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ABSTRACT

FIELD EMISSION IN A MAGNETIC FIELD
by Dennis J. Flood

A theoretical calculation of the field-emission current
density in a magnetic field at low temperatures i1s made
using the effective mass approximation to the free-electron
model. The results indicate a monotonically decreasing
dependence of current density on magnetic field, on which
is superimposed a small oscillatory component periodic in
1/H. The calculation is made only for the case in which
the magnetic field is parallel to the electric field.
Insertion of suitable values for the guantities appearing
in the expression indicates that slzeable oscillations in
the current should be obtainable 1f a substance with a
small electronic effective mass 1s used for the cathode.
Experiments performed at liquid helium temperatures (4.2 °K),
with magnetic fields ranging up to 20 Kilogauss, failed
to show the expected behavior to an accuracy of £ per cent.
Instabilities in the steady dc current level prevented
the attainment of better accuracy. An attempt is made
to explain the apparent contradiction between experiment
and theory by considering the applicability of the theoretical

expression to the actual physical situation encountered.
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1. Introduction

The emission of electrons from a cold cathode into
vacuum is a relatively elementary effect which has been
understood for some time. The effect was probably observed
and noted in many experiments involving high voltages and
sharply pointed cathodes, but the first to describe it in
detail was R.W. Woodl) in 1897. Attempts to give an

2)

explanation based on classical physics were unsuccessful,
predicting not only the wrong field dependence, but also

a temperature dependence which was not observedB). Millikan
k)

and Lauritsen discovered that the measured current-

voltage characteristics could be described by

I = ae”P/F (1)
where A and B are constants and F 1s the electric field at
the surface of the cathode. Hence a plot of log I versus
1/F gave a straight line, a result which classical theory
was totally unable to predict.

The first real advance in an understanding of the
phenomenon was made in 1928 by Fowler and Nordheim,5)
who applied quantum theory to the problem. They assumed
that the electrons in the metal obeyed Fermi-Dirac statistics
and calculated the number of electrons in each range of
energy arriving at the surface potential barrier from the
inside of the metal. The barrier potential assumed by
Fowler and Nordheim was simply a potential step at the metal

surface with zero applied field, and a triangular hump in

1
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high field. They solved the Schroedinger equation to
find the fraction of electrons which penetrated the barrier.
Integrating the product of the number of incident electrons
and probabillity of penetration over all electron energies
gave them the following formula for the emitted current
density:

J = 4 m e}F2 ex (—877'1—2—[;@3/2)
" T n+o Cmho ZheF . (2)

The quantity -e is the electronic charge, n is the energy
of the Fermi level inside the metal relative to the bottom
of the conduction btand, ¢ is The thermionic work function,
and h is Planck's constant. Nordheimé) later refined the
calculation to include the image force on an escapilng
electron, which resulted in a slightly lower field strength
I'" necessary for the same current density predicted above.
FField emission 1s, then, simply a tarrier venetration
phenomenon in which electrons with energies below the Fermi
surface tunnel through the narrow potential barrier. The
purpvose of This paper is to investigate the effect of an
externally applied magnetic field on the emlssion current.
Some kind of influence 1s almost certainly to be expected
because of the drastic effect such a magnetic field has on

the energies of the conduction electrons inside the metal.



2. Theory

A. The Field Emission Current in Zero Magnetic Field

The F-N (Fowler-Nordheim) Theory assumes that the
conduction electrons in a metal form a gas of free particles
described by Fermi-Dirac statistics. Accordingly, the
possible states of a single particle in a small volume
v of the metal may be divided into groups at energiles Ei’
contailning 8y states populated by ny electrons. The

distribution formula has the familiar form

&4
n, = o (Bi-n
exp(7 )+ 1, (1)

where n 1s the Fermi energy. The number of states 84 is
simply 2v/h‘j dpxdpydpz, a consequence of the theorem that
in each volume h-j of phase space there are two states

for a free particle of spin 1/2. We then have for the
number of electrons within volume v and with momenta in the

range dpxdpvdp

z
en = 2y Py 0
n” exp(ﬁi%) -1 . (2)

The energy and momentum are related by

2 2 2
p‘ - p -+ pz o= Qm(E—V) (5)

where V 1s the potential energy of an electron of mass m in
V.

Following the procedi.re of the I'-N theory, we shall
conslider a one-dlmensional potential which 1s assumed to
have the same effect on a conduction electron as the actual

5



4
metal. There are three contributions to the resulting
potential energy of an electron of charge -e:

(1) In the absence of an applied field, the potential
energy inside the metal is equal to zero and has some
constant value +wa when the electron and metal are separated.

(2) With the origin chosen on the surface of the metal
and the positive z axis perpendicular to 1t, an applied
electric field I in the z direction gives a contribution
-elz.

(3) The image force on an electron outside the metal,
which arises because of the induced charge on the surface
of the metal, gives a contribution —e2/4z.

We thus have

0, z < 0
V(Z) = 2 L
Wa -eFz-e"/4z, z > 0O (4)

for the effective potential energy. A plot of this potential
energy for a representative case 1is shown in figure 1.

The next step is to find the equilibrium flux of
electrons incident upon the surface of the metal, and then
to find the probability That an electron will penetrate the
barrier. The emission current of electrons can then be
found by integrating the vroduct of the incident flux and
penetration probability over all electron energies. From

eq. (3) the z part of the total energy of an electron is

m
1l
&3
1
o
i
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<
—
N
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Figure 1 Effective potential energy V(z) of an electron

near a metal surface.
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The flux of electrons in the z direction with momenta
within dpZ is found by multiplying the number of electrons
per unit volume with momenta in dedpydpz by v, = pz/m and
integrating over dp, and dpy. Thus, if N(ez)dez is the

number of electrons with z part of thelr energy in dez

incident on the surface per second per unit area, we have
o0

s dp_dp_dp
Ne, ae, - pe
p = =00 p = 0O h exp( )+ l 6
x ¥ (6)
or, since inside the metal
de = pzdpz
m (7)
we get 0
~ dp_dp
N(e )de = =5 de = —~
z p) z 2 2
h /oo Zoo €-n Db, *tD

(8)

(8) can be integrated very easily by setting

]

P r coso (9a)

X

It

b

y r sineo. (9b)

The result is that

N(e ) = 4vka 1 [} + exp(ek;n):]

Z

(10)
Eq. (10) is the appropriate expression to use in the absence
of an external magnetic field.

The presence of an external magnetic field will alter
the situation considerably. Before considering its effects,

however, we shall continue with our discussion of the original
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Fowler-Nordheim theory, and calculate the probability that
an electron with energy in dez impinging upon the barrier
will penetrate it. We first note that the Schroedinger

equation 1is

2 3% (2
ne ad J(gl + V(z)v(z) =

Mgy z (11)
or

23

dz h (12)

Now inasmuch as the emitted electrons come mostly from
below the Fermi level at low temperatures, the region of
interest here, their energy is far enough from the maximum
value of V(z) to enable us to use a WKB approximation to
find the transmission coefficient. In this approximation
separate solutions to the Schroedinger equation are obtained
for the classical regions of motion to the left and right
of the barrier, and for the classically forbidden region
inside the barrier. I'igure 2 shows a potential barrier

of arbitrary shape with the appropriate regions indicated
for a particle of energy €, The time independent wave

#

functions for the three regions are
z

z
A / B /
expll kdz) - expl-1 kdz), =z < a
Gy P(t ), dz) o qepgy exe(-t ] k)
z

Vv (z) =f%%§7 exp(_v/zydz) +f7f%7 exo ( /lydz), a< z<b

a a

Z
—'ﬁ?f exp (i 4 «dz) -Km exp(-1i . kdz), =z > b
(13)

where



REGION

Figure 2

Wb o e - - - -~ =

Potential barrier, illustrating classically

forkidden region for particle wit.a energy ¢

&



9
k(z) =|:%% €z—v(%z]l/2 for e, > v(z),

1/2
y(z) ={:§% V(z) - e;] / for e < V(z).

The coefficients in (13) are related by the connection

(14a)

(14p)

formulas at the classical turning points of the motion, i.e.,

at a and b in figure 2. These are7)
a z
2 1
= cos() k(z)dz-m/4) <<—> exp(-/ 7(z)dz)
&(z) é’ iz) ‘é

(15a)

1 . /a -1 /Z ,
S0 31n(z k(z)dz-mh) 4————9%-7$T?7 exp(a y(z)dz)
(15p)
when the turning point is to the right of the classical

motion, and
b

2oy (- (2)az) <> cos({zk(zmz-vu)
(16a)
b
Ty ew0lf 720 > g sin( [ K(=)az /)
: (16Dp)

when the turning point 1s to the left of the classical motion.
The double arrow indicates the proper direction of applica-
tion of the formulas when admixtures of the solutions in

the various regions are unknown.

The transmission coefficient is defined by

D = Ntransl2 virans
- |¢inc|5 vinc : (17)

We assume no wave moving to the left for z > b so (17)
becomes simply

]2
L

[A] (18)
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where, by use of the connection formuls:,

1
A =% (20 + =5)F (19)
with
0 = exp(/by(z)dz. (20)
a
Hence
mn
D =
1,2

and for © >> 1, which corresponds to a high and broad

barrier,

D = l§ = exp(—?fby(z).z = exp(- jb[? (V(z) :}

1/2

) a .
(22)

As a check on the validlty of our approximations

we note from (4) that the maximum value of V(z) occurs at

; = 12'
o 2 |F (23)
and has the value

V__ =W_-|e’F (24)
max a
’

I
For an applied field of 5 X 10' volts/cm, or 1.67 X 10~

statvolts/cm, (24) gives

Wa - Vmax = 2.68ev ) (25)

while a typical value for Wa—q is ¢ = 4ev. Hence the height
of the barrier will always be above the Fermi level for the
electric fields normally used.

We must now evaluate the expression for the transmission

coefficlent for electrons impinging on the barrier. This
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6)

was first done by Nordheim in 1928 and later improved
upon by Burgess, Kroemer, and Houston.8) Taking the

logarithm of eq. (22), we get

-LnD —‘/[ V/ er-e2/4z - ez) dz

where zq and z, are the classical turning points of the

barrier. (In this region W, - e, >0.) Solving eq. (4)

(26)

for V(z) = €, in the region z > O will give us z; and z,.

The result is

z W - ¢ 5
2} _ a2 . z| (1 41 - e’ F 2)
z € (W, - e_)
1 a z (27)
I the change of variable
_ 2eF v
Wam€y (28)
and the parameter
:VejF
Wamey (29)

are introduced, eq. (26) becomes

Y
1vi-y W o—c S "W

-InD = -—:(—0 2 _Z. 5 - e - ) g -
\/1—3,7 ne 2 a z 20(W -e? 2ek
B l+v1—y2
m(W _-¢ ) 5 >

S -0~ 4+ 20 - y do

hel 1-V1- 2 '6_-—
(20)

Substituting

q=Vo (31)

into (30) gives






12

2\/m(w-e )? éa T

-LnD = -q + 2q9°- ¥y daq
EV W -€ 5 \
= )[ VQa - 4°)(a%- ©°) aq
(32)
where
a 1 Vl v (33a)
b \/1 - — (33Db)
so that
~a%p° = y° (3ka)
a® 4+ b° = 2 (34D)

Eq. (32) is in a standard form for an elliptic integral and

)

has been evaluated.9 The result is

Wm(W_-e¢ )5 2 .2
a Z a+ b - 2
- = Elk)- -
LnD ShoF al = (1)~ ©7K(k) (35)
where

> 2% p°  2f1y7
k™ = 2 2

a 1+v&—y (26)

and K and E are the complete elliptic integrals of the first

and second kinds:

T/ 2
dd
K(k) =j(
5>  1-ksing (372)
T/ 2
E (k) =’/’ V1-k%sin e
o . (37b)
In terms of the parameter vy, eq. (35) gives
-4Vém W a €, V/ﬁ,/
D = exp( ,heF 1-y° - 1-y9)K(k) | )

2m(wa 62)9
exp ( Zhol v(y)) (38)
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where

v(y) =2 V1 Wi-y" [E(0)-(1 -V1-5%) K(x) |- (39)

As mentioned earlier, most of the emitted electrons will
have energies near the Fermi level, so we may expand the
exponent in (38) around €, = n, and retain only the first

two terms as a sufficient approximation. Hence, with

W, - n=¢
> = =
NIt e, e?f"w- 2/omd | (eF)
nep 'y = heF heF ¢
dv (g2 )
- @/ Y —2 (€ -n)-
€ _=n
Z
(%0)
But
% .
ay = &L 7 d¢, TyTIE 9g,
() (51)
and
av(y) _ . v avly)
de W -e  dy (42)

so (40) ecomes

Em(wa—ez))
hekF

-/

6(r) = v(y) - (z/3)y 2Ll ()

We finally obtain

€ _-n
D = exp(-g + g ) (4
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with
3/2 3/2
g = 4/3\em —,ﬁ—eTv(y) - 6.83 x 10/ a"F—v(y) (462)
g = _27%%%‘0_6—7 = 9.76 x 10792 5/t (y) (46D)

when ¢ is in electron-volts and F in volts/cm.

B. Influence of a Magnetic IField

In the absence of a magnetic field the z part of the
electron's total energy is given by eq. (5), and to find
the emission current for such a case we must simply insert
the expression for ¢, into the right sides of eqguations (10)
and (45), take their product, multiply by the electronic
charge -e and velocity V. and integrate over all values of

€, It is at this point that we depart from the I-N

]

Theory, for we must now ilnvestigate what nhappens to the
electronic energy in the presence of an externally applied
magnetic field. We shall use the effective mass approxima-
tlon to The free electron thecory.

The one-electron Hamiltonian for an electron in a

magnetic field is
&S

H=5% 6+21)7 - v(a) (47)

where m¥ is the effective mass, p the electron momentum, -e
the electronic charge, and A the vector potential. For

a magnetic field in the z direction we set



._A. = {}.\H}\’ ().}.8)
and obtain in (47)
B 2
l 2 e /- TR = l e 2
H_ V(Z) = SmF |9 - ‘E(pkA—;-A’p) L .—C-,z A }
> 2.2.2
1 2 2 e . e ey 5
=T |Px TPy 2 Py -2 " P,
_ 1 [ 2 (o SH 42 2
= gm—){— “x 0 py‘ C X ' pz . (49)

Replacing classical variables by the appropriate quantum
mechanical operators we obtaln, for the time independent

Schroedinger equation

-n° 2°  2° 1, .. 2 el 2
ZF T N z) 2m*<~lh-§§ x) e V() | v o= ey
Cu Ca ( 50 )
If we set, noting that V(z) = 0 in this case,
yo= exp(ik y) exp(ii z) X(x) (512)
2 2m* §
Yz T2 Cz (51t)

n N 2232 o . 222 1
Em*(ky ik T)v mx(-n i 2nk m¥wx - m¥ W x7)|[X = €X
(52)
with
w = -eil/m¥c (52)
From (52)
2.2 o 2.2 2
S e o B Xy e - Do Bk f)|x = Ex
m* N v 2 om Yy z
(54)
Setting
. nk



1€

gives
2 .2 2. 2 2 .2 2, 2
-h~ d o h 'k m*w - x! . hk _
om* dx '—2 ’flkywx ' m*y +- ) + ’hKyU.)X' -1 Tmé*]— X = EX
(56)
or
2 2 2 .2 2, 2
-h d m*w x! h 'k !
- X =|E+—==X=EX.
X )
2m ax! 2 Z 2m ( 57 )

This is the standard equation of a simple harmonic oscil-

lator centered at

hk
o = T WD (58)

-

with elgenvalues

1

E = (nrl/2)hw, n=0,1,2,3,....... (59)
But
2, 2 2
L, Nk _ hky
£ =3 o = €0 Topx (60)
SO
hgx e
— - o) o2z,
e = ho(n+1/2) - oI (61)

]
From (€1) we obtain, with €, = hgkzg/Qm*,

- E3 T e S0 N~ /f") = -— =
€, c ne(n-1/2) € <, (62)

for the z part of the electron's energy inside the metal.

We must now find the number of states with quantum
number n and energy hketwieen € and €, -+ dez. The degeneracy
of a state with quantum numbers n and kz is determined by
the allowed values of ky. The range of tnese values can

be found by requiring that X the center-point of the

motion of the oscillator, fall within the toundaries of
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the specimen. Assuming a rectangular box of sides Lx’
L , and Lz’ with the origin of coordinates at the center,

Yy
we obtain

(-1/2)LX <x < (1/2)1;X (63)
or
m*wLy m*wl
2h < ky N (64)
which may be rewritten as
eHL eHL
- Xk « —2
2he vy  Zhc . (e8)

The number of ky values in the above range is, then,

(assuming periodic boundary conditions)

L .
o vy _ el
on uky(gw) o LXLy . (66)

The number of allowed kz values in a plane slab of thicknes
6k7 perpendicular to kz is Jjust (LZ/2W)OKZ. Hence the total
number of allowed ky and kz values for a given n, i.e. the

degeneracy of the state n, is Just

LLL .y
6n_ = 6n 5n = —ﬁ—%—ﬁ-:— ok
n vy oz Lr nic z (67)

But we may write

1/2 -
Sm¥*
K = (2m*) c 1/2

z n z (€6)

SO

1/2 ~
* _
dk, = lem*) 7= -Ll/e o

2h zZ z (€9)
Hence the number of states per unit volume in the energy

range €, to €, + dez, with a given n, 1is



18
N (e )de_ = 2 S (om#)1/2 ¢ -1/2 4
L 4 2y (70)

and the flux of electrons incident upon the barrier is

simply

-1
S (e )deZ =3 f(e

(e, )de

Z’En)van(Ez

z , (71)

where f(ez,e ) is the Fermi distribution function. The

n
factor 1/2 is inserted because for a given n and €, only
half of the electrons will have i, > 0.

The expression for the total emission current density

in this case now assumes the form

k_l/ 5
J=3 / Zo f(ez,sn)Nn(ez)sz(sz)dez
2, i €_+€
_ 2e H/ £ z n” " -1
= —;Ez y D(EZ) b (eXp(——ET___) + 1) de,
(72)
Substituting for D(ez) from eq. (45),
0
2e2H
J = =5 exp(-g-n/d) [ exp(e,/d)
h%c )
S e_+ aw(n + 1/2)-q
< z -1
%:o(eXP(‘"“"T?F_““"""___) + 1)77|de, .
(73)

We shall made use of Poisson's summation formula to evaluate

the sum over n in eq. (73). To this end we set
Ez—n
emgr) = @ (74)

and obtain

« , Z 1
o B ep®AR 12l 0 i e
y=0 0X
B exp(—=)+1
= kT

cos2mSx _ dx

©
+ 23 _1)8
S:l( 1) / B exp(ax/KkT) + 1 (75)
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The first integral in eq. (76) is simply

Y
3 =[ dx =y - ELn(l-+B exp (B ) Kl (143)
1 R T ha kT hw A
° B exp(P%)ys 1
PATT
(76)
For y >> kT/hw, however,
Doy . hwyy _ Ay
Ln [l + B exp(kT ﬂ LnB exp(kT ) T + LnB o
so
m I, = XL a1+ B kT (ex: (n_€2)+ 1)
R R B fi P\ SXPATR " (78)
The second integral has the form
®
T =_J/’f(x) cos2mSx  dx
2
o (79)
and becomes, after an integration by parts,
P 00
e L sinemsx ax -
o o (80)

The first term vanishes at both limits and we are left with
the second term only. Although the integral in eq. (81)

appears to be of the form

I- f%@-l ¢(E)dE i

it may not be evaluated by the procedures commonly employed
for such integrals because the integrand oscillates very
rapidly in the region of the fermi surface. We may,
however, make use of the fact that -Jf/dx has a sharp

maximum of width kT about the value X  such that

e(XZez) = nax”+ €, = (82)
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where n is the Fermi energy. If we redefine the origin so

that
x = X'+ § (83)
we get
f(x,e,) = exp(hﬁg 1)t (84)
Now if we set
hw
¢ =wrs (85)
eq. (81) becomes
0./
-1 . kT, of
I, =55 //f81n2WS X + P =) d
2 = Zms ( Cns) S 9 (86)

We may, without introducing a serious error, extend the

lower limit in (8€) to -o. Then
(00
 _5in2mSX ,//— 2TSKTe f
12 v Pl coSs oo 59 ae

cosevsx /// EWSKT@
- hw

(87)
But -of/¢g is an even function of@ , so we are left with
_ Tsin2mSX 2mTSKTe 1 2
o = —72rs o cos hw )(exp(e/2) + exp(—€/2)) ae
ZWSKTQ
_ +51n2msSX cos (S 5) ap
ems o0 Mcoshge,/z
2T2SKT
= g%s sin2mSX ha 5
sinh 21~ SkT
+ hw . (88)

Inserting eqgs. (78) and (88) into (73) gives
o0
n-€

_ QeEH . //r €Z _EE AN
J = nle exp(-g-n/d) A exp(77) | gp Lnlexo(—g7) + 1




ks 2
Z 2T SkT
o g sin(2ms —==) =
+ 2 (-1 =3 5 de
S=1 . h(27T SkT) 2
S e (89)
where we have used the fact that
n- €,
L=—=5 . (90)

The range of integration in eq. (¢9) snould in actual

fact be cut off at e = V(z) since for e > V(z)

max’ max’

D(ez) = 1 and we are in the thermionic region. Actually,
not much error will be introduced 1f the upper limit 1is set

equal to n, the ferml energy. To this approximation, then,

we have
2 n € €,
Jh ng ” 21( expé—z) Ln(exp( ) + 1) de
2kTe“H exp(-g- a) o z
; n-€
i ooms (-1)° f ——g sin(2ms — Z)de
S=1 ot SKTy % @« e
31nh(——?ig——

(91)

Consider the second integral first. This may be rewritten

as
T‘{ c
I _ _Z\ (a4, TS 2TSE, 2mSr .. 2mSe,
I, —’é' exp( d)(oln Sorcos S cos “g=—sin 52 )de
(92)
Set
2ms - = -
o = ° (93)

Then
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€
Tzy[1 2mSey |, 2TS . 2vSez] n
T I_ exp d)[d COS THo T Tho SR TR sino
2 = 37 (@52 *
' hw )
2 S 2TS 2TSe !
1 TSe, 2T TSE ]
exp ALd, w —EB cos 0 cose
(l/d) (27TS/hw) o
2TS (] 1., 2TSr 2TS EFSJ 1
=% e¥Plg) - gsin g - SEGeos g 52, &S
a/ VA
(9%)
Evalvuation of The first integral will be facilitated 1if we
set
!
B' = exoli) (55)
and make the change of variable
€
l 2
v = exolys) Iy =g e, (96)
Now since
. €, -€ €, \
In |1 + D exp(ET) = Ln e}xo(lT )(exp(ET) + B )
_€7 c .
= + Ln(exp(&) = B ), (97)
the first integral in (91) becomes
en/d " € €
I —_ / A ~ d//lclf_!, :‘ "]" - / o s _—z- - z -
1,7 = / dLin(y ‘B )dy - xp( d)( kT)dez L (96)
0
The second integral in (90) is simply
IT 1 \ YA d
S () e“p(a)(m 1) kT (99)

while the first becomes
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Performing an integration by parts on the remaining integral
gives

v _ = _ il AR
I,”" =4 exp(d)Ln2 dLn(exp(kT) 4 1)

de

€
4 exp(-g%)/” exD (37)

KT EZ_ | \ 3
0 exp( kTT) + 1 z (101)
and finally,
€
LV -d exp (53) / exp (37) ;
= = —— €
1 kT 5 exp(ig_]z_r]_)_) + 1 Z
kT
—_ P - 3 - .j_ -
= -dLn2 + dLn (exp(kT) S ) (102)
so that
I N n d ™
1, - cosalens(d) - 1) - fp [alexnl@)- 1) - o] (109)
Eq. (92) becomes, at last
J = —2—9—2—{ explg- D)a{ = |.692xT(exp(Z) - 1)
G Pves 73 O PAG -
© 5> KT
) 1.3 S 217 Shw
d(exn(g) - 1) - o[+ 52 (-1) 5
S=1 . 27 SkT
sn (Sg)
2
m } (_T_:)_ cos 2TS 7 _ hw sin 2TS n
T\o. o182 | €*P\3 °8 e 2ans o
()7 55 4
(1oh4)

Oscillations in the field emission current density, periodic
in 1/H, are readily apparent from eqg. (104).

The entire derivation above makes use of the assumption
that the Fermli level is independent of the magnetic field.
Such will be the case only if the number of electrons in

the conduction band is allowed to vary. This situation 1is
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often encountered in practice, however, when a light
effective-mass conduction band overlaps a high density-
of-states, heavy effective-mass hole band. Bismuth and
many other semi-metals exhibit this kind of overlapping
band structure, in which the hole band will accomodate
electrons from or contribute them to, the conduction band.
If, however, the number of electrons is fixed, then the
Fermi level will vary as the magnetic field 1s changed.
This will be the case if there is no band overlap at all,
a circumstance not often found except in monovalent metals
and suitably doped semiconductors.

If o represents the Fermi energy at T = O?K in zero

magnetic field, then for constant electron concentration

the Fermi energy 1s given bylo)
o 1o L@EkDye 1 (WKT)%W 1 (hc.)g L (TThwy 2

R 12 - 30V 1 NS 7 s n
0 0 ¢ 0

! . Engn _ T

T (ne) P e (o198 SIS - 7)

C(n )/ g=1 VO orfguT

7 st (=525 (105)

It is this expression which must be used in eq. (104) for
evaluating the emission current when the electron concen-
tration is fixed.

For metals, semi-metals, and degenerate semiconductors
of small effective mass, The temperature dependence at low
temperatures 1s not terribly great, so for that reason it
becomes convenient and instructive to examine the expression

for the current density in the limit T —> OCK. From ea. (104)
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261 d(exp(@) = 1) = 1
. 2 1y
J = h; exp g- g)d L3 s

& S 2hw/d 2ms
+ 3 (-1) exp (2) - cos =23
S=1 (g_w)z + 4rs? & he
aw 1 . 27Sq
-3 7S S Thg ). (106)
If we choose a typical value of F = 3 X l()7 V/cm for the
electric field, and consider substances in which m¥* = ZLO—em0
then
g = 1.43 (1072)
d = .133 ev (107Dp)
fo = g £ 1.1 X 10778 ev (107¢)

and we see that for reasonable values of the magnetic field,

aw/d << 1 . (108)

Hence to the lowest order in hw/d, eq. (106) becomes

& —
2e"H d(exp(d) -1) -
J = exp(-g-1)d
h2c d hw
g hw
0 gg ) 21
-2 (-1) Edg (exp(g) - cos 27
S=1 21°s g (109)

Furthermore it often happens that n << d for such materials,

so we may use n/d as an expansion parameter also, obtaining

0, 12
5 o 2e%H Biite il a6 + 36" - n
hle d Tw
o S hw 1 2mS
+ 2 (-1)° & —=—= (1 - cos ==0)
S=1 d 27r282 nw



26

I

2 S
Yrrem*nhw i n nw . g-lg 2mS
— exp(—g)d Saho + =3 2 2(1 - COS ho )

h S=1 27 S
2Tem* ne _1)S
=-—-3—-:— exp(-g) |1 + 2(B2)2® i—%lﬁ(l - cos-g%gﬁ)
h N S=1 27"s
(110)
The above expression was first derived by Blatt,ll) who

considered only the case T = OOK, so that thc rerml distri-
bution function could be seft equal to unity for € < n, and
zero otherwise.

Eq. (110) may be used as it appears above when evaluat-
ing the emission current if the Fermi energy does not change
with magnetic field. From eq. (105) however, we see that
for T = 0%k,

a
(-1 . 2T m
\(:3}23111( rn[:n - 4) 5

(111)
and this expression must be inserted in eqg. (110) whenever
the assumption of constant Fermi energy is not valid.

Using the same expansion parameters as above, we obtain

o)
2Tem* ny 1 hw\2
J ='—~§§?LQ— exp(-g) {1 +'§E(%—)
o

S
w2 o (-1)
4 o2 (1 - ¢ )
T 8=1 2rs® ho

1 (hw)5/2 ©  (-1)9  2mgn T
T 510 by — sin(=dls - 1)

which differs from eq. (110) essentially only by the presence

of an additional field-dependent term. The additional
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oscillatory term will dominate the behavior of the current
in low magnetic fields (Aw << no), but as hw approaches 7 _,
the first oscillatory term will begin to contribute signifi-
cantly. Since the two terms have a different dependence
of amplitude on magnetic field, and differ in phase by a
factor of m/4, experimental identification of the two should
be possible.

From the above results we see that a study of the
behavior of field emission in a magnetic field ought to
give us some information on the nature of the fermi surface
of an electronic system. In particular, one should be
able to obtain information similar to that gilven by de Haas-
van Alphen fechnigues on the extremal areas of the Fermi
surface. In addition to this the presence of overlapping
bands ought To be detectable through the absence or presence
of the last term in eg. (112). Furthermore, we may

simplify that equation somewhat by noting that

Zw -1 ° = - _1__
, 2.2 1z B
S=1 7°S (113)
and
S
- o _
G(x) = x° - l% = 'L—ll: cos 2TxsS, - =< x < 1
12 2.2 2 2
S=1 7S < b
(114)
so that
S n -~
i:ll_( 2TSn 1 o 1 5 1
= 1 - cos ==0) = - 5= - G(z2), - 5 <52 <3
S=1 1T£S2 Ho 12 hw z hw 2

Eq. (112) becomes
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2 -g n
_ 2rmem*n "e 1 hw2 o)
J = 3 1 —'§E(n ) GCga)
n ‘0
1 \1/2,0\3/2 0
MR e )
oT o) s (116)
where
7 5.0} _13)4
rgg) = = A5 sin(Fo - )

From this expression we see that a monotonic decrease in
the emission current, which is gquadratic in H, is also

predicted.

We have seen that the application of an external
magnetic field does indeed influence the behavior of a
field emission current from a cold cathode into vacuum,
within the single-particle, free-electron approximation.
Furthermore, numerical evaluation of the theoretical
expression, using accepted values for the quantities
appearing there, indicates that the effects mentioned above
ought to e physically observable in appropriate materials.
The next section will describe the attempts to verify
experimentally the predictions made in the preceeding

pages.



5. BExperimental

A. Apparatus

Since the interest in this experiment was in the
behavior of the total field emission current with magnetic
field, and since the experiment had to be performed at
liquid helium temperatures in order to observe any gquantum
effects, no attempt was made to construct the usual type
of field emission microscope (FEM). Such a device contains
a phosphor screen maintained at anode potential so that the
spatial distribution of the current over the cathode may
be displayed at tremendous magnification. Furthermore the
anode to cathode distance in an IFEM is typically on the
order of a centimeter or more. Hence, in order to get
the reguired field strengths at the cathode surface it
becomes necessary to use very sharp ("—10_5 cm radius)
needle-shaped emiter tips or else very high applied
voltages. To avold the problems imposed by the above
requirements, the cathode in this experiment was placed
much closer to the anode, typlcal separations being lmm
or less.

Two different experimental chambers were constructed,
one for use with a superconcucting solenoicd, cus vae otneyr
for use with a conventional laboratory iron-core electro-
magnet. In both, however, the anode was suspended from a
stainless steel tube which extended from a high voltage
feed-through in the dewar flange at the top of the apparatus,

29
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through the pumping line and into the brass chamber at

the bottom. This arrangement was chosen to avoid using

a heavily insulated high voltage lead which would have to
pass through the bath, an undesirable procedure from
several aspects. The stainless steel tube was held rigidly
inside the pumping line by several insulating spacers
placed along its length. For use with the solenoid the
field emission tip had to be mounted with its axis in

a vertical position, whereas with the electromagnet the
emitter axis had to be horizontal. This was accomplished
by constructing the two brass chambers shown in figures

3 and 4. Both arrangements were quite suitable, although
eventually use of the solenoid was terminated because of
the large amount of liguid helium required to make a single
run and also because i1t was felt that fields up to 20
kgauss would be sufficient. The entire emission chamber was
electrically insulated from the pumping line by means of

a copper-glass-copper housekeeper seal. The current lead
out of the dewar could then be fastened to a bolt on the
outside of the chamber, thereby avoiding the use of a
glass-to-metal feed-through in the bath.

The sample was mounted in a chuck made from oxygen-
free, high-conductivity (OFHC) copper to insure good
thermal contact with the helium bath. In one case the
chuck was soldered into a brass flange which could be
bolted onto the experimental chamber, and in the other case,

the chuck and flange were machined as one piece. A very
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reliable vacuum seal was obtained with both arrangements
simply by winding a piece of lead wire once around the inside
shoulder of the flange, overlapping the ends, and bolting the
flange securely into place. This eliminated the necessity
of prefabricating a lead o-ring of exact specifications, and
of machining a groove in the flange for it.

A differential electrometer amplifier with a cathode
follower output was constructed using two Raytheon CK 5886
electrometer tubes, and was used to measure the current.

12 ohms was

A selection of input resistors from lO5 to 10
available through use of a svecially constructed, teflon-
insulated rotary switch obtained from Kiethely Instruments,
Inc. The outoput of the amplifier went into one channel of

a duval ven strip-chart recorder. The combination of recorder
amplifier and electrometer allowed, in principle at least,
the possibility of measuring currents as low as 10_14
amperes. Unfortunately the RC time constant of the circuit
became prohibkitively larze when the input resistance was
greater than 1O10 ohms, S0 measurements were limited to
corrents of 107 T amoeres or larger.

The magnetic field of the solenold was swept in a linear
fashion by a motor-ariven potentiometer in a feedback loop
built into Cthe magnet power supply itself. The field of the
electromagnet was swept essentially by sending an error signal
from an intezrator circuit into the Tfeedback 1loop of that

magnet's power supply. A complete description of the latter

method for sweeping the magnetic field can ke found in reference
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12. In either case a signal directly proportional to the
field was fed into the other channel of the strip-chart
recorder so that a simultaneous display of magnetic field

and emission current verses time was possible.

B. Sample Preparation

Principle interest in the experiment centered on the use
of bismuth for the field emission cathode, since 1t was
felt that the predicted behavior of the current would be
most easily observed in this material. Other materials
tried were indium, tungsten, zinc, and lead telluride.

Two methods of preparing bismuth samples were tried.
The first, which produced very sharp tips of quite regular
geometry, involved the following procedure. A piece of
commercial 10 mil bismuth wire (resistance ratio g%?g = 70)
was secured in a temporary chuck with about 1 cm of the
wire protruding. The chuck was then fastened in a ring-
stand clamp with the wire hanging vertically downward.
Next a strip of manganin ribbon, which was heated by passing
an alternating current of approximately 2 or 3 amps through
it, was raised on a small Jjack-stand until it Just touched
the bismuth wire. A molten zone then formed at that end
of the bismuth wire and grew along its length until it
neared the chuck, which acted as a heat sink. At that
point the manganin ribbon was slowly and steadily lowered,

pulling the end of the bismuth wire with which it was 1in
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contact. This caused the wire to pull apart, leaving a
very sharp conical tip on both pileces. The upper piece in
the temporary chuck cooled almost immediately and could
then be examined under a microscope before being transferred
to the sample-holder. The whole operation took about five
minutes, and with a little care produced a suitably shaped
emltter tip at least once in every three attempts. Further-
more, it was found upon selecting a random one of them and
x-raying it, that the polycrystalline wire had formed into
a single crystal where the molten zone had passed. Indeed,
microscopic =:uiination of every tip made this way showed
no gross irregularities in the surface, which strongly
supported the belief that they were all single crystals, at
least 1in the regilon of the actual emitting area.

The other method of preparing a bismuth tip involved
starting with a single crystal ol known orientation, and
then etching 1t electrochemically in a solution of 2 parts
phosphoric acid, 2 parts sulphuric acid, and 1 part distil-
led water. This process took considerably longer, and
did not produce emitter tips whlich were as sharp or had
as regular a geometry as those produced by the first method.
Nonetheless, because there was no uncertainty about the
nature of the crystal structure of the sample, the second
method was used excluslvely in the later experimental
trials.

Indium was tried as an emitter principally because a

tip could be prepared in the same manner as bismuth, 1i.e.
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by heating and pulling it. Tungsten was tried as a matter
of course because it is the metal most commonly used as a
field emission cathode, and can be shaped into a tip very
easily by electrochemically etching it in a sodium-hydroxide
solution. Zinc was selected because in certain crystal-
lographic directions 1t exhibits small effective masses and
a large de Haas-van Alphen effect, and again can be prepared
quite easily in an electrochemical etch using NaOH. The

zinc crystal used was oriented along the (0001) direction,
which is the direction in which dHvA oscillations are
largest. FIFinally, n-type PbTe was used because it closely
approximates the assumptions made in obtaining the expression
for the field-emission current. (Effective masses are small,
there is no carrier "freeze-out' at low temperatures, and
there are no overlapping bande.) Furthermore, cathode tips
could be prepared with reasonable ease by electrochemical
etching in a solution of potassium dichromate and nitric

acid. (4 parts K Cr0, with 1 part HNOC-) .



4, Results

Before discussing the results obtained from the experi-
ments with each of the above-mentioned materials, a word or
two concerning some of the difficultiles encountered in
making the measurements 1s in order. The most troublesome
problem was that of obtaining a stati:iz Iield-emission
current for an extended veriod of time. The magnitude of
a field emission current at constant voltage depends
greatly on the surface condition of the emitter tip, and
is extremely sensitive to the presence of adsorbed gases,
or to the presence of gases in the emission chamber.
Changes in emission current by an order of magnitude or
more are not uncommon under poor vacuum conditions, and
even under what are considered in many cases good vacuum

€

conditions, (pressures < 100~ mm Hg ), large (10 - 50 per
cent) and sudden changes in the current will occur. The
only way to eliminate noise of this nature from the current
is to use extremely clean emitter tips, and ultra low

-11 o s . s
mm Hz ). In this experiment the emission

pressures ( < 10
chamber was [irst evacuvated with a conventional oil
diffusion pump to a pressure of approximately 10—‘5 mm Hg.
At that point the apparatus was pre-cooled to liquid
nitrogen temverature, after which licuild helium was trans-
ferred into the dewar. During the pre-cooling period and
transfer the valve to the pump was closed and helium gas
was admitted into the emission chamber to provide thermal
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contact between the anode and outside wall so that both
would be cooled simultaneously. Once the transfer was
complete the helium gas was pumped out of the system,
while everything else was presumed to have condensed on
the walls of the chamber.

Even though it was felt that the above procedure should
have provided the necessary vacuum for stable field emission,
the problem of obtaining clean cathode surfaces still
remained. Since bismuth has such a low melting point it
was not possible to remove the adsorbates by flashing the
€ip to a high temperature in vacuum, as is customarily
done with, for example, tungsten cathodes. The only other
alternative was to remove the contaminating ions from the
surface by field desorption techniques. If the cathode is
made positive with respect to the anode and at the same
time subjected to an intense electric i1icld, positive ions
wnich have been adsorked on the surface will Le stripped
away and attracted to the anode. Unfortunately, to achieve
significant desorption, field strengths approximately 10
times stronger than those necessary for field emission are
required. This often was not possible to achieve with the
power supply availlable for the experiment, which had an
output of + 10,000 volts. As a result of this, and the
uncertainty of the quality of the vacuum in the chamber, noise
levels could not be kept as low as was desired. Noise
levels which were within 1 per cent peak-to-peak of the

steady dc¢ current levels were sought, but typically the
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noise was on the order of 5 per cent peak-to-peak, and this
was obtained only after considerable time and patience had
been expended in "training" the emitter tip. The "training"
consisted of drawing currents of varying amounts for extended
periods of time, reversing the polarity of the applied
voltage in an effort to induce field desorption, and then
checking the current levels again. Such a process usually
took several hours during a run and oftentimes the entire
run was spent trying to obtain a stable current, with
not even a chance to subject it to a magnetic field.

For short periods of time (approx. 1 minute) a relatively
stable current could Lo o ceined, so as a result The follow-
ing orocedure for taking data evolved. I'irst an attempt
to "train" the emitter was made. If the noise could not be
reduced to desirable levels after three or four hours, then
a plot of current versus applied voltage in zero magnetic
field was made. The high voltage power supply was then
put in its standby mode, and the electromagnet turned on
and set at some value of magnetic field. Again a plot of
current versus voltage, at the same voltages used before,
was obtained - a vrocess which took only a few minutes.

The high voltage was once more turned off, the magnetic

field changed, and the process repeated. (It must be mention-
ed that at this point any kind of dependence on magnetic

field was veing sought, since it was felt that noise

levels were too high to allow oscillations to be observed.)
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Even though the oscillations were deemed difficult to
detect, it was still felt that the monotonic decrease in
current density which is quadratic in H as given by eq.
(116) above, should have been readily observable. In
fact, however, not a single run on any of the above-
mentioned metals showed any dependence of field emission
current on magnetic field whatsoever, to within an accuracy
of at least 5 per cent. Figure 6 shows the behavior of
the current drawn from a tip made from the high purity zinc
crystal already mentioned. To within the accuracy indicated,
no dependence on H can be seen. Similar results werel
obtained from cathodes made from single crystal bismuth as
well. Unfortunately it was very difficult to prevent
breakdown when using bismuth, and in every case the data
was obtained after a breakdown had occurred. (No breakdown
occurred with the zinc crystal, however.) Since a break-
down usually alters the shape of the cathode considerably,
interpretation of these results 1s somewhat in question.
It 1s possible that the btreakdown 1in each case may have
altered the crystal structure in the region near the emitting
surface to such a degree that considerable scattering of
the electrons may have washed out any dependence on magnetic
field. However, since the actual region from which electrons
are emitted is so small, the current could still have
originated from a single crystal area, even though the
bulk of the tip region consisted of several crystals of

different orientation. At any rate it is a question which
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cannot be resolved without actually viewing the field
emission pattern, and this, unfortunately, could not be
done with the apparatus used.

As suggested in the theoretical section, suitably doped
semiconductors should provide the necessary conditions
for easily observing quantum effects in the field emission
current. For this reason, some attempts were made using
an emitter etched from n-type lead telluride. The particular

18

sample used had an electron concentration of 10 carriers
per cmB. Since PbTe exhibits no band overlap, one would
expect all the terms in eq. (116) to be made manifest, but
again, to an accuracy of in this case approximately 2 per
cent, no effect whatsoever was observed in the range 0 to
20 kilogauss. (The currents drawn from the PbTe cathodes
were much more stable than those drawn from metallic cathodes,
which accounts for the somewhat lower noise levels. In
fact the usual "training" period of several hours duration
could almost be completely eliminated.) These results
were typical of all of the attempts made to observe the
phenomena, no matter what the cathode material happened
to be. In the following section we shall present some
possible causes for the apparent failure of tne experiment.
Some of the current-voltage characteristics for a few
of the various =nitters used are shown in figures &
through 11. A plot of this nature was always made at the

start of each experimental run to ensure the fact that a

field emission current was indeed being observed. (The
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F-N theory indicates that a plot of log (I/Vg) versus 1/V
ought to be a straight line.) As mentioned above, this
kind of plot was also used in some cases to intestigate
the behavior of the current in a magnetic field. When-
ever possible, however, the emission gap voltage was kept
constant and the magnetic field was varied continuously
in a linear fashion.

The F-N equation for the current density in zero
magnetic field 1is

_6.2 3/0
J = 1.5% X 10 F exp -6€.83 X lO7 o v(y)

ot (y) ¥

where y, v(y) and t(y) are defined in egs. (29), (39), and

(118)

(44) respectively. If the radius of curvature at the
emitter apex can ke determined, and a sultable approximation
to the emitter geometry made, then the magnitudes of both

J and F can be estimated. These values can be inserted in
eq. (118) and used to determine the average work function

of the cathode material as an additional check on the nature
of the current observed. Unfortunately the necessary
geometrical factors are very difficult to ascertain accurately
after electrical breakdown across the gap occurs, and such
an event almost inevitably took place sometime during each
run. In only one run, other than that with Zn, were reliable
data obtained before a breakdown occurred, and since an
estimate of emitter geometry was always made prior to each
run, we shall attempt to determine the magnitude of the

work function for that emitter. The emitter was etched
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from PbTe, and its I-V curve is shown in figure 11l. The
radius of curvature at the apex was estimated by means of
an optical microscope to be 8 X 10—4 cm. Since the most
significant contribution to the current comes from an area
at the apex within about 450 of the emitter axis,lB) we can

estimate that the current denisty corresponding to I = 7.7

X 10'10 amperes is J = €.38 X 1O-LL amps/cmg. Assuming a

hyperboloidal approximation for the cathode geometrqu) we
find that
F=—20 - 495y 10°
———i——%— .95 10 V/cm,
reng (119)
where V = 7700 volts 1s the anode potential, and s = .1 mm

1s tThe cathode-anode separation. Substituting these values

in eq. (118) and taking the logarithm of both sides yields

2
-25.% 4+ Ln 1.69 $ = -13.8 ¢)/2 v(.843/9). (120)
A graphical solution of this equation gives ¢ = 1.8 ev,
with an estimated accuracy of at best -+ 50 per cent. DMost,
if not all, of the uncertainty in the preceeding calculation
comes from not belng able to determine the geometry and
dimensions accurately. Nonetheless, there i1s some merit in
making this calculation, because it offers further evidence
that an actual field emission current had been obtained.
This fact is of some importance in the case of this
particular emitter, because nolise levels in The current were
low enough to permit sweeping the magnetic field, at a rate

of 1000 gauss/min, over nearly the full range of field
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strengths available (0 - 20 kilogauss). As we mentioned
previously, no dependence on magnetic field was found. (A
similar calculation for the zinc cathode yeilds ¢$ = 5.5 ev,
again within the same limits of accuracy. The accepted

15))

value from photoelectric measurements is 4.24 ev.






5. Conclusion

As an aid in determining possible reasons for the
fallure to observe a dependence of field emission current
on magnetic field, we shall estimate numerically the
magnitude of J when H equals 10 kilogauss. If the cathode
material is bismuth, we note the following:

N = 1.57 X 10°° ev (121a)

$ = 4.25 ev. (121b)

If we assume an electric field strength of F = 2 X lO7

volts/cm, then

-2

d = 9.76 X 10 (122a)

n/d = .1€1 (122b)

e”/d = 1.175 (122¢)
\ -2 -2

hw/d = 1.1 X 100°/9.76 X 10 © = .1127. (1224)

Since in this case the expansion parameters used in deriving

eq. (116) are not particularly small, we must use eq. (106)
instead. In order to simplify the calculation we shall
consider only the first term in the serles to estimate the
size of the effect predicted. If anything, this will
produce an over-estimate, for the second term, which is

reduced by a factor of 4, will have the opposite sign.

We have, then, neglecting also the term (hw/d) sin-g%g B
72 el op(ge ) {(alenp@) - 1) - o)
h .
haw < n 2T
- A= exp(=) - cos
2 E]
21 [ ‘ ﬁ‘”} (125)



so that
J 3.07 X 1072 2
Josc _ 2.2 O_3 - 2.%6 X 10”
steady 1.39 X 10 (124)

From this we see that magnetic field effects are only on
the order of 2 or 3 per cent of the emission current in
zero magnetic field. This estimate, 1f at all correct, 1is
itself enough to explain the apparent contradiction between
experiment and theory - nolse levels due to instabilities
in the emisslon current were simply too large to allow the
effect to be seen. It is immediately apparent that the
experiment should be performed with magnetic fields in the
range 20 to 100 kilogauss so that the field-dependent terms
will be large enough to observe. Because of a mistake 1n
a numerical estimate of the effect in the paper by Blatt,ll)
it was originally felt that such high magnetic field strengths
would not be necessary, particularly in bismuth. It now
appears that this may not be the case.

In connection with the preceeding, we should mention
that recent experimentsl6) with Sk-doped germanium tunnel
diodes have demonstrated an oscillatory dependence of the
tunneling current on magnetic field. It 1s noteworthy to
mention, moreover, that magnetic field strengths in the
range 50 to 100 kilogauss were necessary to produce easily
detectable oscillations, and in fact that at 10 kilogauss
the effect was on the order of 2 per cent! Although the

tunneling current in this case flows from a set of Landau

levels on one side of the Jjunction to a similar set on the
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other side, the kind of calculation made is essentially the
same as the one presented in the first part of this paper.
One first considers the wave equation for the electront's
motion in the Junction region to obtain a transmission
coefficient, and then computes an integral essentially of

the form of eq. (72). (Harrison,l7)

for example, has shown
that in the WKBE approximation, a general expression for
the tunneling current density, based on an independent-

particle point of view, is

@ xb
b3 /exp(—2/ kaldx)(fa— £,)dE ,

Ky Zoo X, (125)

~
[

D

J =

|

where fa and f. are the probabilities of occupation of the

b
states a and b, k_ 1s the transverse wave number, lkxl
is the magnitude of the electron's momentum perpendicular
to the btarrier, and Xp Xy is the extension of the forbidden
region. The region to the left of the bvarrier is denoted
by the subscript a, and that to the right by k. We can
recognize eq. (72) in eq. (125) immediately if we set f, =0
for the probability of occupation of the vacuum states, and
recall the form of D(ez) given by eq. (22).)

There are, in addition to the foregoing, more reasons
for the seeming contradiction between experiment and theory.
For example, the expression we obtained for the energy
levels of an electron in a magnetic field depended upon
the assumptlion that the actual physical dimensions of the

crystal were much greater than the classical orkit radius

of an electron. This assumption neglects the effects of
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those electrons whose orbit centers are close enough to
the surface so that the electron paths intersect it.

0)

Dingle1 has shown that this 1s a valid procedure only
when

eHR/c > > (Qm*r,o)l/2 (126)

where R is the least dimension in a plane perpendicular
to H. For a substance such as bismuth, eq. (126) requires
that

HR > > 5 X 10‘2

(127)
According to the Fowler-Nordheilm expression for the current
density in the absence of an external magnetic field, an

7

electric field of 2 X 10 volts/cm will produce a current

density of approximately 5 X 10—3 amps/cm2 assuming an
average work function of 4.25 ev. 1In order to produce this
field with a reasonable value of applied voltage, (say

5 X 10° volts), an emitter tip with a radius of curvature
at its apex of about 5 X 1077 cm is required. (We assume

a hyperboloidal approximation to the cathode surface so

]|
that 1)
2
F=V s
Vin =+ | (128)

where V 1s anode potential, r is the radius of curvature,
and s 1s the anode-cathode separation. With s = 1lmm,
these conditions correspond to a current on the order of

11

5 X 107 amps.) We see immediately that we must have

H > > 1000 gauss (129)
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in order to satisfy condition (127), and that for the most
part it was not successfully met in this experiment. In
fact, the orbit radius for electrons at the Fermi surface

of bismuth 1is given by

/2 cen = 4.2 X 107°/H cm, (130)

6

For a field of 10 kilogauss, r = 4 X 10 ~ cm, which is

r = (2m*no)

almost one tenth of the estimated radius of the emitting
region! Hence we must conclude that the applicability of
our calculation is somewhat 1in question for the range of
field strengths used. (Dinglelg), for example, has shown
that for systems of small size the effect of these "surface
states" (i.e. those containing electrons whose orbits
intersect the surface) is to reduce the amplitude of de Haas-
van Alphen oscillations.)

There 1s yet another question of a theoretical nature
which deserves some attention. We mentioned above that

pa

changes in the Fermi level could be neglected if the
number of electrons were allowed to vary, and that this
could happen 1f a high densiti-oi-states, heavy-mass hole
band overlapped a light-mass conduction band. We then
proceeded to investigate the nature of the current density,
assuming that the only electrons which contributed to it
originated from the conduction band. This procedure is
probably Jjustified when discussing the ordinary transport
phenomena of bulk materials, such as the electrical and

thermal conductivities, thermopowers, and so on, because

The observed behavior of the electronic system will be
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dominated by those electrons whose mobilities are highest.
Whether or not an electron will contribute to a field-
emission current, however, depends only on 1ts energy
relative to the top of the potential barrier, not on its
mobility in the solid. On this basis it would appear that
we are not justified in discussing only those electrons in
the conduction band, but that the heavy-mass holes should
be included as well. In fact it may well be that the pre-
dominant contritution to the current comes from the much
higher density-of-states hole band, in which case any
influence of the magnetic field on the emission current would
be extremely difficult to detect. Recalling the form of
the expression for the parameter d from eq. (46b), and

using eq. (123) again for simplicity, we see that

2
* -
Amnted” orp(-g- ) {exp(-c-?) - 1-3

J Z
h”

1t

(

1
rol—
D\
AR

)2 (_7:,) - CcoS 2T n
exp a cO —"ﬁw

I

__éfﬁfi__.exp(_g_ 2y@E j E
d’tm ) { exp(3) - (1 + )

87rh¢t2(y) d d
2 2 m
249t H n 2T
g 2(3;) N- [GXP('&) - cos n;]}
T c“F“ (m*) : (131)

This expression seems indeed to indicate that in zero
magnetic field the emission current will primarily consist

of electrons which, inside the metal, have the highest
effective masses. In bismuth, for example, where m*/mo = .57

-~
-
. [y

G
for the heavy-mass nearly-filled band,l) and m*/mO = 10

for the light-mass conduction band, it would appear that
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fthe high-moblility electron band contributes only about
1.6 per cent of the total current. This presents a most
unfortunate situation, for when a magnetic field 1s appliled

we see that

1/2
3 26t2(3.79 x 107 EL Dy g2 Mg
osc _ $ -5
= o . "3 [
Jsteady WECQFE[}xp(g) - (1 +-gﬂ (m*)
N m
= 2.39 x 107 ' HF —2—
(m*)= (132)

assuming an electric field strength of 2 X 1O7 volts/cm.
Hence, in a magnetic field of 20 kilogauss,
J

= & 3.2 X 10
steady (133)

-5
o)

for the heavy-mass electrons. II this is actually the
case, then it 1s not surprising that we failed to observe
any influence of the magnetic fleld on fileld emission in
this experiment.

This, however, 1is not the end of our discussion, because
the experiment was also tried using n-type PbTe for the
cathode, with The same results. Since there is no kand
overlap in this substance, and since m*/mO = .05, the
objections of the preceeding paragraph do not apply. The
first suggestion that the size of the effect was Jjust too
small at the field strengths used 1is of course still valid,
but there 1s yet another problem which merits consideration.
The possibility exists that all of the cathodes confained

adsorbed gases on thelr surfaces. It is well known that



6

1

adsorbed gases change the effective work function at the
surface of the emitter, essentially by the formation of a
dipole layer. The direction of the change in work function
depends upon whether or not the adsorbed substance is
electronegative or electropositive. The former causes an
increase in the effective work function and hence a decrease
in the emission current, and vice versa for the latter.

f

In either case, the following picture has emerged

— &

rom
. . e . 20)
field-emission studies of adsorption on cathode surfaces.
It is assumed that a molecule next To the surface of a
metal may be represented by a potentlial well containing
some bound states, a forbidden zone, and an unoccupiled band
above 1t. If the ionization potentials are higher than

J-

the work functlion of the substrate metal, the occupiled

zone of the molecule will lie below the Fermi level of

the metal (figure 12a). The application of a strong electric
field will cause the energy levels of the molecule to be
tilted so that there are now unoccupled states below the
Fermi energy. These states can be filled very easily by
substrate eleclrons Tunneling througn the forbidden zone.
In such a case the electrons in these newly-filled states
fhen tunnel through the rest of the barrier to provide a
field emission current (figure 12b). The only requirement
is that the substrate metal be able to supply with ease the
electrons needed to fi1ll the molecular states. The

significant aspect of such a picture 1s that now electrons

in the metal which are not necessarily near the Fermi
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surface may contribute significantly to the emitted current,
since the potential barrier has effectively been reduced
by a considerable amount. Unless the magnetic field can
somehow drastically alter the population of the energy
levels inside the metal, we would not expect to observe any
guantum oscillations in a field emission current of this
sort.

Perhaps we should pause here for a moment and state
a fact which may have been overlooked in all of the above.
That 1s, electrons which make the main contribution to
a field emission current must necessarily come from the
lowest Landau levels in the metal. This follows from the
requirement that the energy of an electron for motion
verpendicular to the barrier must be as large as possible
so that the penetration probability will be a maximum.
Noting this in connection with the above, 1t is easy to see
how the emitted current will not be affected to any great
extent by a magnetic field, for not until the extreme
quantum 1limit 1s reached will the population of the lowest
Landau levels be significantly altered. In fact it 1is
fhis situation which makes the estimated magnitude of
the effect so small, contaminated surfaces notwithstanding.
The populations of the lowest Landau levels will not
undergo the large and sudden (at 0 OK) changes which
occur 1in those of the levels near the Fermi surface when
they are finally forced above 1t by the magnetic field.

This 1s completely different from de Haas - van Alphen
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or magnetothermal oscillations. In these two cases only
electrons in the Landau levels nearest the Fermi level can
contribute, so when the magnetic field causes one such
level to depopulate, a much stronger effect should, in
principle, be noted.

We shall close this series of speculations by making
one more. It seems to be apparent that the best chance one
has of observing quantum oscillations in a field emission
current 1is to use a substance which has no overlapping
bands, small effective masses, and which does not readily
undergo chemical reactions. Such a substance may possibly
be found among sultably doped n-type semiconductors, such
as, for example the PbhTe used in this experiment. (The
preceeding suggestions may well be the reasons why, for
example, oscillations were observed in the tunneling current
in the germanium tunnel diode mentioned above. Properly doped
germanium fulfills the requirements quite well.) The last
requirement 1s that the experiment be performed in magnetic
fields in the range 50 to 100 kilogauss. Practically all
of the above objections (eg. eq. (12€6) and ensuing discussion)
can then e avoided. It is hoped that someday this will

be done.
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