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ABSTRACT

FIELD EMISSION IN A MAGNETIC FIELD

by Dennis J. Flood

A theoretical calculation of the field—emission current

density in a magnetic field at low temperatures is made

using the effective mass approximation to the free—electron

model. The results indicate a monotonically decreasing

dependence of current density on magnetic field, on which

is superimposed a small oscillatory component periodic in

l/H. The calculation is made only for the case in which

the magnetic field is parallel to the electric field.

Insertion of suitable values for the quantities appearing

in the expression indicates that sizeable oscillations in

the current should be obtainable if a substance with a

small electronic effective mass is used for the cathode.

Experiments performed at liquid helium temperatures (4.2 OK),

with magnetic fields ranging up to 20 Kilogauss, failed

to show the expected behavior to an accuracy of 5 per cent.

Instabilities in the steady dc current level prevented

the attainment of better accuracy. An attempt is made

to explain the apparent contradiction between experiment

and theory by considering the applicability of the theoretical

expression to the actual physical situation encountered.
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1. Introduction

The emission of electrons from a cold cathode into

vacuum is a relatively elementary effect which has been

understood for some time. The effect was probably observed

and noted in many experiments involving high voltages and

sharply pointed cathodes, but the first to describe it in

detail was R.W. Woodl) in 1897. Attempts to give an

2)
explanation based on classical physics were unsuccessful,

predicting not only the wrong field dependence, but also

3)
a temperature dependence which was not observed . Millikan

L.)
l

and Lauritsen discovered that the measured current—

voltage characteristics could be described by

I = Ae‘B/F (l)

where A and B are constants and F is the electric field at

the surface of the cathode. Hence a plot of log I versus

l/F gave a straight line, a result which classical theory

was totally unable to predict.

The first real advance in an understanding of the

phenomenon was made in 1928 by Fowler and Nordheim,5)

who applied quantum theory to the problem. They assumed

that the electrons in the metal obeyed Fermi-Dirac statistics

and calculated the number of electrons in each range of

energy arriving at the surface potential barrier from the

inside of the metal. The barrier potential assumed by

Fowler and Nordheim was simply a potential step at the metal

surface with zero applied field, and a triangular hump in

l
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high field. They solved the Schroedinger equation to

find the fraction of electrons which penetrated the barrier.

Integrating the product of the number of incident electrons

and probability of penetration over all electron energies

gave them the following formula for the emitted current

density:

J _ Dr W 831712 G)” (-BWTé-I’IICD-j/E)

m n+$ 8Wh® I EheF . (2)

  

The quantity —e is the electronic charge, n is the energy

of the Fermi level inside the metal relative to the bottom

of the conduction band, ® is the thermionic work function,

1 C)and n is Planck‘s constant. Nordheim“ later refined the

calculation to include the image force on an escaping

electron, which resulted in a slightly lower field strength

F necessary for the same current density predicted above.

Field emission is, then, simply a barrier penetration

phenomenon in which electrons with energies below the Fermi

surface tunnel through the narrow potential barrier. The

purpose of this paper is to investigate the effect of an

externally applied magnetic field on the emission current.

Some kind of influence is almost certainly to be expected

because of the drastic effect such a magnetic field has on

the energies of the conduction electrons inside the metal.



2. Theory

A. The Field Emission Current in Zero Magnetic Field

The F-N (Fowler—Nordheim) Theory assumes that the

conduction electrons in a metal form a gas of free particles

described by Fermi-Dirac statistics. Accordingly, the

possible states of a single particle in a small volume

v of the metal may be divided into groups at energies Ei’

containing g5L states populated by ni electrons. The

distribution formula has the familiar form

Li

mi : E'-n
expC—ifid)+ l ,

 

(1)

where n is the Fermi energy. The number of states g2.L is

simply 2v/h5 dpxdpydpz, a consequence of the theorem that

in each volume h.j of phase space there are two states

for a free particle of spin 1/2. We then have for the

number of electrons within volume v and with momenta in the

range dpxdpvdp

 

z

. 2v dpprvdpz

On=—‘3 E—-

h exp( kT) + l . (2)

The energy and momentum are related by

D: + p + p : 2m(E‘V)
(5)

where V is the potential energy of an electron of mass m in

v.

Following the procedure of the F—N theory, we shall

consider a one—dimensional potential which is assumed to

have the same effect on a conduction electron as the actual

—7D
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metal. There are three contributions to the resulting

potential energy of an electron of charge —e:

(I) In the absence of an applied field, the potential

energy inside the metal is equal to zero and has some

constant value +Wa when the electron and metal are separated.

(2) With the origin chosen on the surface of the metal

and the positive 2 axis perpendicular to it, an applied

electric field F in the z direction gives a contribution

—er.

(5) The image force on an electron outside the metal,

which arises because of the induced charge on the surface

of the metal, gives a contribution ~-e2/1+z.

We thus have

O, z < O

V(Z) = 2 4

Wa —er—e / Z, Z > O (4)

for the effective potential energy. A plot of this potential

energy for a representative case is shown in figure I.

The next step is to find the equilibrium flux of

electrons incident upon the surface of the metal, and then

to find the probability that an electron will penetrate the

barrier. The emission current of electrons can then be

found by integrating the product of the incident flux and

penetration probability over all electron energies. From

eq. (5) the Z part of the total energy of an electron is

p 2 2 p 2

_ 7:1 _ 'A. _ V : Z _:__

ez I L 2m 2m 2m V(Z)
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Figure 1 Effective potential energy V(z) of an electron

near a metal surface.
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The flux of electrons in the z direction with momenta

within dpZ is found by multiplying the number of electrons

per unit volume with momenta in dedpyde by vZ = pZ/m and

integrating over de and dpy. Thus, if N(ez)deZ is the

number of electrons with 2 part of their energy in deZ

incident on the surface per second per unit area, we have

00

 

 

 

p dp dp dp

N<€z)d€z = 'aé'gi X(E¥D)Z
h exp + l

‘0 = —00 : ...oo kT

‘x py (6)

or, since inside the metal

de 2 pdeZ

m ’ (7)

we get w

A dp dp

N(ez)de =-53 dez X Al 2 2

h _m _oo €Z—n px —l p

  

Eq. (8) can be integrated very easily by setting

Hp T C089 (9a)

X

H

py r sing. (9b)

The result is that

E "U4J3-
N(ez) =-—E%K—— logl:I + exp(—ET—):]

Eq. (10) is the appropriate expression to use in the absence

of an external magnetic field.

The presence of an external magnetic field will alter

the situation considerably. Before considering its effects,

however, we shall continue with our discussion of the original
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Fowler—Nordheim theory, and calculate the probability that

an electron with energy in deZ impinging upon the barrier

will penetrate it. We first note that the Schroedinger

equation is

d21/(g+l VZ( )W(Z)

2m

c122 Z (11)

Ol”

2'.

_§_% 7-2? 62 — V(EE] N = O.

‘ h (12)

Now inasmuch as the emitted electrons come mostly from

below the Fermi level at low temperateres, the region of

interest here, their energy is far enough from the maximum

value of V(z) to enable us to use a WKB approximation to

find the transmission coefficient. In this approximation

separate solutions to the Schroedinger equation are obtained

for the classical regions of motion to the left and right

of the barrier, and for the classically forbidden region

inside the barrier. Figure 2 shows a potential barrier

of arbitrary shape with the appropriate regions indicated

for a particle of energy ez. The time independent wave

functions for the three regions are

2 z

. B .

exp(I/[ kdz) + f exp(—i,/ kdz), z < a
1lel a

z
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h (14a)

1/2

7( ) ={:§% V(z) — 6;] for e < V(z) (14b)

The coefficients in (13) are related by the connection

formulas at the classical turning points of the motion, i.e.,

7)
at a and b in figure 2. These are

moos([m )dz— W/4)'éé———>—?£f=7 exp(i/Zy(z)dz)

7 z a

(15a)

1 ., ' -l . .
k Z s1n(fk(z)dZ—7T4) '<‘—‘——>‘>W exp(?7(2)dz)

(15b)

when the turning point is to the right of the classical

motion, and

b . z

32 e(xp/ (m2) Mfificogé k(z)dz-1T4)

(16a)

—l b l
.7?T§7 exp4M7)dz-éé——-—>f?fi;7r sin(ézk(z)dz-W/4)

(16b)

when the turning point is to the left of the classical motion.

The double arrow indicates the proper direction of applica—

tion of the formulas when admixtures of the solutions in

the various regions are unknown.

The transmission coefficient is defined by

Ntransl2 vtrans

|Winc|5 vinc ‘ (17)
 

We assume no wave moving to the left for z > b so (17)

becomes simply

: F12

D Ail—E (18)
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where, by use of the connection formulas,

-% (29 +
l

A '26
)FH

with

0
3 ll

(
D

{>
4

’
0 s
.

\
2

A

N Q
.

N

A

R
)

O

v

 

a

Hence

4

D = ,

(29 +-l—)2
29 (21)

and for 9 >> I, which corresponds to a high and broad

barrier,

V2
b

D g.l§ = exp(—2[ 7(z)dz = exp(—jb[§% (V(z)—eé}dz

a9 a

(22)

As a check on the validity of our approximations

we note from (A) that the maximum value of V(z) occurs at

Zo =Ié f_fl (25)

and has the value

g
m
b

V = W — ejF
(24)

max a

I;

For an applied field of 5 X 107 volts/cm, or 1.67 X 10’

statvolts/cm, (24) gives

a - Vmax = 2.68ev ’ (25)

while a typical value for Wa-n is o é 4ev. Hence the height

of the barrier will always be above the Fermi level for the

electric fields normally used.

We must now evaluate the expression for the transmission

coefficient for electrons impinging on the barrier. This
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was first done by Nordheimé) in 1928 and later improved

upon by Burgess, Kroemer, and Houston.8) Taking the

logarithm of eq. (22), we get

Z I

—LnD =‘/r €J[§%(W -er—e2/Az - e ) dz

a z
21 h

where Z1 and 22 are the classical turning points of the

 

(26)

barrier. (In this region Wa — 62 >0.) Solving eq. (4)

for V(z) = 62 in the region 2 > 0 will give us 21 and 22.

The result is

 

 

 

 

 

 

 

 

 

Ze} ___ L... (1 1 - e3}? )
z 2eB '— (W — e )2
l a z (27)

If the change of variable

: 2eF z

Wa—Ez (28)

and the parameter

y =VejF

wa—ez (29)

are introduced, eq. (26) becomes

uw/_ 2 ”f

1' 1 y 8m< wa—EZ 85F )lwaflez

—LnD = -—: —o-—————+ W — e — ' . do
I— l—y2 hi 2 a z 20(Wa—eé) 2eF

_ 5 l-z-VI—y2

m(Wa 62) J/' \// 2 2
= heF 1— 1—312 —0 + 20 — y %_g

(30)

Substituting

61 = V0— (31)

into (50) gives
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a

—LnD eF

m W —e 3 a ‘

- \/ / \/(a2— q2)(q2- b2) dq
b (32)

where

a =V/l + Vl-y (53a)

b =V/1 - 1~y2 (53b)

so that

-a2b2 = 3/2 (34a)

2 + b2 = 2 (54b)

”'1

Eq. (52) is in a standard form for an elliptic integral and

)
has been evaluated.9 The result is
 

_LnD = E(k)— b2K(k)
 

where

2 a2— b8 g 2Vl—y

k = —

a2 l+Vl—yd
(56)

and K and E are the complete elliptic integrals of the first

and second kinds:

N/2

d¢

K(k) =)(
o Vl-kgsingo (37a)

N/2

=f/' VG—kgsinéo do

0 .

In terms of the parameter y,eq. (35) gives

.7

 

 

 

—4 2m(Wa—E J) ]_1F_X2

D = exp( DheFa V2' E( l—y

n 3
—4VQm(Wa—ez)

= exp( BheF v(y)) (38)
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where

v(y) =é\/1 +\/~1---y2 Eco-(1 -- 1-372) K(k) . (39)

As mentioned earlier, most of the emitted electrons will

have energies near the Fermi level, so we may expand the

exponent in (38) around 62 = n, and retain only the first

two terms as a sufficient approximation. Hence, with

 

  

 

 

 

 

 

Wa - n = ¢

3 7 — \ 7

4/5Vém(wa—E ) v(y) _ 4/3 2m4>2V ejF)+ 2V2m v( eJF)

heF heF équ heF ¢

dv(W—eF)

n (2/3113 d: Z (E -n)-

z ez=q

(#0)

But

3a -
e b 1

d3 = (.2 QEZ. : W “'6 06Z

(W: 52/ a (41)

and

£11712.) : -;,_ 1 y CLEAN)

dEZ WEI-362 0y (2+2)

so (40) becomes

Vém(W —e )3 ”/2 ”V7__

__lL ‘2 a Z g _ 3/ L _ 3.3m I _.
‘// hep V(y) 4/? 2m heF V(y) he}? t(y)(CZ T1.)

(43)

where

[.v d‘

t(y) = V(y) — (c/9)y-ié%l. (44)

We finally obtain

6-71

D = exp(-s + g ) (I
 



IA

 

with

)‘_\ *5/22 3/2

‘ -— I _ N 7

1 _ heF _ f v -9 1/2_

a _ Qvém¢t(y) _ 9.70 x lO F/¢ w< ) (46b)

when d is in electron—volts and F in volts/cm.

B. Influence of a Magnetic Field

In the absence of a magnetic field the 2 part of the

electron's total energy is giIven by eq. (5), and to find

the emission current for such a case we must simply insert

the expression for eZ into the right sides of equations (10)

and (45), take their product, multiply by the electronic

charge —e and velocity v2, and integrate over all values of

62. It is at this point that we depart from the F—N

Theory, for we must now investigate what happens to the

electronic energy in the presence of an externally applied

magnetic field. We shall use the effective mass approxima-

tion to the free electron theory.

The one—electron Hamiltonian for an electron in a

magnetic field is

I r- ._e_ " ‘- ___ ‘H = 2171* (.0 C A) . V(Z)
(L17)

 

where m* is the effective mass, p the electron momentum, —e

the electronic charge, and A the vector potential. For

a magnetic field in the z direction we set



A = fiHx

and obtain in (47)

 

 

r

l 2 e

)4“ V(z) 2 2m* p "'E(

l V 2,

='§E¥ px T py

“ l T 2, _ p

_ 2m* px T<py 

(48)

e2 2_ — " — C.

prTA-p) *‘"2 A

c

2, 2_§. , e‘ngg _ 2

cpy x' 02 ‘ pz

EE ) 2‘: 2

‘ c >{ ‘ pz ‘ (49)

Replacing classical variables by the appropriate quantum

 

  

 

 

 

 

 

 

mechanical operators we obtain, for the time independent

Schroedinger equation

2 2 2

'h (a 2L )‘ l ( in a ' 9Hv)" V(z) ' cvF‘ J’ ’ /‘ T r“- ~- "' - ’I‘ x. '1" r. .-;

2m” 3V2 >28 2m< &y c J K ( )
94‘). K'

50

If we set, noting that V(z 2 O in this case,

\I - _. \ ‘V‘

v — etc 1‘ ‘ exo Ik Z x _
4-( J) I( Z / A() (318.)

0 2m*

k L = a 6
(51b)

we obtain

2 . . \

h 2 2 2 02 A 2 2 2 .
p *(kw % k L)+ g *(—h r — 2hk_m*wx T m* w x ) X = 6A

2m y 2 2m 3y2

(52)

with

w = -eH/m*c (53)

From (52)

2 \2 2 2 2
—h o m*w h 2 2 -

-——¥ — nk.wx I X X = e — I *(k + k ) x = EX
2m \ 2 y 2 am y Z

ox

(54)

Setting

, hk

A — x + m w (55)
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gives

2 .2 2 2 2 2 2 2

.:§_.E___ _ r h k -.meL§;_ [uh k _

2m* dxig hkyum'— *Efi§;'i 2 +‘hkwa'v-—§fi¥— X — EX

(56)

or

2 2 2 2 2 2

—h d m*w X' _ h k ‘
'—”T +-———:——— X = E +-———¥— X = E X.
2m* dxl2 2 2m (57)

This is the standard equation of a simple harmonic oscil—

lator centered at

_ hk

Xo — "E¥% (58)

with eigenvalues

I

E 7-: (H‘i‘l/2)hw, 1’) : 0,1323}; °°°°°° (59)

But

2 2 2 2

t w I h‘K , n k;
n — '2E¥¥_ * ‘ 2m*

(60)

SO

1’1ng2
e =‘hb(n71/2) 1 2m* '

(61)

{3 A

From (61) we obtain, with 62 2 thZC/2m*,

::~—"“~' /r\, : ..._e C nm(n.l,2) 6 CD (62)

for the 2 part of the electron‘s energy inside the metal.

We must now find the number of states with quantum

number n and energy between 62 and 62 + dez. The degeneracy

of a state with quantum numbers n and k2 is determined by

the allowed values of ky‘ The range of these values can

be found by requiring that x0, the center—point of the

motion of the oscillator, fall within the boundaries of
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the specimen. Assuming a rectangular box of sides Lx’

L , and L2’ with the origin of coordinates at the center,

y

we obtain

(.1/2)LX < x0 < (1/2)LX
(63)

01°

"‘2??— < ky < - fi—
(64)

which may be rewritten as

eHL eHL

x X

2hc < ky < 2hc . (65)

  

The number of ky values in the above range is, then,

(assuming periodic boundary conditions)

L n

,- .~ 1 63

On ‘ 0k (‘4) 2% xLy . (66)

The number of allowed kz values in a plane slab of thicknes

6K7 perpendicular to kz is just (LZ/2v)dkz. Hence the total

number of allowed ky and kZ values for a given n, i.e. the

degeneracy of the state n, is just

vL L H
6nn = 6n on =-—fi—%—§:;E bk

y Z 4v n Z . (67)

1
1
—
!

But we may write

A

n l A
K _ (cmf) /Z 6 1/2

2 n. z (68)

so

. 1/2 A
76 _.

dkz =-£§m—l——— e l/C de

2h 2 z (69)

Hence the number of states per unit volume in the energy

range 62 to 62 + dez, with a given n, is
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1/2 e —l/2 d6

Z Z

eH
Nn(ez)deZ = 2-32;(2m*)

, (70)

and the flux of electrons incident upon the barrier is

simply

Sn(ez)deZ =-% f(€z’€n)Van(€z)d€z , (71)

where f(€Z,€n) is the Fermi distribution function. The

factor 1/2 is inserted because for a given n and ez only

half of the electrons will have vZ > O.

The expression for the total emission current density

in this case now assumes the form

_.l j/, —?
J _ 2 O x f(e ,e )Nn(eZ)VZD(eZ)deZ

1’1=O Z 1’1

N

2 6 +6 —
_ 2e H j/' .9 z n n —l
"‘7§‘ D(ez) %=o (exp(——ET———) + l) dez

 

 

h c o .

(72)

Substituting for D(e ) from eq. (45),

2e2H Z w

J = 2 exp(—g-n/d>_)/éxp(eZ/d)
h c o

m e + nw(n + 1/2)—n

/ Z I ‘1%=O(exp\ RT ) I I) dez.

(75)

We shall made use of Poisson's summation formula to evaluate

the sum over n in eq. (75). To this end we set

6 -n

exp( ET 

> = B (74)

and obtain

no I _ y

%_0 (B exp(EQLQE%—llgl) + 1) l = 1im dx

‘ y—9”o B hwx .
exp(—ET)+1

w

, w s cos2va dx

+ 2§—l(_l)-%/ B exp(hwx/kT) + l (75)
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The first integral in eq. (76) is simply

  

y

I = dx = y — EELn(l+B exp(ggy»+-52Ln(l+B)
1 —-——————————— hw kT hw .

O B ex (2E§)+ 1
p kT

(76)

For y >> kT/hw, however,

- .22E 5 .22E 2 392
Ln [1 + B exp(kT % LnB exp(kT ) kT + LnB (77)

so

1im I =fl Ln 1 + B =33 L (ex (n_€Z)+ 1)
a“, l hw B hw n p kT , (78)

The second integral has the form

m

12 =/f(x) cos2Ter dx

0 (79)

and becomes, after an integration by parts,

I, 2 m f;_ x . 1 _§ .
I2 — 2vS s1n2va — 2ws 6x s1n2va dx

0 o (80) 

The first term vanishes at both limits and we are left with

the second term only. Although the integral in eq. (81)

appears to be of the form

I I [Egg gm
0 O (81)

it may not be evaluated by the procedures commonly employed

for such integrals because the integrand oscillates very

rapidly in the region of the fermi surface. We may,

however, make use of the fact that ~5f/dx has a sharp

maximum of width kT about the value X’such that

I I

€(X,ez) = th + ez = n (82)
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where n is the Fermi energy. If we redefine the origin so

 

that

X : XI+€
(83)

we get

f(X,€Z) = €Xp<fi$§§ + l)—1 (84)

Now if we set

hm

6 =75? (85)

eq. (81) becomes

00

—l . kT 8f

I =—'—-.' /Sln27TS(X + -—-) d
2 2vS O e'hm '5? V (86)

We may, without introducing a serious error, extend the

lower limit in (86) to —oo. Then

00

g ~sin2vSX j/fh 2vSkTgWof

I2 _ 2W3 _a, cos a? de

cos2_______j_r___SX /:12WSKT@%Pf_

_ 277S fim (87)

But —df/d€ is an even function of? , so we are left with

 

 

  

__ +sin27TSX /m 27rSkT€ l 2

I2 _ 2W8 _a3 COS< hm )(exp(€/2) + exp(—6/2)) d6

: +sin2vSX O hm d9

ans ~00 J—lcosh26/2

2v28kT

= 2%8 sin2WSX hm 2

s'nh 2W SkT

l hm . (88)

Inserting eqs. (78) and (88) into (75) gives

a)

__2e‘H ‘ f 62 RT “‘Ez ,
J — hgc exp(—g—n/d) O exp(a-) hm Ln(exp(*1TZ) T l
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11—6 2
. 2 2w SKT

53° S Slfl<27TS w) ha)

+ i (—1) WS 2 de

8:1 8 nh(27F SKT) Z p

m (89)

where we have used the fact that

n — 62

K I m . (90)

The range of integration in eq. (89) should in actual

fact be cut off at 62 : V(z) since for 62 > V(z)
max’ max’

D(€Z) = l and we are in the thermionic region. Actually,

not much error will be introduced if the upper limit is set

equal to n, the fermi energy. To this approximation, then,

 

  

we have

Jhgchm 0 e2 17-62
2 4:- : exp(——) Ln(exp(TTZ) + 1) de

2kTe H exp(~g—'§) 0 Z

1 n—E

-+2nn§ (-I)S )[nexp>(—%) sin(2WS I Z)de

S=l . 2v2SKT) o T” 2'
s1nh(—iE$——)

(91)

Consider the second integral first. This may be rewritten

 

 

 

as

T]. E

I g __g o. 2WSp c 2vSeZ _ 2W8? . 2WS€Z
I2 —’£fl exp( d)(oln‘ffia"00u ‘hm cos hm Sin nm Z)de

(92)

Set

2wS-3— = I

'nm 9 . (99)

Then
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e
._g ._ EWSeZ 4 2W3 QWSEZ] U

I I ~ exp( d)[ CO hw ‘hw ‘hw , 9

2 ‘ ’ (g); (27rs)2 Sin

d nw o

T]
6
__g _l BWSe 2W8 2WS€Z]

_ ex“ (1) [asSin—Fora hob COS ha) €039

(:L/d)2 + (QWS/hw)2 0

_ 27rS (33’ (3;) _ in 27TS'n 27TSCOS 27151:] 1

‘ hw ‘p d01 fiw ‘hw hw C;)2* (2W8)2

d ' hm

(94)

Evaluation of

 

the first integral will be facilitated if we

set

I

B 2 exp(—T) (95)

and make the change of variable

62 l

y = €XDQg‘) 3 dy =‘a VGEZ . (c5)

Now since

, eZ . —e7 62 ,

Ln 1 + D exp(hm) : Ln exp(;Ti)(eXpC—T) + B )

-67 e ‘

= ET: + LD(GXDQE%) ” B ): (97)

 

 

integral in (91) becomes

 

en/d n

I I ‘f “L d/lc’l‘,E )+_ j/ 6Z (—€z d

l _ l O n(y TV by " C“p4_d) RT) 62 .(98)
o

The second integral in (98) is simply

II 1 7. 2: __J _~3 __ a 2
:1 _ — kT (a)exp(;Md 1) yT (99)

while the first becomes

_n/d u
PT

I , I 1 -- t

Il II : d'/e Lo%iT— ~ l)dy c(cxpC~) — l LnB

l 13 u (100)
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Performing an integration by parts on the remaining integral

  

 
 

 

 

 

 

 

 

 

 

gives

I IV = d exp(3)Ln2 — dLn(expC;3) + l)
l J d kT

-r n 67
- ___J ) __.2

_ d exp<kpf exam) .1.-

KT _ Ez—T} Z ,

0 exp( RT ) 'T l (101)

and finally,

6

I v —d exp(—1:13)] exp(-17%) d
= m _ _‘ e

&T

_ _ - I 1 r .3. I
— dLn2 I dLn (exp(kT) 1 l) , (102)

so that

I _ f -2 v- :1. __ q d v .7: _ _.11L —— 199d<e1p<d> 1) . k, [asap 1) n]. (105)

Eq. (92) becomes, at last

263211 3 l n
_ 1 r - __ ‘ __..._ (x. 7 - .——‘ _

J - 12 exp(s d>o hm .w92kT(eXp(d) 1)

n c

m 2 1.12
n 1.... S 27‘ STU)

+ d(exp(a) — l) — w +Idé (—l) I 1 2

8:1 . (2W SK’I‘)

Sin -—iEE——

2

T10.) GX‘ (j)_ C S 2787) __ {’10) 811’] QWST‘,

Cl)2* (2ws 2 9 d O hm ears hw

d ' hm
.

(104)

Oscillations in the field emission current density, periodic

in l/H, are readily apparent from eq. (104).

The entire derivation above makes use of the assumption

that the Fermi level is independent of the magnetic field.

Such will be the case only if the number of electrons in

the conduction band is allowed to vary. This situation is
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often encountered in practice, however, when a light

effective-mass conduction band overlaps a high density-

of—states, heavy effective—mass hole band. Bismuth and

many other semi—metals exhibit this kind of overlapping

band structure, in which the hole band will accomodate

electrons from or contribute them to, the conduction band.

If, however, the number of electrons is fixed, then the

Fermi level will vary as the magnetic field is changed.

This will be the case if there is no band overlap at all,

a circumstance not often found except in monovalent metals

and suitably doped semiconductors.

If no represents the Fermi energy at T = 09K in zero

magnetic field, then for constant electron concentration

 

 

the Fermi energy is given bylo)

._ .1. 1 .. L<Ifl)2_
l (WKT)4~ l (hc;.)2_!_ 1 (VliThw)2

12.. 755117817 '3811
o

o
c

no

2;

WKT(nw)l/2
<n ( liq Sin(¢

  _ b 2/2 ,_ .

vgkno )/ q=1 VEI sinh(‘fiUldp (105)

It is this expression which must be used in eq. (104) for

evaluating the emission current when the electron concen—

tration is fixed.

For metals, semi-metals, and degenerate semiconductors

of small effective mass, the temperature dependence at low

temperatures is not terribly great, so for that reason it

becomes convenient and instructive to examine the expression

for the current density in the limit T-——> OQK; From eq. (104)
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2
j

H expég_.gfi
i{d(eXP(g

$ - l) — n
  

“ S ________¢L____+ E (—l) 2hw d 2 exp (3) — cos 2%3?

S ——- S

 

=1. (hw)2 I 471-2 d

_ 3,—1.9.) L. S n 277‘s“

d vs h (106)

If we choose a typiCal value of F = 3 X 107 V/cm for the

electric field, and consider substances in which m* E 10-2mo

then

g = 1.43 (107a)

d 2 .155 ev (107b)

hw = @*H s 1.1 x 10‘5H ev (107a)

and we see that for reasonable values of the magnetic field,

nw/d << 1 . (108)

Hence to the lowest order in hw/d, eq. (106) becomes

 

 

2 3

. 2e H d(exp(d) —1) — D
J = exp(-g—n)d

h2C d hm

hm

S

— i? (—1) £153% (exp(g) — cos Qgi“)

8:1 21 s . (109)

Furthermore it often happens that q << d for such materials,

so we may use n/d as an expansion parameter also, obtaining

l n 2
d(.fl +._(_...) _ 7)

~ 2
exp(—g—3)d -£L--Ji---

 
hw

 



4wem*hw , 32 hw 1

“ h} eXp(“8)d 2dhw +“& :21

The above expression was first derived b

. 1 o
con81dered only the case T 2 0 K, so tha

S

-l ( 2W8?

1 - cos-———~)

2W 82 hw

y B1att,ll) who

t the Fermi distriw

bution function could be set equal to unity for e < n, and

zero otherwise.

Eq. (110) may be used as it appears above when evaluat—

ing the emission current if the Fermi energy does not change

with magnetic field. From eq. (105) however, we see that

for T = 00k,

and this expression must be inserted in

the assumption of constant Fermi energy

(111)

eq. (110) whenever

is not valid.

Using the same expansion parameters as above, we obtain

1“ C.

J :2Temzn exp(W‘EM"TP(hm) 2

  

27TC: TT

“—1539 - 11)
,(112)

which differs from eq. (110) essentially only by the presence

of an additional field—dependent term. The additional
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oscillatory term will dominate the behavior of the current

in low magnetic fields (hm << no), but as nw approaches no,

the first oscillatory term will begin to contribute signifi—

cantly. Since the two terms have a different dependence

of amplitude on magnetic field, and differ in phase by a

factor of W/4, experimental identification of the two should

be possible.

From the above results we see that a study of the

behavior of field emission in a magnetic field ought to

give us some information on the nature of the fermi surface

of an electronic system. In particular, one should be

able to obtain information similar to that given by de Haas-

van Alphen techniques on the extremal areas of the Fermi

surface. In addition to this the presence of overlapping

bands ought to be detectable through the absence or presence

of the last term in eq. (112). Furthermore, we may

simplify that equation somewhat by noting that

S

200 LL~__1__

“ ” 12

 

S=l WCSd (113)

and

s/- m _

G(x) = x —-%E 2 a ~1—%l§ cos 2wxb, --% < x <-%

S=1 w s L 5 3

(114)

so that

S 1‘ '1‘.

1:11_ .276“ -_1_._-__;o_ _1 .32 .1.
5:1 7/32 (1 “ COS he ) “ 12 C(nw)’ 2 (‘hw < 2

(115)

Eq. (ll2) becomes
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2 “E n
2Wem*nn e 1 hu>2 o

: #‘\ l _ ———. 

, 353n3 1

1 1 2 ‘hw 7» 2 ‘1

+ <——-—,—) / e—V/ Eel-39}
2W -o , (116)

where

n 00 _ q

F(fig) : a ( % 2 sinQEEflO —-g)

q=1 q (117)

From this expression we see that a monotonic decrease in

the emission current, which is quadratic in H, is also

predicted.

We have seen that the application of an external

magnetic field does indeed influence the behavior of a

field emission current from a cold cathode into vacuum,

within the single—particle, free—electron approximation.

Furthermore, numerical evaluation of the theoretical

expression, using accepted values for the quantities

appearing there, indicates that the effects mentioned above

ought to be physically observable in appropriate materials.

The next section will describe the attempts to verify

experimentally the predictions made in the preceeding

pages.



3. Experimental

A. Apparatus

Since the interest in this experiment was in the

behavior of the total field emission current with magnetic

field, and since the experiment had to be performed at

liquid helium temperatures in order to observe any quantum

effects, no attempt was made to construct the usual type

of field emission microscope (FEM). Such a device contains

a phosphor screen maintained at anode potential so that the

spatial distribution of the current over the cathode may

be displayed at tremendous magnification. Furthermore the

anode to cathode distance in an FEM is typically on the

order of a centimeter or more. Hence, in order to get

the required field strengths at the cathode surface it

becomes necessary to use very sharp ("'10"5 cm radius)

needle—shaped emiter tips or else very high applied

voltages. To avoid the problems imposed by the above

requirements, the cathode in this experiment was placed

much closer to the anode, typical separations being lmm

or less.

Two different experimental chambers were constructed,

one for use with a superconducting solenoid, and the other

for use with a conventional laboratory iron—core electro—

magnet. In both, however, the anode was suspended from a

stainless steel tube which extended from a high voltage

feed—through in the dewar flange at the top of the apparatus,

29



  

  

 

 

Figure 3 Field emission chamber for use with superconducting

solenui



 

 

 

 

    

 

G
D

   Q a

Figure 4 Field emission chamber for use with iron—core

electromagnet
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Figure 5b Circuit diagram for electrometer differential

amplifier with cathode follower output
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through the pumping line and into the brass chamber at

the bottom. This arrangement was chosen to avoid using

a heavily insulated high voltage lead which would have to

pass through the bath, an undesirable procedure from

several aspects. The stainless steel tube was held rigidly

inside the pumping line by several insulating spacers

placed along its length. For use with the solenoid the

field emission tip had to be mounted with its axis in

a vertical position, whereas with the electromagnet the

emitter axis had to be horizontal. This was accomplished

by constructing the two brass chambers shown in figures

3 and 4. Both arrangements were quite suitable, although

eventually use of the solenoid was terminated because of

the large amount of liquid helium required to make a single

run and also because it was felt that fields up to 20

kgauss would be sufficient. The entire emission chamber was

electrically insulated from the pumping line by means of

a copper—glass—copper housekeeper seal. The current lead

out of the dewar could then be fastened to a bolt on the

outside of the chamber, thereby avoiding the use of a

glass—to—metal feed—through in the bath.

The sample was mounted in a chuck made from oxygen—

free, high—conductivity (OFHC) copper to insure good

thermal contact with the helium bath. In one case the

chuck was soldered into a brass flange which could be

bolted onto the experimental chamber, and in the other case,

the chuck and flange were machined as one piece. A very
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reliable vacuum seal was obtained with both arrangements

simply by winding a piece of lead wire once around the inside

shoulder of the flange, overlapping the ends, and bolting the

flange securely into place. This eliminated the necessity

of prefabricating a lead o—ring of exact specifications, and

of machining a groove in the flange for it.

A differential electrometer amplifier with a cathode

follower output was constructed using two Raytheon CK 5886

electrometer tubes, and was used to measure the current.

I o o a 5 12

A seleCtion of input reSistors from 10 to 10 ohms was

available through use of a specially constructed, teflon—

insulated rotary switch obtained from Kiethely Instruments,

Inc. The output of the amplifier went into one channel of

a dual pen strip—chart recorder. The combination of recorder

amplifier and electrometer allowed, in principle at least,

... . . —14

the pOSSibility of measuring currents as low as 10

amperes. Unfortunately the RC time constant of the circuit

became prohibitively large when the input resistance was

1. J 10 1 , J__ o o

greater than 10 ohms, so measurements were limited to

1. . _ l . ‘

currents of 10 amperes or larger.

The magnetic field of the solenoid was swept in a linear

fashion by a motor—driven potentiometer in a feedback loop

built into the magnet power supply itself. The field of the

electromagnet was swept essentially by sending an error signal

from an integrator circuit into the feedback loop of that

magnet's power supply. A complete description of the latter

method for sweeping the magnetic field can be found in reference
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12. In either case a signal directly proportional to the

field was fed into the other channel of the strip-chart

recorder so that a simultaneous display of magnetic field

and emission current verses time was possible.

B. Sample Preparation

Principle interest in the experiment centered on the use

of bismuth for the field emission cathode, since it was

felt that the predicted behavior of the current would be

most easily observed in this material. Other materials

tried were indium, tungsten, zinc, and lead telluride.

Two methods of preparing bismuth samples were tried.

The first, which produced very sharp tips of quite regular

geometry, involved the following procedure. A piece of

commercial 10 mil bismuth wire (resistance ratio §%?g i 70)

was secured in a temporary chuck with about 1 cm of the

wire protruding. The chuck was then fastened in a ring—

stand clamp with the wire hanging vertically downward.

Next a strip of manganin ribbon, which was heated by passing

an alternating current of approximately 2 or 3 amps through

it, was raised on a small jack—stand until it just touched

the bismuth wire. A molten zone then formed at that end

of the bismuth wire and grew along its length until it

neared the chuck, which acted as a heat sink. At that

point the manganin ribbon was slowly and steadily lowered,

pulling the end of the bismuth wire with which it was in
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contact. This caused the wire to pull apart, leaving a

very sharp conical tip on both pieces. The upper piece in

the temporary chuck cooled almost immediately and could

then be examined under a microscope before being transferred

to the sample—holder. The whole operation took about five

minutes, and with a little care produced a suitably shaped

emitter tip at least once in every three attempts. Further—

more, it was found upon selecting a random one of them and

x—raying it, that the polycrystalline wire had formed into

a single crystal where the molten zone had passed. Indeed,

microscopic signination of every tip made this way showed

no gross irregularities in the surface, which strongly

supported the belief that they were all single crystals, at

least in the region of the actual emitting area.

The other method of preparing a bismuth tip involved

starting with a single crystal of known orientation, and

then etching it electrochemically in a solution of 2 parts

phOSphoric acid, 2 parts sulphuric acid, and 1 part distil-

led water. This process took considerably longer, and

did not produce emitter tips which were as sharp or had

as regular a geometry as those produced by the first method.

Nonetheless, because there was no uncertainty about the

nature of the crystal structure of the sample, the second

method was used exclusively in the later experimental

trials.

Indium was tried as an emitter principally because a

tip could be prepared in the same manner as bismuth, i.e.
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by heating and pulling it. Tungsten was tried as a matter

of course because it is the metal most commonly used as a

field emission cathode, and can be shaped into a tip very

easily by electrochemically etching it in a sodium—hydroxide

solution. Zinc was selected because in certain crystal—

lographic directions it exhibits small effective masses and

a large de Haas—van Alphen effect, and again can be prepared

quite easily in an electrochemical etch using NaOH. The

zinc crystal used was oriented along the (0001) direction,

which is the direction in which deA oscillations are

largest. Finally, n—type PbTe was used because it closely

approximates the assumptions made in obtaining the expression

for the field—emission current. (Effective masses are small,

there is no carrier Hfreeze—outH at low temperatures, and

there are no overlapping bands.) Furthermore, cathode tips

could be prepared with reasonable ease by electrochemical

etching in a solution of potassium dichromate and nitric

acid. (4 parts K20r07 with 1 part HNOZ).



4. Results

Before discussing the results obtained from the experi—

ments with each of the above—mentioned materials, a word or

two concerning some of the difficulties encountered in

making the measurements is in order. The most troublesome

problem was that of obtaining a stable field~emission

current for an extended period of time. The magnitude of

a field emission current at constant voltage depends

greatly on the surface condition of the emitter tip, and

is extremely sensitive to the presence of adsorbed gases,

or to the presence of gases in the emission chamber.

Changes in emission current by an order of magnitude or

more are not uncommon under poor vacuum conditions, and

even under what are considered in many cases good vacuum

6

conditions, (pressures < 10— mm Hg ), large (10 — 50 per

cent) and sudden changes in the current will occur. The

only way to eliminate noise of this nature from the current

is to use extremely clean emitter tips, and ultra low

11 1— )
pressures ( < lO~ mm Hg In this experiment the emission

chamber was first evacuated with a conventional oil

diffusion pump to a pressure of approximately 10—55 mm Hg.

At that point the apparatus was pre-cooled to liquid

nitrogen temperature, after which liquid helium was trans—

ferred into the dewar. During the pre—cooling period and

transfer the valve to the pump was closed and helium gas

was admitted into the emission chamber to provide thermal

7:7

up
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contact between the anode and outside wall so that both

would be cooled simultaneously. Once the transfer was

complete the helium gas was pumped out of the system,

while everything else was presumed to have condensed on

the walls of the chamber.

Even though it was felt that the aboVe procedure should

have provided the necessary vacuum for stable field emission,

the problem of obtaining clean cathode surfaces still

remained. Since bismuth has such a low melting point it

was not possible to remove the adsorbates by flashing the

tip to a high temperature in vacuum, as is customarily

done with, for example, tungsten cathodes. The only other

alternative was to remove the contaminating ions from the

surface by field desorption techniques. If the cathode is

made positive with respect to the anode and at the same

time subjected to an intense electric iield, positive ions

which have been adsorbed on the surface will be stripped

away and attracted to the anode. Unfortunately, to achieve

significant desorption, field strengths approximately 10

times stronger than those necessary for field emission are

required. This often was not possible to achieve with the

power supply available for the experiment, which had an

output of_i 10,000 volts. As a result of this, and the

uncertainty of the quality of the vacuum in the chamber, noise

levels could not be kept as low as was desired. Noise

levels which were within 1 per cent peak-to—peak of the

steady dc current levels were sought, but typically the
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noise was on the order of 5 per cent peak—to—peak, and this

was obtained only after considerable time and patience had

been expended in “training“ the emitter tip. The “training”

consisted of drawing currents of varying amounts for extended

periods of time, reversing the polarity of the applied

voltage in an effort to induce field desorption, and then

checking the current levels again. Such a process usually

took several hours during a run and oftentimes the entire

run was spent trying to obtain a stable current, with

not even a chance to subject it to a magnetic field.

For short periods of time (approx. 1 minute) a relatively

stable current could be gicained, so as a result the follow»

ing procedure for taking data evolved. First an attempt

to ”train” the emitter was made. If the noise could not be

reduced to desirable levels after three or four hours, then

a plot of current versus applied voltage in zero magnetic

field was made. The high voltage power supply was then

put in its standby mode, and the electromagnet turned on

and set at some value of magnetic field. Again a plot of

current versus voltage, at the same voltages used before,

was obtained — a process which took only a few minutes.

The high voltage was once more turned off, the magnetic

field changed, and the process repeated. (It must be mention—

ed that at this point any kind of dependence on magnetic

field was being sought, since it was felt that noise

levels were too high to allow oscillations to be observed.)
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Even though the oscillations were deemed difficult to

detect, it was still felt that the monotonic decrease in

current density which is quadratic in H as given by eq.

(116) above, should have been readily observable. In

fact, however, not a single run on any of the above—

mentioned metals showed any dependence of field emission

current on magnetic field whatsoever, to within an accuracy

of at least 5 per cent. Figure 6 shows the behavior of

the current drawn from a tip made from the high purity zinc

crystal already mentioned. To within the accuracy indicated,

no dependence on H can be seen. Similar results were.

obtained from cathodes made from single crystal bismuth as

well. Unfortunately it was very difficult to prevent

breakdown when using bismuth, and in every case the data

was obtained after a breakdown had occurred. (No breakdown

occurred with the zinc crystal, however.) Since a break—

down usually alters the shape of the cathode considerably,

interpretation of these results is somewhat in question.

It is possible that the breakdown in each case may have

altered the crystal structure in the region near the emitting

surface to such a degree that considerable scattering of

the electrons may have washed out any dependence on magnetic

field. However, since the actual region from which electrons

are emitted is so small, the current could still have

originated from a single crystal area, even though the

bulk of the tip region consisted of several crystals of

different orientation. At any rate it is a question which
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cannot be resolved without actually viewing the field

emission pattern, and this, unfortunately, could not be

done with the apparatus used.

As suggested in the theoretical section, suitably doped

semiconductors should provide the necessary conditions

for easily observing quantum effects in the field emission

current. For this reason, some attempts were made using

an emitter etched from n—type lead telluride. The particular

18
sample used had an electron concentration of ]1) carriers

per cm}. Since PbTe exhibits no band overlap, one would

expect all the terms in eq. (116) to be made manifest, but

again, to an accuracy of in this case approximately 2 per

cent, no effect whatsoever was observed in the range 0 to

20 kilogauss. (The currents drawn from the PbTe cathodes

were much more stable than those drawn from metallic cathodes,

which accounts for the somewhat lower noise levels. In

fact the usual i"training“ period of several hours duration

could almost be completely eliminated.) These results

were typical of all of the attempts made to observe the

phenomena, no matter what the cathode material happened

to be. In the following section we shall present some

possible causes for the apparent failure of the experiment.

Some of the current—voltage characteristics for a few

of the various emitters used are shown in figures 8

through 11. A plot of this nature was always made at the

start of each experimental run to ensure the fact that a

field emission current was indeed being observed. (The
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Figure 8 Current vs. voltage plot for a bismuth cathode

in zero magnetic field. Sample orientation unknown.

 
 

10’15._

2 ..

I/\/

10—16 _

10‘17__.

10"18 1 4

3.0 3.2 3.4 3.6 3.8 (E;)

Figure 9 Current vs. voltage plot for a zinc cathode in zero

magnetic field. Sample oriented along (0001).
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Figure 10 Current vs. voltage plot for a tungsten cathode in

zero magnetic field. Sample orientation unknown.
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Figure 11 Current vs. voltage for a lead—telluride cathode in

zero magnetic field. Emitter axis 280 from (111)
direction.
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F-N theory indicates that a plot of log (I/Vg) versus l/V

ought to be a straight line.) As mentioned above, this

kind of plot was also used in some cases to intestigate

the behavior of the current in a magnetic field. When—

ever possible, however, the emission gap voltage was kept

constant and the magnetic field was varied continuously

in a linear fashion.

The F—N equation for the current density in zero

magnetic field is

—6,2 5/2

J z 1-5” X 10 3 exp -6.83 X 107 O v(y)

ot2(y) F

where y, V(y) and t(y) are defined in eqs. (29), (59), and

  

(118)

(44) respectively. If the radius of curvature at the

emitter apex can be determined, and a suitable approximation

to the emitter geometry made, then the magnitudes of both

J and F can be estimated. These values can be inserted in

eq. (118) and used to determine the average work function

of the cathode material as an additional check on the nature

of the current observed. Unfortunately the necessary

geometrical factors are very difficult to ascertain accurately

after electrical breakdown across the gap occurs, and such

an event almost inevitably took place sometime during each

run. In only one run,other than that with Zn, were reliable

data obtained before a breakdown occurred, and since an

estimate of emitter geometry was always made prior to each

run, we shall attempt to determine the magnitude of the

work function for that emitter. The emitter was etched
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from PbTe, and its I-V curve is shown in figure 11. The

radius of curvature at the apex was estimated by means of

an optical microscope to be 8 X 10—4 cm. Since the most

significant contribution to the current comes from an area

at the apex within about 450 of the emitter axis,13) we can

estimate that the current denisty corresponding to I = 7.7

-1 _I

X 10 O amperes is J = 6.58 X 10 L amps/cm2. Assuming a

hyperboloidal approximation for the cathode geometryl4) we

find that

2V - 6
F=————ZrS-=4.95X10 V/cm,

r Ln-——

r (119)

where V = 7700 volts is the anode potential, and s é .1 mm

is the cathode—anode separation. Substituting these values

in eq. (118) and taking the logarithm of both sides yields

K -3/2p,
—25.3 + Ln 1.09 ¢ = —13.8 ¢ v(.oA3/¢). (120)

A graphical solution of this equation gives 0 = 1.8 ev,

with an estimated accuracy of at best + 50 per cent. Most,

if not all, of the uncertainty in the preceeding calculation

comes from not being able to determine the geometry and

dimensions accurately. Nonetheless, there is some merit in

making this calculation, because it offers further evidence

that an actual field emission current had been obtained.

This fact is of some importance in the case of this

particular emitter, because noise levels in the current were

low enough to permit sweeping the magnetic field, at a rate

of 1000 gauss/min, over nearly the full range of field
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strengths available (0 — 20 kilogauss). As we mentioned

previously, no dependence on magnetic field was found. (A

similar calculation for the zinc cathode yeilds ¢ = 5.5 ev,

again within the same limits of accuracy. The accepted

15))
value from photoelectric measurements is 4.24 ev.





5. Conclusion

As an aid in determining possible reasons for the

failure to observe a dependence of field emission current

on magnetic field, we shall estimate numerically the

magnitude of J when H equals 10 kilogauss. If the cathode

material is bismuth, we note the following:

n = 1.57 x 10’2 ev (121a)

¢ 4.25 ev. (l21b)

If we assume an electric field strength of F = 2 X 107

volts/cm, then

r

'V' -'.8

u = 9.76 A 10 (122a)

n/d = .161 (l22b)

en/d = 1.175 (122c)

. —2 f —2
hw/d = 1.1 x 10 /9.76 x 10 = .1127. (122d)

Since in this case the expansion parameters used in deriving

eq. (116) are not particularly small, we must use eq. (106)

instead. In order to simplify the calculation we shall

consider only the first term in the series to estimate the

size of the effect predicted. If anything, this will

produce an over-estimate, for the second term, which is

reduced by a factor of A, will have the opposite sign.

2vn

We have, then, neglecting also the term (nu/d) sin-555 ,

_ 11 —->:- . "r:
J :.~Zfl—§§ exp(—g—-3) {(d(exp(5) — l) — “)

 

h) 0

— (hm 2 [exp(g) cos 2W?r- xx; , "" J

2wdd d hm (123)

40
J



 

so that

Josc 7 27 V 10‘5 —2'y”‘“““‘ = 2- A _5 = 2.36 x 10 .

steady 1.39 x 10 (124)

From this we see that magnetic field effects are only on

the order of 2 or 5 per cent of the emission current in

zero magnetic field. This estimate, if at all correct, is

itself enough to explain the apparent contradiction between

experiment and theory - noise levels due to instabilities

in the emission current were simply too large to allow the

effect to be seen. It is immediately apparent that the

experiment should be performed with magnetic fields in the

range 50 to 100 kilogauss so that the field—dependent terms

will be large enough to observe. Because of a mistake in

a numerical estimate of the effect in the paper by Blatt,ll)

it was originally felt that such high magnetic field strengths

would not be necessary, particularly in bismuth. It now

appears that this may not be the case.

In connection with the preceeding, we should mention

that recent experimentsl6) with Sb-doped germanium tunnel

diodes have demonstrated an oscillatory dependence of the

tunneling current on magnetic field. It is noteworthy to

mention, moreover, that magnetic field strengths in the

range 50 to 100 kilogauss were necessary to produce easily

detectable oscillations, and in fact that at 10 kilogauss

the effect was on the order of 2 per cent! Although the

tunneling current in this case flows from a set of Landau

levels on one side of the junction to a similar set on the
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other side, the kind of calculation made is essentially the

same as the one presented in the first part of this paper.

One first considers the wave equation for the electron's

motion in the junction region to obtain a transmission

coefficient, and then computes an integral essentially of

the form of eq. (72). (Harrison,l7) for example, has shown

that in the WKB approximation, a general expression for

the tunneling current density, based on an independent-

particle point of view, is

a) x

'—§-§> ex (—2/blkldx)(f— f)dE
J — h I p x I a 'b ’

t -00 Xa. (125)

where f8 and f are the probabilities of occupation of the
b

states a and b, k,C is the transverse wave number, lkxl

is the magnitude of the electron's momentum perpendicular

b — xq is the extension of the forbidden
C .

region. The region to the left of the barrier is denoted

to the barrier, and x

by the subscript a, and that to the right by b. We can

recognize eq. (72) in eq. (125) immediately if we set fb = 0

for the probability of occupation of the vacuum states, and

recall the form of D(eZ) given by eq. (22).)

There are, in addition to the foregoing, more reasons

for the seeming contradiction between experiment and theory.

For example, the expression we obtained for the energy

levels of an electron in a magnetic field depended upon

the assumption that the actual physical dimensions of the

crystal were much greater than the classical orbit radius

of an electron. This assumption neglects the effects of
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those electrons whose orbit centers are close enough to

the surface so that the electron paths intersect it.

Dinglelo) has shown that this is a valid procedure only

when

1/2
eHR/c > > (2m*no)

(126)

where R is the least dimension in a plane perpendicular

to H. For a substance such as bismuth, eq. (126) requires

that

2

HR > > 5 x 10’ (127)

According to the Fowler—Nordheim expression for the current

density in the absence of an external magnetic field, an

electric field of 2 X 107 volts/cm will produce a current

density of approximately 5 X 10.-3 amps/cm2 assuming an

average work function of 4.25 ev. In order to produce this

field with a reasonable value of applied voltage, (say

5 X 103 volts), an emitter tip with a radius of curvature

"\7'

at its apex of about 5 A 10'
J

cm is required. (We assume

a hyperboloidal approximation to the cathode surface so

1

thatlL)

F:V——2_'IT

VLn-—E
r , (128)

where V is anode potential, r is the radius of curvature,

and s is the anode-cathode separation. With s é lmm,

these conditions correspond to a current on the order of

11
5 X 10_ amps.) We see immediately that we must have

H > > 1000 gauss (129)
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in order to satisfy condition (127), and that for the most

part it was not successfully met in this experiment. In

fact, the orbit radius for electrons at the Fermi surface

of bismuth is given by

r = (2m*no)l/2 c/eh é 4.2 X 10_2/H cm, (150)

For a field of 10 kilogauss, r é A X 10—6 cm, which is

almost one tenth of the estimated radius of the emitting

region! Hence we must conclude that the applicability of

our calculation is somewhat in question for the range of

field strengths used. (Ding1e18), for example, has shown

that for systems of small size the effect of these ”surface

states” (i.e. those containing electrons whose orbits

intersect the surface) is to reduce the amplitude of de Haas—

van Alphen oscillations.)

There is yet another question of a theoretical nature

which deserves some attention. We mentioned above that

changes in the Fermi level could be neglected if the

number of electrons were allowed to vary, and that this

could happen if a high densit3«of—states, heavy—mass hole

band overlapped a light—mass conduction band. We then

proceeded to investigate the nature of the current density,

assuming that the only electrons which contributed to it

originated from the conduction band. This procedure is

probably justified when discussing the ordinary transport

phenomena of bulk materials, such as the electrical and

thermal conductivities, thermopowers, and so on, because

the observed behavior of the electronic system will be
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dominated by those electrons whose mobilities are highest.

Whether or not an electron will contribute to a field-

emission current, however, depends only on its energy

relative to the top of the potential barrier, not on its

mobility in the solid. On this basis it would appear that

we are not justified in discussing only those electrons in

the conduction band, but that the heavy—mass holes should

be included as well. In fact it may well be that the pre—

dominant contribution to the current comes from the much

higher density—of—states hole band, in which case any

influence of the magnetic field on the emission current would

be extremely difficult to detect. Recalling the form of

the expression for the parameter d from eq. (46b), and

using eq. (125) again for simplicity, we see that

2
* a

_£Efl=§§_ exp(—g~-J)‘{exp(3) — 1 —-§J , O

h)

H

n
fl
H T103 2 r, W 271' n

(a?) [exp(d) — cos-<55]

 

 

 

- GEFE exp(—s— HEM-@- .11 :1
8Wh¢t2(y) d mo) exp(d) — (l + d)

12 .2 m A

22b2bém O2 [6389(6) ‘ COS ‘25)) _
w c F' (m*) ° (131)

This expression seems indeed to indicate that in zero

magnetic field the emission current will primarily consist

of electrons which, inside the metal, have the highest

effective masses. In bismuth, for example, where m*/mO & .57

19)
r‘,
’4

I—

for the heavy—mass nearly—filled band, and m*/mO i 10-

for the light—mass conduction band, it would appear that
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the high-mobility electron band contributes only about

1.6 per cent of the total current. This presents a most

unfortunate situation, for when a magnetic field is applied

we see that

 

2 7 V —4 F 2 m
JOSC _ 24>t (3.79 A 10 ~72)H_ o O
____..._._ _ n . 9(- t

Jsteady W202F2[exp(g) ~ (1 +-§fl (m )

-1 m

2 2.39 x 10 '1 H2——9-—-2-

(m*) , (132)

assuming an electric field strength of 2 X 107 volts/cm.

Hence, in a magnetic field of 20 kilogauss,

Josc —5
:r—————-é 5.2 X 10 ’

steady (155)

for the heavy—mass electrons. If this is actually the

case, then it is not surprising that we failed to observe

any influence of the magnetic field on field emission in

this experiment.

This, however, is not the end of our discussion, because

the experiment was also tried using n—type PbTe for the

cathode, with the same results. Since there is no band

overlap in this substance, and since m*/mO i .05, the

objections of the preceeding paragraph do not apply. The

first suggestion that the size of the effect was just too

small at the field strengths used is of course still valid,

but there is yet another problem which merits consideration.

The possibility exists that all of the cathodes contained

adsorbed gases on their surfaces. It is well known that
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adsorbed gases change the effective work function at the

surface of the emitter, essentially by the formation of a

dipole layer. The direction of the change in work function

depends upon whether or not the adsorbed substance is

electronegative or electropositive. The former causes an

increase in the effective work function and hence a decrease

in the emission current, and vice versa for the latter.

0

iIn either case, the following picture has emerged rom

field-emission studies of adsorption on cathode surfaces.20)

It is assumed that a molecule next to the surface of a

metal may be represented by a potential well containing

some bound states, a forbidden zone, and an unoccupied band

above it. If the ionization potentials are higher than

the work function of the substrate metal, the occupied

zone of the molecule will lie below the Fermi level of

the metal (figure 12a). The application of a strong electric

field will cause the energy levels of the molecule to be

tilted so that there are now unoccupied states below the

Fermi energy. These states can be filled very easily by

substrate electrons tunneling through the forbidden zone.

In such a case the electrons in these newly—filled states

then tunnel through the rest of the barrier to provide a

field emission current (figure 12b). The only requirement

is that the substrate metal be able to supply with ease the

electrons needed to fill the molecular states. The

significant aspect of such a picture is that now electrons

in the metal which are not necessarily near the Fermi
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Figure 12a Molecule near a metallic surface in zero

applied electric field.

Metal Vacuum

z

\ =5

:Ffl .Potential barrier

, ~ \ without adsorbate

 

Figure 12b Molecule near a metallic surface with an applied

electric field.
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surface may contribute significantly to the emitted current,

since the potential barrier has effectively been reduced

by a considerable amount. Unless the magnetic field can

somehow drastically alter the population of the energy

levels inside the metal, we would not expect to observe any

quantum oscillations in a field emission current of this

sort.

Perhaps we should pause here for a moment and state

a fact which may have been overlooked in all of the above.

That is, electrons which make the main contribution to

a field emission current must necessarily come from the

lowest Landau levels in the metal. This follows from the

requirement that the energy of an electron for motion

perpendicular to the barrier must be as large as possible

so that the penetration probability will be a maximum.

Noting this in connection with the above, it is easy to see

how the emitted current will not be affected to any great

extent by a magnetic field, for not until the extreme

quantum limit is reached will the population of the lowest

Landau levels be significantly altered. In fact it is

this situation which makes the estimated magnitude of

the effect so small, contaminated surfaces notwithstanding.

The populations of the lowest Landau levels will not

undergo the large and sudden (at 0 OK) changes which

occur in those of the levels near the Fermi surface when

they are finally forced above it by the magnetic field.

This is completely different from de Haas - van Alphen
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or magnetothermal oscillations. In these two cases only

electrons in the Landau levels nearest the Fermi level can

contribute, so when the magnetic field causes one such

level to depopulate, a much stronger effect should, in

principle, be noted.

We shall close this series of Speculations by making

one more. It seems to be apparent that the best chance one

has of observing quantum oscillations in a field emission

current is to use a substance which has no overlapping

bands, small effective masses, and which does not readily

undergo chemical reactions. Such a substance may possibly

be found among suitably doped n—type semiconductors, such

as, for example the PbTe used in this experiment. (The

preceeding suggestions may well be the reasons why, for

example, oscillations were observed in the tunneling current

in the germanium tunnel diode mentioned above. Properly doped

germanium fulfills the requirements quite well.) The last

requirement is that the experiment be performed in magnetic

fields in the range 50 to 100 kilogauss. Practically all

of the above objections (eg. eq. (126) and ensuing discussion)

can then be avoided. It is hoped that someday this will

be done.



 



References

R.W. Wood, Phys. Rev. 5 1 (1897)

w. Schottky, z. Physik_lfl 65 (1925)

)

)

3) R.A. Millikan and C.F. Eyring, Phys. Rev. 27 51 (1926)

4) Millikan and Lauritsen, Phys. Rev. 55 598 (1929)

) R.H. Fowler and L. Nordheim, Proc. Roy. Soc. (London)

A119 175 (1928)

6) L. Nordheim, Proc. Roy. Soc. (London) A121 626 (1928)

7) E. Merzbacher, Quantum Mechanics, Wiley and Sons, 1961,
 

pp 118

8) R.E. Burgess, H. Kroemer, and J.M. Houston, Phys. Rev.

_99 515 (1953)

9) R.H. Good Sr. and E.W. Mueller, in Handbuch der Physik,
 

Edited by S. F1ugge,Springer—Verlag, Berlin (1960) pp 186

10) R.B. Dingle, Proc. Roy. Soc. (London) 5211 500 (1952)

11) F.J. Blatt, Phys. Rev._;3; 166 (1963)

12) J.J. Lepage, Thesis, Michigan State University (1965)

13) Dyke, Trolan, Dolan and Grundhauser, JAP_25 106 (1954)

14) R.H. Good and E.W. Mueller, Ibid., pp 192

15) c. Kittel, Introduction to Solid State Physics, 2nd ed.,
 

Wiley and Sons, (1954)

16) Roth, Bernard and Straub, Phys. Rev. 145 667 (1966)
 

17) W.A. Harrison, Phys. Rev. 125 85 (1961)

18) R.E. Dingle, Proc. Roy. Soc. (London) A219 465 (1955)

19) dienier, Reyngfles, and Sybert, Phys. Rev. 132 58 (1963)

20) W.P. Dyke and w.w. Dolan, Adv. in Electronics, 8 New York,

Academic Press (1956)





 


