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ABSTRACT

QUASI-HARTINGALES AND

STOCHASTIC INTEGRALS

by Donald L. Fisk

A quasi-martingale is defined to be a stochastic process, with

time parameter the closed unit interval, which is decomposable into

the sum of a martingale process and a process having almost every

sample function of bounded variation.

The first problem considered is that of obtaining necessary

and sufficient conditions for a process to be a quasi-martingale.

The main result is given in section 3 of Chapter II. Necessary and

sufficient conditions are given for a process with almost every sam-

ple function continuous to be a quasi-martingale with certain Speci-

fied properties.

The second problem considered is that of defining a stochastic

integral with respect to a quasi-martingale process. The integral

is defined as the probability limit of Riemann-Stieltjes type sums.

Sufficient conditions for the existence of the integral are obtained

in section 2, Chapter III! Section 3, Chapter III deals with the

properties of the integral. Parallels are drawn here between the

ordinary Riemann-Stieltjes integral and the stochastic integral.

Particular emphasis is placed on transform properties of the integral.



Donald L. Fisk

The dominating technique Chapter II and Chapter III, is the

use of random stapping times defined in terms of the process or

processes under consideration. The most significant use of stopping

times is in obtaining sequences of processes so that each process

in the sequence has a certain specified property (for example each

process in the sequence may be uniformly bounded or each process

.in the sequence may be almost surely sample equi-continuous) and

the sequence of processes converge to the original process in the

sense that there is eventual equality of almost every sample

function-
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Chapter I: Preliminary Discussion

Let (D,F,P) be a probability measure Space on which is defined

a family of real valued random variables (r.v.'s) [X(t); teT) where

T is a subset of the real line. We will always assume E(|X(t)|) .‘<'< 00

for every teT. Let [F(t); teT] be a family of sub a-fields of F

with F(s)CZ F(t) .for every 5, tsT with s _<_ t. The family of r.v.'s

{X(t); teT} is said to be well adapted to the family of sub a-fields

{F(t); teT] if X(t) is F(t) measurable for every teT, and we will

then write {X(t), F(t); teT] to indicate this relation. The family

[X(t), F(t); teT} will be referred to as a stochastic process.

After specifying a particular process (X(t), F(t); teT} we will

often refer to it as the "X-process," in order to simplify writing.

In many cases F(t) is the minimal a-field with reSpect to (w-r.t.)

which the family of r.v.'s {X(s); SET, 5 5 t) is measurable. We

will denote such a-fields by,’8 (x(s); seT, s 5 t).

A process (X(t), F(t); teT) is called a martingale process if

for every 5, teT with s S t, E(X(t)|F(s)) - MS) with probability

one (a.s., a.e.), and is called a semi-martingale (super-martingale)

process if E(X(t)|F(s)) 2 Ms) a-S- (E(X(t)lF(s)) S, X($) a-s-)-

This can be restated as follows: Let

"MW -fo(t,m)ap(m) for AeF(s)

Then by the Radon-Nikodym theorem, there exists an F(s) measurable

function which we denote by E(X(t)|l-'(s)) such that



2.

us’tm) - AX(t,m)dP(m) - AE(X(t)|F(s))(m)dP(m) for AeF(s)

Furthermore E(X(t)|F(s)) is unique except on an F(s) set of measure

zero.

The process {X(t), F(t); teT] is then a martingale if for every

s,teT with s _<_ t,

fx(s,m)dP(¢b) - fx(t,a>)dP(w) for AeF(s)

A . A

Correspondingly we can say the process is a semi-martingale if for

every s,teT with s _<_ t,

fX(s,o)dP(a>) S fx(t,¢p)dP(m) for every AeF(s)

A A

and the process is a super-martingale if for every 5, teT with s S t,

fX(s,¢)dP(w) _>_ fX(t,a))dP(a)) for every AeF(s)

A A

He will assume from now on T is a closed interval, and hence

it is no further restriction to assume T is the closed unit interval

[0,l]. This will be assumed throughout the thesis.

He can think of a process [x(t), F(t); teT] as a function X

of two variables defined on the Space TXD. For each fixed teT,

X(t,') is a r.v. defined on (D,F,P,) and is measurable w.r.t. F(t),

and for each fixed men, X(-,m) is a real valued function with domain

T. A sample function of the process is simply a member of the family

(X(°,m); well} of real valued functions with domain T. We will be

interested in analytic prOperties of the sample functions. However,

in order to make probability statements about analytic properties

of the sample functions, we must have separability of the process

w.r.t. the class GPA of (finite or infinite) closed intervals. The

process is said to be separable relative to CA if there is a



denumerable subset T0 of T and a set.AeF with P(A) . 0 such that if

As $ , and I is an open interval, then

[X(t,u>)eA; teIflT]A [X(s,w)eA; teIflTo]t:A

where [X(t,w)eA; teInT] - (w| X(t,w)eA; teInT}. In general we

will let [-°-] denote the set of all men such that "---" is true.

Separability w.r.t.<yA implies that if I is any open interval,

then

sup X(t,u>), inf X(t,m) and HE X(s,w), 12."). X(s,co)

teInT teIflT s€>t sé>t

are all r.v.'s. \

He remark here that any process {X(t), F(t); teT} which is

a.s. sample continuous is separable w.r.t. GA . By a.s. sample

continuity we mean there exists a set.AeF with Pcn) - 0 such that

if miA, than I

lim X(s,w) a X(t,¢p) for every teT.

sé>t

Further, if T is a denumerable dense subset of T, then it is a

O

separating set.

We proceed now to the definition of a quasi-martingale process.

Definition l.l.l

The process {X(t), F(t); teT) will be called a quasi-martingale

process if there exists a martingale process [Xl(t), F(t); teT} and

a process {X2(t), F(t); teT] with a.e. sample function of bounded

variation on T such that

F([X(t) = X,(t)+X2(t); teTl) = I

When we say the process {x2(t), F(t); teT] has a.e. sample

function of bounded variation on T we mean that except for aim»
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with F(A) - 0, X2(°,w) is a real valued function of bounded variation

over T.

From now on we will always write [X]l or simply Xl for the

martingale, and [X]2 or simply X2 for the process of bounded varia-

tion in the decomposition of the quasi-martingale x. It is hoped

that this will not be confused with the bracket notation used to

indicate subsets of a.

He now give some simple examples of such processes.

Let [2(t), F(t); teT} be the Brownian motion process with

T - [0,1]; i.e., the process has independent, normally distributed

increments with E(Z(t)-z(s)) - O and E(|Z(t)-Z(s)|2) - Ozlt-Sl

where a > 0 is fixed and s, teT. We assume 2(0)- 0 a.s. so that the

process is a martingale process. we further assume

F(t) =$(X(s); seT, s S t). Let X(t) - exp[Z(t)v] for every teT,

where- v is an arbitrary positive real number. If u > O and t + u S l,

E(X(t+u)|F(t)) - E(exp[Z(t+u)v]|F(t))

- £(exp[(Z(t) + Z(t+u) - Z(t))v]|F(t))

- exp[z<t>v1 s<exp[(z(t+u> - z<t>>v1>

.- X(t) exp[azvzu/Z]

If we let t

. 2 2

X2(t) -~/~ 02V X(s)dS for every teT,

0 r

then the process (x2(t), F(t); teT) has a.e. sample function of

 

bounded variation on T. That x2(t) is defined follows from the fact

that the Brownian motion process is a.s. sample continuous. We show

the process (X'(t) - X(t) - X2(t), F(t); teT] is a martingale.

Again assume u > 0 and t + u _<_ I, then



E(Xl(t+u)|F(t)) - E(X(t+u) - X2(t+u)|F(t))

- x<t> exnlazvzu/Zl - :(x2(t+u)|r<t))

Now t+u

E(X2(t+u)|F(t)) a de 02v exp[Z(s)v]ds|F(t)) 

2

 

" azvz

. .x2(t) +~A: 2 E(exp[Z(t+s)v]|F(t))ds

.“22 22

- X2(t) + g_%_, exp[Z(t)v] exp[a v s/2]ds

0

- X2(t) + X(t)(exp[azv2u/2]-l)

Then E(Xl(t+u)|F(t)) - X(t) exp[azvzu/21- x2(t)

-X(t)(eXP[OZVZUI2]-l)

- X(t) - X2(t) - xl(t) a.s.

Hence the X- process is a quasi-martingale. That

‘1 2 2

£( ° 3 exp[Z(t+s)v1ds|F(t)) 

 

U 2 2

as]‘ a Z E(exp[Z(t+S)V]|F(t))d5

0

follows from the existence in this case of a conditional probability

and we are thus only changing the order of integration which is

permissible here. (One can also prove it directly by observing the

Riemann-Stieltjes sums and noting these sums form a uniformly

integrable sequence.)

In this example we have really just considered a continuous,

convex function of a martingale process, exp[Z(t)v], and hence we

have a semi-martingale process. The following will give a simple



class of examples where the quasi-martingale- need not be a semi-

martingale.

Let (X(t), F(t); teT] be a process with independent increments

where F(t) - 13(X(s); seT, s 5 t). Let E(X(t)) - m(t). If s S t,

then assuming m(O) - O,

E(X(t)|F(5)) - X(5) 4' m(t) - "1(5)

Define X2(t) - m(t) a.s. and Xl(t) - X(t) - X2(t) for every teT.

Then (Xl(t), F(t); teTJ is a martingale process and therefore the

process [X(t), F(t); teT] will be a quasiqmartingale process when

m(t) is of bounded variation on T.

He will now'mention some work which has been done by P. Meyer (3)

on the decomposition of a continuous parameter super-martingale

[X(t), F(t); te[0,oo]] into the difference of a martingale process

{X‘(t), F(t); te[0,oo]) and a process {X2(t), F(t); te[9,oo].which has

a.e. sample function monotone non-decreasing. The results obtained

by Meyer are the following: Let (X(t), F(t); te[0,oo]] be a uniformly

integrable, right continuous superwmartingale. Then the process has

the stated decomposition if and only if it is.of class.D.on~[O,oo],

i.e., if and only if the family of r.v.'s [XT; 7e373, where :7. is

the class of all stepping times for the process, is uniformly

integrable.

It has been shown by Johnson and Helms (A) that there exist

uniformly integrable, right continuous super-martingales

(X(t), F(t); te[0,oo]) which are not of class D. They have further

shown that if in addition the super-martingale is a.s. sample

continuous then it has the stated decomposition if and only if



lim rP([ sup |X(t,w)| > r]) . 0

r—>cn ogtgoo

The problem of decomposing a process {X(t), F(t); teT) into

the sum of a martingale process and a process having a.e. sample

function of bounded variation on T parallels the above described

decomposition of a super-martingale. For if we assume

{X(t), F(t); tc[0,oo]] is a uniformly integrable super-martingale,

we may as well assume we have the super-martingale

[X(t), F(t); te[0,l]). Then if we have the above decomposition, the

process having monotone non-decreasing sample functions has a.e.

sample function of bounded variation on [0,l].

we will obtain necessary and sufficient conditions for a process

{X(t), F(t); teT) to have the decomposition

P([X(t) - Xl(t) + X2(t); teT]) . l

where [Xl(t), F(t); teT] is an a.s. sample continuous martingale and

the process {X2(t), F(t); teT} has a.e. sample function of bounded

variation on T, and further if V0») denotes the total variation of

X2(°,w) over T, E(V(u))) < oo-



Chapter II

Section I: Random stopping

Let {X(t), F(t); teT} be a stochastic process defined on the

probability space (fl,F,P). we will be interested in obtaining a

sequence of processes {Xv(t), F(t); teT], v - l,2,..., where each

process in the sequence has some specified property, such that

F([xv(t) at M0 for some teT]) -—> o

as v ->»oo.

For example, we may want to define a sequence of processes

(Xv(t), F(t); teT) v - l,2,... such that

sup lxv(t,w)| < 00 for every v = l,2,...

t,w

and

P([Xv(t) 4 X(t) for some teT]) —> 0

as v ->'ao.

Such sequences are usually obtained by a random stopping of the

process {X(t), F(t); teT). Therefore, we will consider briefly random

stopping of a process (2, Loeve, pp- 530-535)-

Let [x(t), F(t); teT] be a process defined on the probability

space (fl,F,P) and let 1(00 be a r.v. defined on (fl,F,P) with range T.

If for each teT, [1(w) S t]eF(t) (and hence him) < t}eF(t)), the

r.v. The) is called a stapping time of the x-process. If the

X-process is a.s. sample right or left continuous then we can define

a new process [XT(t), F(t); teT} by randomly stOpping the X-process

according to the stapping time f(a9. More precisely, if the

X-process is a.s. sample right continuous, define



mew) - new) c 5 .(w)

I X(-r(w),w) t > 1(0))

and then using right continuity of the process and the fact that

[7(w) _<_ t]-€F(t) it can be shown XT(t) is F(t) measurable for every

teT.

Actually, if one only requires [1(w) < t]eF(t), and defines

XT(t,w) - X(t,w) t < 7(a))

3 X(T(w),w) t 2 TD”)

then XT(t) will be F(t) measurable if the X-process is either a.s.

sample right or left continuous.

The following is a standard theorem which we state here since

it will be used extensively (2, Loeve, p. 533).

Theorem 2.l.l

If (X(t), F(t); teT] is an a.s. sample right continuous semi-

martingale, (martingale) and if T is a stapping time of the process,

then the stopped process [XT(t), F(t); teT} is also a semi-

martingale (martingale).

The next two theorems will also be used extensively in later

work so we will prove them in some detail.

Theorem 2.l.2

Let (X(t), F(t); teT} be an a.s. sample continuous process.

There exists a sequence of processes [Xv(t), F(t); teT), v-0,l,2,...,

each process in the sequence being a.s. sample equi-continuous,

such that -

P([xv(t) d X(t) for some teT]) < 2 V



10.

Proof:

By a process being a.s. sample equi-continuous we mean the

following: There exists a set A with P(A) - 0, such that if e > 0

is given, there exists a 5 > 0 such that '

[X(t,w) - X(s,m)| < a when lt-sl < 5

for every wdA. (That A does not depend on teT follows from the

fact that T - [0,l].)

He now prove the theorem.

Let (an; n _>_ 0] be a sequence of real numbers with

e>e> ...>e>...>0 and lim 6- 0. For each n>0, let
0 l n n n --

(bnv’ v 2 0] be a sequence of real numbers with

I

5n > 5nl>"'> 5nv>...> 0 and lim 5nv- O. The an s are arbitrary
O

and the anv's are to be chosen as follows: Because of the a.s.

sample continuity of the x-process, for each en, n-0,l,... we can

find a 5nv>0 such that

”(l 5UP |X(t.w) - X(s.w)| _>_ e 1) < 2‘0"”)

It-slssm, n

for each v - O,l,....

Let Tnv(m) be the first t such that

sup |X(s,w) - X(s',w)| Z en .

ls-s'len
s,s' _<_t

V

If no such t exists we define Tnv(w) - I. Then for each n,v-0,l,...,

O < Tnv(a>) _<_ l a.s. Tnv(w) is a stopping time of the process for

every n,v-O,l,... since for any te(0,l]

[Tm/(w) > t] a [ sup |X(s',a>) - X(s,w)| < en]

|s~s'|<6
"" l1

s,s' S t

V



ll.

Define,

Tv(w) " 12f Tnv(‘”): V " o:l:"'°

Then for each v - 0,l,... OSTV("°) S l.

TV((D) will be a stapping time for the process if [Tv(w) 5 t]eF(t)

for every teT. Actually it is sufficient to require that the set

[Tv(w) S t] differ from an F(t) set by a set of measure zero.

(I, Doob, p. 365) (As was mentioned, we could require only that

[Tv(w) < t]€F(t) for every teT, which is obviously the case since

00

(no) < c] - {gonna < :1.)

If te[o,l), then

P([Tnv(0)) S t for infinitely many n])

to

3P T < I lim P 'r <("00 "y” [ m(w) _ t1) new (“9:1th) _ t])

m.

S lim 2' P([Tmv(w) <t]) < lim 2? P([Tmv(w) < l])

n->m m-n n->m m-n

Q

5 lim L P([ sup |X(t,w) - X(s,w)| > em])

n->oo mm It--sl_<_5mv

5 lim 2‘("+"")-o

n->oo

If Av(t) - [Tm/(w) E t for infinitely many n]. Then for

thv(t), ”((0): t implies Tnv(w) S t for some n. We have

P(Av(t))- 0 for every te[0,l) and every v - O,l,.... Letting

~Av(t) - £2 - Av(t), we have

[Tv(w) _<_ t] = [121' TWO») 5 t]





l2.

- (tinf we») 5 no ~Av(t))U([1:f We») 5 tln Avm)
l'l

(D

- ( u have») s :1) u ([inf we») 5 :1 0 Avon.
nn-D

CD

so Int») _<_ t] - ("E-JI “MW 5 t1) =- [12f Tnv(w) 5 mm W”

C Av(t). Hence [Tv(u)) _<_ t] differs from the F(t) set

00

U [1' (m) < t] by a set of measure zero.
nv -

m-O

Define xv(t,w) a X(t,w) if t 5 who)

- X(rv(w),m) if t > Tv(w)°

Then for each v - 0,l,..., xv(t) is F(t) measurable for every teT

and the process {xv(t), F(t); teT] is a.s. sample equi-continuous.

For given any a >'O, if an <e, then for a.e. a»

lxv(t,w) - Xv(s,w)| < e if |t-s|< any .

Also

P([Xv(t) i X(t) for some teT])

. pawn») <11) . P([inf Twas) <11)

n

(D

. P( acumen) < 1]) S 2‘24"”) .- 2"’ .

n. naO

The theorem is now proved.

Theorem 2.l.3

Let (X(t), F(t); teT} be an a.s. sample continuous process. There

exists a sequence of a.s. sample continuous, uniformly bounded

processes {Xv(t), F(t); teT}, v - 0,l,... such that



l3.

P([Xv(v) 4 X(t) for some teT]) —> 0

asv—>m.

If in addition the X-process is such that

lim r P([ sup |X(t,ua)| Z r]) - 0

r->o) t

then E(|Xv(t) - X(t)|) —-> 0 as v —>o.'>for every tcT. If the

x-process is uniformly integrable,

sup E(|Xv(t) - X(t)|) —> O as v —> (D .

t

Proof:

Define Tv(w) to be the first t such that sup |X(s,w)| 2 v.

s < t

If no such t exists, let 3(a)) - I. Then clearly 7v(a>) defines a

stopping time for the process for every v - 0,l,.... Since the

process is a.s. sample continuous on the closed interval [0,l],

a.e. sample function has an absolute maximum.

Define Xv(t,w) - X(t,w) if t S Tv(u>)

- x(.v(m),a>> if t > We).

Then for each v - 0,l,..., the process (Xv(t), F(t); teT] is uniformly

bounded by v and is a.s. sample continuous. we have

P([Xv(t) 1‘ KM for some teTJ) - P([Tv(w) < 1l) _<_ P([SUPIXU’MZ V1)

t

—->Oasv->a>

Assume now that lim r P([sup lX(t,w)| Z r]) a 0. Then

r->m t

E(|Xv(t) - X(t)|) sf lxv(t) - X(t)]dP 4-] IXv(t) - X(t)|dP

[13,092 t] [Tv(w)< t]



lh.

'f |xv(t) -x(t)|dng va(t)|dP+ f |X(t)|dP

[Tv(w)<t] [Tv(w)< 1] [Tv(w)<l]

,<_w=([.v(w) <11) + f |X(t)|dP .

[TV(¢°)<']

The conclusions are now apparent.

We note here that if we have n processes (Xi(t), F(t); teT)

i - l,...,n satisfying the conditions of Theorem 2.l.2 or 2.l.3, we

can find n sequences of processes {X1v(t), F(t); teT} having the

Specified properties and such that

P([X1v(t) 94 X1(t) for some I S i 5 n or teT]) —> 0 as

v ->’oo.
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Section 2: Decomposition theorem.

Let (X(t), F(t); tcT) be any real valued process with

E(|X(t)|) < 00 for every teT.

(2.2.l) Let (Trn, n 2:1} be a sequence of partitions of T. We

denote the points of'rTL as follows:

Assume ”IT H - max It . l- t .I —>O as n —>oo and let

" 0<_j<N "’J+ "’J
.3 — n

WICTTZC ...:TTnc

If m > n,TTnC TTm and we will let

TTnm,j -]Tmfl[tn’j, tn’jH] so that

N
n

Trm - U flnm,j

1-0

The points OFT-Tnm j for j - 0,...,Nn will be denoted as follows

)

fit <1:

tn,j nmj,0 < tnmj,l nmj,k .+I" tn,j+l
nmu

He will always separate with a comma the variable subscript which

denotes an arbitrary point of the partition and the subscripts

indicating to which particular partition we are referrring. The

variable subscripts will be written last.

If l‘r is a partition of a closed interval B2,B]c: T with points

a.ao<al<...<av+l:-B,wewill let

A100 . X(aiH) - X(ai) o _<_ 1 EV.

Then,for example,

. X - . - . 'An’J( ) X(tn,_j+l) X(tn,J) 0 SJ 5 Nn



lo.

A . (X) I X(t 0<k<k
nm,k nmj,k+l) ' X(tnmj,k) — - nmj

we will also write F1 for F(ai) and we let

C1(X) - E(Ai(x)|F1) O S i _<_ v

Then, for example

cm“) - “AM“HFM) o g} 5 Nn

c .k(X)- am
nmJ, 00” k) OSkSknmnmj, k nmj,

V
- q

I

We will often write 2" C10!) for Z C1(X). Then, for example, we

i-O

can write

tnmj

2..”m, 100 " Z, Z °,nmj km' 2: Z cnmj, k(x)

IT... 71'" 77ml 1-0 k -0

He will also use the following notation throughout.

For each teT, let 7Tn(t) - 7TnH[0,t]. For each s,teT with

s < t, we write

7T"(s, t) -(7Tn(t) - 7Tn(s>U{largest element in TTn(s)]

so that

Tl’nm - lTn(s)U mm)-

Then, for example, if 0 a a0 < aI < ...< av“: l

T"!

Z 2: end“) "- Z, Cn’jfl) for every n- l,2,....

1-0 Wn‘ai’ai-l-l) n

We define {Xn(t),_Fn(t); teT), n . l,2,... as follows:

Xn(t) - X(tn’j) if tn”. _<_ t < tnu’“ o _<_, 5 Nn-l-l.

(2.2.2)

- ' + .Fn(t) f F(tmj) if tn”. 5 t < tn’jfl o 5, 5 Nn l
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We also define [in(t), Fn(t); teT], n - 1,2,... as follows:

X2n(t) - Z Cmj (X) for every tcT.

m(t)

(2.2.3)

Fn(t) - F(tn’j) if tn’j 5 t < tn’j.” o gj gun-l- l,

or what is the same

kzj

X2n(t) - Z, cn,j(x) if tmk g t < tn’w o g k 5 Nn-l- l-

1'0

(2.2-11')

If we let Xln(t) - xn(t) - x2n(t) for every teT, the process

[Xln(t), Fn(t); teT) is a martingale. Clearly, the process

{X2n(t), Fn(t); teT) has a.e. sample function of bounded variation

on T since a.e. sample function takes on only a finite number of

distinct values. Then each process (xn(t), Fn(t); teT] is a quasi-

martingale.

If we assume the X-process is continuous in the mean, then it

is the limit in the mean of a sequence of quasi-martingales,

[Xn(t), Fn(t); teT], n 2;l. Further, if for each teT, the sequence

(X2n(t); n 2;!) converges in the mean to a r.v. X2(t), then the process

{Xl(t) - X(t) - X2(t), F(t); teT] is a martingale. For any teT, let

kn(t) denote the last k such that tn 5 t.
k

)

Let s,teT, s g t, and let AeF(s). Then

LXIHMP- AxmdP- fAXZMdP



l8.

. AX(t)dP- lim (jAl(Z cHxndwf(Z CnJ-(Xlldl’)
n-> co

77""(5) 7T" (5, t)

.- fo(t)dP - fA X2(S)dP -n_l_;mm A( Z cn’j(X))dP-

7771(5) 13)

Now f( L Cn’j(x))dPI fa): c .(X)|F(s))dP

A 7mm) 7r<s.t$

kn (t)- l

-fA cnk(”map + jug cn,J(")|F(5”""

A‘jIkn (s)+l

T A cn,kn(s)(x)dP + j; (X(tmknfil.) ' X(tn,kn(s)+l))dp

and hence -

lim (2E: Cn’j(X))dP I X(t)dP - X(s)dP

n» m j; Trn(s’ t) i A

51"“ tn,kn(t) 1‘ t ’ tn,kn(s)+l i 5 and "n,kn(s)+l' ‘n,kn(s)"'> 0

as n ->’oo.

So we have

AXI(t)dPI '[x X(t)dP- AX2(s)dP- AX(t)dP+ fa X(s)dP

I ‘X; Xl(s)dP .

This however still tells us nothing about the process

{X2(t), F(t); teT) even when it exists. we now look for sufficient

conditions for the Xz-process, when it exists, to have a.e. sample

function of bounded variation on T.
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The following lemma, though trivial, is a key starting point.

Lemma 2.2.5

If {1TB; n 21'} is defined as in 2.2.], then for any process

(X(t). F(t); teT}

HZ lcmlxlll

Tl'
n

is monotone non-decreasing in n.

Proof:

Let m > n. Then 77'“:le and we can write

_""l "'l

EQ. ”@100“ " “Z24 Icnmj,k(x)l)

TTm TTnTThmj

55% “A. lcnmj,k(x)| anj”

_>_:(Z' 1:424 cnmj,k(X))anJ.)l) «(Zlcmlxm

fin finmj fin

we make the following observation:

Let (X(t), F(t); teT) be a quasi-martingale with [X]]I XI and

[X] I X . If a.e. sample function of the x process is continuous,
2 2 2

then

V I li As .(w) .30. ll m(lel

77n

is the total variation of X2(-,w) over T for a.e. w, and it is a

random variable. Assume E(V(w)) < 00, then

“X lend-00h =- eQJ Icmllel)

77.. ”n
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5 NZ lAn,j(X2)l) 3. NW») < oo.

n

and hence lim HZ IC .(X)|) < oo .

n->oo "’J

n

In fact, if"TT is any partition of T, there exists K independent
x)

of 7T, such that

5% |c1(X)|) 5 xx < 00.

In view of this and Lemma 2.2.5 we restrict out attention to those

processes satisfying the following condition.

(2.2.6)

There is a sequence of partitions UT"; n 2 l] of T, as defined

in 2.2.] such that

lim E(Z|cn’j(x)|) 5kx<oo.

" IT
[I

we could as well require the existence of a constant Kx such that

for any partition 77 of T, e(;' |C1(X)|) g Kx .

Lemma 2.2.7

Let the process (X(t), F(t); teT) satisfy condition 2.2.6 and

let (X2n(t), Fn(t); teT), n _>_ I, be defined as in 2.2.3. If the

process [X2(t), F(t); teT} is such that

P([lim X2n(t) I X2(t); teT]) I l

n

then the X -process has a.e. sample function of bounded variation
2

over T. Furthermore, if the X -process is a.s. sample continuous,
2

the total variation V(w) of X2(-,a>) over T is a r.v. and
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E(V(u>)) _<_ "gnoouz' |cn’j (x) |) _<_ “x

n

P roof:

By2..,26 Kx_>_ lim “2|an.(Xll)

n->m

77?.

>5 li c x , h f l - l ,_ ("shim 2|"j( )I) so t at i we et Kx(w) "T32, 24 Icn,j (X)|

nn Trn

then Kx(a>) is a.s. finite and integrable.

If 0 n a < a < ...< a l. l is any partition of T, then
0 l k-l-

33.

Z |A1(x2)| - :MIum (Z cjooll

1'0 am TTn(ai’ai+l)

< _l___1m Z 2, |cnJ.m:_>_(x)|--main"j(X)|IKx(w)<oo

n»m 1'0 77n(ai’ai+l) mTrn

for a.e. w. Since the partition was arbitrary,

539 Z |A1(x2)| $Kx(w) a.s.

1r

If the Xz-process is a.s. sample continuous, V(w) is a r.v.

dominated by Kx(w) and hence E(V(m)) S E(Kx(w)) S KX < 00. (In fact,

V(w) will be measurable if a.e. sample function has at most jump

discontinuities, for even in this case

V(u>)I lim ZlAnj(X2)| a.s.)

n7T->oo

7Tn

By our previous remarks and Lemma 2.2.7, if the process

(X(t), F(t); teT} is continuous in the mean, satisfies condition

2.2.6 and if {X2n(t), Fn(t); teT}, n 2 1, defined as in 2.2.3, is
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such that there exists a process (X2(t), F(t); teT] with

P([ lim X2n(t) I X2(t); teT]) I l

n-D’oo

and also

E(|X2n(t) - X2(t)|) —> 0 as n —> co

for every teT, the X-process will be a quasi-martingale with [XlzI X2.

These are the basic conditions we will seek to satisfy in obtaining

first sufficient conditions for a process (X(t), F(t); teT] to be

a quasi-martingale.

we will need the following theorem.

Theorem 2.2.8

Let (X(t), F(t); teT] be a second order process. Let D2,B] be

a closed sub interval of T and let a I ao < al <...< an-l-l' B be a

partition of [a,B]. Let c >’0 be given. If

e Isup'[ max X(Bw)-X(a,w)]<e

02" w ogkgnl ’ k I

“1. -'1.

than P([ max IchmI 3 e1) 5 E(|ch(x)|2)l(e-ea’5)2

'“ 3" k-o lo-O

where sup' denotes the essential supremum. (i.e., the supremum over

a:

all (MA, where P(A) I 0.)

Proof:

The argument is the following: Assume AeF, |A| 2 e, and A is

F measurable. Assume further |E(B|F)| _<_6 < 6. Then

[(Azt- 2A8 + Bz)dP - f(A2+2AE(B|F) + E(BZIF))dP

A A

3 f(A2-l-2AE(B|F) + [E(B|F)]2)dP

A
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3 josh 52- 2|A|6)dP .- jun-afar

A A

z (e-b)2 P(A) -

Now we let

v m

%filHZfi“M|<e hrvsmmmIZffifllzq finmaorum

k-O RIO

Then.A.cF , since C (X) is measurable w.r.t. F for k I 0,...,m.
m m k m

we also haveAm (l Aj I (J for m 1! j, and

C (X >' I .Am[mmzxnlgok )l e] Uo

Now

s(|é~c(x)|)-Z fIchm». écflundp.

m-O An1 k80

n

For each m- 0,l,...,n, we let AmI ick“), BmI Z Ck(X), and

kIO kIm+l

replacing A.and F with.Am and F6 and B with ea 5’ the above argument

)

gives
"11

tug-Joke(x)| 2) > ":0 jam (6-«(1,5) 2dr

m

= (e-ea52) P([...”é’: lgockun > all

and hence the theorem is true.

Corollary 2.2.9:

Let (X(t), F(t); teT} be a second order process which is a.s.

sample equi-continuous. Let {TTn; n 2:1) be a sequence of partitions

of T as defined in 2.2.l. Given any a >s0, there exists an n(e) such
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that if n 2 n(e) then for every m 2 n,

k

P( ma max C . (X) > ])

[OSJXSNn OSkSknmJ l12:0 "WA |— e

5 “LIZ. enmj’kmlzll («s-en)2

”h nhmj

where e I sup' max sup |X(t,u>) - X(S,(D)I < e

CD 051 gun tn’sz,t_<_ tn.J‘+|

(sup' denotes supremum over the set of equi-continuity).

a)

Proof:

Because of the a.s. uniform sanple equi-continuity of the

X-process, given any 5 > 0 there exists 5(6) such that

sup' sup |X(t,w) - X(s,a.l)| < e .

a: |t-s|§5(e)

Let n(c) be such that ||fl;1||< 5(6) if n 2 n(e). Then

an I sup' max sup [X(t) - X(s)| < e

to 0994" tnj<_s,t$tnj+l

and for all m _>_ n, sup' max max |X(t . )-X(t .)|

w 0<j<N 0<k,k'<k , "'"Jfl‘ MILK

- - n - - nmJ

< e < e.

- n

Using Theorem 2.2.8, we then have the following:

k

P([ max max [2 C . (X)|Ze])
OSJSNn OSkSknmj 1-0 nmJ;i

<24 m m... 2} . (x)| >61)
" 0<k<k I "”U’1 '
jIO - - nmj iIO
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s all ll cnmmlxl l2)/(e-en)2

17h lThmu

we will need the following theorem.

Theorem 2.2.l0

Assume {Xn(t); teT], n I l,2,... is a sequence of processes with

the following proPerties:

i) There is a countable dense subset T of T, containing the
0

points 0 and I, such that P lim Xn(t) exists for each tag.

n-D’oo

ii) Given 6, q >'0, there exists n(e,n) and 5(c,n) such that if

n 2 n(€.ll)

P([ sup IXn(t) - Xn(s)|>'e]) < q.

|t-s|55(c,n)

Then there exists a subsequence of processes {Xn (t); tcT)

k I l,2,... and a process (X(t); teT] such that

a) P([lim xn (t) a X(t); teT]) = l

k k

and

b) The X-process is a.s. sample continuous.

Proof:

We first show that conditions i) and ii) imply

TIE’ P([sup |Xn(t) - Xm(t)| >.€]) I 0 for every 6 >.0.

nyrv€>oo t

Let (TV; v 2:1] be a sequence of partitions of T with

CD

TICTZC and U TV I To. Let e,n>0 be given. First

vIl

choose "](€:D): 5(e,n) such that P([ sup H£X (t)-Xn (s)|>a§ ])

|t-s||<:5(e,

:1
<3
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for every n 2. n](6,n). This can be done by condition ii). Now

choose v such that max |t tv jl < 5(6,n). Next, choose

° )
v,j+l-

nv(6,n) such that

P([max lxnltm) - Xm(tv pl > §-]) < 11/3
J J

for every m > n _>_ nv(€,1]). This is possible because there are only

a finite number of points in TV and for each tv,j€Tv’ Pnl-inho xn(tv,j)

exists. Now let n(6,n) I max (nl(6,q),lnv(6,n)} and consider

P([sgp lxnlt) - xm(t)| > e])

I P([max sup IXn(t) - Xm(t)| > 6])

J tvajs t '<" tvyj'l'l

_<_ P([max sup IX (t) - X (tv .)| > .3/31)

1 ‘m'S-‘S ‘v.j+l n n ’J

4‘ P([max lxnuv j) " xm(tv jll > 6/31)
J 2 )

+ P([max sup Ixm(tv,j) - Xm(t)| > e/3]) < n

J ‘m‘st 5 ‘m‘u

Now lim P([sup IX (t) - X (t)| > 6]) 0 for every 6 > 0 implies
n m

n,m—>oo t

there exists a subsequence (Xn (t); t6T], k 2;l, a process

k

(X(t); tcT] and a set A with P(A) :- 0 such that if mm then

lim (sup IX” (t) - X(t)|) I 0.

k->co t k

we have now established a).

we now proceed to show the process (X(t); t6T] is a.s. sample

continuous. Let XI;(t) I Xn (t) for every teT and k I l,2,....

k
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For every n = l,2,..., by condition ii), we can find a kn and

a 5(n) such that for k 2 kn

P([ sup lx'(t) - X'(s)| > n"]) < 2‘n .
i k k

It-SIS o(n)

* a
Let Xn(t) - Xk (t) for every teT; n a l,2,.... Let

n

* * 'I' -

An - [ sup IXn(t) - Xn(s)| > n '1

lt-SIS 5(n)

oo
*- a) * x- __..-x- -ll- *-

IfB-UA,thenA-limA -UBandP(A)=0.
k n n k

n-k k-l

*

If “8", then for every n _>_ k,

* «u- -1

sup IXn(t) - xn(s)| g k .

|t-slgb(k)

at-

Now if (MAUA , and if e > O is given,

sup |X(t) - X(s)| S 2 sup Ix:(t) - X(t)| + sup Ix:(t) - x:(s)|.

lt-sl 55 t |t-s| _<_?»

at

First choose ko(w) such that 2 sup |Xk(t) - X(t)] < e/Z for every

t

k 2 k0(d>). This can be done since MA- Next choose kl(cu) such that

«13* and k (w)" < e/Z. Then if k(a)) - max [k (w), k (03)] and
kl(w) l O l

5 S 5(k'(w)), we have

sup [X(t) - X(s)| S e

lt-sl s. 5

Then for mu A*, FUN) A*) . 0

lim sup [X(t) - X(s)| a 0 .

5—> o |t-s| 55
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Theorem 2.2.ll

Let (X(t), F(t); teT] be a uniformly bounded a.s. sample equi-

continuous process satisfying condition 2.2.6. Then the process is

a quasi-martingale with [x] - x where X (t) - P lim x (t) for
2 2 2 n->oo 2n

every teT, and the processes (X2n(t), Fn(t); teT] n - l,2,... are

as defined in 2.2.3. Further, the X ~process is a.s. sample
2

continuous and if V(a)) denotes the variation of X2(-,m) over 1' then

E(V(¢u)) < co .

Proof:

Because of Theorem 2.2.l0, Lama 2.2.7, and our previous remarks

we need to show the following:

to

i) P lim X2 (t) exists for each te U N - N.
n n

n9 oo ".1

ii) Given 6, 'q > 0, there exists n(e,n) and Ham) such that

if n 2 n(e,n)

P( X(t)-X(s)> )<

[It-siugbkm) l 2" 2n I e Tl

and

iii) For each teT, the sequence {X2n(t); n _>_ l) is uniformly

integrable in n.

we first show 111) is satisfied by showing E(|X2n(t)|2) g K< 00

for every n _>_ I and teT- We have

e<|x2n(t)|2) = all cmjmlz)

17am

. HZ. |cn’j(x)|2 + ZZ cn’jmtz‘ cn’k(x)))

TT (t) m(t) k>J
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- HZ Icmmlz) + ml cmmuz cn,k(x>lrnj))

TT (t) m(t) k>J

5 “Z lcn,j(x)|lAn,j(x)l) + 22(24 ICn’j(X)||X(tn’j(t))-X(tn’j+l)l)

TTn(t) m(t)

where j(t) is the last j such that tnj _<_ t.

)

Then

2 ‘-l

E(|X2n(t)| ) 5&1qu |cn,j(x)|) g 6MxKx

m(t)

where

H - sup|X(t (0)] and K 2 lim HZIC .(X)|).

X t,w ’ X n->m ""1

TTn

He now prove i) by showing

E(|X2n(t) - X2m(t)|2) --> 0 as n,m —> 00 for every teTT -

In so doing we will pick up an inequality which will allow us to

prove ii) inmediately. If ten, then there exists nt such that

te W" for every n 2 "t' We assume now that m > n 2 nt. Then

x2n(t) ‘- Z “Z cnmj,k(x)anj)

m(t) mm]

and

x2m(t) " Z

77..

Let Vnmj (X) a Z cnmj,k(x)'

77'nmj

Then

e<|x2m(t)- xanIZ) an); (v

rrnm

2

nmj- 5(Vnmj(">|FnJ-))| )
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2
. mi | vnmJ.(x) - la(vnmJ.(x)|n=m)| )

fl;&)

.. 5(24 lvnmjo‘)I 2) - 2Q: |E(vnmj(X)|Fn’J)|z)

Ugh) //n(d

< EQ‘ IvnmJ( )lz)

77}

. all |cnmj kW)

Trn 777w ,- ‘

+ 25(21'211 cnmj’k(x)E(2L‘ Cnmj,i(x)anmfi,k))

mflnmj i>k

E A . (X) 9.1 “1 (X
S. (OQMQNn ngiknmjl nmJ,k '12?le cnmJ k )l)

m]

+ 2E(o<?a:N o<m:x<k .lx(tn,j+l) " X(tanIj,k+l)|ZI 2.. lcnmj’k(x)l).

--n - —nmJ flnnmj

If e =- sup' max sup |X(t,m) - X(s,a>)|, then

" w 0<j<N t .<s,t<t.
"' - n ”Ll" - nJJ+I

sup' max max 'x(tnmj,k) - X(tnmj,k')| < en

a) O<j<N 0<k,k'<k .
- - n - - nmJ

for every m _>_ n. Hence

E(|X2m(t) - X2n(t)|2) 5 E(Z|ZJC k2(X)|) _<_ 36"Kx ——> o as
cnmj,

7Tn mm

m > n -> oo . Hence 1) is proved.

To prove ii), assume 6 < min ltn,j+l' tn,_j| and then for

OSJSNn

every m 2 n,
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P([ltfgfsslxmm - XZm(S)l > 36])

k

_<_P([ max max Ichm' 1(x)| > 6])

O<j<N 0<k<k . J’
-— - n - - nmJ 1-0

_<_ HZ l >4 Cnmj’km|2)/(«s-<-:n)2

1T.n Trnmj

2

5 3enKx/(e-en) -—> 0 as n —> m

Hence if e,n are given, we can choose n(e,n) such that BenKx/(e-en)2

< 1]- If we then fix n > n(e,n) and choose 5(e,n) < "11;”, then

for every m 2 n,

P x (t -x ( >3 < .

([ltEETSMemll 2'“ ) 2mm 6]) "

Hence condition ii) is satisfied and the theorem is proved.
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Section 3: Main decomposition theorem:

In order to prove the main decomposition theorem we need to do

more preliminary work.

He now investigate the uniqueness of the decomposition of a

quasi-martingale process. we need the following lemma.

Lemma 2.3.]

Let [Y(t), F(t); teT] be a martingale process having a.e.

sample function continuous and of bounded variation on T. Then

P([Y(t) - Y(0); teT]) . 1.

Proof:

Since the Y-process has a.e. sample function continuous and of

bounded variation on T, if V(t,w) denotes the variation of Y(-,a))

over [0,t] then V(°,a9 is continuous and monotone non-decreasing on

T for a.e. a» Further V(t,-) is a random variable measurable w.r.t.

F(t) for every teT. As in Theorem 2.1.3, we define ¢v(t) to be the

first t such that

sup |V(s,w)| RV or sup |Y(s,w)| 2v.

5 SLt 5 fit

If no such t exists let Tv(u)) =- l. Clearly, TV((D) is a stopping

time of both the processes {Y(t), F(t); teT) and {V(tfib), F(t); teT}.

Define

Yv(t,w) a Y(t,a)) if t _<_ who)

a Y(Tv(w),0)) if t > Yvon).

By Theorem 2.l.l, for each v a l,2,... the process {Yv(t), F(t); teT}

is a martingale. Furthermore, for each v - l,2,... the Yv-process

has a.e. sample function continuous and of bounded variation on T.



33-

As in Theorem 2.l.3, for a.e. u) , there exists v(m) such that

Y(t,(D) - Yv(t,u>) for every teT if v 2 v(w).

It is also clear that if vv(t,w) denotes the variation of Yv(~,w)

over [0,t], then

Vv(t,w) - V(t,a>) if t S Tv(w)

" V(Tv(w):w) if t) wk”)-

This follows simply from the fact that for all s _<_ t S 1v(w),

Y(s,a>) - Yv(s,w), and for t 2 ¢v(a>), Yv(t,a>) is constant. Also we have

sup Ivv(t,w)| _<_v , sup [Yv(t,u>)| 5v

t,w t,a>

We now show that for every 1/ - l,2,...

P([Yv(t) - Yv(0); teTl) = I.

Let UT"; n 2 I] be a sequence of partitions of T as defined in 2.2.l,

co

and let 1T- U IT . Let ten. Then there exists n such that

nal n t

te TTn for every n _>_ nt'

Assume n 2 nt.

Now

ulvvm - vv<o)|2) a :(Z lawn/pH)

rrnm

S. E( "'3." IAn,_i(Y1/H2_. ( IAn,j (Yv) I)

(E max A.Y Vlw.‘(0215~n|"”(")l"(’))

Since Yv and vv are uniformly bounded and Yv is a.s. sample continuous

we have
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2 .___

E(|Yv(t) - vv(o)| ) 5 "lingo “0.32"" |An’j(Yv)|Vv(l,w))

,< E TEE' .A . Y v l a» e o._, (n%>‘x)l n’J( Vll V( . ))

Therefore

P([YV(t) - vv(0); teTTJ) = I-

Since 17. is dense in T and Yv is a.s. sample continuous, we

have

P([Yv(t) - Yv(0); teTl) - I.

and this is true for every v :- l,2,... . Since for a.e. a), when v

is sufficiently large Yv(t,w) - Y(t,w) for every teT, it follows that

P([Y(t) - Y(0); teTl) = 1

Theorem 2.3.2

If (X(t), F(t); teT] is a quasi-martingale with the following

decompositions

P([X(t) - X,(t) + x2(t); teTJ) - I

P([X(t) - XT(t) + X;(t); teT]) a n

where the x1 and XI, 1 a 1,2, are a.s. sample continuous, then

P([x,<t) - x’fm + <x.<o> - x’,‘<o)); ten) - I.

In particular, if xl(o) . 27(0) a.s., then

P(lxl(t) - xT(t); teT]) a l.

Proof:

* *

Let Y = x - xI , v2 . x2 - x .
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Then

P([Yl(t) . Y2(t); teTl) . l

and hence the process {Yl(t), F(t); teT] is a martingale process

with a.e. sample function continuous and of bounded variation on T.

The conclusion now follows from Lemma 2.3.].

Suppose now (X(t), F(t); teT] is a.s. sample continuous. Let

{133(10): v 2 0] be the sequence of st0pping times defined in Theorem 2.l.2.

If we stOp the X-process at 750») then we will get a process which is

a.s. sample equi-continuous. Also let (73(0)); v 2 0) be the sequence

of stOpping times defined in Theorem 2.1.3. If we stop the X-process

at take) then we will get a process which is uniformly bounded by v.

If TV(CD) is the minimum of 7",(10) and 13¢»), then Tv(w) is again a

stopping time of the X-process.

(2.3.3)

Define

Tye”) " min (Tum); 13m»)

and let

Xv(t,w) e x(t,w) if t 5 who)

3 X(Tv(u>),w) if t > Tv(u>) .

Then for each v a 0,l,... the Xv-process is a.s. sample equi-

continuous and uniformly bounded by v. we have

P([-rv(ao) < l]) g P([T;(LD) < l]) + P([1-3(w) < l]) —> O

as v -§'oo.

Recall that

[Tv(w) < I] = [Xv(t) + X(t) for some teT].
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Then there exists a set A with P(A) - 0 such that for (MA, there

exists v(u>) such that if v 2 v(a>)

X(t,w) :- Xv(t,u>) for every teT.

If r P([sup [X(t)] 2 r]) —> O as r -—>oo , then

t

E(|Xv(t) - X(t)|) ——> 0 for every teT,

for

E(|Xv(t) - X(t)!) . f m(t) - X(t)]dP + f |x,(t) - X(t)]dP

[.,<m)<u [when]

- f m(t) - X(t)|dP_<_ f IXv(t)|dP+ |X(t)|dP

[7v(tu)<l] [7v(w)<l] [Tv(w)<l]

st(['rv(w) <11) + f Ixmldr.

[Tv(“°)< I]

The second term goes to zero since P([Tv(w) < l]) —-> as v —>oo and

X(t) is integrable. The first term is bounded by

vP([1-‘;(w) < l]) + VP([T;"((D) < l])

5 v2"’ + vP([T;(w) < l])

S v2-V + vP([sup |X(t)| 2 v]) —> O as v —>oo .

t

We now prove another lemma which will lead us to the main theorem.

Lemma 2.3.h.

Assume {X(t), F(t); teT] is a.s. sample continuous and is such

that

rP([SUp |X(t)| 2 r]) —> o as r -—> oo.

t

Let the sequence of processes [Xv(t), F(t); teT), v 2 0, be as defined
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in 2.3.3. If the X-process satisfies condition 2.2.6, then each

Xv-process also satisfies condition 2.2.6 and the bound K is inde-

pendent of v.

Proof:

We assume lim E(Z|CnJ.(X)|) <Kx <00 and want to show

n-D’oo

n

there exists K < 00 such that lim fl}: |Cnj(X)|) < K < 00 for

Iv€>co

n

every v 2’0.

LetTn-Hzlcmj (x)|) and HT - J.V.(x)|) First

77
n

consider

Siam,

2f (ICn’J(XV)|' lcn’j(X)l)dP<}—'fie)
,>j(xv') cnjun“,

[TV7Tn [3,0102 taxi] Trn j]

52‘ f lxvum“) - xun’jnep _<_ (|x(tn,,-..)| + v) d?

Tr" [Tv(m)_>_ tn,j] 7T" [tn’js 13,0”) <tfl,j+]]

W
]

“
‘
~
w

.2‘ f [X(tnj+l)|dP +vP([1-v(m)<l])-

7Tn[ jE-TV (03) (tn,j+]]

Next consider

N -
n jfil

2‘ f ICn’j(X)|dP . 2‘ (Z. fl:n j(X)|dP )

77’n [7,(w)<tn,jl i=0 Ic-o [t _TH(w)<tk+l]

".1" It"

i (Z fle:(xndv )

”lo-O j-k-I-l [tn t_(w)<tnw],
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N

.11.

(f (L Icndoondv)

“mks- 3(0)) < tn,k-l-ll j'k'”

N

__‘n

(f (L |a(-sgn xumkflmmgx)Irnplm)

[tn,k-<- Tye.) < tn’kH] 5"“

N

-3.

(f fl u-sgn xumwmmmIrnjndr)

[tlb k5 7v(w)< tn, k+]] Jlk'l'l

Nn

( f (2‘ -sgn xumkfllamundv)

< < j-k+l

“n, k- ‘rv(w) 1:n, k+l]

(f (Ithwll + l-sgn xun’mummr)

< TV ((0) <1:

[tn,k- n,k+l]

(f (Ixumwn - |x<1>|>dm

“n, ks- 13(0)) <tn, k+l]

|x(tn’k+l)|dP - f ]x(l)|dP

[tn,k.<_ TV (w) (tn, k'H] [Tv(w) < tn’ Nn]

|X(tn’k+‘)|dP - f |X(l)|dP - f |X(l)|dP

“n, ks- 'rv(w)< tn,k+l] “'1.an Tv(d))< I] [TV (0)) < tn, Nn]
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Nn

.Z fJJS|x(tnJkJHHdP - f |X(l)|dP.

[th“ WW<%HJ [WW<U
C

Now

Jr" - T”: E (ZlanJx(xvm - a ‘Zlcn,,(*)|)
fin

n

. 2(f |cJJJJ.(xV)|dP + f ICan(XV)IdP)

n [Tv(w)<thJ.l [Tv(w)_>_thJ.]

- L (f ICnJJ(X)|dP 4-] |cJJJJ(X)|dP)

"'n t.,,(w> <th J.1 [.,(w)z th J1

- (L nJJ(x,)|<u= - L f lanJ<x>|dn

7Tnl(w): tnJ] 77'. [new thJ]

-2 flcJJJJJ(X)|dP

7Tn [7(wn)<tJJ.]

- (Z f (ICnJJO‘vll - |cJJJJ.(X)|)dP) - (2 f |cJJJJ.(X)|dP)

TTn [.v(o)_>_thJ1 77.. [.,<w)<thJ1

5 (Z f |x(tnJJHHdP + VP([TV(‘D) < l]))

77’" [th._<_Tv(u>)<tn,j+]]
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.(2J j |X(thk+l)|dP - f |X(l)|dP)

Tl'n [thks Tvlw)< thwl [Tv(w)< I]

I VP([TV((D) < l]) + f ]X(l)ldP .

[13,01]) <1]

Hence _

an S “L |cn,j 00]) 4' vP([7v(w)< l]) + f IX(I)|dP ,

7T
" [tv03)< l]

or an J<_ Kx + vP([-rv(w) < l]) + f |X(l)dP for every n. As

[Tv(n9‘<']

v —> oo, both vP([1-v(w) <11) and f |X(l)|dP go to zero.

[TJ(“W<']

Hence if KJJ :- lim HZ ICnJJ(XJJ)|), then Kv ——> Kx as v —-> a).

w€>ao

n

Main Theorem 2.3.5.

In order that the a.s. sample continuous, first order process

(X(t), F(t); teT) have a decomposition into the sum of two processes

P([X(t) . X,(t) + x2(t); teTJ) = I.

where {X‘(t), F(t); teT) is an a.s. sample continuous martingale

process and the process [X2(t), F(t); teT] has a.e. sample function

continuous and of bounded variation on T with E(V(a>)) < a), where

V(w) is the total variation of X2(-,u>) over T, it is necessary and

sufficient that
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1) lim rP([sup |X(t,w)| 2 r]) a 0, and

n€>oo t

ii) Fer any sequence of partitions {TT;, n 2;l] of T with

lllTnll -J;-> o and ITJc 772:

lim “2ch .(x)|)5k <oo

w€>oo n’J X

n

Kx being independent of the sequence of partitions.

Proof:

we first prove the necessity.

If (X(t), F(t); teT) is a quasi-martingale with the stated

decomposition, we have already indicated that ii) is true. we need

then to prove 1). Consider

rP([sup |X(t.w)|2 r]) rP([SUP IX(t.w)- X(0.w)+ X(0.w)| _>_ r])

t t

g rP([sup |X(t,w)- X(0,w)| Z r/2]) + rP([|X(0,w)| _>_ r/2]).

t

Now rP([IX(0;w)l Z r/2]) S 2] ”(0’0”)“? -—> 0 as r -> CD

(mm) l2 r/Zl

Consider then

rP([sthp IX(t,w) - X(o,w)| 2 r12])

= rP([stJap l(xl(t,w) - x,(o,w)) + (x2(t,u>) - x2(o,a>))| a rim

5 rP([SLJIP IX,(t,w) - X.(0.w)| Z I‘M)

+ rP([stJap Ix2(t,a>) - x2(o,w)| a r/llll-

Now {(Xl(t) - XJ(O)), F(t); teT} is a martingale and hence by

Theorem 3.2, sec ll, Chapter VII of Doob, we have
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P([s:p lxl(t,w) - x,(0.w)| _>, r/uJ) su/r E(|x,(l) - xl(0)|)

-> O as r -—> a). By the same theorem

rP([sup |xJ(t,w) - xJ(o,m)| 3 rm) _<_uf |xJ(I) - xJ(o)|dP -—> o

t

[sup |xl (t)-xl (o) |_>_ :14]

t

as r ->’oo.

Consider now

rP([sup |X2(t)- X2(0)| 2 I’ll-l]) S rP([sup |V(t,w)| 2 r/hJ)

t t

S rP([V(l,a)) 2 r/h]) < hf V(l,(.l))dP —> 0 as r —> a),

[V(l,u))2 r/l-l]

where V(t,w) denotes the variation of X2(-,w) over the interval

[0,t]. Hence, if the quasi-martingale (X(t), F(t); teT] has the

decomposition stated in the theorem, conditions i) and ii) are

satisfied.

we now prove the sufficiency of i) and ii). Let the sequence

of processes [Xv(t), F(t); teT] v - l,2,... be defined as in 2.3.3.

Then P([Xv(t) a X(t); teT]) ->'l as v ->'oo. By assumption 1),

E(|Xv(t) - X(t)|) ->’O as v -+>'oo for every teT. By Lemma 2.3.h,

each process [Xv(t), F(t); teT} v a l,2,... satisfies condition

2.2.6, the bound K being independent of v. Then by Theorem 2.2.ll,

each process has the decomposition

P([Xv(t) = le(t) + X2v(t); teT]) a l

where [le(t), F(t); teT} is an a.s. sample continuous martingale

process, and the process [X2v(t), F(t); teT] has a.e. sample function

of bounded variation on T. Further
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X2v(t)=-P lim > (In__. JJ(XJJ) for every teT

I

and so if Vv(t,w) denotes the variation of X2v(-,w) over [0,t] we

know by Lenlna 2.3.4 and Lemma 2.2.7

E(Vv(t,a>)) 5 ngnJJJJ 5(J2JJ |cJJJJ. (xv) |) _<_ x < as

n

for every teT, v . l,2,....

*-

It is clear that 11(0)) 5 72(40) 5 a.s. Let v > v and let

*

Xw(t,w) a le*(t,w) if t S. Tv((D)

le*(Tv(‘”):‘°) if t > Wk”)

*

X2v(t,w) X2v*(t,w) if t S Tv(w)

X2v*(7v(w),w) if t > WW .

a «it

By Theorem 2.2.], xlv is a martingale, and clearly the XZV-process

*-

has a.e. sample function of bounded variation on T. Further xlv and

*

x2v are a.s. sample continuous.

Since

Xv(t,u>) - Xv*(t,w) if t 5 Tv(w)

a Xv-x-(Tv(w),:) if t > Tv(w)

we have

P([xv(t) = xh,(t) + x2v(t); teTl) = I

P([xv(t) =- xTvm + x:v(t); teT]) .. l .

"-I

Now X2v(0) = P lim 2.. CnJJ.(XJJ) = 0 for every v a 0,1,... so

n->oo .-.-
un(o>
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that X2v(0) . x2v*(°) - 0 a.s. And hence by Theorem 2.3.2, we have

if

P([x2v(t) - x2v(t); teTl) - I

For a.e. u), i.e., except for weA, where P(A) - 0 there exists a v(w)

such that for all v 2 v(a)), rv(a>) - I. Then for v* > v 2 v(u>)

X1V*(t,w) - X1v(t,a>) for every teT. (i :- l,2)

we define, for (MA,

X (t,a>) - lim X (t,w) for every teT
2 2v

v-> oo

Xl(t,w) - lim le(t,w) for every teT.

v-> Q)

And hence for every mm there exists v(a)) such that if v 2 v(w)

X1(t,a)) - Xiv(t,w) for every teT. (i a l,2)

Now, for every v a 0,l,2,... and (um

X1v(t,a>) =- Xi(t,w) if t g Tv((D)

1 a 1,2

I- Xi('rv(w),w) if t > Tv(a)) ( )

If V(t,w) denotes the variation of X2(-,w) over [0,t] , V(t,u>)

is finite since there exists v(a>) such that

X2v(t,w) a X2(t,w) for all teT

and hence V(t,w) . Vv(t,cu) for all teT.

Clearly

Vv(t,w) a V(t,w) if t _<_ who)

= V(1-v(w),w) if t > 'rv(w)

and

P([ lim Vv(t,a>) a V(t,w); t€T]) a l.

v->m
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Since Tv(w) is a.s. non-decreasing in v, Vv(l,w) :- V(Tv(m),w) is

monotone non-decreasing in v. But

lim E(Vv(l,w)) _<_ K,

v-D'oo

and hence by the monotone convergence theorem

lim E(Vv(l,w)) - E(V(l,w)).

v-D'oo

Now

|X2v(t,w) - X2(t,w)| = |X2(t,w) - X2(t,w)| if t _<_ 1v(tu)

:3 |X2(t,w) - X2(‘rv(w),w)| if t > Tv(w).

So

sup |X2(t,w) " X2v(t,w)l " 5UP IX2(t,w) " x2(Tv(‘°))‘-D)l

t t> TV a)

,<_ sup (V(t;‘°) " V(TV(CD),CD)) _<_ V(‘:‘”) ' Vv(l,w).

t>Tv((D)

And hence

E(sup |X2(t) - X2v(t)|) S E(V(l,w) - Vv(l,w)) —> O as v -—> to .

t

Now since E(IXv(t) - X(t)|) —> o and E(|X2v(t) - X2(t)|) —> o as

v —> oo for every t€T. we have E(Ile(t) - xJ(t)|) —> o as

v -—>'oo and hence Xl being the limit in the mean of a sequence of

martingales is itself a martingale.

we now make a few remarks concerning the decomposition in

Theorem 2.3.5.

First, the process (X(t), F(t); teT} is uniformly integrable in

t since the process [Xl(t), F(t); teT} being a martingale process

closed on the right is uniformly integrable, and {X2(t), F(t); teT)

is uniformly integrable because it is dominated by V(l,a9.
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Secondly, having already proved the decomposition we can easily

show .——.

X (t) - P lim 2. C (X) for every teT.

2 n-> oo n,j

TTnlt)

Let (Xv(t), F(t); teT) v . 0,l,... be as defined in the theorem,

so that for each v - 0,l,... Xv is, by Theorem 2.2.ll, a quasi-

martingale. Let P(I[Xv(t) - le(t) + X2V(t); tch) - l where [x91]. xlv

and [Xv]2- X2v. In Theorem 2.2.1] we showed

P([SUP IZJ Gnu-(Xv) - X2v(t)| > cl) -—> o

t m(t)

as n —> on for every 6 > 0. In Theorem 2.3.5 we showed

P([sup |X2v(t) - X2(t)| > 6]) -> 0

t

as v —>m for every 6 > 0.

we will now show

P([sup [Z (cmj (X) - cmj (Xv))| > 6]) —> 0

" Wt)

as v -> a) uniformly .111 2.

Let c > 0 be given. Let x[ 1‘ denote the characteristic

function of the set [...]. Then

P([sup l2. (anJ.(x) - anJvam >e1)

- ”D‘twmm 52" l}. (anJ.(x) - anJ.(xv))|><-:n

+ P(lX[.J(a)..u SJ... IJZJJJJJanJM) - Cn,3(".))|>€1)

’ n
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Now the first term on the right is bounded by P([rv(0>) < l]) which

we know goes to zero as v --> m. The second term is bounded by

r'":

P([X[Tv(m)_]] 12f chJJJ.(x2) - cJJJJ(x2v)| >cl)

n

E 2.. f Icn,j(x2) ‘ cn,j(x2v)|dP

Trn [gm-I]

I
A

I -fi

5- 2 2. f “'An1(le ‘An.J‘"2v’|'Fn.J’dP
TI

[TV (09> tn,j]

I -—l

n E- g! f |X2(thJ+l) ' X2v(thJ+J)|dP .

> .n [Tv(m)_ thJJ]

, so thatBut X ) unless 7v (to) < t
2(tn,j+l) " "‘21"n, j+l

2.. f lx2(tn,j+l) ' x2v(tn,j+l)ldp

77.. [.,(w)z thJ1

n,Jj-l-l

a
u
—

1

" E Z f l"2(tn,j-I-l) x2v(tn,j+l)|dP

Tr" [tnJ-S TV (m)< tn:J'H]

((32. 2V(l,m)dP =- é-f 2v(l,m)dP

7Tn [th J._<_ TJJ(o)<tJJJJJJ] [Tv(w)< l]

The integral on the right goes to zero as v —-> 00 since P([-rye») <l])

-> O as v —> co, and v(l,w) is integrable.
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Now if e >'O is given,

P([sup IZJ anJm - x,(t>|>e1)

59([sup IL (anJm - anJ.(xv))| > e131)

‘ m(t)

+ P([sup IZ “..,j‘XvI - x2v(t)| > e/31)

‘ mm

+ P([sup Ixzvm - x,(t)| > em)-
t

Given any n >‘0, we can first choose v such that the first and third

terms on the right are less than n13 for every n - l,2,.... For

this fixed v we can make the second term less than n13 by choosing n

sufficiently large.

An immediate corollary to the main theorem is the following.

Corollary 2.3.6

If {X(t), F(t); teT) is an a.s. sample continuous semi-martingale,

then it has the decomposition stated in Theorem 2.3.5 if and only if

1) lim rP([sup |X(t,w)| _>_ r]) =- o

r—D’oo t

In particular, if the X-process has a.e. sample function non-negative,

then i) is always satisfied.

Proof:

we need only show condition ii) is satisfied. If (TTn; n 21l}

is a sequence of partitions of T as defined in 2.2.l, then
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eQJ lanJ.(x}|) ”()4 |E(AnJJ.(X)anJJ)|)

77.. Tl'n

- sQJ |e(x(thJ,,)|rnJJ) - X(thJHI

7’7.

'fi

- “Z (e<x(rnJJ.,,)|r-,JJJ.) - X(thjll)
_ 7T.

- E(X(l)) - E(X(0)) -

If the X-process has a.e. sample function non-negative,

rP([SUP |X(t.w)| 2 r]) = rP([SUP X(t.w) z r])

t t

E f X(l)dP —> 0 as r —>oo ,

[sup X(t,w)2 r]

t

and therefore i is satisfied.

If we recall the example given in Chapter I, where

X :3 exp[Zv] v > 0,

2 being the Brownian motion process on [0,1], we see that the

X-process is an a.s. sample continuous non-negative semi-martingale

since exp[tv] is a continuous, convex and non-negative function.

The corollary tells us the X-process is a quasi-martingale.

we note that when the X-process is a semi-martingale, our

conditions coincide with those given by Johnson and Helms.
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Section 4: Particular results:

In this section we concern ourselves with some Special theorems

and results which will be used extensively in Chapter III.

we first prove a lemma which will be quite useful and which is

really just an observation.

Lemma 2.4.1

Let (X1(t), F(t); teT], i - l,2,...,k be arbitrary processes.

Let {TTn, n 2;l) be a sequence of partitions of T as defined in 2.2.].

For each n - l,2,... let fn(-) denote a Baire function of k(Nn+ 2)

real variables. Assume that for each i - l,2,...,k,

{X1v(t), F(t); teT), v - l,2,... is a sequence of processes such that

P([X1v(t) X1(t); teT, l g i S k]) -—>l

as v -D’ao. If for each fixed v a l,2,...,

P lim f (X
n

);l§_is_k,0_<_j_<_NJJ-rl)

n->cn

iv(tn,j

aPlim f- a? exists,
rr€>oo nv v

thenPlim th .;l<i<k0<’<N+lJ_JJJ n<1<JJJJ> _ _, _J_ n >

- P lim f. a f. exists.

n->oo n

Moreover, P lim f. exists and is f'.

‘v€>oo

Proof:

we observe that ?hv converges to f; in probability uniformly

in n as v -§'oo. For

sup P([]?‘JJJJ- Tnl > 0]) l - inf P([l'f'mJ- fn| 5 0])

n n
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e1 - 12f P([x
iv(t

hJ)

a xi(t
hJ.)

;
I 51 < k, 0 SJ 5 Nn+ l])

_<_] - inf P([Xiv(t) = X1(t); teT, I 5 i _<_ k])

n

=l-P([X )aX1(t);teT,l§_i§k]) -->0as v—>tn.
iv"t

Then pm?“- in] > .1) _<_ P([IFJJ- Invl > 01)

+ P([|Tnv- va| > 5]) + P([lfmv- Tm] > 0])

where e >'0 is arbitrary. Let 5 >'0 be given. We first choose v

such that the first and third terms on the right are less than 5/3,

then for that fixed v we can choose n and m to make the second term

on the right less than 5/3 because P lim f; a f; exists for every

n-arao

v - l,2,.... Hence

P lim T = f exists.
n

n-D'oo

To show P lim f' exists and is f, consider

v€>oo

P([I-f-v- ?I > 6]) S P([l-f-v- "I’m" > (5/31)

4- P([]fnv- fn| > GB” + P([]fn- f] > e/3])

where e >.0 is arbitrary. Let 5 >.0 be given. we first choose v

such that the second term on the right is less than 5/3 for every n,

and for that fixed v we can choose n such that the first and third

terms on the right are less than 5/3. The lemma is now complete.

with this lemma it is easy to prove a useful theorem concerning

the decomposition of a particular type of semi-martingale.

Let (X(t), F(t); teT) be an a.s. sample continuous second order
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martingale process and let é - X2. Then the process [§(t), F(t); teT]

is an a.s. sample continuous, positive semi-martingale and by

Corollary 2.3.6, g is a quasi-martingale. Let [E]l - 5| and [t]2 -

{2. Then we know :2 has a.e. sample function continuous and of

bounded variation over 1'. Further, if V(a>) denotes the total

variation of §2(-,u)) over T, E(V(w)) < co, and

'"‘l

§2(t) - P lim 2:. C .(E) for every teT.

n-> (D n, J

rrnm

Theorem 2.4.2

If (§2(t), F(t); teT] is the process defined above, then

52“) - P lim 2 [AJJJj (X)]2 for every teT.

”wnnm

Proof: J

we know §2(t) . P lim 2. cm] (s)

"Q °° m(t)

- 9 lim 2 cIn (x2) - 9 lim Z E([A (x)]2|r .) .
a] .., naj n:J

n-> (”77.n(t) n > mTTn(t)

Assume first that the X-process is a.s. sample equi-continuous

and uniformly bounded. Then

all ([AnJJ.(x)12 - E([AnJJ(x)12|FnJJ))|2>

m(t)

- “Z (IAJJJmW - IsuAnJJIx)12|rnJJ)|z>>

‘ rrn(t)
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SHZI JJ(x)| “) _<_:(JJ max< JAMWZ}: IAnJJ(x)|2)

Trump” mm

5 enE(ZJ IAnJJ.(X)|2) g ant-:(Ixm - X(OIIZI.

m(t)

where en . sup max [An .(X) [2 --> 0 as n -> a), because of the

w o gjgnn ”

a.s. uniform sample equi-continuity.

Now assume the X-process is an a.s. sample continuous second

order martingale process.

Let (Xv(t), F(t); teT} be as defined in 2.3.3. Then by

Theorem 2.l.l, each Xv is a uniformly bounded a.s. sample equi-

continuous martingale process.

For each v a 0,l,..., if 5V - X3 , then tv has the decomposition

gv - glv + g2v

and by what we have just shown

2JJ(t) I PJJ-lémm Z [An,j ()(JJH2 for every teT.

77,, (t)

we know g a X2 has the decomposition

a a E] + £2

and

P lim t (t) a g (t) for every teT,
2v 2

v-avoo

as was seen in the proof of Theorem 2.3.5.

By Lemma 2.4.]

“"‘l

r lim 2. [A .(xnze §2(t)

"'9‘” m(t) M

for every tcT.



54.

Corollary 2.#.3.

Let [X(t), F(t); teT} and {Y(t), F(t); teT] be a.s. sample

continuous second order martingales. If (TE; :1 2 l) is a sequence

of partitions of T as defined in 2.2.], then

P lim 2, A . (X) A . (Y) exists

.19 m NJ ”1.1

m(t)

for every teT and the process so defined, which we indicate by

{z(t), F(t); teT] can be taken to have a.e. sample function of

bounded variation and continuous on T. Moreover, if VQD) denotes

the total variation of Z(-,u>) over T, E(V(u>)) < 00.

Proof:

We have

' "I

Z. An,J(X)An,j(Y) . Z 114([An:‘j‘(v)+An,j 00124
4.»;MAM-(2012)

fin“)
fin“)

. L n/uuamwanz- [Ame-W) .

m(t)

Let g - X+Y and E'- X-Y. Then E and E are a.s. sample continuous

second order martingales, so £2 and E2 are a.s. sample continuous

positive semi-martingales.

We write

fl fl 2 -.. 2
2" Amm Amwx) - L unmade-J] - L I/lllAn’jGH

m(t) m(t) 7Tn(t)

and hence, by Theorem 2.4.2,
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’ "'1

2 -2
P [1300 Z An’jwmmjm . I/Mlé 12(t) - [a 12m) .

m(t)

Let Z(t) - l/h([§2]2(t) - [E2]2(t)). Then the Z-process has the

stated preperties since both [52]2 and ['52]2 have these prOperties.

He now discuss some other results which will be used in

Chapter III.

Suppose (X(t), F(t); teT} satisfies the conditions of

Theorem 2.3.5. Let [X]l - XI and [X]2 - X2. Then XI and X2 are a.s.

sample continuous, X2(t) a P lim 21‘ cn’j(x), and if V0») is

"* °° rrnm

the variation function of X2(°,w) over T, E(V(w)) < to.

Let [Y(t), F(t); t T} be an a.s. sample continuous process.

Then for a.e. a» the Riemann - Stieltjes integral

1 ~n

*

R Y(t)dX (t) - li Y(t .)£s .(X )

*

exists, where t . < t < t

nu "' “,1 - "’1‘”.

we will show

I --. *

afvumxzu) - 9 lim Z Y(t .)c J.(x)

fin

O n-D'oo

It will be sufficient to show

1 --.

RfY(t)dx2(t) - Pngmm Z Y(tn’j)cn,j(X)

0 ”n

q

I

Since P lim 2:. Y(t .)C .(X) a P lim

n—> 00 W n,_] ""1 n-> 00

n ' n

*

Y“n.1’°n.1 "0

A
W
;
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‘I'

where t . < t < t .

n.9J - "Ll — ”’1'”

To see this, let ~Ar r. - [ sup |Y(t)- HS” 2 Hr]

’ |t-slsl/r'

r,r' - l,2,.... Because of the a.s. sample continuity of the

Y-process, lim P(~A .) - O for each fixed r.

r'->co r,r

Assume n is such that "11:1“ < l/r'. Then

P(IIZ hug,» v<tmj>1cmj<x>|> e1)

77?.

-fi *

- tuxA IL (mm)- utmncwun > e1)

r,r' fl;

.., «u-

+ P(lx~A,.,...'2. (mm)- vun’jncmun > an

n

5 p(~Ar’r,) + Us] '2. [Y(t:’j)- Y(tn’j)]Cn’j(X)ldP

Ar,r’ ”n

5P(~A ,) + We .. l at _
or 7271”] mtnu') Y(tn’j)llcn’j(X)|dPl

A'r,r’

§P(~Ar’r,) + 1/6 Mr 5% ”mm” .

n

If n > 0 is given, choose r such that l/er (Kx) < q/2, then choose r'

such that P(~Ar I,.) < n/z. Then for all h with “17;“ < l/r',
’

.‘1 *

Hug: Mum.)- Yuma] “n,j"‘" > e1) < n-

n
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He first assume the x -process and the Y-process are uniformly
2

bounded. Then

P(IIZ vumuamuz) - cn’j<x>1|>e1)
I
A I/ez an L mmnaM-(xz) cj(x2)1|2>

7Tn

.. we! 5% |Y(tn,J)IZIAn,J-(X2) - cn,j(x2)|2)

TTn

M: i

S e7 5‘24 [|An,j("2”2‘ 'cn.J(x2HZD

Trn

M; ..

S :2 E(ngu lAn:.i(x2)|Za IAHJO‘ZH)
.. l'l 77’"

2

NY

'< -—- ZS .

- e2 “05'"?ng In.50‘2)”(‘”))

Now max IA (X2)|V(w) is dominated by 2M V(w) where "X =-

N ”’1 "2 2

sup |X2(t,w)| and hence

t,w

T—im MHZ m.)A[nj(X2) - an.(x)]| >e1)
0")(0 r ) ,

n

E( T1? max (X)IV(‘”)) ‘0

h->ao ogjgNn IA"’J 2

since max [An j(X2)| —> 0 a.s. as n —> to because of the

3
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a.s. uniform sample continuity.

If we now drop the condition of uniform boundedness on the

Xz-process, we can define a sequence of uniformly bounded processes

{Xv(t), F(t); teT) v a 0,l,... as in Theorem 2.l.3 such that

P([Xv(t) :- X(t); teT]) —> I as v —>oo.

For each v - 0,l,..., the Xv-process will be a quasi-martingale with

[Xv]1 - xiv, i - l,2, being the xi-process, i - 1,2, stepped at

rye»). The Xv-processes have all the preperties stated in Theorem 2.3.5.

Still assuming the Y-process is uniformly bounded and a.s. sample

continuous, we.have just shown that for each v - 0,1,...

I -"—I

R.[ Y(t)dX2v(t) - Pn-l-imoo% Y(tn’j)Cn’j(Xv)-

n

For a.e. u), there exists a v(u>) such that for all 1/ Z v(w),

X2(t,a0 - X2v(t,a0 for every teT and hence

I l

lim fY(t)dX2v(t) = fY(t)dX2(t) a.s.

‘w€>oo () 0

If we now show that 21’v(tn,j)cn’j(xv) converges to 2:.Y(tn’J)C .(X)

"3.1

77h 77..

uniformly 32.2) it will follow immediately that

l .1

fY(t)dx2(t) .. 9 lim Z Y(tn’j)Cn’j(X)

Ir€>oo

° 77?.

Consider

P([IZvumJncn’flxp - swam > e1)

Trn
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5 P([-rvko) <l]) + lief |mencn’j(xv)-cn,j(x)]|dp

[Wm-1111,,

59([Tv(‘“)<']) + HY/e L f |cn’j(xv)-cn,j(x)|dp .

’Tn [Wm-u

we know the first term goes to zero as v -—>'oo and immediately after

the proof of Theorem 2.3.5 we showed the second term goes to zero

uniformly in n as v —> oo .

we have now shown

I -.-.

R{v(t)dx2(t) - nigger)? Y(tn’j)Cn’j(X)

n

when Y is uniformly bounded and X satisfies the conditions of

Theorem 2.3.5.

Suppose now Y is a.s. sample continuous but not necessarily

uniformly bounded. we can define the sequence of uniformly bounded

a.s. sample continuous processes [Yv(t), F(t); teT] v a 0,l,...,

as in Theorem 2.l.3, such that

P([Yv(t) a Y(t); tsT]) -—>' I as v ——>' 00.

For each v a 0,1,... we have just shown

3‘1

l

Pn-l-émoo 2" Yv(tn,j)cn‘,j(x) '3 Rva(t)dX2(t)

n 0

when the X-process satisfies the conditions of Theorem 2.3.5. But

for a.e. 4:, there exists v(w) such that for v 2 v(w), Y(t,o.>) a

Yv(t,m) for all teT, and hence
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l l

lim va(t)dX2(t) fY(t)dx2(t) a.s.

v-D'oo () 0

Then by Lemma 2.4.l,

l

P lim 2:. Y(tn’j)cn’j(x) a R\/fiv(t)dx2(t).

fin

né>oo 0

we have now proved the following theorem.

Theorem 2.4.h:

If the process (X(t), F(t); teT) satisfies the conditions of

Theorem 2.3.5, and if {Y(t), F(t); teT] is any a.s. sample continuous

process, then

I -e
*

R[Y(t)dxz(t) . pnglgo szfltn’jfln’jfl)

n

*-

where t u< t .'< t . .

n.J- n.J -' n.J+|

The next theorem follows almost immediately from Theorems 2.4.2,

2.#.h and Lemma 2.h.l.

Theorem 2.4.5:

Let (X(t), F(t); teT) be a second order a.s. sample continuous

martingale. Let g a x2 and let [t]2 . g2. Then if [Y(t), F(t); teT)

is any a.s. sample continuous process,

P lim Zutljnamxmz a P lim ZY(t:’j)Cn’j(X2)

77} 'Tn

lr€>oo n-D’oo

.l

a R~/‘ Y(t)d§2(t).

o
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Proof:

1

we know 9 lim 2m: .)c .(xz) - RfY(t)d§ (t)
lr€>oo M’ n’J 2

by Theorem 2.#.h. Assume first that Y is uniformly bounded and X

is uniformly bounded and a.s. sample equi-continuous.

If we look at the first part of the proof of Theorem 2.h.2, we

see immediately that

:3me m{ll 12le -P11m002: Ht", ~”upX2)

con.“

1

RfY(t)d§2(t).

0

Now assume X is an a.s. sample continuous second order martingale

and Y is any a.s. sample continuous process. we can find two

sequences of processes (Xv(t), F(t); tsT} and [Yv(t), F(t); tET];

v - 0,l,2,... such that for every v - 0,l,... xv is uniformly

bounded a.s. sample equi-continuous, Yv is uniformly bounded and

P([Yv(t) a Y(t) and Xv(t) a X(t); tsT]) —> I

as v ->'oo. Since X satisfies the condition of Theorem 2.3.5, so

does Xv for each v a 0,l,

we let [Xv

l

a] vH(t)d§2 (t) e 9 lim Z." (tn’j)[An’J.(Xv)]2

O n>oo1T

]2 a x2v for each v a 0,l,.... Then

”n

for each v - 0,l,..., as we have just proved. For a.e. «5 there

exists v(w) such that if v Z v(a>), Yv(t,w) - Y(t,w) and §2V(t,w) :-

§2(t,w) for every teT. And hence
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l

vgmm R! Yv(t)d§2v(t) - RfY(t)d§2(t) a.s.

Then, by Lemma 2.h.l,

.., l

P lim 2 Y(tn,j)[An’j(X)]2 - Rf Y(t)d§2(t) -

0
n

né>oo



Chapter III: Stochastic Integrals

Section I: General discussion:

In this chapter we will define a stochastic integral for quasi-

martingales. The approach we use is that of limits in probability

of Riemann - Stieltjes sums.

Ito (5) and Doob (1, Chapter Ix) have defined stochastic

integrals with reSpect to a particular type of martingale process.

Doob assumes the martingale (X(t), F(t); teT] has the preperty that

there exists a monotone non-decreasing function 6(t) such that if s‘<t,

2 2

HHR)-M9|)-HMU)~M9Ihen-GU)-M9

with probability I.

For every second order martingale process (X(t), F(t); teT],

there exists a monotone non-decreasing function G(t) such that if s<It

2

E(|X(t) - X(5)| ) - 6(t) - 6(5)-

However, the condition

2 2

E(|X(t) - X(Sll ) - E(lx(t) - X(S)| |F(S)) a-S-

is a real restriction on the martingale process. As Doob points

out, if G(t) - Const. t, and X is real valued and a.s. sample

continuous, then the x-process is necessarily a Brownian motion process.

Doob shows that if {Y(t), F(t); teT} is a measurable process,

i.e., measurable w.r.t. dth measure, and if

I

j‘ununhwu)<m

0

l

Then the stochastic integral, 0]5 Y(t)dX(t), can be defined as the

0

63.
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limit in quadratic mean of a sequence of stochastic integrals of

"(t,a.>)" step functions, (I, Doob, p. 1-526).

If we let

t

Z(t) .. of Y(s)dX(s)

0

then the process [Z(t), F(t); téT] is always a martingale with

t

E(Z(t)) E o in t. Further, if 20(t) - of Yo(s)dx(s), then

0

t

e<z(t)zO(t>)~ f E(Y(s)Yo(s))dG(s)-

0

These properties of the integral are very nice in applications

(See,for example, section 3, Chapter IV of Doob).

Unfortunately, the integral does not have some of the more

common properties that one associates with the ordinary Riemann-

Stieltjes integral. For example, with the Doob integral we have no

integration by parts theorem. Furthermore, one of the major defects

is the non-existence of a reasonable transform property. This is

indicated quite easily by an example in Doob.

If the martingale process (X(t), F(t); t T} is such that

D jP[X(t) - X(0)]dX(t) exists, then it has the value

l/2[X(t) - X(O)]2 - l. i. m. ”22mm(.X)]2

n+>oo

TTn

where l.i.m. indicates limit in quadratic mean.

It is readily apparent that one cannot hope to obtain a theory

of stochastic integrals which parallels Riemann - Stieltjes integra-

tion if we use this definition of a stochastic integral. In the

next two sections we will define a stochastic integral and give some
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of its properties. Although the exposition is far from complete,

it is haped it will illuminate the feasibility of obtaining a

Riemann - Stieltjes type stochastic integral.

Section 2: Definition of the integral.

In what follows we will again be assuming T - [0,l]. Let

(X(t), F(t); teT) and (Y(t), F(t); teT] be quasi-martingales with

P([X(t) - X,(t) + x2(t): teTJ) a I

P([Y(t) - Y,(t) + Y2(t): tell) - I

where a's usual, [x1i - x and mi - v , 1 - 1,2.
1 i

we assume X1 and Y1, i - l,2, are a.s. sample continuous.

Let [TTB, n 21l} be a sequence of partitions of T as defined in

2.2.l. we will show that

.2.] 2; l 2 . + t . X t . -X t(3 ) Pug”... /[Y(tn’J+,)Y(n,J)ll("u“) (Mn

17..
1

exists and we define ~./\Y(t)dx(t) to be this limit.

0

we will write

Ami") . mum“) - Yum.”

and

End") l/2[Y(tn’j+l) + Y(tn,j)]

we will use freely the notation introduced in Section 2 of Chapter II.

we can write the sums in 3.2.1 in the form



2. 75M m Ami 0‘)

TTn

First

_i

2. EMU) Amjm - Z Emlvmmwxil + En,j(Y)An

rTl'I 7T“ 7T“

.J “‘2’ '

Since Y has a.e. sample function continuous and X2 has a.e. sample

function of bounded variation on T, the limit of the second sum exists

a.s. and is the ordinary Riemann - Stieltjes integral of Y(-wn) w.r.t.

X2(-,w). we indicate this as follows

1 ’fi

(3.2.2) Rf Y(t)dX2(t) . P lim Zzn,j(Y)An,j(x2) .

n-> oo

0 TTh

Consider now

2 Emmemw - bump/smug + Z l/2 An’j(Y)An’j(X,) .

1T" "n m

The second sum on the right can be further reduced to the following

21/2 Andnlmn’jml) + Z 1/2 An,j(Y2)An’j(Xl) .

TTn 7Tn

Again, since X1 is a.s. sample continuous and Y2 has a.e. sample

function of bounded variation on T, the second sum goes a.s. to zero.

we have now reduced the problem to showing the existence of

the limits

'"fi

P H. Ll 2A . Y A . X P lim Z'Y t . A . X"_>moo / n,J( l) n,J( l), n->oo (n’J) n,J( l)

1T" n

It was proved in Corollary 2.4.3 that if Y] and XI are.a.s. sample
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continuous second order martingales, then

" 2 2

21%.“; Z l/2 en’jnlmmj (x1) . l/amla. "th' [(vl- X9120».

fin

the limit being a.s. sample continuous and having a.e. sample function

of bounded variation.

If (Y'v(t), F(t); teT], [le(t), F(t); teT], v - 0,1,... are as

in Theorem 2.l.3, then by Theorem 2.l.l each xlv and Y are uniformly

Iv

bounded a.s. sample continuous martingales and

P([Ylv(t) + Yl(t) or le(t) + Xl(t) for some teT])«-€> 0

as v -—> 00. Hence by Lema 2.ll.l

Plim 212A .Y A .X exists."_m / Mm mu)

77’.

_. . 2

Further, if §2v :- [alv-l- lez, §2v -_ KYW- Xwflz, then

“ ""l

(3.2» Pngmml Il2An,,i(Yl)An,,i(x|)nPvlémm1/8(§2\I(|)”gnu”.

'Tn

we define

‘_ll

. (3.2.5) f dXdYa P lim 2) 1/2 An,j(Yl) Arum.) .

0 n€>canT

n

If we now show P lim Z Y(t .)A .(X ) exists, we will have

n:J n)J l
n-¢’OO

77..

proved the existence of the limit in (3.2.l). To prove this we first

prove the following lemma.

Lemma 3.2.6.

If {X(t), F(t); teT} is a second order martingale and
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[Y(t), F(t); tsT] is a uniformly bounded, a.s. sample continuous

process then

\_fl

lim Z. Y(t )A (X) exists in quadratic mean.

n->oo ”1] 0).]

n

Proof:

Let m > n. Then IT" c: TTm and we can write

zn - ZY<tn,j)An,j (X) ' 2.. 2... Y(tn,j)Anmj,k(x)

Trn n nmj

and 2m - 24y(tm,i)Am,i(x) - 2.. Z. Y(tnmj,k)Anmj,k(x) °

m nnlnhhu

Then ’

E(lzm- ZnIZ) - all 2 lvltnmml- Y(tn’JHAnmj’kaHz)

Trn "nmj

- “2. 2, humbkl- Y(tn,J)|2|Anmj,k(X)l2)

Tfllrnmfl

because of orthogonality.

Let (er, r 2 0] be a sequence of positive real numbers with

e >e >...>0andlim s so. Also let [a ., r'_>_01bea
O l r r

r->oo
.

sequence of positive real numbers with 60 > e] >... > o and

‘1'" 6 I‘ 00

r-L>cn

Define

“’Ar r.(t) -[ SUP |Y(5) - Y(s')| fer],r,r' =- 0,l,2,....

’ ls-s'lié,-
s,s' st
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Because of the a.s. uniform sample continuity

P(Ar r.(t)) —> 0 as r' -->oo for

3

every fixed r.

Now for fixed r and r', if tI > to then

r'(tl)C ~Ar,r'(t0) and hence

r'(tl) :3 Ar’rl(to) when tI > t0 .

Z, Z. E(IY(tnmj’k)- Y(tn’j)| IAnmj’k(x)| )

Trn 7TH

.. L f |Y(tnmj,k)' Y(tn’j) |2|Anmj’k(x)|2dl>

77’.mj Ar,r'(tnmj,k)

-_1

4
.

E
N

.(t

"2... fr IY(tnmj,k)" Y(tn,_j)lzlAnmj,k(x)|2dp °

nmmj nmj,k)

Let MY - sup lY(t,w)|' Then

2 2

"Rheum" Y(tn,j)| lAnmj,l<(")I d"

Ar, r' (tnmj,k

< AMY f IAAm”. k(x)|2cll>

l’|"(tnmj,k)

- 4N2 |x(t )| 2d? - L. 2 pm: )| 2d?
Y nmj, k-l-l NY nmj, k

r,r'(tnmj:k) rr,r'(tnmj,k)
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2 2 2 ' 2

- l"ll! f lx(tnmj,k+l)| d" ' ““y _[ NtmLkll dP -

Ar,r (tnmj,k+l) Ar,r'(tnmj,k)

A

Z. 2.. f |Y(tnmj,k)’ Y(tn,j)|2lAnmj,k(x)|2dP

Trn 7I’hmj Ar,r'(tnmj,k)

5 1m: j |X(l)|2dP

Ar,r'(')

Let c > 0 be given, choose r such that 6'2, E(|X(l) - X(OHZ) < e/2.

Since P(Ar '-.(l)) —> O as r' —> 00 for every fixed r, we can now
, .

choose r' such that 1m: f ( |X(l)|2dP < s/2. Now choose n(e)

A I)
r,r'

such that “7121(8)“ < er“ Then if m > n 2 n(e)

2 2 2 2 2

l5(|z"I - an ) _<_er E(|X(l) - x(0)| ) 4» MY] |x(l)| dP

Ar,r'(l)

S e/Z + e/Z :- e.

The lelmla is now proved.

If [X(t), F(t); teT] is any a.s. sample continuous martingale

process and if (Y(t), F(t): teT] is any a.s. sample continuous process

then

P lim 2 Y(t .)A .(X) exists .

".900 nu n.J

77..

For, if {Xv(t), F(t); teT) and {Yv(t), F(t); teT] v 20, are as

defined in Theorem 2.l.3, then Xv is a uniformly bounded a.s. sample

continuous martingale and Yv is also uniformly bounded and a.s.
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sample continuous. Then by Lema 3.3-5

"limm Z Yv(tn,j)An,j (Xv) exists in quadratic mean for

77..

every v 2 O, and hence by Lelmla 2A.]

"1

9 l1... 2' Y(t .)e .(x) exists.
"_>m nu nu

77..

we now define

1

(3.2.7) o] Y(t)dX (t) - 9 lim Z m .)A .(x) .
l n->m n,J n,J l

0 77"
n

we have now established the existence of the limit in 3.2.] and we

define

l l l.l .

(3.2.8) jvmdxm - DfY(t)dx‘(t) + RfY(t)dX2(t) +de(t)dX(t)

0 0 0 0

n-> oo

- 9 lim 2 Em") emu) .

Tl'n

Clearly, if [a,B] is any closed sub interval of T, we can define

.5 .-—,

(3-2-9) j Y(t)dX(t) = P gm 2. En j(Y) (kn-100,

m 2 I

u n 77.05:"

for the limit will exist when (TI-GB n’ n _>_ I) is a sequence of

’

partitions of [u,B] with ”Trafimn -n—> 0 and 77:15,]: ”35,2: .

If UT", n 2 I) is a sequence of partitions of T as defined in

2.2.1 and if 7Tn(t) -T)’nn [0,t], then

t ""1

(3.2.10) Y(t)dX(t) =- P lim Z an j(Y)An J.(x)

o "'>°° m(t) ’ ’
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Section 3: Some properties of the integral.

Let (X(t), F(t); teT] and [Y(t), F(t), teT] be quasi-martingales

with I

P([X(t) - x,(tl + let); teTJ) - l

P([Y(t) - v,(t) + Y2(tl; teTJ) - l

where [X]1 - Xi and [Y]1 - Y1, i . l,2, are a.s. sample continuous.

t

Let Z(t) - jY(s)dX(s) - 9 lim Z Emu) emu) .

0 n-D’oo 773(t)

Theorem 3.3.l.

The process {Z(t), F(t); teT}, as just defined, can be taken to

be a.s. sample continuous.

Proof: t t t

Z(t) -fY(s)dX(s) .- DfY(s)Xm(s) + RjY(s)dX2(s)

0 O 0

5t

+de(s)dX(s) .

0

C

First, the integral R‘/\Y(s)dX2(s) as a function of its upper limit

0‘

defines for a.e. a» a real valued continuous function on T.

t a

The integralde(s)dX(s) =- P lim Z l/2 A .(Y ) A
n,j l n,

-> oo . (XI)

0 " m(t)

J

a P lim

v-D’oo '/8(§2v(t)‘ §2v(t)) Where §2v and §2v are as defined in

3.2.4 is a.s. sample continuous by Theorem 2.2.10 since both §2v and

32v are a.s. sample continuous for every v a l,2,....

It thus remains to show the integral



t --.

DfY(s)dX (s) - P lim 2 Y(t .)e .(x1)

0 n->mTrn (t)

as a function of its upper limit defines for a.e. an a real valued

continuous function on T.

we first assume the XI and Y processes are uniformly bounded

and a.s. sample equi-continuous.

By Theorem 2.2.l0 it is sufficient to show that given e,q >'0

there exists n(e,q) and B(s,n) such that for all n 2 n(e,n)

(I) P(ll 52.255“ ”Z“Y(an’jlxll-Z‘ Y(tn’j)An’j(X,)l><-:])

’" m(t) . TT (5)
n

< n

First we show that if e,q > 0 are given, there exists an n(e,n) such

that if n 2 n(e,n), then for all m _>_ n,

P v t (x) ' l)

“05;"... OSmfoSknmj I11: ( MU1Mnmj k ' |>e < 11

Now

P( Y(t )A . (x) e])
[0 232"" Osngknmj '12-?) nmjd. nmJ.i l I)

s P([OSmjagNn 053W lgolmnmj’i) "Y‘tn. J.)1en,,u.,k<x,>I > e121)

+ ”[033. ngiknmj “(tnuml‘tnmhml’ ' xl“n.J”'>‘/2])

we have

P([ max max |Y(tnj)(Xl (tnmjk+l)' Xl (tnj)” >e/2])

0<j<N 0<k< k
- - n - - nmmj
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< P max max X t . - X t . >'e 2

— ([0<j<N 0<k<k .I '("mJ’k+'> '("’J)| IHYJ)
- - n '- - nmu

where HY - sup|Y(t,u9| .

t,ul

Because of the a.s. sample aqui-continuity of the Xl-process we choose

a 5 >’0 such that P([ sup le(t) - Xl(s)| >te/2MY1) - 0 .
l

lt-sl $51

If "1(6) is such that for n 2 n](e), IlTrnll< 5], then

P([ max max IXl(t )-X(t )>€/2 ])-O.

ogj-gun09ngJ ' ' "’3' HY .
nmu,k+

Observe that the partial sums

k

Zlfltnmj’k) - v<cmlla km). k- 0......
nmj, “mu

1-0

'form a finite martingale sequence for every j - 0,l,...,Nn. Hence

k .

P Y . - Y . £5 X >’

N
n

_i
k

s, P([ max I LIV/(tnmj’kl-Y(tn’j)]Anmj’k(X,)l> e1)

j-O 05 k-<"nmj 1-0

N k
nmu

5 l/e2 : z E(|Y(tnmj,k)- Y(tn’j)|2|Anmj,k(Xl)|2) .

j-O k-O

Now choose 52(e,q) such that

2
SUP |Y(t)" Y($)l2 _<- 6 2 < T] a.s.

It-slsaz(e.n) E(lxl(l)-X,(0)I )

 

Then choose n2(e,n) such that ||1Tn|| < 52(e,n) for every n 2 n2(e,q).
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Then

Nn knmlj

[62 Z. 2.: E”Y(tnmjflt)" Y(tnJ” ZAInmj, kO‘IHZ) < 1] .

j-O k-O

Hence if n 2;max {nl(e,n), n2(e,q)], we have the desired result for

all man.

we can now show (I) is true.

Assume m >ln and 5.( min It '+l- t .|. Then

OSJSNn n)J ”Li

(2) ml sup I23»: (mt .110" 2: Y(tm1)Am,(X)l> 3e]

”5'55 mylt) mum

_<_P([ max max IZY(tnmj,i)Anmj,i(xl)l>61)

05:5". 05 kit... 1..

If n(e,q) a max {nl(e,n), n2(e,n)] is as chosen above, then we can

fix n 2 n(e,n) and let 5(e,n) _<_min ltn,j+l- tn,j|' Then (2) will

be less than n for all m 2 n. Hence

.., t

Pngmm 2 Y(thngo‘l) .- DfY(s)Xm(s)

m(t) o

is a.s. sample continuous when Y and XI are uniformly bounded and

a.s. sample equi-continuous. The desired result now follows by

stopping Y and XI according to the stOpping time defined in 2.3.3

and then applying Theorem 2.2.l0 and Lemma 2.4.l.

with what has already been shown, we can easily obtain conditions

under which the process

Z(t) -‘/fi Y(s)dX(s) is a quasi-martingale.

° 1
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Theorem 3.3.2.

Let {X(t), F(t); teT) and {Y(t), F(t); teT] be quasi-martingales.

Let [X]1 - X1 and [Y]i - Y1, i - l,2, be a.s. sample continuous.

Further assume Y is uniformly bounded and Y1 and XI are second order

martingales. If

t

Z(t) -~/fiY(s)dX(s), for every tsT,

0

then the process (Z(t), F(t); teT] is a quasi martingale with

t ' t l:

min) - DfY(s)Xm(s) [212m - RfY(s)dX2(s) +de(s)dX(s)

0 ' O O

and [Z]1 - 21’ i . 1,2, are a.s. sample continuous.

Proof:

Since Y is uniformly bounded and X] is a second order martingale,

by Lemma 3.2.6

t i...

o Y(s)Xm(s)- lim 2 Y(t .)e .(xl)

{f' n-D'oo 773(t) n J

where the limit is in quadratic mean. So ZI being the limit in

quadratic mean of a sequence of martingales is again a martingale.

we have further shown, in Theorem 3.3.] that 21 is a.s. sample contin-

t

uous. Now R /qY(s)dX2(s) defines a continuous real valued function

0

of bounded variation on T for a.e.lm when considered as a function of

its upper limit. Also

t ‘fi

de(s)dX(s) =- P lim 2. 1/2 An,j(Yl) An,j(x‘)

0 "9 °° 7Tn(t)

a l/8([(X‘+ Y])2]2(t) - [(xl- Y,)2]2(t))
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is a.s. sample continuous and of bounded variation on T since XI and

Yl are second order martingales. Therefore 22 has a.e. sample

function continuous and of bounded variation on T. The theorem is

now established.

we now investigate some prOperties of the integral which parallel

the Riemann - Stieltjes integral.

Theorem 3.3.3:

Let (X(t), F(t); teT] and (Y(t), F(t); teT] be quasi-martingales

with [X]i - X1 and [Y]j - Y i - l,2, a.s. sample continuous. Then

I l

fX(t)dY(t) +fv(t)dx(t) .- X(l)Y(l) - x(o)v(0) a.s.

0 0

1)

Proof:

Observe

A.XY-E.XA.Y+A.YA.X sothatn”(l n”(l n,J() n,J() null.

24 Anni (XY) - 245")..l (X) An1.j(Y) + 24 any] (Y) Anni (X)

Trn 77h 77;.

Hence, taking probability limits on both sides we have the desired

result.

One thing that one would expect of an integral is the following:

(X(t), F(t); teT] is a quasi martingale and if the function f is such

that t
f f ' (X($))dX(S) exists

0

t
then d/Nfl(x(s))dx(s) a f(X(t)) - f(X(0)) .

0
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For the Doob integral this is not the case, as is illustrated by an

example from Doob (l, p. ##3). If [X(t), F(t); teT} is such that

OJ/‘[X(t) - X(O)]dX(t) exists, then

ojiuu MMNMQ-IRUU)XWH

- l/2 l1 XmngJAnuln

n

where the limit is in quadratic mean.

Let (X(t), F(t); teT] be a quasi martingale with [X]1 - X1,

1 - l,2, a.s. sample continuous. Let f(t) - t2. Then

l

X(l)2- x(o)2 - f2X(t)dX(t)

0

or I

“unl-Huml-jVWHQMMu.

0

"""1

‘ —

For, f2x(t)dx(t) - 2 Pnlimoo 2 1/2 AM. (x) emu)

° ' TTn

- P lim 2‘ An’j(X2) - x(l)2 - x(o)2

n-D’oo

n

This property of the integral can be generalized to the following

extent -

Theorem 3.3.h.

Let (X(t), F(t); teT] be a quasi-martingale with [X]i - X1,

1 - l,2, a.s. sample continuous. If f is a‘real valued function of

a real variable and has a continuous second derivative, then

nun>~umm>1flfwuammn-
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Proof:

we want to show

f(X(l)) - f(X(O)) - P u... 2 Kmuwxnen’ju)

n-> oofl.n

- 9.1:“... 27 “(X(tn’jlmmjlx) + Pulimm2fl/2Amulxnemm

n n

T . 7‘ .. * 2

' Peg”... 2n" f (“humus“) " 9.310;; "2 f ““n.1’““n.3"‘”

n n

* a

where t . < t . < t . and where t . de nds on a).

“U - NJ "' "2.1"" "U [)6

we can write

«whamm-Ziflmn

Tl'n

‘-1

2 [f'(X(tn, 1))An, j (x) + 1/2 f"(X(t:’:))lAn,j (Xllzl

lTn

-)l- il- -X-

where again t . < t . < t . , and where t . depends on 03.

NJ "' n1J " n2J+l nyJ

Hence,

|f(X(l)) - f(X(0)) - EM f'(x)An’J.(X)|

3
M

- I/ZIZ [f"(X(t:,J.)) - f"(X(t:’:))llAn’J-(X)]2|

"n

_<_ l/2 2; qufidn - f"(x(t:.,j))||en,j<x)|2

l1

s (w) M‘ 2
_<_ n Z mm] (X) I

Tln

 

2
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where en(w) . max sup If"(X(t)) " f"(X(s))|.

J thJSs,tstn:J+l

Because of the a.s. uniform sample continuity of the X-process and

the continuity of the function f"('), en(w)—> 0 a.s. as n -—>oo.

If Z [An j(X)]2 converges in probability, then

)

lTn

End (f(x))An,j (X) will converge in probability to f(X(l))-f(X(O)).

3
W
]

Now

2 [AM 0012 2 [AM-(2(1))2 2%”. (xllem (x2)

77.. 77h 77..

+2 [Am (xznz-

77..

Because of the a.s. sample continuity of the processes XI and X2 and

the a.s. sample bounded variation of the Xz-process, the second and

third sums go to zero a.s. as n ->'oo. we have previously shown

the probability limit of the first sum exists. The theorem is then

proved.

A natural question at this point is what additional assumptions

on the function f or the quasi-martingale X will insure the process

[f(X(t)), F(t); teT) is a quasi-martingale.

Assuming f and X satisfy the conditions of Theorem 3.3.#, we have

t

mm» =- f(X(0)) +ff'(x<s)ldx<s) .

0

we write

t --\ __ .

ff (X(s))dX(s) . 21;me Ana“ (”Wu-("1’

o m(t)
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’“l

+P lim 2‘ En .(f'(X))A .(X).

..l M 2

Since f' is continuous and X is a.s. sample continuous,

a t

Plim Z 'A' .(f’(X))A .(X2)-R f'(X(s))dX2(s) .

n-> 007Tn(t)n’J n’J ' _[

Consider then

2 En’jfi'lxnamjml- Z P(xltmllamlxp

77"“). 77h“) ~

+ l 24A . f' .A X .Z I ml ()0) M( I)

rrnlt)

Assuming f' is bounded and continuous, the first sum converges in

quadratic mean and therefore defines a martingale process. Last of

all, consider

2 WA .(f'(X))A (an-Z l/2f"(x(t*.))[A (H12.
naJ “2J1 ")J "Ll I

1113:) m(t)

when X' is an a.s. sample continuous second order martingale, we

showed in Theorem 2.“.5 that

-., t

P 11m 2 1/2 mm: .))[A (Xllz-ff"(X(s))d§(s)
:J "1.1 l

where g - [Xf]2, provided f" is continuous.

Then for each teT,

t t

f(X(t)) - .‘(x(0)) + fo'(X(s))Xm(s) + Rff'(X(s))dX2(s)

0 O I

t

+ff"(X(s))d§(S)

0
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If we let

t

'[f(x)]l(t) - O‘/fif'(X(s))Xm(s) for every teT, and

0

t t

[f(X)]2(t) - mm» + Rff'lxlsndles) +ff"(X(s))d§(s) for

0 0

every teT, then the process [f(X(t)), F(t); teT) is a quasi martingale

if the above conditions are satisfied and E(|f(X(t))|)‘< 00 for every

teT. we summarize these results into the statement of the next theorem.

Theorem 3.3.5.

If f is a real valued function of a real variable with f'

bounded and f" continuous, and if (X(t), F(t); teT) is a quasi-

martingale with [X]1 - X1, 1 - l,2, a.s. sample continuous and XI

second order, then [f(X(t)), F(t); teT] is a quasi-martingale if

E(|f(X(t))|)< 00 for every teT.

Further t

[f(X)]l(t) - 02/‘f(X(s))dX'(s) for every teT

0 t t

[f(X)]2(t) .- f(X(0)) + Rff'(X(s))dX2(s) + Rff"(xls))d§(s)

0 " 0

for every teT, where g - [X12]2 .

Assume now (X(t), F(t): teT] and (Y(t), F(t): teT) are quasi-

martingales with [X]1 - X and [Y]1 . Y i - l,2, a.s. sample
1 1’

continuous. Assume further Y is uniformly bounded and XI and YI are

second order martingales.

1:

If Z(t) - “/‘Y(s)dX(s) for every teT, then by Theorem 3.3.2,

0

we know the process (Z(t), F(t); teT] is again a quasi-martingale
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with the following decomposition.

t

[Z]l(t) - Zl(t) .- DfY(s)Xm(s)

0

t

[212m - 22(t) - RfY(s)dX2(s) + 1/8(§(t) - F(t))

0

where t - W1" vllzlz. E- [(x,- Yllzlz.

Let f be a real valued function of a real variable with f'

bounded and f" bounded and continuous. Then since ZI is a second

order martingale and 21, i - l,2, are a.s. sample continuous, by

Theorem 3.3.4

, t

f(Z(t)) - f(Z(O)) +~/' f'(Z(s))dZ(s) for every teT.

0

we wish to show that

l l

f(Z(U) - f(Z(O)) -ff'(z(s))dz<s) -ff'<z(s))v<sldx(sl

0 O -

or symbolically, dZ a YdX.

we now write, assuming the existence of the limit,

I —n

ff'(Z(s))Y(s)dX(s) . P lim 2 z: (f'(z)v)A .(x)
"PJ "PJ

0 n-> m

n

Consider

2 En,j(f'(z)Y)An,j(x) . 2 En,j(f'(z)Y)An,j(x2)

"3 I7}.

.“1

.2 f'(Z(tn’j))Y(tn,J.)An’j(XI) + ZI/ZAn’j(f'(Z)Y)An’J.(XI) .

77.. Tl’n

The third term can be rewritten as follows:
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2: l/2 An’j(f'(Z)Y)An,j(xl) . 2' l/2Y(tn’j+l)An,j(f'(Z))An’j(Xl)

Tl’n 7T}, .

+ m f'(2(tn’j))An’J. (mm (x,)

1/2 Amman’j (f ' (zllam. (x,>

3
M

S
W
1

4- Z, 1’2Y(tn,j)An,j(f.(z))An,j (XI)

Tl'n

+ Zl/Z f'(z(tn

TE.

we will show that

.1”An.j (”Am 0‘1) '

I) Pngmmz'f.(2(tn
2j))Y(tn2J)An2

j(x1)

lTn

.- l f' z . APhi"... Z ( (tn’Jl)

TTn

.(ZI)

n2J

2) P lim [2 En .(f'(z)ll)An .(xz) +Z’l/2 f'(Z(tn j))z.\.n j(WAn 10‘1”

n->co 2J 2J 2 2 2

7T“ Tr"

l

- 213.00% En’jlf'lzlmn’juz) - R~off'(2(t))d22(t)

n

3) Pnlimm Z l/Z An,j (f' (2))Y(tn,j)An,j (XI)

77}1

a P lim Z, ”2 An J.(f'(Z))An j(zl)

n->m ’ ’

77h
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and finally

'4) Pngmm 1211‘ l/2 And (f-(z) )An,j (”A021 (XI) - O .

n

To show I) is true, consider

sq2f'lzltn,jllv(tn,j)amj(xp -Lf'(2(tn’j))An,j(Z,)|2)

Tln 1T"

E(l 2 f'(Z(tn’j))[Y(tn,J.)An,J. (x,)~ AM. (2,)1I2)

77h

E(Z [f'(zumjlllzlvltmlem (x,>- AM. (2912)

T7;

5 hi. E(Z[Y(tn’j)An’j(Xl)-An’julnz)

Tl’n

where Hf. - SUP lf(Z(t.w))| -

t,u>

u... E(IZIU) - 2 Y(tn’jmn’jmllz)

TTn

. E(IZ An’j(zl) ->_.Y(tn,j)An,j(xl)I2)

TE. 7Tn '

. m2 [Am-(Zn) - Yawn“ (x,)1|2)

m.

177.

and l) is now proved.
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To prove 2) we first observe that

Pn-l-imm Z 1/2 1”(Z(tn,j))An,j(Y)An,,.i(xl)

TTn

' Pnlimaogfm f'(z("n.l”“n.1"I’An.1"‘l’ '

n

Then we can write

I l .t

Rff'(Z(t))de(t) - Rff'(2(t))d(kfv(s)dx2(s) + 1/8(:(t)- F(t))l

‘ o o0

l l

. aff'(z(t))v(t)dx2(t) + 1/8 Rff '(Z(t))d(§(t)- f(t)) -

0 0

' —

out we Rff'(Z(t))d(t(t)- §(t))

0

. Pngnmz l/2 f'(Z(tn,j))An’j(Yl)An,j(X‘)

We

and

l ' ‘fi __

«[f (Z(t))Y(t)dX2(t) - P“l;m°°rr A... jlflzlvlem1(le-

n

Hence 2) is proved.

Recall f" is bounded and Y is uniformly bounded. Now to prove

3) consider,

P li 212‘ 2.A. . f' 2 t .Am / M( (”H“)
nnd>oo

Tl}.

n,j(xl)

:--l *

. P430021” f (Z(tn jnem. (Z)Y(tn’j)An’j(Xl)

n

i

H.
II *

a Pngmm Z l/2 f (Z(tnduand(ZI
)Y(‘n,3)An,J-

(XI) .

m.
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Now

El] Z In f"(Z(t:’J.))An’J. (gunmen), (XI)

T"n

-24 l/2 f"(Z(t:’j))[ z'(tn’j)12|2)

T7}.

. £(| 2 1/2 Hemline“agenda.)- Y(tmjmn’jlxmlz)

n;

5 all 2 [1/2 f"(2(t:,J.))AM(2,)121”2

7Tn

IZEAMXZQ- vltn’jlen’j(x,>12l"2>

1r.

5 EIIZ(Z [1/2 mm;J.))An’ J.(z,>12l

77:.

E"2(Z[An’j(21)- Y(tn’leMJXIHZL

W71

5 1/24,... t"2<2 [AM-(2)12) 6’22 [AM (2,)- Y(tmmn’j <x,)12>

”n 77..

l/ZMf" £"2(|zl(l)- z](o)|2) El/2(Z[An’j(ll)- Y(tn,j)An,J.(xl)]2)

7Tn

where Hf" I sup If"(Z(t))|-

12,0

In proving l) we showed the term on the right goes to zero as

n -€>'oo. Hence 3) is proved.
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To show h) we observe

9.1;“... 2: 1/2 AM. (F(t))an’j mam 1x.)

17..

.- Pnl-imm % l/ZA n,j (f ' (Z) )AnJ (Yl)An,j (XI)

n

- Phil; 1/22 P(zumwllamj(human

"h

- P lim 1/2 Zf'(z(tn’j))An’j(Yl)An’-j(X')
MG)

m.

.l _ ,l

- I/8jf'(z(t))d(§(t)- ml) - 1/8jf'lzltlld1tm- F(t)) - o.

O 0

we can now prove the following theorem.

Theorem 3.3.0.

Let {X(t), F(t); tcT] and [Y(t), F(t); teT) be quasi-martingales

with [X]i - X1 and [Y]1 - Y i - l,2, a.s. sample continuous. Let
1)

f be a real valued function of a real variable with continuous

second derivative. If

t

Z(t) a ‘jp Y(s)dX(s) for every teT,

then 0

l

f(Z(U) - f(Z(O)) -f f'(Z(t))Y(t)dX(t) .

0

Proof:

Let v a l,2,.... Let Tvub) be the first t such that



89.

sup |Z(s,w)| 2 v or sup. |X(s,w)|2 v or sup|Y(s,m)| 2 v.

sgt sit SSt

If no such t exists, let Tv(w) = I.

Since X, Y and Z are all a.s. sample continuous

P([Z(t) + Zv(t) or Y(t) + Yv(t) or X(t) + Xv(t) for some teT])«-é> o

as v -D'OD.

Clearly, 7v is a stopping time for each of the processes X, Y,

and 2. Let Xv, Yv and ZV be the processes X, Y, and Z stapped at TV.

Then for every v - l,2,..., Xv, Yv, and IV are uniformly bounded by

v and are a.s. sample continuous.

we first show, for every teT

t "'1

zvm - fv (s)d)(’(s) - P lim 2.5..'(YanJ.(x)

n->'oo
o m(t)"

t
*

Let Zv (t) -~/‘Yv(s)dxv(s). For each teT, we can find a subsequence

0

of partitions (nut); k 2 I] such that

2:(t)-lim Z " .(Y)A .(x) a.s.
Ak2J V k2J V

and Pfi -

Z(t) 1- lim 2‘ Ak,j (X)Ak,j (X) a.s.

'9‘” m(t)

If t 5 TV (cu), then

z:(t-li ".vA.x)) k_>...m2f'(t)e191‘.)an

= lim 2 5k .(mk .(x) .- Z(t) - z (t) .
k—>OO”|u<(t) 2J 2J V
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If t > 'rv(w), then

2*(t)-lim Z" Mme (x)
k-> mflL(t)AkJ2 k2J

.11... Z denlek’jm

k“) “Wm-(ml)

Eli"; Knievel)” Ak,“1.99”“? - Z(TP‘“)? - zylt),

_. *

sinceklimm Ak,j(Tv(al))(Y)Ak,j($(w))(x) :- 0. Then Zv(t) :- Zv(t)

a.s. for every t€T, so that

Z(t-Pli A (x .

) n->mm%i(t)-"2J(”AV
"2] )

Actually, one can take

*

P([zv(t) - zvlt); teT. v - 1.2.---]) - I.

for we get equality on an everywhere dense subset with probability

one, and since 2: and Zv are a.s. sample continuous they must be

equal for every teT with probability one.

Since for each v - l,2,..., Zv is uniformly bounded and f, f'

and f" are continuous, f(Zv), f'(Zv) and f"(Zv) are uniformly bounded.

But then l

«2,11» - f(Zv(0)) - ff'(zv(t))Yv(t)dxv(t)-

0

For a.e. «3, there exists 12(0)) such that Tv(u>) :- l for all v Z v(u>),

and hence I

f(Z(l)) - f(Z(O)) .. ff'(Z(t))Y(t)dX(t) a.s.

0
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The theorem is now proved.

Further properties of the integral need to be investigated

extensively. Some of the theorems can be generalized somewhat, but

in an obvious way.

Some of the more pertinent questions which have not been looked

into to any great extent are the following:

1)

11).

iii)

Can the decomposition Theorem 2.3.5 be extended to processes

(X(t), F(t): teT] having a.e. sample function right (or left)

continuous? Here it is felt that condition 1) of Theorem 2.3.5

may have to be replaced by the condition of uniform integrability

of the sequence of flowing times (who); v Z l), where Tv(u:)

is the first t such that sup |X(s,m)| 2 v . And if no such

5*< t

t exists 3(a)) - I.

what functions f of a quasi-martingale (X(t), F(t); teT} will

again be a quasi-martingale? In terms of boundedness and

differentiability conditions on f it is felt that in general

f(X) need not be a quasi-martingale if f does not have a second

'derivative. If one investigated f(Z), where f is the integral

of the wierstrass function and Z is the Brownian motion process,

one should get some indication of whether the second derivative

of the function f is necessary. One could also look for other

conditions on f, such as convexity.

what processes are integrable with respect to a quasi-martingale?

Theorem 3.3.h indicates that the integrand may not have to be a

quasi-martingale.
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iv) Doob (I, pp. 273-291) has given solutions of the diffusion

equations on the real line. with the definition of a stochastic

integral given in this thesis, can the diffusion equations be

solved on a sufficiently differentiable manifold, possible a

twice differentiable manifold? It seems entirely possible this

is the case and should be possible with relative ease.
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