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ABSTRACT

QUASI-MARTINGALES AND
STOCHASTIC INTEGRALS

by Donald L. Fisk

A quasi-martingale is defined to be a stochastic process, with
time parameter the closed unit interval, which is decomposable into
the sum of a martingale process and a process having almost every

sample function of bounded variation.

The first problem considered is that of obtaining necessary
and sufficient conditions for a process to be a quasi-martingale.
The main result is given in section 3 of Chapter II. Necessary and
sufficient conditions are given for a process with almost every sam-
ple function continuous to be a quasi-martingale with certain speci-

fied properties.

The second problem considered is that of defining a stochastic
integral with respect to a quasi-martingale process. The integral
is defined as the probability limit of Riemann-Stieltjes type sums.
Sufficient conditions for the existence of the integral are obtained
in section 2, Chapter III. Section 3, Chapter III deals with the
properties of the integral. Parallels are drawn here between the
ordinary Riemann-Stieltjes integral and the stochastic integral.

Particular emphasis is placed on transform properties of the integral.



Donald L. Fisk

The dominating technique Chapter II and Chapter III, is the
use of random stopping times defined in terms of the process or
processes under consideration. The most significant use of stopping
times is in obtaining sequences of processes so that each process
in the sequence has a certain specified property (for example each
process in the sequence may be uniformly bounded or each process
in the sequence may be almost surely sample equi-continuous) and
the sequence of processes converge to the original process in the
sense that there is eventual equality of almost every sample

function.
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Chapter I: Preliminary Discussion

Let (8,F,P) be a probability measure spacé on which is defined
a family of real valued random variables (r.v.'s) {X(t); teT} where
T is a subset of the real line. We will always assume E(|X(t)|) <€ o
for every teT. Let (F(t); teT) be a family of sub g-fields of F
with F(s)c F(t) for every s, teT with s < t. The family of r.v.'s
{X(t); teT} is said to be well adapted to the family of sub g-fields
(F(t); teT) if X(t) is F(t) measurable for every teT, and we will
then write {X(t), F(t); teT} to indicate this relation. The family
(X(t), F(t); teT) will be referred to as a stochastic process.

After specifying a particular process (X(t), F(t); teT) we will
often refer to it as the 'X-process,' in order to simplify writing.
In many cases F(t) is the minimal g-field with respect to (w.r.t.)
which the family of r.v.'s (X(s); seT, s < t} is measurable. We
will denote such g-fields by,a (X(s); seT, s <t).

A process (X(t), F(t); teT) is called a martingale process if
for every s, teT with s < t, E(X(t)|F(s)) = X(s) with probability
one (a.s., a.e.), and is called a semi-martingale (super-martingale)
process if E(X(t)|F(s)) > X(s) a.s. (E(X(t)|F(s)) < X(s) a.s.).

This can be restated as follows: Let

g, (A) = fA X(t,w)dP(@) for AcF(s)

Then by the Radon-Nikodym theorem, there exists an F(s) measurable

function which we denote by E(X(t)|F(s)) such that
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OE fA X(t,0)dP(a) = _/; E(X(t) |F(s)) (@) dP(a) for AcF(s)

Furthermore E(X(t)|F(s)) is unique except on an F(s) set of measure
zero.
The process {X(t), F(t); teT) is then a martingale if for every

s,teT with s < t,

fx(s,m)dP(m) - fx(t,w)dP(m) for AeF(s)
A . A

Correspondingly we can say the process is a semi-martingale if for

every s,teT with s < t,
fx(s,o)dP(m) < fx(t,m)dP(a)) for every AcF(s)
A A

and the process is a super-martingale if for every s,teT with s < t,

fX(s,O)dP(m) > fX(t,m)dP(m) for every AcF(s)
A A

We will assume from now on T is a closed interval, and hence
it 1is no further restriction to assume T is the closed unit interval
[0,1]. This will be assumed throughout the thesis.

We can think of a process {X(t), F(t); teT} as a function X
of two variables defined on the space TXQ. For each fixed teT,
X(t,*) is a r.v. defined on (8,F,P,) and is measurable w.r.t. F(t),
and for each fixed wefl, X(-,w) is a real valued function with domain
T. A sample function of the process is simply a member of the family
{X(*,w); weR} of real valued functions with domain T. We will be
interested ir-1 analytic properties of the sample functions. However,
in order to make probability statements about analytic properties
of the sample functions, we must have separability of the process
w.r.t. the class UA of (finite or infinite) closed intervals. The

process is said to be separable relative to QA if there is a



denumerable subset To of T and a set AcF with P(A) = 0 such that if
Ae c& , and I is an open interval, then
[X(t,w)eA; teINT] A [X(s,w)eA; teIﬂTo]C A

where [X(t,w)eA; teINT] = {w| X(t,w)eA; teINT)}. In general we
will let [-°-] denote the set of all wel such that ":.." is true.

Separability w.r.t. d implies that if I is any open interval,

then
sup X(t,w), 1inf X(t,®) and Tim X(s,w), lim X(s,w)
teINT teINT s>t s—=>t

are all r.v.'s.

We remark here that any process {X(t), F(t); teT} which is
a.s. sample continuous is separable w.r.t. dA . By a.s. sample
continuity we mean there exists a set AcF with P(A) = O such that
if w¢A, then |

lim X(s,w) = X(t,w) for every teT.
s—=>t

Further, if T, is a denumerable dense subset of T, then it is a

0
separating set.

We proceed now to the definition of a quasi-martingale process.

Definition 1.1.1

The process {X(t), F(t); teT) will be called a quasi-martingale
process if there exists a martingale process {xl(t), F(t); teT} and
a process {xz(t), F(t); teT) with a.e. sample function of bounded
variation on T such that

P([x(t) = x] (t)"'xz(t); teT]) = 1

When we say the process (xz(t), F(t); teT} has a.e. sample

function of bounded variation on T we mean that except for weA,
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with P(A) = O, x2(~,w) is a real valued function of bounded variation
over T.

From now on we will always write [)(]I or simply X, for the
martingale, and [)(]2 or simply xz for the process of bounded varia-
tion in the decomposition of the quasi-martingale X. It is hoped
that this will not be confused with the bracket notation used to
indicate subsets of Q.

We now give some simple examples of such processes.

Let (Z(t), F(t); teT) be the Brownian motion process with
T=[0,1]; 1.e., the process has independent, normally distributed
increments with E(Z(t)-Z(s)) = 0 and E(|Z(t)-Z(s)|2) = ozlt-sl
where ¢ > 0 1is fixed and s,teT. We assume Z(0)= 0 a.s. so that the
process is a martingale process. We further assume
F(t) =$(x(s); seT, s <t). Let X(t) = exp[Z(t)v] for every teT,
where‘ v 1s an arbitrary positive real number. If u>Oand t +u<l,

E(X(t+u) |[F(t)) = E(exp[Z(t+u)v]]|F(t))
= E(exp[(Z(t) + Z(t+u) - 2(t))v]|F(t))
= exp[2(t)v] E(exp[(Z(t+u) - Z(t))v])

= X(t) exp[azvzu/Z]

If we let t,,
X, (t) -f °2" X(s)dS for every teT,
0
then the process {xz(t), F(t); teT) has a.e. sample function of

bounded variation on T. That xz(t) is defined follows from the fact
that the Brownian motion process is a.s. sample continuous. We show
the process [xl(t) = X(t) - X, (t), F(t); teT) is a martingale.

Again assume u > 0 and t + u < 1, then



E(X; (t+u) [F(t)) = E(X(t+u) - X,(t+u) |F(t))
= X(t) explo®vZu/2] - E(X,(t+u) |F(t))

Now
t+u

E(X,(t+u) |F(t)) = “JQ OV explz(s)v]ds|F(t))

2

) azv2
= Xz(t) +‘4: ] E(exp[Z(t+s)v] |F(t))ds

uaa 22
- xz(t) + 9—%— exp[Z(t)v] exp[o v s/2]ds
0

= Xz(t) + x(t)(exp[ozvzu/2]-l)

Then E(X, (t+u) |F(t)) = X(t) exp[o?v?u/2]- X,(t)
-x(t) (explo?v2u/2] -1)

= X(t) - Xz(t) - x|(t) a.s.

Hence the X- process is a quasi-martingale. That

u 22

E( | S5 exp[z(t+s)vids|F(t))

u 22
- [ S E(enptz(ees) vl [F(0)ds
0

follows from the existence in this case of a conditional probability
and we are thus only changing the order of integration which is
permissible here. (One can also prove it directly by observing the
Riemann-Stieltjes sums and noting these sums form a uniformly
integrable sequence.)

In this example we have really just considered a continuous,
convex function of a martingale process, exp[Z(t)v], and hence we

have a semi-martingale process. The following will give a simple



class of examples where the quasi-martingale. need not be a semi-
martingale.

Let (X(t), F(t); teT) be a process with independent increments
where F(t) = J3(X(s); seT, s < t). Let E(X(t)) =m(t). Ifs<ct,
then assuming m(0) = 0,

E(X(t) |F(s)) = X(s) + m(t) - m(s)

Define Xz(t) = m(t) a.s. and x'(t) = X(t) - Xz(t) for every teT.

Then [Xl(t), F(t); teT) is a martingale process and therefore the
process (X(t), F(t); teT) will be a quasi-martingale process when
m(t) is of bounded variation on T.

We will now mention some work which has been done by P. Meyer (3)
on the decomposition of a continuous parameter super-martingale
(X(t), F(t); te[0,00]) into the difference of a martingale process
{x,(t), F(t); te[0,00]) and a process {xz(t), F(t); te[9,m] which has
a.e. sample function ménotone non-decreasing. The resﬁlts obtained
by Meyer are the following: Let (X(t), F(t); te[0,0]) be a uniformly
integrable, right continuous super-martingale. Then tﬁe process has
the stated decomposition if and only if it is of ¢lass.D.on [0,00],
t.e., if and only if the family of r.v.'s {XT; 1€ J}, where :7’ is
the class of all stopping times for the process, is.uniformly
integrable.

It has been shown by Johnson and Helms (4) that there exist
uniformly integrable, right continuous super-martingales
{x(t), F(t); te[0,00]) which are not of class D. They have further
shown that if in addition the super-martingale is a.s. sample

continuous then it has the stated decomposition if and only if



Hm rP([ sup |X(t,@)| >r]) =0
r-=>w 0<t<oo
The problem of decomposing a process {X(t), F(t); teT) into
the sum of a martingale process and a process having a.e. Sample
function of bounded variation on T parallels the above described
decomposition of a super-martingale. For if we assume
(x(t), F(t); te[0,00]} 1s a uniformly integrable super-martingale,
we may as well assume we have the super-martingale
(x(t), F(t); te[0,1]). Then if we have the above decomposition, the
process having monotone non-decreasing sample functions has a.e.
sample function of bounded variation on [0,1].
We will obtain necessary and sufficient conditions for a process

{X(t), F(t); teT) to have the decomposition
P([X(t) = X, (t) + X,(t); teT]) = |

where [xl(t), F(t); teT) is an a.s. sample continuous martingale and
the process {Xz(t), F(t); teT) has a.e. sample function of bounded
variation on T, and further if V(w) denotes the total variation of

x2(°,aﬂ over T, E(V(w)) < oo0.



Chapter II

Section 1: Random stopping

Let {X(t), F(t); teT) be a stochastic process defined on the
probability space (2,F,P). We will be interested in obtaining a
sequence of processes [xv(t), F(t); teT), v=1,2,..., where each
process in the sequence has some specified property, such that

P([xv(t) ¥ X(t) for some teT]) —> 0
as v —> .
For example, we may want to define a sequence of processes

(Xv(t), F(t); teT} v=1,2,... such that

sup |X (t,w)| < o for every v = 1,2,...

t,w
and

P([xv(t) ¥ X(t) for some teT]) —> 0
as v —>m.
Such sequences are usually obtained by a random stopping of the
process {X(t), F(t); teT). Therefore, we will consider briefly random
stopping of a process (2, Loeve, pp. 530-535).

Let (X(t), F(t); teT) be a process defined on the probability
space (Q,F,P) and let 7(w) be a r.v. defined on (Q,F,P) with range T.
If for each teT, [v(w) < t]eF(t) (and hence [r(w) < t]eF(t)), the
r.v. v(w) is called a stopping time of the X-process. If the
X-process is a.s. sample right or left continuous then we can define
a new process (xT(t), F(t); teT)} by randomly stopping the X-process
according to the stopping time r(w). More precisely, if the

X-process 1s a.s. sample right continuous, define



X _(t,0) = X(t,0) t < 7(w)
= X(r(w),w) t>(w)

and then using right continuity of the process and the fact that
[r(@) < t]leF(t) it can be shown XT(t) is F(t) measurable for every
teT.

Actually, if one only requires [t(w) < t]eF(t), and defines

XT(t,w) = X(t,w) t < r(w)
= X(r(@),) t > r(w)

then XT(t) will be F(t) measurable if the X-process is either a.s.
sample right or left continuous.
The following is a standard theorem which we state here since

it will be used extensively (2, Loeve, p. 533).

Theorem 2.1.1

If {(X(t), F(t); teT) is an a.s. sample right continuous semi-
martingale, (martingale) and if + is a stopping time of the process,
then the stopped process {x_r(t), F(t); teT) is also a semi~

martingale (martingale).

The next two theorems will also be used extensively in later

work so we will prove them in some detail.

Theorem 2.1.2

Let {X(t), F(t); teT)} be an a.s. sample continuous process.
There exists a sequence of processes {xv(t), F(t); teT), v=0,1,2,...
each process in the sequence being a.s. sample equi-coﬁtinuous,

such that .
P([xv(t) # X(t) for some teT]) < 2 v
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Proof:

By a process being a.s. sample equi-continuous we mean the
following: There exists a set A with P(A) = 0, such that if € > 0
is given, there exists a 5 > 0 Such that |

[X(t,w) - X(s,w)| < € when |t-s| <5

for every wdA. (That A does not depend on teT follows from the
fact that T= [0,1].)

We now prove the theorem.

Let {en; n > 0} be a sequence of real numbers with

€> €,> ...2€>...>20and lim ¢ = 0. For each n > 0, let
0 "l n n on -

{an’ v > 0) be a sequence of real numbers with

5n>5n

)
0 DD bnv>...> 0 and l%m 5nv- 0. The € s are arbitrary

|
and the 6nv's are to be chosen as follows: Because of the a.s.
sample continuity of the X-process, for each € n=0,1,... we can
find a 6nv>0 such that

P(L sup  |X(t,0) - X(s,0)| > € ]) < 27 (™)
|t-s|<s_, n

for each v = 0,1,....

Let Tnv(m) be the first t such that

sup | X(s,w) - X(s',w)| > €
|55 |<5,

s,s' <t

v

If no such t exists we define Tnv(w) = 1. Then for each n,v=0,l1,...
0< -rnv(w) <1 a.s. -rnv(w) is a stopping time of the process for
every n,v=0,1,... since for any te(0,1]

['rnv(w) >t] = [ sup [X(s',w) - X(s,w)| < en]

|s-s'|< B
- N
s,s' <t

v
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Define,

-rv(w) = 12f 'rnv(w), V= 0,],....
Then for each v = 0,1, ... os_-rv(m) <1.

Tv(w) will be a stopping time for the process if [Tv(a)) < t]eF(t)
for every teT. Actually it is sufficient to require that the set
[Tv(w) < t] differ from an F(t) set by a set of measure zero.

(1, Doob, p. 365) (As was mentioned, we could require only that

[-rv(w) < t]eF(t) for every teT, which is obviously the case since
o)
(@ < €] = U [r, @ < 11)

If te[0,1), then

P([-rnv(m) < t for infinitely many n])

® ®
= P nQO rrl-'-)n [va(w) <t]) = n-]-;moo P(“&)n['rnv(‘b) < t])
@ ®
s nl—;moo n%'n P([va(w) sths n-l-;u;o m2:ﬂ P([va(‘”) <
&
= 1 P( X(t,0) - X(s,0)| > € ])
- n—>mco mZ-‘n [I::TS 5‘“1 (&) s0)| 2 €

< 1m 27Nl
n—> 00

If Av(t) - [-rnv(m) < t for infinitely many n]. Then for
w#AV(t), -.-v(m) < t implies —rnv(w) < t for some n. We have
P(Av(t))- 0 for every te[0,1) and every v = 0,1,.... Letting

~Av(t) - 0 - Av(t)’ we have

[r,@ < t] = [inf 1 () <t]
n






'2.

= ([1nf 7 (@) < tIN ~8 () U([inf ¢ (@) < €N A (1)
n n

Qo
= nU-o['""(w) <) U ([1:f @ S t1NA (1),

o0
0 [r, @) < t] = (U Lr, @ < 1) = [nf 7, @) < N (0

c Av(t). Hence [-.-v(w) < t] differs from the F(t) set
©
U [+ (@) < t] by a set of measure zero.
v =
n=0

Define xv(t,w) = X(t,w) if t < -,-v(w)
= X(‘rv(w),m) if t > -.-v(m).

Then for each v = 0,1,..., xv(t) is F(t) measurable for every teT
and the process [xv(t), F(t); teT) is a.s. sample equi-continuous.

For given any € > 0, if €, <e, then for a.e. w,

|Xv(t,a>) - xv(s,w)| <e if |t-s|< By
Also

P([xv(t) ¥ X(t) for some teT])

= P([r, (@) < 1]) = P([1nf 7 (@) <1])
n

[0 0]
® N pm(nwy) o
= P( nqotfnv(w)«l)s %02 " a2,

The theorem is now proved.

Theorem 2.1.3
Let {X(t), F(t); teT) be an a.s. sample continuous process. There
exists a sequence of a.s. sample continuous, uniformly bounded

processes {xv(t), F(t); teT), v = 0,1,... such that
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P([xv(v) ¥ X(t) for some teT]) —> 0

as v—>>w.

If in addition the X-process is such that

Hm r P([ sup |X(t,w)| >r]) =0
r-> o t

then E(lxv(t) - X(t)]) —> 0 as v —> oo for every teT. If the
X-process is uniformly integrable,

sup E(lxv(t) -X(t)|]) > 0as v > w.
t

Proof:

Define 7 (w) to be the first t such that sup |X(s,w)| >v.
s<t

If no such t exists, let -rv(w) = 1. Then clearly -.-v(a:) defines a
stopping time for the process fbr every v = 0,1,.... Since the
process 1is a.s. sample continuous on the closed interval [0,1],
a.e. sample function has an absolute maximum.

Define xv(t,w) = X(t,w) 1f t < —rv(a))

= X(r,(@),0) 1f t > 7 (@)

Then for each v = 0,1,..., the process {xv(t), F(t); teT) is uniformly

bounded by v and is a.s. sample continuous. We have
P([X,(t) # X(t) for some teT]) = P([+, (@) < 1]) < P([sup|X(t,w)> v])
t

—>0as Vv-=>>m .

Assume now that 1im r P([sup |X(t,w)| > r]) = 0. Then
r—> o t

E(]X,(6) - X(t)]) -f X, (t) - X(t) |eP +f |x, (t) - x(t)]dp
(v, @2 t] [r, @<t]
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-f Ix, (t) -x(t)ldpgf |Xv(t)|dP+ f | X(t)|dP

[r, @<t ] [r,@<1] [, @<1]

< vP([r, (@) <1]) + f [ X(t)|dP .

['rv(w)< 1]

The conclusions are now apparent.

We note here that if we have n processes {xi(t), F(t); teT)
i=1,...,n satisfying the conditions of Theorem 2.1.2 or 2.1.3, we
can find n sequences of processes {xiv(t), F(t); teT} having the
specified properties and such that

P([xiv(t) ¢ xi(t) for some § <1 < n or teT]) —> 0 as

vV —> 0.
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Section 2: Decomposition theorem.
Let {X(t), F(t); teT) be any real valued process with

E(|X(t)|) < oo for every teT.

(2.2.1) Let []Tn, n > 1) be a sequence of partitions of T. We

denote the points of Trn as follows:

O=t <t <<...< 1.

n,0 n,l tn,Nn-H -

Assume I[ITnH = max |t
0L J SN,

TeTe LETTE

=t | —>0asn—>c and let
n,j+l n,J

I m>n, T C TTm and we will let
TTnm,j -ﬂ—mn [tn,j’ tn,j-l-l] so that

nm, j

N
Mo UTT
j=0

The points of ﬂ'nm j forj = 0,...,N will be denoted as follows
J

. . < . . < < . . .
tn,J = tnmJ,O tnm_;,l tnmJ,knmj-i-l- tn‘,J+l

We will always separate with a comma the variable subscript which
denotes an arbitrary point of the partition and the subscripts
indicating to which particular partition we are referrring. The
variable subscripts will be written last.

If ]—r is a partition of a closed interval [@,B] € T with points

a-a0<a‘<...<aw_l-ﬁ,wewill let

Ai(x) = X(aiH) - X(ai) 0<i<v.
Then, for example,

An’j(X) - x(tn,J.H) - X(tn,j) 0<j SN
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0<k<k

A k(x) = x(tHMJ,k+]) = x(tnmj,k) - = nmj

nmj ,
we will also write Fy for F(ai) and we let
C,(x) = E(a(X)|F) o0<i<v.

Then, for example

C,, X = €@ (F, ) 0<j<N

(X)) = E@ X Fy, i) O Sk Sk o

Comj, mj , k

v

We will often write Z' ci(x) for Z‘ ci(x). Then, for example, we

m i=0
can write
o Nn -tnmj

2., cm,i(x) = Z Z: cnmj,k(x) - Z )_. cnmj,k(x)'

M o TTamj 1=0 k =0

We will also use the following notation throughout.

For each teT, let TTn(t) - 7Tnﬂ[0,t]. For each s,teT with
s < t, we write

ﬁn(s,t) -(ﬁn(t) - Trn‘(s>U[largest element in TTn(s)]
so that

T () =T (U TT (5,0

Then, for example, if O = L < 8 <...< a,= ]

-7

y
L Z‘ cn,j (X) = Z_- cn,j(x) for every n = 1,2,....
1=0 ﬁn(ai’ai-bl) n

We define (xn(t), ‘Fn(t); teT)}, n=1,2,... as follows:

xn(t) = X(tn,j) if tn,J. St<t 0<J<N+H.

2J*l

(2.2.2)

<j +1.
F (t) = F(tn,j) ife ;St<t 0<j SN+

n,j+!
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We also define [xzn(t), Fn(t); teT), n= 1,2,... as follows:

e

xzn(t) = 2; Cn,j(X) for every teT.
T, (v)
(2.2.3)

F (t) = F(tn,j) if th,j St<t 0<j SN+,

n,j+l
or what is the same
k=)
Xy, (t) = 2_' Co,i (x) 1f bk ST g OSKSNA 1.
j=0
(2-20“)

If we let xln(t) = xn(t) - x2n(t) for every teT, the process

[Xln(t), Fn(t); teT) is a martingale. Clearly, the process
{xzn(t), Fn(t); teT) has a.e. sample function of bounded variation

on T since a.e. sample function takes on only a finite number of
distinct values. Then each process [xn(t), Fn(t); teT) is a quasi-
martingale.

If we assume the X-process is continuous in the mean, then it
is the limit in the mean of a sequence of quasi-martingales,

[Xn(t), Fn(t); teT), n > 1. Further, if for each teT, the sequence
[in(t); n > 1) converges in the mean to a r.v. Xz(t), then the process
{x,(t) = x(t) - X,(t), F(t); teT} is a martingale. For any teT, let

1 2

k (t) denote the last k such that t <t.
n n,k-

Let s,teT, s < t, and let AeF(s). Then

Ax,(t)dp- fo(t)dp ; foz(t)dp
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- [oxww - ([0 o omere [() e, o)

n—> 00
n(s) m(sa t)

T

- fo(t)dP - jA X,(s)dP = lim A( Z, c, ;(X)ap.

n—> 0
n(s: t)

Now fA( Z c,.;(0)ep = f‘(Z. G, ; (0 [F(s))ep

Trn(s: t) 7T (s, t)
k,(t) -1

- j;cn,kn(s)(x)dP+ f“Z ¢, (|F(s))ap
J-k (s)+1

- fA Cn,k_(s) X)9P + fA (xCe k(1) = X,k (s))) 9P

and hence

an f(Z, Cp,j (X))dP = fx(t)dP- j X(s) dP

TT (s,t) A

since Cayk (0) P52 Fo,k (s)+1 ¥ s and tark (s)+1” tn,kn(s)"'> 0

as n —> 00.

So we have

fol(t)dp- ’[& X(t)dP - sz(s)dP- _/Ax(t)dn Ax(s)dp
- ~/L xl(s)dP .

This however still tells us nothing about the process
(xz(t), F(t); teT) even when it exists. We now look for sufficient
conditions for the xz-process, when it exists, to have a.e. sample

function of bounded variation on T.
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The following lemma, though trivial, is a key starting point.

Lemma 2.2.5

If [11;; n > 1) is defined as in 2.2.1, then for any process

{x(t), F(t); teT)

E(Z Ic,,; 0D
M

n

is monotone non-decreasing in n.

Proof:

Let m > n. Then TT;::'rrm and we can write

i |

“Z I (")“-E(ZZ LI

- E(ZJ 5(2_. |Comj, kX 17D
n nnu
2€(), 1E(), con LIF DD =€) Ic, (D).
Tn 77;nu 77;

We make the following observation:
Let {X(t), F(t); teT) be a quasi-martingale with [x]]- X, and
[x]2 = X,. If a.e. sample function of the X, process is continuous,

then

Viw) = lim 24 Jay X

@ = 1n ) o, ()]
n

is the total variation of Xz(-,aﬂ over T for a.e. w, and it is a

random variable. Assume E(V(w)) < oo, then

E(), I, D) = () Ic, (k)]
ﬂn 7Tn
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SE() 18, ;X)) S E(V(@) < oo

and hence 1im E(zillc .(X)]) <o .
n—>00 n>J
n

In fact, if JT 1is any partition of T, there exists K

X’ independent

of 7T, such that
E(%‘ |c1(x)|) <K <o .

In view of this and Lemma 2.2.5 we restrict out attention to those

processes satisfying the following condition.

(2.2.6)
There is a sequence of partitions {TTB; n>1) of T, as defined

in 2.2.1 such that

1im E(Zlcn j(x)|) <Ky <oo .
n T ?

n

We could as well require the existence of a constant Kx such that

for any partition T of T, E(gf|ci(x)|) <Ky -

Lemma 2.2.7
Let the process {X(t), F(t); teT} satisfy condition 2.2.6 and

let (xzn(t), Fn(t); teT), n > 1, be defined as in 2.2.3. If the
process [xz(t), F(t); teT} is such that

P([1im in(t) = Xz(t); teT]) = 1
n

then the xz-process has a.e. sample function of bounded variation
over T. Furthermore, if the xz-process is a.s. sample continuous,

the total variation V(w) of x2(~,w) over T is a r.v. and
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E(Vw)) < 1im E(Z’]C (x)|)<|<
n—> 7Tn
Proof:
By 2.2.6, K, > Iim E(Z‘IC (X))
n—>
m

> E(nl_%m L |cn’j (X)), so that if we let K, (w) = n_l:;_mm Z‘ |cn’j(x)|,
n n

then Kx(m) is a.s. finite and integrable.

If0=ma . <a <...<a "= | is any partition of T, then

0 <2 Kt
k
), 18,0x;)| = Ll (), 0]
1m0 TP apa)
< lim )_' ZJ |c (x)|- Llc j(x)l-K(w)<oo
" 4e0 ﬂn(ai’ai-bl) i

for a.e. w. Since the partition was arbitrary,
sup )18, ()| K s
m

If the Xz-process is a.s. sample continuous, V(w) is a r.v.

dominated by Kx(w) and hence E(V(w)) < E(Kx(w)) < Ky <. (In fact,

V(w) will be measurable if a.e. sample function has at most jump

discontinuities, for even in this case

V@) = lim ZJ IA j) aus)
n—> CD
n
By our previous remarks and Lemma 2.2.7, if the process

{X(t), F(t); teT} is continuous in the mean, satisfies condition

2.2.6 and 1f (X, (t), F_(t); teT}, n > 1, defined as in 2.2.3, is
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such that there exists a process {xz(t), F(t); teT) with

P([nl-;moo in(t) - x2(t); teT]) = 1

and also

E(]X, (t) - X,(t)]) = 0asn > ®

for every teT, the X-process will be a quasi-martingale with [X] o= Xy
These are the basic conditions we will seek to satisfy in obtaining
first sufficient conditions for a process {X(t), F(t); teT) to be

a quasi-martingale.

We will need the following theorem.

Theorem 2.2.8
Let (X(t), F(t); teT) be a second order process. Let [a,B] be
a closed sub interval of T and let O = ao < a, <...< a " B be a

partition of [0,B]. Let € > 0 be given. If

€, =sup'[ max |X(B,w) - X(a,,w)|] <€
%P w ogkgr! ’ |

m n,
then P([ max IZJCk(X)I >¢€]) < E(IZ‘Ck()()|2)/(e-e()‘,ﬁ)2
m<n kom0 k=0

where sup' denotes the essential supremum. (i.e., the supremum over
o

all a¢h, where P(A) = 0.)

Proof:
The argument is the following: Assume AeF, |A| > €, and A is

F measurable. Assume further |E(B|F)| < & < e. Then

j' (A2+ 288 + B2)dP = f(A2+2AE(B|F) + £(8%|F))dp
A A

> f(A2+2AE(B|F) + [E(8|F)1)ap
A
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> f(A2+ 82- 2|A|5)dP = j(IAI-S)zdP
A A

> (e-8)2P@a) .

Now we let
v m

Am-“Z}d0|<e mrvgmmw|zc“m|zq form= 0,...,n.
k=0 k=m0

Then A eF , since C _(X) is measurable w.r.t. F_ for k = 0,...,m.
m m k m

We also have A Aj = ¢ for m ¥ j, and

[ max |Z'Ck(x)|>e] - U A

m<n ke
Now n
E(|ch(x)|)-2, f |Z‘ c () + c(x)|2dp.
k=0 m=0 Ay k=0 1

For each m = 0,1,...,n, we let A = zi‘ck(X), B, = 21‘ ck(x), and
k=0 kmm+1

replacing A and F with Ah and Fﬁ and 3 with € g’ the above argument
i

gives n

M

n
el ), ™1 2 L [ ey %
k=0 A

- (e=e, ) P([ max |2_‘c (X)| > €])

m<n pry

and hence the theorem is true.

Corollary 2.2.9:
Let {X(t), F(t); teT} be a second order process which is a.s.
sample equi-continuous. Let [Trn; n > 1) be a sequence of partitions

of T as defined in 2.2.1. Given any € > 0, there exists an n(e) such
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that if n > n(€) then for every m > n,

k
PLomex — max )G ]2 €D
OSJSNn o—ksknmj i=0
N\ 2 2
SEQL 1), Con @1 (o))

TTn n:\mj

where ¢ = sup' max sup |X(t,w) = X(s,®)] < €
@ 0SSNt Ss,tSt

(sup' denotes supremum over the set of equi-continuity).
®

Proof:
Because of the a.s. uniform sample equi-continuity of the

X-process, given any € > 0 there exists 5(€) such that

sup'  sup |X(t,w) - X(s,w)| <€ .
o |t-s|<&(e)

Let n(e) be such that ||TT || < &(e) if n > n(e). Then

€ = sup' max sup [X(t) - X(s)] < e
® 0SjSN tnjis’tstnj-ﬂ

, -
and for all m > n, sup max max lx(tnmj,k) x(tnmj,,k')|

N '
w 0<j<SN, 05!(,k5knm‘i

<e <e.
- n

Using Theorem 2.2.8, we then have the following:

k
P([ max max |Z C .. .(X)]| >¢€l
nmj,1 -
0sJ=sN, osksknm_j i=0
<) Pl o DIRCTESS
Jj=0 - nmj 1i=0
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SEQ) 1), Comy 01D e )
T’-n rrnmj

We will need the following theorem.

Theorem 2.2.10

Assume [xn(t); teT), n=1,2,... is a sequence of processes with
the following properties:

i) There is a countable dense subset T of T, containing the

points 0 and 1, such that P lim X (t) exists for each teT,.
n—> 00

i1) Given €, 1 > 0, there exists n(e,n) and 5(e,n) such that if
n > n(e,n)
P([ sup IXn(t) - Xn(s)|> €]) <.
|t-s| <&(e,n)
Then there exists a subsequence of processes (xn (t); teT)

k= 1,2,... and a process {X(t); teT) such that

a) P([lim X (t) = X(t); teT]) =1

k k
and
b) The X-process is a.s. sample continuous.
Proof :
We first show that conditions 1) and ii) imply
Tim  P([sup |Xn(t) - Xm(t)l > €]) = 0 for every € > 0.
m, n—> 00 t
Let (Tv; v > 1} be a sequence of partitions of T with
@
'l'] cT,c ... and ) T To- Let €, > O be given. First
v=]
choose n](e,n), 5(e,n) such that P([ sup ;X (t)-X (s)|> 1)
|t-s|<&(e,n

1
<3
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for every n > n](e, n). This can be done by condition ii). Now

choose v such that max |t t, _jl < 5(e,n). Next, choose
H )

v,j+l"
n, (e,n) such that

) > 1) <3

P([m;x lxn(tv,j) - xm(tv,_j

for every m > n > nv(e, n). This is possible because there are only

a finite number of points in T_ and for each t. .€T_, P lim X (t_ .)
v ViV Seo v,

exists. Now let n(e,n) = max (nl(e,n), nv(e,n)} and consider

P([S:p [X () - X (£)] > e])

= P([max sup |Xn(t) - xm(t)l > €])
SR SERE A
< P([max sup IXn(t) - xn(tv,j)l > ¢/3])

. t":jst s tv:j""

+ P([m?x X, (2, ;) - X, (¢, ]| >e/3])

+ P([max sup [X (t, .) - X (t)] >e/3]) <1
jot, <t<t, .., ™V m
V,j= = "v,j+l

Now lim P([sup |xn(t) - xm(t)l > €]) = 0 for every € > 0 implies
n,m—> 0o t

there exists a subsequence (xn (t); teT)}, k > 1, a process
k

{X(t); teT) and a set A with P(A) = O such that if wgh then

lim  (sup |Xn (t) - x(t)]) = 0.
k=>o t k

We have now established a).
We now proceed to show the process {X(t); teT} is a.s. sample

continuous. Let x;((t) - xn (t) for every teT and k= 1,2,....
k
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For every n = 1,2,..., by condition 1i), we can find a kn and

a 5(n) such that for k > k.

P( X'(t) - X'(s)| >n"']) <27 .
[It':TpS a(n)l k(t) = X ()| >n])

* ’
Let Xn(t) = X (t) for every teT; n= 1,2,.... Let
n

* * * -1
A = X (t) - X >
n [It':TPS a(n)l A1) = X (s)| >n 7]

00
* ® ¥ e * * »*
If B, = H A, thenA =TimA = Hn B, and P(A') = o.

»
If dek, then for every n > k,

]

»* ¥* -
su |Xn(t) - xn(s)| <k .

P
[t-s|<&(k)
*

Now if wfAUA , and 1f € > 0 1is given,

sup |X(t) - X(s)| <2 sup |X:(t) - X(t)| + sup |X:(t) - x:(s)|.
|t-s| <& t |t-s] <&

*
First choose kj(w) such that 2 sup IXk(t) - X(t)| < €/2 for every
t

k> ko(w). This can be done since w¢ghA. Next choose k] (w) such that
MB* and k (u))'l < €/2. Then if k(w) = max (k,(w), k,(w))} and
kl(w) 1 0 1

5 < zs(kl (w)), we have

sup |X(t) - X(s)]| < €
lesl < 5

Then for wgh |J A*, P(AY A*) a0

1im sup |X(t) - X(s)| =0 .
5> 0 |t-s| <b®
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Theorem 2.2.11
Let (X(t), F(t); teT) be a uniformly bounded a.s. sample equi-
continuous process satisfying condition 2.2.6. Then the process is

a quasi-martingale with [)(]2 = X, where xz(t) = P lim XZn(t) for
n=> 00

every teT, and the processes {xzn(t), Fn(t); teT) n=1,2,... are
as defined in 2.2.3. Further, the xz-process is a.s. sample
continuous and if V(w) denotes the variation of Xz(- ,w) over T then
E(V(w)) < o.
Proof:

Because of Theorem 2.2.10, Lemma 2.2.7, and our previous remarks

we need to show the following:

®
i) P lim xzn(t) exists for each te (J Trn - ﬂ:
n-> 00 n=|

ii) Given €, > 0, there exists n(e,n) and &(e,n) such that
if n > n(e,n)

P X, (t) - X, (s)| >¢€)
([It-s7u§s<e,n) ¥2a(®) = Yoo () > € ) <

and
1ii) For each teT, the sequence {xzn(t); n> 1} is uniformly

integrable in n.

We first show iii) is satisfied by showing E(|x2n(t)|2) <K< o0

for every n > 1 and teT. We have

Ex, (01D =€), ¢ 0[D
7, (t)

=E() e, ;1P +z) c () € ()
T (1) T (8) >
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=€), g, ;1D v k() ¢ K ¢ XF, )
T, (1) M, (t) k> j

< E(ZJ |cn,J.(x)||An,j(x)|) + ze()_' ICn’j(X)HX(tn,j (t))-X(tn’jH)l)
1T, (t) 1T, (%)

where j(t) is the last j such that tnj <t.
2

Then

e(|x2n(t)|2) gsnxe(z |cn,J. (X)]) < MK,
T (t)
where

My = sup|X(t,w)| and Ky 2 Tim E(ZJ |c (x)|).
t,w n—>00 T
n

We now prove 1) by showing

E(|X2n(t) - XZm(t)lz) —> 0 as n,m —> oo for every tell .

In so doing we will pick up an inequality which will allow us to

prove ii) immediately. If tel] , then there exists n, such that

te Trn for every n Zn . We assume now that m > n >n_. Then

t
in(t) = Z E(Z. cnm_j k(x)IFnj)
(1)

nmJ

XZm(t) = >_. Z‘ nmJ,k( ) -
T, (8) T

and

et U= ) G .

nmj
Then

E(IXp(8)- X (0)9) = €] ), (V- BV (R, )|
T (t)
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- 5(2_' v .(x) - E(vnmj(x)'Fn,j)Iz)

nmj
T, (t)
<€), N ®1D - e eV, IF, 1D
17, () 1T, (t)
SEQ), Vo 012
m,
= E(Z, 2_« 'cnmj,k(x)'z)
Trn n:\mj o )
$26() ), S (EQ), € (OIF )
m\ﬂnmj 1>k
< E(  max max IAnm' k(X)lZ‘Z lc_ . k()()l)
- ), nmj,
0SSN, O<ksk 7 Ty
) ZE(os?agnn Oimzxiknmjlx““:j'”) ) X(t"mi:""‘)li}f% o0
n !Inmj
If € = sup’ max sup |X(t,w) - X(s,w)|, then
" e 0gjEN, t Sstt o,

sup'  max max | x(t

) - x(t_. )| <e
® 0<jSN, 0<kk'Sk nmj , k n

nmj, k
mj

for every m > n. Hence

2 ™ 9
By (8) - X (01D SEQJ ), € (WD) S 3¢ K —> 0 as

TTn T7;1mj
m>n—>00 . Hence i) is proved.
To prove 1i), assume 5 < min |t .. ,-t .| and then for
0N, n, g+l "n,j

every m > n,
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P([|t§:Tsalx2m(t) = Xon(s)| > 3€])
k

< P([ max mx )¢ (X)]>el)
0< j< N O0<k<k . J
=—7="n =" ="nmj i=0

SE) 1), Comy k1D (eme))

Trn Trnmj

2
< 3enKx/(e-en) —>0asn—>wo .

Hence if ¢,n are given, we can choose n(e,n) such that 3enKx/(e-en)2
< 7. If we then fix n > n(e,n) and choose &(€,n) < ||n;||, then

for every m > n,

P X, (t) - X, (s)| >3e]) <q.
N

Hence condition ii) is satisfied and the theorem is proved.
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Section 3: Main decomposition theorem:

In order to prove the main decomposition theorem we need to do
more preliminary work.
We now investigate the uniqueness of the decomposition of a

quasi-martingale process. We need the following lemma.

Lemma 2.3.1
Let {Y(t), F(t); teT) be a martingale process having a.e.
sample function continuous and of bounded variation on T. Then

P([Y(t) = ¥(0); teT]) = 1.

Proof:

Since the Y-process has a.e. sample function continuous and of
bounded variation on T, if V(t,w) denotes the variation of Y(:,w)
over [0,t] then V(:,w) is continuous and monotone non-decreasing on
T for a.e. w. Further V(t,:) is a random variable measurable w.r.t.
F(t) for every teT. As in Theorem 2.1.3, we define Tv(t) to be the

first t such that

sup |V(s,w)| > v or sup |Y(s,w)| >v.
s<t s<t

If no such t exists let Tvﬁn) = |. Clearly, Tv@n) is a stopping
time of both the processes {Y(t), F(t); teT} and {V(t,w), F(t); teT}.
Define

Yv(t,a)) = Y(t,w) if t < -rv(u))
= Y(-rv(m),w) if t > 'rv(m).

By Theorem 2.1.1, for each v = 1,2,... the process {Yv(t), F(t); teT)
is a martingale. Furthermore, for each v = 1,2,... the Yv-process

has a.e. sample function continuous and of bounded variation on T.
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As in Theorem 2.1.3, for a.e. w , there exists v(w) such that

Y(t,0) = Yv(t,a)) for every teT 1f v > v(w).

It is also clear that if vv(t,w) denotes the variation of Yv(-,w)
over [0,t], then

Vv(t,w) = V(t,w) if t < -rv(w)
= V(r, @),0) if t> 1 (@)

This follows simply from the fact that for all s <t < -rv(a)),

Y(s,w) = Yv(s,w), and for t > Tv(a)), Yv(t,m) is constant. Also we have

sup |V (t,@)| <v, sup |Y (t,0)| <v

We now show that for every v = 1,2,...
P([Y,(t) = ¥,(0); teT]) = 1.

Let [Trn; n > 1) be a sequence of partitions of T as defined in 2.2.1,

o
and let TT- U ]T . Let ten- Then there exists n_ such that
n=| n t

te TTn for every n > n,:

Assume n > N
Now

By, - v,@[H = £, 18 ()Y
T ()

An,_i (Yv) l 2_. lAn‘,j (Yv) l)

<E A (Y vV (l,w)).
SEC m 18, 5 1V, (1,0)

Since YV and Vv are uniformly bounded and Yv is a.s. sample continuous

we have
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2 a—
E(JY (1) - Y (O] < n_l_;rr;o E(Osm?xsri,, 18, 5 () 1V, (1))

< E(nl-_fn'm |An,j(Yv)|Vv(l,w)) = 0.

Therefore

P(LY,(t) = ¥ (0); telT]) = 1.

Since m is dense in T and Y, is a.s. sample continuous, we
have

P(LY,(t) = ¥,(0); teT]) = 1,

and this is true for every v = 1,2,... . Since for a.e. w, when v

is sufficiently large Yv(t,aﬂ = Y(t,w) for every teT, it follows that

P([Y(t) = Y(0O); teT]) =1 .

Theorem 2.3.2
If (X(t), F(t); teT) is a quasi-martingale with the following
decompositions

P([x(t) = X, (t) + X,(t); teT]) = |
P([Xx(t) = XT(t) + X;(t); teT]) = 1

*
where the X, and xi, i=1,2, are a.s. sample continuous, then

i

P(LX,(t) = X| (£) + (X,(0) - X[ (0)); teT]) = I.
In particular, if XI(O) = XT(O) a.s., then

P([x(t) = XT(t); teT]) = 1.

Proof:

%

Let Y, = X, = X, , Y, = X, - X,.

2
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Then

P(LY, (1) = Yp(8); teT]) = )

and hence the process (Yl(t), F(t); teT} is a martingale process
with a.e. sample function continuous and of bounded variation on T.

The conclusion now follows from Lemma 2.3.1.

Suppose now {X(t), F(t); teT) is a.s. sample continuous. Let
{T‘;(m); v > 0} be the sequence of stopping times defined in Theorem 2.1.2.
If we stop the X-process at T;@D) then we will get a process which is
a.s. sample equi-continuous. Also let {7300); v > 0) be the sequence
of stopping times defined in Theorem 2.1.3. If we stop the X-process
at T:@D) then we will get a process which is uniformly bounded by v.

If TV(uﬂ is the minimum of T;(ﬂ» and 730»), then TVGD) is again a

stopping time of the X-process.

(2.3.3)
Define
7,(@) = min (+/ (@), 7)(@))
and let
Xv(t,w) = X(t,w) 1f t < Tv(w)
= X( Tv(w),w) if t > 'rv(a)) .
Then for each v = 0,1,... the xv-process is a.s. sample equi-

continuous and uniformly bounded by v. We have
P([r, (@) <1]) < P([r (@) <1]) + P([r)(w) <1]) —>0

as v —> .
Recall that

[r, (@ < 1] = [X (t) $ X(t) for some teT].
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Then there exists a set A with P(A) = 0 such that for w¢A, there
exists v(w) such that if v > v(w)
X(t,w) = xv(t,w) for every teT.
If r P([sup |X(t)| >r]) —> 0 as r —> 0 , then

t
E(va(t) - X(t)|) —> 0 for every teT,

for
E(x, (t) - X(t)]) = f X,(t) - X(t)|dP + f X, (t) - X(t)|dP
[r, (@<1] [r, (@=1]
- f |Xy(t) - X(t)|dP < f | X, (t) [dP + |x(t)|ap
[, (@) <1] [+, (@<1] [, (@<1]

sw(in@ <+ [ |xw]e .
[r, (@) < 1]

The second term goes to zero since P([fv(w) <1]) —> as v —>00 and

X(t) is integrable. The first term is bounded by

v ([r)(@) < 11) + vP([w) < 11)

-v

< v2 o+ vP([-r\"'(w) <1])

< vl 4+ vP([sup |X(t)| 2 v]) —> 0as v —>o00.
t

We now prove another lemma which will lead us to the main theorem.

Lemma 2.3.4.
Assume {X(t), F(t); teT} is a.s. sample continuous and is such
that

rP([sup |X(t)| > r]) —> 0as r —> ®.
t

Let the sequence of processes [Xv(t), F(t); teT}, v > 0, be as defined
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in 2.3.3. If the X-process satisfies condition 2.2.6, then each
Xv-process also satisfies condition 2.2.6 and the bound K is inde-
pendent of v.
Proof: _

We assume nl_;mooe(z_' |cn’J. (X)|) <Ky <o and want to show

n

there exists K < oo such that lim E(Z |(:ﬂ j(x)l) < K< oo for
J

n—>
every v > 0. " .
Let T = E(Z' |cn,j(x)|) and T = E(Z' |cn,J. (x,)]) - First
n TTn
consider
Zf (|cn,j(xv)|- |cn,j(x)|)d95 2_, f |cn,j(xv)- cn,j(x)ldp
m, @2t ] T (@2t ;]

-

<) f 1%, (b, ja1) = X(t, )|dP < ). _[ (IX(tn, j41) | + ¥ ) dP
Trn [TV(‘D)Z tl'l,j] ﬂn [tﬂ,js Tv(m) <tn,j+l]

-Z‘ j IX(tn,j,H)IdP + VP([TV((D) <1]) -
7Tn [tn’j <_Tv(“°) <tn,j+l]

Next consider

Nn -1
). [l 00 = ) ) [ e, mie )
7Tn [Tv(w)<tn,j] j-o k=0 [tn,ks ‘l'v(w) <tn,k+l]

Na-1 J_‘_‘n
=), () [ 1e, e )
k0 et [t Sw @) <t ]
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N
n
«f (), lc, ;(ap)

[t S @ <t ] Jmkel
N
_n
(f (), ECsen X(t, )8, ([F, ) ])eP)
[tn’ k'<' Tv(w) < tn, k"’l] j.k+l
N
2
9 (Z, E(-son X(t, A ((XF,))aP)
[tn, kf Tv(w)< tn, k+l] jmk+l
Nn
(f (), =son X(t, A (X)dP)

< < j’k"’]
[tn,k— Tv(lb) tn, k+I]

[ RG]+ Tosan X(e, )X ])EP)

< 'rv(a)) <t

S n, k1]

([ U, )| = 1xQ) )ep)

[tn’ ks Tv () < tn’ k'H]

Ix(tn’kﬂ)ldP - j |x(1)|dP

<
[t S @<t \nl (@ t"'Nn]

Ix(tn,kﬂ)ldP - f |X(1) |aP - f | X(1) |dP

[tn, ks 'rv(w)< tn,k'H] [tn,an 'rv(w)< 1] ['rv (w) < tn, Nn]
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g
'Z.f |X(t, ) ldP - f |x(1)|dP .
0 1e,

ST (¢n)<tn k1] [, (@ <1]
Now
an - Tn =E (Z Icn,j(xv)l) - E (2.. lcn,j(x)l)
n n
- Z(f |cn,j(xv)|dp + f |c .(x ) |dP)
n [Tv(m)<tﬂ)j] [T ((D)Z tn J]
- Z‘ (f lc, () |ap f lc, ;(x)]dP)
Mo (r@<t, 1 [(n@2t ]
- ()_. NCOIL Z’ f Ic,, ; (¥ |¢P)
Mo | (m)z £, ] T (n@2t, ]

Z f lc, ,(x|ap

Mo (r,e)<t, ]

- (Z [ e, o)1 -1, @b - ) [ 1, mlee)

Mo (@2t ] To (r,@x<t, ;]

(Z [t jalee + velin,@ < 1)

n [t n ] <-.- (w)<t J+l]
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- e el - [ o)

TTn [t S n@<t ] [r, (@ <1]

- w(n@ <+ [ xmer .

[+, (@) <I]
Hence )
wTn S E(Z|cn,j (X)) + vP([r,@<1]) + f |X(1)|dP .
m, [r, @< 1]

or T <Ky + vP([r, () <1]) + f |X(1)dP for every n. As
[r, (@) <]
v —> @, both vP([r, () < 1]) and f IX(1)|dP  go to zero.
[r, @<1]
Hence 1f K = lim E(z |cn’j (x,)|), then K, —> K, as v —> .

n—>m® X
n

Main Theorem 2.3.5.
In order that the a.s. sample continuous, first order process
{(x(t), F(t); teT)} have a decomposition into the sum of two processes

P(IX(t) = X, (1) + Xy(t); teT]) = 1,

where [Xl(t), F(t); teT) is an a.s. sample continuous martingale
process and the process [xz(t), F(t); teT) has a.e. sample function
continuous and of bounded variation on T with E(V(w)) < oo, where
V(w) is the total variation of X2(°,u9 over T, it is necessary and

sufficient that
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1) 1im  rP([sup [X(t,w)| > r]) = 0, and
r—>00 t

i1) For any sequence of partitions (TT;, n>1) of T with

WTT Il =>o0and [T,CJ7,C

1im E(Z|c (X)]) <K, <@
n—-> o n,J X
n

K, being independent of the sequence of partitions.

X

Proof:

We first prove the necessity.

If {X(t), F(t); teT) is a quasi-martingale with the stated
decomposition, we have already indicated that ii) is true. We need

then to prove i). Consider

rP([sup |X(t,@)|> r]) = rP([sup |X(t,w)- X(0,w)+ X(0O,w)]| > r])
t t
< rP([sup |X(t,w)- X(0,w)| > r/2]) + rP([|X(0,)]| > r/2]).
t

Now rP([|X(0,@)] > r/2]) < 2f X P S e >
[1x(0,0) |2 r/2]

Consider then

rP([S:p [X(t,w) - X(0,w)| > r/2])
= rP({sup | (X, (t,0) = X, (0,@)) + (X,(t,0) - X,(0,0))] > r/2])
< rP([s:p X, (t,0) = X, (0,w) | > r/h])
+ rP([Stt:p |X,(t,@) = X,(0,0) | > r/k]).

Now {(x'(t) - XI(O)), F(t); teT} is a martingale and hence by

Theorem 3.2, sec 11, Chapter VII of Doob, we have
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P(lsup |, (£,0) - X, (0,0)] 2 r/u]) < 4/r E(IX, (1) - X, (0)])
—> 0 as r —> . By the same theorem

ré([sup |xl (t,0) - X) (0,w) | > r/4)) guf |x|(l) - X, (0) |dp —> 0
t
[sup |X, (t)=X,(0) |> r/k]
t

as r —> .

Consider now

rP([sup |X,(t)- X,(0)| > r/4]) < rP([sup |V(t,@)| > r/k])
t t

< rP([V(1,w) > r/4]) < hf vV(l,w)dP —> 0 as r —> o,
(v(1,0)> r/4]

where V(t,w) denotes the variation of xz(-,w) over the interval
[0,t]. Hence, if the quasi-martingale {X(t), F(t); teT) has the
decomposition stated in the theorem, conditions i) and 11) are
satisfied.

We now prove the sufficiency of 1) and 1i). Let the sequence
of processes {xv(t), F(t); teT} v=1,2,... be defined as in 2.3.3.
Then P([Xv(t) = X(t); teT]) —> 1 as v —> . By assumption 1),
E(va(t) - X(t)|) — 0 as v —> oo for every teT. By Lemma 2.3.4,
each process [Xv(t), F(t); teT} v = 1,2,... satisfies condition
2.2.6, the bound K being independent of v. Then by Theorem 2.2.11,

each process has the decomposition
P(IX, (t) = X, (t) + X, (t); teT]) = 1

where [xw(t), F(t); teT} is an a.s. sample continuous martingale
process, and the process [XZV(t), F(t); teT} has a.e. sample function

of bounded variation on T. Further
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L

XZV(t) =P nl-;moo _>_. cn,j (Xv) for every teT
. (t)

and so if Vv(t,m) denotes the variation of X2v(~,w) over [0,t] we

know by Lemma 2.3.4 and Lemma 2.2.7

E(V. (t,w)) < 1lim E(? [c . (X)]) <K<
v - n,jv -
n->m ﬂ’
n
for every teT, v = 1,2,....

*
It is clear that T (w) < 12(u>) <...a.s. Letv >vand let

%
X]v(t,w) = xlv*(t,w) if t < ‘rv((D)

X'v*(fv(w),m) if t > TV(O))

»*
x2v(t,w) xzv*(t,(b) if t < -rv(a))

XZV*(Tv(m),w) if t > TV(‘D) .

#* *
By Theorem 2.2.1, xw is a martingale, and clearly the x2v-process
*
has a.e. sample function of bounded variation on T. Further xw and
#*

x2v are a.s. sample continuous.
Since
Xv(t,w) - xv*(t,w) if t < rv(m)
= XV*(-rv(w),:) if t > TV((D)
we have

PCIX,(t) = X, (t) + X, (t); teT]) = 1

P(IX,(€) = X],(t) + X; (t); teT]) = 1

Now X,,,(0) = P lim Z cn,j (X,) = 0 for every v = 0,1,... so
n—> o -
1 (0)
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that XZV(O) = xzv*(O) = 0 a.s. And hence by Theorem 2.3.2, we have
*
P([xzv(t) - xzv(t); teT]) = |
For a.e. w, i.e., except for wel, where P(A) = 0 there exists a v(w)
such that for all v > v(w), -rv(m) = 1. Then for v > v > v(w)
Xiv*(t,w) = Xiv(t,w) for every teT. (i = 1,2)
We define, for wfA,

Xz(t,m) = lim XZV(t,w) for every teT
v—=> 00

X, (t,w) = 1dm X, (t,w) for every teT.
1 lv
V= @

And hence for every wfA there exists v(w) such that if v > v(w)
xi(t,w) - xiv(t,w) for every teT. (i =1,2)

Now, for every v = 0,1,2,... and wfA
xiv(t,w) = xi(t,w) if t < -rv(m)

i=1,2
= Xi(fv(m),w) if t> -rv(m) ( )

If V(t,w) denotes the variation of xz(-,m) over [0,t] , V(t,w)
is finite since there exists v(w) such that
XZv(t,w) = xz(t,m) for all teT
and hence V(t,w) = Vv(t,w) for all teT.

Clearly

Vv(t,w) = V(t,w) if t < Tv(m)
= V(Tv(m),w) if t > -.-v(m)

and

P(L 1im v (t,0) = V(t,); teT]) = 1.
v=>
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Since "'v(m) is a.s. non-decreasing in v, vv(l,w) = v(-rv(a)),w) is

monotone non-decreasing in v. But

1im E(Vv(l,w)) <K,
v—> @

and hence by the monotone convergence theorem

Tim E(VV(I,w)) = E(V(l,w)).
v—=>

Now

X5, (6,0) = X, (t,0) | = [Xy(t,0) - X,(t,@)| 1 t < 7 (w)

= |X2(t,w) - xz(Tv(w),w)l if t > Tv((b).
So

sup |x2(t,w) - XZV(t,m)I = sup lxz(t,w) - Xz(-rv(w),w)l
t | 24 'rv(w

s sup (V(t,d)) = V(T (m)}w)) _<_ V(]:w) = Vv(l,w)-
t> 'rv(w) v
And hence
E(sup |X,(t) - X, (t)]) S E(V(l,0) - v,(1Lw)) —>0as v > .
t

Now since E(|X (t) - X(t)[) —> 0 and E(|X,, (t) - X,(t)|) —> 0 as

v —> o for every t€T. We have E(|x]v(t) - Xl(t)l) —> 0 as

v —> o and hence x] being the limit in the mean of a sequence of
martingales is itself a martingale.

We now make a few remarks concerning the decomposition in
Theorem 2.3.5.

First, the process {X(t), F(t); teT} is uniformly integrable in
t since the process {Xl(t), F(t); teT) Lteing a martingale process
closed on the right is uniformly integrable, and {Xz(t), F(t); teT)

is uniformly integrable because it is dominated by V(1,w).
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Secondly, having already proved the decomposition we can easily

show —
xz(t) = P 1im }_, cn,j (X) for every teT.
"0 T (1)

Let [xv(t), F(t); teT} v = 0,1,... be as defined in the theorem,
so that for each v = Q,1,... xv is, by Theorem 2.2.11, a quasi-

martingale. Let P([X,(t) = X, (t) + X, (t); teT]) = | where [X ] = X,

and [xv]Z' va‘ In Theorem 2.2.11 we showed

P([sup IZ, €, i (X)) = X (] > &) —>0
£,

as n —> o for every € > 0. In Theorem 2.3.5 we showed
P([sup |X2v(t) - xz(t)l >¢e]) =0
t

as v —> oo for every € > 0.
We will now‘show

P([sup |>_' (cn,j (x) - cn,j (xv))| >e¢l]) —0
R (03

as v —> o uniformly in n.
Let € > 0 be given. Let x[ . ]' denote the characteristic

function of the set [...]. Then

PIswp | ), (6, ;00 = ¢ (x| >e])

O ()
- X, @<y P 1), (6 00 -6 > )
17, ()

P, gty P 1), (00 - G I
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Now the first term on the right is bounded by P([-.»v(w) < 1]) which

we know goes to zero as v —> . The second term is bounded by

P(lx[Tv(a,)_,] TZf lc,, () = ¢ (X)) | > e)

n

IA

Ly [
el f Ic,,; (%) = C, 5 (Xp,)dP

Mo (7, (@=1]

l o
<) _[ Bl 0) -8, S0 [IF, )P
T,

[v, (@2t ,J.]

<

]
€ 2.: f le(tn,jH) - XZV(tn,j-l-l)ldP )
TTn [-rv(m)_z tn,j]

But X ) unless ™ w) <t n,j+1’ so that

2(t 1) = X3t i

t L f 1%, Ct, ) = X (5 ) [P
M [r,@2 ¢, ]

—-—

-:Z _[ 1%, (¢, J+|) 2v“n,j+|)|d|>

n . (‘D) J"']]
l-z' (l,0)dP = -l-f 2v(1,w)dP
Mo (¢, S n@<t, 41 [r,@<I]

The integral on the right goes to zero as v —> o since P([-rv(w) <1))

—> 0as v —>0, and V(l,w) 1s integrable.



Now if € > 0 is given,

Plsup | ), €, 00 - X(6)|>e])

oM
< P([sup IZ' (cn,j (x) - Cn’j(xv))l > €/3])
. NG

+P(lswp | ), €, (X) - X, (0] >er3D)
M A

+ P([sup |x2v(t) - X, (t)| > €f3]).
t

Given any 1 > 0, we can first choose v such that the first and third
terms on the right are less than /3 for every n = 1,2,.... For
this fixed v we can make the second term less than 1/3 by choosing n
sufficiently large.

An immediate corollary to the main theorem is the following.

Corollary 2.3.6
If (X(t), F(t); teT) is an a.s. sample continuous semi-martingale,

then it has the decomposition stated in Theorem 2.3.5 if and only if

1) 1m  rP([sup |X(t,@)| > r]) =0
~—> o t

In particular, if the X-process has a.e. sample function non-negative,

then 1) is always satisfied.

Proof:
We need only show condition 1i) is satisfied. If (TTn; n>1)

is a sequence of partitions of T as defined in 2.2.1, then
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E(), Ic, ;001 =€), [E@, (IF, D)
P Th

- (), lECx(e, I, ) = x(e, )
m,

L

- E(Z' (E(X(T
7

n:j'H) an:j) ) X(tn)j)))

= E(x(1)) - E(x(0)) .

If the X-process has a.e. sample function non-negative,

rP([sup |X(t,w)| > r]) = rP([sup X(t,w) > r])
t t
< f x(1)dp —>0 as r —> o0 ,

[sup X(t,w)> r]
t

and therefore i 1is satisfied.

If we recall the example given in Chapter I, where
X = exp[2Zv] v >0,

Z being the Brownian motion process on [0,1], we see that the
X-process is an a.s. sample continuous non-negative semi-martingale
since exp[tv] is a continuous, convex and non-negative function.
The corollary tells us the X-process 1s a quasi-martingale.

We note that when the X-process is a semi-martingale, our

conditions coincide with those given by Johnson and Helms.
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Section 4: Particular results:

In this section we concern ourselves with some special theorems
and results which will be used extensively in Chapter III.
We first prove a lemma which will be quite useful and which is

really just an observation.

Lemma 2.4.1

Let (xi(t), F(t); teT), 1 = 1,2,...,k be arbitrary processes.
Let {Trn, n > 1} be a sequence of partitions of T as defined in 2.2.1.
For each n = 1,2,... let fn(-) denote a Baire function of k(Nn-!- 2)
real variables. Assume that for each i = 1,2,...,k,

{xiv(t)’ F(t); teT), v=1,2,... 1s a sequence of processes such that
P([xiv(t) = Xi(t); teT, 1 <1 <k]) —> 1
as v —> ®. If for each fixed va= 1,2,...,

P lim fn(x (t

);lgigk,OSjSN +1)
n—> 0 n

iv'™n,j

=P lim Ff_ =T exists,
> WV

then Pnimco fn(xi(tn,j)‘ 1<1<k 0<j<N + 1)

=P lim f = Ff exists.
n—> 00 n

Moreover, P 1im . exists and is f .
v—=>0

Proof:
We observe that ?nv converges to -f-n in probability uniformly

innasv—>mo. For

<0j)

sup P([|F - F | >0]) =1 - anf P([|F - T |
n n
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=1 - 12f PCIX, (t, ) =X (t )51 <1<k 0<jSN+1])

<1 - inf P([xiv(t) = Xi(t); teT, 1 <1 <k])
n

=1 = P([X,(t) = X, (t); teT, 1 <1 <k]) =>0as v > .

iv(t

Then P([I?;- Tl >el) < P(LF - ?;vl > 0])
+ PO - T | >el) + P(LF_-F | >0])

where € > 0 is arbitrary. Let & > 0 be given. We first choose v
such that the first and third terms on the right are less than 5/3,
then for that fixed v we can choose n and m to make the second term

on the right less than 5/3 because P lim f__ = ?; exists for every
n>aw

va=1,2,.... Hence

Plim F =f exists.
n
n—> Q

To show P 1im f. exists and is f, consider
v—> @

PLIT,- | >el) SPUITF,- F | > e/3])
+ P([IF - F I >e3D) + P(IT - F| >e/3])

where € > 0 is arbitrary. Let 8 > 0 be given. We first choose v
such that the second term on the right is less than &/3 for every n,
and for that fixed v we can choose n such that the first and third
terms on the right are less than 5/3. The lemma 1s now complete.

With this lemma it 1s easy to prove a useful theorem concerning
the decomposition of a particulér type of semi-martingale.

Let {X(t), F(t); teT) be an a.s. sample continuous second order
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martingale process and let ¢ = Xz- Then the process (&(t), F(t); teT)
is an a.s. sample continuous, positive semi-martingale and by
Corollary 2.3.6, & is a quasi-martingale. Let [§]l = gl and [;]2 =

gz. Then we know gz has a.e. sample function continuous and of

bounded variation over T. Further, if V(w) denotes the total

variation of gz(',m) over T, E(V(w)) < o0, and

N

£,(t) = P lim }_' C_ .(¢) for every teT.
n—> n,J

T.(0)

Theorem 2.4.2

If (gz(t), F(t); teT) is the process defined above, then

t,(t) = P Iim z (&,

j(X)]z for every teT.
n—> wﬂn(t)

)

Proof:

L

Ve know £,(t) = P itm ) € (t)
n—> ﬂn(t)
= P lim ) c (xz) = P lim Z E([a (x)]zlr ) .
n—> 00 ’Tn(t) I"I,j n—> mﬂn(t) n"i n,J

Assume first that the X-process is a.s. sample equi-continuous

and uniformly bounded. Then

X

el), (s, 012 - ea,  1%F, N
T, (v)

b

-E(), (s, 1" - e, WI2F, 1Y)
m,(t)
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SEQ), I, ;001 SEC mex o 017) s, 0017
T (t) 0s sk, T (1)

< enE(Z' |An,j(x)|2) < e E([x(1) - x(0) %),

TT (t)
where € = sup max IAh .(X)l2 —> 0 as n —> ™, because of the
w 0<j<N "

a.s. uniform sample equi-continuity.

Now assume the X-process is an a.s. sample continuous second
order martingale process.

Let [xv(t), F(t); teT) be as defined in 2.3.3. Then by
Theorem 2.1.1, each xv is a uniformly bounded a.s. sample equi-
continuous martingale process.

For each v = 0,1,..., if §v = XS , then gv has the decomposition
ety

and by what we have just shown
e

ng(t) = P lim Z' [An j(xv)]z for every teT.
A N O
n

We know § = x2 has the decomposition
£ = El + §2
and

Plim &, (t) = £, (t) for every teT,
2v 2
v—=> 00

as was seen in the proof of Theorem 2.3.5.

By Lemma 2.4.1

-/

P 1im ZJ [An,j(x)]2 = &,(t)
for every teT.
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Corollary 2.4.3.

Let {X(t), F(t); teT) and (Y(t), F(t); teT) be a.s. sample
continuous second order martingales. If [TT;; n > 1) is a sequence

of partitions of T as defined in 2.2.1, then

e

P 1im Z' A . (X) A .(Y) exists
A= 00 n,J n,J
T, (t)

for every teT and the process so defined, which we i.dicate by
{(z(t), F(t); teT) can be taken to have a.e. sample function of
bounded variation a.d contiiauous on T. Moreover, if V(w) denotes

the total variation of Z(-,w) over T, E(V(w)) < oo.

Proof:

We have

l

), B 8 ) = ) e (48 ()28, (-4 (x0)7)
17, (t) T, (t)

- ), s, 0l ) enl?)
T, (t)

Let € = X+Y and € = X-Y. Then & and & are a.s. sample continuous
second order martingales, so gz and Ez are a.s. sample continuous

positive semi-martingales.

We write
T ha 2 M 2
L A M8 0= ) s, @)= ) mis @]
T, (t) T, (t) T, (t)

and hence, by Theorem 2.4.2,
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Pltm )8 AL 00 = 1A, - (B2 ()
n—> Trn(t)

Let Z(t) = 1/4([¢ ] (t) - [F ] (t)). Then the Z-process has the

stated properties since both [§ ] 2 and ['§'2]2 have these properties.

We now discuss some other results which will be used in
Chapter III.
Suppose (X(t), F(t); teT) satisfies the conditions of

Theorem 2.3.5. Let [)(]I = X, and [)(]2 = Xz- Then X, and X, are a.s.

sample continuous, X (t) = P lim Z‘ j(X), and if V(w) is
)
" 1T (1)

1

the variation function of xz(',w) over T, E(V(w)) <.

Let (Y(t), F(t); t T) be an a.s. sample continuous process.

Then for a.e. w, the Riemann - Stiel tjes integral

] -

*
fY(t)dX () =1m ) ¥ s (x)
n=> lad™ sl
0 n’n
*
exists, where t . <t .<¢t . ..
n,j = "n,j = "n,j+l
We will show
| - N
fY(t)dx () =P 1m ) ¥(E )c (X)
n—> @ nJ J
0 T,

It will be sufficient to show

|
[Y(t)dx (t) = |>n1_;m‘JD L Y(e, )€, ()
n

- -

Since P lim Z’ Y(t .) (x) = P lim L Y(t_ . .
n=> 00 m n,J n->°°T n,J N, J
n "q
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where t <t <t .
n,J = n,j = "n,j+l

To see this, let ~A_ , = [ sup [Y(t)= Y(s)| > 1/r]
’ |t-s|< /¢’

r,r' = 1,2,.... Because of the a.s. sample continuity of the

Y-process, 1im P(~A_ _,) = 0 for each fixed r.
r'=>o rsF

Assume n 1is such that “ﬂ;‘“ < 1/r'. Then

\ *
P(u%_ V(€ )= ¥, )IE, [ (0] > )

n

*
=P, 1), Y - vie, e, ()] > e)
neoTT

*PUxey 1) Y6 - ¥, DI, ] > €D

<P~ )+ ise [ 1), N - ¥, Dle, (4P
Ap pr Trn

M

< P(~Ar’r,) + 1/€ % Z\/ |Y(":,j)' Y(tn,j)“cn,j(x)ldP'

n %r,r!

SP~a_ L)+ /e Ur B e, s0]) -

n
If n > 0 is given, choose r such that 1/er (Kx) < 3/2, then choose r'
such that P&A_ ) < 1/2. Then for all n with ll'ﬂ;ll <1/,

)

\ *
P(u%; [Y(eh )= ¥(5, D1 6, (] > el) <.

n
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We first assume the xz-process and the Y-process are uniformly

bounded. Then

P(LL ), ¥(e, I8, () - € (01> <)
,

e B, Y, DB, ) - € (11D
Ta

A

- 12 E() lY(tn)j)|2|An’j(x2) - cn,j(x2)|2)

T,
2 -
< ;”2 E(). [IAn,j(xz)lz- IC,,,_,(XZ)IZD
,
2 -
e, P by 0
n
2

Now max |O (x2)|v(a>) is dominated by zux V(w) where My

o<jen - ] 2
sup |X2(t,w)| and hence
T p(L]), ¥(t, )b, () - ¢ (01| >e])
n-> o ’7—
n
"
< = E(Tim max |o . (X.,))|v(w)) =0
e o ogjgunl n,i %2
since max o . (X))] —> 0 a.s. as n —>m because of the

o<j<Nn ™
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a.s. uniform sample continuity.
If we now drop the condition of uniform boundedness on the
xz-process, we can define a sequence of uniformly bounded processes

(Xv(t), F(t); teT} v = 0,1,... as in Theorem 2.1.3 such that
P([X,(t) = X(); teT]) —> 1 as v —> .

For each v = 0,1,..., the xv-process will be a quasi-martingale with

[lei - xiv’ i=1,2, being the xi-process, i = 1,2, stopped at

—rv(w)- The X -processes have all the properties stated in Theorem 2.3.5.

Still assuming the Y-process is uniformly bounded and a.s. sample

continuous, we have just shown that for each v = 0,1,...

1 e
a‘(/: M, () = P 1in_ % Y(t, )6, ;(X,)-
n

For a.e. w, there exists a v(w) such that for all v > v(w),

Xz(t,w) = XZv(t,w) for every teT and hence

| |
1im fY(t)dXzV(t) = fY(t)dXz(t) a.s.

v—=> 0 0

j)cn,j (Xv) converges to LY(tn,j)c . (X)

If we now show that Z,Y(t
n, n,J

m, T

uniformly in n, it will follow immediately that

1 -

Y(t)dX,(t) = P lin Z, Y(t )c . (X) .
[ n_>mn_'_1 n,J" n,J

Consider

PULI ), Y(x, DIC, ((X) = € (01| > eD)
TTn
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Seln@ < w1 [ Y Y DIG o), 001
(r, @=111T,

S P([r, (@ <1]) + M /e 2_‘ f |cn’j(xv)-cn’j(X)|dP .
Mo [r,@=1]

We know the first term goes to zero as v —> o and immediately after
the proof of Theorem 2.3.5 we showed the second term goes to zero
uniformly in n as v —> oo .

We have now shown

| -
R[Y(t)dxz(t) - Pni";or%: Y(t, C, ()
n

when Y is uniformly bounded and X satisfies the conditions of
Theorem 2.3.5.

Suppose now Y is a.s. sample continuous but not necessarily
uniformly bounded. We can define the sequence of uniformly bounded
a.s. sample continuous processes {Yv(t), F(t); teT} v = 0,1,...,

as in Theorem 2.1.3, such that
P([Yv(t) = Y(t); teT]) —> 1 as v —> oo0.

For each v = 0,1,... we have just shown

<M

1
Pn-l-;moo Z’ Yv(tn,.i)cn,.i(x) - Rfvv(t)dxz(t)
m, 0

when the X-process satisfies the conditions of Theorem 2.3.5. But
for a.e. w, there exists v(w) such that for v > v(w), Y(t,w) =

Yv(t,m) for all teT, and hence
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11 Y dX = Y(t)dX .S.
i { L(©)dx, (1) [ (D)X, (1) a.s

Then by Lemma 2.4.1,
.
P 14m L vt )e, () = RjY(t)dxz(t)-

n=>00 0
We have now proved the following theorem.

Theorem 2.4.4;
If the process {X(t), F(t); teT)} satisfies the conditions of
Theorem 2.3.5, and if (Y(t), F(t); teT) is any a.s. sample continuous

process, then
1

fv(t)dx (t) = P lim 2_‘\((1::,j)cn’_i (x)

0 n—>00

*
wheret <t .<t . .
n,Jj= "nyj = "n,j+l
The next theorem follows almost immediately from Theorems 2.4.2,

2.4.4 and Lemma 2.4.1.

Theorem 2.4.5:
Let (X(t), F(t); teT) be a second order a.s. sample continuous
martingale. Let ¢ = xz and let [_E,]2 = £, Then if (Y(t), F(t); teT)

is any a.s. sample continuous process,

P 1im Y(t ; A . (X)]%=p 14 -ﬁv(t* )C (X
n—>oo727"— n’J n»mm%'; n,J° n,J
E
- af Y(£)dt,(t).
0

%)
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Proof:

We know P 1in ) ¥(t' e (xF) = RfY(t)dg (t)
n n 2
n—-> o »J 2J
by Theorem 2.4.4. Assume first that Y is uniformly bounded and X
is uniformly bounded and a.s. sample equi-continuous.
If we look at the first part of the proof of Theorem 2.4.2, we

see immediately that

- ]
;3;24”%J”mﬁx)

UL

n—> 0

Pltn ) Y(tn)j)[An,j(X)]z - P
Ta

1
LY RICTHOE
0

Now assume X is an a.s. sample continuous second order martingale
and Y is any a.s. sample continuous process. We can find two

sequences of processes [xv(t), F(t); teT) and {Yv(t), F(t); teT),

vs=20,l1,2... such that for every v = 0,1,... xv is uniformly

boi.mded a.s. sample equi-continuous, Yv is uniformly bounded and
P([Yv(t) = Y(t) and Xv(t) a X(t); teT]) —> 1

as v —> . Since X satisfies the condition of Theorem 2.3.5, so

does xv for each v = 0,1, ...

We let [)(V]2 = X,, for each v = 0,1,.... Then
1 ' 2
af V()i () = P lin ) v (e )8, (X))
n—> 00
0 ]Tn
for each v = 0,1,..., as we have just proved. For a.e. w, there
exists v(w) such that if v > v(w), Yv(t,w) = Y(t,w) and §2v(t,w) =

Ez(t,w) for every t€T. And hence
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]
vgmm R[ Yv(t)d§2v(t) - R[Y(t)déz(t) a.s.

Then, by Lemma 2.4.1,
]

\’ 2
Pnl;mw% v, )08, (017 - R‘o/ Y(£)ds,(t) -
n



Chapter III: Stochastic Integrals

Section 1: General discussion:

In this chapter we will define a stochastic integral for quasi-
martingales. The approach we use is that of limits in probability
of Riemann - Stieltjes sums.

Ito (5) and Doob (1, Chapter IX) have defined stochastic
integrals with respect to a particular type of martingale process.
Doob assumes the martingale (X(t), F(t); teT) has the property that

there exists a monotone non-decreasing function G(t) such that if s<t,
2 2
E(]Xx(t) - X(s)|°) = E(]x(t) - X(s)|"|F(s)) = G(t) - G(s)

with probability 1.
For every second order martingale process {X(t), F(t); teT},

there exists a monotone non-decreasing function G(t) such that if s<t
2
E(|X(t) - X(s)|") = G(t) - G(s)-
However, the condition
2 2
E(|x(t) - x(s)|") = E(|X(t) - X(s)|®|F(s)) a.s.

is a real restriction on the martingale process. As Doob points

out, if G(t) = Const. t, and X is real valued and a.s. sample

continuous, then the X-process is necessarily a Brownian motion process.
Doob shows that if (Y(t), F(t); teT} is a measurable process,

i.e., measurable w.r.t. dtdP measure, and if

! 2
f E(|]Y(t)]|“)dG(t) < o

0
1

Then the stochastic integral, D~/\ Y(t)dX(t), can be defined as the
0

63.
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limit in quadratic mean of a sequence of stochastic integrals of
"(t,w)" step functions, (1, Doob, p. 426).
If we let
t
Z(t) = Df Y(s)dX(s)
0
then the process {Z(t), F(t); t<T) is always a martingale with

t
E(z(t)) = 0 in t. Further, if Zo(t) - D‘/p Yo(s)dx(s), then
0

t
E2()20(0)) = [ E(r(s)Yy())da(s) -
0

These properties of the integral are very nice in applications
(See, for example, section 3, Chapter IV of Doob).

Unfortunately, the integral does not have some of the more
common properties that one associates with the ordinary Riemann-
Stieltjes integral. For example, with the Doob integral we have no
integration by parts theorem. Furthermore, one of the major defects
is the non-existence of a reasonable transform property. This is
indicated quite easily by an example in Doob.

If the martingale process {X(t), F(t); t T} is such that

1
D\/\[x(t) - X(0)]dx(t) exists, then it has the value
0

—
1/2[x(t) - X(O)]2 - 1.i.m. I/ZEL [& .(x)]2
n,J
n—>w

TTh

where 1.i.m. indicates limit in quadratic mean.
It is readily apparent that one cannot hope to obtain a theory

of stochastic integrals which parallels Riemann - Stieltjes integra-
tion if we use this definition of a stochastic integral. 1In the

next two sections we will define a stochastic integral and give some
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of its properties. Although the exposition is far from complete,
it 1s hoped it will illuminate the feasibility of obtaining a

Riemann - Stieltjes type stochastic integral.

Section 2: Definition of the integral.
In what follows we will again be assuming T = [0,1]. Let
{(x(t), F(t); teT)} and {Y(t), F(t); teT) be quasi-martingales with
P([X(t) = X,(t) + X,(t); teT]) = 1
P([Y(t) = Y (t) + Y,(t); teT]) =1
where as usual, tx]i = X; and [Y]i =Y, 1=1,2.

We assume Xi and Y,, 1 = 1,2, are a.s. sample continuous.

1)
Let [TT;, n > 1) be a sequence of partitions of T as defined in

2.2.1. We will show that

Gz Pt L, MRLYGe (e DTIXGE, ) X(E )]
U
I
exists and we define ‘/PY(t)dx(t) to be this limit.
0
We will write

An,j (Y) = [Y(tn,jﬂ) - Y(tn,j)]

and

ZM. (Y) = I/Z[Y(tn,j_ﬂ) + v(tn,J.)] .

We will use freely the notation introduced in Section 2 of Chapter II.

We can write the sums in 3.2.1 in the form



PR URNE

m,
First
Z‘ EM. (V) &, ;(x) = Z Kn,J(v)An’j(x,])_ + 2_' En,j(Y)An,j(xz) .
T m, T,

Since Y has a.e. sample function continuous and X, has a.e. sample
function of bounded variation on T, the limit of the second sum exists
a.s. and is the ordinary Riemann - Stieltjes integral of Y(',w) w.r.t.

xz(-,w). We indicate this as follows

Nl

]
(3.2.2) Rf Y(t)dxz(t) = PanwZKn,J(Y’An,J (xz) .
0 n

Consider now

Z’ Kn,.i M4, ;X)) = Z‘Y(tn,j)An,j(xl) + 2_'1/2 a,,; M8, X))
M m, e

The second sum on the right can be further reduced to the following

)12 By (N8, (%)) + AL 80,5 (2%, ;%)) -
Trn Trn

Again, since xl is a.s. sample continuous and Y2 has a.e. sample
function of bounded variation on T, the second sum goes a.s. to zero.
We have now reduced the problem to showing the existence of

the 1imits
Pnl;mooz'llz 8,08 S (X), Pnu_;mooL vt 08, (%)
ﬂ; n

It was proved in Corollary 2.4.3 that 1if Y, and X, are a.s. sample
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continuous second order martingales, then

-|

2 2
P lim L 1/2 An’j(Y])An,J. (x,) = 1/8((v|+ xl)jz(l)- KYI- xJ,(1),

the limit being a.s. sample continuous and having a.e. sample function
of bounded variation.

If [Y]v(t), F(t); teT), [xlv(t), F(t); teT}, v=0,1,... are as
in ‘fheorem 2.1.3, then by Theorem 2.1.1 each x]v and‘Yw are uniformly
bounded a.s. sample continuous martingales and

P(LY,,(t) $ Y (t) or X, (t) $ X,(t) for some teT]) —> 0

as v —> oo. Hence by Lemma 2.4.1

P 1im 2_. 1/248 . (Y,) & ,(X,) exists.
i )12, ) 8, (%)
T

- 2
Further, if Ep = [(Ylv-l- xljz, oy ™ KYIV- xwlz, then

.2. P Ii ZIZA.YA.X =P lim 1/8 1)-%,.(1)).
G-2) Pl ) 128, () 8 () =P ln 1/8(8,,(1)- (1))
M,
We define
1 ]
(3.2.5) f dXdY = P 1im )_' 17248 .(v)) & (X)) .
S n,jo1 n,jo1
0 n oo_n,
n
If we now show P lim Z‘ Y(t_ .)A .(X,) exists, we will have
njitn, il
n=> 0o
T,
proved the existence of the limit in (3.2.1). To prove this we first

prove the following lemma.

Lemma 3.2.6.

If {X(t), F(t); teT) is a second order martingale and
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{v(t), F(t); teT) is a uniformly bounded, a.s. sample continuous

process then

-/

1im Z_' Y(t_ .)A .(X) exists in quadratic mean.
n-> oo n,Jj’" n,J
n

Proof:

Let m > n. Then ﬂ'n c 7Tm and we can write

.l 1

Z. Z‘ Y(tn,j)Amj,l<(x)

n'’inmj

o= Zv(tn,j)An,j(x) -
m,

o

and zm - Z,Y(tm,i)Am,i(x) = Z, Z. Y(t’nmj,k)Anmj,k(x) :
m m’Tnmj

Then

Ll

12, 2,1 = (1), ), ey )7 Y05, 180 1)
Trn T’nmj

=€), ), IVt 0- Y&, P18 1D
n:\”nmj

because of orthogonality.
Let [er, r > 0} be a sequence of positive real numbers with

€ >€ >..>0and 1im €_=0. Also let (8.1, r' >0) be a
r—> oo :

sequence of positive real numbers with 60 > 6] >... >0 and

‘im 6 = 0.
ri> o

Define

~Al’ rl(t) = sup lY(S) - Y(s')l Serl)r:r' = 0,1,2,....
: ls-s1] <5,

s,s' <t
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Because of the a.s. uniform sample continuity
I’(Ar r.(t)) —> 0 as r' —> oo for
)

every fixed r.

Now for fixed r and r', if t, > t then

r'(tl)C ~Ar,r'(t0) and hence

() DA (tg) when € >t

Now
L) EYC 0 e )P (@01
ﬂ.n 7rn

mj r, '(tnmj,k)

- Z, f 1Y (s 10" Y(tn,j)lzlA,,mj,k(x)lzdP
LU

Z. f 1Y Ct s, i) Y(tn,j)lzhnmj,k(x)lzdp :
Tom; ™

mj r, '(tnmj,k)

Let M, = sup IY(t, )| Then

|Y(t k) Y(t )lzbnmj,k(x)lzdp

o (t

Ar,r nmJ,k)

2 2
< 4N f lAnmJ K (X) | “dP

Ar, .(: j,k)
2 2
= LM, j |x(tnmJ k_H)| 24p - hMy f |x(tnmJ k)| 24p
'(tnmJ,k) '(tnm_;,k)



70.

< ‘*"5_[ |X(tnmj’k+l)|2dl’-lm$ f x(e_ . )|%P .

- nmj ,
Ar, r' (t

A et ke amj , k)

Then
Z |v(:nmj’k)- Y(tn,j)lzlAnmj,k(X) |2dP
TTh

mj Ar,r'(tnmj,k)

T

< w _/ 1x(1) | %ap

Ar,r'(l)
Let € > 0 be given, choose r such that ef E(|x(1) - X(O)lz) < €/2.

Since l’(Ar r'(')) —> 0 as r' —> o0 for every fixed r, we can now
2
' 2 2
choose r' such that lmy |X(1)|“dP < €/2. Now choose n(e)
Ar r'(l)
F
such that “T':‘(e) | < 5 1. Then if m >n > n(e)
2 2 2 2 2
E(12. - Z |7) < e E(|X(1) - x(0)|7) + thf |x(1)|“dpP
A, ()
S. 6/2 + €/2 = €.
The lemma is now proved.

If {X(t), F(t); teT) is any a.s. sample continuous martingale
process and if (Y(t), F(t); teT) is any a.s. sample continuous process

then

P lim 2‘ Y(t_ .)A . (X) exists .
n~> oo n,J°- n,J
Ty

For, if (xv(t), F(t); teT) and {Yv(t), F(t); teT) v >0, are as
defined in Theorem 2.1.3, then xv is a uniformly bounded a.s. sample

continuous martingale and Y, is also uniformly bounded and a.s.
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sample continuous. Then by Lemma 3.3.5

—

lim Z Y (t .)A .(X ) exists 1 adrati f

M v( n,J) n,J(v) n quadratic mean for
n

every v > 0, and hence by Lemma 2.4.1

N

P 14m Z‘ Y(t  )A . (X) exists.
n-> o n,J" n,)
T,

We now define
] M
(3.2.7) o‘é Y(t)dxl(t) = Pnl_;mm%'_ Y(tn,J.)An,j(Xl) .
n

We have now established the existence of the limit in 3.2.1 and we

define
1 1 1

1 :
(-2.8) [ v(tax(e) = o [ v(yex, (o) + RfY(t)dxz(t) + [av(ax)
0 0 0 0

n—> 00

=P 14 Z‘ A .(Y) A . (X) .
" n,J (v) n)J()
T
Clearly, if [a,B] is any closed sub interval of T, we can define

B T
(3.2.9) j Y(t)dX(t) = P l;m Z Kn J.(\() o J.(x),
Po'e} ) J)
u " 7'Tczﬁ,n

for the limit will exist when nTaB p» N2 1) is a sequence of
)

partitions of [u,B] with “ﬂ-aa,n" —> 0 and Traﬁ,lc TT;S,ZC e .

If (ﬂ'n, n 2> 1) is a sequence of partitions of T as defined in

2.2.1 and if 7Tn(t) =TT, N [0,¢t], then
t O
(3-2.10) Y(t)dX(t) = P Iim Z, & J.(\!)An’j(x) :
0 >® T ()
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Section 3: Some properties of the integral.

Let {X(t), F(t); teT) and (Y(t), F(t); teT) be quasi-martingales
with '
P([X(t) = X, (t) + Xz(t); teT]) = |
P(LY(t) = ¥, (t) + Y,(t); teT]) = |

where [x]i = X, and [Y]i =Y,1= 1,2, are a.s. sample continuous.

t —
Let Z(t) = jY(s)dx(s) - P lim Z, 5,8, (.
0 n—> 00 m(t)

Theorem 3.3.1.
The process {Z(t), F(t); teT}, as just defined, can be taken to

be a.s. sample continuous.

Proof:
t t t
2(6) = [ ¥(5)ax(s) = 0 [ ¥(s)ax, () + & [ ¥(s)ax,(s)
0 0 0]
t
+ j d¥(s)dx(s) -
0
t
First, the integral RfY(s)dxz(s) as a function of its upper limit
5
defines for a.e. w, a real valued continuous function on T.
t —/
The 1ntegralfd¥(s)dx(s) a P lim Z‘ /1248 .(Y,) & . (X))
n—=> o n,j 1 n,j 'l
0 - (2)

=P 1im 1/8(¢, (t)- E, (t)) where &, and E, are as defined in
v=> o 2y 2y 2y 2y

3.2.4 is a.s. sample continuous by Theorem 2.2.10 since both §2v and
EZV are a.s. sample continuous for every v = 1,2,....

It thus remains to show the integral
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t =
Y dx =P 11 Y(t. .)a_ . (X
-[ (=) (<) n»mm%.'(t) ( ":J) n,J( I)

as a function of its upper limit defines for a.e. w, a real valued
continuous function on T.

We first assume the x| and Y processes are uniformly bounded
and a.s. sample equi-continuous.

By Theorem 2.2.10 it is sufficient to show that given €, > 0

there exists n(e,n) and 5(e,n) such that for all n > n(e,n)

UL SRR 1) v, P00 ). v, oK) 1> €D
1T, (t) 1T, (s)

<1

First we show that if €,q > 0 are given, there exists an n(e,n) such

that 1f n > n(e,n), then for all m > n,

P([ max max IZY(t 1) k(x )I>el) < g
0<JSN, 0Sk<k o i
Now k
P Y(t . (X)) P el)
G Sen, ok, '2:0 o), 19%0mj, 1 1) P
S B |i2:otv(t,,mj,1> Ve, Mg > e2D)
+ P([Ostn?z;-"n 0§x$knmj lY(tn,j)(xl(tnmj,k-i-l) - X‘(tn,j)]> €/2])
We have
P([ max max MO TC AR LR AL BT

0SJSN, OSkS k.
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< P([ max max X (t . )= X(t )| >el2m])
OSjSNnoSksknmj 1" "nmj , k+1 1%, j My

where M, = sup|Y(t,w)]| .
t,0

Because of the a.s. sample equi-continuity of the xl-process we choose

abd

| > 0 such that P([ sup le(t) - Xl(s)l > e/ZHY]) =0.

| t-s] <9,

If n (e) is such that for n >n (e), ||ﬁn||< 5,, then

P([ max max I)(l (t
0SSN 0<k<k

)- X](tn,j)l >e/M]) =0 .
nm}j '

nmj , k+l

Observe that the partial sums
k

LUV = Y )8 (), k= 0k
i=0 '

'form a finite martingale sequence for every j = O,I,...,Nn- Hence

P Y -Y j A X.)|>

Z PL max | ) D¥(e - ¥(e, 1AL o) e
j=0 -kf"nmJ 10

< l/e f z E(Iv(tnm,j k) Y(tn J)I | nmj, k(xl)lz) ’

j=0 kem0
Now choose Bz(e,q) such that 2
sup MOE Y(s)l2 < £ 3 <1 as.
|t-s|<8,(e,m) E(|x, (1)-x,(0)[)

Then choose n,(e,n) such that |[TT, || < &,(e,n) for every n > n,(e,n).
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Then

Aﬂp _Epmu
2 Z' Z’ 2 2
E(lY(tnmJ.,k) Y(tn’j)l IAnmj,k(xl)I ) <nq.
j=0 k=0

Hence if n > max {n](e,q), nz(e,q)], we have the desired result for

all m>n.
We can now show (1) is true.

t Then

Assume m > n and 5 < min jt .. .- -
n,j+l n,J

0SJ<N,

CRLUMET: 1) Yo 08 1 0)-), Y, )AL () ]> 36]
T (8

|t-s| <3

T, (5)
k
< P([ max max IZ'Y(t e (X)) > €))
- . nmj,1 " "nmj,1*"1
OSJSNn o< k<—knm_j i=0

If n(e,n) = max (nl(e,q), nz(e,n)] is as chosen above, then we can

fix n > n(e,n) and let &(e,n) < min Itn,j+l' tn,jl’ Then (2) will
be less than § for all m > n. Hence
— t
Pnl_;mmz‘ V(e )8 (X)) = DfY(s)dx|(s)
m,, (t) 0

is a.s. sample continuous when Y and Xl are uniformly bounded and
a.s. sample equi~-continuous. The desired result now follows by
stopping Y and x] according to the stopping time defined in 2.3.3

and then applying Theorem 2.2.10 and Lemma 2.4.1.

With what has already been shown, we can easily obtain conditions

under which the process

Z(t) -‘/\ Y(s)dX(s) 1s a quasi-martingale.



76.

Theorem 3.3.2.
Let {X(t), F(t); teT} and (Y(t), F(t); teT) be quasi-martingales.

Let [X]i = X, and [Y]1 =Y, 1im= 1,2, be a.s. sémple continuous.

Further assume Y is uniformly bounded and YI and xl are second order

martingales. If .

Z(t) -\/PY(s)dx(s), for every teT,
0

then the process {(Z(t), F(t); teT) is a quasi martingale with
t

t t
(2], () = ofv(s)dx, () 2,0 = RfY(s)dxz(s) +de(s)dx(s)
0 0 0

and [Z]1 =2,1=1,2, are a.s. sample continuous.

Proof:
Since Y is uniformly bounded and X] is a second order martingale,

by Lemma 3.2.6
t

D Y(s)dxl(s) = lim E: Y(t .)a .(x])
‘(/; n->oon.n(t) n,J°- n,J

where the 1imit is in quadratic mean. So ZI being the limit in
quadratic mean of a sequence of martingales is again a martingale.
We have further shown, in Theorem 3.3.1 that Z] is a.s. sample contin-

t
uous. Now R\/“Y(s)dxz(s) defines a continuous real valued function
0
of bounded variation on T for a.e. w when considered as a function of

its upper limit. Also
t e

de(s)dx(s) = P 1im Z 1/2 AM.(Y]) An,.

500
0 n—> 00 TTh(t)

= 1B+ Y1500 - [0x- ¥ P1,(0)
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is a.s. sample continuous and of bounded variation on T since XI and
YI are second order martingales. Therefore Z2 has a.e. sample
function continuous and of bounded variation on T. The theorem is

now established.

We now investigate some properties of the integral which parallel

the Riemann - Stieltjes integral.

Theorem 3.3.3:
Let {X(t), F(t); teT) and (Y(t), F(t); teT)} be quasi-martingales

with [X]1 = X, and [Y]1 =Y,, 1=1,2, a.s. sample continuous. Then
1 1
fx(t)dY(t) +fY(t)dX(t) = x(DY(1) - X(0)¥(0) a.s-
0 0
Proof:

Observe

A . (XY) =& (X)) . + & . (Y)a . (X so that
n’J( ) n,J() n,J(Y) n,J() n,J(),

2_. An,j(XY) = Z‘Zn’j(x) An’j(Y) + 2_‘ Zn’j (Y) An,J.(x) .
Ta T T,

Hence, taking probability limits on both sides we have the desired
result.
One thing that one would expect of an integral is the following:

{X(t), F(t); teT) is a quasi martingale and if the function f is such

th t
at d/\f'(x(s))dX(s) exists
0
t
then M/\f'(X(S))dx(S) a f(X{(t)) - f(x(0)) .

0
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For the Doob integral this is not the case, as is illustrated by an

example from Doob (1, p. 443). If (X(t), F(t); teT) is such that

1
0 f [X(t) - X(0)]dX(t) exists, then
0

|
> [ Ix(6) ~x(@1ex(t) = 1720x(1) -X(0)1
0
- 1/2 1m }d[am(x)]2

n=> 00
n

where the 1imit is in quadratic mean.

Let (X(t), F(t); teT) be a quasi martingale with [x]i =X,
i=1,2 a.s. sample continuous. Let f(t) = tz- Then
2 2 ! |
x(1)2- x(0)? = fzx(t)dx(t)
0

or
1

ﬁun)-ﬂﬂm)-jkwunwua-
0

o

1
For, f 2X(t)dX(t) = 2 P 14m Z 125, (0 8, (X

0 n-> 00 TTB
\' 2 2 2
= P lim a (X)) = x(1)° - x(0)° .
m>mz 0 00 = X0 - x(0)

n
This property of the integral can be generalized to the following

extent.

Theorem 3.3.4.
Let {X(t), F(t); teT) be a quasi-martingale with [x]i =X,
i=1,2, a.s. sample continuous. If f is a real valued function of

a feal variable and has a continuous second derivative, then

ﬁun>-NHm>1Af%uﬂwﬂ9-
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Proof:

We want to show

£(x(1)) - £(x(0)) = Pnl-;moo%: An’j(f'(X))An’j(X)
n

- P 1im Z FUx(e, )8, (00 + pnn_;mm%‘_n/z 8, (008, (0
n n

o

N\ - 2
n n

* *
wheret . <t .<t and where t . depends on w.
n,j = nJj = "n,J+l n,J pe

We can write

FX(D) - F(X(0) = ) A (F00)
Mn

o

=), [, 8, (0 + 172 £K(e, T8, (01°)
My

*
where again tn . <t

* *
,j = th,j < tn,j-i-l , and where tn j depends on w.

J
Hence,

[F(x(D) - F(x(0) - ) B 5 f (X8 (X)]

A

- 1720 ), (G ) = £U0GEn T1I8, 0017
TTn

<12 %; [FOCer ) = £ D118, 0]

n

S en(m) Z IAn,j (X) l2
T,

2
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where €n09) = max sup [ £(x(t)) - F"(X(s))]-
j t. .<s,t<t_ .
n,J= =n,j+l

Because of the a.s. uniform sample continuity of the X-process and

the continuity of the function f"('), en(w)—> 0a.s. as n —>oo.

If ZJ[Ah j(x)]z converges in probability, then
J
Ma

Ah,j(f(x))Ah’j(x) will converge in probability to f(X(1))}-f(X(0)).

§ 3~

L1, 1% =) 18 1t e) 8 (x)a (X,
ﬂn ”l-'l 77"

+), 18, 2

T,
Because of the a.s. sample continuity of the processes x] and xz and
the a.s. sample bounded variation of the xz-process, the second and
third sums go to zero a.s. as n —> co. We have previously shown
the probability limit of the first sum exists. The theorem is then
proved.

A natural question at this point is what additional assumptions

on the function f or the quasi-martingale X will insure the process

(f(X(t)), F(t); teT) is a quasi-martingale.

Assuming f and X satisfy the conditions of Theorem 3.3.4, we have

t
F(X(t)) = £(x(0)) +ff'<x(s))dx<s) :

0

We write
t

f'(X(s))dX(s) = P 1im Z A . (f'(Xx))a .(XI)
‘(/)‘ n->ooTrn(t) n,J n,J
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+ P lim }_, En,.(f'(x))An,j(xz).

Since f' is continuous and X is a.s. sample continuous,

) [t
P lim A (F'(x))a (xz) = R f'(x(s))dxz(s) .
n->oon_n(t)ﬂ)j l‘l;j ’ 5

Consider then

). B (s, ) = ) (e, D8 ()
T, (t) T, (t) |

+ 1/2 & f! A X)) .
). e (0Na, [ (x)
m,(t)
Assuming f' is bounded and continuous, the first sum converges in
quadratic mean and therefore defines a martingale process. Last of
all, consider
1/26 f' A - EL 1/2 " .)) [ .

), sy (s, &) 12 £ (x(ey N8, (X))

1T, (0 IT, (¥)
When xl is an a.s. sample continuous second order mértingale, we

showed in Theorem 2.4.5 that
-~ t
* 2
Pitm ) 172 £x(h M8, 1% = [F0xs)ests)
> »J n, ol
P (v) 0

where § = [xf]z, provided f" is continuous.
Then for each teT,
t t

Fx(e)) = (x(@) + 0 [ £ (x(s)ax, ) + R [ (K())axy(s)
0 0 ‘

t
+j¥wn9wu9
0
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If we let
t
V[f(x)ll(t) = fo'(x(s))dx'(s) for every teT, and
0
t t
[FO01,(6) = F(x(0)) + R [ £ (x(s))axy(s) + [0 at (s) for
0 0

every teT, then the process (f(X(t)), F(t); teT) is a quasi martingale
if the above conditions are satisfied and E(|f(i(t))|) < oo for every

teT. We summarize these results into the statement of the next theorem.

Theorem 3.3.5.

If f is a real valued function of a real variable with f'
bounded and f" continuous, and if (X(t), F(t); teT} is a quasi-
martingale with [X]i - Xi, i=1,2 a.s. sample coﬁtinuous and XI
second order, then (f(X(t)), F(t); teT) is a quasi-martingale if
E()f(X(t))]|) € oo for every teT. '

Further
t

[f(X)]l(t) = D‘[f(x(s))dxl (s) for every teT
0

t t

[F001,(8) = F(X(0)) + R [ £ (x(s))axy(s) + R [ £(x(s))dt(s)
0 0

for every teT, where ¢ = [)(12]2 .

Assume now {X(t), F(t); teT) and (Y(t), F(t); teT) are quasi-
martingales with [)(]i = X and [Y.]1 =Y, 1= 1,2, a.s. sample
continuous. Assume further Y is uniformly bounded and xl and Yl are
second order martingales.

t
If Z(t) = fY(s)dx(s) for every teT, then by Theorem 3.3.2,
0
we know the process (Z(t), F(t); teT} is again a quasi-martingale
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with the following decomposition.
t

[2],(t) = Z,(t) = DfY(s)dxl (s)
0
t

[21,() = 2,(6) = R [ ¥(s)axy(s) + 1/B(E () - F(e))
0

where ¢ = [(X|+ YI)Z]Z’ t= [(x,' Y|)2]2 .

Let f be a real valued function of a real variable with f'

bounded and f'" bounded and continuous. Then since ZI is a second

order martingale and Zi’ i=1,2, are a.s. sample continuous, by

Theorem 3.3.4
't
£(2(t)) = £(2(0)) + j £'(2(s))dz(s) for every teT.
0

We wish to show that
1

1
f(z(1)) - £(z(0)) -ff'(Z(S))dZ(S) -ff'(Z(S))Y(S)dX(S)
0 0

or symbolically, dZ = YdX.

We now write, assuming the existence of the limit,
1 o
ff'(Z(s))Y(s)dx(s) = P lim Z A . (F (DY)a_ . (X)
5 n,J n,J

n->
n

Consider

), B, (F@ns, =) E (@M, ()
m, Ty

+). P, DY 08 (X)) + Z'I/z A, (@M, (X) -
m, Th

The third term can be rewritten as follows:
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Lz a, (@8, () = DN, 8 (@8 (X))
T, m,

+ )2 EEe, N8, 8 (X))
T,

- Z 128, 08 (F@)8, ()
My

£ )Y, D8, (F @8, (X))
M

e )2, D8, 08 (K) -

I

We will show that

g Pngmm 2" i (Z(t":J))Y(tn:.i)Aﬂ

Mh

5%

o

AR CCNIICY

M,

2) P lim [2‘ E O (F'@na () +L|/z £z, N8, M, ((K)]
n-> ® »J n,J n,J n,J n,
ﬂn T‘rn
]

- v nl—;mco%‘, 5, (@8, [(2,) =R [ £1(2(6)dz, (1)
n

(X))

3) P lim }_‘ 1/2 An,j (f.(z))y(tn,j)an,_;

>

Up

= Pnl;mwz' 1/2 An’j(f'(z))An,j(Z])
7,
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and finally

L) Pngmm %‘llz 8. (f'(Z))An,j(Y)An’J(xI) _ 0.
n

To show 1) is true, consider

€1, £t DYt )8, (%) =) e, A, @)1
T, M,

- E(]), P @, DI, DA )-8, 1 @1]D
m,

- (), TF (2, MIPIv(e, D8, )-8, 5(21?)
m

< Mg EQQI¥(e, 8 ()-8, (2)17)

Th

where M., = sup |f(Z(t,w))| -
t,w

Now E(|Z,(1) - 2_‘ Y(tn,j)A
Ty

2
a0 15

- E(1), 8, ,(2) =) ¥, 8 (x)]D)
T, My |

- E(1) 08, @) - e, 8 (11D
i

- E(). 180,42 = Y&, D8 (x)]D) —> 0 as n—> e,
Tn

and 1) is now proved.
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To prove 2) we first observe that

Pnl;?:o 2; 1/2 f'(z(tn,j))ah,j(Y)Ah,j(xl)

T

n—>

= P lim 21/2 f'(Z(tn’J.))An,j(YI)An,j(x]) .
T,

Then we can write
| ]

\ s
Rff'(Z(t))de(t) - Rff'(l(t))d(RfY(s)dXz(S) + 1/8(&(t)- E(¢)))
0 0 0
1 |
- Rff' (Z(t)) Y(t)dx, () + 1/8 Rff'(Z(t))d(s(t)- E(t)) -
0 0

]
But 1/8 R f £'(2(t))d(8 (1) - E(t))

0
- pngmmL M2 £ (2t )8, ()8, (X))
L&
and
1 o
R jo' £ (2(8)) Y (£) X, (t) = pngmmz, B, (F@Ms, ().

n

Hence 2) is proved.
Recall f" is bounded and Y is uniformly bounded. Now to prove

3) consider,

pnu_ig.m%f 1728, (1 @)V(E, )8, 1 (X)
n

. i
- Pnl_;mm%:lﬂ fale, 8, @Y, 08 ()
n

\' (1} *
- P ln Z 12 £z N8, [ (2)V(E, D8, () -

UM
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Now

B ), 172 £h(2(eh D8, @)V, D8, (X))
m,

-Z’ 1/2 f"(Z(t:,j))[ Z, (tn,j)lzlz)
M

- e(|%_n/z e )8, @) 6, @)= Y, )8 )1
n

<E(]), D2 £y e, 21?2

Thn
0,18, 2= vie, e )17
L

<€"2() e s, @n?
T
£'2() 18, ;(2)- ¥t s 1),
Ta

< €120) 18, 2P €)1, )= v, e 1)
T e

- 12 €212, 0- 2 1) €72 T8, (2= vie, D8 1)

£

where M., = sup | £"(z(t)) |-
t,®

In proving 1) we showed the term on the right goes to zero as

n —> oo0. Hence 3) is proved.



88.
To show 4) we observe

i ) 128, (@8, (08, 1K)

M

-7 ln % 128 (FH @8, (1), (X))
n

1t B e 00,0
n

=P lim 1/2 Z‘f'(z(tn,j))An,j(Yl)An,j (x,)

n~> 0
ITa

1 _ 1
- I/8/f'(z(t))d(§(t)- E(t)) - l/8ff'(z(t))d(s(t)- E(t)) = 0.
0 0
We can now prove the following theorem.

Theorem 3.3.0.
Let {X(t), F(t); teT) and (Y(t), F(t); teT) be quasi-martingales

with [x]i = X, and [Y]i =V, 1=1,2 as. samﬁle continuous. Let

f be a real valued function of a real variable with continuous

second derivative. If
t
Z(t) = ~/‘ Y(s)dX(s) for every teT,

then 0

]
ﬂun)-ﬂum)iffwunnuwuw.
0

Proof:

Let va=1,2,.... Let Tv@n) be the first t such that
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sup |Z(s,w)| > v or sup . |X(s,w)|> v or sup|Y(s,w)] > v.
s<t s<t s<t
If no such t exists, let -rv(a)) = 1.

Since X, Y and Z are all a.s. sample continuous
P([Z(t) 4 2 (t) or Y(t) $ Y (t) or X(t) $ X (t) for some teT]) —> 0

as v —>m.
Clearly, T is a stopping time for each of the processes X, Y,

and Z. Let xv, Yv and zv be the processes X, Y, and Z stopped at T,

Then for every v = 1,2,..., xv, Yv’ and Zv are uniformly bounded by
v and are a.s. sample continuous.

We first show, for every teT

t o
2,() = [V, (), () =P 1tn ) B 08 () -
0 > ® o (t)
n

t
*
Let Zv (t) -va'(s)dxv(s). For each teT, we can find a subsequence
0
of partitions (T["‘(t); k > 1) such that

* -

Zv(t) -k|_5>.mm Z Ak,j(Yv)Ak,j (xv) a.s.
7, (t)

Z(t) = lim }_' Zk,.(x)Ak,.(x) a.s.

and

If t < —.-v(w), then
* N
Z () -kl;mmzl B ;0,08 (%)
T (1)

= 1im L B (Mo, (X) =2(2) = 2,(t) -
k->°°”"<(t) »J ’J v
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If t > -rv(w), then

Z(t) = lm ) B (v)A (X)
k->m'”"‘(t) J VvV K

K O, (@)

By @) ) B G (a2 @) = 2,00,

- *
sincekl;mco Ak,j(-rv(m))(Y)Ak,j(és,(a)))(x) = 0. Then Zv(t) - Zv(t)

a.s. for every te€T, so that

Z =P 11 A LX) .
(0 n>mw%n(t)”v 0 &)

Actually, one can take
*
P([Z,(t) = Zv(t); teT, v=1,2,...]) = 1,

for we get equality on an everywhere dense subset with probability
one, and since Z: and Zv are a.s. sample continuous they must be
equal for every teT with probability one.

Since for each v = 1,2,..., Z is uniformly bounded and f, f'
and f" are continuous, f(Zv), f'(Zv) and f"(zv) are uniformly bounded.

But then |

f(2,(0) - £z, 0) = [ £, ()Y, (ax, ().
0
For a.e. w, there exists v(w) such that -rv(w) = | for all v > v(w),

and hence |
f(z(1)) - £f(2(0)) = ff'(Z(t))Y(t)dx(t) a.s.

0
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The theorem is now proved.

Further properties of the integral need to be investigated

extensively. Some of the theorems can be generalized somewhat, but

in an obvious way.

Some of the more pertinent questions which have not been 1ooked

into to any great extent are the following:

1)

11).

111)

Can the decomposition Theorem 2.3.5 be extended to processes
(x(t), F(t); teT) having a.e. sample function right (or left)
continuous? Here it is felt that condition 1) of Theorem 2.3.5
may have té be replaced by the condition of uniform integrability
of the sequence of stopping times [-rv(m); v > 1}, where -.-v(w)

is the first t such that sup |X(s,w)| > v . And if no such
s<t

t exists -rv(m) = ].

what functions f of a quasi-martingale (X(t), F(t); teT)} will
again be a quasi-martingale? In terms of boundedness and
differentiability conditions on f it is felt that in general

f(X) need not be a quasi-martingale if f does not have a second

" derivative. If one investigated f(Z), where f is the integral

of the Wierstrass function and Z is the Brownian motion process,
one should get some indication of whether the second derivative
of the function f 1is necessary. One could also look for other

conditions on f, such as convexity.

What processes are integrable with respect to a quasi-martingale?
Theorem 3.3.4 indicates that the integrand may not have to be a

quasi-martingale.
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iv) Doob (1, pp- 273-291) has given solutions of the diffusion
equations on the real line. With the definition of a stochastic
integral given in this thesis, can the diffusion equations be
solved on a sufficiently differentiable manifold, possible a
twice differentiable manifold? It seems entirely possible this

is the case and should be possible with relative ease.
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