3 HKOHL'COS(2'CI-H'SIN(CI

SAFIAOBOH’HKOHLOHD’ 3 ((2 9 HK o HL’COSIZ'AIIPCOSIZPB) 9 2'HD'SIN

1(2‘3) ’ H’SINIAI’SIN(B)I’((HK OHL’COS(2“BII“C0$(2'AI'H'SIN(AI

2*SINIBI) - (HL’SIN(2'A)*SIN(Z‘BI - H’COSIA).COS(BIIPPZ

L=0

P13361415926536

HK 3 0

HD=0.01

HL3005

SHL3HL

SHD3HD

H = ((Z‘HK-HL)”(HK‘HL))'°O.S

H=H300001

C '-' ((HK9HLI/(20HK-HLI I.*005

HK=-0001

DO 110 J319150

HK=HK30e01

SHK=HK

K=0

C3C'IESF(CQHQHKQHLQHD)“SSFH(C9HIHK9HL0HD)'ESFH(CDHQHK7HL9HD)P

lSSF(C9H9HK9HL9HD)I/(ESFC(C9HOHK9HL9HD)*SSFH(C9H9HK9HL9HDI'ESFHI

ZCQHOHKOHLIHDI*SSECICQHQHKQHLCHD)I

H=H-(ESFC(CDH0HK9HL9H0)‘SSF(CQHQHKQHLIHDI-SSFC(CDHQHKIHLDHD)O

IESF(C7H9HK9HLOHD)I/(ESFCICDHIHKQHLQHD)'SSFH(C9H9HK9HL9HD)-ESFH(

2C9HOHK9HLOHD).SSFC(CCHQHKOHL'HDII

K=K01

S 3 ABS(ESF(C9H9HK9HL9HD)I’ABS(SSF(C9H9HK9HL9HD)I

IF(K.GT.50IGO T0 35

IF‘SOGEOOOOOOOOI’GO T0 10

SE57 3 ESFICDHOHKOHLOHO)

SSSF 3 SSF(C9HDHK9HL9HOI

SUSF 3 USFICoHoHKvHLoHDI

SCSF=C31BOoOIPI

KSF =K

SH 3H

WRITE OPERATIONS

L 3 L'1
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200 URITE(619210)

210 FORMAT(1HI ' HK HL HD H ESF SSF USF

1‘)

L = 60

300 HRITEIbloJlO)(SHKoSHLoSHDoSHvSESFoSSSFoSUSFoKSFoSCSF)

310 FORMAT(X9F4.202F6.30F6.403F8.49139F863)

110 CONTINUE

120 CONIINUE

END

0000000000000000000000



143

SPENCEo T40 o CM441009 P2. FAIRALL

MAP(0FF)

RUN(S)

LGU.

0000000000000000000000

N0 LIST

PROGRAM HSHIINPUTQOUTPUTDTAPE613OUTPUTI

EBAF(AoBoHoHKoHLoHDI=(ZOHKOHL’COS(?’AI)‘SIN(2’R)-2'HD'COS(2'I)

1‘2“H‘$IN(AI‘C0$(B)

SAQFIAOHOH’HKOHLvHDI=((HKOHL.COS(2.B)I.SINIA)O H'SINIB))'COSIA)

EBAFB(AQBIHDHKOHLOHDI32.((ZOHKOHL’CUS(2’AII’COS(2.BI62'HD'SIN(2‘B)

I'H*SIN(A)'SIN(B)I

EAAFB(ADBQHDHKQHLoHD)=COS(AI'(H'COS(8)'2'HL’SIN(2'BI'SIN(AII

FRAEA:AoBoHoHKoHLoHDI=23(H‘COS(A)‘COS(BI’HL’SIN(2’BI*SIN(2'AII

EAAFA(AoBoHoHKoHLoHDI3COS(AI' (HKOHL'COSIZPB)I'COSIAI-SIN(AI*((

1HKOHL'COS(2‘BII'SINIAIOH'SIN(B)I

UAF(AOBIHDHKIHLQHO)3-COSI2'BI-HL'(COS(2‘B)'COS(AI’COS(AIOSINIBI'

ISIN(B)I-HK'(COS(AI’COS(A)-SIN(B)'SINIB)I'HD'SIN(2.BI

2‘2“H’SIN(AI‘SIN(B)

EBAFH(A08)=2’SINIAI’COS(BI

EAAFHIAIBI=SIN(B)’COS(AI

SIAF(AoBvHoHKoHLvHD)3(20HKOHL'COSIZPA))‘COS(2*B)929HD.SIN(2'II

1‘H’51NIAI'SIN(BI

SIAFA(AIBoHcHKIHLoHDI3’2'HL‘SIN(2'A)*COS(2*B)-H*COS(A)'SIN(BI

SIAFB(A980H0HK9HL9HD)3'2“(ZOHKOHL’COS(2‘AII’SIN(2*B)04‘HD'COS(

I?”BI¢H*SIN.AI'COS(BI

SIAFH(AIRIz-SIN(A)*SIN(HI

SZAF(A989H9HK9HL9HD)3(HK0HL8CUS(2'8)I’COS(2'A)-H'SIN(A)*SINIDI

SZAFA(AoBoHoHKoHLoHD)3'2'(HKOHL’COS(2’RI)‘SINIZ‘AI-H'COS(AI’SINIB)

SZAFB(AOBDHQHKOHLQHD)3'2’HL’SIN(2'B)’COS(2*A)-H“SIN(A)‘COS(B)

SZAFH(APB)=-SIN(A)*SINIB)

SBAFIAIBIHIHKoHLDHD)=HL'SIN(2'A)‘SIN(2’BI-H'COS(AI’COS(BI

S3AFA(AvBoHcHKcHLoHD)=2“HL“COS(2'AI’SIN(2‘B)OH“SIN(A)'COS(B)

SJAFB(A989H9HK0HL0HD)=2”HL'SIN(2'A)’COS(2'R)OH“COS(AI'SIN(BI

S3AFH(AOB)=-COS(A)*COS(BI

SAF(AoBoHoHKoHLvHDI=SIAF(AQHOHOHKDHLOHDI'SZAF(AOBOHOHKOHLOHDI-

1 S3AFIAOBSHOHKQHLOHD)..2

SAFA(APBOH0HK0HL9HDI351AFAIAQB.H9HK9HL9HD)*SZAF(AOBOHOHKOHLDHD)

l 951AF(AQBOHOHKOHLOHDI.SZAFA(AOBOHOHKOHLOHDI‘2.S3AFIA’B’H’HKOHLO

2 HDI.S3AFR(AQB’HCHKOHLOHD)

SAFB(AIBIHDHKQHLQHU)3SIAFBIA980H9HK9HL9HD)'SZAF(AoBoHcHKoHLoHDI

1°51AF(A939H9HK9HL9HDI*SZAFB(A989H9HK9HL9HD)'2'S3AF(AQBDHQHKDHLQHD)

2’S3AFU(AOBOH9HK9HL9HD)

SAFH(A789H9HK9HL9HD)=SIAFHIAQBI*SZAF(A989H0HK9HL9HD)

JOSIAF(AIBQHDHKOHLOHD)“SZAFH(A98) ‘2’53AF(A980H9HK9HL9HDI

2 .S3AFHIAOB)

DELTA(AOBQHDHKQHLQHO)=EAAEA(ADBOHDHKQHLDHDI’(EBAFB(AOBOHOHK9HL9HD)

I’SAFH(AIBDHOHKQHLOHD)'SAFBIAvuvHoHKvHLoHD)*EBAFHIAOD))-EBAFA(A9

289H9HK9HL9HD)“(EAAFB(A980H9HK9HL9HD)’SAFH(A989HDHK9HL9HD)-SAFB(

3A989H9HK9HL0HD)'EAAFH(AQB)IOSAFA(AoBoHoHKcHLvHD)'(EAAFBIAOBIHQHKI

QHLIHD)’EHAFH(AQB)'EBAFBIAIBIHQHKQHLQHD)”EAAFHIAIB)I

L30

PI 3 3.1415926536

HK=001
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HL80.3

SHK3HK

SHL SHL

H 3 (IZOHK0HL).(HKOHLI I..0o5

A80

880

C80

“03‘00005

DO 100 J31910

H8H60601

H03H0300005

SHD 3 HD

K80

IO CONTINUE

A3A-(EAAF(AQBOHOHKOHLOHDI.(EBAFBIAOBOHOHKOHLOHOI.SRFH(IOBCHCHKOHL9

IHDI-SAFB(AoaoHoHKvHLoHD)'EBAFH(A08)I'EBAF(A980H9HK0HL9HD)'(EAAFD(

ZAOBQHOHKQHLQHD)’SAFH(APBIHDHKQHLDHDI‘SAFB(AQBDHOHKQHLOHOI'EAAFH(

3A98)IOSAF(AQBDHDHKvHLoHD)'(EAAFB(A989H9HK0HL0HDI.EBAFH(A98)'

4 EBAFB(AOBQHOHKOHLQHO).EAAFH(AOBI’I/DELIA(AOBOHOHKOHLOHDI

838’(EAAFA(A089H9HK0HL9HD)'(EBAF(AoBvHoHKoHLOHD)'SAFHIAOBOHOHKOHLQ

IHD) -SAF(AoBoHoHKoHLoHD)'EBAFH(AIB)I'EBAFA(AQBOHOHKOHLOHDIPI

ZEAAF(AIBOHQHKQHLCHDI’SAFH(A089H9HK9HL0HDI-SAF(AoBoHoHKoHLoHD).

3EAAFH(A08)IOSAFA(A980H9HK9HL0HDI.(EAAF(AoBoHoHKDHLoHOI'EBAFH(A98)

h‘EBAF(AoBoHoHKuHLoHD)'EAAFH(A08))I/DELTA(A989HIHK9HL9HDI

HsH-(EAAFA(A080H0HK0HL0HDI'(EBAFB(AOBOHOHKOHLQHDIPSAF(AOBOHIHKQHLG

IHDI-SAFU(AOBOHOHKIHLOHD)‘EBAF(AoBoHoHKoHLoHD)I-EBAFAIAOBOHOHKOHLO

2H0)’(EAAFB(AoBoHoHKoHLcHD)*SAF(AOBOHOHKQHLOHD)-SAFB(AOBOH9HK9HL0HD

3)”EAAF(A989H9HK0HL9HDIIOSAFA(AIBOHDHKOHLIHDI'(EAAFB(AOBOH9HK9HL0

“HDI’EBAF(AoBoHoHKoHLoNDI-EBAFB(AOBOHOHKOHLQHD)'EAAF(A989H9HKOHL9

5H0)II/DELTA(AoBoH9HK9HLoHDI

K8K01

SIABS(EAAF(AIBIHOHKQHLIHD)IOABS(EBAF(AGBOHIHKDHLDHD))OABS(SAF(A0

IBDHOHKDHLOHDI)

IF(K.GT.50IGO T0 35

IF(S.GE.0.0000001)GO T0 10

35 SS 85

KSK 8K

SH 8H

A:ASIN(SIN(AII

SR".18000/PI

5838.18000/PI

SC'C’18000/PI

HRITE OPERATIONS

L 3 L-I

IF(L.LE00)2000300

200 HRITE(619210I

210 FORHAT(1H1 ' HK HL HD H S A 8 C

1 K.)

L860

300 URITE(619310I(SHKoSHLOSHDOSHOSSISAQSBQSCIKI

310 FORMAT(X0F50392F603978069F8.603F8030I3)

100 CONTINUE

END
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RUN(SI

LGO.

0000000000000000000000

C

10

PROGRAM HTH(INPUTIOUTPUT9TAPE61=OUTPUTI

AF STATE

EAF(89H¢HK9HL9HD) 3((ZOHKOHLI-H'H'(HKOHLI/(HKOHL'COS(2'BII"2)'

ISIN(2'8)°2'HD*COS(2.BI

UAF(BOH0HK9HL9HD) 3-(10HKOHLIO(ZOHKOHLI'SINIB)'SIN(BI’H.H'SIN(BI

I'SIN(B)/(HKOHL’COS(2’B)I’HDPSIN(2'BI

E‘FHIB’HOHKQHLOHD’ 3 'ZPH’(HKOHLI’SIN(2‘81/(HKOHL’COSIZ'BI1"2

UAFH(BOHOHKOHLOHDI 3 ‘Z'H'SINIBIPSIN(B)/(HKOHL'COS(2’BII_

EAFB(BoHoHKoHLoHD)3-k'SINIZPB)’SIN(2*B)'H'H'HL'(HKOHLI/(HKOHL’COS

1(2’BII'P392'((ZOHKOHLI-H'H'(HKOHLI/(HKOHL’COS(2.BI)"2)'C0$(2'B)

ZOAPHD’SIN(2‘B)

OH(89C9H9HK9HL9HDI 3 '2'H‘SIN(B)*SIN(B)/(HKOHL‘COS(2'B)IOZRSIN(C)

SF STATE

USE(COHOHKOHLDHDI3-IOSIN(CI3((ZOHK-HL)'SINICI-Z’H-Z’HO'COS(CII

ESF(C9H9HK9HL9HD) 3 (2 0 HK - HLI'SIN(2‘C) ' Z'HD'COSIZPC) - 2”

IH'COS(C)

ESEH(C9H9HK9HL9HDI 3 ’2’COS(CI

ESFC(C9H9HK9HL9HD) 3 2’(2 9 HK - HLI’COS(2'CI 9 4*HD'5IN(2‘CI

19 2'H'SIN(CI

USFH(C9H9HK9HL9HO) 3 -2PSIN(C)

L30

P133.1415926536

HK=0

HL80.001

SHD3HD

SHK’HK

H8((ZoHK-HL)‘(HK¢HL))'O.S

8:000

C3000

B39000.PI/18000

HL30.0

DO 100 J31910

HL3HL90.001

“SHOOeOOS

SHL3HL

K80

D3 UAF(BOHOHKOHLOHDI-USFICOHOHKOHLOHD)

DELTA 3 EAFB(89H9HK9HL9HD)'(ESFC(CDHCHKPHLoHD)'DH(BOC0H9HK¢HL9HOI

1*ESF(CoHoHKoHLoHO)'ESFHICOHDHKDHLOHD)I-EAF(B!H9HK9HL9HD)'ESFC(CCH9

ZHKOHLQHD)*EAFH(89H9HK9HL9HD)

B3B-(EAF(B¢H9HK9HL9HOI*(ESFC(CQHDHKDHLDHO)*OH(BDC9HDHK9HL9HDIO

ZESF(COHOHKPHLIHD)'ESEH(C9H9HK9HL§HDIIOEAEH(BDHOHKOHLDHD)'(ESF(CO

3H9HK9HL9HD)"2-D'ESFCICDH9HK0HL9HO)II/DELTA

CSC-(EAFBIBOHOHKOHLOHDI.IESF(COHQHKOHLOHD).DH(B’COH9HK9HL9HDI‘

10'ESFH(C9HOHKOHLOHDI).EAF(BOHOHKOHLOHD).(EAF(BCHOHKOHLOHD).ESFHIC

ZIHIHKPHLPHDI'ESF(COHDHKQHLOHD)'EAFH(BIH9HK9HL9HDIII/DELIA

HgH‘(EAFB(BOH9HKOHLOHD).(ESFC(COHOHK’HLOHDI.D.ESF(COHOHKOHLOHDI..2

lI-EAF(BQHQHKOHLOHD)"2'ESFC(C9H0HKQHLSHD)I/DELTA

D3 UAF(BDH9HKOHL7HO)-USF(CQHOHKDHLDHO)
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S3ABS(EAF(BQH9HK0HL9HD))OABS(ESF(C0H9HK9HL9HD)IOABSID)

K8K01

IF(K.GI.50)GO TO 35

IF(S.GE.0.000000IIGO IO 10

35 5535

A=-9110’PI/18010

X3-HPSIN(BI/(HK0HLECOS(2.B)I

IE(ABS(X).GT01.OIGO T0 20

A3ASIN(XI

20 CONTINUE

KSK 8K

SH 3H

SA3A'18000/P1

5838.18000/P1

SC3C'18060/P1

C WRITE OPERATIONS

L 3 L'l

IF(L.LE.0)2009300

200 HRITE(619210)

210 FORMAT(1HI ' HK HL HD H S A

1 K’)

L860

300 NRITE(610310)(SHKOSHL’SHDOSHOSSOSAQSBQSCQKI

310 FORMAT(X9F5.392E6.39F8.49F8.693E8039I3)

100 CONTINUE

END

0000000000000000000000
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