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ABSTRACT

THE FLEXIBILITY-RIGIDITY INDEX (FRI): THEORY AND APPLICATIONS

By

Kristopher Opron

Since the first protein structures were solved in the 1950s, the protein data bank has grown

to include over one hundred thousand macromolecular structures ranging in size from small

peptides to large viral capsids. These experiments have shown that proteins exhibit a diverse

range of structure and function and that these two aspects are closely related. In fact,

it is often possible to predict a protein’s function from its structure alone. Much of the

focus to date has been on the more static regions of proteins for theoretical and practical

reasons. However, it is important to note that even well folded proteins experience everlasting

fluctuations due to the constant influence from outside forces, which drive motions that are

relevant to function such as sidechain fluctuations and conformational shifts. The possible

movements that can arise from these fluctuations are determined by a protein’s structure.

This means flexibility, or the ability to deform from the current conformation under external

forces, is an intrinsic property of all proteins, and is closely tied to function. In order to

better study protein function in ordered or disordered proteins, we require accurate, efficient,

multiscale tools for evaluating flexibility.

This work puts forward a multiscale, multiphysics and multidomain model, the flexibility-

rigidity index (FRI), to estimate the flexibility and conformational motions of macromolec-

ular structures. The basic assumption of the present FRI theory is that the geometry or

structure of a given protein, together with its specific environment, completely determines

the biological function and properties including flexibility and charge. To this end, we uti-

lize monotonically decreasing functions to measure the geometric compactness of a protein

and quantify the topological connectivity of atoms or residues in the proteins and nucleic



acids. We define the total rigidity of a molecule by a summation of atomic rigidities. A

practical validation of the proposed FRI for flexibility analysis is provided by the prediction

of B-factors, or temperature factors of proteins, measured by X-ray crystallography. We

employ a test set of 263 structurally distinct proteins to examine the validity and robustness

of the proposed FRI method for B-factor estimation or flexibility prediction. The basic FRI

algorithm outperforms GNM on this test set by about 20%.

After validation of the basic FRI method we introduce a multikernel-based multiscale FRI

(mFRI) strategy to analyze macromolecular flexibility. The essential idea is to employ two or

three kernels each parameterized with a different scale to capture the multiple characteristic

interaction scales of complex biomolecules. Based on an expanded test set containing 364

proteins, we show that the mFRI method is about 22% more accurate than the GNM method

in B-factor prediction. Most importantly, we demonstrate that the present mFRI gives rise

to excellent flexibility analysis for many proteins that are difficult cases for GNM and the

previously introduced single-scale FRI methods. Finally, for a protein of N residues, we

illustrate that the computational complexity of the proposed mFRI is of linear scaling O(N),

in contrast to the order of O(N3) for GNM.
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The second kernel’s scale value (η2) is varied and listed on the top of the
table. Results are organized and split by the size of the structures based
on the number of amino acids in order to show the impact of different η2

values on different sizes of proteins. . . . . . . . . . . . . . . . . . . . . . 68

Table 4.12: Correlation coefficients (CCs) between predicted and experimental B-
factors for the set of 64 protein-nucleic structures.78 Here N1, N2 and
N3 values represent the number of atoms used for the M1, M2 or M3
representations for each structure. We use the parameter-free two-kernel
mFRI model with one exponential kernel (κ = 1 and η = 18 Å) and one
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of 0.5Å . The parameter free Lorentz kernel uses υ=2.5 and η=1.0Å and
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and η2 = 10Å. Three-kernel FRI (FRI-3K) is parameterized at υ1 = 3,
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mFRI delivers the best B-factor prediction for the flexible hinge region. 76

xiii



Figure 4.18: Top, a visual comparison of experimental B-factors (left), FRI pre-
dicted B-factors (midlle) and GNM predicted B-factors (right) for the
engineered teal fluorescent protein, mTFP1 (PDB ID:2HQK). Bottom,
The experimental and predicted B-factor values plotted per residue. The
GNM naming convention indicated the cutoff used for the GNM method
in angstroms, for example, GNM7 is the GNM method with a cutoff of
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Figure 4.28: PCCs between various B-factors for protein 2Y7L. (a) Correlations be-
tween BGNM−ILF and BExp, between BFRI−ILF and BExp, and between
BGNM−ILF and BFRI−ILF; (b) Correlations between BGNM−Lorentz and
BExp, between BFRI−Lorentz and BExp, and between BGNM−Lorentz and
BFRI−Lorentz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 4.29: PCCs between various B-factors averaged over 364 proteins. (a) Corre-
lations between BGNM−ILF and BExp, between BFRI−ILF and BExp, and
between BGNM−ILF and BFRI−ILF; (b) Correlations between BGNM−Lorentz

and BExp, between BFRI−Lorentz and BExp, and between BGNM−Lorentz and
BFRI−Lorentz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 4.30: The average PCCs over 362 proteins for Type-1 mGNM. (a) Two ILF
kernels and their cutoff distances are systematically changed from 5 Å to
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η1 = 3Å and η2 = 25Å, are employed in mGNM. (a) Molecular surface
colored by B-factors predicted by GNM with cutoff distance 7 Å. (b)
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tances 7Å (GNM7) and 20Å (GNM20). (e) B-factors predicted by mGNM.112

Figure 4.34: Comparison between Type-2 mGNM with exponential kernel and tra-
ditional GNM for protein 1V70 B-factor prediction. Two scales, η1 =
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CHAPTER I. Summary

Recent technological and methodological advances have dramatically increased the size

of the macromolecular structures that can be solved experimentally. This increase in scale

has led to challenges in the theoretical description and computer simulation of proteins and

nucleic acids. In response to this boom in structure size, there has been an increased interest

in multiscale, multiphysics, and/or multidomain models. Such models aim to improve analy-

sis of large macromolecules by reducing the number of degrees of freedom while maintaining

modeling accuracy and achieving computational efficiency. To this end, the following work

introduces a simple, accurate and efficient multiscale method for analyzing macromolecular

flexibility and rigidity in atomic detail, the Flexibility-Rigidity Index or FRI.

The FRI theory is based on the assumption that the most fundamental properties of

macromolecules are almost entirely determined by the geometric structure of the protein

rather than its sequence, even though the structure is determined primarily by its sequence

of amino acids. Simply put, FRI methods use the geometric compactness of a macromolec-

ular structure to determine flexibility and motion at the atomic scale. Unlike the similar

and well-known methods based on Normal Modes Analysis, FRI does not require matrix

diagonalization for flexibility predictions. In the case of anisotropic calculations, FRI does

require some matrix solving, but the FRI method allows for fewer and/or smaller matrices

to be solved, thereby cutting down on calculation times drastically. The basic FRI algo-

rithm’s computational complexity is approximately O(N2), where N is the number of atoms

or residues, in contrast to O(N3) for methods such as Normal Modes Analysis (NMA) and

Gasussian Network Model (GNM) that require solving of a large matrix. In our initial

studies, we demonstrate that the proposed FRI gives rise to accurate predictions of protein

B-Factors for a set of 263 protein structures taken from X-ray crystallography data in the
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Protein Data Bank. We also show that a parameter-free formulation of FRI (pfFRI) is able

to achieve about 95% accuracy of the regular FRI algorithm. Furthermore, we compare the

accuracy and efficiency of FRI to that of the most popular approaches for flexibility analysis,

NMA and GNM. An interpolation algorithm is also introduced in the first work and is used

to construct continuous atomic flexibility functions for visualization and use in multiscale

multiphysics models.

Beyond the introduction of the basic FRI method, this work introduces various improve-

ments and variations on the FRI method that improve computational efficiency, increase

accuracy or add new utility.

The first improvement introduced is the fast FRI (fFRI) algorithm for improving the

computational run-time for flexibility analysis. The proposed fFRI further reduces the com-

putational complexity from O(N2) to O(N) through the implementation of the cell lists

method. Intensive validation and comparisons indicate that fFRI is orders of magnitude

more efficient and about 10% more accurate overall than some of the most popular methods

in the field. The proposed fFRI is able to predict B-factors for α-carbons of the HIV virus

capsid (313,236 residues) in less than 30 seconds on a single processor using only one core.

The next major addition we propose is the anisotropic FRI (aFRI) algorithm for the

analysis of collective protein dynamics. The aFRI algorithm makes use of adaptive Hessian

matrices, ranging from a completely global 3N × 3N matrix to completely local 3× 3 matri-

ces. These local 3× 3 matrices only describe the motion of a single residue, however, these

matrices include global correlation effects, giving rise to predictions that qualitatively match

global calculations. The use of adaptive matrices allows for a significant decrease in com-

putational running time due to the advantage of solving many small matrices rather than

one large matrix. Eigenvectors obtained through the proposed aFRI algorithms are able to

demonstrate collective motions similar to normal modes methods. A large set of proteins is
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used to compare the efficiency of the FRI, fFRI, aFRI and GNM methods.

The next step in the development of FRI was the addition of a multiscale concept to

the FRI method. Because protein interactions are inherently multiscale and protein flex-

ibility is associated with protein interactions, protein flexibility should have a multiscale

characteristic. Existing elastic network models are typically parameterized at a single cut-

off distance and therefore may fail to properly predict the thermal fluctuation of the many

macromolecules involving multiple characteristic length scales. Therefore we introduce a

multiscale flexibility-rigidity index (mFRI) method to resolve this problem. The proposed

mFRI utilizes two or three correlation kernels parametrized at different length scales to cap-

ture various levels of interactions within and between proteins. It is shown that the mFRI

method is about 20% more accurate than the Gaussian Network Model in the B-factor pre-

diction for a set of 364 protein structures. Additionally, we identify multiple instances where

mFRI is accurate and GNM is very inaccurate, possibly due to the lack of a multiscale

aspect.

In addition to testing on proteins, we test the FRI method for macromolecular complexes

that include nucleic acids. Protein-nucleic acid complexes are important for many cellular

processes including some of the most essential functions such as transcription and translation.

For many protein-nucleic acid complexes, flexibility of both macromolecules is known to be

critical for specificity and/or function. Therefore, we have extended FRI flexibility analysis to

protein-nucleic acid complexes. We demonstrate by comparison with experimental data that

the mFRI multiscale strategy is able to accurately predict the flexibility of protein-nucleic

acid complexes. Also, we take advantage of the high accuracy and O(N) computational

complexity of our multiscale FRI method to investigate the flexibility of large ribosomal

subunits and an entire ribosome, which is difficult to analyze by alternative approaches due

to its size. As a final demonstration of the FRI method for protein-nucleic acid complexes,
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we utilize an anisotropic FRI approach, which involves localized Hessian matrices, to study

the translocation and active site dynamics of bacterial RNA polymerase.

As GNM and ANM are some of the most popular methods for the study of protein

flexibility and related functions, and the FRI method resembles these methods in some

ways, it is necessary to clarify the relationship between normal modes-based methods and

FRI. To this end, we propose generalized GNM and ANM methods (gGNM and gANM) and

show that the GNM Kirchhoff matrix can be built from the ideal low-pass filter, a special

case of correlation functions underpinning the FRI method. We propose a unified framework

to construct generalized Kirchhoff matrices whose matrix inverse leads to gGNMs, whereas,

the direct inverse of its diagonal elements gives rise to FRI method. In addition to exploring

this connection, we introduce two new multiscale elastic network models, namely multiscale

GNM (mGNM) and multiscale ANM (mANM), which are able to incorporate different scales

into generalized Kirchhoff or Hessian matrices.

We illustrate that gGNMs outperform the original GNM method in the B-factor predic-

tion of the set of 364 proteins. We demonstrate that for a given correlation function, FRI

and gGNM methods provide essentially identical B-factor predictions when the scale value in

the correlation function is sufficiently large. The multiscale aspect of the proposed mGNM

and mANM gives rise to a significant improvement, more than 11%, in B-factor predictions

over the original GNM and ANM methods. We further demonstrate benefit of our mGNM

method in the B-factor predictions of many proteins that the original GNM method fails to

accurately predict B-factors for. Also, we show that the present mGNM can be used to an-

alyze protein domain separations and showcase the ability of our mANM for the simulation

of protein collective motions.

As an exploration into one of the many applications of FRI, we examined the potential

for FRI and aFRI methods in predicting protein hinges. The study of hinges and hinge
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motions in proteins has been an important topic and much research has been done in the

past.21,25,26,39,59 Identification of hinge residues is useful for inferring motion and function

when molecules are too large for MD simulation on relevant timescales. Other methods such

as GNM and NMA have been utilized for this purpose in the past, leading us to the idea

that FRI-based methods could place a significant role in hinge analysis. So far we have tried

predicting hinge using modes of motion calculated from FRI correlation maps. We have also

tried various machine-learning models to predict hinges using a combination of FRI-based

metrics and various other residue-level metrics based on solvent accessible surface area, side-

chain, hydrophobicity and many other properties. Finally, we show that hinge predictions

from FRI modes are at least as accurate as those obtained from other state of the art hinge

prediction software.
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CHAPTER II. Background and Introduction

2.1 Experimental methods for structural flexibility

The field of structural biology has seen rapid growth in the last few decades. Since the

first protein structures were solved in the late 1950s, the protein data bank has grown to

include over one hundred thousand macromolecular structures ranging in size from small

peptides to large viral capsids. These experiments have shown that proteins exhibit a di-

verse range of structure and function and that these two aspects are closely related. In fact,

it is often possible to predict a protein’s function from its structure alone, especially when a

homologous protein is available for comparison. Much of the focus to date has been on the

more static regions of proteins for theoretical and practical reasons. However, it is important

to note that even well folded proteins experience everlasting fluctuations due to the constant

influence from outside forces, which drive intrinsic motions such as atomic vibrations and

conformational shifts. The possible movements that can arise from these fluctuations are

determined by a protein’s structure. This means flexibility, or the ability to deform from

the current conformation under external forces, is an intrinsic property of all proteins, and

is closely tied to function. For instance, protein flexibility can enhance protein-protein and

protein-ligand interactions by intermittently offering more favorable binding surfaces through

small secondary structure and sidechain fluctuations. Additionally, protein flexibility and

motion amplify the probability of barrier crossing in enzymatic reactions. Therefore, the

investigation of protein flexibility at multiple scales is vital to the understanding and pre-

diction of protein functions. In fact, even the study of some completely disordered proteins

is essential due to their connections to neurodegenerative diseases such as mad cow disease,

Alzheimer’s disease and Parkinson’s disease.15,67 Therefore, in order to better study protein

function in ordered or disordered proteins, we require accurate, efficient, multiscale tools for

evaluating flexibility.
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Currently, the most important experimental techniques for protein flexibility analysis are

X-ray crystallography and Nuclear Magnetic Resonance (NMR). Among the over one hun-

dred thousand structures in the protein data bank (PDB), more than eighty percent were

collected by X-ray crystallography. The Debye-Waller factor, or B-factor, is a experimen-

tal measure of disorder that can be directly computed from X-ray diffraction data. These

B-factors have been observed to correlate with atomic flexibility from MD and NMA ex-

periments, thereby making them an ideal experimental measure of flexibility for comparison

with theoretical methods. However, it is important to remember that this is not a perfect

correlation because B-factors can be influenced by multiple factors including variations in

atomic diffraction cross sections and chemical stability during the diffraction data collection.

Therefore, only the B-factors for specific types of atoms, most often Cα atoms, can be directly

interpreted as their relative flexibility without corrections. The other major experimental

method for accessing protein flexibility is NMR, which often provides structural flexibility

information under physiological conditions unlike X-ray diffraction, which requires specific

conditions to form suitable crystals. NMR spectroscopy allows the characterization of pro-

tein flexibility in diverse spatial dimensions and a large range of time scales. About seven

percent of the structures in the PDB are determined by NMR spectroscopy, however, it is

unclear how to assign flexibility values to atoms based on NMR spectroscopy data. Therefore

we are currently focused on comparing theoretical results to X-ray crystallography results

only.

2.2 Computational methods for flexibility and dynamics

The experimental techniques mentioned in the previous section are incredibly powerful

for studying protein structure and function, however, they do face some limitations due to

technical challenges. For example, some proteins may be extremely difficult or impossible to

crystallize and others that do crystallize may do so in forms not relevant to their function.
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To address the cases where experimental techniques fail and to increase efficiency of analysis

we turn to theoretical approaches. There have been many distinct methods for flexibility and

motion analysis proposed over the past few decades. The major examples, and those that can

be in some way compared to FRI, are molecular dynamics (MD), NMA, machine-learning

models, and multiscale, multiphysics simulations.

Molecular dynamics simulations are at the forefront of computational biochemistry and

have contributed significantly to our understanding of the conformational landscapes of pro-

teins, especially conformations that are not directly accessible via experimental techniques

due to various technical or practical challenges. These simulations enable us to study pro-

teins that are difficult to study experimentally such as amyloid fibrils, intrinsically disordered

proteins, and partially disordered proteins. However, the dynamics of larger macromolecules

and systems including multiple molecules typically occur at time scales that are intractable

for MD simulations.

A major breakthrough with respect to the scale of protein simulations came with the in-

troduction of normal mode analysis (NMA),8,29,44,64 a time-independent molecular mechanics

method that is related to MD via the time-harmonic approximation.52 The success of the

initial NMA method led to the development of related methods that improve computational

running time or add utility. The most notable examples of NMA-related methods are the

elastic network model (ENM),66 GNM,4,5, 27 and anisotropic network model (ANM).3 The

ENM and GNM methods use coarse-grained representations of macromolecules to speed up

computation with only a minor loss in accuracy, and the ANM method provides motion pre-

dictions. All normal modes-related methods can be used to approximate protein flexibility

or B-factors from the first few eigenvectors and eigenvalues of the interaction Hamiltonian in

normal modes or the Kirchhoff matrix in ENM and GNM. These quantitative predictions of

biomolecular flexibility and their applications are discussed in many review papers.16,46,61,77
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The lowest-energy eigenvalues from these calculations reflect the protein dynamics through

even the longest relevant timescales, something which is typically beyond the reach of MD

simulations.5,8, 44,64,66 The normal modes approaches have been improved in many aspects

since their introduction, including crystal periodicity corrections32,40,41,62 and the introduc-

tion of the density-cluster rotational-translational blocking18 to speed up calculations. Still,

the computational complexity of these methods is dominated by a computationally inefficient

diagonalization of the large N by N matrices used in normal modes. Due to the diagonal-

ization step, these methods have running times that scale according to O(Nk) time, where

N is the matrix dimension and k ≈ 3. So while normal modes calculations are typically

more efficient for calculating long-time dynamics of proteins than MD, the method is not

suitable for excessively large macromolecules and macromolecular complexes, e.g. systems

with millions of amino acid residues such as those obtained from cryo-EM experiments or

theoretical constructs.

An even more recent set of tools for flexibility analysis is that of knowledge based,

machine-learning methods. This category includes examples of flexibility prediction by neu-

ral networks,55 support vector regression81 and two-stage support vector regression.51 These

approaches typically utilize large protein data sets as training data. Therefore, the validity

and accuracy and of these methods are dependent on the quality and representativeness of

the training data set, qualities that are difficult to prove in the current state of structural

biology. Yet another modern approach utilizes graph theory to analyze the bond networks

in proteins,36 employing both geometric and energetic criteria to identify the flexible and

rigid regions. Unfortunately, this method relies on normal mode analysis and other costly

algorithms which limit it to the same scales as the normal mode tools.

Most recently there has been an increased interest in theoretical methods for flexibility

analysis that are developed via multiscale formulations. Multiscale methods combine elastic
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mechanics and molecular mechanics to significantly reduce the degrees of freedom of large

biomolecular systems.10 For example, the classical theory of elasticity for DNA loops has

been combined with the MD description of protein for protein-DNA interaction complexes.70

Recently, the continuum elastic modeling of the Canham-Helfrich type of energy functional

has been coupled with MD simulations to investigate the complex elastic behavior of Hep-

atitis B virus capsids.57 Multiscale based flexibility analysis has a wide range of technical

variability. In the best scenario, multiscale methods can take the advantage of each scale

to achieve excellent modeling accuracy and computational efficiency. However, multiscale

methods are typically technically demanding and computationally complex. A major is-

sue in the field is how to go beyond the phonological domain and make these approaches

quantitative and predictive. Reliable analysis and validation with experimental data are

indispensable procedures. For these reasons, there is a need to further develop and validate

innovative approaches for the flexibility analysis of biomolecular systems.

2.3 The Flexibility-Rigidity Index

This work aims to solve the a major issue with the aforementioned methods, especially

MD and NMA, which is the issue of poor scaling. In addition to providing improved scaling

for predicting flexibility and long-time scale dynamics it is vital to also match or improve

upon the level of accuracy and utility offered by these other methods. To address these issues

propose an efficient, accurate method for protein B-factor prediction and flexibility analysis

called the Flexibility-Rigidity Index or FRI. The FRI method is based on some simplifying

assumptions about macromolecules including that protein dynamics are determined entirely

by structure and that side chain effects can be ignored. The FRI algorithm is based on

measurements of geometric compactness and topological connectivity of a protein structure

at each residue. It is assumed that nearby atoms have stronger interactions and tend to confer

stability to other nearby atoms in macromolecules and that this stabilizing effect decays
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with increasing distance. Physical interaction potentials are not directly used to represent

the interactions in this method and are instead replaced by a monotonically decaying kernel

or kernels that is parametrized empirically. In practice, this method gives rise to accurate

predictions of protein flexibility or B-factors based on geometric compactness alone.

We noted after the publication of our earliest work on FRI75 that the name of “flexibility

index” was proposed independently by von der Lieth et al.71 and Jacobs et al.36 for two

different quantities to describe bond strengths. Both of these flexibility indices are distinct

from the proposed FRI method. The FRI algorithm is solely structural based and it does

not reconstruct any protein interaction Hamiltonian. Only elementary arithmetic is needed

in the FRI method for proteins. In particular, the FRI prediction of protein B-factors does

not require a stringently minimized structure or a time consuming matrix diagonalization or

matrix decomposition step, nor does it involve any training procedure.

2.3.1 fast FRI and anisotropic FRI

Another objective of the present work is to introduce a fast FRI (fFRI) algorithm by

using appropriate data structures because computational efficiency is critical for analyzing

larger structures. The computational complexity of the proposed fFRI is of O(N), compared

to that of O(N2) for the original FRI algorithm and of O(N3) for the GNM, where N is

the number of atoms. We use the cell lists approach2 to achieve this reduction in the

computational complexity with negligible loss in accuracy.. Another objective is to introduce

anisotropic FRI (aFRI) algorithms for the motion analysis of biomolecules. Unlike ANM,3,52

which is completely global and has 3N × 3N elements in its Hessian matrix, the proposed

aFRI algorithms utilize adaptive Hessian matrices, which vary from completely global to

completely local. Even in the most local formulation of aFRI, there are collective motions

predicted by three sets of eigenvectors. These three modes of motion turn out to correspond

with the lowest energy, most dominant modes of global aFRI and ANM in most test cases.
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We demonstrate this utility of aFRI on multiple proteins and protein-nucleic acid system.

It was noticed early in the development of FRI that there are a small number of structures

for which FRI performs very poorly in flexibility prediction. Furthermore, those structures

which cause problems for FRI are likely to be difficult for NMA and GNM as well. One

such structure is pictured in Figure 2.1: where the GNM method fails to predict the high

flexibility of a hinge region in calmodulin. There are a number of possible reasons for this

and similar failures, which are highlighted in this work. The crystal environment, solvent

type, co-factors, data collection conditions, and structural refinement procedures are all well-

known effects32,40,41,62 that can interfere with flexibility estimations from X-ray experiments.

However, there is one more important cause that has not been discussed in the literature to

our best knowledge, namely, multiple characteristic length scales in a single protein structure.

Contrary to very small molecules, macromolecules have a wide variety of characteristic length

scales, from the small scale of intramolecular bonding to large scale effects observed in

protein-nucleic and protein-protein interactions. Therefore, it is reasonable to regard large

proteins as multiscale molecules. When a GNM or FRI algorithm is parametrized at a single

given cutoff or scale parameter, it captures only a subset of the characteristic length scales

and inevitably misses other characteristic length scales of the protein. Consequently, neither

method is able to provide accurate B-factor predictions for all macromolecules using a single

characteristic length scale.

Therefore one of the objectives of the present work is to introduce a multiscale strategy

for protein flexibility analysis. The essential idea is to assess protein topological connectivity

and packing compactness at multiple scales by combining multiple FRI kernels or correlation

functions. As a result, multiscale FRI (mFRI), is able to simultaneously capture protein

crucial characteristic length scales and provide improved B-factor predictions.
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Figure 2.1: The structure of calmodulin (PDB ID: 1CLL) visualized in VMD34 and colored
by experimental B-factors (top left) and GNM predicted B-factors (top right) with red
representing the most flexible regions. Bottom, a comparison of predicted B-factor values
from mFRI, GNM with a cutoff distance of 7Å , and experimental B-factors taken from the
PDB entry.
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2.3.2 FRI for Protein-Nucleic Acid Complexes

In addition to proteins, nucleic acids are among the most essential biomolecules for all

known forms of life. Nucleic acids often function in association with proteins and play a

crucial role in encoding, transmitting and expressing genetic information. Therefore it was

necessary to develop FRI methods for nucleic acid chains and protein-nucleic acid com-

plexes. Proteins and nucleic acid chains are dramatically different biomolecules and amino

acid residues and nucleotides have different length scales and interaction characteristics.

Therefore, a good model should not only allow residues and/or nucleotides to be treated

with different length scales, but also adapt a multiscale description of each residue and/or

nucleotide. Unlike elastic network models that are parametrized in only one length scale for

each particle, mFRI provides a simultaneous multiscale description. Therefore, the present

mFRI is able to better capture multiscale collective interactions of protein-nucleic acid com-

plexes. Additionally, many protein-nucleic acid complexes are very large biomolecules and

therefore require considerable computational resources to analyze by conventional mode

decomposition-based methods. The O(N) scaling FRI methods provide a more efficient

approach to the flexibility analysis of large protein-nucleic acid complexes.

2.3.3 gGNM, mGNM and mANM

Inspired by the improvements that multiple correlation kernels have on the FRI method,

we propose a method to incorporate multiscale correlations into the aforementioned mode

decomposition-based methods, GNM and ANM. Our approach to address the link between

FRI and normal modes methods is twofold. First, we propose a unified framework to con-

struct a generalized GNM (gGNM). We reveal that the GNM Kirchhoff matrix can be con-

structed from the ideal low-pass filter (ILF), which is the limiting case of admissible FRI

correlation functions. We demonstrate that FRI and gGNM are asymptotically equivalent
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when the cutoff value in the Kirchhoff matrix or the scale value in the correlation function is

sufficiently large. This finding paves the way for understanding the connection between the

GNM and FRI methods. To clarify this connection, we introduce a generalized Kirchhoff

matrix to provide a unified starting point for the gGNM and FRI methods, which elucidates

on the similarity and difference between gGNM and FRI. Based on this new understanding of

the gGNM working principle, we propose infinitely many correlation function-based gGNMs.

We show that gGNM outperforms the original GNM for the B-factor prediction of a set of

364 proteins. Both gGNM and FRI deliver almost identical results when the scale parameter

is sufficiently large. This approach sheds light on the construction of efficient gGNMs.

Additionally, we propose two new methods, multiscale GNM (mGNM) and multiscale

ANM (mANM), to account for the multiscale features of biomolecules. The aim is to

generalize original GNM and ANM into a multikernel setting so that each kernel can be

parametrized at a given characteristic length. This generalization is achieved through the

use of a FRI assessment, which predicts the involvement of different scales, followed by

an appropriate construction of multikernel GNM or multikernel ANM. This approach works

because for a diagonally dominant matrix, the direct inverse of the diagonal element is essen-

tially equivalent to the diagonal element of the inverse matrix. In this work we demonstrate

by comparison with experimental data that the proposed mGNM and mANM are able to

successfully capture the multiscale properties of protein structures and significantly improve

the accuracy of these methods in protein flexibility prediction.

2.3.4 Machine learning and FRI for protein-protein interactions

Support Vector Machine (SVM) is a type of supervised machine learning that has grown

in popularity recently due to successful applications across many different fields. Some ex-

amples of successful applications of SVM models include drug design,37 image recognition

and text classification,12,20,38 microarray gene expression data analysis,9,11,28,30,48,53,80 pro-
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tein fold recognition14,19,43 , protein-protein interaction7 and protein secondary structure

prediction.33 The basic idea of applying an SVM in this context is to map a set of input into

the feature space in which the input data becomes more separable compared to the original

input, then construct a maximum-margin hyperplane which separates two classes within the

feature space. In this case the two classes being separated are hotspot residues and non-

hotspot residues. To test the viability of FRI-derived features for predicting protein-protein

interactions, we chose to incorporate FRI-derived metrics in to the KFC2 model,83 an SVM

model that uses residue-scale features to predict protein-protein binding hotspots.
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CHAPTER III. Methods

3.1 Flexibility-rigidity index (FRI)

We initially consider only proteins as examples to illustrate the FRI algorithm, although

other biomolecules, such as DNA and RNA, can be accommodated with a minor modification

of the algorithm. We are particularly interested in a coarse-grained representation. However,

methods for a full atom description can be formulated as well.

We seek a structure based algorithm to convert protein geometry into protein topology.

To this end, we consider a protein with N Cα atoms. Their locations are represented by

{rj|rj ∈ R3, j = 1, 2, · · · , N}. We denote ‖ri− rj‖ the Euclidean space distance between ith

Cα atom and the jth Cα atom. The distance geometry of protein Cα atoms is utilized to

establish the topology connectivity by using monotonically decreasing radial basis functions,

Cij = Φ(‖ri − rj‖; ηij),(3.1)

where ηij is a characteristic distance between particles, and Φ(‖ri − rj‖; ηij) is a correla-

tion function, which is, in general, a real-valued monotonically decreasing function. As a

correlation function, it satisfies

Φ(‖ri − ri‖; ηii) = 1(3.2)

Φ(‖ri − rj‖; ηij) = 0 as ‖ri − rj‖ → ∞.(3.3)

Delta sequences of the positive type discussed in an earlier work73 are all good choices. For

example, one can use generalized exponential functions

Φ(‖ri − rj‖; ηij) = e−(‖ri−rj‖/ηij)κ , κ > 0(3.4)

and generalized Lorentz functions

Φ(‖ri − rj‖; ηij) =
1

1 + (‖ri − rj‖/ηij)υ
, υ > 0.(3.5)
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Essentially, the correlation between any two particles should decay according to their dis-

tance. Therefore, many other alternatives can be used and so during validation multiple

functions are tested.

The correlation map or cross correlation is an important quantity for the GNM. We can

define a similar correlation map by setting C = {Cij}, i, j = 1, 2, · · · , N . The correlation

map measures the connectivity of Cαs in the protein.

We define an atomic rigidity index µi as the summation of topological connectivity

µi =
N∑
j=1

wijΦ(‖ri − rj‖; ηij), ∀i = 1, 2, · · · , N,(3.6)

where wij is a weight function related to the atomic type, The atomic rigidity index µi

manifests the rigidity or stiffness at the ith atom. In a general sense, the atomic rigidity index

reflects the total interaction strength, including both bonded and non-bonded contributions.

It is quite straightforward to define the averaged molecular rigidity index as a summation of

atomic rigidity indices

µ̄MRI =
1

N

N∑
i=1

µi.(3.7)

The averaged molecular rigidity index can be used to predict molecular thermal stability,

bulk modulus, density (compactness), boiling points of isomers, the ratio of surface area over

volume, surface tension, etc. A detailed investigation of these aspects is beyond the scope

of the present work.

We are now ready to define a position dependent shear modulus

µ(r) =
N∑
j=1

wj(r)Φ(‖r− rj‖; ηij), r ∈ ΩE,(3.8)

where wj(r) is a weight function, r is in the proximity of ri and ΩE is the macromolecular

domain. In order to determine wj(r), we define an average rigidity (or averaged rigidity
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index function) by

µ̄ =
1

V

∫
µ(r)dr,(3.9)

where V is the volume of the macromolecule. If wj(r) is a constant, its value can be uniquely

determined by a comparison of µ̄ with experimental shear modulus58 for a given macro-

molecule and correlation function.

We also define an atomic flexibility index as

fi =
1

µi
, ∀i = 1, 2, · · · , N.(3.10)

Since the flexibility at each atom is proportional to its temperature fluctuation, we can

express B-factors as

Bt
i = afi + b, ∀i = 1, 2, · · · , N(3.11)

where {Bt
i} are theoretically predicted B-factors, and a and b are two constants to be deter-

mined by a simple linear regression.

We can also define the averaged molecular flexibility index (MFI) as a summation of

atomic flexibility indices

f̄MFI =
1

N

N∑
i=1

fi.(3.12)

MFI should correlate with molecular stability and energy.

For the purpose of visualization, we define a continuous atomic flexibility function as

F (r) =
N∑
j=1

Bt
iΨ(‖r− rj‖), r ∈ ΩE.(3.13)

where Ψ(‖r − rj‖) is a general interpolation function for scattered data. Wavelets, spline

functions, and modified Shepard’s method56,65 can be employed for the interpolation. One
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can map f(r) to the molecular surface to visualize the protein flexibility.75 Alternatively,

one can compute the continuous atomic flexibility function by

F (r) =
1∑N

j=1wj(r)Φ(‖r− rj‖; ηij)
, r ∈ ΩE.(3.14)

Similarly, we can also construct a continuous multiscale flexibility function,

f(r) = b+
∑
n=1

an∑N
j=1 w

n
j Φ(‖r− rj‖; ηn)

.(3.15)

One can map this continuous multiscale flexibility function onto a molecular surface to

analyze the flexibility of the molecule.

3.2 FRI correlation maps or matrices

Similar to the cross correlations of GNM and other methods, FRI correlation maps com-

puted using Eq. (3.1) qualitatively reflect the three-dimensional structure of a protein. As a

consequence, distinct secondary structures such as α helices and β-sheets exhibit character-

istic patterns. After some studying of the patterns it is possible to approximate a proteins

secondary and tertiary structure from the patterns of the correlation map alone. However,

unlike the cross correlations of GNM, FRI correlation maps are able to offer more quanti-

tative structural information. In fact, since the kernel used to generate the map is known,

the distances between all atoms can be calculated and the three-dimensional structure can

be reconstructed from the correlation map. Figure 3.1: displays four examples of correla-

tion maps next to their corresponding three-dimensional structure. The scale-bars of the

correlation maps include distance values to emphasize the preservation of the 3D structural

information.

As stated previously, each secondary structure exhibits a distinct pattern in the corre-

lation maps. The pattern for an α helix is shown in the first row of Fig. 3.1:. The α

helix creates a band of high correlation extending about 4 amino acids in either direction

from the diagonal. The correlation has a local maximum at the third neighbor residue, due
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Figure 3.1: Correlation maps and secondary structure representations for four protein struc-
tures. Structures used include the alpha-spectrin SH3 domain, the tetramerization domain
of the p53 tumor supressor, the B1 immunoglobulin-binding domain of streptococcal protein
G and a DNA binding protein from Methanococcus jannaschii, from left to right, top to bot-
tom. Correlation maps are generated using Eq. (3.5) with υ=2.5 and η=1.0Å . Secondary
structure visualizations are generated with VMD.34 Colors represent distance and correlation
values for each pair of atoms. The residue numbers for each Cα are listed along the x- and
y-axes. The protein are displayed in VMD’s “new cartoon” representation and colored by
secondary structure determined by STRIDE. The color scheme for secondary structure is:
Purple - α helix, blue - 3(10) helix, yellow - β-sheet, cyan - turn, white - coil.
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to the structure of the α helix (3.6 amino acid residues per turn). Therefore, the peak at

the third residue serves as another signature of an α helix in the FRI correlation map. An

increase in correlation between two such neighboring atoms compared to other neighboring

pairs indicates the interaction of the α helix and another component. For example, in the

third row of Fig. 3.1:, the correlation strength between 29th Cα and 32th Cα is higher, due

to interaction of 29th Cα with the third and fourth beta sheets. This is an example of how

this type of correlation kernels reflects tertiary structure information.

Other folds such as β-sheets are also easily identified by distinct patterns. One can easily

distinguish parallel β-sheets from anti-parallel β-sheets by their patterns with this method.

The second row of Fig. 3.1: is a good example of the pattern generated by anti-parallel

β-sheets. Anti-parallel β-sheets appear as lines that are perpendicular to the diagonal of the

map and the intersection of the two lines of high correlation are the turns between each β

strand. Parallel β-sheets appear as lines parallel to the diagonal. In the third row of Fig.

3.1:, an anti-parallel β-sheet is formed by the first and last ten amino acids resulting in a

line in the top left and bottom right of the correlation matrix.

The last two rows of Fig. 3.1: both display complex patterns which reflect not only

secondary structure information but also the three dimensional arrangement of the secondary

structure features. Clearly from the last correlation map, the first β-sheet interacts strongly

with the first α helix and the second β-sheet in a parallel manner. It also interacts to a lesser

degree with the second α helix and with the last β-sheet in an anti-parallel manner. These

patterns and the stabilizing forces from the interactions they represent are lost if one uses a

contact or Kirchoff matrix based method instead of a monotonically decreasing radial basis

function based correlation map.
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3.3 Fast flexibility-rigidity index (fFRI)

As discussed in our earlier work,75 the original FRI algorithm has the computational

complexity of O(N2), mainly due to the construction of the correlation matrix. In the

present work, we propose a fast FRI (fFRI) algorithm, which computes only the significant

elements of the correlation matrix and at the same time maintains the accuracy of the

method. As a result, the computational complexity of the fFRI algorithm is of O(N).

The essential idea is to partition the residues in a protein into cubic boxes according

to their spatial locations. For each residue in a given box, we only compute its correlation

matrix elements with all residues within the given box and with all residues in the adjacent

26 boxes. The accuracy and efficiency of this approach are determined by the box dimension.

We select a box size of R such that

Φ(R; η) ≤ ε(3.16)

where ε > 0 is a given truncation error. Therefore, for generalized exponential functions

(3.4), we have

R ≥ η

(
ln

1

ε

) 1
κ

.(3.17)

If we set ε = 10−2, we have R ≈ 4.6η for κ = 1 and R ≈ 2.15η for κ = 2. Note that different

κ values have different optimal η values. The higher the κ value is, the larger the optimal η

is.

Similarly, for generalized Lorentz functions (3.5), we choose the box size

R ≥ η

(
1− ε
ε

) 1
υ

.(3.18)

Again, if we set ε = 10−2, we have R ≈ 10η for υ = 2 and R ≈ 4.6η for υ = 3.

An optimal R should balance accuracy and efficiency. In Section 4.2, it is found that

the selection of R = 12Å is near optimal for both exponential and Lorentz functions. In

Algorithm , we present a pseudocode to illustrate the truncation algorithm of the fFRI.
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Algorithm 1: fFRI algorithm

Input: atoms(N) . XYZ coordinates from PDB file

mincoor ← minval(atoms) . Compute dimensions of bounding box
maxcoor ← maxval(atoms)
R← boxsize . Set size of grid
Nbox← ceiling((maxcoor−mincoor)/R) . Compute number of boxes in each direction

for ii← 1, Natoms do
i, j, k ← ceiling((atoms(ii)−mincoor/R)) . Count the number of atoms in each box
Natoms(i, j, k)← Natoms(i, j, k) + 1

end for

for k ← 1, Nbox[3] do
for j ← 1, Nbox[2] do

for i← 1, Nbox[1] do
allocate(box(i, j, k)) . Allocate space for each box

end for
end for

end for

for ii← 1, Natoms do . Copy coordinates to appropriate box based on 3D coordinates
i, j, k ← ceiling((atoms(ii)−mincoor)/R)
box(i, j, k)← atoms(ii)

end for

for k ← 1, Nbox[3] do . Iterate over boxes
for j ← 1, Nbox[2] do

for i← 1, Nbox[1] do

for na ← 1, Natoms(i, j, k) do . Iterate over atoms in current box

for n← k − 1, k + 1 do . Iterate over adjacent boxes
for m← j − 1, j + 1 do

for l← i− 1, i+ 1 do

for nb ← 1, Natoms(l,m, n) do . Iterate over atoms in
adjacent boxes

dist← distance(box(i, j, k)(na), box(l,m, n)(nb))
FRI(na)← kernel(dist)

end for

end for
end for

end for

end for

end for
end for

end for
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3.4 Multiscale flexibility-rigidity index (mFRI)

The basic idea of multiscale FRI (mFRI) is quite simple. Since macromolecules are

inherently multiscale in nature, we utilize multiple correlation kernels that are parameterized

at multiple scales to characterize the multiscale flexibility of macromolecules

fni =
1∑N

j=1w
n
j Φn(‖ri − rj‖; ηnj )

,(3.19)

where wnj , Φn(‖ri− rj‖; ηnj ) and ηnj are the corresponding quantities associated with the nth

kernel. We seek the minimization of the form

Minan,b

∑
i

∣∣∣∣∣∑
n

anfni + b−Be
i

∣∣∣∣∣
2
(3.20)

where {Be
i } are the experimental B-factors. In principle, all parameters can be optimized.

For simplicity and computational efficiency, we only determine {an} and b in the above

minimization process. For each kernel Φn, wnj and ηnj will be selected according to the type

of particles.

Specifically, for a simple Cα network, we can set wnj = 1 and choose a single kernel

function parametrized at different scales. The predicted B-factors can be expressed as

BmFRI
i = b+

∑
n=1

an∑N
j=1 Φ(‖ri − rj‖; ηn)

.(3.21)

The difference between Eqs. (3.19) and (3.21) is that, in Eqs. (3.19), both the kernel and

the scale can be changed for difefrent n. In contrast, in Eq. (3.21), only the scale is changed.

One can use a given kernel, such as

Φ(‖r− rj‖; ηn) =
1

1 + (‖r− rj‖/ηn)3 ,(3.22)

to achieve good multiscale predictions.

3.5 Anisotropic flexibility-rigidity index (aFRI)

In this section, we propose a new anisotropic model based on the FRI method. In

existing anisotropic methods, the Hessian matrix is always global so the matrix contains all
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the 3N × 3N elements for N particles in molecule. In the aFRI model, the Hessian matrix

is inherently local and adaptive. Its size may vary from 3 × 3 for a completely local aFRI

to 3N × 3N for a complete global aFRI, depending on the need of a physical problem or

computational resources. More local Hessian matrices are smaller and can be solved much

faster due to the poor scaling of matrix solving algorithms.

To build the adaptive matrices of aFRI, partition all the N particles in a molecule into

a total of M clusters {c1, c2, · · · , ck, · · · , cM}. Cluster ck has Nk particles or atoms so that

N =
∑M

k=1Nk. A cluster may be a region of physical interest in a molecule such as an alpha

helix, a domain, or a binding site of a protein. One of two extreme cases is that there is

only one particle in each cluster. In that case there are N clusters. The other case is that

there is only one cluster containing the entire molecule. The result is a Hessian matrix for

any size cluster that can be solved individually and retains some information about other

cluster properties in the values of the diagonal. For example, if we are interested in the

thermal fluctuation of a particular cluster ck with Nk particles or atoms, we can find 3Nk

eigenvectors for the cluster. Let us keep in mind that each position vector in R3 has three

components, r = (x, y, z). We denote

Φij
uv =

∂

∂ui

∂

∂vj
Φ(‖ri − rj‖; ηij), u, v = x, y, z; i, j = 1, 2, · · · , N.(3.23)

Note that for each given ij, we define Φij = (Φij
uv) as a local anisotropic matrix

(3.24) Φij =


Φij
xx Φij

xy Φij
xz

Φij
yx Φij

yy Φij
yz

Φij
zx Φij

zy Φij
zz

 .

Since rigidity and flexibility can be both anisotropic, it is natural to propose two different

aFRI algorithms based on a rigidity Hessian matrix and a flexibility Hessian matrix.
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3.5.1 Anisotropic rigidity

Anisotropic rigidity is defined by a rigidity Hessian matrix for an arbitrary cluster ck.

Let us denote (µijuv(ck)) a rigidity Hessian matrix for cluster ck. Its elements are chosen as

µijuv(ck) = −wijΦij
uv, i, j ∈ ck; i 6= j;u, v = x, y, z(3.25)

µiiuv(ck) =
∑N

j=1wijΦ
ij
uv, i ∈ ck;u, v = x, y, z(3.26)

µijuv(ck) = 0, i, j /∈ ck;u, v = x, y, z.(3.27)

The Hessian matrix (µijuv(ck)) is of 3Nk × 3Nk dimensions. Note that the diagonal part,

µiiuv(ck), has built in information from all the particles in the system, even if the cluster is

completely localized, Nk = 1, ∀k.

A test of the anisotropic rigidity method is to check if it works for B-factor prediction.

To predict B-factors with anisotropic rgidity we collect the diagonal terms of the rigidity

Hessian matrix

µidiag = Tr
(
µiuv
)

(3.28)

=
N∑
j=1

wij
[
Φij
xx + Φij

yy + Φij
zz

]
.(3.29)

We then define a set of anisotropic rigidity (AR) based flexibility indices by

fAR
i =

1

µidiag

.(3.30)

B-factors can be predicted with a set of {fAR
i } by using the linear regression in Eq. (3.11).

3.5.2 Anisotropic flexibility

To analyze biomolecular anisotropic motions in parallel to ANM, we need to examine

their anisotropic flexibility. To this end, we further define a flexibility Hessian matrix F(ck)
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for cluster ck as

Fij(ck) = − 1
wij

(Φij)−1, i, j ∈ ck; i 6= j;u, v = x, y, z(3.31)

Fii(ck) =
∑N

j=1
1
wij

(Φij)−1, i ∈ ck;u, v = x, y, z(3.32)

Fij(ck) = 0, i, j /∈ ck;u, v = x, y, z.(3.33)

where (Φij)−1 denote the unscaled inverse of matrix Φij such that Φij(Φij)−1 = |Φij|. Similar

to anisotropic rigidity, the diagonal part Fii(ck) has built-in information from all particles in

the system. Therefore, even if the partition of clusters is completely localized (N clusters),

correlation among atomic motions is retained. By diagonalizing F(ck), we obtain 3Nk eigen-

vectors for the Nk particles in cluster ck. Since the selection of ck is arbitrary, eigenvectors

of all other clusters can be attained using the same procedure.

To obtain the B-factor prediction from this anisotropic flexibility, we define a set of

anisotropic flexibility (AF) based flexibility indices by

fAF
i = Tr (F(ck))

ii ,(3.34)

= (F(ck))
ii
xx + (F(ck))

ii
yy + (F(ck))

ii
zz .(3.35)

Then Eq. (3.11) is employed to obtain B-factor predictions.

In this work, we only consider the coarse-grained model in which each residue is repre-

sented by its Cα. To further simply the model, the differences between residues are ignored.

The parameter wij is assumed to be 1 and ηij is set to a constant η.

3.6 Generalized Gaussian network models (gGNMs)

To establish notation and facilitate new development, let us present a brief review of

the GNM and FRI methods. Consider an N -particle coarse-grained representation of a

biomolecule. We denote {ri|ri ∈ R3, i = 1, 2, · · · , N} the coordinates of these particles and

rij = ‖ri− rj‖ the Euclidean space distance between ith and jth particles. In a nutshell, the
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GNM prediction of the ith B-factor of the biomolecule can be expressed as4,5

BGNM
i = a

(
Γ−1
)
ii
,∀i = 1, 2, · · · , N,(3.36)

where a is a fitting parameter that can be related to the thermal energy and (Γ−1)ii is the

ith diagonal element of the matrix inverse of the Kirchhoff matrix,

Γij =



−1, i 6= j and rij ≤ rc

0, i 6= j and rij > rc

−
∑N

j,j 6=i Γij, i = j

,(3.37)

where rc is a cutoff distance. The GNM theory evaluates the matrix inverse by (Γ−1)ii =∑N
k=2 λ

−1
k

[
uku

T
k

]
ii
, where T is the transpose and λk and uk are the kth eigenvalue and

eigenvector of Γ, respectively. The summation omits the first eignmode whose eigenvalue is

zero.

The FRI prediction of the ith B-factor of the biomolecule can be given by49,75

BFRI
i = a

1∑N
j,j 6=iwjΦ(rij; η)

+ b,∀i = 1, 2, · · · , N,(3.38)

where a and b are fitting parameters, fi = 1∑N
j,j 6=i wjΦ(rij ;η)

is the ith flexibility index and

µi =
∑N

j,j 6=iwjΦ(rij; η) is the ith rigidity index. Here, wj is an atomic number depended

weight function that can be set to wj = 1 for a Cα network, and Φ(rij; η) is a real-valued

monotonically decreasing correlation function satisfying the following admissibility condi-

tions

Φ(rij; η) = 1 as rij → 0(3.39)

Φ(rij; η) = 0 as rij →∞,(3.40)

where η is a scale parameter. Delta sequences of the positive type73 are good choices. Many

radial basis functions are also admissible.49,75 Commonly used FRI correlation functions
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Figure 3.2: Illustration of admissible correlation functions. (a) Correlation functions ap-
proach the ILF as κ→∞ or υ →∞ at η = 7Å. (b) Effects of varying scale value η. Local
correlation is obtained with large υ and small η values. Whereas, nonlocal correlation is
generated by small υ and large η values.

include the generalized exponential functions

Φ(rij; η, κ) = e−(rij/η)κ , κ > 0,(3.41)

and generalized Lorentz functions

Φ(rij; η, υ) =
1

1 + (rij/η)υ
, υ > 0.(3.42)

A major advantage of the FRI method is that it does not resort to mode decomposition and

its computational complexity can be reduced to O(N) by means of the cell lists algorithm

used in fast FRI (fFRI).49 In contrast, the mode decomposition of NMA and GNM has the

computational complexity of O(N3).

To further explore the theoretical foundation of GNM, we examine the parameter limits

of the generalized exponential functions (3.4) and the generalized Lorentz functions (3.5).

e−(rij/η)κ → Φ(rij; rc) as κ→∞(3.43)

1

1 + (rij/η)υ
→ Φ(rij; rc) as υ →∞,(3.44)
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where rc = η and Φ(rij; rc) is the ideal low-pass filter (ILF) used in the GNM Kirchhoff

matrix

Φ(rij; rc) =


1, rij ≤ rc

0, rij > rc

.(3.45)

Relations (3.43) and (3.44) connect FRI correlation functions to the GNM Kirchhoff matrix.

It is important to note that the ILF used in GNM is an admissible FRI correlation function.

Mathematically, the ILF is a special real-valued monotonically decreasing correlation func-

tion and also satisfies admissibility conditions (3.2) and (3.3). In fact, all FRI correlation

functions are low-pass filters as well. Therefore, both GNM and FRI admit low-pass filters

in their constructions. GNM is very special in the sense that there is only one ILF used even

though there are infinitely many other low-pass filters. Figure 3.2: illustrates the behavior

and relationship of the above low-pass filters or correlation functions. It is shown that the

generalized exponential function and generalized Lorentz function may be longer-ranging

and the former decays faster than the latter for a given power. The combination of a low

power value and a large scale gives rise to non-local correlations. Earlier tests indicate that

a parameterization of υ = 3 and η = 3Å for Lorentz kernel FRI provides accurate flexibility

predictions on a set of 364 proteins relative to GNM.49

To describe the mathematical foundation and relationship between the GNM and FRI

methods, we consider a generalized Kirchhoff matrix76

Γij(Φ) =


−Φ(rij; η), i 6= j

−
∑N

j,j 6=i Γij(Φ), i = j

,(3.46)

where Φ(rij; η) is an admissible FRI correlation function. The generalized Kirchhoff matrix

includes the Kirchhoff matrix as a special case. It is important to note that each diagonal

element is an FRI rigidity index: µi = Γii(Φ). Therefore, the generalized Kirchhoff matrix
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provides a unified starting point for both the FRI and gGNM methods. However, the

difference between the gGNM and FRI methods is that to predict B-factors, the gGNM

requires the calculation of the inverse of the Kirchhoff matrix (3.37), whereas, the FRI takes

the direct inverse of only the diagonal elements of the generalized Kirchhoff matrix (3.46).

3.7 Multiscale Gaussian network model (mGNM)

The idea behind mGNM is to build a multiscale Kirchhoff matrix, which incorporates

various scales instead of a single one. Due to the intrinsic relation between FRI and gGNM

discussed in Section 3.6, we make use of the coefficients approximated from the FRI algorithm

to construct a multiscale Kirchhoff matrix. In this section, we present two types of algorithms

to construct an mGNM method.

3.7.1 Type-1 mGNM

First, we assume that the multiscale Kirchhoff matrix takes the form

(3.47) Γ =
∑
n

anΓn,

where an and Γn =
(
Γij(Φ

n(rij; η
n
j ))
)

are the fitting coefficient and generalized Kirchhoff

matrix associated with the nth kernel Φn(rij; η
n)) parameterized at an appropriate scale ηn.

We use the mFRI method to evaluate coefficients {an}. Basically, we have multiscale rigidity

index µi =
∑

n a
nΓnii. Then, {an} are determined via the minimization Min

∑
i

∣∣∣ 1
µi
−Be

i

∣∣∣2,

which is equivalent to

Minan

∑
i

∣∣∣∣∣∑
n

anΓnii −
1

Be
i

∣∣∣∣∣
2
 ,(3.48)

assuming that Be
i > 0. With the multiscale Kirchhoff matrix given in Eq. (3.47), we carry

out routine GNM analysis as described in Eq. (3.36).
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3.7.2 Type-2 mGNM

Another algorithm for constructing an mGNM method makes use of fitting coefficients

from mFRI directly via the relationship between biomolecular local packing density and

flexibility. Basically, we choose several kernels parameterized at various scales and evaluate

the best fitting coefficients {an} and b, with the experimental B-factors using Equation

(3.48). The resulting multiscale flexibility index is then used to construct the generalized

Kirchhoff matrix as follows

∑
n

anfni + b =
1

Γii
,∀i = 1, 2, · · · , N.(3.49)

With the relation fni = 1
µni
,∀i = 1, 2, · · · , N , the above expression can be rewritten as,

Γii =
1∑

n
an

µni
+ b

,∀i = 1, 2, · · · , N.(3.50)

Usually, we can use two or three kernels parameterized at different scales. For instance, if

we use two kernels, we can further rewrite the above expression as,

Γii =
µ1
iµ

2
i

a1µ2
i + a2µ1

i + bµ1
iµ

2
i

,∀i = 1, 2, · · · , N.(3.51)

Now the problem is to determine the non-diagonal terms of a multiscale Kirchhoff ma-

trix. One simple approach is to subdivide either of the two rigidity indices. For exam-

ple, we can choose to use the rigidity index for the first kernel. Since we have µni =∑N
j,j 6=iw

n
j Φn(rij; η

n), n = 1, 2, diagonal term of the mGNM matrix can also be expressed as

Γii =
∑
j,j 6=i

{w1
jΦ

1(rij; η
1)}µ2

i

a1µ2
i + a2µ1

i + bµ1
iµ

2
i

,∀i = 1, 2, · · · , N.(3.52)

In this way, the full multiscale Kirchhoff matrix can be expressed as

Γij =


− {w

1
jΦ1(rij ;η

1)}µ2i
a1µ2i+a

2µ1i+bµ
1
iµ

2
i
, i 6= j

−
∑N

j,j 6=i Γij, i = j

.(3.53)
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The problem with the matrix in Eq. (3.53) is that the resulting multiscale Kirchhoff matrix

is not symmetric, which may lead to computational difficulty. To avoid a non-symmetric

matrix, we propose an alternative construction to preserve the symmetry of the matrix.

The alternative is to determine the diagonal terms Γii from Eq. (3.50) and then on each

row, equally distribute the diagonal term into the non-diagonal parts, under the condition

that the resulting matrix remains symmetric. This is shown as an iterative scheme in .

Algorithm 2: Type-2 mGNM multiscale Kirchhoff matrix

Input: Γii, i = 1, 2, · · · , N . Diagonal terms are calculated from mFRI

for j ← 2, N do . For the first row and first line of multiscale Kirchhoff matrix.
Γ1j = Γ11

N−1
. We equally distribute the diagonal terms into non-diagonal parts.

Γj1 = Γ1j . Use the symmetry property.
end for

for i← 2, N − 1 do
sum = 0
for k ← 1, i− 1 do

k1 = k
k2 = k + 1
sum = sum+ Γk1k2 . Summarize over terms already determined from previous

iterations.
end for
for j ← i+ 1, N do

Γij = Γii−sum
N−i . We equally distribute the diagonal terms into non-diagonal parts.

Γji = Γij . Use the symmetry property.
end for

end for

In the construction of the Type-2 mGNM, only the diagonal terms are fixed and deter-

mined using mFRI. In B-factor prediction, the non-diagonal values can be very flexible as

long as they satisfy the network constraint that the summation of their values equals the

diagonal term. We believe this is due to the fact that the success of mGNM in B-factor

prediction is determined mostly by the packing information stored in the diagonal terms

of its Kirchhoff matrix. In the following discussion, we only use the symmetric scheme in

Algorithm for the Type-2 mGNM.
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3.8 Multiscale anisotropic network model (mANM)

In mANM, the generalized local 3× 3 Hessian matrix Hn
ij associated with the nth kernel

can be written as

Hn
ij = −Φn(rij; η

n)

r2
ij


(xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)

(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)

(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)

 ∀ i 6= j.

(3.54)

Note that Hinsen31 has proposed a special case: Φn(rij; η
n) = e−(

rij
ηn )

2

. We further take the

diagonal parts as Hn
ii = −

∑
i 6=j H

n
ij, ∀i = 1, 2, · · · , N . Basically, it is the summation of all

the non-diagonal local matrices.

The key component of mANM is to construct a multiscale Hessian matrix employing

several Hessian matrices parameterized at different scales and determine their coefficients in

the final multiscale Hessian matrix by using mFRI. It should be noticed that for B-factor

prediction, each 3 diagonal terms from the inverse Hessian matrix are summarized together.

Therefore, in the Hessian matrix based mFRI, the rigidity index associated with the nth

kernel is constructed as the summation of the diagonal terms,

µni =
∑
i 6=j

Φn(rij; η
n)

r2
ij

[(xj − xi)2 + (yj − yi)2 + (zj − zi)2] =
∑
i 6=j

Φn(rij; η
n),∀i = 1, 2, · · · , N.

(3.55)

Indeed, the rigidity index of mANM defined above is the same as the mFRI rigidity index.

Therefore, as far as B-factor prediction is concerned, the mFRI approach for constructing

an mGNM should work for constructing an mANM as well.

We adopt the approach used in the Type-1 mGNM construction to construct an mANM.

We propose a multiscale Hessian matrix H =
∑

n a
nHn, for which the coefficients an should
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Read in pdb data

Select kernel functions φn and scale parameters ηn

Calculate rigidity index µni and flexibility index fni

Evaluate fitting coefficients an and b via the minimization

Construct multiscale Kirchhoff matrix Γ for mGNM (or Hessian matrix H for mANM)

Eigenvalue decomposition

mGNM B-factor prediction (or mANM collective mode analysis)

Figure 3.3: Work flow of basic procedure in mGNM and mANM.

be evaluated from

Minan

∑
i

∣∣∣∣∣∑
n

anµni −
1

Be
i

∣∣∣∣∣
2
 .(3.56)

Again, different matrices {Hn} should be parameterized at different scales.

To clarify the proposed multiscale Gaussian network model and multiscale anisotropic

network model, we present a flow chart in Fig. 3.3: to illustrate the basic procedure that

outlining the methods.

3.9 gGNM mode calculations for predicting hinges

In a plot of gGNM mode values, hinges are often observed where the values of a gGNM

mode switch sign and change value drastically. Furthermore there should be a significant

number of negative values to one side of the sign switch and positive values on the other

side to indicate an actual separation between domains. Otherwise, there may be extraneous

36



hinge predictions in regions that have many values close to zero and may switch signs many

times over the span of just a few residues.

To more easily find potential hinge residues from gGNM modes as described above and

in a manner that filters out the minor sign changes, we utilize the cumulative sum of a mode

then determine the residue number corresponding to the maximum and/or minimum values

of that series of cumulative sums. This technique can identify any number of hinges as long

as the number of peaks is identified correctly. For this study, the code detects only the

maximum and minimum of the cumulative sum of the first mode which limits detection to

two hinges, however this should not affect this study except to possibly limit false positive

predictions because the proteins used for testing have at most two major hinge regions.

Also, any residues too near either end of the molecule to be separating domains, i.e. residues

within 35 residues of the end, are removed from the set of predicted hinges.

The eigenvalues of the relevant modes can be very similar in some cases while the number

and/or locations of hinges predicted by those modes is different. In this case we may equally

consider all modes with similar eigenvalues. This may lead to additional false positives but

is necessary for ensuring maximum sensitivity which is a priority.

3.10 Machine learning and feature selection

The features we test in an attempt to improve on the KFC2 SVM model include vari-

ous metrics derived from FRI flexibility predictions, FRI-mode calculations, hydrophobicity,

sequence based statistics and details of the structure.

Features derived from FRI flexibility predictions include the FRI and mFRI flexibility

indices, FRIf and mFRIf, FRI and mFRI B-factor fitted values and their difference, FRI,

mFRI and dFRI, and the average mFRI B-factor fitted value within six Angstroms, avgFRI.

Features derived from FRI-mode calculations are created from the first two lowest eigen-

valued modes of motion. The first lowest eigenvalued mode typically corresponds to the
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most important or largest in amplitude motion, therefor we derive most of the features from

this mode. The features derived from the first mode include the raw values of the mode

residue-by-residue, Mode 1, the cumulative sum of the mode values, cMode 1, the residue

numbers where Mode 1 is at a local maximum or minimum, ishinge, all residues within three

of ishinge, ishinge3, and finally the number of residues to the nearest positive ishinge value,

hingedist. Also included are features derived from mode 2, Mode 2 and cMode 2.

The hydrophobicity of individual residues and regions of a protein is the main driving

force behind folding of a protein structure. Therefore, we suspect that hinge residues, which

occupy specific positions between domains, are under some pressure to maintain a certain

level of hydrophobicity, likely high hydrophobicity due to the sovlent exposed nature of many

hinges. The hydrophobicity derived features we test in this study include the hydrophobicity

of a single residue, HP1, and the average hydrophobicity for residues in a six Angstrom

sphere around a residue, HP6. Two other metrics are also tested that describe the area

within 6 Angstroms of a residue, RES6 and ROT6, the number of residues and the number of

rotatable bonds in that region. These features have been used in machine learning models for

predicting protein-protein interaction hotspots and showed relatively high predictive worth.

In addition to RES6 and ROT6, we also look at solvent accessible surface area (SASA)

based metrics to describe the area around a residue. Using the POPS software package we

generate features for hydrophobic SASA, PhobSASA, hydrophilic SASA, PhilSASA, total

SASA, TotSASA, number of overlapping atoms, N(ovrl), and the total surface area of the

residue, Surf.

Finally, we include PSSM features, one feature for each amino acid log likelihood at each

position. PSSM derived features are named as A (PSSM), G (PSSM), etc.

A wide range of metrics, derived from various molecular properties, were considered as

potentially useful for hinge prediction. These metrics were compared by first filtering by
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F-score threshold then ranking the remaining features by the Random Forest importance

value.
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CHAPTER IV. Validation and Applications

4.1 Basic FRI method

4.1.1 FRI B-factor prediction

To validate the original FRI method, we compare the B-factor predictions obtained from

FRI with experimental B-factors from protein X-ray crystallography experiments as shown

in Eq. (4.6). A set of 263 proteins was collected from the PDB with preference for high

resolution (1.5 Å) protein-only structures that lack structural co-factors. The impact of co-

factors on protein stability requires an all atom model and is a topic that will be explored in

our future work. The set of 263 proteins was converted to a Cα only format and when atoms

have multiple coordinates with occupancy <1.0 the highest occupancy coordinate was kept

and all others were discarded. This is a potential source of error in the B-factor predictions.

However some proteins with multiple coordinates for atoms were among the highest scoring

which suggests that the impact in most cases is small.

The correlation coefficients of B-factor prediction are displayed in Fig. 4.1: for both ex-

ponential (expo) and Lorentz kernels. Each protein was tested with both the exponential

and Lorentz correlation kernels across a range of parameter values of κ and η for the expo-

nential kernel and υ and η for the Lorentz kernel. Correlation coefficient scores for B-factor

predictions below 0.5 account for just 19 of out 263 proteins for the Lorentz kernel based

FRI and 14 out of 263 for the exponential kernel based FRI and are not shown in Fig. 4.1:.

The reasons for these low scores are the subject of future research and are likely related to

the influence of crystal packing effects, structural ligands and side-chain effects that are not

approximated well by the Cα course grained model. The accuracy of B-factor prediction

is also dependent upon the quality of the experimental data. If multiple coordinates are

reported for an atom along with multiple B-factors, then we do not have high confidence in
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Figure 4.1: Correlation coefficients for experimental vs predicted B-factors using the Lorentz
kernel (left) and exponential (right) kernel. The test set consists of 263 Cα only PDB files.
Scores below 0.5 are not shown. For the Lorentz kernel, υ values range from 0.5 to 10.0 at
an interval of 0.5 and η values range from 1.0Å to 40.0Å at an interval of 1.0Å . For the
exponential kernel, κ values range from 0.5 to 10.0 at an interval of 0.5 and η values range
from 0.5Å to 20.0Å at an interval of 0.5Å .

the B-factor and thus the prediction will appear to be less accurate.

A comparison of the experimental vs predicted B-factors for two proteins, 1DF4 and

2Y7L, is shown in Fig. 4.2: to demonstrate the accuracy of our FRI method. These two

proteins were in the top five highest correlation coefficients for B-factor predictions using the

exponential (2Y7L: 0.928, 1DF4: 0.909) and Lorentz (2Y7L: 0.928, 1DF4: 0.917) kernels. It

can be seen from the correlation scores and Figs. 4.1: and 4.2: that both correlation kernels

give similar results, especially for these highly accurate predictions.

B-factor prediction was calculated for each protein at a range of parameter values in

each kernel. The Lorentz kernel requires parameters, υ and η, while the exponential kernel

requires κ and η. The aim is to find values for these parameters that are suitable for most or

all proteins so that the method may be made parameter free. The parameters which result

in the highest correlation coefficient for each protein are displayed in Fig. 4.3: and Fig. 4.5:

for the Lorentz and exponential kernels, respectively.

The optimal value for υ in the Lorentz kernel is found to be near 2.5 for most proteins
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Figure 4.2: Experimental B-factors (black) vs predicted B-factors (red) using the Lorentz
(top) and exponential (bottom) correlation kernels. The structures used for comparison are
1DF4 (left) and 2Y7L (right). For these comparisons, the optimal parameters were used for
υ, κ and η based on the parameter searches for each correlation kernel. For the Lorentz
kernel, υ=1.5 and η=2.0Å are the parameters used for 1DF4 and υ=1.5 and η=19Å are used
for 2Y7L. For the exponential kernel, κ=0.5 and η=1.0Å are employed for 1DF4 and κ=0.5
and η=2.5Å for 2Y7L.
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Figure 4.3: Optimal υ parameter value for 263 proteins using the Lorentz correlation kernel.
B-factor prediction was calculated for υ values ranging from 0.5 to 10 at an interval of 0.5
and η values ranging from 1.0Å to 40.0Å at an interval of 1.0Å .
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Figure 4.4: Phase diagram for Lorentz kernel optimal parameter values υ and η colored by
the size of structure and with shapes corresponding to correlation coefficient. Diamond -
0.5, downward triangle - 0.6, upward triangle - 0.7, square - 0.8 , circle - 0.9. υ values range
from 0.5 to 10.0 at an interval of 0.5 and η values range from 1.0Å to 40Å at an interval of
1.0Å
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Figure 4.5: Optimal parameters for 263 structures using the exponential correlation kernel.
Here κ values range from 0.5 to 10.0 at an interval of 0.5. η values range from 0.5Å to
20.0Å at an interval of 0.5Å.

in the test set. The optimal value for η is typically the highest or lowest tested. The results

of the parameter search for υ and η are shown in Fig. 4.3:. This result is a close match

to the findings of Yang et al.79 and their parameter free ENM (pfENM) model. In the

pfENM, spring constants are scaled by an inverse power. Yang et al. tested powers 1-10

and found second and third inverse power relationships were the most accurate for B-factor

predictions.79 In our study we also test non-integer powers over the range 0.5 to 10.0 and

come to a similar conclusion. The optimal values for η in these tests The optimal value for

υ is plotted against the optimal value for η and colored by the size of protein in Fig. 4.4:.

There is no clear pattern based on protein size except that some smaller proteins (under 100

atoms) prefer very high values of υ which may be due to a lack of long range interactions.

For the exponential kernel, the optimal κ value for most proteins is between 0.5 and 1

while the optimal η values are more spread out with the majority of proteins having optimal

η values from 0.5Å to 8Å . This ambiguity in the optimal parameter value makes the choice

of parameters for a parameter free version difficult however the testing of the parameter

free exponential kernel method shows that it performs as well as the parameter free Lorentz

kernel methods. The optimal values for κ and η for all proteins in the test set are shown
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in Fig. 4.5:. Optimal values for κ are 0.5 or 1.0 in most cases with a significant peak at

κ=10 which is the highest value tested. Optimal values for η are more varied and there is no

clear choice for a parameter free version. There is a large peak at the highest η value tested

(η=20Å) as there was for κ however these two peaks do not correspond to the same set of

proteins. This point is illustrated in Fig. 4.6: which compares κ and η values. Figure 4.6:

also shows that there is no relationship between number of atoms or correlation coefficient

and the parameters κ and η. To further inform our choice of parameters for the parameter

free exponential method we look at the patterns of correlation scores for every κ and η value

combination in Fig. 4.7:. The parameter maps show that for most proteins the choice of

κ is most important and that when κ ≤ 1 there are many choices for η that result in very

similar correlation coefficients.

To test parameter free versions of the FRI method we chose υ=2.5 and η=1.0Å for the

Lorentz kernel and κ=1.5 and η=5.0Å for the exponential kernel. These choices were made

based on the parameter searches and limited tests of various parameter values. In Fig. 4.8:

we compare the exponential and Lorentz kernel performance based on correlation coefficients

from B-factor prediction. The correlation coefficients were highest overall when using the

exponential kernel with optimized parameters. The average correlation coefficient of B-factor

prediction using the exponential kernel is 0.681 using optimal parameters and 0.627 using

the parameter free version. The average correlation coefficient of B-factor prediction using

the Lorentz kernel is 0.668 using optimal parameters and 0.627 using the parameter free

version. The difference between the exponential and Lorentz kernels is small when using

optimized parameters with an average deviation of just 0.0182. The parameter free versions

of the kernels also produce very similar correlation coefficients with an average deviation of

0.0365.

The parameter free Lorentz and exponential kernels appear to have similar performance
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Figure 4.6: Phase diagram for exponential kernel optimal parameter values κ and η colored
by the size of structure and with shapes corresponding to correlation coefficient. Diamond -
0.5, downward triangle - 0.6, upward triangle - 0.7, square - 0.8 , circle - 0.9. κ values range
from 0.5 to 10.0 at an interval of 0.5 and η values range from 0.5Å to 20Å at an interval of
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Figure 4.8: Comparison of correlation coefficients calculated using optimal parameters for
both Lorentz and exponential correlation kernels. Average deviation = 0.0182 (left) and
0.0365 (right). For the Lorentz kernel optimal parameter search, υ values range from 0.5 to
10.0 at an interval of 0.5 and η values range from 1.0Å to 40.0Å at an interval of 1.0Å . For
the exponential kernel parameter search, κ values range from 0.5 to 10.0 at an interval of 0.5
and η values range from 0.5Å to 20.0Å at an interval of 0.5Å . The parameter free Lorentz
kernel uses υ=2.5 and η=1.0Å and the parameter free exponential kernel uses κ=1.5 and
η=5.0Å .

and these results do not indicate a clear advantage in using either kernel. In Fig. 4.9: we

compare the correlation coefficients from the parameter free and optimized versions of the

method for both correlation kernels. In each case the optimized method outperforms the

parameter free method no matter which kernel is used. Again this suggests that neither kernel

has an advantage over the other for this method. The maximal average deviation among

these methods is 0.0549, meaning that the parameter free exponential kernel captures 94%

of the best results generated by optimized Lorentz kernel for this set of proteins. Similarly,

the parameter free exponential kernel captures 94% of the best results from the optimized

exponential kernel. It is worthwhile to note that the parameter free Lorentz kernel (υ=2.5

and η=1.0Å ) is able to capture 95% of the best results generated by either the optimized

exponential or Lorentz kernel for this set of proteins. Therefore, it appears that the both

parameter free kernels are very robust for practical applications.
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Figure 4.9: Comparison of correlation coefficients calculated using optimal parameters and
parameter free versions of the method. The optimized correlation coefficients are the highest
scoring from a parameter search. For the Lorentz kernel optimal parameter search, υ values
range from 0.5 to 10.0 at an interval of 0.5 and η values range from 1.0Å to 40.0Å at an
interval of 1.0Å . For the exponential kernel parameter search, κ values range from 0.5 to
10.0 at an interval of 0.5 and η values range from 0.5Å to 20.0Å at an interval of 0.5Å . The
parameter free Lorentz kernel uses υ=2.5 and η=1.0Å and the parameter free exponential
kernel uses κ=1.5 and η=5.0Å . The line y = x is shown for reference. Points on the line
indicate little or no difference between optimized parameters and the parameter free results.
Average deviations are 0.0410, 0.0549, 0.0463, and 0.0540 (from left to right and from top
to bottom).
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Figure 4.10: Cα atoms of 1QD9 in VDW representation scaled by predicted B-factor (both
images) and colored with electrostatics (right). Larger VDW radii represent more flexible
atoms such as those near the surface of this soluble protein. Smaller VDW radii represent
more rigid atoms such as those in the core of the protein. On the right, atoms are colored
by electrotatics revealing two charged domains. First, the flexible outer amino acids have
some areas of positive charge that interact with the bulk solvent. Second, a highly negatively
charged portion of the protein core is highlighted in red. These charges are stabilized by
internal water molecules.

4.1.2 Rigidity and flexibility visualization

From the above analysis, the rigidity and flexibility indices can be obtained at coordinates

of Cα atoms in the protein. Such values can be utilized directly for visualization. For the

purpose of visualization, it is sufficient to plot either rigidity or flexibility. A large value of

the flexibility index can be represented by a large atomic radius in the visualization while a

small flexibility index corresponds a small atomic radius. Therefore, we scale atomic van der

Waals radii by their flexibility indices as shown in Fig. 4.10: for 1QD9. Clearly, Cαs located

near molecular boundary are more flexible.

Additionally, the flexibility index can be visualized together with electrostatic potential.
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Specifically, the flexibility is represented by the atomic size while the electrostatics is illus-

trated by color as shown in the right chart of Fig. 4.10:. There is a correlation between

flexibility and partial charge in this structure — charged residues are slightly less flexible.

From these figures we see the image of a typical soluble protein with flexible, partially charged

residues on the solvent-solute boundary and a less flexible, rigid core. It is well-known that

the partially charged flexible outer protein surface is responsible for many protein functions

in enzymes, cell signaling and ligand binding. Interestingly this soluble protein has a highly

charged core made up of many negatively charged residues interacting with a network of

water molecules. This results in a negatively charged, rigid core which is represented by

small, red VDW spheres.

Furthermore, in order to study the elastic dynamics, elastostatics, and collective motion

of a macromolecule, the continuous atomic rigidity and flexibility functions are required in

our multiscale multiphysics multiphysics and multidomain models. The spatially scattered

information at each Cα coordinate needs to be interpolated into continuous atomic rigidity

and flexibility functions. In this work, we employ the modified Shepard’s method to interpo-

late rigidity and flexibility values at Cα coordinates to build their continuous functions.56,65

The essence of Shepard’s method is to blend local interpolants with locally supported weight

functions. For example, the atomic flexibility function can be expressed as

F (r) =
N∑
i=1

Wi(r)Qi(r),(4.1)

where the locally supported weight function is defined as

Wi(r) =
pi(‖ r− ri ‖;Ri)∑N
i=1 pi(‖ r− ri ‖;Ri)

,(4.2)

pi(‖ r− ri ‖;Ri) =


(
Ri−‖r−ri‖
Ri‖r−ri‖

)2

, ‖ r− ri ‖< Ri,

0 , ‖ r− ri ‖≥ Ri.

(4.3)
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Here Ri > 0 is a constant radius with ith Cα as its center. Its value varies with i so as to

include different numbers of points into its influence domain when it is necessary.65

Our input data are a set atomic flexibility indices {fi} or the predicted B-factors {Bt
i}

located at Cαs. We denote r = (x, y, z), r ∈ SE a general position inside the elastic domain

of a macromolecule, and the local interpolant is a nodal function defined as,

Qi(r) = ai1x
2 + ai2y

2 + ai3z
2 + ai4xy + ai5xz + ai6yz + ai7x+ ai8y + ai9z + ai10,(4.4)

where aij are coefficients and Qi(r) is a quadratic polynomial function which interpolates

the predicted B-factors at neighboring set of Cα locations, namely

Qi(rj) = Bt
jδij(4.5)

where δij is the Kronecker delta function. For a given ith Cα, Eq. (4.5) is repeatedly

employed on all Cαs within the given sphere of radius Ri and results in a number of algebraic

equations. The algebraic equations are solved by using the weighted least square method,

which determines coefficients aij. For sufficiently large data, we can choose 32 surrounding

atomic flexibility indices to fit coefficients.65 Note that the atomic rigidity function (µ(r))

can be constructed in the same manner by replacing Bt
j with µj.

In Fig. 4.11: we compare an atomistic and a continuous representation for flexibility of

protein 1QD9. The molecular surface on the left is colored by X-ray B-factors, while the

molecular surface on the right is colored by the interpolated flexibility values. Overall, the

interpolated values mimic the B-factor pattern closely. However, the predicted flexibility

at the inner ring of the structure is higher than that given by X-ray B-factors due to the

fact water molecules fill part of the inner core in the full structure. The B-factor color map

is discontinuous. In contrast, the flexibility map generated with the FRI method has the

advantage of being continuous both on the surface and in the interior of the protein. The

atomic rigidity function and atomic flexibility function constructed in the present work will
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Figure 4.11: The molecular surface of Protein 1QD9 colored by B-factor (left) and continuous
FRI representation (right). The flexibility index is calculated using the Lorentz method
with υ=2.5 and η=1.0Å . Images generated by VMD using BWR color bar and scale 10
to 50 for B-factors and 0.75 to 0.90 for the flexibility index. In both images, blue regions
indicate low flexibility and red regions indicate high flexibility. On the left, B-factor is an
atomistic representation of flexibility. On the right, FRI is used to predict flexibility and
the continuum representation is mapped to the protein surface. The continuum prediction
matches the experimental flexibility pattern closely except for near the core of the protein
which contains some structural water not included in our model.
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be utilized to study macromolecular elastic dynamics, elastostatics and elastic vibration in

our future work.

4.2 Fast FRI method

4.2.1 fFRI parameter testing
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Figure 4.12: Parameter testing for exponential (Left chart) and Lorentz (Right chart) func-
tions. Average correlation coefficient of B-factor predctions of 365 proteins is plot against
choice of η for a range of values for κ or υ.

To analyze the best parameter for Lorentz and exponential functions, we study their

behavior in Fig. 4.12:, where each function is tested over a range of parameters. For

exponential type of functions, κ = 1 and η = 3Å give rise to a near optimal parameter-

free FRI. Similarly, for Lorentz type of functions, υ = 3, and η = 3Å offer near optimal

results. It is seen from Fig. 4.12: that exponential functions are quite sensitive to η values,

while Lorentz functions are relatively robust with respect to η. This study provides a basis

for the selection of parameter free FRI (pfFRI) schemes.

It is interesting to analyze the performance of the proposed fFRI in terms of accuracy and

efficiency. To this end, we first explore the impact of box size to the correlation coefficients
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Figure 4.13: The impact of box size to the average correlation coefficient for a set of 365
proteins. The fFRI is examined over a range of values for parameters (κ and υ) to illustrate
the relationship between accuracy and choice of box size R.

of a few fFRI schemes in Fig. 4.13:. For each given κ and υ, the best η found in Fig. 4.12:

is employed. It is seen from Fig. 4.13: that both exponential and Lorentz types of functions

are able to achieve their near optimal performance at R = 12Å . Therefore, we recommend

R = 12Å, η = 3Å and κ = 1 for the exponent type of fFRI method. Similarly, R = 12Å,

η = 3Å and υ = 3 are near optimal for Lorentz type of fFRI methods.

4.2.2 Comparison of B-factor predictions from fFRI, GNM and NMA

4.2.2.1 FRI vs GNM and NMA

In order to compare the FRI and GNM, we re-analyzed the structures from Park et al.52

with the GNM method with a cutoff value of 7 Å, the same value used by the authors. It

was found that some correlation coefficients were artificially low for GNM due to multiple

coordinates for some Cα atoms in some PDB data and missing Cα atoms in others. To

ensure a fair comparison between the FRI and GNM we re-analyzed the structures using

GNM after processing the PDB files to fix these issues. We removed all but the highest
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Figure 4.14: Comparison of correlation coefficients from B-factor prediction using GNM,
coarse-grained (Cα) NMA and FRI methods. Top left: pfFRI vs opFRI for 365 proteins;
Top right: opFRI vs GNM for 365 proteins; Bottom left: pfFRI vs GNM for 365 proteins;
Bottom right: pfFRI vs NMA for three sets of proteins used by Park et al.52 The correlation
coefficients for NMA are adopted from Park et al.52 for three sets of proteins. For optimal
FRI, parameter υ is optimized for a range from 0.1 to 10.0. For the parameter free version
of the FRI (pfFRI), we set υ = 3 and η = 3Å. The line y = x is included to aid in comparing
scores.
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occupancy coordinates for each atom and used every Cα atom from the original PDB files

to run the GNM B-factor prediction code and calculate corrected correlation coefficients. In

Tables 4.2:, 4.3: and 4.4:, optimal and parameter free FRI is compared to the GNM data

reported by Park et al.52 The newly calculated correlation coefficient is shown only if there

is a significant improvement using our processed PDB files. On the other hand, Tables 4.5:

through 4.9: list all correlation coefficients for GNM from our own tests using our processed

PDB files. These correlation coefficients are typically the same as those reported by Park

et al.52 although some have changed. The use of our processed PDB files leads to a slight

increase in the average scores for the GNM in our analysis.

Table 4.1: Average correlation coefficients for Cα B-factor prediction with FRI, GNM and
NMA for three structure sets from Park et al.52 and a superset of 365 structures.

PDB set opFRI pfFRI GNM NMA

Small 0.667 0.594 0.541 0.480
Medium 0.664 0.605 0.550 0.482
Large 0.636 0.591 0.529 0.494
Superset 0.673 0.626 0.565 NA

To directly compare the FRI with GNM and NMA, we calculated the correlation coef-

ficient of Cα B-factor predictions for the three structure sets taken from Park et al.52 To

further compare the FRI and GNM, we also calculated the accuracy of these two methods

on a superset of 365 structures. Two versions of the FRI are used for these tests. The first,

optimal FRI (opFRI), searches a wide range of parameters for the highest scoring parameter

and the second, parameter free FRI (pfFRI), uses υ = 3 and η = 3Å in all cases. The

correlation coefficients for three sets proposed by Park et al. are reported in Tables 4.2:, 4.3:

and 4.4: for FRI, GNM and NMA. The results of the B-factor predictions for the superset

are shown in Fig. 4.14:. Using the top left chart as an example, both axes are correlation

coefficients. For each circle, its x-coordinate is its correlation coefficient for pfFRI, while its
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y-coordinate is its correlation coefficient for opFRI. Since all circles are located above the

diagonal line, opFRI always outperform pfFRI. The average correlation scores for optimal

FRI, parameter free FRI, GNM and NMA for each set of structures are listed in Table 4.1:.

As shown in Table 4.1: and Fig. 4.14:, opFRI outperforms pfFRI in many cases although

the majority of structures have little difference in their score for each method. Both optimal

and parameter free FRI methods outperform GNM and NMA for most structures. B-factor

prediction with the FRI is most accurate for smaller structures (¡70 residues). All three meth-

ods tend to perform worse as the structures get larger except in the case of NMA where the

medium-sized structures scored slightly lower than the large-sized structures. This behavior

is expected because as proteins get larger their structures become more complex and may

include structural co-factors and more amino acid side chain interactions that contribute to

the protein’s stability. The coarse-grained Cα representation used in these methods is unable

to capture these kinds of details. The average increase in correlation coefficients when using

the FRI over GNM on the superset of 365 proteins is 0.096 for opFRI and 0.059 for pfFRI.

Additionally, opFRI and pfFRI are more accurate on average than GNM and NMA for all

three sets of structures used by Park et al.52 From these results we conclude that both FRI

and pfFRI are more accurate on average than either GNM or NMA.

4.2.2.2 fFRI vs GNM

Table 4.10: lists the average correlation coefficients of B-factor prediction for 365 proteins

using fFRI schemes at a given truncation (R = 12Å). It is seen that the proposed fFRI

schemes implemented in either exponential (η = 3Å and κ = 1) or Lorentz (η = 3Å and

υ = 3) are at least 10% more accurate than the GNM.

4.3 Multikernel multiscale FRI method

In this section, we implement and validate the proposed mFRI for B-factor prediction.

An immediate concern is the accuracy of multi-kernel FRI method which is tested by the B-
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Table 4.2: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for small-size structures.
†GNM and NMA values are taken from the coarse-grained (Cα) GNM and NMA results
reported in Park et al.52 except where starred (*). Starred values indicate correlation
coefficients, from our own test of GNM, that have significantly increased compared to the
values reported by Park et al.52

PDB
ID

N opFRI pfFRI GNM † NMA †

1AIE 31 0.588 0.416 0.155 0.712
1AKG 16 0.373 0.350 0.185 -0.229
1BX7 51 0.726 0.623 0.706 0.868
1ETL 12 0.710 0.609 0.628 0.355
1ETM 12 0.544 0.393 0.432 0.027
1ETN 12 0.089 0.023 -0.274 -0.537
1FF4 65 0.718 0.613 0.674 0.555
1GK7 39 0.845 0.773 0.821 0.822
1GVD 52 0.781 0.732 0.591 0.570
1HJE 13 0.811 0.686 0.616 0.562
1KYC 15 0.796 0.763 0.754 0.784
1NOT 13 0.746 0.622 0.523 0.567
1O06 20 0.910 0.874 0.844 0.900
1OB4 16 0.776 0.763 0.750* 0.930
1OB7 16 0.737 0.545 0.652* 0.952
1P9I 29 0.754 0.742 0.625 0.603
1PEF 18 0.888 0.826 0.808 0.888
1PEN 16 0.516 0.465 0.270 0.056
1Q9B 43 0.746 0.726 0.656 0.646
1RJU 36 0.517 0.447 0.431 0.235
1U06 55 0.474 0.429 0.434 0.377
1UOY 64 0.713 0.653 0.671 0.628
1USE 40 0.438 0.146 -0.142 -0.399
1VRZ 21 0.792 0.695 0.677* -0.203
1XY2 8 0.619 0.570 0.562 0.458
1YJO 6 0.375 0.333 0.434 0.445
1YZM 46 0.842 0.834 0.901 0.939
2DSX 52 0.337 0.333 0.127 0.433
2JKU 35 0.805 0.695 0.656 0.850
2NLS 36 0.605 0.559 0.530 0.088
2OL9 6 0.909 0.904 0.689 0.886
2OLX 4 0.917 0.888 0.885 0.776
6RXN 45 0.614 0.574 0.594 0.304
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Table 4.3: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for medium-size structures.
†GNM and NMA values are taken from the coarse-grained (Cα) GNM and NMA results
reported in Park et al.52 except where starred (*). Starred values indicate correlation
coefficients, from our own test of GNM, that have significantly increased compared to the
values reported by Park et al.52

PDB
ID

N opFRI pfFRI GNM † NMA †

1ABA 87 0.727 0.698 0.613 0.057
1CYO 88 0.751 0.702 0.741 0.774
1FK5 93 0.590 0.568 0.485 0.362
1GXU 88 0.748 0.634 0.421 0.581
1I71 83 0.549 0.516 0.549 0.380
1LR7 73 0.679 0.657 0.620 0.795
1N7E 95 0.651 0.609 0.497 0.385
1NNX 93 0.795 0.789 0.631 0.517
1NOA 113 0.622 0.604 0.615 0.485
1OPD 85 0.555 0.409 0.398 0.796
1QAU 112 0.678 0.672 0.620 0.533
1R7J 90 0.789 0.621 0.368 0.078
1UHA 83 0.726 0.665 0.638* 0.308
1ULR 87 0.639 0.594 0.495 0.223
1USM 77 0.832 0.809 0.798 0.780
1V05 96 0.629 0.599 0.632 0.389
1W2L 97 0.691 0.564 0.397 0.432
1X3O 80 0.600 0.559 0.654 0.453
1Z21 96 0.662 0.638 0.433 0.289
1ZVA 75 0.756 0.579 0.690 0.579
2BF9 36 0.606 0.554 0.680* 0.521
2BRF 100 0.795 0.764 0.710 0.535
2CE0 99 0.706 0.598 0.529 0.628
2E3H 81 0.692 0.682 0.605 0.632
2EAQ 89 0.753 0.690 0.695 0.688
2EHS 75 0.720 0.713 0.747 0.565
2FQ3 85 0.719 0.692 0.348 0.508
2IP6 87 0.654 0.578 0.572 0.826

2MCM 113 0.789 0.713 0.639 0.643
2NUH 104 0.835 0.691 0.771 0.685
2PKT 93 0.162 0.003 -0.193* -0.165
2PLT 99 0.508 0.484 0.509* 0.187
2QJL 99 0.594 0.584 0.594 0.497
2RB8 93 0.727 0.614 0.517 0.485
3BZQ 99 0.532 0.516 0.466 0.351
5CYT 103 0.441 0.421 0.331 0.102
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Table 4.4: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for large-size structures.
†GNM and NMA values are taken from the coarse-grained (Cα) GNM and NMA results
reported in Park et al.52 except where starred (*). Starred values indicate correlation
coefficients, from our own test of GNM, that have significantly increased compared to the
values reported by Park et al.52

PDB
ID

N opFRI pfFRI GNM † NMA †

1AHO 64 0.698 0.625 0.562 0.339
1ATG 231 0.613 0.578 0.497 0.154
1BYI 224 0.543 0.491 0.552 0.133
1CCR 111 0.580 0.512 0.351 0.530
1E5K 188 0.746 0.732 0.859 0.620
1EW4 106 0.650 0.644 0.547 0.447
1IFR 113 0.697 0.689 0.637 0.330
1NKO 122 0.619 0.535 0.368 0.322
1NLS 238 0.669 0.530 0.523* 0.385
1O08 221 0.562 0.333 0.309 0.616

1PMY 123 0.671 0.654 0.685 0.702
1PZ4 114 0.828 0.781 0.843 0.844
1QTO 122 0.543 0.520 0.334 0.725
1RRO 112 0.435 0.372 0.529 0.546
1UKU 102 0.665 0.661 0.742 0.720
1V70 105 0.622 0.492 0.162 0.285

1WBE 204 0.591 0.577 0.549 0.574
1WHI 122 0.601 0.539 0.270 0.414
1WPA 107 0.634 0.577 0.417 0.380
2AGK 233 0.705 0.694 0.512 0.514
2C71 205 0.658 0.649 0.560 0.584
2CG7 90 0.551 0.539 0.379 0.308
2CWS 227 0.647 0.640 0.696 0.524
2HQK 213 0.824 0.809 0.365 0.743
2HYK 238 0.585 0.575 0.510 0.593
2I24 113 0.593 0.498 0.494 0.441

2IMF 203 0.652 0.625 0.514 0.401
2PPN 107 0.677 0.638 0.668 0.468
2R16 176 0.582 0.495 0.618* 0.411
2V9V 135 0.555 0.548 0.528 0.594
2VIM 104 0.413 0.393 0.212 0.221
2VPA 204 0.763 0.755 0.576 0.594
2VYO 210 0.675 0.648 0.729 0.739
3SEB 238 0.801 0.712 0.826 0.720
3VUB 101 0.625 0.610 0.607 0.365
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Table 4.5: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for a set of 365 proteins.
GNM scores reported here are the result of our tests as described in Section 4.1.1

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

1ABA 87 0.727 0.698 0.613 1PEF 18 0.888 0.826 0.808
1AGN 1492 0.331 0.051 0.170 1PEN 16 0.516 0.465 0.270
1AHO 64 0.698 0.625 0.562 1PMY 123 0.671 0.654 0.685
1AIE 31 0.588 0.416 0.155 1PZ4 114 0.828 0.781 0.843
1AKG 16 0.373 0.350 0.185 1Q9B 43 0.746 0.726 0.656
1ATG 231 0.613 0.578 0.497 1QAU 112 0.678 0.672 0.620
1BGF 124 0.603 0.539 0.543 1QKI 3912 0.809 0.751 0.645
1BX7 51 0.726 0.623 0.706 1QTO 122 0.543 0.520 0.334
1BYI 224 0.543 0.491 0.552 1R29 122 0.650 0.631 0.556
1CCR 111 0.580 0.512 0.351 1R7J 90 0.789 0.621 0.368
1CYO 88 0.751 0.702 0.741 1RJU 36 0.517 0.447 0.431
1DF4 57 0.912 0.889 0.832 1RRO 112 0.435 0.372 0.529
1E5K 188 0.746 0.732 0.859 1SAU 114 0.742 0.671 0.596
1ES5 260 0.653 0.638 0.677 1TGR 104 0.720 0.711 0.714
1ETL 12 0.710 0.609 0.628 1TZV 141 0.837 0.820 0.841
1ETM 12 0.544 0.393 0.432 1U06 55 0.474 0.429 0.434
1ETN 12 0.089 0.023 -0.274 1U7I 267 0.778 0.762 0.691
1EW4 106 0.650 0.644 0.547 1U9C 221 0.600 0.577 0.522
1F8R 1932 0.878 0.859 0.738 1UHA 83 0.726 0.665 0.638
1FF4 65 0.718 0.613 0.674 1UKU 102 0.665 0.661 0.742
1FK5 93 0.590 0.568 0.485 1ULR 87 0.639 0.594 0.495
1GCO 1044 0.766 0.693 0.646 1UOY 64 0.713 0.653 0.671
1GK7 39 0.845 0.773 0.821 1USE 40 0.438 0.146 -0.142
1GVD 52 0.781 0.732 0.591 1USM 77 0.832 0.809 0.798
1GXU 88 0.748 0.634 0.421 1UTG 70 0.691 0.610 0.538
1H6V 2927 0.488 0.429 0.306 1V05 96 0.629 0.599 0.632
1HJE 13 0.811 0.686 0.616 1V70 105 0.622 0.492 0.162
1I71 83 0.549 0.516 0.549 1VRZ 21 0.792 0.695 0.677
1IDP 441 0.735 0.715 0.690 1W2L 97 0.691 0.564 0.397
1IFR 113 0.697 0.689 0.637 1WBE 204 0.591 0.577 0.549
1K8U 89 0.553 0.531 0.378 1WHI 122 0.601 0.539 0.270

1KMM 1499 0.749 0.744 0.558 1WLY 322 0.695 0.679 0.666
1KNG 144 0.547 0.536 0.512 1WPA 107 0.634 0.577 0.417
1KR4 110 0.635 0.612 0.466 1X3O 80 0.600 0.559 0.654
1KYC 15 0.796 0.763 0.754 1XY1 18 0.832 0.645 0.447
1LR7 73 0.679 0.657 0.620 1XY2 8 0.619 0.570 0.562
1MF7 194 0.687 0.681 0.700 1Y6X 87 0.596 0.524 0.366
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Table 4.6: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for a set of 365 proteins.
GNM scores reported here are the result of our tests as described in Section 4.1.1

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

1N7E 95 0.651 0.609 0.497 1YJO 6 0.375 0.333 0.434
1NKD 59 0.750 0.703 0.631 1YZM 46 0.842 0.834 0.901
1NKO 122 0.619 0.535 0.368 1Z21 96 0.662 0.638 0.433
1NLS 238 0.669 0.530 0.523 1ZCE 146 0.808 0.757 0.770
1NNX 93 0.795 0.789 0.631 1ZVA 75 0.756 0.579 0.690
1NOA 113 0.622 0.604 0.615 2A50 457 0.564 0.524 0.281
1NOT 13 0.746 0.622 0.523 2AGK 233 0.705 0.694 0.512
1O06 20 0.910 0.874 0.844 2AH1 939 0.684 0.593 0.521
1O08 221 0.562 0.333 0.309 2B0A 186 0.639 0.603 0.467
1OB4 16 0.776 0.763 0.750 2BCM 413 0.555 0.551 0.477
1OB7 16 0.737 0.545 0.652 2BF9 36 0.606 0.554 0.680
1OPD 85 0.555 0.409 0.398 2BRF 100 0.795 0.764 0.710
1P9I 29 0.754 0.742 0.625 2C71 205 0.658 0.649 0.560
2CE0 99 0.706 0.598 0.529 2OLX 4 0.917 0.888 0.885
2CG7 90 0.551 0.539 0.379 2PKT 93 0.162 0.003 -0.193
2COV 534 0.846 0.823 0.812 2PLT 99 0.508 0.484 0.509
2CWS 227 0.647 0.640 0.696 2PMR 76 0.693 0.682 0.619
2D5W 1214 0.689 0.682 0.681 2POF 440 0.682 0.651 0.589
2DKO 253 0.816 0.812 0.690 2PPN 107 0.677 0.638 0.668
2DPL 565 0.596 0.538 0.658 2PSF 608 0.526 0.500 0.565
2DSX 52 0.337 0.333 0.127 2PTH 193 0.822 0.784 0.767
2E10 439 0.798 0.796 0.692 2Q4N 153 0.711 0.667 0.740
2E3H 81 0.692 0.682 0.605 2Q52 412 0.756 0.748 0.621
2EAQ 89 0.753 0.690 0.695 2QJL 99 0.594 0.584 0.594
2EHP 248 0.804 0.804 0.773 2R16 176 0.582 0.495 0.618
2EHS 75 0.720 0.713 0.747 2R6Q 138 0.603 0.540 0.529
2ERW 53 0.461 0.253 0.199 2RB8 93 0.727 0.614 0.517
2ETX 389 0.580 0.556 0.632 2RE2 238 0.652 0.613 0.673
2FB6 116 0.791 0.786 0.740 2RFR 154 0.693 0.671 0.753
2FG1 157 0.620 0.617 0.584 2V9V 135 0.555 0.548 0.528
2FN9 560 0.607 0.595 0.611 2VE8 515 0.744 0.643 0.616
2FQ3 85 0.719 0.692 0.348 2VH7 94 0.775 0.726 0.596
2G69 99 0.622 0.590 0.436 2VIM 104 0.413 0.393 0.212
2G7O 68 0.785 0.784 0.660 2VPA 204 0.763 0.755 0.576
2G7S 190 0.670 0.644 0.649 2VQ4 106 0.680 0.679 0.555
2GKG 122 0.688 0.646 0.711 2VY8 149 0.770 0.724 0.533
2GOM 121 0.586 0.584 0.491 2VYO 210 0.675 0.648 0.729
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Table 4.7: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for a set of 365 proteins.
GNM scores reported here are the result of our tests as described in Section 4.1.1

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

2GXG 140 0.847 0.780 0.520 2W1V 548 0.680 0.680 0.571
2GZQ 191 0.505 0.382 0.369 2W2A 350 0.706 0.638 0.589
2HQK 213 0.824 0.809 0.365 2W6A 117 0.823 0.748 0.647
2HYK 238 0.585 0.575 0.510 2WJ5 96 0.484 0.440 0.357
2I24 113 0.593 0.498 0.494 2WUJ 100 0.739 0.598 0.598
2I49 398 0.714 0.683 0.601 2WW7 150 0.499 0.471 0.356
2IBL 108 0.629 0.625 0.352 2WWE 111 0.692 0.582 0.628
2IGD 61 0.585 0.481 0.386 2X1Q 240 0.534 0.478 0.443
2IMF 203 0.652 0.625 0.514 2X25 168 0.632 0.598 0.403
2IP6 87 0.654 0.578 0.572 2X3M 166 0.744 0.717 0.655
2IVY 88 0.544 0.483 0.271 2X5Y 171 0.718 0.705 0.694
2J32 244 0.863 0.848 0.855 2X9Z 262 0.583 0.578 0.574
2J9W 200 0.716 0.705 0.662 2XHF 310 0.606 0.591 0.569
2JKU 35 0.805 0.695 0.656 2Y0T 101 0.778 0.774 0.798
2JLI 100 0.779 0.613 0.622 2Y72 170 0.780 0.754 0.766
2JLJ 115 0.741 0.720 0.527 2Y7L 319 0.928 0.797 0.747

2MCM 113 0.789 0.713 0.639 2Y9F 149 0.771 0.762 0.664
2NLS 36 0.605 0.559 0.530 2YLB 400 0.807 0.807 0.675
2NR7 194 0.803 0.785 0.727 2YNY 315 0.813 0.804 0.706
2NUH 104 0.835 0.691 0.771 2ZCM 357 0.458 0.422 0.420
2O6X 306 0.814 0.799 0.651 2ZU1 360 0.689 0.672 0.653
2OA2 132 0.571 0.456 0.458 3A0M 148 0.807 0.712 0.392
2OCT 192 0.567 0.550 0.540 3A7L 128 0.713 0.663 0.756
2OHW 256 0.614 0.539 0.475 3AMC 614 0.675 0.669 0.581
2OKT 342 0.433 0.411 0.336 3AUB 116 0.614 0.608 0.637
2OL9 6 0.909 0.904 0.689 3B5O 230 0.644 0.629 0.601
3BA1 312 0.661 0.624 0.621 3MD4 12 0.860 0.781 0.914
3BED 261 0.845 0.820 0.684 3MD5 12 0.649 0.413 -0.218
3BQX 139 0.634 0.481 0.297 3MEA 166 0.669 0.669 0.600
3BZQ 99 0.532 0.516 0.466 3MGN 348 0.205 0.119 0.193
3BZZ 100 0.485 0.450 0.600 3MRE 383 0.661 0.641 0.567
3DRF 547 0.559 0.549 0.488 3N11 325 0.614 0.583 0.517
3DWV 325 0.707 0.661 0.547 3NE0 208 0.706 0.645 0.659
3E5T 228 0.502 0.489 0.296 3NGG 94 0.696 0.689 0.719
3E7R 40 0.706 0.687 0.642 3NPV 495 0.702 0.653 0.677
3EUR 140 0.431 0.427 0.577 3NVG 6 0.721 0.617 0.597
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Table 4.8: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for a set of 365 proteins.
GNM scores reported here are the result of our tests as described in Section 4.1.1

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

3F2Z 149 0.824 0.792 0.740 3NZL 73 0.627 0.583 0.506
3F7E 254 0.812 0.803 0.811 3O0P 194 0.727 0.706 0.734
3FCN 158 0.640 0.606 0.632 3O5P 128 0.734 0.698 0.630
3FE7 91 0.583 0.533 0.276 3OBQ 150 0.649 0.645 0.655
3FKE 250 0.525 0.476 0.435 3OQY 234 0.698 0.686 0.637
3FMY 66 0.701 0.655 0.556 3P6J 125 0.774 0.767 0.810
3FOD 48 0.532 0.440 -0.126 3PD7 188 0.770 0.723 0.589
3FSO 221 0.831 0.817 0.793 3PES 165 0.697 0.642 0.683
3FTD 240 0.722 0.713 0.634 3PID 387 0.537 0.531 0.642
3FVA 6 0.835 0.825 0.789 3PIW 154 0.758 0.744 0.717
3G1S 418 0.771 0.700 0.630 3PKV 221 0.625 0.597 0.568

3GBW 161 0.820 0.747 0.510 3PSM 94 0.876 0.790 0.745
3GHJ 116 0.732 0.511 0.196 3PTL 289 0.543 0.541 0.468
3HFO 197 0.691 0.670 0.518 3PVE 347 0.718 0.667 0.568
3HHP 1234 0.720 0.716 0.683 3PZ9 357 0.709 0.709 0.678
3HNY 156 0.793 0.723 0.758 3PZZ 12 0.945 0.922 0.950
3HP4 183 0.534 0.500 0.573 3Q2X 6 0.922 0.904 0.866

3HWU 144 0.754 0.748 0.841 3Q6L 131 0.622 0.577 0.605
3HYD 7 0.966 0.950 0.867 3QDS 284 0.780 0.745 0.568
3HZ8 192 0.617 0.502 0.475 3QPA 197 0.587 0.442 0.503
3I2V 124 0.486 0.441 0.301 3R6D 221 0.688 0.669 0.495
3I2Z 138 0.613 0.599 0.317 3R87 132 0.452 0.419 0.286
3I4O 135 0.735 0.714 0.738 3RQ9 162 0.510 0.403 0.242
3I7M 134 0.667 0.635 0.695 3RY0 128 0.616 0.606 0.470
3IHS 169 0.586 0.565 0.409 3RZY 139 0.800 0.784 0.849
3IVV 149 0.817 0.797 0.693 3S0A 119 0.562 0.524 0.526
3K6Y 227 0.586 0.535 0.301 3SD2 86 0.523 0.421 0.237
3KBE 140 0.705 0.704 0.611 3SEB 238 0.801 0.712 0.826
3KGK 190 0.784 0.775 0.680 3SED 124 0.709 0.658 0.712
3KZD 85 0.647 0.611 0.475 3SO6 150 0.675 0.666 0.630
3L41 220 0.718 0.716 0.669 3SR3 637 0.619 0.611 0.624
3LAA 169 0.827 0.647 0.659 3SUK 248 0.644 0.633 0.567
3LAX 106 0.734 0.730 0.584 3SZH 697 0.817 0.815 0.697
3LG3 833 0.658 0.614 0.589 3T0H 208 0.808 0.775 0.694
3LJI 272 0.612 0.608 0.551 3T3K 122 0.796 0.748 0.735
3LJI 272 0.612 0.608 0.551 3T3K 122 0.796 0.748 0.735

3M3P 249 0.584 0.554 0.338 3T47 141 0.592 0.527 0.447
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Table 4.9: Correlation coefficients for B-factor prediction obtained by optimal FRI (opFRI),
parameter free FRI (pfFRI) and Gaussian normal mode (GNM) for a set of 365 proteins.
GNM scores reported here are the result of our tests as described in Section 4.1.1

PDB ID N opFRI pfFRI GNM PDB ID N opFRI pfFRI GNM

3M8J 178 0.730 0.728 0.628 3TDN 357 0.458 0.419 0.240
3M9J 210 0.639 0.574 0.296 3TOW 152 0.578 0.556 0.571
3M9Q 176 0.591 0.510 0.471 3TUA 210 0.665 0.658 0.588
3MAB 173 0.664 0.591 0.451 3TYS 75 0.853 0.800 0.791
3U6G 248 0.635 0.632 0.526 4DT4 160 0.776 0.738 0.716
3U97 77 0.753 0.736 0.712 4EK3 287 0.680 0.680 0.674
3UCI 72 0.589 0.526 0.495 4ERY 318 0.740 0.701 0.688
3UR8 637 0.666 0.652 0.597 4ES1 95 0.648 0.625 0.551
3US6 148 0.698 0.586 0.553 4EUG 225 0.570 0.529 0.405
3V1A 48 0.531 0.487 0.583 4F01 448 0.633 0.372 0.688
3V75 285 0.604 0.596 0.491 4F3J 143 0.617 0.598 0.551
3VN0 193 0.840 0.837 0.812 4FR9 141 0.671 0.655 0.501
3VOR 182 0.602 0.557 0.484 4G14 15 0.467 0.323 0.356
3VUB 101 0.625 0.610 0.607 4G2E 151 0.760 0.755 0.758
3VVV 108 0.833 0.741 0.753 4G5X 550 0.786 0.754 0.743
3VZ9 163 0.785 0.749 0.695 4G6C 658 0.591 0.590 0.528
3W4Q 773 0.737 0.725 0.649 4G7X 194 0.688 0.587 0.624
3ZBD 213 0.651 0.516 0.632 4GA2 144 0.528 0.485 0.406
3ZIT 152 0.430 0.404 0.392 4GMQ 92 0.678 0.628 0.550
3ZRX 221 0.590 0.562 0.391 4GS3 90 0.544 0.522 0.547
3ZSL 138 0.691 0.687 0.526 4H4J 236 0.810 0.806 0.689
3ZZP 74 0.524 0.460 0.448 4H89 168 0.682 0.588 0.596
3ZZY 226 0.746 0.709 0.728 4HDE 168 0.745 0.728 0.615
4A02 166 0.618 0.516 0.303 4HJP 281 0.703 0.649 0.510
4ACJ 167 0.748 0.746 0.759 4HWM 117 0.638 0.622 0.499
4AE7 186 0.724 0.717 0.717 4IL7 85 0.446 0.404 0.316
4AM1 345 0.674 0.619 0.460 4J11 357 0.620 0.562 0.401
4ANN 176 0.551 0.536 0.470 4J5O 220 0.793 0.757 0.777
4AVR 188 0.680 0.605 0.650 4J5Q 146 0.742 0.742 0.689
4AXY 54 0.700 0.623 0.720 4J78 305 0.658 0.648 0.608
4B6G 558 0.765 0.756 0.669 4JG2 185 0.746 0.736 0.543
4B9G 292 0.844 0.816 0.763 4JVU 207 0.723 0.697 0.553
4DD5 387 0.615 0.596 0.351 4JYP 534 0.688 0.682 0.538
4DKN 423 0.781 0.761 0.539 4KEF 133 0.580 0.530 0.324
4DND 95 0.763 0.750 0.582 5CYT 103 0.441 0.421 0.331
4DPZ 109 0.730 0.726 0.651 6RXN 45 0.614 0.574 0.594
4DQ7 328 0.690 0.683 0.376
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Table 4.10: Average correlation coefficients (CC) of B-factor prediction for a set of 365
proteins using fFRI (R = 12). The improvements of the fFRI over the GNM prediction
(0.565) are given in parentheses.

Exponential parameters Avg. CC Lorentz parameters Avg. CC

κ=0.5, η=0.5 0.615 (8.8%) υ=2.5, η=2.0 0.622 (10.1%)
κ=1.0, η=3.0 0.623 (10.3%) υ=3.0, η=3.0 0.626 (10.8%)
κ=1.5, η=6.0 0.619 (9.6%) υ=3.5, η=4.0 0.623 (10.3%)

factor prediction of a set of 364 protein structures.49 Another concern is the parameterization

of mFRI and how the choice of the η parameter affects B-factor prediction for structures

of different sizes. Finally, we examine whether the proposed mFRI is as computationally

efficient as the original fFRI.

4.3.1 mFRI B-factor prediction

To test the accuracy of mFRI on protein structures we use a test set containing 364 protein

structures. This is the same test set used in our previous FRI paper where the Protein Data

Bank (PDB) identities are listed49 and it contains test sets used in GNM studies.52 This test

set omits one structure present in previous FRI studies (PDB ID: 1AGN) due to unrealistic

B-factor data.

To quantitatively assess the performance of the proposed multikernel based mFRI method,

we consider the correlation coefficient

Cc =
ηNi=1

(
Be
i − B̄e

) (
Bt
i − B̄t

)[
ηNi=1(Be

i − B̄e)2ηNi=1(Bt
i − B̄t)2

]1/2 ,(4.6)

where {Bt
i , i = 1, 2, · · · , N} are a set of predicted B-factors by using the proposed method and

{Be
i , i = 1, 2, · · · , N} are a set of experimental B-factors extracted from the PDB file. Here

B̄t and B̄e the statistical averages of theoretical and experimental B-factors, respectively.

4.3.1.1 Multiscale correlations of macroproteins

To illustrate the multiscale behavior of flexibility analysis, we need to construct correla-

tion functions with sharp kernel response similar to that of a Heaviside step function. To
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this end, we set κ = 25 for the exponential type of correlation kernels. In this case, the

one-kernel FRI method behaves like the GNM method. The best performance for one-kernel

FRI is obtained at η1 = 7Å and the associated averaged correlation coefficient for the 364

test set is 0.540, which is similar to that obtained by using GNM.49 Obviously, the cutoff

type of kernel behavior obtained at κ = 25 does not recognize any large-scale correlation

beyond 7Å in macromolecules. To capture large-scale correlations, we employ the second

exponential kernel with its scale (η2 > η1) varying over a range of values as shown in Table

4.11:.

N η2=9Å η2=12Å η2=15Å η2=17Å η2=20Å η2=25Å

0-99 0.055 0.083 0.100 0.102 0.097 0.083
100-199 0.061 0.093 0.101 0.100 0.099 0.093
200-299 0.051 0.087 0.097 0.097 0.095 0.087
300-399 0.069 0.108 0.115 0.119 0.123 0.108
400-499 0.079 0.126 0.148 0.157 0.155 0.126
500+ 0.064 0.107 0.136 0.143 0.140 0.107
Overall 0.060 0.094 0.106 0.108 0.106 0.094

Table 4.11: Improvements in averaged correlation coefficients for the B-factor prediction of
a set of 364 proteins due to the introduction of an additional kernel parameterized at a large
scale (η2). Two exponential kernels with κ = 25 are employed. The first kernel’s scale value
is set to η1 = 7.0Å in all cases. The second kernel’s scale value (η2) is varied and listed on
the top of the table. Results are organized and split by the size of the structures based on
the number of amino acids in order to show the impact of different η2 values on different
sizes of proteins.

To analyze the scale behavior due to protein size, we classify 364 proteins into 6 groups.

The improvements of averaged correlation coefficients due to the introduction of an addi-

tional kernel are listed in Table 4.11: for a number of large scale values η2. First, the B-factor

predictions from various size classes are significantly benefited from the introduction of the

large-scale kernel. Additionally, at the scale value of η2 = 17Å, the averaged correlation

coefficient is 0.648 and the associated improvement to the original FRI or GNM methods

is 20% for the set of 364 proteins. Note that this multiscale improvement cannot be easily

achieved by GNM, NMA, or any other mode decomposition based methods. Moreover, the
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large-scale kernel leads to the most significant improvement in the B-factor prediction for

relatively large proteins, proteins with 400-499 residues, which indicates that large proteins

have more significant multiscale correlations than small proteins do. Finally, the improve-

ment in the B-factor prediction for proteins with more than 500 residues is not as much as

that for proteins with 400-499 residues, which indicates that two scales are not enough to

capture all the multiscale correlations in proteins with more than 500 residues. This obser-

vation suggests that three kernels or multikernels are needed for the B-factor prediction of

excessively large proteins.

4.3.1.2 parameterization of two-kernel based mFRI

To further understand the two-kernel based mFRI method, we consider the combination

of two types of kernels. Previous tests of single kernel FRI indicate that the Lorentz type

and exponential type of correlation kernels are the two most accurate single kernel types.

This leads us to try the combination of these two types of kernels. The same set of 364

proteins is employed to test our method. To simplify the parameter searches, we set the κ

parameter of the exponential kernel to 1.0 and set the υ parameter of the Lorentz kernel to

3.0, which are the optimal values from single kernel tests.49 Our results are depicted in Fig.

4.15:. As expected, the addition of a second correlation kernel results in an overall increase

in accuracy for B-factor predictions. For single kernel FRI, the average correlation coefficient

for B-factor prediction on the set of 364 structures is 0.626. By switching to the two-kernel

FRI the averaged correlation coefficient for this set increased up to 0.663. The improvement

in the B-factor prediction accuracy is six percent over previous single kernel FRI methods.

This averaged correlation coefficient is also better than the value of 0.640 achieved with two

sharp response exponential kernels (κ = 25).
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Figure 4.15: Parameter testing for a two-kernel based mFRI method. Values for η are varied
for each kernel, both Lorentz kernels. Here η values for either kernel are listed along the
axises. The averaged correlation coefficient for B-factor prediction on a set of 364 proteins is
shown in each cell of the matrix and color coded for convenience with red representing the
highest correlation coefficients and green the lowest. Obvious, the combination of a relatively
small-scale kernel and a relatively large-scale kernel delivers best prediction, which shows the
importance of incorporating multiscale in protein flexibility analysis.

Figure 4.15: indicates that the best results are attained either from the combination

70



of a relatively small-scale exponential kernel and a relatively large-scale Lorentz kernel,

or from the combination of a relatively small-scale Lorentz kernel and a relatively large-

scale exponential kernel. The combination of two small-scale kernels or the combination

of two large-scale kernels does not offer much improvement to the original single kernel

FRI method. This behavior proves again the importance of incorporating multiscale in the

flexibility analysis of macromolecules.

4.3.1.3 Three Kernel based mFRI

The latest multikernel FRI method combines three kernels. After some testing we have

decided upon using one kernel of exponential decay (κ = 1) and two kernels of Lorentz type

(υ = 3) with different scale (η) parameter values. The choice of kernels and parameters

is driven by the idea that each kernel should capture interactions of different ranges, e.g.,

short-, medium- and long-range interactions each being represented by a different kernel.

The exponential kernel is chosen to represent the slowest decaying forces with η3 = 15Å and

κ = 1 while the two Lorentz type of kernels capture relative short- and medium-range

interactions with parameters υ = 3, η1 = 3.0Å and η2 = 7Å, respectively. The associated

averaged correlation coefficient for the 364 test set is 0.689, which is about 22% better than

what obtained by using the GNM method.49 Other combinations of kernel parameters were

tried in which the exponential kernel exhibited the quickest decay, however, they did not

perform as well in B-factor prediction tests. The fast decaying Lorentz kernel, η1 = 3Å and

υ = 3, may be well suited to capture the effect of chemical bonds due to its particular shape

of decay which highly favors interactions below 3.0 Å.

4.3.2 Computational complexity of mFRI

It has been previously been demonstrated that the computational complexity of the single

kernel FRI method is asymptotically of O(N2). By making use of the cell lists algorithm,
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fFRI achieves a computational complexity of O(N). The addition of multiple kernels to

the FRI method does not affect this aspect of scaling, however, the running time for B-

factor prediction does increase with each additional kernel slightly. Indeed, the multi-kernel

regression requires to optimize one more parameter with the addition of each new kernel.

The impact of these changes on the running time of FRI-based B-factor prediction is shown

in Figure 4.16:. We employ the same data sets and test conditions as those described in our

earlier paper49 for the present test. The data used for testing mFRI and fFRI are the same

as those used in testing the fFRI in Table VIII of Ref.49 In testing the GNM, the same data

set as that listed in Table VIII of Ref.49 is employed.
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Figure 4.16: Computational efficiency of multikernel fast FRI (multi fFRI) relative to single
kernel fast FRI (fFRI) and GNM. The data sets used for the present efficiency study are the
same as those listed in Table VIII of Ref.49

Clearly the impact of extra kernels does not affect the essentially linear scaling of fFRI

with lines of fit for fFRI and multikernel fast FRI (multi fFRI) being t = 7 ∗ 10−6 ∗ N0.957

and t = 8 ∗ 10−6 ∗N0.959 respectively. The increase in computation time is minor especially

for molecules with smaller numbers of atoms. In contrast, the line of fit for the GNM is

t = 4 ∗ 10−8 ∗ N3.09.49 Note that each increase in one additional kernel leads to only one

more fitting parameter, for which the fitting time is negligibly small. Only in extreme cases,
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with systems far larger than those currently studied atomistically, might single kernel FRI

be preferred. Therefore, it is preferable to use multikernel based mFRI over single kernel

FRI provided there is a significant increase in accuracy and reliability, as was demonstrated

previously. Note that the largest test molecule is an HIV virus capsid, which has than 313236

amino acid residues. It would take the GNM more than 120 years to finish the prediction

if the computer memory is not a problem. In contrast, the proposed mFRI does the job in

about 30 seconds or less on a single workstation depending on the processing power.

4.4 Multiscale FRI applications

The improvement in the averaged correlation coefficient for B-factor prediction on a set of

364 proteins discussed in the last section obscures the fact that some structures show much

larger improvements than just ten percent. In this section, we highlight some examples

where the improvement is up to three times more accurate than GNM and also single-kernel

FRI. The proposed mFRI provides excellent B-factor predictions for many cases that the

previous single-scale based theories and algorithms do not work at all.

We explore some of the advantages of using FRI for flexibility analysis by exploring ap-

plications of the multikernel FRI method. First, we explore the improvement in representing

hinges in protein structures that comes from using one, two and three kernel methods. Then,

we briefly highlight some other instances of flexibility prediction where the multiple kernel

approach is clearly superior to to singly parameterized methods such as GNM and the orig-

inal FRI formulation. In all cases, GNM is used to predict b-factors using the suggested

parameterization of 7 Angstroms. An attempt was made to find a more optimal parameter

for GNM for each structure in this section, at the values of 5, 6 and 8 Angstroms. If a

significantly better parameterization was found, the results of b-factor prediction using that

parameter are included in the figure and indicated by the name of the data series. GNM7

represents a GNM with a cutoff of 7 angstroms and other parameterizations are named sim-
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ilarly with the value changed to reflect the new parameter. For example, a parameterization

of 5 Angstroms would be labeled as GNM5. In all cases, the mFRI b-factor predictions have

a higher correlation to the experimental data than any parameterization of GNM.

4.4.1 Fitting flexible hinge regions

Protein hinge regions have been shown to be correlated with active sites and catalysis in

enzymes. Flexibility has a major role in specificity of binding of a protein to other proteins,

nucleic acids or other molecules. An active site or docking region that is more flexible

will accommodate more varied substrates or partners while more rigid domains are more

specific. Protein hinges are also found separating large domains of proteins. In this context,

the hinges can be very important for protein conformational changes. The protein featured

in this section, calmodulin, is a good example of a hinge that affects both structure and

function.

The central region of calmodulin shown in Figure 2.1: is a long α-helix which is unwound

or kinked at the middle when no calcium is bound to the two distal metal coordinating

domains. In both forms, with or without calcium bound, this helix retains a large degree of

flexibility based on B-factor values from the PDB files (1CLL and 1CFD).

Many tools exist for the prediction and analysis of hinges in proteins using bioinformat-

ics,26 graph theory21,39,59 and energetics.25 The proposed mFRI has capabilities similar to

those in these tools. The mFRI can be used to predict hinge regions by regions of high FRI

values or predicted B-values. Many tools exist for the prediction and analysis of hinges in

proteins using bioinformatics,26 graph theory21,39,59 and energetics.25 The proposed mFRI

has capabilities similar to those in these tools. The mFRI can be used to predict hinge

regions by regions of high FRI values or predicted B-values.

A comparison of various pfFRI methods and GNM for the B-factor prediction of calcium-

bound calmodulin is displayed in Figure 4.17:. B-factor prediction by single kernel FRI and
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GNM is unable to accurately predict the hinge region in the middle of the protein with any

parameter. Two- and three-kernel based mFRI methods, on the other hand, are much more

accurate in the hinge region. As more kernels are added, the accuracy can be seen to grow

but sufficient accuracy is achieved at three kernels.
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Figure 4.17: Comparison of B-factor predictions of calmodulin (PDB ID: 1CLL) using the
GNM (cutoff distance is 7Å) and FRI methods. Experimental B-factors show a flexible hinge
region in the middle as shown in Figure 2.1:. One-kernel FRI (FRI-1K) is parameterized at
υ = 3, η = 3.0. Two-kernel FRI (FRI-2K) is parameterized at κ1 = 1, η1 = 3Å, υ2 = 3,
and η2 = 10Å. Three-kernel FRI (FRI-3K) is parameterized at υ1 = 3, η1 = 3Å, υ2 = 3,
η2 = 7Å, κ3 = 1, and η3 = 15Å. The three kernel based mFRI delivers the best B-factor
prediction for the flexible hinge region.

4.4.2 Other proteins that benefit from mFRI

In this section we look at four specific cases to demonstrate why a multiscale approach

is required to capture the complexity of interactions or correlations. In each case, we have

used both three-kernel based mFRI and GNM to predict B-factors for the structures. When
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GNM performed poorly, different parameters were tried to see if there is a more ideal pa-

rameterization. The results of B-factor prediction are mapped on to the residues for visual

comparison and shown plotted against the experimental values for more detail.
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4.4.2.1 Cyan fluorescent protein
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Figure 4.18: Top, a visual comparison of experimental B-factors (left), FRI predicted B-
factors (midlle) and GNM predicted B-factors (right) for the engineered teal fluorescent
protein, mTFP1 (PDB ID:2HQK). Bottom, The experimental and predicted B-factor values
plotted per residue. The GNM naming convention indicated the cutoff used for the GNM
method in angstroms, for example, GNM7 is the GNM method with a cutoff of 7Å.

Cyan fluorescent protein (CFP), shown in Figure 4.18:, is a homolog of the famous

green fluorescent protein (GFP). Isolated from the crystal jellyfish in the 1990s,60 GFP
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enabled a revolution in biochemistry by allowing the tagging and tracking of a wide range

of molecules. CFP was found later in Anthozoa species which have turned out to be a good

source of fluorescent proteins with varied emission spectra.47 In this example we examine

the flexibility of an engineered CFP1 (PDB ID: 2HQK), mTFP1. It is clear in Figure 4.18:

that GNM B-factor predictions contain a large error around residues 50-60 which is very

pronounced at the recommended cutoff of 7 Angstroms and is still somewhat problematic

when the cutoff is changed to 8 Angstroms. mFRI on the other hand has no issue with this

particular region. Upon further inspection, it is clear that the offending region is the small,

alpha-helical region suspended in the center of the beta-barrel. It is not surprising that this

sort of configuration would be highly cutoff dependent in a scheme such as GNM, which has

hard cutoffs for connectivity. It would appear that this structure is dominated by short-

range interactions but the region of residues 50-60 is affected to a large degree by mid-range

interactions, therefore there are at least two important scales of interaction in this case. It

follows then that mFRI, which has kernels to capture short- and mid-range interactions,

would perform better than GNM7 or GNM8 methods alone in B-factor predictions which is

exactly what we see from the results in Figure 4.18:.
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4.4.2.2 Antibiotic synthesis protein from Thermus thermophilus
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Figure 4.19: Top, a visual comparison of experimental B-factors (left), FRI predicted B-
factors (midlle) and GNM predicted B-factors (right) for the engineered teal flourescent
protein, mTFP1 (PDB ID:1V70). Bottom, The experimental and predicted B-factor values
plotted per residue.

A similar situation exists with the structure 1V70, a probable antibiotic synthesis pro-

tein, which is shown in Figure 4.19:. As in the last example, the problematic portion for
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B-factor prediction comes at the end of a protein chain. In this case there is an overestima-

tion of flexibility for residues 1-10 when using GNM. Again, varying parameters from the

recommended 7Å results in marginally better results, however no parameterization is able

to reach the accuracy of mFRI.
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4.4.2.3 Ribosomal subunit L14
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Figure 4.20: Top, a visual comparison of experimental B-factors (left), FRI predicted B-
factors (midlle) and GNM predicted B-factors (right) for the ribosomal protein L14 (PDB
ID:1WHI). Bottom, The experimental and predicted B-factor values plotted per residue.

The third example is a biologically important molecule, ribosomal subunit L14, a compo-

nent of the 60S ribosomal subunit.17 Depicted in Figure 4.20:, L14 is a structurally diverse

protein containing regions of alpha helix, beta-barrel, parallel beta strands and a beta-hairpin
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motif. The pattern of flexibility predicted by GNM for this structure is shown to be over

exaggerated as the rigid areas are predicted to be more rigid than they actually are and vice

verse. This pattern exists in most GNM results due to the use of a hard cutoff in the Kirch-

hoff matrix. Such a hard cutoff will inevitably lead to the overestimation of bond importance

near the edge of the cutoff, therefore, if a large number of interactions exist for a particular

atom near the cutoff point, there is likely to be a large error in the estimation of flexibility

for that atom. This is likely what is happening with the errors in GNM calculation of the

proteins in Figures 4.18:, 4.19: and 4.20:, the protein at the end of the chain may be near

the edge of the cutoff distance for many interactions with the bulk of the proteins. While

adjusting GNM’s cutoff distance may temper the error being introduced, it cannot eliminate

it completely unless they change to a soft decaying kernel method such as FRI.
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4.4.2.4 Marine snail toxin
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Figure 4.21: Top, a visual comparison of atomic experimental B-factors (far left), C-alpha
experimental B-factors (left), FRI predicted B-factors (right) and GNM predicted B-factors
(far right) for the marine snail conotoxin (PDB ID:1NOT). Bottom, The experimental and
predicted B-factor values plotted per residue.

The final example is not a protein but a peptide molecule, a predatory marine snail toxin,

shown in Figure 4.21:. This peptide adopts a cyclical secondary structure which is made up
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of two connected loops created by two disulfide bonds. In this structure there happens to

be a particular residue at the beginning of the chain which is much more flexible than the

others. This is a difficult case for flexibility prediction, especially coarse-grained predictions,

as there may be side-chain interactions making large contributions to the flexibility of some

atoms and there are two disulfide bonds that link. Nevertheless, mFRI is able to accurately

reproduce the high flexibility of the first residue. GNM on the other hand is unable to

recreate the pattern of flexibility at any parameterization. This is again due to the use

of a hard cutoff in the GNM method and the use of a single kernel. The differences in

distances between residues in this structure are too subtle to be captured by a method that

treats distance with a hard cutoff. The kernels used in FRI are sensitive enough to detect

the difference in distances between atoms in this structure which leads to finding the single

stand-out residue.

4.5 FRI for protein-nucleic acid complexes

In this section, we parameterize and test the previously described mFRI on protein-

nucleic acid structures. A immediate concern is whether the proposed mFRI is as efficient

on protein-nucleic structures as it is on protein-only structures as shown in a previous study.74

The accuracy of the mFRI method is tested by the B-factor prediction of two sets of protein-

nucleic acid structures, including a set of 64 molecules used in a recent GNM study78 and a

set of 203 molecules for more accurate parameterization of mFRI.

4.5.1 Coarse-grained representations of protein-nucleic acid complexes

In this section, we consider flexibility analysis of protein-nucleic acid complexes. To this

end, we need coarse-grained representations. We consider three coarse-grained representation

of nucleic acids to be used in conjugation with the Cα-only representation used for proteins.

These three models are identical to those used by Yang et al.78 and are named M1, M2 and
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Figure 4.22: MCCs for single kernel parameter test using the M1 (squares), M2 (circles)
and M3 (triangles) representations. Lorentz kernel with υ = 3 is used. The parameter η
is varied to find the maximum MCC on the test set of structures. The results for a set of
64 protein-nucleic structures ( PDB IDs listed in Table 4.12:) are shown on the left, while
results for a separate set of 203 structures (PDB IDs listed in Table 4.13:) is shown on the
right for more general selections.
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Figure 4.23: Illustration highlighting atoms used for coarse-grained representations in
protein-nucleic acid complexes for FRI and GNM. In addition to protein Cα atoms, Model
M1 considers the backbone P atoms for nucleotides. Model M2 includes M1 atoms and adds
the sugar O4’ atoms for nucleotides. Model M3 includes M1 atoms and adds the sugar C4’
atoms and the base C2 atoms for nucleotides.

M3. Model M1 consists of the backbone P atoms and protein Cαatoms. Model M2 contains

the same atoms as M1 but also includes sugar O4’ atoms. Model M3 includes atoms from

M1 and adds the sugar C4’ atoms and base C2 atoms, see Fig. 4.23:.

Model M1 is similar to protein Cα representations because they are both backbone-

only representations. The atoms in M1 are 6 bonds apart while Cα atoms are 3 bonds

apart. Model M2 includes P atoms and adds the O4’ atoms located on the ribose portion

of the nucleotide. Finally, model M3 includes atoms of P, C4’ and C2, a carbon from the

base portion of the nucleotide, see Fig. 4.23:. As point out by Yang et al.,78 nucleotides are

approximately three times more massive than amino acids and so model M3 with three nodes

per nucleotide is consistent in this sense with using Cα atoms for the protein representation.

4.5.2 mFRI B-factor precictions for protein-nucleic acid structures

To parameterize and test the accuracy of multikernel fFRI on protein-nucleic acid struc-

tures, we use a dataset from Yang et al.78 containing 64 structures. In addition, we construct

a larger database of 203 high resolution structures. This expanded protein-nucleic structure

set was obtained by searching the Protein Data Bank (PDB) for structures that contain both
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Protein and DNA and structure which have an X-ray resolution between 0.0 and 1.75 Å. All

PDB files are processed by removing low occupancy atomic coordinates for structures having

residues with multiple possible coordinates. The PDB IDs of the 64 and 203 structures can

be found in Table 4.12: and Table 4.13:, respectively.

To quantitatively assess the performance of the proposed multikernel FRI method, we

consider the correlation coefficient (CC)

CC =

∑N
i=1

(
Be
i − B̄e

) (
Bt
i − B̄t

)[∑N
i=1(Be

i − B̄e)2
∑N

i=1(Bt
i − B̄t)2

]1/2
,(4.7)

where {Bt
i , i = 1, 2, · · · , N} are a set of predicted B-factors by using the proposed method

and {Be
i , i = 1, 2, · · · , N} are a set of experimental B-factors read from the PDB file. Here

B̄t and B̄e the statistical averages of theoretical and experimental B-factors, respectively.

4.5.2.1 Multikernel FRI testing on protein-nucleic structures

Previous tests of single kernel FRI indicate that the Lorentz type and exponential type

correlation kernels are the two most accurate kernel types. This leads us to try the com-

bination of these two types of kernels. The resulting multikernel FRI method requires four

parameters, namely, κ and η for the exponential kernel and υ and η for the Lorentz kernel.

4.5.2.2 Single kernel FRI testing

In order to compare FRI and GNM methods for protein-nucleic acid structures, we test

our single kernel FRI at a range of η values. For this test we use the Lorentz kernel with υ = 3

for B-factor prediction on both structures sets and all three representations (M1, M2 and

M3). The results are shown in Figure 4.22:. For the 64 structure set, single kernel FRI has a

maximum mean correlation coefficient (MCC) to experimental B-factors for M1, M2 and M3

representations of 0.620, 0.612 and 0.555. Comparatively, GNM had a MCC of approximately

0.59, 0.58 and 0.55 for M1, M2 and M3 for the same data set.78 The maximum MCCs for

FRI on the larger data set for M1, M2 and M3 are 0.613, 0.625 and 0.586, respectively. The
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Figure 4.24: Mean correlation coefficients (MCCs) for two-kernel FRI models on a set of 203
protein-nucleic structures. From left to right, MCC values are shown for M1, M2 and M3
representations. We use one Lorentz kernel with υ = 3.0 and one exponential kernel with
κ = 1.0. The values of parameter η for both kernels are varied from 2 to 20 Å.

M1 and M2 representations perform better than the M3 representation.

4.5.2.3 Parameter-free multikernel FRI

As with protein-only structures, we develop multikernel FRIs with multiple kernels to

improve accuracy of prediction on protein-nucleic acid structures. In order to simplify the

FRI method, we try to develop an accurate parameter-free version for a two-kernel mFRI.

We use a combination of one Lorentz and one exponential kernel. Values for parameters υ

and κ are set to 3.0 and 1.0 respectively based on the results of previous FRI studies.49 The

optimal values for η in both kernels are determined by testing a range of possible values from

2 to 20 Å. All three representations (M1, M2 and M3) described previously are considered.

The results of these tests on the set of 203 protein-nucleic acid structures are shown in Figure

4.24:.

As expected, the addition of another kernels results in an overall increase in accuracy for

the 203 complex set. For two-kernel mFRI, the MCCs increase up to 0.68 for M1, 0.67 for

M2 and 0.63 for M3. The choice of η turns out to be very robust based on results shown in

Figure 4.24:.
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Table 4.12: Correlation coefficients (CCs) between predicted and experimental B-factors for
the set of 64 protein-nucleic structures.78 Here N1, N2 and N3 values represent the number of
atoms used for the M1, M2 or M3 representations for each structure. We use the parameter-
free two-kernel mFRI model with one exponential kernel (κ = 1 and η = 18 Å) and one
Lorentz kernels (υ = 3, η = 18 Å. PDB IDs marked with an asterisk (*) indicate structure
containing only nucleic-acid residues.

M1 M2 M3

PDB ID CC N1 CC N2 CC N3

1asy 0.647 1114 0.645 1248 0.631 1382
1b23 0.751 471 0.774 537 0.714 603
1c0a 0.763 653 0.704 721 0.598 789
1CX0 0.821 162 0.763 234 0.627 306
1drz 0.846 162 0.754 234 0.585 306
1efw 0.537 1286 0.647 1412 0.660 1538
1egk* 0.273 104 0.298 212 0.267 320
1ehz* 0.623 62 0.706 124 0.722 186
1evv* 0.710 62 0.769 124 0.770 186
1f7u 0.577 670 0.588 734 0.603 798
1ffk 0.759 6482 0.793 9310 0.809 12138
1ffy 0.520 991 0.549 1066 0.568 1141
1fg0* 0.720 498 0.723 996 0.721 1494
1fir* 0.687 61 0.576 122 0.439 183
1fjg 0.461 3915 0.585 5428 0.600 6941
1gid* 0.649 316 0.643 632 0.583 948
1gtr 0.724 603 0.747 677 0.645 751
1h3e 0.717 507 0.724 586 0.645 663
1h4s 0.671 1011 0.704 1076 0.626 1141
1hr2* 0.599 313 0.589 628 0.585 943
1i94 0.489 3923 0.615 5437 0.652 6951
1i9v* 0.615 73 0.631 147 0.642 220
1j1u 0.730 372 0.671 446 0.456 520
1j2b 0.686 1300 0.712 1448 0.672 1596
1j5a 0.532 3158 0.548 5932 0.510 8706
1j5e 0.427 3909 0.546 5422 0.553 6935
1jj2 0.799 6567 0.839 9443 0.836 12319
1jzx 0.586 3158 0.600 5932 0.561 8706
1l8v* 0.700 312 0.688 626 0.672 940
1l9a 0.849 211 0.789 336 0.675 461
1lng 0.780 183 0.595 280 0.405 377
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Table 4.11, continued: Correlation coefficients (CCs) between predicted and experimental
B-factors for the set of 64 protein-nucleic structures.78 Here N1, N2 and N3 values represent
the number of atoms used for the M1, M2 or M3 representations for each structure. We use
the parameter-free two-kernel mFRI model with one exponential kernel (κ = 1 and η = 18
Å) and one Lorentz kernels (υ = 3, η = 18 Å. PDB IDs marked with an asterisk (*) indicate
structure containing only nucleic-acid residues.

M1 M2 M3

PDB ID CC N1 CC N2 CC N3

1m5k 0.904 402 0.841 622 0.760 842
1m5o 0.921 405 0.872 629 0.810 853
1mfq 0.773 341 0.688 468 0.543 595
1mms 0.507 317 0.548 433 0.646 549
1n32 0.388 3916 0.494 5447 0.517 6978
1nbs* 0.547 270 0.566 540 0.573 810
1o0c 0.766 602 0.758 676 0.636 750
1qf6 0.608 710 0.578 779 0.540 848
1qrs 0.671 603 0.672 677 0.586 751
1qtq 0.620 602 0.640 676 0.596 750
1qu2 0.520 991 0.549 1066 0.568 1141
1qu3 0.579 954 0.599 1029 0.613 1104
1rc7 0.599 256 0.566 296 0.470 336
1s72 0.823 6636 0.839 9507 0.831 12378
1ser 0.748 855 0.743 917 0.657 978
1sj3 0.880 167 0.805 240 0.614 313
1tn2* 0.686 62 0.712 124 0.676 186
1tra* 0.624 62 0.670 124 0.660 186
1ttt 0.578 1401 0.564 1587 0.515 1773
1u0b 0.757 535 0.754 609 0.621 683
1u6b 0.476 312 0.490 531 0.506 750
1u9s* 0.446 155 0.432 310 0.419 465
1vby 0.877 167 0.792 240 0.587 313
1vc0 0.878 167 0.804 240 0.611 313
1vc5 0.861 164 0.840 234 0.685 304
1y0q* 0.491 230 0.484 463 0.472 696
1y26* 0.677 70 0.697 141 0.709 212
1yfg* 0.565 64 0.600 128 0.623 192
1yhq 0.835 6636 0.840 9507 0.831 12378
1yij 0.836 6636 0.851 9507 0.842 12378
2tra* 0.614 65 0.614 130 0.613 195
3tra* 0.645 64 0.615 128 0.620 192
4tra* 0.679 62 0.715 124 0.694 186
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Table 4.13: The PDB IDs of the 203 high resolution protein-nucleic structures used in our
single-kernel FRI parameter test. IDs marked with an asterisk indicate those containing only
nucleic acids residues.

PDB ID PDB ID PDB ID PDB ID PDB ID PDB ID PDB ID PDB ID PDB ID PDB ID

1A1H 1A1I 1AAY 1AZP 1BF4 1C8C 1D02 1D2I 1DC1 1DFM
1DP7 1DSZ 1EGW 1EON 1F0V 1FIU 1H6F 1I3W 1JK2 1JX4
1K3W 1K3X 1L1Z 1L3L 1L3S 1L3T 1L3V 1LLM 1MNN 1NJX
1NK0 1NK4 1OJ8 1ORN 1PFE 1QUM 1R2Z 1RFF 1RH6 1SX5
1T9I 1U4B 1VTG 1WTO 1WTQ 1WTV 1XJV 1XVK 1XVN 1XVR
1XYI 1ZS4 2ADW 2AXY 2BCQ 2BCR 2BOP 2C62 2C7P 2EA0

2ETW 2EUW 2EUX 2EUZ 2EVF 2EVG 2FMP 2GB7 2HAX 2HEO
2HHV 2IBT 2IH2 2ITL 2NQ9 2O4A 2OAA 2ODI 2P2R 2PY5
2Q10 2R1J 2VLA 2VOA 2WBS 2XHI 2Z70 2ZKD 3BIE 3BKZ
3BM3 3BS1 3D2W 3EY1 3EYI 3FC3 3FDE 3FDQ 3FSI 3FYL
3G00 3G9M 3G9O 3G9P 3GO3 3GOX 3GPU 3GQ4 3HPO 3HT3
3HTS 3I0W 3I2O 3I3M 3I49 3I8D 3IGK 3JR5 3JX7 3JXB
3JXY 3JXZ 3KDE 3KXT 3M4A 3MR3 3MXM 3NDH 3O1M 3O1P
3O1S 3O1T 3O1U 3OQG 3PV8 3PVI 3PX0 3PX4 3PX6 3PY8
3QEX 3RKQ 3RZG 3S57 3S5A 3SAU 3SJM 3TAN 3TAP 3TAQ
3TAR 3THV 3TI0 3U6E 3U6P 3V9W 3ZDA 3ZDB 3ZDC 3ZDD
4A75 4B21 4B9S 4DFK 4DQI 4DQP 4DQQ 4DS4 4DS5 4DSE
4DSF 4E0D 4ECQ 4ECV 4ECX 4ED0 4ED2 4ED7 4ED8 4EZ6
4F1H 4F2R 4F2S 4F3O 4F4K 4F8R 4FPV 4GZ1 4GZN 4HC9
4HIK 4HIM 4HLY 4HTU 4HUE 4HUF 4HUG 4IBU 4IX7 4KLG
4KLI 4KLM 4KMF
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Table 4.14: MCCs of Gaussian network model (GNM),78 single kernel flexibility-rigidity
index (FRI) and two-kernel mFRI for three coarse-grained representations (M1, M2,and
M3). A set of 64 protein-nucleic acid structures78 is used.

GNM78 FRI Two-kernel mFRI
M1 0.59 0.620 0.666
M2 0.58 0.612 0.668
M3 0.55 0.555 0.620

We have also carried out a similar test of two-kernel mFRI (υ = 3.0 and κ = 1.0) for

the set of 64 protein-nucleic acid structures. Note that this has many large complexes. The

MCCs for M1, M2 and M3 models are 0.668, 0.666 and 0.620, respectively, which are similar

to what we have found for the set of 203 structures. The set of 64 structures includes 19

structures composed of nucleic acids and no amino acids. The MCCs for this nucleic acid-

only subset 0.608, 0.617 and 0.603 for M1, M2 and M3 models. The correlation coefficients

for all 64 individual molecular complexes are listed in Table 4.12:.

To summarize the performance of Gaussian network model, single kernel FRI, and two-

kernel mFRI, we list their MCCs for the 64 protein-nucleic acid structures in Table 4.14:.

It can be seen that, the FRI outperforms GNM in all three representations, and two-kernel

mFRI further significantly improves the accuracy of our method and achieves up to 15%

improvement compared with GNM.78 Based on our earlier test,50 we believe that our three-

kernel mFRI can deliver a better prediction.

4.6 Protein-nucleic acid structure applications

In this section we briefly explore the applications of the mFRI and aFRI methods to

large protein-nucleic acid complexes. We highlight a few particular examples where mFRI

improves upon previous FRI methods, in particular, for the flexibility prediction of ribo-

somes. Further, we show how aFRI is well suited for the study of the dynamics of large

macromolecular complexes using the bacterial RNA polymerase active site as an example.
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4.6.1 mFRI flexibility prediction for ribosomes

Some of the largest and most biologically important structures that contain both pro-

tein and nucleic acids are ribosomes. Ribosomes are the protein synthesizers of the cell and

connect amino acid into polymer chains. In ribosomes, proteins and RNA interact through

intermolecular effects, such as electrostatic interactions, hydrogen bonding, hydrophobic in-

teractions, base stacking and base pairing. RNA tertiary structures can significantly influence

protein-RNA interactions. Ribosomes are primarily composed of RNA with many smaller

associated proteins as shown in Fig. 4.25:. The top of Fig. 4.25: shows the 50S subunit

of the ribosome (PDB ID: 1YIJ) with the nucleic acids in a smooth surface representation

with the protein subunits bound and shown in a secondary structure representation. The

set of 64 structures used in our tests contains a number of ribosomal subunits. Due to their

multiscale nature, these structures also happen to be among those that benefit the most from

using multikernel FRI over single kernel FRI or GNM. For example, in the case of ribosome

50S subunit structure (PDB ID:1YIJ), B-factor prediction with three-kernel FRI yields a

CC value of 0.85, while that of single kernel FRI is only around 0.3. GNM does not provide

a good B-factor prediction for this structure either. The three-kernel mFRI model we used

is one exponential kernel (κ = 1 and η = 15 Å) and two Lorentz kernels (υ = 3, η = 3 Å and

υ = 3, η = 7Å). The comparison between mFRI-predicted and experimental B-factors for

ribosome 50S subunit structure is demonstrated in Fig. 4.25:.

By using the fitting coefficients from the above 50S subunit (1YIJ) flexibility analysis, we

have obtained flexibility predictions for the entire ribosome (PDB ID:4V4J) as well as many

protein subunits and other RNAs that associate with it, see Fig. 4.25:. To avoid confusion,

the B-factors for 4V4J are uniquely determined by using not only the same three-kernel

mFRI model from the case 1YIJ, and also its fitting parameters a1 =, a2 =, a3, and b. Again,

the FRI values are mapped by color to the smooth surface of the nucleic acids, however,
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(a) Complete ribosome with bound tRNAs PDB ID: 4V4J.
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(b) Ribosome 50S subunit PDB ID: 1YIJ B factors (c) Ribosome 50S subunit PDB ID: 1YIJ

Figure 4.25: Complete ribosome with bound tRNAs (yellow (A site) and green (P site)) and
mRNA Shine-Delgarno sequence (orange) PDB ID: 4V4J. The same correlation coefficients
and fitting parameters from mFRI model of protein 1YIJ are used. A comparison of predicted
and experimental B-factor data for Ribosome 50S subunit PDB ID: 1YIJ. The CC value
is 0.85 using the parameter free three-kernel mFRI model. Nucleic acids are shown as a
smooth surface colored by FRI flexibility values (red for more flexible regions) while bound
protein subunits are colored randomly and shown in a secondary structure representation.
We achieve a CC value up to 0.85 using parameter free three-kernel mFRI model with one
exponential kernel (κ = 1 and η = 15 Å) and two Lorentz kernels (υ = 3, η = 3 Å and υ = 3,
η = 7Å).
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in these bottom figures the protein subunits are omitted to draw attention instead to the

various types of RNA involved in this structure.

4.6.2 aFRI conformational motion prediction on an RNA polymerase structure

RNA polymerase is one of the essential enzymes for all life on Earth as we know it today

and possibly from the very beginning of life.13,35 Despite this importance, the mechanisms

for many of the polymerase’s functions are still not well understood on the atomic level.

Considerable effort has been spent both experimentally and computationally to understand

RNAP polymerase function in more detail but many questions remain. The study of RNA

polymerase experimentally or computationally is difficult and often expensive due to the

size of the system and variety of molecules involved. The minimal required elements for a

bacterial or eukaryotic RNA polymerase include multiple protein subunits, a double stranded

DNA molecule, a single stranded RNA molecule, free nucleotides, various ions (Mg2+, Zn2+,

Na+ etc.) and solvent. A typical setup for this system in all-atom molecular dynamics

includes 300,000 atoms when solvated. With this number of atoms and current computer

power, it is often not feasible to simulate these molecules on biologically relevant timescales

using MD. Perhaps the most popular tool for studying long time dynamics of biomolecules

is normal mode analysis (NMA) and its related methods such as the anisotropic network

model (ANM). These methods have been successfully used to study protein dynamics for

many proteins, however, at their maximum accuracy, their computational complexity is of

O(N3), where N is the number of atoms. This is a problem because many cellular functions

involve a large number of macromolecules with many thousands to millions of residues to

consider. Therefore, future computational studies of biomolecules beyond the protein scale

will require methods with better scaling properties such as FRI and aFRI.

In this example, we use completely local anisotropic FRI to examine correlated motions

in regions near the active site of bacterial RNA polymerase, including the bridge helix,
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(a) RNA Polymerase with closed trigger loop (b) Correlated motion near active site

(c) aFRI mode 1 - Open TL (d) aFRI mode 1 - Closed TL

Figure 4.26: The first RNAP local aFRI mode for the bridge helix, trigger loop and nucleic
acids from both open (PDB ID: 2PPB) and closed (PDB ID: 2O5J) configurations. Arrows
represent the direction and relative magnitude of atomic fluctuations. Arrows for the bridge
helix, trigger loop and nucleic acids are pictured as blue, white and yellow, respectively.
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trigger loop and nucleic acid chains. We examine the relationship between these components’

motions and their contributions to critical functions such as catalysis and translocation. We

use the anisotropic rigidity form in section 3.5 with the Lorentz kernel (υ = 2 and η = 3

Å). Figure 4.26:a is a simplified representation of RNA polymerase (PDB ID 2PPB) that

shows these important features which are buried in the core of the largest protein subunits,

β and β′. The bridge helix and trigger loop, shown in green and blue respectively, are

parts of the protein that have been implicated in most of the essential functions of the

polymerase. Mutational studies of these regions result in modulation of the polymerase

speed and accuracy, both positively and negatively, indicating the regions are important

for normal functioning of the enzyme. How these regions aid these functions and how they

interact remains an open question. With this demonstration of local aFRI analysis we hope

to shed some light on how these essential parts of RNA polymerase work together.

Local aFRI, as described in earlier work, is much less computationally costly than global

aFRI or NMA and has been shown to have qualitatively similar results for small to large

size single proteins. To further validate the local aFRI method we compare the conclusions

from a local aFRI study of RNAP to those of NMA based studies. The RNA polymerase

elongation complex is a relatively large system but it is still tenable for NMA methods. NMA

has been applied to both bacterial and eukaryotic RNA polymerase in the past23,69 which

provides us with a point of comparison for our results.

Local aFRI produces three modes of motion sorted from lowest to highest frequency vi-

bration according to eigenvalue as in NMA. In Figure 4.26: we present findings from the

lowest frequency mode effectively focusing on the most dominant motion of each conforma-

tion. Two major conformations of RNA polymerase are considered, those with open and

closed trigger loop regions (Figures 4.26:c and 4.26:d.) A closed trigger loop is one that is

completely folded into two parallel alpha helices while an open trigger loop has a region of
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disordered loop between two shorter helices and is slightly bent away from the bridge helix .

The closing or folding of the trigger loop into the closed conformation is assumed to follow

binding of an NTP in the active site and to precede catalysis. After catalysis, it is suspected

that the trigger loop opens or unfolds to facilitate translocation and permit new NTPs to

enter the active site.

The results of aFRI analysis on the effect of trigger loop closing reveal a distinct change

in correlated motions in open and closed trigger loop conformations. These changes involve

interactions between the bridge helix, the trigger loop and the nucleic acid regions. In

Figure 4.26:b, regions of high correlation are color coded which reveals that the bridge helix

is composed of two highly self correlated portions suggesting the presence of a hinge in the

bridge helix. In fact, the central portion of the bridge helix has been observed as a kinked

or bent helix in a yeast RNAP structure.72 Additionally, it is observed that a portion of the

bridge helix and the N-terminal helix of the trigger loop are highly correlated in the closed

trigger loop structure only. This set of two helices is situated directly next to the active site

and could provide stability to aid catalysis after trigger loop closing.

Additionally, correlation between nucleic acids and protein shows marked differences from

the open trigger loop to closed trigger loop structures. The motions indicated in Figures

4.26:c and 4.26:d show that the open trigger loop structure is primed to translocate based

on the direction of highly correlated motions of the upstream and downstream nucleic acids.

By contrast, the closed trigger loop nucleic acid motions are considerably less correlated and

not in the direction of translocation. This is the expected relationship as it matches the

results from previous biological and NMA studies of RNA polymerase.23

These differences between a closed trigger loop and open trigger loop structure reveal po-

tentially important structural changes that arise as the RNA polymerase switches between

open and closed trigger loop conformations during the transition between translocation and
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catalysis. Specifically, the results for the closed trigger loop conformation suggest the pres-

ence of a stabilized catalytic area which is made of the N-terminal helix of the trigger loop

and the bridge helix. The results for the open trigger loop conformation show no such coor-

dination of the active site helices and instead indicates a less defined hinge and coordinated

motion in the direction of translocation. Taken together these results provide a potential

explanation for how trigger loop opening and closing is correlated with translocation and

catalysis respectively.

4.7 Generalized GNM, multiscale GNM and multiscale ANM methods

4.7.1 Generalized Gaussian network model

4.7.1.1 Comparison between gGNM and FRI

Based on the analysis in Section 3.6, it is straightforward to construct correlation function-

based gGNMs via the matrix inverse of the generalized Kirchhoff matrix (3.46), which leads

to infinitely many new gGNMs including the original GNM as a special limiting case. Also,

it is possible to construct a FRI method using the Kirchhoff matrix of GNM. In light of

these observations it is necessary to directly compare the performance of the related meth-

ods and to explore whether there is any further relationship between these two approaches,

specifically the diagonal elements of the gGNM matrix inverse and the direct inverse of the

diagonal elements of a generalized Kirchhoff matrix. To address this question, we select two

representative correlation functions, the Lorentz (υ = 3) and ILF functions, to construct the

generalized Kirchhoff matrix (3.46). The Lorentz function is a frequently used correlation

function in our earlier work.49 In contrast, the ILF function, while typical in GNM, is an

extreme case of FRI correlation function not previously considered in work on FRI. The

resulting two generalized Kirchhoff matrices (3.46) can be used for calculating the gGNM

matrix inverse or the inverse diagonal elements of the FRI matrix. This results in possible

combinations of methods, namely, FRI-Lorentz, FRI-ILF, GNM-Lorentz and GNM-ILF.
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To test the methods described above, we analyze the flexibility of a protein from pathogenic

fungus Candida albicans (Protein Data Bank ID: 2Y7L) with 319 residues as shown in Fig.

4.27:(a). We consider the coarse-grained Cα representation of protein 2Y7L. We denote

BGNM−ILF, BFRI−ILF, BGNM−Lorentz and BFRI−Lorentz respectively the predicted B-factors of

GNM-ILF, FRI-ILF, GNM-Lorentz and FRI-Lorentz methods. The experimental B-factors

from X-ray diffraction, BExp, are also displayed for comparison. The Pearson product-

moment correlation coefficient (PCC) is used to measure the strength of the linear rela-

tionship or dependence between each sets of predicted or experimental B-factors. Since

performance of these methods depends on their parameters, the cutoff distance (rc) in the

ILF and the scale value (η) in the Lorentz function, the theoretical B-factors are computed

over a wide range of rc and η values to find the parameters that work best for each method.

Figure 4.28: depicts PCCs between various sets of B-factors for protein 2Y7L. As shown in

Fig. 4.28: (a), the cutoff distance rc of the ILF is varied from 5Å to 64Å. The PCCs between

BGNM−ILF and BExp, and between BFRI−ILF and BExp, indicate that both GNM-ILF and

FRI-ILF are able to provide accurate predictions of flexibility compared the experimental

B-factors. The best predictions are attained around rc = 24Å, which is significantly larger

than the commonly used GNM cutoff distance of 7-9Å.

4.7.1.2 Intrinsic behavior of gGNM at large cutoff distance

It is interesting to observe that GNM-ILF and FRI-ILF provide essentially identical pre-

dictions when the cutoff distance is equal to or larger than 20Å. This phenomenon indicates

that when the cutoff is sufficiently large, the diagonal elements of the gGNM inverse matrix

and the direct inverse of the diagonal elements of the FRI correlation matrix become linearly

dependent. To examine the relation between GNM-ILF and FRI-ILF, we compute PCCs

between BGNM−ILF and BFRI−ILF over the same range of cutoff distances. As shown in Fig.

4.28:(a), there is a strong linear dependence between BGNM−ILF and BFRI−ILF for rc ≥ 10Å.
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Figure 4.27: Illustration of protein 2Y7L. (a) Structure of protein 2Y7L having two do-
mains; (b) Correlation map generated by using GNM-Lorentz indicating two domains; (c)
Comparison of experimental B-factors and those predicted by GNM-Lorentz (η = 16Å); (d)
Comparison of experimental B-factors and those predicted by FRI-ILF (rc = 24Å).
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Figure 4.28: PCCs between various B-factors for protein 2Y7L. (a) Correlations between
BGNM−ILF and BExp, between BFRI−ILF and BExp, and between BGNM−ILF and BFRI−ILF; (b)
Correlations between BGNM−Lorentz and BExp, between BFRI−Lorentz and BExp, and between
BGNM−Lorentz and BFRI−Lorentz.

To understand this dependence at large cutoff distance, we consider an extreme case when

the cutoff distance is equal to or even larger than the protein size, so all the particles within

the network are fully connected. In this situation, we can analytically calculate ith diagonal

element of the GNM inverse matrix

(
Γ−1(Φ(rij; rc →∞))

)
ii

=
N − 1

N2
,(4.8)

and the FRI inverse of the ith diagonal element

1∑N
j,j 6=i Φ(rij; rc →∞)

=
1

N − 1
.(4.9)

These results show a strong asymptotic correlation between BGNM−ILF and BFRI−ILF in Fig.

4.28:(a). They also explain why predictions of the original GNM and FRI-ILF deteriorate

as rc is sufficiently large because all the predicted B-factors become identical, either N−1
N2 or

1
N−1

. And two methods deliver very similar results, especially when the total number is very
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large, as we have
N−1

N2
1

N−1

→ 1 when N →∞.

The performance and comparison between GNM-Lorentz and FRI-Lorentz is illustrated

in Fig. 4.28:(b) where the scale parameter η ranges from 0.5Å to 64Å. It is seen from these

results that the GNM-Lorentz method is a successful new approach. In fact, it outperforms

the original GNM. A comparison of the predicted B-factors and the experimental B-factors

is plotted in Figs. 4.27:(c) and 4.27:(d) for GNM-Lorentz and FRI-ILF, respectively. It is

seen that BFRI−ILF more closely matches the experimental B-factors than BGNM−Lorentz does

due to the different fitting schemes employed by two methods as shown in Eqs. (3.36) and

(3.38), respectively.

As shown in Fig. 4.28:(b), the predictions from GNM-Lorentz and FRI-Lorentz become

identical as η ≥ 5Å. A strong correlation between BGNM−Lorentz and BFRI−Lorentz is revealed

at an even smaller scale value. This behavior leads to a general relation

(
Γ−1(Φ(rij; η))

)
ii
−→ c∑N

j,j 6=i Φ(rij; η)
, η →∞,(4.10)

where c is a constant. Relation (4.10) means that the correlation function based gGNM is

equivalent to the FRI for a given admissible correlation function when the scale parameter

is sufficiently large. This relation is certainly true for the ILF as analytically proved in Eqs.

(4.8) and (4.9). Relation (4.10) is a very interesting and powerful result not only for the

sake of understanding the GNM and FRI methods and their relationship, but also for the

design of accurate and efficient new methods.

It should be noticed that our findings are consistent with the previous finding54 that, the

local packing density described by the direct inverse of the diagonal terms represents only

the leading order but not the entire set of the dynamics described by gGNM. Our results

reveal an interesting connection between FRI and gGNM when the characteristic distance is

sufficiently large.
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Figure 4.29: PCCs between various B-factors averaged over 364 proteins. (a) Correlations
between BGNM−ILF and BExp, between BFRI−ILF and BExp, and between BGNM−ILF and
BFRI−ILF; (b) Correlations between BGNM−Lorentz and BExp, between BFRI−Lorentz and BExp,
and between BGNM−Lorentz and BFRI−Lorentz.

4.7.1.3 Validation of gGNM with extensive experimental data

It remains to be proven that the above findings from a single protein are translatable

and verifiable on a large class of biomolecules. To this end, we consider a set of 364 proteins,

a subset of the 365 proteins utilized and documented in our earlier work.49 The omitted

protein is 1AGN, which has been found to have unrealistic experimental B-factors. We carry

out systematic studies of four methods over a range of cutoff distances or scale values. For

each given rc or η, the PCCs between two sets of B-factors are averaged over 364 proteins.

Figure 4.29: illustrates our results. Figure 4.29:(a) plots the results of the ILF implemented

in both GNM and FRI methods with the cutoff distance varied from 4Å to 23Å. Figure

4.29:(b) depicts similar results obtained by using the Lorentz function implemented in two

methods. The scale value is varied over the range of 0.5Å to 10Å.

First, it is evident that the proposed new method, GNM-Lorentz, is very accurate for
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the B-factor prediction of 364 proteins as shown in Fig. 4.29:(b). The best GNM-Lorentz

prediction is about 10.7% better than that of the original GNM shown in Fig. 4.29:(a).

In fact, GNM-Lorentz outperforms the original GNM over a wide range of parameters for

this set of proteins, which indicates that the proposed generalization is valuable. Similarly,

FRI-Lorentz is also about 10% more accurate than FRI-ILF in B-factor prediction. Since

the ILF is a special case and there are infinitely many FRI correlation functions, there is a

wide variety of correlation function based gGNMs that are expected to deliver more accurate

flexibility analysis than the original GNM does.

Additionally, the FRI-Lorentz method is able to attain the best average prediction for

364 proteins among the four methods as shown in the zoomed in parts in Fig. 4.29:(b).

However, for a given correlation function, the difference between FRI and gGNM predictions

is very small.

Moreover, for a given admissible FRI function, gGNM and FRI B-factor predictions are

strongly linearly correlated and reach near 100% correlation when rc > 9Å or η > 0.5Å for

364 proteins as demonstrated in Fig. 4.29:. This finding offers a solid confirmation of

Eq. (4.10). Therefore, correlation function based gGNMs, including the original GNM as

a special case, are indeed equivalent to the corresponding FRI methods in the flexibility

analysis for a wide range of commonly used scale values.

Furthermore, it has been shown that the fast FRI is a linear scaling method,49 while

gGNM scales as O(N3) due to their matrix inverse procedure. As a result, the accumu-

lated CPU times for the B-factor predictions of 364 proteins at rc = 7 or η = 3 are 0.88,

1.57, 5071.32 and 4934.79 seconds respectively for the FRI-ILF, FRI-Lorentz, GNM-ILF and

GNM-Lorentz. The test is performed on a cluster with 8 Intel Xeon 2.50GHz CPUs and

128GB memory. gGNM methods are very fast for small proteins and most of the accumu-

lated gGNM CPU time is due to the computation of three largest proteins (1F8R, 1H6V
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Figure 4.30: The average PCCs over 362 proteins for Type-1 mGNM. (a) Two ILF kernels
and their cutoff distances are systematically changed from 5 Å to 31 Å. (b) Two exponential
kernels and their scales η are systematically varied in the range of [1Å, 26Å].

and 1QKI) in the test set.

Finally, it is worth mentioning that the earlier FRI rigidity index includes the contribu-

tion from the self correlation.49,75 The present findings do not change if the summation in

the generalized Kirchhoff matrix (3.46) is modified to include the diagonal term and then

the calculation of gGNM matrix inverse is modified to include the contribution from first

eigenmode, (Γ−1)ii =
∑N

k=1 λ
−1
[
uku

T
k

]
ii
. In fact, this modification makes the generalized

Kirchhoff matrix less singular and faster converging.

4.7.2 Multiscale Gaussian network model

4.7.2.1 Type-1 mGNM

We validate our two types of mGNM with various parameter values over a set of 362

proteins. Two largest proteins, 1H6V and 1QKI, are removed from our earlier data set of

364 proteins49 due to the limited computational resources. Two kinds of kernels, ILF and

exponential, are employed. To explore the multiscale behavior, we use two kernels of the same

type but with different characteristic distances in our mGNM schemes. For the ILF kernel
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Figure 4.31: The average PCCs over 362 proteins for Type-2 mGNM. (a) Two ILF kernels
and their cutoff distances are systematically changed from 5 Å to 31 Å. (b) Two exponential
kernels and their scales η are systematically varied in the range of [1Å, 26Å].

based test, the cutoff distances in both kernels vary from 5Å to 31Å. For the exponential

kernel based test, we set κ = 1 and vary η in both kernels within the range of [1Å, 26Å]. The

PCCs with experimental B-factors are averaged over 362 proteins. The results for the Type-1

mGNM are demonstrated in Figures 4.30: (a) and (b). When two ILF kernels are used in

Figure 4.30: (a), we can seen that the largest average PCCs are concentrated around the

region where two kernels have dramatically different cutoff distances with one cutoff being

around 7 Å and the other ranging from 14 to 20 Å. Our results indicate that in this set of

proteins there is a multiscale property that is better described by mGNM parameterized at

different cutoff distances. Moreover, the best PCC is distributed around cutoff distance 7Å,

which is consistent with the optimal cutoff distance (7Å) recommended for the traditional

GNM method. Similar multiscale behavior can also be observed for an exponential kernel

based mGNM as demonstrated in Figure 4.30: (b).
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4.7.2.2 Type-2 mGNM

The results of Type-2 mGNMs with ILF kernels and exponential kernels are demonstrated

in Figures 4.31: (a) and (b), respectively. The multiscale property is observed to improve

predictions for both cases. Compared with Type-1 mGNM, Type-2 mGNM is able to achieve

better average PCCs with respect to experimental B-factors. For two ILF kernels, the best

average PCC for traditional GNM is 0.567. Type-1 mGNM has significantly improved it to

0.607. Additionally, Type-2 mGNM achieves the best average PCC of 0.614. Similar results

are observed in exponential kernel models. For the generalized GNM, the best average PCC

is about 0.608. This has been improved to 0.629 in Type-1 mGNM and further improved to

0.642 in Type-2 mGNM. Detailed comparisons are summarized in Table 4.15:.

Table 4.15: The best average PCCs with experimental B-factors. Results for GNM and
mGNM are averaged over 362 proteins. Results for ANM and mANM are averaged over 300
proteins.

Kernel GNM Type-1 mGNM Type-2 mGNM Kernel ANM mANM

ILF 0.567 0.607 0.614 ILF 0.490 0.531
Exponential 0.608 0.629 0.642 Gaussian 0.518 0.546

4.7.3 Multiscale anisotropic network models

Table 4.16: 64 Large-sized proteins in the 364-protein data set49 but not included in our
mANM test due to limited computational resource.

1F8R 1GCO 1H6V 1IDP 1KMM 1QKI 1WLY 2A50 2AH1 2BCM
2COV 2D5W 2DPL 2E10 2ETX 2FN9 2I49 2O6X 2OKT 2POF
2PSF 2Q52 2VE8 2W1V 2W2A 2XHF 2Y7L 2YLB 2YNY 2ZCM
2ZU1 3AMC 3BA1 3DRF 3DWV 3G1S 3HHP 3LG3 3MGN 3MRE
3N11 3NPV 3PID 3PTL 3PVE 3PZ9 3SRS 3SZH 3TDN 3UR8

3W4Q 4AM1 4B6G 4B9G 4DD5 4DKN 4DQ7 4ERY 4F01 4G5X
4G6C 4J11 4J78 4JYP

To study the performance of the multiscale anisotropic network model, we use 300 pro-

teins obtained from the dataset with 364 proteins by removing the largest 64 proteins listed in
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Figure 4.32: The average PCCs over 300 proteins for mANM. (a) Two ILF kernels and their
cutoff distances are systematically changed from 5 Å to 31 Å. (b) Two Gaussian kernels
(κ = 2) and their scales η are systematically varied in the range of [1Å, 26Å].

Table 4.16:. The Hessian matrix used in mANM is 3N×3N , which is 9 times larger than the

corresponding Kirchhoff matrix in gGNM. This poses more challenges as the computational

time grows exponentially with the size of the Hessian matrix.

We consider ILF kernel and Gaussian kernel (κ = 2) based mANM methods in our test

study. Our results are plotted in Figure 4.32:. First, one can still see the multiscale effect in

this set of proteins as the best average PCC values of mANM are achieved at the combination

of a relatively small cutoff distance (7Å) and a relatively large cutoff distance. These values

are much higher than those on the diagonal, which represent the average PCC values of the

traditional (single kernel) ANM. For the Gaussian kernel based mANM, we see a similar

pattern. However, it achieves better predictions than those of the ILF kernel based mANM.

This results are also listed in Table 4.15:. Although the ANM methods are not as accurate

as the GNM methods, they are able to offer unique collective motions that otherwise cannot

be obtained by the GNM methods.
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4.8 mGNM and mANM applications

Having demonstrated the ability of mGNM and mANM for capturing protein multiscale

behavior and improving B-factor predictions, we consider a few applications to showcase the

proposed methods. First, we take on a set of proteins that fail the original GNM in various

ways. This analysis might shed light on why the proposed mGNM works better than the

original GNM. Additionally, GNM and ANM can provide domain information for a protein

structure. It is well known that GNM eigenvectors can be used to indicate the possible

divisions of domains and domain-domain interactions. Finally, ANM eigenvectors are widely

used to predict the collective motions of a protein near its equilibrium.

4.8.1 B-factor prediction of difficult cases using mGNM

It is well known that the traditional GNM does not work well in the B-factor prediction

for certain proteins for various reasons.50,52 Park et al. have shown that GNM PCCs with

experimental B-factors can be negative.52 In this work, we demonstrate that the mGNM

method is able to deliver more satisfactory B-factor predictions by capturing multiscale

features. To demonstrate this we consider four proteins, 1CLL, 1V70, 2HQK and 1WHI.

The Type-2 mGNM with two exponential kernels is used for these applications. As depicted

in Figure 4.31:(b), there is a wide range of scale parameters that deliver accurate B-factor

predictions. We choose κ = 1, η1 = 3 Å and κ = 1, η2 = 25Å to use in this test. For

comparisons to the original method, the traditional GNM, or GNM-ILF, is employed with

different cutoff distances, namely 7 Åand 20 Å, which are denoted as GNM7 and GNM20,

respectively.

Figures 4.33:, 4.34:, 4.35: and 4.36: illustrate the results. In each figure, protein surfaces

are colored by B-factor values predicted by GNM7, mGNM and the flexibility function in Eq.

(3.15), respectively in subfigures (a), (b) and (c). The comparisons of B-factors predicted by

GNM7 and GNM20 with those of experiments are demonstrated in subfigures (d). Similarly,
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Figure 4.33: Comparison between Type-2 mGNM with exponential kernel and traditional
GNM for the B-factor prediction of protein 1CLL. Two scales, η1 = 3Å and η2 = 25Å, are
employed in mGNM. (a) Molecular surface colored by B-factors predicted by GNM with cut-
off distance 7 Å. (b) Molecular surface colored by B-factors evaluated by our Type-2 mGNM.
(c) Molecular surface colored by multiscale flexibility function in Equation (3.15). (d) B-
factors predicted by traditional GNM with cutoff distances 7Å (GNM7) and 20Å (GNM20).
(e) B-factors predicted by mGNM.
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Figure 4.34: Comparison between Type-2 mGNM with exponential kernel and traditional
GNM for protein 1V70 B-factor prediction. Two scales, η1 = 3Å and η2 = 25Å, are em-
ployed in mGNM. (a) Molecular surface colored by B-factors predicted by GNM with cutoff
distance 7 Å. (b) Molecular surface colored by B-factors evaluated by our Type-2 mGNM.
(c) Molecular surface is colored by multiscale flexibility function in Equation (3.15). (d) B-
factors predicted by traditional GNM with cutoff distances 7Å (GNM7) and 20Å (GNM20).
(e) B-factors predicted by mGNM.
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Figure 4.35: Comparison between Type-2 mGNM with exponential kernel and traditional
GNM for protein 2HQK B-factor prediction. Two scales, η1 = 3Å and η2 = 25Å, are
used for mGNM. (a) Molecular surface colored by B-factors predicted by GNM with cutoff
distance 7 Å. (b) Molecular surface colored by B-factors evaluated by the Type-2 mGNM.
(c) Molecular surface is colored by multiscale flexibility function in Equation (3.15). (d) B-
factors predicted by traditional GNM with cutoff distances 7Å (GNM7) and 20Å (GNM20).
(e) B-factors predicted by mGNM.
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Figure 4.36: Comparison between Type-2 mGNM with exponential kernel and traditional
GNM for protein 1WHI B-factor prediction. Two mGNMs are used. The first one,
mGNM K2, has two exponential kernels with κ = 1, η1 = 3Å and η2 = 25Å. The sec-
ond mGNM, mGNM K3, has an extra exponential kernel with κ = 1 and η3 = 10 Å. (a)
Molecular surface colored by B-factors predicted by GNM with cutoff distance 7 Å. (b)
Molecular surface colored by B-factors evaluated by a Type-2 mGNM. (c) Molecular sur-
face is colored by multiscale flexibility function in Equation (3.15). (d) B-factors predicted
by traditional GNM with cutoff distances 7Å (GNM7) and 20Å (GNM20). (e) B-factors
predicted by two mGNMs, mGNM K2 and mGNM K3.
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the comparisons of the predicted B-factors by mGNM with those of experiments are plotted

in subfigures (e). A summary of related PCC values are listed in Table 4.15:.

Table 4.17: Case study of B-factor prediction for four proteins in three different schemes:
GNM7, GNM20 and mGNM. In the case of 1WHI, we use mGNM with two kernels and
three kernels (value in parentheses).

PDB ID GNM7 GNM20 mGNM

1CLL 0.261 0.235 0.763
1V70 0.162 0.548 0.750
2HQK 0.365 0.781 0.833
1WHI 0.270 0.370 0.484(0.766)

Flexible hinges are sometimes important to protein functions but they are not always

easily detected by GNM type methods.25,39 As shown in Figure 4.33:, the original GNM

parameterized at cutoff distance 7 or 20 Å does not work well for the hinge located around

residues 65-85. In fact, the GNM method cannot predict the flexible hinge at any given

cutoff distance. Whereas, the two-kernel mGNM is able to capture the hinge behavior.

Protein 1V70 shown in Figure 4.34: is another difficult case for the traditional GNM

method. At cutoff distance 7Å, it severely over-predicts the B-factors of the first 12 residues.

However, its prediction improves if a larger cutoff distance is used. In contrast, the two-kernel

mGNM provides a very good prediction.

Figure 4.35: illustrates one more interesting situation. The tradition GNM with cutoff

distance 7Å over-predicts the B-factors for residues near number 58. However, at a large

cutoff distance of 20Å, it is able to offer accurate results. In this case, mGNM is able to

further improve the accuracy.

The case of 1WHI given in Figure 4.36: is difficult for both methods tested. GNMs with

two different parameterization do not work well and two-kernel mGNM, while more accurate,

still does not reach a PCC greater than 0.5. Its PCC of 0.484 is just a minor improvement

of GNM PCCs, 0.270 (obtained at rc = 7Å) and 0.370 (obtained at rc = 20Å). It should be
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Figure 4.37: Protein domain decomposition with Type-1 mGNM. The first eigenvector
(Fiedler vector) is used to decompose the protein into two domains. (a) protein 1ATN
(chain A); (b) protein 3GRS.

noticed that mGNM can simultaneously incorporate several scales, therefore, we employ an

extra kernel with κ = 1, η3 = 10 Å to deal with this protein. As shown in Table 4.17: and

Figure 4.36:, the three-kernel mGNM is able to deliver a good PCC of 0.766.

4.8.2 Domain decomposition using mGNM

Mathematically, the first smallest nonzero eigenvalue is called algebraic connectivity or

Fiedler value and the related eigenvector is called Fiedler vector. It is known that the Fiedler

vector can be used to decompose a protein into two domains. Each particle in the protein

is assigned with a value (element) from the Fiedler vector and these particles are grouped

according to their positive or negative signs. The particles with zero values can be classified

into either group as they are usually in a linking region between two domains.

To test the performance of the mGNM methods, we utilize two test proteins, 1ATN (chain

A) and 3GRS, which are also used by Kundu, et al.42 We compare the performance of two
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Figure 4.38: Protein domain decomposition with Type-2 mGNM. The first eigenvector
(Fiedler vector) is used to decompose the protein into two domains. (a) protein 1ATN
(chain A); (b) protein 3GRS. It can be seen that Type 2 mGNM fails in protein domain
decomposition.

types of mGNMs. In Type-1 mGNM, we use the exponential kernels with κ = 1, η1 = 3

Å and κ = 1, η2 = 25Å. In Type-2 mGNM, we use three exponential kernels with the same

two kernels as Type-1 mGNM with an extra kernel parameterized as κ = 1, η3 = 10 Å.

The results are depicted in Figures 4.37: and 4.38:, respectively. It can be seen that Type-1

mGNM delivers a great decomposition, which is also consistent with the prediction from

traditional GNM.42 However, the Type-2 mGNM does not produce a reasonable result. This

is due to the fact that Algorithm is designed to construct the symmetric Kirchhoff matrix

with required diagonal elements and its non-diagonal elements do not properly reflect the

protein connectivity.

However, the PCCs of Type-1 mGNM for 1ATN and 3GRS are 0.460 and 0.658. Whereas,

the PCCs of Type-2 mGNM for 1ATN and 3GRS are 0.660 and 0.666. These results indicate

that the B-factor values are mainly dictated by the diagonal matrix elements while the
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Figure 4.39: The collective motions of protein 1GRU (chain A). The seventh, eighth and
ninth modes calculated from mANM are demonstrated in (a), (b) and (c), respectively.

domain separation is determined by non-diagonal matrix elements.

4.8.3 Collective motion simulation using mANM

GNM is an isotropic model which quantifies the general atomic fluctuations in a molecule.

In contrast, ANM is designed to describe the anisotropic properties, such as collective mo-

tions of a molecule near equilibrium. Typically, the first six modes, corresponding to six zero

(or near zero) eigenvalues, represent the trivial translational and rotational modes of a com-

plex biomolecule. Global modes that are unique to the biomolecular structure are described

by eigenvectors associated with the next smallest nonzero eigenvalues. Due to its simplicity,

accuracy and availability, ANM is widely used to study the dynamics of biomolecules.

In the present work, we have designed an mANM method to maintain the aforementioned

properties. To validate mANM for anisotropic mode analysis, we use two test proteins, 1GRU

(chain A) and 1URP (chain A). The protein 1GRU is chaperonin GroEL, a benchmark test

for ANM.68,82 We employ mANM with two Gaussian kernels (κ = 2) with η = 5Å and

η = 20Å. We compute eigenvectors associated with the first three nonzero eigenvalues. As
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Figure 4.40: The collective motions of protein 1URP (chain A). The seventh, eighth and
ninth modes calculated from mANM are demonstrated in (a), (b) and (c), respectively.

illustrated in Figure 4.39:, the mANM results are in an excellent agreement with those of

ANM for chaperoin GroEL.68,82

To further validate the mANM method, we examine another test case, 1URP. This

molecules is a ribose-binding protein and its anisotropic motions have been studied pre-

viously.45 We utilize the same set of parameters described above. Figure 4.40: demonstrates

the mANM results for this structure and again the results are in close agreement with the

traditional ANM analysis.45

4.9 FRI-based hinge prediction validation with known hinging proteins

In this section we take an in-depth look at the hinges predicted by gGNM modes on a

high quality set of test cases borrowed from the StoneHinge39 study and from earlier studies

by Flores, et al. This set includes 32 structures, open and closed conformations of 16 different

proteins. Each protein in the set has a known hinge type motion mentioned in the source

literature.
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4.9.1 gGNM mode-based hinge prediction

The FRI-based hinge predictions for 19 out of the 32 structures studied were clear matches

while another 11 cases are partial hits, where there is at least one true positive and one

false positive or false negative. Together there are 30 of the 32 structures for which the

predictions are at least partially accurate. Complete results for gGNM mode-based hinge

prediction are shown in Tables 4.18:, 4.19: and 4.20:. Prediction accuracy is determined

under the loose criterion used by earlier comprehensive hinge studies, a 14 residue window

around the predicted hinge point. A case where the literature hinges and gGNM mode hinge

predictions are in perfect agreement, open and and closed forms of ovotransferrin, is shown

in Figure 4.41:. The previously identified hinge residues are residues 333 and 342. Visual

inspection of the region shows the residues from 333 to 342 are all random coil, therefore we

consider this range to be a hinge region. gGNM mode hinge prediction places the center of

the hinge at residue 344 in the closed conformation and 339 in the open conformation, in

very close agreement with the 333 to 342 range. Therefore we count this among the full hits.

Next we examine the proteins on which the automatic gGNM-based mode hinge pre-

diction does not agree with the known hinge residues, the case for 2 of 32 structures. It

is important to note that in two of these cases, the second gGNM mode provides accurate

predictions. Failure to predict hinges accurately can happen because gGNM modes are not

accurate for a particular structure (due to a variety of reasons including missing ligands, un-

accounted for crystal effects, etc.), because the hinging motions of consequence are not the

hinges between the largest domains, or because there are multiple modes with very similar,

low eigenvalues. One example where the important hinge is not the one dividing domains is

lactoferrin, shown in Figure 4.43:. The case of lactoferrin has been difficult for many hinge

prediction methods such as StoneHinge and TLSMD while others such as FlexOracle can

readily and accurately identify the biologically important hinges. This is likely due to the
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fact that the most biologically interesting hinging motion is not at a domain separation, but

rather a smaller fluctuation unique to one domain. Some earlier hinge studies have consid-

ered this as the only hinge to predict, however there is some evidence from crystallographic

studies that lactoferrin does in fact have a hinging motion between its two largest domains.

This hinging between domains is what is suggested by the first gGNM mode. Furthermore,

the second gGNM mode identifies the smaller, biologically-relevant hinging. Therefore, this

may be a case of where the initial literature-based identification of hinge residues was wrong

instead of a failure of gGNM-based hinge prediction.

Another example where the second mode contains important hinge predictions is ribose

binding protein open conformation, Figure 4.42:. The closed conformation prediction for

ribose binding protein is a perfect hit, however, the open conformation gives the correct

hinge predictions when considering the second gGNM mode. Based on this result we suggest

always considering the hinge predictions from the second mode of gGNM particularly when

the hinge(s) predicted by the first mode do not appear to be at a hinging region upon visual

inspection of the structure.

Table 4.18: gGNM-based hinge predictions for 32 protein structures compared with consen-
sus hinge residues determined from literature and other hinge studies.39

Protein Name Closed Prediction Consensus Open Prediction Consensus
Ovotransferrin 1aiv 344 333, 342 1ovt 339 333, 342
Adenylate kinase 1ake 110, 168 124-126, 161-163 2ak3 113, 173 124-126, 161-163
CAPK 1atp 126 119-126 1ctp 126 119-126
Biotin carboxylase 1bnc 114, 208 130-131, 203-204 1dv2 107, 210 130-131, 203-204
DNA polymerase beta 1bpd 97 79-83, 91-93 2bpg 143 (86, 259 m2) 79-83, 91-93
Calmodulin 1cll 80 76-80 1cfd 78 76-80
Elastase 1ezm 142 132-135 1u4g 142 132-135
GluR2 1fto 108, 218 214-215 1ftm 108, 218 214-215
Lir-1 1g0x 95 95-96 1p7q 96 95-96
Bence-Jones Protein 4bjl 115 108-116 4bjl 112 108-116
Inorganic pyrophosphatase 1k20 187 188-192 1k23 188 188-192
Phosphoglycerate kinase 1kf0 194 201-205, 402-404 1hdi 194 201-205, 402-404
Lactoferrin 1lfh 343 90, 250 ( 340*) 1lfg 340 (91, 250 m2) 90, 250 ( 340*)
LAO binding protein 1lst 89, 192 89-91, 182-194 2lao 89, 191 89-91, 182-194
Glutamine blinding protien 1wdn 87, 182 85-90, 178-185 1ggg 87, 182 85-90, 178-185
Ribose binding protein 2dri 103, 235 103-104, 235-236 1urp 151 (103, 235 m2) 103-104, 235-236
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(a) 1AIV - view 1 (b) 1AIV - view 2
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Figure 4.41: Top, secondary structure representation of ovotransferrin with hinge residues
highlited by VdW representations of their C-alpha atoms. Bottom, values by residue for
modes 1 and 2 (left y-axis) with cumulative sum (right y-axis). The maximum and minimum
values of the cumulative sum correspond to hinge points
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(a) 1URP - view 1 (b) 1URP - view 2
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(c) 1URP Mode 1
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(d) 1URP Mode 2

Figure 4.42: Top, secondary structure representation of ribose binding protein with hinge
residues highlited by VdW representations of their C-alpha atoms. Bottom, values by residue
for modes 1 and 2 (left y-axis) with cumulative sum (right y-axis). The maximum and
minimum values of the cumulative sum correspond to hinge points
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(a) 1LFG - view 1 (b) 1LFG - view 2
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(c) 1LFG Mode 1
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(d) 1LFG Mode 2
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(e) 1LFG Mode 1 - Domain only calculation

Figure 4.43: Top, secondary structure representation of lactoferrin with hinge residues high-
lited by VdW representations of their C-alpha atoms. Bottom, values by residue for modes 1
and 2 (left y-axis) with cumulative sum (right y-axis). The maximum and minimum values
of the cumulative sum correspond to hinge points.
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Table 4.19: gGNM-based hinge predictions for 32 protein structures compared with consen-
sus hinge residues determined from literature and other hinge studies.39 Y - The hinge(s) are
completely and uniquely identified, P - A predicted hinge is off from a true hinge position
by less than 5 amino acids or there is a false positive or negative, N - Failure to identify any
major hinges.

Protein Name Closed Prediction Consensus Open Prediction Consensus
Ovotransferrin 1aiv Y 333, 342 1ovt Y 333, 342
Adenylate kinase 1ake P 124-126, 161-163 2ak3 P 124-126, 161-163
CAPK 1atp Y 119-126 1ctp Y 119-126
Biotin carboxylase 1bnc P 130-131, 203-204 1dv2 P 130-131, 203-204
DNA polymerase beta 1bpd P 79-83, 91-93 2bpg N (P mode 2) 79-83, 91-93
Calmodulin 1cll Y 76-80 1cfd Y 76-80
Elastase 1ezm Y 132-135 1u4g Y 132-135
GluR2 1fto P 214-215 1ftm P 214-215
Lir-1 1g0x Y 95-96 1p7q Y 95-96
Bence-Jones Protein 4bjl Y 108-116 4bjl Y 108-116
Inorganic pyrophosphatase 1k20 Y 188-192 1k23 Y 188-192
Phosphoglycerate kinase 1kf0 P 201-205, 402-404 1hdi P 201-205, 402-404
Lactoferrin 1lfh P 90, 250 ( 340*) 1lfg P 90, 250 ( 340*)
LAO binding protein 1lst Y 89-91, 182-194 2lao Y 89-91, 182-194
Glutamine blinding protien 1wdn Y 85-90, 178-185 1ggg Y 85-90, 178-185
Ribose binding protein 2dri Y 235-236 1urp N (Y mode 2) 235-236

Table 4.20: Summary of hits for gGNM-based predictions of hinges for 32 PDBs. Full - The
hinge(s) are completely and uniquely identified, Partial - A predicted hinge is off from a
true hinge position by less than 5 amino acids or there is a false positive or negative, None
- Failure to identify any major hinges.

Yes 19
Partial 11
No 2
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4.9.2 Machine learning feature ranking

The first round of feature ranking, calculating the F-score, included all 55 considered

features and the complete results are shown in Table 4.21:. The F-score serves as a useful first

filter because it is quickly calculated and the scores are independent of the other variables

tested, which is advantageous because it does not incorrectly weight features due to the

presence of many correlated features, a weakness of random forest. The disadvantage of this

approach is that there is no indication of which variables are highly correlated and therefore

typically should not be used in the same model. A second round of feature ranking was done

on the top features based on F-score and these results are displayed in Table 4.22:

The top four features by F-score are all derived from gGNM mode 1 calculations. These

features include ishinge3, ishinge, cMode 1 and hingedist. The F-scores for the latter three

features are very similar while the first, ishinge3, is more than double the F-score of those

three. This discrepancy is probably due to the fact that many hinges in this data set span

multiple residues and ishinge3 essentially marks seven residue regions as hinges based on

gGNM mode 1 values. Therefore, we suspect these features are all essentially predicting the

same thing and this emphasizes the importance of trying multiple slightly different feature

formulations to find one with the most value as a predictor.

Interestingly the feature scores fall off sharply after the gGNM mode derived features.

The features rounding out the top ten, in order, are isH, HP6, RES6, isC, insec, ROT6 and

P (PSSM). Two of these features are secondary structure related, three features describe

the local environment within 6 Angstroms and one feature is sequence related. While the F-

scores of these are considerably lower than the top four, these features in the top ten deserve

some future, in-depth analysis to see if other features related to these could be created that

are more useful for predictions.

After the top ten features there are the mode 2 derived features and FRI flexibility index
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related features. As mentioned earlier, sometimes it is hard to distinguish between the most

important mode when two modes have very similar eigenvalues. Therefore it may be that

mode 2 features are only useful in those cases. With this is mind we can refine the model

further by checking for similar eigenvalues for the lowest modes of each structure and, if they

are found to be sufficiently close, we combine the hinge predictions from both modes when

creating features. Under this scheme, all 32 structures’ hinges are at least partially predicted

correctly by this method.

4.9.3 SVM model prediction results

This section provides an example of what is achievable using support vector machine

modeling with gGNM mode features. Listed in Tables 4.23: and 4.24: are the hinge residues

predicted by two of the more accurate SVM models we are able to create with the features

tested. The features used in the first model include FRIf, dFRI, FRIf, ishinge, ishinge3,

hingedist, HP6, RES6 and ROT6. The features used in the second model include ishinge,

ishinge3, hingedist, Mode1 and cMode1. Many combinations of features were tried and, as

expected from the feature ranking results, the only essential features are those derived from

mode 1 of mGNM.

The results from the SVM models are very similar to those from the mGNM mode

predictions however the SVM model tends to predict fewer hinge residues. In some cases

this serves to remove false positives but it also causes false negatives. In the end, it would be

just as good to use the mGNM predictions rather than take the extra step to use the SVM

model.
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Table 4.21: Feature importance rankings by F-score. F-scores are calculated using the
LIBSVM software.

F-score rank F-score Feature name F-score rank F-score Feature name
1 0.056996 ishinge3 31 0.000135 D (PSSM)
2 0.017780 ishinge 32 0.000099 Phil/A2

3 0.016408 cMode 1 33 0.000085 prop1
4 0.010333 hingedist 34 0.000083 isB
5 0.003040 isH 35 0.000082 isT
6 0.002399 HP6 36 0.000081 C (PSSM)
7 0.002279 RES6 37 0.000070 H (PSSM)
8 0.001591 isC 38 0.000064 Phob/A2

9 0.001551 insec 39 0.000047 N (PSSM)
10 0.001375 ROT6 40 0.000043 A (PSSM)
11 0.001301 P (PSSM) 41 0.000036 Surf/A2

12 0.001283 Mode 2 42 0.000035 E (PSSM)
13 0.001184 cMode 2 43 0.000034 HP1
14 0.000525 N(overl) 44 0.000025 Q (PSSM)
15 0.000495 FRI f-index 45 0.000014 S (PSSM)
16 0.000473 Avg. mFRI within 6A 46 0.000012 L (PSSM)
17 0.000461 Mode 1 47 0.000010 K (PSSM)
18 0.000422 Difference of mFRI and FRI 48 0.000010 Y (PSSM)
19 0.000409 isE 49 0.000009 I (PSSM)
20 0.000409 G (PSSM) 50 0.000003 Total/A2

21 0.000400 mFRI B-factor fit 51 0.000002 V (PSSM)
22 0.000400 prop5 52 0.000002 %SASA
23 0.000379 T (PSSM) 53 0.000001 R (PSSM)
24 0.000324 mFRI f-index 54 0.000000 isI
25 0.000302 prop3 55 0.000000 nosec
26 0.000275 M (PSSM)
27 0.000241 isG
28 0.000209 FRI B-factor fit
29 0.000151 W (PSSM)
30 0.000143 F (PSSM)
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Table 4.22: Feature importance rankings by random forest method. Importance values
calculated using the R package caret comman, varImp.

Rank Importance Importance (Scaled) Feature Name
1 0.79 100.00 cMode1
2 0.73 85.78 ishinge5
3 0.61 53.53 RES6
4 0.60 51.52 HP6
5 0.59 48.30 PSSM(P)
6 0.58 45.94 cMode2
7 0.58 44.81 ROT6
8 0.57 44.07 insec
9 0.56 41.97 isC
10 0.55 37.96 N(overlap)
11 0.40 0.00 isH

Table 4.23: SVM results for a model with eight of the top ranked features, FRIf, dFRI, FRIf,
ishinge, ishinge3, hingedist, HP6, RES6 and ROT6.

Closed Prediction Consensus Open Prediction Consensus
1aiv 342 333, 342 1ovt 341-342 333, 342
1ake 124-126, 161-163 2ak3 124-126, 161-163
1atp 123-126 119-126 1ctp 123-126 119-126
1bnc 115-116, 205-206 130-131, 203-204 1dv2 104-108 130-131, 203-204
1bpd 79-83, 91-93 2bpg 92-93 79-83, 91-93
1cll 76-80 76-80 1cfd 76-80 76-80

1ezm 142 132-135 1u4g 141 132-135
1fto 105-108, 215-221 214-215 1ftm 105-108, 215-221 214-215
1g0x 92-98 95-96 1p7q 93-99 95-96
4bjl 114-117 108-116 4bjl 114-117 108-116
1k20 190 188-192 1k23 188-191 188-192
1kf0 201-205, 402-404 1hdi 201-205, 402-404
1lfh 341-342 90, 250 ( 340*) 1lfg 338-343 90, 250 ( 340*)
1lst 89-92, 189-195 89-91, 182-194 2lao 87-92, 189 89-91, 182-194

1wdn 85-88, 179-185 85-90, 178-185 1ggg 84-88, 179-185 85-90, 178-185
2dri 102-104, 235-236 235-236 1urp 235-236
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Table 4.24: SVM results for a model with five mGNM-based features, ishinge, ishinge3,
hingedist, Mode1 and cMode1.

Closed Prediction Consensus Open Prediction Consensus
1aiv 333, 342 1ovt 341 333, 342
1ake 124-126, 161-163 124-126, 161-163 2ak3 124-126, 161-163
1atp 122-126 119-126 1ctp 123-126 119-126
1bnc 205-206 130-131, 203-204 1dv2 104-108 130-131, 203-204
1bpd 81 79-83, 91-93 2bpg 79-82 79-83, 91-93
1cll 77-83 76-80 1cfd 76-80 76-80

1ezm 139 132-135 1u4g 139-141 132-135
1fto 109-111, 214 214-215 1ftm 105-108, 215-221 214-215
1g0x 92-94 95-96 1p7q 95-96
4bjl 116-117 108-116 4bjl 114-117 108-116
1k20 190 188-192 1k23 188-191 188-192
1kf0 195-197, 253 201-205, 402-404 1hdi 201-205, 402-404
1lfh 90, 250 ( 340*) 1lfg 343 90, 250 ( 340*)
1lst 90-92 89-91, 182-194 2lao 90, 186-190 89-91, 182-194

1wdn 85-88, 179-185 85-90, 178-185 1ggg 84-88, 179-185 85-90, 178-185
2dri 102, 235 235-236 1urp 235-236
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CHAPTER V. Conclusions and Future Directions

5.1 Conclusions

In living organisms, proteins and nucleic acids carry out a vast variety of functions in-

cluding providing structural support, catalyzing chemical reactions, replicating DNA, or

responding to stimuli. Many of these functions are performed through synergistic interac-

tions or correlations over multiple length scales, including atomic, van der Waals, residue,

alpha-beta complex, domain-domain and protein-protein interactions. Popular existing flex-

ibility methods such as Gaussian network model do not directly account for the multiscale

nature of macromolecular interactions and fail to predict Debye-Waller factors or B-factors

for many proteins that involve multiple length characteristics.

This work puts forward a multiscale, multiphysics and multidomain model, the flexibility-

rigidity index (FRI), to estimate the static property of macromolecules. A basic assumption

of the present FRI theory is that the geometry or structure of a given protein together with

its specific environment, namely, solvent, assembly or crystal lattice, completely determines

the biological function and properties including flexibility, rigidity and energy. As such,

the present approach bypasses the construction of the Hamiltonian and interaction poten-

tials. A possible drawback of the present method is that the full geometric and topological

information of a protein complex is usually not available, which contributes to modeling

errors.

We utilize monotonically decreasing functions to measure the geometric compactness of

a protein and quantify the topological connectivity of atoms or residues in the proteins and

nucleic acids. Physically, FRI characterizes the total interaction strength at each atom or

residue and thus it reflects the atomic rigidity and flexibility. Additionally, we define the

total rigidity of a molecule by a summation of atomic rigidities. A practical validation

of the proposed FRI for flexibility analysis is provided by the prediction of B-factors, or
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temperature factors of proteins, measured by X-ray crystallography. We employ a set of 263

proteins to examine the validity, explore the reliability and demonstrate the robustness of the

proposed FRI method for B-factor and/or flexibility prediction. We analyze the performance

of two classes of correlation kernels, specifically the exponential type and the Lorentz type,

for B-factor prediction. The exponential type of correlation kernel involves two parameters,

exponential order and characteristic length. The Lorentz type of correlation kernel also

involves two parameters, power order and characteristic length. By searching the parameter

space for optimal predictions, parameter-free correlation kernels are obtained. It is found

that the parameter-free correlation kernel of the Lorentz type is able to retain about 95%

accuracy compared to the optimized results.

After validation of the basic FRI method we introduced a multikernel-based multiscale

FRI (mFRI) strategy to analyze macromolecular flexibility. The essential idea is to employ

two or three kernels each parameterized with a different scale to capture the multiple charac-

teristic interaction scales of complex biomolecules. Based on an expanded test set containing

364 proteins, we show that the mFRI method is about 20% more accurate than the GNM

method in B-factor prediction. Additionally, we demonstrate that the present mFRI gives

rise to excellent flexibility analysis for many proteins that are difficult cases for GNM and

the previously introduced single-scale FRI methods. Finally, for a protein of N residues,

we illustrate that the computational complexity of the proposed mFRI is of linear scaling

O(N), in contrast to the order of O(N3) for GNM.

An increased interest in large systems of macromolecular complexes is what requires

and inspires the latest advances in the FRI methods. FRI has proven to be well suited

to make calculations on scales relevant to current biochemical and biophysical research. In

particular, fFRI boasts a computational complexity on the scale of O(N), meaning that it far

outpaces alternative tools such as GNM. Additionally, FRI has been previously demonstrated
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to maintain superior accuracy to previous methods even at such efficient computational

complexity. Now FRI’s utility has been extended to the nucleic acid domain-enabling study

of many important biological systems such as the RNA polymerase example featured in

this paper. Due to the unique formulation of FRI and aFRI we were able to analyze a

complex system for biologically relevant details that cannot be accessed by global methods

or time-dependent methods

A contributing factor for FRI’s increased efficiency compared to existing methods is that

GNM and NMA are essentially global methods in a sense that they rely on the solution of

the global eigenvalue problem to predict local atomic properties, e.g., B-factors. In contrast,

FRI is a local method and utilizes the local geometric information to predict local atomic

properties. In parallel, there are (global) band theory of solids and (local) atomic orbital

model of solids. The former is good for describing many global physical properties such as

electrical conductivity and thermal lattice motions in terms of excitations, while the latter

is more powerful for explaining localized chemical reactivity and catalysis of solids.

One of the major drawbacks of GNM is the poor scaling with the number of residues

or atoms in the system. The matrix diagonalization of normal modes methods is of O(N3)

computational complexity, where N is the number of residues. The computational com-

plexity of the original FRI algorithm is of O(N2). In the present work, we propose a fast

FRI (fFRI) algorithm, which further reduces the computational complexity of FRI to O(N).

Both FRI and fFRI do not involve the time consuming matrix decomposition. As a result,

it takes less than 30 seconds for the fFRI method to predict the B-Factors of an HIV virus

structure with more than three hundred thousands of residues, which would require many

years for GNM to compute. Additionally, both the exponential-based parameter-free fFRI

and the Lorentz-based parameter-free fFRI are about 10% more accurate than the GNM in

the B-factor prediction of 364 proteins.
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Anisotropic motions between protein domains are known to correlate with protein func-

tions. To describe protein anisotropic fluctuations, we also introduce anisotropic FRI (aFRI)

algorithms. We introduce an adaptive aFRI method that partitions the molecule into many

clusters with variable sizes. We specifically examine two extreme cases, a one-cluster parti-

tion and an N -cluster partition, which result in a single completely global 3N × 3N Hessian

matrix and N completely localized 3× 3 Hessian matrices, respectively. The computational

complexity of aFRI varies from O(N3) to O(N). Although aFRI Hessian matrices can be

completely local, they still contain much non-location correlation. As such, all of three pro-

tein modes predicted by the completely local aFRI exhibit highly collective global motions.

The eigenmodes obtained from the completely global aFRI closely resemble those of the

anisotropic network model (ANM).3,6 However, modes constructed from the completely lo-

cal aFRI show different collective motion patterns. Since there is no analytical solution for

collective motions, it is not possible to judge whose collective motions are more correct. In

general, the eigenmodes of ANM and the completely global aFRI exhibit a slightly better

synergistic effect than modes generated by using the completely local aFRI.

In addition to the quantitative aspects, the proposed FRI has a few visual applications.

First, the correlation maps of the FRI are capable of revealing both short- and long-distance

interactions or connectivity. Since correlation map elements are directly related to the orig-

inal distances by a known radial basis function, the distances can be labeled on the map as

well. Additionally, the predicted B-factors can be plotted as the radii of residues to visualize

the amplitude of thermal fluctuations. This plot becomes even more interesting when atomic

spheres are colored with the electrostatics.75 The close correlation between flexibility and

large electrostatic potentials can be unveiled, which sheds light on intrinsic protein structural

properties. Moreover, the predicted B-factors can be plotted with secondary structures to

have an overall picture of structural flexibility. Finally, as continuous functions, the atomic
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rigidity function and atomic flexibility function can be projected onto protein molecular

surfaces or other surface representations to analyze flexibility.

Another application of FRI and aFRI is the analysis of protein domains. Existing meth-

ods, such as GNM and ANM, are well known for domain analysis. The present FRI provides

a clear correlation map for domain identifications. It is found that aFRI gives rise to highly

collective domain motion patterns, although not all parts of a domain move uniformly in

aFRI modes of motion.

Protein-nucleic acid complexes are essential to all living organisms. The function of these

complexes depends crucially on their flexibility, an intrinsic property of a macromolecule.

However, for many large protein-nucleic acid complexes, such as ribosomes and RNA poly-

merases, the present flexibility analysis approaches can be problematic due to their compu-

tational complexity scaling of O(N3) and neglecting multiscale effects.

Therefore we also introduce the Flexibility-rigidity index (FRI) methods parameter-

ized49,50,75 for the flexibility analysis of protein-nucleic acid structures. We show that a

multiscale FRI (mFRI) realized by multiple kernels parameterized at multiple length scales

is able to significantly outperform the Gaussian network model (GNM) for the B-factor

prediction of a set of 64 protein-nucleic acid complexes.78 The FRI methods are not only

accurate, but also efficient, as their computational complexity scales as O(N). Additionally,

anisotropic FRI (aFRI), which has cluster Hessian matrices, offers collective motion analysis

for any given cluster, i.e, subunit or domain in a biomolecular complex.

We can apply FRI methods to a large ribosomal subunit (1YIJ) with multiple subunits.

We note that both original single-scale FRI and GNM do not work well for this structure.

It is found that the multiscale strategy is crucial for the flexibility analysis of multi-subunit

structures. The correlation coefficients between FRI predictions and experimental B-factors

for 1YIJ improve from 0.3 for single-scale FRI to 0.85 for multiscale FRI. We further use the
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fitting coefficients obtained from 1YIJ to predict the flexibility of an entire ribosome, 4V4J.

We found that mFRI has an advantage for analyzing large biomolecular complexes due to

both higher speeds and accuracy.

We have also demonstrated the utility of the anisotropic FRI (aFRI) for analyzing the

translocation of an RNA polymerase, which involves protein, DNA, RNA, nucleotide sub-

strates and various ions. Both experimental and computational studies of RNA polymerases

are difficult and expensive due to the size and complexity of the biomolecular complex.

The molecular mechanism of RNA polymerase translocation is an interesting, open research

topic. The present work makes use of localized aFRI to elucidate the synergistic local mo-

tions of a bacterial RNA polymerase. These findings are consistent with those from much

more expensive molecular dynamics simulations and normal mode analysis.23,24

Also, to clarify the relationship between normal modes methods and FRI, we construct a

series of generalized Gaussian network models (gGNMs). We show that the original Kirchhoff

matrix used in GNM can be constructed by using the ideal low-pass filter (ILF), which is a

special case of a family of admissible correlation kernels (or functions) used in FRI. Based on

this connection, we propose a unified framework to construct generalized Kirchhoff matrices

for both GNM and FRI. More specifically, the inverse of the generalized Kirchhoff matrices

leads to infinitely many gGNMs and the direct inverse of the diagonal terms gives rise to

FRI. We reveal the identical behavior between gGNM and FRI at a large cutoff distance

or characteristic scale for B-factor protein predictions. Additionally, we propose multiscale

Gaussian network models (mGNMs) based on the relationship of GNM and FRI. Essentially,

we develop a two-step procedure to construct mGNMs. In the first step, we utilize mFRI

to come up with an optimal combination of multiscale kernels. In the second step, we

try to implement the same combination of multiscale kernels in the generalized Kirchhoff

matrices for mGNMs. However, this step is not unique because for a given Kirchhoff matrix,
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GNM and FRI are connected only through diagonal elements. Two types schemes, Type-1

mGNM and Type-2 mGNM, are proposed in this work. Moreover, we propose multiscale

anisotropic network models (mANMs) based on the similarity between ANM and GNM and

the connection between GNM and FRI. Since ANM is typically less accurate than GNM in

B-factor prediction,49,52 its main utility is for collective motion analysis. We therefore have

developed mANMs to maintain the physical connectivity of protein atoms in the Kirchhoff

matrix.

We have carried out intensive numerical experiments to validate the proposed gGNM,

mGNM and mANM methods for B-factor predictions. The gGNM method is examined over

a set of 364 proteins. It is found that the proposed gGNM is about 10% more accurate

than GNM in B-factor prediction. For mGNM, we use only a set of 362 proteins due to

limited computer resources. We show that mGNM can achieve about 13% improvement

over GNM. Similarly, the proposed mANM is about 11% more accurate than its counterpart,

ANM, in B-factor prediction over a set of 300 proteins. Further, we consider three types

of applications of the proposed mGNM and mANM methods. One type of application is

to analyze the flexibility of proteins that fail the original GNM method in various ways.

We employ four proteins to demonstrate the advantage of the proposed mGNM in flexibility

analysis. Another application is the study of protein domain separations. The first nontrivial

eigenmode of the multiscale Kirchhoff matrix is used. We found from the analysis of two

proteins that Type-1 mGNM does a good job in domain analysis while Type-2 mGNM does

not work for this purpose. The other application concerns the protein’s collective motions.

mANM is found to offer similar results to those of the original ANM method.

It is important to note that the mGNM and mANM methods are not limited to the

examples shown in this work. The design of new mGNM and mANM methods is still an

open problem. Essentially, we hope these new methods are efficient, accurate and robust.
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More specifically, high accuracy in B-factor prediction is a main criterion. Additionally,

having the ability to provide correct protein domain analysis is a desirable property as well.

For mANM, the capability of offering correct motion analysis is a major requirement. The

quality of both domain and motion analyses depends on how to design non-diagonal matrix

elements so as to properly reflect the physical connectivity among particles. In the future,

we will carefully consider the present mANM for other interesting applications, namely

anisotropic B-factors22 and conformational changes.63

The study of hinges has been an important topic and much research has been done in the

past.21,25,26,39,59 Identification of hinge residues is useful for inferring motion and function

when molecules are too large for MD simulation on relevant timescales. Other methods, such

as GNM and NMA have been utilized. FRI-based methods could place a significant role in

hinge analysis. In tests so far, gGNM mode-based hinge predictions are at least partially

correct for all of the structures analyzed using the automatic, simple analysis method we

propose. Furthermore, with some human interpretation along with consideration of the

second mode, it is possible to positively identify almost every single hinge in the test set.

Feature ranking results demonstrate that many of the molecular characteristics that are

useful in other machine learning models, such as SVM-based hot spot predictors, are not

useful predictors of hinging. Features based on flexibility, sequence and secondary structure

have little correlation to hinging residues based on F-score. The best SVM model that could

be produced uses gGNM mode-based predictions as the only feature, and the predictions

from these models show only minor differences in sensitivity and specificity compared to

the predictions taken directly from observing gGNM mode-based features alone. Therefore,

unless other features are found that are more predictive, gGNM mode-based predictions

are just as useful as any SVM model built upon them. In this study we have laid out a

framework for a machine learning model for hinge detection. Unfortunately, none of the
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features we have tried so far improve the model significantly beyond a model based purely

on hinge prediction from gGNM modes. Nevertheless, there is still the possibility for other

features we have not yet tested to improve this model.

5.2 Future directions

One of the most important future goals for FRI is to make the software easy to access

and easy to use. A major step toward completing this goal is the development of a web

server for the various FRI tools. Development has begun on a web-based tool that allows

users to run FRI tools for flexibility, hinge and anisotropic motion predictions. The web tool

accommodates any standard format PDB file of proteins and/or nucleic acids. In addition to

the web server version of the FRI tools, we plan to host various executable files for FRI tools

for the Windows and Linux platforms as well as the source code. Finally, we plan to create

plug-ins for the PyMol and Visual Molecular Dynamics programs to enable quick FRI tool

access within these popular tools. Hopefully, with increased accessibility, FRI methods will

completely replace normal modes methods as the most popular tool for calculating flexibility

and long-time dynamics of macromolecules.

Anisotropic B-factors provide a possible opportunity for further validation of the anisotropic

FRI method. Unfortunately, the number of structures with anisotropic B-factors is much

lower than structures with isotropic B-factors. Additionally, there are very few tools that

are designed to read anisotropic B-factors from PDB format files. In the near future we plan

to test aFRI against all of the PDB structures that include anisotropic B-factor values.

We also plan to further pursue implementation of FRI based features in machine learning

models. Although this initial attempt at improving a machine learning model with FRI was

not met with much success, we believe there are other applications where FRI may be of

use. In particular, flexibility is known to play a role in small molecule binding and protein-

nucleic acid binding. Therefore we are attempting to use FRI flexibility and gGNM mode
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calculations to improve machine learning models for these applications. Work has begun

on a protein-nucleic binding model inspired by the DBSI model from Julie Mitchell at the

University of Wisconsin. We aim to include FRI-based features and to improve the accuracy

of the electrostatics calculations in such models to improve the model’s overall prediction

accuracy.
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