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ABSTRACT

ALGEBBAIC STRUCTURE OF AUTOMATA

by Arthur C. Fleck

In order to give a description of the contribution of

the thesis under consideration it is necessary to sketch

a brief history of this subject. For purposes of this

discussion there are two natural reference points. These

will be indicated in what follows and we will orient this

discussion around them.

The first reference point which we indicate occurs

in conjunction with the appearance of the papers of

Huffman [1], Mealy [2] and Moore [3] . These were the

pioneering works for the area of investigation under con-

sideration here. Prior to the appearance of these papers

the mathematical model of a computing device proposed by

Turing 4 was widely studied. While this model is of

considerable theoretical importance it was not directly

applicable to the physical devices and associated problems

which began to appear in the early 1950's. In order that

the reader understand the full significance of the remarks

to follow we will digress to indicate the essential pro-

perties of the Moore type model. However, we do this in

the more precise and formal language of Ginsburg [5] rather

than as it originally appeared. A sequential machine, C,

is a quintuple, C - (S,I,O,M,N), where S (states) is a
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finite nonempty set, I (inputs) and 0 (outputs) are

(nonempty) semigroups, M is a (next state) function

M: S x I-—9 S such that M(s,xy) . M(M(s,x),y) and N

is a (output) function N: S x I-—9 0 such that

N(s,xy) = N(s,x) N(M(s,x),y). Briefly then, if a sequen-

tial machine is in a given state and an input is applied,

an output and a transition to a new state occur. Notice

that for two distinct elements x,y G I, the same trans-

itions may be defined by x and y but these inputs may

still be distinguished by the output function. The main

interest in such a model, as with Turing machines, is in

its behavioral preperties. That is in the prOperties of

the (presumably observable) inputs and outputs. The reason

for distinguishing the works mentioned above is the view-

point taken by them. Besides establishing the definition

of the model, the main concept thich is studied by these

authors is that of (behavioral) equivalence of machines.

Briefly, the meaning taken for equivalence here is that

if two machines are presented with the same sequence of

inputs they will produce the identical sequences of out-

puts (with approiate choices of states). The results of

these authors concerning this concept consists of con-

struction and investigation of reduction algorithms. That

is, given a machine construct an equivalent machine in

which the number of states is minimized. Thus the basic

motivation here was the (behavioral) comparison of devices

with the idea in mind of finding the 'simplest' device

(behaviorally) equivalent to a given one. Investigation
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of these algorithms usually revolved about structure and

uniqueness prOperties of the 'reduced' machine.

The second set of papers which will be singled out

for reference are characterized by a basic change in

approach to investigation of this model. Briefly we can

class these investigations as efforts to solve questions

of the general form, 'Given a device, what work can it do?‘

That is, how can the output behavior be influenced by

choices of inputs and state? This viewpoint is perhaps

best exemplified in the works of Rabin and Scott [6] and

Ginsburg and Spanier [5],[7].

Before getting on to the job at hand several points

should be made. First of all, there is little agreement

on exactly how the output association should be defined.

Thus each of the authors previously mentioned is in dis-

agreement with the others on this point. In Specific, the

definition of sequential machine put forth earlier does not

exactly agree with those of the mentioned authors but is

what Ginsburg has termed a quasimachine [8] . The differ-

ence of detail sometimes produces subtle or unexpected

results. For instance the uniqueness(of reduced machine)

result of Moore ( [3] , Theorem h) requires strong con-

nectedness while that of Ginsburg ( [8] , Theorem 1.3)

does not. -On the other hand another classic (l:6] ,

Theorem 15) shows, roughly speaking, that every two-way

automaton is equivalent to a one-way automaton. Never

the less a common ground is found in the way the internal

transformations are treated. Thus an increase in knowledge
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in this area should be of general value.

We will now indicate how the results of this thesis

relate to these earlier investigations. In Part I the

following is accomplished: (1) the basic definitions,

including that of the model, are introduced and their

interrelations noted (2) the concepts of Open set and

continuous function are investigated.

In regards to (1) it is clear that a work which

studies the relationship of structure to algebraic pro-

perties and as function invariants must make a perfunctory

mention of the structures to be discussed and their inter-

relationships. we will concentrate therefore on a dis-

cussion of the model. As indicated earlier, it is the

belief that a better understanding of structure properties

will aid in analysis of behavioral problems which moti-

vated the model here. Apart from this consideration, the

model here presents a rich mathematical system. As to

particulars, in the definition the semigroup of inputs

is assumed to have an existance apart from the automaton

in which it is imbedded. Two distinct inputs are not

identified because they define the same Operator on the

set of states. It is clear that this cannot be done if

one hepes to make use of this analysis in a system where

such inputs may be distinguished by the outputs which they

cause. Also, from a mathematical point of view, this is

not an unusual consideration. On this point, there is a

direct analogy to the definition of a group with Oper—

ators [9] .
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While, due to special restrictions, the concept of

cpen set produces an uninteresting tepology, it serves

two useful purposes. First, it eliminates the previous

dependence of the definition of connectedness on an as-

sociated graph. Second, it naturally suggests the inves-

tigation of continuous functions in this setting. It can

be observed that all of the reduction algorithms mentioned

earlier can be thought of as defining a function from one

machine to another. While these different algorithms were

produced for different models, the transition (structure)

was uniform. Thus the study of structure invariants of

(continuous) functions provides a generalized and uniform

treatment for several previously separated results and

partial results (see, for example,[:3] , [8] , [10] ).

This general investigation was carried out without the

usual assumption of the so called 'sequential' prOperty.

However, the force of this prOperty was found to be

necessary in the results on structure invariants of

functions.

The remainder of this thesis has a less direct bearing

on existing results. The remarks made above concerning the

model are all that will be made in this regard. The

techniques applied here are familiar. In several cases

the problems attacked are analogous to problems in other

disciplines, while in general the methods of solution are

not.

In Part II a class of functions analogous to the

homomorphisms is introduced. After a brief investigation
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of the structure invariants of these functions, we are lead

to what may be thought of as the automorphism group of an

automaton. The motivation is then to find the relation-

ships that exist between the prOperties of the group and

those of the automaton. In this investigation the fre-

quency of the necessity of the force of the sequential

property is sufficient to impel this assumption. Then,

in certain cases, we are able to identify the action of

the inputs with that of the group elements. This shows,

to some extent, how the structures considered restrict

the actions of the inputs. Roughly, this is similiar

to determining inner automorphisms, but there is no di-

rect connection. The main results here indicate under

what circumstances a complete or partial description of

the automorphism group can be so obtained. At this

point another semigroup is introduced by means of a

natural equivalence relation on the inputs. This semi-

group seems to reflect the structure of both the input

semigroup and the automaton, and hence its automorphism

group, in rather subtle ways. We show here a reflection

of the automorphisms in this semigroup.

In Part III a particular structure, that of the

direct product, is investigated. This structure, as

presented here, was introduced by Rabin and Scott [6]

in their study of acceptable sets of tapes. However,

the problem of producing sufficient conditions for re-

alising this structure has not been considered. Per-

haps this is because it is not yet clear how to incor-
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porate this concept in a model with outputs. At any

rate this is a worthwhile problem to which a reasonable

contribution is made by means of the devices introduced

earlier. The main results give, in one case, necessary

and sufficient conditions and, in another, sufficient

conditions for the presence of the structure.
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INTRODUCTION

While this work studies an abstract algebraic system,

the character of this system obligates us to make a brief

historical mention of mathematical models for computing

devices. The most notable such model is that of A. N.

Turing[1]. Although Turing's model is a useful theoret-

ical concept, it is perhaps of no practical value. This

fact has caused another model, the so called 'sequential

machine', recently to become the object of a considerable

amount of study. Early investigationsof this model were

directed toward its application to computer design. Prom-

inent among these investigations are papers by Mealy[2],

Moore[3] and Ginsburgfh]. Studies of more abstract prop-

erties of this model then followed from Rabin and Scott[5],

Ginsburg[6], Weegf7] and others.

The sequential machine model includes two essentially

distinct components. The first is that of 'inputs' and

internal transformation; the second is that of 'output'.

The object in what follows is to study the structure (in-

ternal transformation) of such systems in isolation. Thus

the model here contains no reference to the concept of

output and, as is usual in this case, the term automaton

is applied. We first ascertain restrictions on functions

on automata which indicate two general classes of functions

with desirable structure properties as invariants. This

leads to the association of several algebraic entities

with each automaton. At the core of the work are the

-1...
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results which relate the structures of these algebraic

systems to the structure of the automaton itself.

The following results are dealt with in three parts.

In Part I some structures and their interrelationships are

introduced. The invariance of these structures under

continuous functions is then examined. We are able to

show that the class of continuous functions is the largest

class under which the strongly connected property is in-

variant.

In Part II we examine the properties of operation

preserving functions which play a role analagous to homo-

morphisms in the usual algebraic studies. This leads to

the association of an 'automorphism' group with each auton-

aton and finally a characterization of the input semigroup.

The relationships between the structures of these systems

and those of the automaton itself are then investigated.

For the class of perfect automata a description of the

group and semigroup is given.

In Part III we seek structure conditions on the autom-

aton and its associated algebraic systems which will insure

its representation as a direct product. For the class of

perfect automata we are able to give a complete solution

and for the class of strongly connected automata, a partial

solution.





PART I

STRUCTURE PRESERVING PROPERTIES OF CONTINUOUS FUNCTIONS

Introductory Concepts

Most of the results of Part I concerning the inter-

relations of structures on automata follow easily. However

to pursue a discussion of structure preserving properties

of functions it is necessary to have these structures and

their interactions formally set down. The bearing of the

open set concept on structure is also evident. However,

the open set concept leads to an interesting new property

to require of functions. Judging from the results concern-

ing these (continuous) functions and the manner in which

they are obtained, continuity defined by the open set

concept is both a worthwhile and natural concept. Many of

these results (some of which were reported in[8]) are both

surprising and apparent.

The definition of an automaton taken here parallels

that of Rabin and Scott [5] and more exactly that of

Ginsburg[6] (except for outputs). Occasionally a display

of a weighted, directed graph (state or transition diagram)

will be used but only to specify an example. The explan-

ation of this device is delayed until that time.

Definition 1.1. An automaton, A a (S, I, h) is a

triple where S is a non-empty set (the set of states), I

is a non-empty semigroup (the set of inputs), M is a func-

‘tion (the next state function) taking S x I (Cartesian

-3-
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product) into S.

It should be pointed out that while such models

historically arose to study sequential switching circuits,

the model here allows far greater applicability. For

instance we could consider S (together with an operationlto

be a group and I to be the semigroup of endomorphisms (or

group of automorphisms) of S. Another interesting spe-

cialization occurs when S ={1, 2, "', A} and I is taken

as a subgroup of Sn (the symmetric group). Finally we

might identify S and I and consider that M defines a

binary operation on this set. It is frequently interesting

to apply one or more of these specializations to what fol-

lows but this will be left to the reader.

For completeness it should be noted that the system

described by Definition 1.1 can be considered as a set

together with a semigroup of operators on the set. How-

ever, this view point will not be taken in what follows.

We now examine some structure properties (i.e. prop-

erties of the next state function) of automata. Many of

the structures defined below are discussed briefly in the

literature but in most cases the properties have never

been formally set down and their interrelations examined.

Definition 1.2. A set of states, T CZ S, of an

automaton A - (S, I, M) is 2253 if given any s e T and

any 1 € I, M(s,x) € T.

Such a set is defined elsewhere in the literature

as a stable set [6] or a submachine, but the term "open”



ta



-5-

is used here due to the topological nature and interpre—

tation of the definitions and results to follow.

Lemma 1.1. The union of arbitrarily many open sets

of states of an automaton A = (S,I,M) is an cpen set of

states of A.

Lemma 1.2. The intersection of arbitrarily many Open

sets of states of an automaton A = (S,I,M) is an open set

of states of A.

Lemmas 1.1 and 1.2 follow from a direct application

of the definitions. Thus, as suggested by the terminology,

we have

Pr0position 1.1. For any automaton A = (S,I,M) the

collection of open sets of states of A yields a t0pology

on S, the set of states.

Proof: Obviously the null set, C) , and the set S

are cpen. This together with Lemmas 1.1 and 1.2 estab-

lishes a tapology [9].

We apply the term proposition here, and in what

follows, to a more or less self contained result which is

of somewhat lesser importance.

In the light of Lemma 1.2 it is not anticipated that

tOpological structures will be of interest here. Our

investigation is rather oriented toward automata structures.

Definition 1.3. An automaton A = (S,I,M) is sequential

luf' M(s,xy) a M(M(s,x),y) for all s E S and x,y E I.
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It should be noted that under the definition of an

automaton by Rabin and Scott[5] (and similar considera.

tions due to Moore[3], etc.) where the input composition

is taken to be Juxtaposition, the next state function is

usually defined on a set of generators and then extended

to the entire (free) semigroup by means of the relation in

Definition 1.3. Thus a ”finite automaton” is usually

considered to be sequential by definition. Definition 1.3

deserves one more comment. It will be seen that not only

is sequentialness a natural concept, but for many of the

results of this section it is indeed necessary.

Definition 1.h. An automaton A = (S,I,M) is strongly

connected if given any s1, s2 e S, there exists an x 6 I

such that M(sl,x) a 32.

In this context, the concept of strongly connectedness

was first defined and investigated by Moore [3].

Proposition 1.2. If an automaton A = (S,I,M) is

strongly connected, then there is no proper cpen subset

of S.

Proof: Assume UCZ S is a proper open subset. Then

s - u w 4> . If slé U and 32: s - U, then M(s1,x) e U for

all x e I since U is open. But 82 f U, hence M(sl,x)# 82

for all x e I. Thus A is not strongly connected, 8 con-

tradiction. Hence there is no proper open subset of S.

Lemma 1.3. If an automaton A = (S,I,M) is sequential,

then for each s 6 S, T -is Is e S, M(s,x) = s 3(i.e.,

s 1 1 1
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the set of all s1 such that M(s,x) = s for some x e I)
1

is an open set.

Proof: Assume T8 is not open. Then there exists

8 e T and x é I such that M(s ,x) ='s d T . Now since

1 a 1 2 S

s1 6 Ts’ s1

M(M(s,y),x) = M(sl,x) =

a M(s,y) for some y 6 I. But then M(s,yx) =

32 € Ts’ a contradiction. Thus

T, is open.

Theorem 1.3. If A s (S,I,M) is a sequential autom-

aton with no proper open subset of S, then A is strongly

connected.

Proof: Assume A is not strongly connected. Then

there exist s1, 3 6 S such that M(sl,x) # 32 for all

2

x 6 I. Now by Lemma 1.3, T a {ale 6 S, M(s ,x) = a}

s1 1

is open. But s2 * T8 . Hence T8 is a proper open subset

1

(T8 is not empty since I is not empty), a contradiction.

Thu; A is strongly connected.

Two remarks are appropriate at this point: first,

Proposition 1.2 and Theorem 1.3 can be stated as a neces-

sary and sufficient condition for strongly connectedness

when the definition of an automaton assumes the property

of sequentialness [6]. However, for our purposes it will

be necessary to use PrOposition 1.2 without the sequential

prOperty. Second, Theorem 1.3 and Lemma 1.3 are false if

the sequential property is omitted as can be seen by the

following example.
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(X

Figure 1

The device used to specify the automaton of Figure 1 is

called a state (or transition) diagram. Its meaning is:

the set of states, S -=ia,b}, is the set of vertices of

the graph; the set of inputs, I a $1}, is the set of weights

of the directed edges: the next state function, M(a,oc)=b,

M(b,a() = a, is specified by the directed edges and their

weights: the input combination is specified in the margin

(if not understood).

Notice that the automaton Figure 1 is not strongly

connected, but there is no proper open subset of states.

This is possible since the property of sequentialness is

not present. Also T is not open, so that sequentialness

a

is needed for Lemma 1.3.

Definition 1.5. An automaton A - (S,I,M) is triangular

if given any s1, s E S, there exists x,y 6 I and s € S

2

such that M(s1,x) a s - M(sz,y).

Definition 1.6. An automaton A - (S,I,M) is separated

if there exist non-void, cpen sets U,V<:IS such that

UlJ V a S and Old V a 4): otherwise A is connected.

We mention that an automaton is connected if and only

if its state diagram constitutes a connected graph. The
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open set concept seems to be the simplest way to put forth

this concept.

Proposition 1.4. If an automaton A = (S,I,M) is

triangular, then A is connected.

Proof: Assume A is not connected. Then there exist

non-void, cpen U, V CS such that U U V = S and U f) V = (A .

Now let s1 6 U and s2 6 V. Then since A is triangular

there exist x,y e I and s E S such that M(sl,x) = s =

M(sz,y). But then s e U and s e V for the desired con-

tradiction. Thus A is connected.

We now introduce one more structure concept and con-

clude the discussion of the interrelations arising.

Definition 1.7. An automaton A = (S,I,M) is

reversible if whenever there exists an x 6 I such that

M(s1,x) - s2, then there exists a y e I such that M(sz,y)

a s1, where s1, 82 e S.

This concept resembles closely that of strongly con-

nectedness except that it is not assumed that a transition

exists between every pair of states. However, we have the

following:

Theorem 1.5. If A - (S,I,M) is a sequential automaton,

then a necessary and sufficient condition that A be strongly

connected is that A be connected and reversible.

Proof: (Sufficiency)

Suppose that A is not strongly connected.

Then there exist s1, 82 E S such that M(sl,x) # s2 for
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all x E I. Now by Lemma 1.3 T s {3|s e S, M(sl,x) = s}

31
is open.

But since A is reversible S - Ts is also open. For

1

suppose there exists s 6 (S - T8 ) such that M(s,z) =

1

t € T8 for some 2 E I. Then by reversibility there exists

1

w 6 I such that M(t,w) 8 8. But then T8 is not open,

1

a contradiction. Now T8 and S - T8 are both Open and

T81 is not empty since Ilis not empty. Also 32 E (S - T81)

so S - T81 is not empty. But we have TleJ (S - T31) - S

and T8 fl (S - T8 ) = ¢l. Thus A is not connected, a

contradiction. Thus A is strongly connected.

The necessity of the condition is entirely obvious in

the light of Proposition 1.2 and follows without the

sequential property.

Corollary 1.5.1. If A = (S,I,M) is a sequential

automaton, then a necessary and sufficient condition that

A be strongly connected is that A be triangular and

reversible.

Proof: Apply Proposition 1.#, Theorem 1.5 and the

definitions.

Corollary 1.5.2. If A - (S,I,M) is a sequential,

reversible automaton, then the complement of every open

set is cpen.

Proof: The proof of this fact is essentially the

proof given in Theorem 1.5 to show T81 being cpen implies

S - T81 is open.

Also as was pointed out by R. Brown, if A is sequen-
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tial and the complement of every cpen set is open, then

A is reversible. It is also interesting to note that

sequentialness cannot be removed from the hypotheses of

Theorem 1.5 for Figure 1 provides a counterexample in

this case.

Continuous Functions

In this section the structure invariants of trans-

formations on automata are studied. In particular the

concept of a continuous function of one automaton into

another is defined and its structure preserving properties

studied.

Definition 1.8. For two automata, A - (S,I,M) and

B a (T,J,N), by function, h, of A into B, written h:A~49B,

is meant a function of S into T.

That is a function on an automaton is merely a function

on its set of states. For h, A and B as in Definition 1.8,

the following usual notation will be used: by the image,

h(X), of a set X CIS under h is meant the set h(X) s

{t|h(x) =- t,x 6 X} and by inverse image h-1(Y), of a set

I C T is meant the set h'1(Y) = {sIs E S, h(s) € I}.

Definition 1.9. A function h:A- ’B, where A = (S,I,M)

and B - (T,J,N), is continuous if for any cpen Y<ZZT,

n'1(x) Cs is open.

The term continuous is chosen since Definition 1.9

is precisely the tOpological definition of a continuous

function when A and B are t0pological spaces [9].
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Theorem 1.6. Let A = (S,I,M) be a strongly connected

automaton and B - (T,J,N) be a sequential automaton. Then

if h:A-—9'B is a continuous, onto function, B is strongly

connected.

Proof: Assume B is not strongly connected. Then

there exist t1,t2 e T such that N(t1,x) # t2 for all x 6 J.

Now by Lemma 1.3 Tti = it“: e T, N(t1,x) = t} is an open

set. Then since h is continuous h‘1(Tt ) (I S is open.

Then by PrOposition 1.2, h’1(Tt ) = S, Since A is strongly

1

connected. Thus we have h(S) = T and t2 A Tt . But

t

h was assumed to be onto, a contradiction. Hence B is

strongly connected.

Before the next theorem is stated we must make re-

ference to the following well-known set equality which

holds for functions in general: Let f:S-——>T be a func-

tion. Then the following statement holds

(1) f'1(A n s) -- rim 0 r'1(s): A. BCT.

Theorem 1.7. Let A = (S,I,M) be a triangular autom-

aton and B s (T,J,N) be a sequential automaton. Then if

h:Am—4>B is a continuous, onto function, B is triangular.

Proof: Assume B is not triangular. Then there

exists t1,t2 Q T such that N(t1,x) # N(t2,y) for all

x,y 6 J. Certainly t1 # t2 or else N(t1,x) = N(t2,x) for

all x e I. Now by Lemma 1.3 the sets Ttl = [t|N(t1,x) = t}

e {t|N(t2,x) = t} are open and Tt fl th - (b .

2 1

Now by Statement (1)

d) . flab) = h'1(Ttlfl th)

a h'1(Tt1)fl h-1(Tt2)s

and Tt
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Let T - h'1(Tt ) and T = h‘1(Tt ). Then we have

1 1 2
2

TlfW T2 2 ¢>. Also since h is continuous T1 and T2 are

Open sets. Now Tt and Tt are not empty, since J is not

1 2

empty. Also h is onto so T1 and T2 are not empty. Let

s1 6 T1 and 82 6 T2.

exist s 6 S and w,z E I such that M(sl,w) = s s M(sz,z).

Then since A is triangular, there

Now either s e T1, s 6 T2 or s e (S -(T1 T2)). In the

first case T2 is not Open, in the second T is not Open

1

and in the last case neither T1 nor T2 is Open, a con-

tradiction in any circumstance. Thus B is triangular.

PrOposition 1.8. Let A = (S,I,M) and B a (T,J,N)

be two automata and let A be connected. Then if h:A‘~% B

is a continuous, onto function, B is connected.

Proof: NO proof of this theorem need be given here

since all the concepts involved are tOpological in nature

and the topological counterpart of this theorem is valid.

Theorem 1.9. If A a (S,I,M) is a strongly connected

automaton and h is any function onto A, then h is con-

tinuous.

The proof Of Theorem 1.9 is trivial in the light of

PrOposition 1.2 but we have the following interesting

corollary

Corollary 1.9.1. If h is any function of one autom-

aton onto another which preserves strongly connectedness,

then h is continuous.

Thus we have that the set of all functions on autom-
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ata which preserve strongly connectedness is contained in

the set Of all onto, continuous functions. Moreover if

we combine Corollary 1.9.1 with Theorem 1.6 we can make

the following important and desirable statement: For

the set of all sequential automata, a necessary and suf-

ficient condition that a function preserve strongly

connectedness is that it be continuous.

We have seen that continuous functions on automata

have several desirable structure preserving prOperties.

We also point out that for almost all the results where

a continuous function preserves a structure it is neces—

sary to the proof that the image automaton be sequential.

It is easy to construct examples which show that with

this restriction removed those theorems are in fact false.

For instance, any function from a strongly connected (in

fact any) automaton onto the automaton of Figure 1 is

necessarily continuous. However, recall that this autom-

aton is not strongly connected. Also if our ideas were

extended to models with outputs, both the reduction pro-

cesses of Mealy [2] and Moore [3] would be continuous.

To conclude this section, we state an example which

shows that the reversible prOperty is not necessarily

preserved by continuous functions.
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«VIE

 

 

Figure 2

In figure 2 the input composition is the usual Juxtapo-

sition (generatorscx,fi3) in both cases and the sequential

property is assumed for products of generators in both A

and B. Of course the transitions are not completely labaled

and not all transitions are depicted. For instance in

A, M(-b,,erx) = -b and in B, M(a2,o<o<) :- c2.

2 for x e {a,b, -b,<%.

Then it is easily checked that h is continuous and onto.

Now we define h:A-——»B by h(x) - x

However, A is reversible but B is not.
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PART II

THE GROUP AND SEMI-GROUP OF AN AUTOMATON

Operation Preserving Functions

In this section we leave the general concept of con-

tinuous functions on automata and introduce a more

specialized class of functions, the class of operation

preserving functions on automata, and investigate its

properties. In this part, the restriction put on the

functions studied is algebraic, rather than tOpOlogical,

in nature. The discussion thus leads to the association

of a group with each automaton. Some investigation is

then given to the relationship between the structure of

an automaton and the structure Of its group. This inves-

tigation leads us to the concept Of a perfect automaton.

We are then able to give a description of the group for a

perfect automaton and this in turn leads to a convenient

method for the calculation of the group Of an automaton

in this class. The association of a group with an autom-

aton seems to be an extremely helpful( and perhaps neces-_

sary) device in some studies Of automata (see Part III).

Definition 2.1. If h:A-—‘>B, where A = (S,I,M) and

B a (T,I,N), satisfies h[:M(s,x)] = N(h(s),x) for all

s e S and x e I, then h is Operation preserving. If h

is also one-to-one and onto, we say h is an isomorphism.

A concept similar to this, but for machines with

outputs, has been briefly discussed by Ginsburg [6].

-16-
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We notice that Definition 2.1 applies only when A and B

have semigroups of inputs which are identified. This re-

striction could be removed by establishing a correspondence

between the input set Of A and the input set of B (if they

were different), but this complicates the discussion un-

necessarily while yielding no significant refinement in

the results.

Proposition 2.1. If h:A-—-)B, where A = (S,I,M) and

B a (T,I,N), is operation preserving, then h is continuous.

-l
1 e h (T1) Cs.

Then for each x e I consider 3 s M(sl,x). h(sz) a

2

h[M(s1,x)] - N[h(s1),x] . t1. Now since h(sl) e T1 and

Proof: Let T1 C T be open and let s

T1 is Open, h(sz) 8 t1 6 T1. But then 82 € h'1(T1) and

thus h'1(T1) is Open and h is continuous.

Proposition 2.1 shows that the class of all operation

preserving functions is a subclass Of the class of con-

tinuous functions, possessing therefore all the properties

developed for continuous functions.

The following three results show that Operation pre-

serving functions have a much stronger structure preserving

nature than continuous functions. In particular, Proposi-

tions 2.2 and 2.3 show that the restriction of sequential-

ness can be removed from the image machine for Operation

preserving functions and PrOposition 2.# shows that re-

versibility is preserved by Operation preserving functions.

Proposition 2.2. If h:A—>B, where A = (S,I,M) and

B a (T,I,N), is an operation preserving, onto function and
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A is triangular, then B is triangular.

Proof: Let t1,t2 6 T. Then since h is onto there

exists s1, s2 6 S such that h(s1) = t1 and h(sz) - t
2

Now since A is triangular there exists x, y E I and s e S

BUCh that M(slp x) I s 8 M(sz,y). But then h[ M(sl,x)] =

N(h(s1),x) - N(t1,x) = h(s) - h[ M(sz,y)] = N(h(sz),y) -

N(t2,y). Hence B is triangular.

Proposition 2.3. If h:A-——>B, where A - (S,I,M) and

B = (T,I,N), is an onto, Operation preserving function and

A is strongly connected, then B is strongly connected.

Proof: Let t1, t2 € T. Then since h is onto there

exists sl,s e S such that h(sl) - t and h(sz) - t
2 1 2‘

Since A is strongly connected there exists x e I such

that M(sl,x) - s , hence N(t1,x) = t and B is strongly
2 2

connected.

Proposition 2.4. If h:A-——9B, where A a (S,I,M) and

B a (T,I,N) is an onto, operation preserving function and

A is reversible, then B is reversible.

Proof: Let t1, t e T such that N(t1,x) s t for

2 2

some x E I. Then since h is onto there exists s1 6 S such

that h(sl) - t1. But then for s2 - M(s1,x), h(sz) -

h[ M(s1,x)] - N(h(sl),x) - N(t1,x) - t2. Thus h(sz) - t
2

Now A is reversible so there exists y E I such that M(s2,y)

- s1 and then t1 - h(sl) - h [M(sz,y)] . N(h(sz),y) -

N(t2,y). Thus B is reversible...

In view of the example in Figure 2 and Theorems 1.6

and 1.7 we see that operation preserving functions have a
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much stronger structure preserving nature than continuous

functions. This idea is further emphasized by the fol-

lowing proposition which has no counterpart for continuous

functions.

Proposition 2.5. If h:A-—4>B, where A = (S,I,M) and

B . (T,I,N), is an onto, operation preserving function

and A is sequential, then B is sequential.

Proof: Since h is onto, for each t e T there exists

s e s such that h(s) = t. Then

N(t,xy) =- N(h(s),xy) =- h [ M(s,xy)]

= h[h(h(e,x).y)] - N(h[M(s,x)] ,y)

- N(N(h(s),x),y) - N(N(t,x),y)

since h is operation preserving and A is sequential. Thus

B is sequential.

It is interesting to notice that Proposition 2.5 is

not true if the input compositions are distinct. The

example below shows an Operation preserving function car-

rying a sequential automaton onto a non-sequential automa-

ton. Notice that the only thing that distinguishes the

two automata is the input composition.



1 x y = x+y (mod 2)

B = 0(3 3M

1 x y s x . y

Figure 3

In Figure 3 define h(x) by h(x) z x' for x 6 {a,b} and

h is Operation preserving.

The Group of an Automaton

For the remainder of this thesis it will be assumed

that all automata under consideration are sequential.

Many of the results of the next few sections were indicated

in [10].

Proposition 2.6. The set Of all functions h:A-—e9A,

where A - (S,I,M), which are one-tO-One, onto and operation

preserving form a group.

Proof: The only group property which warrants atten-

tion is showing that the system contains inverses. Let

Th:A-——9A be one-to-One, onto and operation preserving.

Then h'1:A——)A defined by h'1(x) - y if and only if

11(y) - x is one-to-one and onto and hh'1(s) - h‘1h(s)
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= s = 1(8). Now let M(s,x) = s and M(h’1(s),x) = s2.
1

Then h(sz) - h[N(h'1(s),x)]- M(h h-1(s),x) = M(s,x) . s1.

Thus h'1(sl) - 82 so that h'1[:M(s,x)] x h'1(sl) = s

-1

2

a M(h'1(s),x). SO h is also Operation preserving and

the system is clearly a group.

Proposition 2.6 is an interesting result in that it

associates with each automaton a group. In this connection

we make

Definition 2.2. For each automaton A = (S,I,M) we

denote by C(A) the group associated with it by Proposition

2.6.

The general development to be followed now is sug-

gested by the question: What relationships exist relating

the structure of the automaton to the structure of the

group associated with it?

Lemma 2.1. If A = (S,I,M) is a strongly connected

automaton and hi’ h :A-——9A are Operation preserving with
2

h1(so) - h2 (so) for some 30 6 S, then h I h2 (i.e.,
1

h1(s) s h2(s) for all s E S).

Proof: Suppose that h1 and h2 are functions satis-

fying the hypothesis Of the lemma and let a E S be an

arbitrary state. Then since A is strongly connected,

there exists an x e I so that M(so,x) = s. Then

111(8) = h1.[M('o’X)] =- M(h1(so).x) = M(h2(so),x) - h2[M(so,x)]

- h2(s). Thus h1 2 hz.

Thus, if A is strongly connected and h € G(A). h has
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nO fixed points unless h is the identity. Hence G(A) is

a group Of regular permutations. It follows from this,

as pointed out by Weeg [11], that if A has a finite number

of states, the order Of G(A) divides that number.

Theorem 2.7. If A a (S,I,M) is a strongly connected

automaton, then K[G(A)] S 1([8], where K[X] denotes the car-

dinality Of the set X.

Proof: Assume K[G(A)] > K[S] and let so 6 S be any

fixed state. Consider the set of states §:h(so)} where

h ranges over all Of G(A). Since K[G(A)]f> K[S], there

must be distinct h1, h2 E G(A) so that h1(so) s h2(so)

for otherwise there is a one-tO-One correspondence between

G(A) and a subset of S (i.e., h(——) h(so) ). But then by

Lemma 2.1, h 5 hz, a contradiction since h1 and h were

1

assumed to be distinct. Thus K[G(A)] _<. K[S].

2

Representation of the Group Elements

The following results arise from the fact that a

group is associated with each automaton. Now each element

of the group of an automaton is a function from its set

Of states to its set of states. If we restrict the next

state function to a single input symbol this is precisely

the manner in which it maps. With this motivation in

mind we now state the question to be answered here: when

can the elements of the group of an automaton be expressed

in terms of its next state function? TO resolve this

question we introduce, and give some investigation to, one

new concept.
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Definition 2.3. Let A = (S,I,M) be an automaton and

h:A-——>A. Then h is representable if there exists an

x 6 I such that h(s) 3 M(s,x) and hx(s) E M(s,x) is a

representation.

Definition 2.“. Let A - (S,I,M) be an automaton.

The middle,7h , of I is the set Of all x 6 I such that

M(s,xy) - M(s,yx) for all y e I and s e S.

Notice that the center Of I is contained in the middle

and 7h is a subsemigroup of I.

Definition 2.5. Let A c (S,I,M) be an automaton.

Then A is abelian if I =7h)(the middle). Also if A is

strongly connected, A is called perfect.

PrOposition 2.8. If A = (S,I,M) and B a (T,I,N)

are automata and h:A———9B is operation preserving and onto,

then 771‘ C/mB, where ’77? and 7773 are the middles for
A

A and B respectively.

Proof: Let.xe’h1A,t e T and y e I, then there exists

an s E S such that h(s)st and

N(t,xy)-N(h(s),xylsh [M(s,xyI]=h[M(s,yxX]-N(h(s),yx)-N(t,yx)

so xe’l’hB since t and y were arbitrary.

Corollary 2.8.1. If h:A-——9B is Operation preserving

and A is abelian, then B is abelian.

The next result shows that for a strongly connected

automaton, we can determine if an input is in the middle

by the way it acts on a single state.

Proposition 2.9. Let A = (S,I,M) be a strongly con-
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nected automaton. Then if M(so,xy)=M(so,yx) for some

30 E S and all y e I, x is in the middle of I.

Proof: Let s f S. Then there exists 2 E I such

that M(so,z)=s and then M(s,xy)-M(M(so,z),xy)=M(sO,z(xy))=

M(so,(zx)y)sM(M(sO,zx),y)=M(M(so,xz),y)=M(sO,(xz)y)=

M(so,x(zy))sM(so,(zy)x)=M(so,z(yx))=M(M(so,z),yx)=M(s,yx).

Thus x is in the middle. ’

The next several results will show when a represen-

tation of group elements is possible.

Lemma 2.2. Let A a (S,I,M) be an automaton. Then

the representation hx(s)2M(s,x) is Operation preserving

if and only if x 6‘77), the middle.

Proof: Assume x e 7T1. Then hx[M(s,yfl =M(M(s,y),x)=

M(s,yx)=M(s,xy)=M(M(s,x),y)=M(hx(s),y). SO hx is opera-

tion preserving.

Now assume that hx is Operation preserving. Then

hx[M(s,yI]=M(hx(s).y) or M(M(s,y),x)=M(s,yx)=M(M(s,x),y)=

M(s,xy) so x 6 37}.

Lemma 2.3. Let A a (S,I,M) be a strongly connected

automaton and x 6 7T7, the middle. Then the representa-

tion hx is onto.

Proof: Let s,t E S. Then since A is strongly con-

nected there exists y E I such that M(M(s,x),y)=t. Then

t=M(M(s,x),y)=M(s,xy)=M(s,yx)=M(M(s,y),x)=hx[M(s,y)].

Thus hx is onto.

Theorem 2.10. Let A =(S,I,M) be a strongly connected
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automaton with n states. Then each representation by an

element of the middle is in G(A) and the set of all such

elements constitutes a subgroup of the center of G(A).

Proof: The burden of the proof is supplied by Lemma

2.3. Since for x e'hl, hx maps 3 onto S and since S is

finite, hx is also one-to-One. But by Lemma 2.2, hx is

Operation preserving and so hx E G(A). Also for x,ye'h7,

hxh a hx and xye/Tn. Thus the set of representations
y y

by elements of the middle is a closed subset of a finite

group and hence is a subgroup. Also for g E G(A) and

x c.7h, hxg(s) a M(g(s),x) = g[M(s,x)] = ghx(s) so hx is

in the center Of G(A).

Corollary 2.10.1. Let A a (S,I,M) be a strongly

connected automaton with n states. Then the middle is

empty if and only if the identity 1(8) 5 s is not repre-

sentable.

Lemma 2.4. Let A s (S,I,M) be a perfect automaton.

Then hx is one-tO-one and onto for all x E I.

Proof: By Lemma 2.3, hx is onto. To show hx is

one-to-one assume hx(s) . hx(t) 8 s1 where s # t (i.e.,

hx is not 1-1). Then since A is strongly connected there

exists y E I such that M(t,y) a s. Then M(sl,y) 2

M(hx(t),y) - M(M(t,x).y) - N(t,xy) = M(t,yx) - M(M(t,y),x)

- M(s,x) a hx(s) - 81‘ Thus hy(81l = M(sl,y) a s But1.

by Lemma 2.2 hy is Operation preserving and hy(s1) - 1(s1)

a s1. Thus by Lemma 2.1, hy(s) ! i(s) E 3. SO t = hy(t)

s M(t,y) - s, a contradiction since t i 8. Thus hx is
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One-tO-One.

Examples can be constructed to show that Lemma 2.4

is not true for arbitrary strongly connected automata.

However, for the class Of perfect automata we now see

that we have the desired representation.

Theorem 2.11. Let A = (S,I,M) be a perfect autom-

aton. Then a necessary and sufficient condition that

h E G(A) is that h be a representation.

_Proof: By Lemmas 2.2 and 2.4 if h is a representa-

tion, then h 6 G(A).

Now let g 6 G(A) and s 6 S. Then for s = g(so)
0

there exists x e I such that M(so,x) s 8. Then g(so) =

hx(80) and hx is operation preserving by Lemma 2.2. Thus

by Lemma 2.1, g E hx and so g is representable.

Corollary 2.11.1. If A = (S,I,M) is a perfect autom-

aton, then G(A) is abelian.

Proof: For hx’ hy E G(A) we have hxhy = hxy = hyx

= hyhx.

Corollary 2.11.2. If A = (S,I,M) is a perfect autom-

aton, then K[G(A)] = KfSL

Proof: Choose 30 6 S and for g E G(A) define

ca : G(A)—+8 by (Mg) = g(so). Then 0((g) = «(M implies

g(so) = h(so) and so by Lemma 2.1, g s h. Thus cx is one-

to-one. Also for s 6 S, there exists x e I such that

M(so,x) = 8 since A is strongly connected. But then

hx(so) a s and hx 6 G(A). Thus 0£(hx) a s and so ex is

onto. Thus K[S] s K[G(A)].
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It is natural to ask if the converse Of Theorem 2.11

is true. It is not but we have

Proposition 2.12. If for an automaton A = (S,I,M)

each element of G(A) is representable and each represen-

tation is in G(A), then A is reversible and abelian.

Proof: Let M(s,x) - t. Then hx e G(A) and so hx'l

exists and bx"1 is representable, say hx'1(u) I M(u,y).

Then M(t,y) s and so A is reversible. Also M(s,xy) s ’

"(M(B.X).y) M(hx(s).y) a hx[M(s.yI]= M(M(S.y).X) = M(s,yx)

since hx e G(A). Thus in a I and A is abelian.

Thus a partial converse to Theorem 2.11 may be stated

88

Corollary 2.12.1. If A is connected and if each

element Of G(A) is representable and each representation

is in G(A), then A is perfect.

Proof: This follows immediately from Proposition

2.12 and Theorem 1.5.

Proposition 2.13. Let A a (S,I,M) be a strongly

connected automaton with n states. Then if the middle of

I is empty, O(G(A))<n.

Proof: Assume O(G(A)) = n and let 30 e S. Then by

Lemma 2.1 for any s e S there exists g E G(A) so that

g(so) s s. Now since A is strongly connected there exists

an x e I so that M(so,x) 8 so. Then for any s 6 S, M(s,x)

- M(g(so),x) x g[M(so,x)] = g(so) - s. Thus hx represents

the identity and then by Corollary 2.10.1, 7n f (l) , a con-
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tradiction. Thus O(G(A))‘< n.

Description Of the Group Of a Perfect Automaton

The next theorem and its implications will lead

directly to a description Of the group for a perfect

automaton.

Theorem 2.14. Let A a (S,I,M) be a perfect autom—

aton. Then G(A) is a homomorphic image Of I.

Proof: We define the homomorphism a;:I-——9G(A) by

<x(x) = h if and only if h(s) 5 M(s,x), where x e I. TO

see that «.18 in fact a homomorphism, suppose that

a(x) s h, «(y) = k and <x(xy) : g. Then

g(s) a M(s,xy) = M(s,yx) = M(M(s,y),x) a M(k(s),x) s hk(s).

Thus «(xy) = g = hk = d(x)<x(y) and so cxis a homomorphism.

Theorem 2.14 is a result which generalizes to less,

restrictive classes of automata. By a similar argument,

it can be shown that for a strongly connected automaton,

A I (S,I,M), there is a homomorphism from a sub-semigroup

of I onto G(A). We shall examine this more closely in the

section concerning the characteristic semigroup.

The homomorphism d.of Theorem 2.14 induces the natural

equivalence relation xnzy if and only if cx(x) s CX(y), so

that I is divided into mutually disjoint and exhaustive

(equivalence) classes. We will denote such a class by'i

(i.e., 3:- : {yl y N x})and the set Of all such classes by I.

Then we have that these equivalence classes, together with

a natural Operation form a parallel of a quotient group.
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Corollary 2.14.1. Let A s (S,I,M) be a perfect autom-

aton. Then I forms a group isomorphic to G(A), where

i'y'si'y'forxei,yey.

Corollary 2.14.1 yields a description of G(A) in terms

Of certain classes of inputs and the manner in which they

combine. However, knowledge of these classes depends on

a previous knowledge of G(A). We shall exhibit a way to

determine these equivalence classes without knowledge Of

G(A).

Definition 2.6. 7 Let A a (S,I,M) be an automaton.

Then for x, y e I we say x is equivalent to y modulo so,

x fig y, if M(s0,x) s M(so,y), where so 6 S.

Again, it is easy to verify that Definition 2.6

yields a formal equivalence relation and that, for the

case of perfect automata, the classes are independent Of

the ”base” state so and coincide with the classes induced

by the homomorphism (x . Thus Definition 2.6 provides

a means Of calculating G(A) for a perfect automaton A.

Theorem 2.15. Let A s (S,I,M) be a strongly connected

automaton with n states. Then if G(A) is abelian and Of

order n, A is perfect.

Proof: Let s e S be an arbitrary state and x, y e I

be arbitrary inputs. Then let M(s,x) = s1 and M(s,y) a s2.

Now since there are n states and n group elements it follows

from Lemma 2.1 that there exists h , h 6 G(A) such that

1 2

h1(s) - 81 and h2(s) a 82. Then we have
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M(s,xy) s M(M(s,x),y) = M(h1(s),y) = h1[M(s,yX]= h1h2(s).

Similarly,

M(s,yx) - h2h1(s). As h1h2 = hzhl’ M(s,xy) = M(s,yx).

Thus A is perfect.

We conclude this section with an example of the com—

putation Of the group Of a perfect automaton.

 

Figure 4

Here the input composition is the usual Juxtaposition

(generatorsti,b). It is easily verified that the automaton

A depicted above is perfect. Let us use equivalence

modulo state 2 to compute the equivalence (as remarked

above the same classes arise for each state).

33 sfaa, bb, abab,°';]

={a, abb, bab, m}

nib, aba, baa, we}

={ab, ba, abaa,"'}E
H

(
7
'

m
l

where, for instance, a is as above since M(2,a) = M(2,abb)

From these classes we can easily compute Table I as

shown below.
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555556

5555555

5555555

5'6 56555

55565555

Table I

This is recognized as the "four group". Table I

will also serve as the group table for G(A) and it is

convenient to specify G(A) by

G(A) 'igaa': 8a: 3'5: 8315]

where

gnu) == M(s,aa), 85(3) = M(s.b). 53(8)=M(s.a).

856(8) 8 M(s,ab).

This of course tells us how the group elements op-

erate on the states and we can use Table I and the sub-

scripts tO combine them(i.e., 8585 = 356’ etc.).

The Characteristic Semigroup

The equivalence relation established in conjunction

with Theorem 2.14 was restricted to perfect automata. The

equivalence below agrees with this but applies to arbitrary

automata. The structure of the resulting semigroup and

of the automaton can then be seen to bear interesting

relationships.

Definition 2.7. Let A = (S,I,M) be an automaton and

x,y e I. Then x is equivalent tqpy, xA/y, if M(s,x) !

M(s,y). We denote by If the set 3? a: {y|x~y} and by I

the set of all such classes.
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Proposition 2.16. The equivalence Of Definition

2.7 is an equivalence relation and the classes I form a

semigroup under the induced Operation 3”? = Ky, where

x E‘i and y E'y. This semigroup is called the character-

;pp;p semigroup Of A.

Proof: It is clear that we have an equivalence

relation. For x1, x2 6'; and y1, y2 5'? we have

M(s,x1y1)= M(M(s,x1),y1)EM(M(s,x2),y1)2M(M(s,x2),y2)5

M(s,xzyz). Thus 5151 - 5252 and so the class multipli-

cation is well-defined and closed. Also it is clear that

associativity is inherited. Thus I is a semigroup.

It is helpful to notice the following facts:

For A a (S,I,M), the distinct E classes of'I correspond

to the distinct representations hx by elements Of I.

The class 3 will frequently be associated with the re-

presentation hx where x 6 it Also it is clear that x is

in the middle Of I if and only if'i is in the center of I.

Further if A has n states, then O(I)S;nn, the number Of

functions on n symbols. Finally, the characteristic semi-

group possesses a desirable property which does not hold

for the group of an automaton. That is, an Operation

preserving function of the automaton A onto the automaton

B induces a homomorphism of the characteristic semigroup

of A onto the characteristic semigroup Of B(by the Obvious

identification map) while G(B) is not in general a homo-

morph of G(A) in this case.

From the way multiplication is defined in'I the

following is Obvious.
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Proposition 2.17. The function/3: I-——¥I defined

by ,8(x) - 3? is a homomorphism.

The following specialization is of interest.

Corollary 2.17.1. If A s (S,I,M) is an automaton

and I is a group with identity e, then 3 is an invariant

subgroup of I and I'is isomorphic to the quotient group

I/ 3 .

Proof: This is an immediate application Of the homo-

morphism theorems Of group theory.

In what follows we will notice some reflection Of

this result when I is an arbitrary semigroup.

The following result partially indicates the nature

of the characteristic semigroup for a strongly connected

automaton.

Proposition 2.18. Let A s (S,I,M) be a strongly

connected automaton. Then if'I has a right identity it

is unique and is a two-sided identity.

Proof: Let‘? 6 I be such that i‘E s E for all i é'I.

Then for s e S, choose x e I and t € S such that M(t,x)ss.

Then for e 6'3, 3 . M(t,x) - M(t,xe) = M(M(t,x),e) = M(s,e).

Thus M(s,e) E s. Hence M(s,xe) EM(s,ex) ! M(s,x) and so

‘5 is a two-sided identity and is therefore unique.

Corollary 2.18.1. Let A s (S,I,M) be a strongly

connected automaton. Then I 13 a group if and only if the

representations defined by the i classes form a permutation

group.

Proof: The statement of sufficiency is merely a play

on words.
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Necessity follows from the fact that the identity Of

I represents the function which maps each state to itself.

Hence if a class i has an inverse relative to this iden-

tity the corresponding representation must be one-tO-One

and onto.

For a strongly connected automaton with n states a

bound on the order Of the characteristic semigroup can be

Obtained in terms of the order Of the group Of the autom-

aton.

Theorem 2.19. If A = (S,I,M) is strongly connected

with n states and O(G(A))=k, then 0(I) 5 np/k

Proof: We pointed out earlier that if A is strongly

connected with n states and O(G(A))=k, then k divides n,

say krzn. Let G(A): {g1, g2,. .., gk}:' It is clear

from Lemma 2.1 that we can choose r states, say

81, s2,...., sr so that

r k

(s ) = S and

$1 191 g1 3

k k

81 31(sJ)fl 1B1 g1(su) :2 (l) for jfiu.

Thus we can write the representation corresponding tO‘E

in the classical form as follows:

__ g (3,) g (s )--og (s )g (s )'°°g (s )'°'g (a )---g (s)
xu:( 1. 1; 2 1 k 1 1 2 k 2 1. r k r

t1: g2 (t1)eeegk(tl) t2 Oeegk(t2)eeegl(tr)eesgk(tr)

where the row of images is as above because if we assume t1

to be arbitrary then (assuming g1 is the identity)

M(gJ(s1),x) - gJ[M(s1,x)] = g3(t1) where x 6'}.
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Thus we have n choices for each Of the t1 and so

O(I)Snr.

It can be Observed that by defining an'i class Of each

of the possible forms suggested in the proof Of Theorem

2.19, this bound can actually be achieved.

Theorem 2.20. Let A a (S,I,M) be a strongly con-

nected automaton with n states.

Then

(I) For the middlefinflm‘cP if and only if I has an

identity.

(II) 'I' has an identity if and only if its center, C(I),

is a group and is thus a subgroup of G(A).

(III) I is isomorphic to G(A) if and only if O(G(A)) a n.

Proof: Parts (I) and (II) are restatements Of Corol-

lary 2.10.1 and Theorem 2.10 respectively in terms of

properties of the characteristic semigroup.

TO prove the necessity of (III) notice that since A

is strongly connected with n states, O(I) Z,n. Then since

in this case O(G(A)) S; n and‘I is isomorphic to G(A) we

must have O(I) - O(G(A)) a n.

Now assume O(G(A)) - n and choose 30 € S. Then by

Lemma 2.1, for any t Q S there exists h e G(A) such that

h(so) - t. Now if M(so,x) - M(so,y) a t, then M(t,x) a

M(h(so),x) I h[M(so,x)] s h[M(so,y)] - M(h(s&,y) - M(t,y).

Thus 2’ - 'y' and o('I’) . n. Now 0( : T—ecui) defined by

«(3)2 g where M(so,x) a g(so) for x 6 i'is an isomorphism.

«.is one-tO-one and onto in view Of Lemma 2.1 and if

c((3?) :- g and my) a h, then for x e 3? and y 6 §,
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M(so.xy)-M(M(so.x).y)-M(g(so).y)=g[M(sO.y)] = g(h(so)).

Thus 0d; P) - gh s “(33) “Gl.

For automata satisfying the hypothesis Of Theorem

2.20 we find a large amount Of structure forced on the

characteristic semigroup. At this point it is interest-

ing to point out an immediate application Of our results

to semigroup theory.

Corollary 2.20.1. Let I be an abelian semigroup of

functions on the finite set S and suppose that I is trans-

itive (i.e., for any s, t 6.8 there is an x e I such that

x(s) a t). Then I is a group of regular permutations on

S and is of order n-(the order of S).

Proof: Define the automaton A s (S,I,M) where

M(s,x) - x(s). Then I and I coincide since each class

‘3 contains only the function x. Now A is strongly con-

nected and sequential by the transitive and associative

properties. Also since I is abelian A is abelian. Thus

A is perfect and by Corollary 2.11.2, O(G(A)) - O(S).

Thus by Theorem 2.20, I is isomorphic to G(A) and is a

group Of regular permutations.

Before proceeding to the last result Of this section

we must prove a lemma concerning semigroups.

Definition 2.8. Let I be a semigroup and x E I. x

is said to be ppriodic if there exists a positive integer

t such that x"+11 xx and if t is the least such integer,

t is the period of x. If an element is of period one it

is called idempotent.
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This is not the usual [)2] definition of 'periodic' for

semigroups. However it is a natural generalization Of

the concept used in group theory and is useful in what

follows. Notice that according to this definition even

a finite semigroup can have elements which are not peri-

Odic.

Lemma 2.5. If I is a semigroup with exactly one

idempotent and each element is periodic, then I is a

group.

Proof: Let e be the idempotent of I. Then for

t+1

x 6 I and x#e, we have x = x for the period t‘7 1.

Then (xt)(xt)x(xt+1)(xt'1)= x xt'1= xt. Thus (xt)2= xt,

so xt is an idempotent and xts e. But x= xtxs xxtz ex:

xe, so e is a two—sided identity. Also xxt‘1= xt-Ix= e,

so x has a two-sided inverse and thus I is a group.

The last result of this section indicates a funda-

mental property of the characteristic semigroup for a

strongly connected automaton.

Theorem 2.21. Let A a (S,I,M) be a strongly con-

nected automaton with n states. Then there are subgroups

J1 and J2 of the characteristic semigroup I such that J2

is a normal subgroup of J1 and the factor group Ji/Jz is

isomorphic to G(A).

Proof: Let us denote by M(s,§) the unique state

determined by M(s,x) where xné 3. Choose so 6 S and let

J:- {fli E I and M(so,§)- g(so) for some g E G(A)} . Then

J is a subsemigroup Of‘I since if M(so,i)= g(so) and
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M(so,y)= h(so), then M(so,'i y): g(h(so)). Thus 3?, 37 E J

implies that 2“? c J. Also this reasoning shows that the

function ,8 : J-——§G(A) defined by [3(§)=.g, where

M(so, i): g(so) is a well-defined homomorphism. Since A

is strongly connected #9 is onto.

Now let E'be any idempotent of J( it is known that

any finite semigroup has at least one idempotent [12] ).

Since ,8 is a homomorphism and 3 is an idempotent, )3 (3)

must be the identity Of G(A). Thus

(1) M(so,5)= so. Also for any state Of the form

g(so) where g 6 G(A),

(2) M(g(so),3)= g[M(so,3)]s g(so).

Let {'31, 52, "t , 3k} be the ( non-empty) set of all

distinct idempotents of J. Let J1: 3iJ31. Then J1 is a

subsemigroup of J and 31 E J1. Also 51 is a two-sided

identity for J1 since 31(313 51):- ('61; 51);}; e1x e1.

.. 1

Now if e1 is the only idempotent of J , let J1: J1.

Otherwise there is another idempotent, say 5?, in J1 and

15k. Then J2 is a subsemigroup Of J1so define J2 8 EZJ

and 52 E J2 and 52 is a two-sided identity for J2. Also

31 i J2 since then we would have 5,322'312'52, a contra-

diction since Slfi'gz. Now if Eé is the only idempotent

of J2, let J2: J1. Otherwise we repeat as above with the

new idempotent. Hence in at most k steps we arrive at

the subsemigroup J1 which has exactly one idempotent

which is a two-sided identity.

Since J1 is a subsemigroup Of J, {3 acting on J1 is

again a homomorphism. Also £3 maps J1 onto G(A) since
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for‘i 6 J,

“(80,;k...;1-x- Eleeegk)= M(M(SO’Ek) ,Ek-1°°0;1; 31...;k)=

“(SO’EK—l. e .31; 31...;k)= . . .3

M(M(so,3t'),'e'1°--3k)= M(g(so),51-N5k)=

M(M(s(so).?,).32~o3k)- ”(among-nae = g(so) by

repeated applications of (1) and (2). Thus since A3 maps

J onto G(A), {3 maps J onto G(A).
1

Finally we show that every element of J is periodic.

1

First notice that if N(so,E)= g(so), where g e G(A), then

M(so,§m)= gm(so). Now let E'é J1. Then M(so,§)= g(so)

t+1

for some g E G(A). Suppose g s g(i.e., g is Of period

-2 0..

t). Then consider the powers 5, x , , E“, "' .

Since J1 is finite there must be a repetition, say R“: EV

where u >'v. Then gu(so)s M(s0,§u)= M(so,§')= gv(so).

u-v+1
8Thus by Lemma 2.1, gucgv or g g. Thus u-v= mt or

u- v+mt for some positive integer m. Then we have

._ -1 ._ - ._ -(Ev)mt+18'ivimt x(v )mts Eu x(V lint: EV x(v 1)mt= 000 =

._V -v
x . Thus x is periodic. But we noticed in the proof Of

Lemma 2.5 that if (§”)mt+1= E”, then (36V)mt is idempotent.

But the only idempotent is a two-sided identity and so

ivmta 1( the two-sided identity) or ivmt+1= i’and‘i is

periodic. Thus by Lemma 2.5, J1 is a group. Then let

J2 be the kernel of the homomorphism ,5 and then the

quotient group Ji/JZ is isomorphic to G(A).



PART III

THE DIRECT PRODUCT OF AUTOMATA

Strong. Relatedness

In this section a particular structure is studied,

the direct product. The algebraic devices Of the pre-

vious sections are applied with considerable success,

though many problems are still unsettled. A necessary

and sufficient condition for the direct product to be

strongly connected is given. The main results of this

section concerns the following problem. Given an autom-

aton, when can it be written as a direct product of

automata? This seems to be a difficult and, at the same

time, important problem. Sufficient conditions for writ-

ing a given automaton as a direct product are given here

and as a matter Of fact the proof of these results show

how to construct the ”factors". However the condition

given here is, no doubt, too strong to be useful in ap-

plications. Nevertheless, this is a step in the right

direction and it is hOped that the solution here may

suggest the proper line Of attack under more general

circumstances.

Definition 3.fl. Let A - (S,I,M) and B - (T,I,N)

be two automata. The direct product, A x B, is the

automaton A x B s (S x T, I, M x N) where

M x N [(s,t),x] -= (M(s,x), N(t,x)).

This definition parallels exactly the definition Of

-40-
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Rabin and Scott I: 5].

Definition 3.2. Two automaton A a (S,I,M) and B

=(T,I,N) are strongly relateg if given any 81’ 32 6 S

and any t1,t2 6 T there exists an x 6 I such that

M(sl,x) = s and N(t1,x) = t2.

2

Obviously if two automata are strongly related,

each automaton is strongly connected. As we shall see,

the only desirable prOperty which this relation pos-

sesses is symmetry.

Proposition 3.1. Let A = (S,I,M) and B a (T,I,N)

be two automata. Then a necessary and sufficient con-

dition that A x B be strongly connected is that A and B

be strongly related.

Proof: Suppose that A x B is strongly connected.

Then given any (sl,t1) 6 S x T and (s2,t ) 6 S x T

there exists an x e I such that M x N [(sl,t1),x:]=

(32,

Hence M(sl,x) a 82 and N(t1,x) - t2 and so A and B are

t2). But M x N [ (sl,t1),x]= (M(sl,x), N(t1,x)).

strongly related.

Now suppose that A and B are strongly related. Then

given any (sl,t1) e S x T and (s2,t2) E S x T there exists

(sz,t2) - (M(sl,x), N(t1,x)) a M x N [(sl,t1),x:). Thus

A x B is strongly connected.

The object of Proposition 3.1 and Definition 3.2 was

to show the relationship which must exist between two

automata in order that their direct product be strongly
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connected.

Proposition 3.2. Let A = (S,I,M) and B = (T,I,N)

be two automata which are strongly related. Then if

there exists an onto, operation preserving function,

h:A+——9C, where C is the automaton C = (R,I,P), C is

strongly related to B.

Proof: Let r1, r2 6 R and t1, t2 E T. Then since

h is onto there exist 81’ 82 E S such that h(sll = r1

and h(sz) = r2. Then since A is strongly related to B

there exists an x 6 I such that M(sl,x) = s and

2

N(t1,x) = t But then r2 = h(sz) = h[M(sl,xfl -2.

P(h(sl),x) = P(r1,x) since h is Operation preserving.

Thus C is strongly related to B.

Hence if A x B yields a strongly connected automaton

and C is any Operation preserving image Of A then C xB

must yield a strongly connected automaton.

Proposition 3.3. If A = (S,I,M) and B = (T,I,N)

are strongly related automata, then there is no operation

preserving function between A and B (A and B non-trivial).

Proof: Suppose that there exists an Operation

preserving function between A and B, say h:A-——9B.

Then let 81‘6 S and t1 = h(sl) and t2 6 T be such that

t2 # h(81). Now since A and B are strongly related

there exists an x 6 I such that M(sl,x) = 81 and

N(t1,x) = t2. But then t2 = N(t1,x) = N(h(sll,x) =

h[M(sl,x)] = h(sl) since h is operation preserving,

a contradiction. Thus no such h exists.
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Corollary 3.3.1. For any automaton A, A is not

strongly related to itself and hence A x A is not strongly

connected.

Proof: The identity function is an operation

preserving function from any automaton to itself. Thus

by Proposition 3.3, A is not strongly related to A.

The Group Of A Direct Product

Proposition 3.4. Let A a (S,I,M) and B x (T,I,N)

be automata. Then G(A) x G(B) is isomorphic to a subgroup

of G(A x B).

Proof: Let g 6 G(A), h 6 G(B) and (s,t) 6 S x T.

Now consider (g,h) e G(A) x G(B). Let ((g,h))(s,t) =-

(g(s),h(t)) and then (g,h)[ M x N((s,t),x)] -

(g,h)[(M(s,x),N(t,x))] - (g [M(s,x)] ,h[N(t,x)] ) =

(M(g(s),x),N(h(t),x)) a M x N [(g(s),h(t)),x] since g

and h are operation preserving on A and B respectively.

Thus (g,h) defines an operation preserving function on

A x B.

Also the function defined by (g,h) is one-tO-One

and onto since g and h separately are one-tO-One and

onto. Thus the function defined by (g,h) is in G(A x B)

and so G(A) x G(B) Q; G(A x B) by means of the obvious

identification.

TO show that, in general, equality does not hold

in Proposition 3.4 we include the following example:





A:

 

 
Figure 5

again the input composition is taken to be Juxtaposition

(generators 1, 2) for both A and B and the next state

functions are extended to the entire input semigroup by

the sequential property.

Then we have
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Then, writing the groups as permutations, we have

G(A) = [1,F} where F = (ab)

G(B) = {I}

G(A x B) =[I,H,H2

where

H = (ac ad ae)(bc be bd)

K . (ac bc)(ad bd)(ae be)

and of course

G(A) x G(B) a; {1.x} .

Notice here that A and B are even strongly related.

As would be expected, it is easily verified that

an isomorphism between two automata A s (S,I,M) and B

a (T,I,N) induces an isomorphism between G(A) and G(B).

Unfortunately it is also easy to find counter examples

to the converse Of this statement, for instance consider

automaton A of Figure 3 and the automaton obtained by

interchanging 0 and 1.

Automate As Direct Products

We have, thus far, examined briefly the manner

in which the direct product affects structure and groups

of automata. An interesting question is: under what

conditions can a given automaton be written as a direct

product of two non-trivial automata? Furthermore if

a given automaton can be written as a direct product how

can its “factors" be determined%’ The following result

gives at least a partial answer to these questions.

Theorem 3.6. Let A a (S,I,M) be a strongly connected
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and G(A) be transitive. Then if G(A) is isomorphic to a

direct product of groups, A is isomorphic to a direct

product of automata.

Proof: Without loss of generality we may identify

G(A) with the direct product Of groups H X L. We now

show that A is isomorphic to B X C, where B = (H,I,N)

and C = (L,I,N'), N and N' being defined below. Let

¢:H x L—)S be defined as follows: let so 6 s be

fixed and define d>((h,g)) z (h,g)(so) for (h,g) e H X L.

By Lemma 2.1, A is one-to-one. By hypothesis, 4? is

onto.

We now define N(h,x) s h: if and only if

1

M( d) ((h,g)),x) - 4) ((h1,g1)). This definition is not

ambiguous since (P is one-to-one and onto. However,

we must show that this yields a well-defined definition

of N. Now M( ¢((h,g)).x)-M((h.gl(Sol.x)=(h.g)[:M(80.IX].

Now suppose M(so,x) = (k,m)(so)(by hypothesis there is

such a group element). Then M( ¢((h,g)),x) 8..

(h,g)(k,m)(so) = (hk,gm)(sol = ‘b(hk,gm). But then

M( <A((h,g1)),x) = ¢(hk,g1m) so that N is well defined.

Similarly, we define N'(g,x) = g1 if and only if

M( O((h,g)),x) - O((h1,g1)). Then an argument analogous

to the above shows that N' is well defined.

We now have defined the automata B and C and we

wish to show that O is the desired isomorphism between

A and B X C. We have already shown that C is one-to-

one and onto. Strictly from the definitions of O , N

and N' we have
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4,[N x N'((h,g).X)] =p[N(h,x),N'(g,x)] =m ¢<(h,g)),x>.

SO» ¢ is Operation preserving and is thus an isomorphism.

A way to generalize this result will be indicated

shortly but we show now that the condition of Theorem

3.6 is both necessary and sufficient in the case of

perfect automata.

Theorem 3.7. Let A = (S,I,M) be a perfect autom-

aton. Then a necessary and sufficient condition that A

be isomorphic to a direct product of automata is that

G(A) be isomorphic to a direct product of groups.

Proof: To show sufficiency we notice that by

Theorem 2.11, A satisifies the conditions of Theorem 3.6.

Now suppose A is isomorphic to B X C, where B=(T,I,N)

and C = (H,I,N'). First, since A is perfect and

isomorphic to B X C and the perfect structure is

invariant under operation preserving functions, B X C

is perfect. Also, the projection functions pB:B X C-——9B

and pc: B X C-——9C defined by pB((t,r)) a t and

pC((t,r)) x r are onto and operation preserving. Thus B

and C are each perfect. Now by Theorem 2.11, for

g E G(B X C) we have

g((t.r>>:N x Ni(<t,r),xo)=@(t,xo),N'(r,xoi;(h(t),f(r)i.

But also by Theorem 2.11, h E G(B) and f'é G(C). In

view of Theorem 2.11 and the fact that B and C are

strongly related, the correspondence g(L—§(h,f) is

one-to-One and onto between G(B X C) and G(B) X G(C).

Thus it is clearly an isomorphism. But the isomorphism

between A and B X C induces an isomorphism between
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G(A) and G(B X C). Thus G(A) is isomorphic to

G(B) x 8(0).

The automaton exhibited in Figure 6 shows that for

a strongly connected automaton A with n states and

O(G(A)) = n, even though A is a direct product G(A)

need not be. Thus the converse to Theorem 3.6 does not

hold. We shall see, however, that in the case described

above, the composite nature of G(A X B) that can be

observed in the example of Figure 6 will always occur

and that this is sufficient to produce a factorization

of the automaton.

Definition 3.3. Let A = (S,I,M) be an automaton

and G(A) be its group Of automorphisms. Then for a

subgroup H of G(A), £418 equivalent to s3_modulo H,

snrv 32(H), if there exists h E H such that h(s1) 8 s2,

where s 6 S.
1’ 82

Note: Equivalence modulo a subgroup of G(A) is an

equivalence relation on the set of states of an automaton

A. We denote such a class by‘5 and the set of all such

classes by S.

Definition 3.4. Let A = (S,I,M) be an automaton

and G(A) be its group Of automorphisms. Then for a

subgroup H of G(A) we define the automaton A module H,

A/H, by

A/H - (S,I,M') where s is the set of equivalence classes

of S modulo H and M*(5,x) - RT5:§T where s e 3.

Note: The next state function in A/H is well-
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defined. For suppose that M(sl,x) = t and slrxls2(H).

Then there exists h E H such that h(sl) a 3 But then2.

M(s2,x) = h(t) so that M(s1,x)IVZM(sz,x) (H). Also

notice that [3(8) ='? is an onto, operation preserving

function from A to A/H so that all the desirable struc-

tures of A are imparted to A/H.

Theorem 3.8. Let A = (S,I,M) be a strongly connected

automaton and H be a normal subgroup Of G(A). Then the

factor group G(A)/H is isomorphic to a subgroup Of

G(A/H).

Proof: Let [H gig be the cosets which constitute

G(A)/H. Then for each distinct coset H gJ define

G3: A/H-——9A/H by 63(3) = gJ(s) where s e 5. We

first show that cJ is well-defined. Let s,t e 5; Then

there is an h e H with h(s) 8 t. Thus gJ(t)=gJ(h(s))

zhn(gj(s)) since H is normal. But this means

(s)(H) and so gJ(s) = gJ(E) and G is well-gJ(t)n/g j

dcf ined 0

Now suppose that GJ(3) = GJ(t). Then gJ(s)=gJ(t)

(s)/ngJ(t)(H). Thus there is an h e H with

J

or g

J

h(gJ(s)) = gJ(t) so that gJ

then s n/t(H) or'; 2'? and so 0 is one-tO-One.

'lth(s) . h1(s) ='t. But

Also given'? Q‘S, choose 3 6'3. Then there is s e S

so that gJ(s) a t since gJ is onto. Then GJ(§)=gJ(s)i?

and so G is onto. Further we have

3

GJ[M*(5.X)I =GJ(M(s.x)) -= 331M833] = “(SJHIJI -

M*(gi(s),x) - M*(GJ(§),x) by the definitions of M* and
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3' Thus GJ e G(A/H).

Finally suppose that g1 and g2 belong to distinct

cosets and that 01(5) = G2(§) for some 5 é'S. Then

G

g1(s)/ng2(s)(H) or h(g1(s)) = g2(s) for some h 6 H.

But then by Lemma 2.1, hg13 g2 and so g1 and g2 are in

the same coset, a contradiction. Thus distinct cosets

give rise to distinct elements of G(A/H). Thus it is

clear that GJe—eigj is an isomorphism between G(A)/H

and a subgroup of G(A/H).

It is easy to find examples where the subgroup

mentioned in the above theorem is, in fact, prOper.

However we notice

Corollary 3.8.1. Let A = (S,I,M) be a strongly

connected automaton with n states and O(G(A)) = n. Then

if H is a normal subgroup of G(A), G(A)/H is isomorphic

to G(A/H).

Proof: Notice that the order Of G(A)/H is equal

to the number of states of A/H and that A/H is strongly

connected.

Theorem 3.9. Let A = (S,I,M) be a strongly connected

automaton with n states and O(G(A)) a n. Then if there

exist subgroups H and K of G(A) such that H r) K = 1

and H K = G(A), A is isomorphic to A/H X A/K.

Proof: Let H = E1,h1,h2,...,hé} and

K = ilsglsgst-Osgt} 0
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Then choose s e S and consider the array

0

1(30) 81(80) g2(so) "‘ gt(sO)

hk(so) h1g¥(so) -°- h1gP(so)

hm(so) hmgi(80) °°° hmgt(80)'

First since A is strongly connected with O(G(A))sn,

HK s G(A), HIW K = I it is clear, in view Of Lemma 2.1,

thateach state Of S appears in this array once and only

once. Also it is clear that the rows Of this array

are the equivalence classes Of S modulo K and the

columns are the equivalence classes of S modulo H.

Thus the intersection Of any equivalence class Of

S modulo H with any one Of the classes of S modulo K

is exactly one state.

SO we make the correspondence <b:A/H X A/K-——9A as

follows: (bra-WYK) = 3H 0 EM.

According to the remark immediately preceeding ‘P

is one-to-one and onto.

But if in A/H, M*(;h,x) = uH and in A/K,M**(?k,x)£;k

then Mm x h~<('§H,tK),x)] = T5351.) = EH 0 7K and

M(EHF] 't'K,x) = UHF] 37K, so (A is operation preserving.

ThusA/H X A/K is isomorphic to A.

Now we find that the converse is also true.

Theorem 3.10. Let A = (S,I,M) be a strongly

connected automaton with n states and O(G(A)) = n. Then

if A is isomorphic to B X C, G(A) has subgroups H and K

with HK = G(A) and H I] K = 1.
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Proof: Let B = (T,I,N) and C = (H,I,P). where

T = {tO'tn’°'°’tt} and R = {ro,r1,...,r;§ . Then we

can identify S with the set Of pairs (t1,rj), i =

0, 1, ..., t; j = 0, 1, ..., r.

Then let 31,0 be the g G G(A) such that g(t0,ro) =

(t1, r0) and 80,3 be the g € G(A) such that g(to,ro) =

(to, r3). Since O(G(A)) = 0(8) and A is strongly con-

nected, Lemma 2.1 tells us that these are uniquely defined

functions.

Now let

H
{81,01 1 = 0, 1, ..., t and

K = {go’i} j = O, 1, ..., r.

Then Hflk = lland HK = G(A).





SUMMARY

A brief review Of what this thesis accomplishes

is given here, together with mention Of some lines Of

investigation which remain open. In Part I the scene

has been set for what follows by presenting some of

the basic automata structures and their interrelation-

ships. Also it was noticed there that several of these

structures are invariant under the general class of

continuous functions. In Part II, after an introduc-

tion to the concept of an operation preserving function,

a group was associated with each automaton. We then

examined to what extent the structure of the group and

Of the automaton are interdependent. For perfect autom-

ata we were able to give a complete characterization of

the associated group. A natural equivalence was then

placed on the input semigroup and this gave rise to the

characteristic semigroup. The study was thereby enriched

by the additional interplay which naturally arises. It

could then be Observed that the characterization of the

group of a perfect automaton had in fact been given in

terms of this characteristic semigroup. We then investi-

gated tO what extent these results could be carried over

for strongly connected automata. Finally, in Part III,

we found that under certain circumstances the composite

property of the group of an automaton forces the repre-

sentation of the automaton as a direct product and

conversely.
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In the area of automata studies, the use of the

tools introduced in the text represent a new adventure.

As a result many interesting and natural questions at

present remain unanswered. We shall mention here only

a few which seem to have an important bearing on the

concepts introduced. The first question is whether a

strongly connected automaton always has a subset Of

its characteristic semigroup which is isomorphic to the

group of the automaton. As indicated by Theorem 2.21

this will at least occur frequently and as mentioned

above is always true for a perfect automaton. The

next problem is that Of determining all automata (to

within isomorphism) which are the image Of a given autom-

aton under an operation preserving function. This

corresponds to the group theory problem Of determining

all homomorphs of a given group. Unfortunately a device

as convenient as the invariant subgroup does not seem

to be available for automata. Finally, the resolution

of this problem should shed some light on the problem

of determining the factors of a given (strongly connected)

automaton since the factors will be included in this

0188'.
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