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ABSTRACT

DISCRIMINANT GRAMMARS FOR PATTERN CLASSIFICATION

By

Alan James Filipski

This thesis introduces the idea of a "discriminant

grammar" as a tool for syntactic pattern recognition. A

discriminant grammar is defined as a context-free, unam—

biguous grammar together with a mapping from the produc-

tions into the reals. We associate a number with each

sentence generated by the grammar by adding the numbers

corresponding to each use of a production in the deriva-

tion of the sentence. The language is partitioned into

three decision regions by comparing this sum to a cutpoint.

It is shown that a discriminant grammar may be used to

provide a sufficient statistic for decision between two

stochastic grammars. Results are given in terms of a

Bayesian formulation and a sequential scheme using top-

down parsing and LL(k) grammars. It is shown that regular

discriminant grammars can yield decision regions that are

not recursively enumerable, but if all coefficients are

rational, the regions are context-free. Results are ob-

tained concerning the relationship of regular discriminant

grammars to probabilistic automata. The use of perceptron-

like methods to learn the coefficients from empirical sam-

ples is also discussed.
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I. INTRODUCTION

The term "Pattern Recognition" as applied to the more

classical feature-space oriented techniques as well as to

the newer syntactic methods, has tended to obscure a fun-

damental difference of intent between the two approaches.

The former is almost exclusively concerned with the devel—

opment of algorithms to extract or utilize discriminatory

information, that is, information which pertains to the

assignment of an object to one of several classes. Any

information which does not further this end is considered

a nuisance. Most work in "Syntactic Pattern Recognition",

on the other had, does not stress this distinction. The

"Syntactic Pattern Recognizer" is generally expected to

transduce the input object into a derivation, which is a

representation of all structural information inherent in

the original object in terms of some given grammar. This

derivation may then be interrogated to answer questions

about the object, produce a description of the object, etc.

We can thus distinguish between "Pattern Classification"

and "Pattern Description", the former being primarily a

process of information reduction and the latter a process

of information re-organization.

Both of these are useful ends toward which syntactic

means may be applied. They are, however, distinct ends and

l
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efficiency may be sacrificed if we confuse them. As an

extreme example, suppose we are given a character string

and we must decide whether it is a Fortran program or an

Algol program. A very inefficient way to make this deci-

sion would be to feed the string into a Fortran compiler

and then into an Algol compiler and then note which gen-

erated fewer error messages. It is obvious that the de-

cision could be made instead by a very small and fast pro-

gram which looked for a few characteristic structures.

The important assumption here, of course, is that we are

interested only in a decision and not in any by-products

such as error messages or object programs.

It is the object of this work to show that syntactic

methods may be applied to a purely classificatory end,

i.e. that there is such a thing as structural discrimina-

tory information and that this information may be effec-

tively extracted and used by syntactic means. Hopefully,

restricting our attention ty discriminatory information

will serve to make the path to the decision itself a

direct one.

It is evident that in many applications for which the

use of syntactic methods has been proposed, only the ulti-

mate decision is of any importance, and additional infor-

mation supplied by the parse represents wasted effort.

Examples are hand-printed character identification and

automatic blood-cell counting. Most systems used on a

production basis need only supply a decision (or possibly
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report inability to make a decision). See, for example,

Kanal(l2).

Another instance in which descriptive information in

addition to a decision is of very little value occurs when

the grammar is obtained by means of the semi-automatic in-

ductive methods now being explored by a number of re—

searchers. (See Fu & Booth(8) for a survey.) In this

case there would be no a priori correspondence of semantic

with syntactic notions with the result that knowledge of

the derivation becomes rather useless. In this case we

should simply ask the system to report a decision rather

than to exhibit a parse in an unfamiliar grammar.

Figure 1 depicts three possible approaches to syntac-

tic pattern classification. Figure l.a represents the

most straightforward approach: The string is processed

through a parser for each grammar; one, none, or both of

the parsers then report success. Figure l.b is a modifi-

cation of this in the case where probabilistic information

is available. In this case two stochastic parses yield

the probabilities that the string was generated by each of

the two stochastic grammars. This information, together

with the a priori likelihoods of the two classes, is fed

into a Bayes decion-maker. These two methods are used,

for example, by Lee & Fu(15). Figure 1.0 represents the

approach introduced in this thesis. A single parse is

performed using a "discriminant grammar" which maps the

string x into a single real number, say f(x). The sign
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of this number then determines the classification of x.

The absolute value of f(x) is a measure of our confidence

in the classification. (Under a statistical interpreta-

tion of the discriminant grammar to be given later, f(x)

relates to a quantity which I. J. Good calls the "amount

of information in an observation about a hypothesis".

(Good(9), Kullback(lA)))

The potential advantages of the discriminant grammar

approach are several:

1.) Only a single parse need to made. In fact, as we shall

see later, if the user wishes to specify error tolerances,

this parse need not even be completed.

2.) A discriminant grammar can usually be made simpler

than a grammar describing either of the languages because

only discriminatory information need be considered. For

example, the two languages

{aib1|1_>_1}L
“ ll

{biailigl}I
I
"

II

are both context-free, but a discriminant grammar with

regular underlying grammatical structure can be used to

discriminate between them on the basis of whether the

first character of a given string is an a or a b.

3.) The set of strings for which the discriminant grammar

will yield a decision can be made larger than the union of
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the two original languages, thus giving a means for the

classification of noisy strings. As a trivial example,

suppose we want to distinguish between the languages {a}*

and {b}*. It will prove to be a simple matter to produce

a discriminant grammar (again, with regular underlying

structure) which will be able to classify any string from

{a,b}* depending upon whether there are more a's or more

b's in the string.

The discriminant grammar approach may be regarded as

a step towards a synthesis of the syntactic and feature-

space formulations of the Pattern Recognition problem.

We will show later how syntactic information may be repre-

sented by means of a mapping from strings into a space of

structural indices. Once this transformation is made, we

then may apply results from feature-space theory, as pre-

sented, for example, in Duda & Hart(4). It is hoped that

this "structural statistics" approach will help the two

methodologies of Pattern Recognition to cross-fertilize

each other.

One of the most important areas of syntactic Pattern

Recognition concerns the processing of two-dimensional

pictures. Since the early 1960's (e.g. Minsky(l8)) there

has been considerable work done on languages for the re-

presentation of various types of two-dimensional images.

Freeman(5) proposed a language of concatenated vectors to

describe connected curves. Kirsch(l3) suggested a grammar

of two-dimensional arrays. Web grammars, Plex grammars,
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Tree grammars and a number of picture description lan-

guages have been proposed (see Fu(7) for a survey) in ad-

dition to many special purpose languages, e.g., for

structural formulae, flowcharts, and mathematical expres-

sions.

In some cases these grammars transduce the input

picture into a one-dimensional string which can then be

dealt with using all the apparatus of formal language

theory. Methods of this type have been quite successful

(e.g. Lee & Fu(15)). Other grammars, such as the Web and

Plex grammars, seem to demand a more general notion of

parsing. This thesis follows the lead of the former ap-

proach and is set in the classical theory of formal lan—

guages. It is easy to conceive of situations in which

two-dimensional syntactic classification schemes may be

put to use. In the game of Go, for example, a board con—

figuration is essentially syntactic in that it is the

spatial relationships between primitives (stones) which is

of significance in determining the worth of a given board

position to either player. Furthermore, if our task were

to develop a static evaluation function for the game we

would be interested only in the relative value of a

position and not in its full syntactic description. This

is an example of the possible use of a two-dimensional ex-

tension of the discriminant grammar technique.



II. DISCRIMINANT GRAMMARS-DEFINITION AND

INTERPRETATIONS

A. DEFINITION

The basic structure introduced and developed in this

thesis for use in syntactic pattern recognition is the

"discriminant grammar" or "d-grammar". Formally, a dis-

criminant grammar D is defined to be an ordered quintuple

D = (VN,VT,TT ’SaR)

The first four components are, respectively, a set of

non-terminal symbols, a set of terminal symbols, a set of

production rules, and a start symbol. It is assumed that

the reader is familiar with the concepts and notational

conventions of formal language theory as contained in, for

example, Hopcroft and Ullman(10). The component R is de-

fined as a mapping from the production setTT into the real

numbers. It is often convenient to use the notation ri

for R(ni), where nieTT. The ordinary phrase-structure

grammar defined by the first four components of D will be

denoted CHAR(D) and will be called the characteristic

grammar of D.

Some restrictions are usually put on the form of the

production rules of a grammar. The restriction that has

been found to strike a good balance between generative
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power and mathematical tractability is the context-free

restriction, i.e. that the premise of each production rule

consist of a single non-terminal symbol. In addition, it

is reasonable to require that each string in the language

have an essentially unique derivation in the given gram-

mar. This property is called unambiguity. We will limit

the grammars under consideration as follows: Unless

otherwise noted, all discriminant grammars used in this

thesis will be assumed to have unambiguous, context-free

characteristic_grammars.

A mapping Q from L(CHAR(D)) into the reals is defined

by

n

QD(X> = Z: rik

k=l

where nil, "i2, n13,... "in is the unique left-most

canonical derivation (LMCD) of the string x. (Throughout

this thesis, when we speak of "derivations" we shall mean

sequences of productions, not sequences of sentential

forms.) Note that it does not in fact matter whether we

use the LMCD to compute Q(x) or whether we use any deriva—

tion of x, since all derivations of x in the unambiguous

characteristic grammar are simply permutations of each

other. When considered as set of ordered pairs, the func-

tion Q is called the discriminant language generated by

the discriminant grammar D and is denoted L(D), i.e.

L(D) = { (X,Q(X))I X€L(CHAR(D)) }
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Given any real number 6 (a "cutpoint"), the language

L(CHAR(D)) may be partitioned into three classes in the

following way:

L+(D,e) = {xlxeL(CHAR(D)) and Q(x) > e}

LO(D,6) = {xlxeL(CHAR(D)) and Q(x) = e}

L’(D,e) = {x|x£L(CHAR(D)) and Q(x) < a}

This partition will be interpreted as a simple decision

scheme which will allow us to distinguish between two

languages. It is sometimes conceptually convenient to de-

compose this decision scheme into four stages: structural

indexing, projection, linear translation and quantization.

It is possible in this way to express the decision as a

composition of four functions:

xeLi(D,6) iff Sgn(T(P(S(x)))) = 1

Where S, P and T are described as follows: Let N be the

set of non-negative integers. For any discriminant gram-

mar D = (VN,VT,TT,S,R), let k be the number of productions

in“ , i.e.

-rr= {Nl,n2, ...,N }

For any xeL(CHAR(D)) and for i 1 to k, let mi equal the

number of times N occurs in the LMCD of x.

1

Then define s : L(CHAR(D))+Nk as Exx) = (ml,m2,m3,...,mk).
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We may interpret S as a mapping from L(CHAR(D)) into a

space of structural indices determined by the underlying

characteristic grammar. Note that even though CHAR(D) is

unambiguous, the mapping S is not necessarily one-to-one,

as the following example shows:

EXAMPLE Let CHAR(D) be G = ({S,A},{b,c},1T,S)

where-\Tconsists of the productions

S+AA

A+b

A+c

Then S(bc) = S(cb) = (1,1,1)

The projection function P : Nk+(-w, +m) is defined as

k

P(ml,m2,...,mk) = E miri

i = 1

Finally the translation function T : (-m, +w) +

(-m, +w) is defined as

T(€) = E - 9

(Note that T is actually a function of 6 also.) The out-

put of this function is then quantized at zero yielding

the decision.

This exposition of simple discriminant grammar

decision-making in terms of a composition of many-to-one
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functions is valuable because it defines exactly what sort

of information-reduction is performed at each stage of the

process from observation to decision. Clearly the most

interesting function of this chain, and the one which is

unique to this thesis, is the structural indexing function

S.

The functions S and P are implicit in the specifications of

the discriminant grammar, while the function T depends upon

some specified cutpoint.

As a simple example of a discriminant grammar, con-

sider the following:

EXAMPLE Let D = ({S,A,B},{a,b};TF,R)

WhereTTand R are given by the following table:

 

N1 R(Ni)

S + aA O

S + bB O

S + e O

A + aA +1

A + bB —l

A + e O

B + aA -1

B + bB +1

B + e 0

Given any string xe{a,b}*, QD(x) tends to be positive

if x contains long "runs" of either a's or b's and tends
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to be negative if the a's and b's tend to alternate with a

short period. A concrete interpretation of this discrimi-

nant grammar would be to consider the a's and b's respec-

tively as positive and non-positive slopes between appro-

priately sampled points of some periodic function over

some interval. Then for some arbitrary cutpoint 6, L+(D,6)

would consist of relatively low frequency functions while

L-(D,6) would contain functions with predominantly higher

frequency components. Figure 2 gives an example of such a

situation. The functions are sampled at the "0" point of

the axis and at each "+" point. The sampled value at each

"+" point is compared to the previously sampled value. If

there has been an increase, an a is inserted into the

string, otherwise a b is inserted. For example, the first

character of 2.a is an a since the ordinate of the curve

is greater at the first "+" than at the origin. The en-

codings and their corresponding Q-values are given in the

figure. Thus we see that the string represented in

Figure 2.a is contained in L-(D,0) while the string re-

presented in Figure 2.b is contained in L+(D,O).
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OOOOO+OOOO+IO00+...C+OOOC+OOOO+OOOO+OIOO+OOOO+OOOO+

2.a x = abaabbaaba QD(X) = -3

OOOOO+OOOO+OOOO+OOOO+COOO+OOOO+IOOO+OOOO+OOOO+OOOO+

2.b x = aaabbbbbbb QD(X) = 7

Figure 2 Encoded Line Patterns



B. A BAYESIAN INTERPRETATION

In this section we will investigate the use of the

discriminant grammar in making a Bayes decision between

two stochastic languages. (See the Appendix for defini-

tions and notations involving stochastic grammars.)

Definition Two stochastic grammars G1 and G2 are said to
 

 

be commensurate if and only if CHAR(Gl) = CHAR(GZ) and all

and G .production probabilities are nonzero under both G1 2

Definition A discriminant grammar D is said to be a lo -
 

likelihood ratio representation of two commensurate sto-

chastic grammars G1 and G2 if and only if:

1. The characteristic grammars of G1, G2

and D are the same.

2. For all nieTT,

R(fli) = log P1(Ni) - log P2(fli)

Where P1,P2 are the probability functions of

G1 and G2 respectively.

If D is the log-likelihood ratio representation of G1 and

G2, we write D = LLRR(G1,G2). Note that in general,

LLRR(G1,G2) does not equal LLRR(G2,G1).

Suppose now that we are given a string x and two

commensurate stochastic grammars G and G such that x can

15

l 2
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be generated by their common characteristic grammar. Let

[—1(x) be the probability of generating x under G Leti'

the a priori probabilities of G1 and G2 be denoted Pr(Gl)

and Pr(G2). Let Hi be the hypothesis that x was generated

under G1. Finally, let LiJ be the loss incurred in de-

ciding Hj when the true hypothesis actually is Hi'

Given any x, the conditional expected loss incurred
 

in deciding H is given by:
l

tl(x) = L lPr(G2 x) + LllPr(Gl x)
2

Using Bayes rule, by which

Pr(ei) [:(x)

 

Pr(Gilx) =

Pr(x)

We obtain

L21Pr(62) [—;(x)+LllPr(Gl) [~;(x)

 

tl(X) =

Pr(x)

Similarly, the conditional expected loss incurred in de-

ciding H2 is given by

L12Pr(Gl) rl(x)+L22Pr(G2) fq 2(x)

 

t2(X) =

Pr(x)
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We can minimize the expected loss by deciding

1) H1 if tl(x) < t2(x)

2) H2 if t2(x) > tl(x)

3) making a random decision if

tl(X) = t2(X)

This is the same as deciding H if
1

(L2l—L22)Pr(G2) r-;(x) < (LlZ-L11)Pr(Gl) [’11(x)

If we assume that L13 > Lii when i f 3, this inequality

reduces to

f—;(x) Pr(GZ) (L21-L22)

 

-——-—- >

Bu) Pr(Gl) (L12-Lll)

Taking logs of both sides and expanding ‘Tfli yields

the rule:

decide Hl if

m

 

ZEE:: Pr(Gz) (L21’L22)

(log Pl(nik)-log P2(nik)) > log

Pr(Gl) (L12‘L11)k = l

where Ni N1 “1 is the LMCD of x in

i’ 2’ " ’ m

CHAR(Gl).

Now let D = LLRR(G ) and let
1’G2
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Pr(G2) (L21'L22)

 

6 = log

Pr(Gl) (L12'L11)

Then we have shown that the unconditional expected loss

(Bayes risk) is minimized by the rule:

if st+(D,6) then decide Hl

if xeL’(D,e) then decide H2

if xeLO(D,e) then decide arbitrarily.

Using a loss function of L = L = l and
12 21

L11 = L22 = O, the Bayes rule minimizes the probability of

misclassification. This Bayes error may be expressed as

P(err) =Zmin [Pr(Gl) l—‘lm, Pr(G2) F200]

xeL(CHAR(Gl))

The size of this probability is in general quite difficult

to compute. In special cases, however, we may obtain

bounds on the value of P(err). One such case is discussed

in the next section.



C. BOUNDS ON THE BAYES ERROR

(LINEAR GRAMMARS)

In this section we present a technique for the calcu-

lation of upper and lower bounds on the Bayes error

(P(err)) for linear grammars using the Bhattacharyya co-

efficient.

Definition A context-free grammar is linear if an only if
 

the consequence of each production (i.e. the right hand

side of that production) contains at most one non—terminal.

Thus each production must be of the form

A + xBy

or

A + x

s s
where erT , erT

Definition Given two probability mass functions p(.) and
 

q(.) defined on the same discrete sample space X, the

Bhattacharyya coefficient p of p vs. q is

o=E W)

xeX

It is known (see Kadota & Shepp(1l)) that the

Bhattacharyya coefficient can be used to form an upper and

19
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lower bound on P(err) as follows:

pzminmwthrmznn _<_ P(err) 5, p/2

We now solve the following problem: Given two commen—

surate stochastic grammars G1 = (VN,VT,—rr ,S,Pl) and G2 =

(VN,VT,1TI,S,P2) with linear characteristic grammars, com-

pute the Bhattacharyya coefficient of rfil vs. [—2 .

First, to each production n ETT , assign a number

qi 7JP1(W1)P2(wi)

Then p may be expressed as

k

p =:E; [[ qimi

i = l

 

where the summation extends over all xeL(CHAR(G1)). As

before, the m1 are the structural indices of x in the

k-element production set. The key to the computation of

this sum of products is the realization that the set of

derivations of sentences in a linear grammar is itself a

regular language over the production set TI. This fact

will become apparent by the following construction. (For

simplicity, we omit commas in the derivations.)

Suppose VN = {A1 (=S),A1,A2,...Am} is the set of non-

terminals for the linear grammar. Then the non—determinis—

tic finite-state acceptor for derivations has m+l states

{sl,s2,...sm+l} and on input "1 has a transition from sJ

to sk where A3 is the non-terminal in the premise of Ni and

Ak is the non-terminal in the consequence of N if the13
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consequence of Ni contains no non-terminals, then the

transition should go to Sm+l' Let sl be the start state

m+1 be the final state. Then a string «11 N12... “1r

is accepted by this automation if and only if it is a

and s

valid derivation of some string in the original linear

grammar.

Note that the terminals in the original grammar have

no bearing on the construction of this acceptor.

EXAMPLE Suppose G = ({A,B,C}, {d,e,f,g},Tr,A)

where the productions are given by

 

+ eeB

+ dAgg

+ fb

8

+ eB

'* 880

+ Afg-
q
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=

t
»

n
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w
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:
>

:
b

:1
:-

+

+ d

Then the corresponding acceptor for production sequences is

given by Figure 3.

We now return to the original problem of calculating

the Bhattacharyya coefficient. In the graph of the auto-

maton Just constructed, associate with each transition “1

the number q1 defined previously. Our problem is now that
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of summing the products of the q1 along all possible paths

from the start state to the accept state. To accomplish

this, construct the (m+l) by (m+l) matrix W such that Wij

equals the sum of the qk corresponding to all single-step

transitions between 81 and SJ. In the example, for in—

stance, Wl2 would be set equal to ql+q3. In addition to

this, set Wh equal to one. Now let W' be equal to
+l,m+1

the limit of wn as n approaches infinity, if this limit

exists. It is now an easily obtained combinatorial fact.

(See, for example, Feller(3)) that p = W'l’m+1

Note that this same technique may be extended to the

class of grammars for which the number of non-terminals in

every possible sentential form has some upper bound de-

pending only upon the grammar. (This is the class of

"ultralinear" grammars.) In this case, we simply assign a

name to each group of non-terminals which can appear in a

sentential form and follow the above procedure using this

"super-non-terminal".



 

 

 

S
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(From C)  

Figure 3 Acceptor for Production-Sequences
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D. A SEQUENTIAL APPROACH TO

DISCRIMINATIVE PARSING

D. 1. Introduction

Since Wald's introduction of the Sequential Probabil-

ity Ratio Test (SPRT) (Wald(20)), the principle of optional

stopping has become well known in the pattern recognition

literature. See for example, Fu(6). The two principal

approaches are the sequential Bayes approach and the SPRT.

If only a finite number of features are available, these

are not necessarily equivalent. The Bayes approach as-

signs costs to both feature measurements and incorrect

decisions and then selects a scheme which minimizes the

expected total cost. This is usually done computationally

by backwards dynamic programming. The SPRT, on the other

hand, is more closely related to Neyman-Pearson theory and

stops observing features when the value of the likelihood

ratio guarantees certain bounds on misclassification pro-

babilities.

In this section we exhibit a scheme for sequential

syntactic decision-making using the SPRT, discriminant

grammars and LL(k) top-down parsing techniques. This

scheme could save both parsing time, and, in the case of

on—line systems, feature extraction time (and cost). The

availability of such a sequential scheme is a unique

2D
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aspect of the discriminant grammar approach.

Informally, the essence of the scheme is this: We

are given some string x and we want to decide which of two

commensurate stochastic grammars generated x. We use the

LL(k) parser to supply us (in top-down sequence and with-

out backup) with the sequence of productions which forms

the LMCD of the string x. Each time we are informed of a

production in the derivation we decide either to request

the next production from the parser or to abort the parse

and make a decision immediately as to which grammar gener-

ated x. The stopping criteria will depend upon pre-

assigned error tolerance.

We now proceed to lay the statistical foundations of

the sequential parsing technique in some detail. Crucial

issues in the development include the necessity for top-

down parsing and the treatment of parses which terminate

before reaching a stopping boundary.

Suppose that we are given two commensurate stochastic

grammars G1 = (VN,VT,11-,S,Pl) and G2 = (VN,VT,11-,S,P2).

Denote their common characteristic grammar by G and let

D = LLRR(G1,G2). For any string xeL(G), denote by H1

(1 = 1,2) the hypothesis that x was generated by G1. As

before, let r—1(x) denote the probability of the genera-

tion of x under H .
1

Since derivations in G are strings over-II , we shall

a

use the customary notations-YT. and ‘FT+ to mean, respec-

tively, the set of all production sequences and the set of
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all non-empty production sequences. The symbols 0, p and

w will usually be used to represent production-sequences;

o(n) will represent the nth production in the sequence 0

The sample space )3 for our experiment will be the

set of all LMCD's under G. We will ignore the null

derivation, so ,3 QTY... Given any pa ,8 such that p is a

LMCD for xeL(G), then for i = 1,2, define

Pr(pIH1> = i—1<x>

Since G is unambiguous, there is a one-to-one corres-

pondence between points in ,3 and strings over L(G), hence

the fact that r—g(.) is a true discrete probability mea-

sure implies that Pr(.|Hi) is also a probability measure.

SUPposetmat p = p(l)p(2)p(3)-.-p(n).

Then, by the unrestrictedness assumption, we have

Pr(pIHi) = Pi(p<1>)P1(p(2>)...pi(p<n)) (1)

We now proceed to define certain compound events on

the sample space x3 in which we have an interest. Consi-

der the set of all production sequences which form initial

segments of LMCD'S. To define this set formally, let

2: {(5ngth 30’5"" such that owes}

Each element of 2::may now be associated in a natural

way with certain compound events, or subsets of £3 . For

all 062 , define EO={pe;8 I 3 we“... such that am = p}
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Since the probability of a compound event is given by

the sum of the probabilities of the sample points in it,

we have (for i = 1,2 and all er),

Pr(EOIHi) = 2 :Pr(p|Hi) (2)

peEO

Combining (1) and (2) gives:

Pr(EOIHi) = E Pi(p(l))Pi(p(2))...Pi(p(n))

peEo

Noting that all production sequences in Ed have the

same initial segment 0 = p(l)p(2)...p(k) = o(l)o(2)...o(k)

followed by some sequence m = w(l)w(2)...w(r) =

p(k+l)...p(n) where k+r=n, we can write, pulling the con-

stant factors out of the summation,

Pr(E |H ) =

° 1 (3)

Pi(o(1))Pi(o(2))...Pi(o(k9) E P&(w(l))...Pi(w(r))

{wloweEO}

We now prove that, for any 062

E Pi(w(1))...Pi(w(r)) = 1 (A)

{wIONEEO}

Once we have established this, (3) reduces to

Pr(EGIHi) - Pi(0(l))P1(o(2))...Pi(0(k)) <5)
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This is the centrally important multiplication rule

for initial segments. Before a discussion of this rule,

it remains to prove equation (A).

D. 2. Markov Chain Model

Consider the countably infinite Markov chain M whose

states are represented by sentential forms in G. (See

Feller(3) for a general reference on Markov Chains.) If

m and m' are states of M, let the probability of a tran-

sition from m to m' be p where p is the probability under

Hi associated with the production in-rr which transforms

the sentential form represented by m into the sentential

form represented my m' by expanding the left-most non-

terminal. If no such production exists, then let the

transition probability from m to m' be zero. Let all

states corresponding to sentences of L(G) be absorbing

with probability one. This is equivalent to assuming we

have a 'null production rule' which is capable of trans-

forming any sentence into itself with probability one.

(In order to insure that this is a true Markov chain we

are making use of the assumption that G is a proper
i

stochastic grammar as defined in Appendix B.) Let the

initial state of the Markov chain be the state correspond—

ing to the sentential form consisting of the start symbol

of G.

Let Y be the set of all state-sequences generated by

this process. Let YT be the set of all sequences in Y in

which all but a finite number of states are absorbing.
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These state-sequences correspond to terminal sentences in

L(G). Let YN = Y-YT. The consistency condition of G1,

when translated to this model, says that the probability

of generating a sequence in YN is zero and the probability

of generating a sequence in YT is one.

Let c be an element of 22 and letcx be the sentential

form produced by applying 0 to the start symbol of G. Let

1110 be the state of M corresponding tocx. Now construct

the Markov process MO which is identical to M in every

0 andrespect except that m is the start state. Let Y°,YN
o

Yg be defined analogously to Y, YN, and YT.

We can now show that the probability that MO gener-

ates a sequence in Y% must be equal to one. Suppose this

were not true. Then, since Y§ and Y; are complementary in

Y0, the probability that Mo generates a sequence in Yfi

must be non-zero. Call this probability a. Now let 1;

be the probability under M of generating a path from the

start state of the original chair! to ma. Let 2% be the

set of all sequences in YN with o as initial segment.

Then the probability under M of generating a sequence in

2:] is given by the product 5‘ . Since Z13 is a subset of

YN, the probability of generating a sequence in YN is at

least £6, . This contradicts the consistency of G1,

hence our assumption was false, and we have established

0
that the probability of generating a sequence in YT by the

Markov process M0 is equal to one for any as Z . QED
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In terms of our original generative grammar G1, this

means that with probability one, any initial segment of a

derivation sequence will terminate in a finite number or

steps. Thus equation (A) and hence equation (5) are es-

tablished.

It should be noted that the multiplication rule

Pr(EOIHi)=Pi(o(1))Pi(o(2))...Pi(o(k))

is in general valid only for sets of the form Eo (i.e.

corresponding to an initial segment of a LMCD) and does

not imply any kind of independence among events associated

with each production.

For example, the probability of the occurrence of NJ

at the nth position in a derivation is not given by

Pi(wJ). This latter probability represents the probability

of the occurrence of ”j conditioned upon the existence of

the premise of NJ in the sentential form upon which the

production is applied. This condition is automatically

fulfilled if we consider only initial segments of deriva—

tions. It is for this reason that a top—down parsing

technique is essential.

D. 3. The SPRT

We now have a sample space :8 with a different pro-

bability measure under each hypothesis and a class of

events {Eo}osE over ’8 . We have Just established an

efficient means of computing the probability associated

with any E0. Assume now that either H1 or H2 is active,
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but that we have no a_priori knowledge about the likeli-

hood of either hypothesis. We now perform a single random

experiment whose outcome is completely described by exact-

ly one point of :8 . The experiment may be regarded as

consisting of pushing a button and receiving a string x in

return. The outcome of this experiment (a point in ,8 )

specifies a finite family of events (subsets) of :3 ;

namely all those events EO such that o is an initial seg-

ment of the LMCD of the string x. Call this family of

events 8 x’ Note that this family is totally ordered by

inclusion. That is to say, Eo is contained within E0

1

if 02 is an initial segment of 01.

2

The sequential discriminative parsing scheme is now

used to examine each of the sets Ed 6. 8 in turn from

largest to smallest. When either the family 8 x is ex-

hausted or certain stopping criteria are met, the algor-

ithm decides that one of the hypotheses H or H is true
1 2

and terminates.

The stopping condition is defined as follows: Before

performing the experiment, select two numbers A and B

(stopping boundaries). As we successively inspect each

EU as described, we form the likelihood ratio

Pr(EolHl)

 A(EO) =

Pr(EOIHz)

and check if either A(EG) Z'A or A(Eo) : B. In the former

case we decide H1; in the latter case we decide H2. We
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shall see later that the discriminant grammar provides an

effective means of recursively computing the likelihood

ratio. (Actually, we will use the log of the likelihood

ratio.) First we consider the determination and inter-

pretation of A and B.

In the SPRT as developed by Wald, an unbounded number

of observations is available and conditions are specified

so that the likelihood ratio eventually reaches a stopping

boundary with probability one. In the case of the sequen-

tial parsing scheme this is not true; it is quite possible

that a parse may be completed before a boundary is reached.

In this case we will make a maximum likelihood decision,

i.e., we will decide H if the log of the likelihood ratio
1

is positive and decide H2 otherwise. Because of this pos-

sibility of running out of features, the error analysis

which follows differs somewhat from that given by Wald.

D. A. Error Analysis

Let e21 represent the probability of deciding H2 by

encountering the boundary B when the true hypothesis is

H1. Let el2 represent the probability of deciding Hl by

encountering the boundary A when the true hypothesis is

H Let )’1 be the probability that a parse under H
2' i

never reaches either boundary A or B. Assume now that at

some point during the sequential decision scheme we have

A(EO) Z A. For this E0 we have

Pr(EOIHl)

V I
D

 MEG) =

Pr(Eole)
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By definition, Pr(EOIHg) = e for this E0. Also,
12

since under Hl we must either terminate at A, terminate at

B or fail to reach a boundary, we have

Pr(EOIHl) + e21 + )"1 = 1 (6)

Combining these facts yields

1'921’ 3’ 1

A .i (7)

e12

 

Similarly, we can show that

e21

1“"312" 3’ 2

 

t
n

v (8)

From these inequalities we can immediately derive upper

bounds for the e :

13

e12 5.1/A

e215-B

(9)

We can tighten the bounds (9) if we make some assump-

tions about the behavior of the sequence of likelihoods

A(EO). One such assumption is that we will strive to have

e21 = e12. An additional, related assumption is that,

under each hypothesis, the probability of classifying a

sequence correctly using a maximum-likelihood decision

rule is no less than the probability of classifying a se-

quence correctly under a pure sequential scheme where the

A(EO) must cross a boundary before classification is made.
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Several arguments can be made for the reasonableness of

this assumption. First, if the decision boundaries are

very far apart, there is a good chance that no decision

at all will be made, whereas the maximum likelihood scheme

always yields a decision. Secondly, it is natural to as—

sume that with more observations available, a better de—

cision can be made. This assumption is not reasonable,

however, without the original condition that e12 = e21 so

that the total error is evenly distributed between both

classes. If we let 6 be the maximum likelihood probability

of error under both classes, The assumption says that

(
D
)

e12 + I'e 3

and

e21 + ”’1 : 8

Substituting this into (7) and (8) and denoting

e = e, we get
21 = e12

A :_(1 - é)/e

and

._ e/(l - é)t
n

v

From which we get

e §_[min(B,l/A)](l - é)

D. 5. Parsing Algorithm

We now relate the procedure described in this sec—

tion in terms of the discriminant grammar. Assume that we
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are given two commensurate stochastic grammars G and G
1 2

and two stopping boundaries A and B as described above.

Assume further that the common characteristic grammar of

the given stochastic grammars is LL(k). Then construct

discriminant grammar D = LLRR(G1,G2) and set stopping

boundaries 0(= log A and B = log B.

Then the sequential discriminative parsing scheme

(SDPS) may be described as follows:

1. Initialize accumulator variable h to zero.

2. Find the next production n in top-down se—

quence using LL(k) techniques.

. Let h + h + R(fl)

. If h lot, decide H and stop.
1

. If h 5,8, decide H and stop.

3

z;

5 2

6. If the parse is not finished, go to step 2.

7

8

. If h‘: 0, decide H2 and stop.

. If h > 0, decide H1 and stop.

This procedure is flow-charted in Figure A.

EXAMPLE Suppose we are given two stochastic grammars

({S.B}.{c.e.r.h}. II ,P >C
) II

and

G2 ({s.B}.{c.s,r.h}.TY .132)

where Tr , P1 and P2 are given in Table 1. Table 1 also

gives R(ni)=log Pl(wi) - log P2(ni). Under this defini—

tion of R, D=LLRR(Gl,G2) = ({S,B},{c,g,f,h}, TT ,R). Both
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| decide Hl ‘
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Figure A Sequential Discriminative Parsing Scheme
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G1 and G2 are consistent and proper and their underlying

characteristic grammar G is LL(l). Let us arbitrarily

set A = 100 and B = .01. The probability of the parse

reaching the wrong stopping boundary is then less than 1%.

(Recall that this is not a bound on the overall error of

the procedure.) We then have o(= log 100 = “.61 and

B = log .01 = -A.6l.

Suppose now that we are given the string ccccgfhhhhh.

The underlying characteristic grammar belongs to a partic-

ularly simple class of LL(l) grammars for which we can de-

termine one production of the LMCD for each symbol of the

string scanned. Table 2 summarizes the results of the ap-

plication of the SDPS to the given string. Recall that h

is the accumulator variable representing the cumulative

sum of R(ni). As indicated in the table, the parse was

truncated and a decision was made that x was generated by

Gl after observing only four of the eleven symbols of the

string. This was possible because the pre-determined up-

per stopping boundary A.6l was exceeded.



Table 1 Two Stochastic Grammars

and Their Log-Likelihood Ratio Representation

 

i ni P1(ni) P2(w1) ’R(wi)

l S + 08B .8 .2 1.39

2 s +g .2 .8 -1.39

3 B + fBB .3 .u -.288

4 B +h .7 .6 .151:
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Table 2 Example of the SDPS

 

Symbol Production

Scanned Determined R(n1) h Action

0 "l 1.39 1.39 continue

c "1 1.39 2.78 continue

0 n1 1.39 h.l7 continue

0 n1 1.39 5.56 stop;

decide H1

39



E. SUMMARY

In this chapter we have formulated the definition of

the Discriminant Grammar and the decision regions which

accompany it. We then demonstrated that the Discriminant

Grammar has a natural application in providing a sufficient

statistic for the two-class decision problem involving

stochastic grammars. First a Bayesian approach was de-

scribed and then it was shown how a sequential probability

ratio test could be implemented using a top—down parsing

technique. It should be noted that top-down parsing of an

LL(k) language can be programmed quite readily using re-

cursive descent.

In all the above statistical interpretations it was

assumed that the two stochastic grammars involved are com-

mensurate. If they are not commensurate, we cannot apply

the above results, but all is not lost, since we can use

training methods to be discussed later.
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III. SOME LANGUAGE-THEORETIC RESULTS

A. REGULAR DISCRIMINANT GRAMMARS WITH

RATIONAL COEFFICIENTS

A. l. Informal Description

Discriminant grammars whose underlying characteristic

grammars are regular have many interesting properties. We

shall call such discriminant grammars regular discriminant

grammars. In this section we intend to show that given

any regular discriminant grammar D = (VN,VT,'TY ,S,R)

where all the R(ni) are rational, then for any rational

number O, the decision region L-(D,O) is a context-free

language. The following informal argument will serve as

a basis for a proof of this theorem:

Denote R(w1) by r1, as before. Convert the numbers

O,rl,r2,...rn to integers by multiplying each by the least

common multiple of their denominators. To simplify nota-

tion, we will retain the same names for these (now inte—

gral) numbers. In effect, we create a new discriminant

grammar D with integral coefficients. This does not change

the region L-(D,O). Now construct a non-deterministic

finite-state automaton which accepts L(CHAR(D)). We shall

now modify this into a non-deterministic push-down automa-

ton which will accept L-(D,O). The existence of this

U1
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automaton implies that L-(D,O) is a context-free language.

We shall also show by example that L—(D,O) is not neces-

sarily regular.

We proceed as follows to construct the automaton:

Let M be the maximum ab solute value of the (now integral)

numbers rl,r2,...rn,O. Clearly, we can construct a finite-

state machine which is capable of adding any two integers

of opposite Sign and absolute value less than or equal to

M and producing a result of absolute value less than or

equal to M. Call this machine the "adder".

Next we need a push-down store, each location of

which is capable of storing an encoding of an integer of

absolute value less than or equal to M.

The final push—down automaton is an assemblage of

these three components (non—deterministic recognizer, ad-

der, push—down store) plus some mechanism for integrating

these parts, which works as follows: Suppose the recog-

nizer (in a non-deterministic mode) makes a transition

which indicates that w is in the derivation of the input
1

string. If the push-down store is empty, the operation of

the machine would be to place ri on the store. If the

store is not empty, denote the value of the top element by

K. If ri and K are of the same sign, then the machine

should push r onto the stack. If r and K differ in sign,
1 i

then the machine should add r1 and K, forming a number r'

of lesser absolute value than either r1 or K, pop the

stack, exposing a new top symbol K', and then compare r'
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with K'. The machine should proceed in this way until r'

is eventually added into the stack. This stack manipula-

tion algorithm has two very important properties:

1) At no time is a number with absolute value

greater than M on the stack.

2) All numbers on the stack have the same sign.

When the recognizer reaches a final state, the adder

is then used in exactly the same way to add 0 into the

stack. After this operation, the input string is accepted

as an element of L-(D,O) if and only if the top stack ele-

ment is negative.

This informal description of the operation of the

machine is flow-charted in Figure 5 and Figure 6. The

multiple arrows in Figure 5 denote the non-deterministic

step in which the non-deterministic finite-state automa-

ton discovers another step in the parse. Figure 6 de-

fines the procedure ADDSTK with formal parameter r. In

both figures, K refers to the top element of the stack.

NDFA stands for non-deterministic finite-state automaton

In Figure 6 the condition "K*r > 0" does not imply that an

actual multiplication need be done, only that K and r are

non-zero and have the same sign.

A. 2. Detailed Construction

We now give a detailed formal construction to imple-

ment the foregoing informal description. A (non-determi—

nistic) push-down automaton (PDA) is a 7-tup1e
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as

M = (192 . T" .6.q0.zO.F>

where:

K is a finite set of states

:8. is a finite input alphabet

f“ is a finite stack alphabet

6 is a function from KX(23 U{e})xr1

into CFYKXTT *)

qOeK is the initial state

Zoe r" is the initial stack symbol

F E K is a set of final states

The details of the operation of a PDA may be found in

Hopcroft and Ullman(10). The fundamental result we will

use is the fact that a language is accepted by a non-deter-

ministic push-down automaton if and only if the language

is context free.

We will begin with a regular discriminant grammar

with rational coefficients and a rational number 0 and we

will construct a PDA which will accept L'(D,C). First, as

before, we convert all coefficients, including O, to inte-

gers in the range -M to +M. This does not alter the re—

gion L-(D,O).

VN = {Bi} and VT = {a1}

Let A, A', and T be three symbols not in VN.
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Then let

K = (VNu{A,A',TDx{-M,-M+l,...o...M—1,M}

§3= vT

F‘= {-M,-M+1,...—l,l,2,...M-1,M,z }

q0 = (830)

F = {(Ts0)}

The construction of the transition function 6 is

somewhat more complex. For each non-terminal B and ter-

1

minal ak there is a (possibly empty) set of production

A

and possibly a production of the form

B1 + ak (2)

We will use the symbol C to represent either non-

terminals (B3) or either of the special symbols A or A'.

Specifically, the set designated {Cik} contains the A sym-

bols {B 13:1 as represented by (1) and also the symbol A

J

if there is a production of the form (2). (In this case

J
the C1k

Analogously, the set {nik} is the set of integers (r's)

can be considered to have the superscript 2+1.)

associated with the productions (l) and (2).

For example, suppose that the productions of TI

having B on the left and a on the right and their
1 k

associated r-values are:
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Production r-value

Bi + akBl +5

Bi + akB2 —2

Bi + ak 0

Then {Cik}33l ‘ {Bl B2,A} and

{hik132-1 = {5,-2.0}

In the following, m1k represents the number of pro—

ductions in Tr with B1 on the left and ak on the right.

To avoid subscripted superscripts, we will usually omit

the subscripts on m when context makes them clear. Z

represents an arbitrary stack symbol (either a number in

the specified range or the stack start symbol 20). We now

have sufficient notation to define 6.

First, for each Bi’ 6 should contain the following

non-deterministic, non-e transition rules (for all Zer| ):

(1) 6((Bi,o), ak,Z) = {((Ciknnik), Z’}rm

Informally, this is equivalent to saying that no matter

what is on the stack, if the machine is in state (Bi,0) and

ak is read, then, for each production n of the form

Bi + akBJ with R(n)=n, the machine moves (non-determinis-

tically) into state (BJ,n). If there is a production a of

the form Bi + ak with r(n)=n, then the machine also moves

into state (A,n). In all cases the stack symbol remains

unchanged. The purpose of this class of instructions is
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to allow the machine to recognize when a production rule

might have been applied and to incorporate the r—value of

that production rule into the memory of the PDA's finite

state control.

Next we need a mechanism to transfer these r-values

from the finite-state control onto the push down stack as

described informally earlier. For each C, therefore, we

shall include the following e—rules: For all combinations

of non-zero n and Z such that n and Z have the same Sign

or Z=Z include the rules
0,

(2) 6((Can),€,z) = {((C,0),nZ)}

i.e., if the number in the finite-state control has the

same sign as the number on top of the stack, or if the

symbol on top of the stack is Z0, then the number from the

finite-state control may be pushed onto the stack.

For all combinations of n and Z such that n and Z dif-

fer in Sign and n is not zero, include the rules:

(3) 6((C,n).€.Z) = {((C,Z+n).6)}

i.e., if the number in the finite state control differs in

sign from the number on top of the stack, we add the top

stack element into the finite state control and pop the

stack.

By using the above rules, we eventually arrive in the

state (A,0) if and only if there is a derivation for the

input string in CHAR(D). The next step is to put -0 into
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the finite control. This may be accomplished by the sin-

gle production:

(A) 6((A,0),e,Z) = {((A',-9),Z)}

for all Zei—‘. Previously defined transition rules may

now be used to transfer -0 from the finite control to the

stack, ultimately sending the machine into state (A',0).

The additional symbol A' is necessary here to insure that

this rule is used only once. Now it remains only to in-

terrogate the top stack symbol and send the machine into

the final state if and only if this top symbol is negative.

This is accomplished by including the following set of

productions for all Z less than zero:

(5) 6((A',0),e.z) = {((T,0),Z)}

The existence of the above construction establishes

the following:

THEOREM Given a regular discriminant grammar D with ra-

tional values for R(n1) and given any rational numberO,

the language L-(D,O) is context-free.

Simple modifications to the above construction could

be made to show that L+(D,O) and LO(D,O) are also context-

free.

A. 3. Example

As an example, consider the following regular discri-

minant grammar with rational coefficients:
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D = ({S=Bl},{al,a2,a3},'TF,S,R)

Where IT and R are given by

 

Tri I'i

Bl + alBl +1

Bl + a2Bl -1

Bl + a3 +1

Clearly, L-(D,l) = {xlxc{al,a2}*a3 and x(a2) > x(al)}

where the notation x(a) means the number of occurrences of

the symbol a in the string x. Since this language is not

regular, this example shows that we cannot strengthen the

theorem to say that L"(D,O) must be regular.

According to the construction,

M = (K. 2 . F" .6. q0.zo.F> where

K = {(Bl,1),(Bl,O),(Bl,~l),(A,l),(A,O),

(A.-l).(A'.1).(A'.0).(A'.-l).(T.l).

(T30):Ts'l)}

2 = {al,a2,a3}

T1= {l,-l,Z }

q0 = (Blao)

F = {(T,O)}
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and the transition function 6 is given in Table 3. In

that table, each element of the transition function is

labelled I.J. where the I refers to one of the five rules

used to generate it and the J is simply an ordinal number

within a group.

Table A gives a trace of the action of this automaton

in accepting the string x=a2ala2a3. Following the conven—

tion of Hopcroft and Ullman, the bottom of the stack is on

the right and stack symbols are added or deleted from the

left. Also remember that "—l" is a single stack symbol,

not two. As expected, this string is accepted because the

PDA finally enters state (T,O).



O F
’

Table 3 PDA Transition Function (Example)

6((Bl.0).al.-l) = {((Bl.l).-1)}

6((81.0),a1,1> = {((Bl.1),)}

6((81.0).al.z0> = {((Bl.1),z )}

6((Bl.0).a2.zo) = {((Bl.-1).Z0)}

6((Bl.0).a2.-l) = {((Bl.-l).-l)}

6((Bl.0).a2.1) = {((Bl.-l).l)}

6((Bl,o),a3,z0) = {((A,l),Z0)}

6((Bl,0)sa3,-l) = {((A,1),-l)}

6((Bl.0),a3,1) = {((A,l),l)}

6((Bl.l).e.zo) = {((Bl.0).lzo)}

6((Bl.-1>.e.zo) = {((Bl.0),-lzo)}

5((Aal)9€azo) = {((A30)31Z0)}

6((A9-l)9egzo) {((A,0),-lz0)}

6((A',l),e,Z0) {((A',O),1Z0)}

6((A'.-1>.e.zo> = (((A'.0).-lzo)}
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Table 3 (continued)

6((Bl,1),e,l) = {((Bl,0),11)}

5((Bl.-l).e,-l) = {((Bl.0).-1-1>}

6((A.l).e,l) = {((A,o),ll)}

6((A.-l).e.-l) = {((A.0).-l-l)}

6((A'.l).e.l) = {((A'.0).ll)}

6((A'.-l).6.-l) = {((A'.0).-l-l)}

6((Bl.1).e.-1) = {((B1.0).e)}

6((Bls‘l)sesl) = {((Blao)s€)}

6((A’l)353-1) {((A30)95)}

6((A.-1),e.1) {((A.0).e>}

6((A',1).e.-1> = {((A',o>,e)}

6((A'.-1>.e.1) = {((A',0),e)}

6((A.o>.e.zo> = {((A'.-1>.z )}

6((A.o>.e,1) = {((A',-l).l)}

6((A,O))€3-1) = {((A'3-l),-l)}

5((A' .0),6.-1)={((T.0).-l)}

514
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input 6-rule state stack contents

(81.0) 20

a2 1.“ (Bl,-l) Z0

8 2.2 (Bl,0) -1ZO

a1 1.1 (Bl,l) -1Z0

6 3.1 (81,0) ZO

a2 1.4 (Bl,-l) Z0

8 2.2 (81,0) -1ZO

a3 1.8 (A.l) -120

e 3.3 (A,O) 20

e ".1 (A',-1) Z0

6 2.6 (A',O) -1Z0

6 5.1 (T,O) -lZO



B. REGULAR DISCRIMINANT GRAMMARS WITH

UNRESTRICTED COEFFICIENTS

In this section we show that if the ri and O are not

constrained to be rational, then there are decision re-

gions L_(D,O) which are not context-free.

THEOREM The class of languages expressible in the form

L-(D,O), where CHAR(D) is regular, is uncountable.

PROOF For each real number ¢, let D(¢) represent the fol-

lowing discriminant grammar:

D(¢> = ({S}.{a.b.c}. 1T .S.R)

where TI and R are given by

 

1 Hi R(wi)

1 S + aS cos(¢)

2 S + bS -sin(¢)

3 S + c 0

¢ may be regarded as a parameter of the discriminant gram—

mar. We now define the uncountable class of languages.

{L'(D(¢).0) | 0:¢_<_1r/2}
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We now show that the languages in this class are distinct.

AS before, let x(a) denote the number of occurrences of

the symbol a in the string x. Then we can express

_ a

L (D(¢),O) x {xe{a,b} c|x(a)cos(¢)-x(b)sin(¢)<0}

= {xe{a,b}*c|x(a)/x(b)<tan(¢))

Now consider two languages

L‘(D(¢l),0) and L’(D(¢2),0)

where ¢l<¢2.

Now choose two integers I and J such that

tan(¢l)<I/J<tan(¢2).

Then the string aIbJc is an element of L‘(D(¢2),o) but is

not an element of L-(D(¢l),0), hence the two languages are

distinct.

ED

Since the class of context-free languages is count-

able, it follows immediately that

CORROLLARY There exist non-context—free languages of the
 

form L-(D,O) where CHAR(D) is regular.

This statement can be strengthened by substituting

the phrase "recursively enumerable" for "context-free".



C. SUMMARY

In this chapter we have shown that if we have a regu-

lar discriminant grammar with rational coefficients, the

resulting decision regions are context-free but not neces-

sarily regular. On the other hand, if the coefficients

are not constrained to be rational, there are uncountably

many decision regions expressible as L-(D,O) hence there

are decision regions which are not recursively enumerable.

The latter result is not surprising and there is an

analogous result for probabilistic automata. The first-

mentioned theorem is of much greater theoretical interest

and provides a new characterization of context-free lan-

guages.
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IV. DISCRIMINANT GRAMMARS AND

PROBABILISTIC AUTOMATA

In this section we consider the relation between a

decision region of a regular discriminant grammar and the

language defined by a probabilistic automaton. A proba-

bilistic automaton (PA) may be defined as a quintuple

M (K,§S ,I,F,{A(a):ae:g })

where

} n

i=1 is a finite set of statesK = {k1

23 is a finite set of input symbols

I is an n-component stochastic row vector

(The "initial distribution")

F is an n-component column vector consisting

of 0's and 1's. (The final-state vector)

{A(a):a62 } is a set of n by n stochastic

(sum along any row=l) transi-

tion matrices, one for each

input symbol.

a

M defines a mapping from :53 into the reals in the

a

following way: Given any string x = ala2a3...are :2; ,
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Let A(x) be defined as

I'

A(x) = TT A(ai)

i=1

Then the real valued "probabilistic event" EM(x) is

a

defined for all xe 2. as

EM(X) = IA(X)F

Finally, given any PA M and a real number A (a "cutpoint"),

define the language (probabilistic cut-point event) accep-

ted by M with cutpoint A as:

a

T(M,A) = {xlxe Z and EM(x)>A}

Paz(l9) shows that this class of languages is not

changed if we remove the restrictions that I and the tran-

sition matrices be stochastic and if we allow F to be an

arbitrary vector. In this case we use the terminology

"pseudo-probabilistic automaton" (PPA) and "pseudo-proba-

bilistic event". The language accepted by a PPA with cut-

point A is called a "general cut-point event" (GCE).

We will now show that, given any regular discrimi-

nant grammar D, the region L+(D,O) is a GCE. Suppose that

we are given a regular discriminant grammar D=(VN,VTJT,S,R).

Since D is regular, all productions must be of the form

B1 + akBJ

OI'

Bi+ak
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In the former case denote the associated r-value as rij

and in the latter case as rfio.

Given any cutpoint O, we will now construct a PPA M

and a cutpoint A such that L+(D,O) = T(M,A). Let

K = VNU{T}, where T is some symbol not already in VN which

will serve as an "acceptance state". Denote the cardinal—

1,B2,B3,..

set of input symbols for M be identical to the set of ter-

ity of K by n, so that K = {S=B .Bn=T}. Let the

minal symbols of D (Z =VT). Let I be the n-component

row vector with a l in the first position and 0's else-

where. F is defined as the n-component column vector with

a one in the nth position and zeros elsewhere. Finally we

construct the set of matrices {A(a):aez }. The essential

construction here involves exponentiation so that the addi-

tive structure of the discriminant grammar may be transla-

ted to the essentially multiplicative structure of the PPA.

To accomplish this, for each production of the form

Bi + akBJ in TV , let the (1,3) element of A(ak) be

:0). Let all other entries of the matrices be 0.

(Note that the entire last row of each matrix is zero.)

exp(r

Finally, let A = exp(O). We now show that the above PPA

with cutpoint A accepts all strings in L+(D,O) and that

these are the only strings which it accepts.

Given any string x in L+(D,O), there must be exactly

one derivation for that string in CHAR(D). Let this deri-

vation be given by
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where the productions applied are “1’"2""’"r' Since

xeL+(D,O), we must also have

I'

2: R("1)>0

i=1

We must now show that

r

I “A(ak) F<A

k=l

That is to say, the (1,n) element of the matrix

r

“ A(ak) must exceed A

k=1

Let us decompose this matrix into a product of two matrices

by choosing some p such that l :_p < r. Then

r p r

IT A(ak) = 1T A(ak) T)— A(ak)

k=l k=l k=p+1

Call the matrix on the left U and the two matrices on the

right G and H respectively. Then by the definition of

matrix multiplication,

n

Uln =2 GliHin

i=1
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If more than one term in the above sum is non-zero, this

would imply that there is more than one distinct derivation

in CHAR(D) for x. Since CHAR(D) is unambiguous, we can say

that only one of the products GliHin is non-zero. Call

this product GlsHsn’ By decomposing G and H in exactly the

same way, we can show that G and Hsn are simple products
ls

rather than sums of products. Continuing in this way, we

can Show that

r r

k=1 k=1

where each pk is some element of A(ak). If n is the pth

production used in the derivation of x, and n is B1 + akBj

then pm must be exp(rij). Thus we have shown that

I"

EM(x) = TIT (exp(R(wk)))

k=1

or, equivalently

EM(X)

r

exp 2E R(wk)

k=1

Since we are assuming that

I’

Z R(wk)>O

k=1

and

A = exp(O).
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The monotonicity of the exponential function gives us the

result that EM(X)>A. Thus we have shown that

xeL+(D,O) :9 xeT(M,A)

under the given construction. To establish the converse,

we must consider two cases:

1) X€L(CHAR(D))

2) X¢L(CHAR(D))

In the first case, x has a derivation in CHAR(D) and,

as above, we can establish that

r

EM(x) = exp E R(1rk)

k=1

Since we are assuming now that EM(x)>A and that A = exp(O),

r

ZR("k)>9

k=1

or, equivalently, that xeL+(D,O).

The second case, xeL(CHAR(D)) cannot occur, since in

this case no derivation for x in CHAR(D) exists, hence

A(a = 0
k)

x

u
Z
Z
l
H

H

contradicting the assumption that EM(x)>A. (Recall that

A = exp(O), hence is always positive.)
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Invoking the equivalence between PA and PPA, we have

now proved the following:

THEOREM Given any regular discriminant grammar D and cut-

point O, there exists a PA M and a cutpoint A such that

L+(D,O) = T(M,A).

Consider the following example:

Let D = ({S=Bl,B2},{al,a2,a3 LTT,S,R) where TT’ and R are

given as follows:

 

Hi R(fli)

Bl + alB2 1

B2 + a2Bl 0

Bl + a3Bl -1

Bl + a3 —1

H R D - * * * dThen L(C A ( )) - ((a1a2) a3 ) a3 an

L+(D,0) = {xlxeL(CHAR(D)) and x(al)> x(a3)} where x(ai)

denotes the number of occurrences of ai in x. Then the

pseudo-probabilistic automaton is constructed as follows:

M = (K, 2 ,I,F,{A(a):aez, }) where

K = {S=Bl,B2,T}

Z= {al,a2,a3}

I = (1,0,0)

F = (0,0,1)T
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0 e 0

A(al) = 0 0 0

O O O

O O 0

A(a2) = l 0 0

O O 0

e'1 0 e"1

A(a3) = 0 O 0

0 O O

and the generalized cut-point event equivalent to

L+(D,O) is T(M,1). Let us check some sample strings:

1) x = (xeL+(D,O))3182313283

EM(x) = (1.0.0)A<al)A(a2>A<al)A(a2)A(a3)(o.o.l>T

e 0 e O

= (1,0,0) 0 0 0 0 = e

0 0 0 1

since e > 1, xeT(M,l).

2) x = a (xeL(CHAR(D)) but x¢L+(D,0))
la2a3

EM(x) = (1.0.o>A(al>A(a,>A(a3>(0.0.1>T

l o 1 o

= (1,0,0) 0 o o o = 1

o o o 1

hence x¢T(M,l).
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3) x = ala3 (xeL(CHAR(D)))

EM<x) = (1.0.0)A(al)A(a3)(o.0.1>T

O 0 O 0

= (1,0,0) 0 O O O

O O O 1

hence, as predicted by the theorem, x¢T(M,l).



V. SUMMARY AND RECOMMENDATIONS

A. SUMMARY

This thesis introduces the idea of a discriminant

grammar as a tool for syntactic pattern recognition, ex-

plores certain properties which derive from the definition,

and explains certain techniques which the discriminant

grammar makes possible.

Chapter I provides a motivation for the discriminant

grammar concept and provides some informal examples of the

advantages of discriminant grammars.

Chapter II gives the formal definition of discrimi-

nant grammars and goes on to show how they may be used to

provide a sufficient statistic for the two-class decision

problem involving stochastic languages. Specific formu-

lations are given for the Bayesian case and the SPRT. The

existence of the Sequential Discriminative Parsing Scheme

is one of the principal contributions of this thesis.

This chapter also gives a technique for the calculation of

bounds on the Bayes error for linear grammars.

Chapter III proves some results on the nature of the

decision regions of regular discriminant grammars. The

result of greatest theoretical interest is the theorem

which says that decision regions of regular discriminant

grammars with rational coefficients are context free.
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Chapter IV provides the proof of a result which es—

tablishes a connection between the regular discriminant

grammar and probabilistic automata.

Finally, some suggestions are given for future work

involving the learning of discriminant grammar coefficients

from labeled empirical samples.



B. TRAINING METHODS

Insofar as pattern recognition is intended as a prac-

tical art, it must incorporate a learning or inductive

phase as well as a decision algorithm. The decision

schemes presented in this thesis center around the context-

free unambiguous discriminant grammar. It will be neces-

sary to develop schemes for the inference of such a discri-

minant grammar given some kind of empirical sample of

strings from the classes between which we wish to discri-

minate. Two distinct problems arise -- inference of the

structural component and inference of the numerical compo-

nent of the discriminant grammar. The former is a far

more difficult problem than the latter; in fact, the latter

sort of learning is usually designated by a less imposing

word than "inference" such as "training".

In general, the inference of a discriminant grammar

is a two-stage process: determination of the structural

component (the characteristic grammar) followed by the

determination of the numerical component (The function R

and the cutpoint 0). It is the purpose of this section to

demonstrate the following two points:

1) Once the structural component has been deter-

mined, the determination of the numerical

component is mathematically trivial.

7O
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2) The existence of the numerical component

makes the determination of the structural

component far less critical to the perfor-

mance of the decision algorithm.

In the inference of ordinary regular or context-free

phrase structure grammars (see Fu and Booth(8) for a sur—

vey), it is typical to have two finite empirical samples

of strings, say L+ and LI, and be required to exhibit a

grammar which accepts L+ but does not accept L”. The ex—

ponential combinatorics of known methods for accomplish-

ing this make the task infeasible for samples of any sub-

stantial size, nor is it known how to make effective use

of a_priori human knowledge about apparent differences be-

tween the sample sets. In addition, the corruption of a

single string by noise may sabotage the entire algorithm.

In contrast, let us now consider the inference

problem in terms of discriminant grammars. Suppose we

are given two sample sets L+ and L- and we are asked to

exhibit a discriminant grammar D and cutpoint 0 such that

L+<_:_ L+(D,O) and L‘s; L‘(D,e). As a first step, we must

determine a phrase structure grammar G with the property

that L(G); L+UL- which will serve as a characteristic

grammar for D. There are a great many obvious grammars

which will satisfy this requirement and we are free to use

our human powers of inference to select grammars which

seem like good candidates. The primary criterion in

which we are interested is that G have some productions
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which will be of most use in generating strings from L+

and some productions more useful in generating strings from

L . If we wish to allow for noisy strings, we can choose

G such that L(G) is as large as possible, in fact, we may

*

T .

Once we have chosen the characteristic grammar for D

well choose G such that L(G) = V

(or, more probably, several candidate characteristic

grammars), we are now ready for the second (numerical)

stage of the inference process. To accomplish this, we

first determine the structural indices (using the mapping

S defined previously) of all strings in L+ and L-. The

problem of numerical training is now simply one of finding

a separating hyperplane between these two sets of indices.

If these sets happen to be linearly separable, we have

made a good choice of G and the desired coefficients may

be found by means of the perceptron algorithm. In the

more likely case that the sets of indices are not linearly

separable, (or in the case where the sample strings are

probabilistically generated infinite sequences), we may

find coefficients which are in some sense "good" by using

well-known variants of the perceptron algorithm. (See

Duda & Hart(A)).

As a trivially simple example, consider the following

two sample sets:

L+ = {abbba , babba , bb}

and
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L- = {aaa , abaaa , abbaaa , a}

We note that the strings in L- contain more a's than b's

and vice versa for the strings in L+. We therefore con-

struct the following tentative characteristic grammar G:

G = ({S}>{aab}a.fi ,3)

Where IT is given by

l) S + aS

2) S + b3

3) 8+8

The structural indices of the sample strings may be sum—

marized as follows:

 

STRING CLASS S(x)

abbba +1 (2.3.1)

babba +1 (2.3.1)

bb +1 (0,2,1)

aaa -1 (3.0.1)

abaaa —l (A,l,l)

abbaaa -l (h,2,l)

a -1 (1,0,1)

The two classes are indeed linearly separable. A

suitable set of coefficients might be (-1,+l,0) with

threshold 0. In terms of the discriminant grammar we are

seeking this gives us r1 = —1, r2 = +1, r3 = O and O = O.
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Although this problem is admittedly trivial, the point is

that it is usually far easier to separate L+ from L— than

it is to analyze the structure of either L+ or L‘, thereby

avoiding complex problems of structural inference, (or at

least deferring the structural inference problem until the

complexity of the problems rise to meet the capabilities

of the analytical technique).

It is hoped that investigation of the various aspects

of this training problem will provide fruitful ground for

further research.



C. OTHER FUTURE WORK

There are several other directions in which this

work might be extended. First, an improved error analysis

for the sequential discriminative parsing scheme would be

desirable, including estimates of the amount of work saved

by truncating the parse. It would also be valuable to see

how the new field of grammatical inference could be brought

to bear on the problem of constructing characteristic

grammars which emphasize the differences between sets of
 

sample strings rather than the regularities within a sam—

ple set.

On a more theoretical level, an investigation of

further relationships between discriminant grammars and

probabilistic automate would be interesting. For example,

is it true that every cut-point event can be represented

as a decision region of some discriminant grammar? It is

also an interesting question whether a discriminant gram-

mar can always be extended to accept arbitrarily noisy

strings, that is, given a discriminant grammar D with char-

acteristic grammar G and a cut-point O, is it always pos-

sible to find a discriminant grammar D' with characteristic

grammar G' and cut-point 6' such that L'(D,O)EE L'(D',0')

*

and L+(D,O)E L+(D',O') and L(G') = vT '2
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It is not hard to imagine a host of other questions,

such as the possibility of extending the sequential dis-

criminative parsing scheme to grammars which are not LL(k)

or the possibility of devising a discriminant grammar

scheme based on ambiguous grammars. It is the authors

hope that this thesis opens up a new area of study which

will prove important in the future.



APPENDICES



APPENDIX A. LL(k) GRAMMARS AND TOP-DOWN PARSING

Of the three general classes of parsing algorithms

(top-down, bottom-up, and tabular), the top-down method is

of greatest relevance to this thesis. This technique al-

lows us to reconstruct a LMCD in a forward (start symbol to

sentence) manner, using information obtained from the input

string to guide the parser in selecting productions. The

parsing method described here is the LL(k) technique,

which allows us to parse a certain class of unambiguous

context-free languages in linear time. This class of

languages is defined as follows:

Let G = (VN’VT’ TT ,8) be a context-free

grammar.

Let k be a natural number, and leto( be

a string over VN u VT' Then define

a a

FIRSTk(ot) = {x e VT [either |x|<k andd =?x

* a

or Ix] = k and ot:>xy for some y in VT}

Informally, FIRSTk(dJ is the set of k—symbol terminal

prefixes of strings derivable from (X. In the following,

let the notation ‘17-}? stand for left-most derivation.

Then G is LL(k) if and only if the three conditions:

77
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s

l) 871-"? ert fixed =>xv

2) 8% ont fix)“ :>xw

3) FIRSTk(v) = FIRSTk(w)

imply that B = r .

LL(k) languages lend themselves in a natural way to

deterministic top-down parsing. Informally, as we are re—

constructing the derivation of a sentence 2 in L(G) and

wish to know what production rule to apply to the non-ter-

minal A in the sentential form xAd, the decision can be

determined by looking at the k terminals following the

prefix x of z. In practice, an LL(k) parser may easily be

programmed using either table look-up or recursive descent.

A complete discussion of LL(k) techinques may be found in

Aho and Ullman(l).

It is known that for any k the class of LL(k) gram-

mars forms a proper subset of the unambiguous context-free

grammars and furthermore that the class of LL(m) grammars

properly includes the class of LL(n) grammars if m exceeds

n. Given any language L, it is undecidable if L is gener—

ated by an LL(k) grammar, but the class cf languages pars-

able by LL(k) methods is large enough, for example, to

allow ALGOL to be thus compiled (See Lewis and Rosen-

krantz(l6)). An LL(l) grammar is called simple if and

only if for each pair (A,a), where A e VN and a c VT, there

is at most one production of the form A + ad. Many of the
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examples used in this thesis are simple LL(l) grammars.



APPENDIX B. STOCHASTIC GRAMMARS

In may situations, particularly in pattern classifi-

cation problems, it is desirable to have a probability

assignment over a language, that is, a mapping P: L+[O,l]

:EZPKX) = 1

Considered as a set of ordered pairs, this function is

such that

called a stochastic language. Since interesting languages

are usually infinite, it behooves us to specify an algor-

ithm for the computation of this function in order to de-

fine it. One way to do this is to combine the probability

computation with the language generation by means of a

"stochastic grammar". See, for example, Booth and Thomp—

son(2).

A stochastic grammar is a quintuple

F = (VN.VT.IT .S.P)

where V , VT’ Tr , and S are the non-terminal set, the

terminal set, the production set, and the start symbol,

respectively, and P is a mapping from TI to the unit in—

terval [0,1]. The characteristic grammar CHAR(F) is the

ordinary grammar formed from the first four components of

80
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F. The probability of a given derivation fl1,fl2,fl3,...,fln

is defined to be equal to the product

P(nl)P(N2)P(w3)...P(wn)

Implicit in this definition is the following extremely

important principle:

UNRESTRICTEDNESS ASSUMPTION: The probability of the appli—

cation of any production depends only upon the presence of

a given premise in a derivation and not upon how the pre-

mise was generated.

For all x e L(CHAR(F)), the probability of x (denoted

[(x)) is defined to be the sum of the probabilities of

all distinct LMCD's of x. Note that if the grammar is un-

ambiguous, there is only one term in this sum.

If the relation

grew.
x e L(CHAR(F))

is satisfied, then I" is a true probability mass function

and F is said to be consistent. In this case Va is said to

be the stochastic language generated by F (‘—'= L(F)).

For each A c VN, let n(A) be the subset of TI consist-

ing of all produCtions whose premise is A. Then F is said

to be proper if, for all A e VN,
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EE P(Hi) = l

111 8 MN

All stochastic grammars used in this thesis will be

unrestricted, consistent, and proper.
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