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ABSTRACT

ERROR PROBABILITY IN UNSUPERVISED DEPENDENT

PATTERN CLASSIFICATION

BY

John James Forsyth

This thesis investigates a communications problem

within the framework of unsupervised multi-category pat-

tern recognition. Consider a digital data communications

system in which a source randomly selects symbols from an

alphabet, encodes the symbols as a string of digits (the

code being of fixed but unknown length) and transmits the

resulting digital data over a channel. A symbol synchroni-

zation problem ensues when a receiver locks on to the

signal at a time other than when the first digit of a

coded symbol arrives. When the receiver does not know

the length of the individual symbol codes being received,

and when special synchronizing pulses are not present as

a guide, then the receiver is faced with processing pat-

terns which exhibit statistical dependence. The term

"synchronization" as used here refers to the problem of

establishing the starting point of each symbol code in

the data, which in turn requires determination of the

code length.
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John James Forsyth

The synchronization problem is treated as a problem

in unsupervised multi-category pattern recognition.

Solutions to the synchronization problem are develOped

both through the Bayes decision process and through a

stochastic approximation algorithm. The convergent be-

havior of these solutions is proved. It is shown that

whether the source generating the codes is governed by

an independent or a Markov random process the Bayes

decision process for the synchronization problem converges.

Since the decision procedures use no training data, the

possible probability models for the source must be known.

A detailed study of error bounds for the Bayes

decision process is presented. One bound is obtained

through a limiting process which examines the asymptotic

probability of error of a suboptimum decision process.

Another uses information theoretic concepts. The roles

of two measures of distance between probability distri-

butions is examined; those measures are the Bhattacharyya

coefficient (Hellinger integral) and the Kolmogorov vari-

ational distance. Error bounds based directly on those

distance measures are exhibited.
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CHAPTER I

INTRODUCTION

Recent research efforts in engineering and recent

engineering practice have turned more and more toward the

use of statistical models rather than, or in addition, to

the traditional deterministic system models [A-7, D-2, F-S,

H-Z, P-2, W-l]. In particular, there exists a growing

trend toward the formulation of engineering problems in

the framework of statistical hypothesis testing, parameter

estimation, and pattern recognition methodology. These

formulations often show a willingness to make certain

assumptions about the probabilistic description of the

system. Indeed, many of the solution algorithms grow from

the application of Bayes' rule, which requires prior knowl-

edge of probability distributions [H-7, N-l]. Some statis-

ticians have long eschewed any such assumptions,* but the

Bayes strategy represents a logical step for those accus-

tomed to the availability of a complete, deterministic

system description. As a rule, the models describe

 

*Although for a scholarly treatise supporting

the Bayesian approach see Good [G-l].
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processes for which successive experiments produce sta-

tistically independent outcomes. However, in communi-

cations theory and other fields, processes can occur which

produce statistically dependent observations. One such

process is now introduced.

l.l Communications System Models
 

Fundamentally, a communications system consists of

a source cascaded with a channel and a receiver (Figure 1.1).

  

 

Receiver
 

 xi
v

ChannelvSource

         

Figure 1.1 A Communication System

The objective of the system is to have the receiver appro-

priately process signals, which are emitted from the source,

and which are subject to some modification by the channel.

Radar systems provide the first historical example of the

successful application of probabilistic models and of the

Neyman-Pearson hypothesis testing theory [D—2, H—2, M-8,

W—l] to communication systems. In the usual model of the

radar application, the channel distorts the signal by add—

ing noise to it. The receiver must determine whether a

signal is present or absent. From the probabilistic

descriptions of the source and channel, one can determine

the parameters that define a threshold detector which the

receiver can use on the output of a correlator in order to

minimize the false alarm probability for a given false

dismissal probability. The source and the channel can
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both be modeled probabilistically, and the models can con-

tain either independent or dependent random variables [M-5,

M-7, P-l, S-3]. While the signal detection problem illus-

trates the use of probabilistic models, a modified system

is more directly related to the problems of this thesis.

The fields of communication theory, pattern recog-

nition, and statistical hypotheses testing intertwine when

considering a communications system in which one of several

sources may transmit signals (Figure 1.2). Each source has

its own process by which it repeatedly selects symbols

 

Source 1 Encoder

   
 

 
  

Source i Encoder ___« Channel Receiver 

       
 

  

 

Source r Encoder

    

Figure 1.2 Multisource Communication System

from an alphabet, encodes the symbol into several digits,

and transmits the resulting digits in a continuing stream.

The receiver must know which source is active and the

starting point of each symbol code in order to apply an

effective decoding algorithm. The problem motivating the

study undertaken in this thesis is to determine which
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source is active and the symbol code starting point. The

receiver will be said to have achieved symbol synchroni-

zation when it has identified the source and determined the

starting point of each symbol code which it receives.

1.2 Symbol Code Synchronization

Digital data transmitted over a communication

channel often contains a symbol synchronization pulse which

a correlator can process to determine the starting point of

the symbol code [M-2, W-l]. A symbol synchronization

problem arises when such a pulse is either not provided

because of bandwidth or other design considerations, lost

because of channel degradation, or simply unknown at the

receiving end. Hancock and Stewart [H-l] considered this

type of problem by assuming that the number of bits in

each symbol code was known and fixed from symbol to symbol.

They further assumed that successive symbols were statis-

tically independent. By modeling the symbol synchroni—

zation problem as a hypothesis testing problem, Hancock

and Stewart established a Bayesian decision procedure and

proved that it converges in the sense of Spragins'

theorem [S—6].

One should compare this type of synchronization

with others receiving attention in current research.

Recent works by McBride and Sage [M-3, M-4] and by Farrell

and Murtha [F-l] examine the problem of extracting bit
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synchronization information from the message data. Their

purpose is to determine the apprOpriate time interval over

which a correlator should Operate for signal detection.

0n the other hand, Harnett [H-3] takes the approach that

synchronization error effectively inserts or deletes a

symbol. However, except for the randomly (and infre-

quently) inserted and deleted symbols, Harnett assumes

that accurate synchronization, or registration, is avail-

able for the rest of the symbol stream, and he proceeds

to develop decoding theorems for code strings consisting

of several symbols. These two views are distinct from

the type of synchronization studied in this thesis.

This thesis approaches the symbol synchronization

problem by generalizing the point of view of Hancock and

Stewart. A receiver obtains data from one of a set of

sources. The source model assumes an alphabet of symbols,

and successive random experiments select symbols from

that alphabet for transmission. Each symbol is encoded

into a certain number of digits, and the number of digits

used is called the symbol code length. Each source trans-

mits statistically independent symbols although this

independence constraint is not necessary. Each source

uses a fixed symbol code length for all of its symbols,

but different sources do not necessarily use the same

code length.
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Example

Suppose there are two sources, one using a

four binary digit (binit) code length and the other

using three binits for each code word. If the

receiver observes six binits, say

1 0 l l l 0

from the data stream, there are several possible

ways these binits could be partitioned for decoding.

If the four binit source is transmitting, then

any of the partitions

 

  

l 0 l l l 0 .

. . . l 0 l l l 0 . . .

. . l O 1 l l 0
 

. l 0 l l 0 .
 

might be appropriate. If the three binit source is

transmitting, then there are three possible partitions.

l O l l l 0

O O l 0 1 l 1 0 O

 

. l O l l l O . .
 

The receiver does not know which source it is

observing or whether the first bit it received is the

first bit of a symbol code. However, it is assumed that

the receiver has achieved bit synchronization, and further

that the receiver knows something about the probability
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distributions governing the sources--either the distri-

butions themselves or the parametric form of their density

functions. Under these assumptions, this symbol synchroni-

zation problem can be modeled as a pattern recognition

problem for which the observed random variables exhibit

first order dependence, or the Markov prOperty (for the

precise specification, see page 24). Consequently, one

must consider decision-making processes using dependent

random variables.

1.3 Pattern Recognition Methodology

There is an ample and rapidly growing body of liter-

ature about decision making based on independent random vari—

ables [D-3, D-4, L-l, P-l]. Unfortunately, the same cannot

be said for decision making based on dependent random vari-

ables [H—6]. Quite often, the algorithms for independent

random variables derive from some property that does not

extend to dependent random variables. Two salient

examples are the product rule for defining probabilities

of joint independent events and the rule for the expec-

tation of the product of uncorrelated random variables.

The convenient factoring which they provide in the inde-

pendent case are denied to one who deals with dependent

random variables.

The most powerful general results in the statistical

literature which are applicable to dependent random vari-

ables are the Central Limit Theorem [F-4, H-8], and the

weak and strong laws of large numbers [F-2]. These tools
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provide the basis for describing the asymptotic behavior

of decision processes. Signori [S-3] used them to show

the convergence of optimum (Bayesian) decision processes

for Partially Observable Markov Systems. Hancock and

Stewart also used them to show the existence of a strongly

consistent sequence of estimators for the symbol synchroni-

zation problem. In both works, the technique was to

exhibit strongly consistent estimators in proving that the

Bayes posterior distributions asymptotically assign all

the probability mass to the pattern class which corres-

ponds to the correct decision [8-5, 8-6]. One can esti-

mate a parameter value by computing the posterior distri-

bution of the parameter and taking the mean argument of

the mode as the estimate. Spragins showed that if a

nonzero prior probability is assigned to the true value

of the parameter, if the posterior distributions are com—

puted by the Bayes rule and if there exists a strongly

consistent sequence of estimators for the parameter, then

the posterior distribution asymptotically assigns all of

the probability mass to the true value of the parameter.

Consequently, when the posterior distributions so calcu-

lated are premised on a sufficiently large number of

observations, the parameter estimate provided by the mean

argument of the mode should be reliable. This raises

questions of rate of convergence, probability of error,

and storage requirements which are examined in this thesis.
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Much of what follows concerns the Bayes decision

process, which will be briefly summarized at this point.

Given a sequence of observations, X1, X2, ..., of a random

variable governed by one of m probability distributions,

i.e., pattern classes, decide which distribution is active.

The Bayes decision process requires a prior distribution

and a parameter, say 0, which indicates the active class,

0 = {t1, ..., tm}. The Bayes decision process further

requires calculating the sample conditional posterior

distribution of O by the Bayes rule:*

le-l_ k-l
P(o — tilx ) Pi(Xk )

 

_ k _
P(o — tilx ) —

_ k-l k-l
ZP(O-—tiIX ) Pi(XkIX )

G

where Xk = X X X and P (X IXk—l) is the i-th
l' 2' "" k i k

mass function of Xk' The decision function, which maps

the observation space to the decision space, is

dB(Xk) = ti if i is the smallest integer for which

k k . .
P(@ = tiIX ) 2 P(o = thX ), all 3 ¢ 1.

Here, dB(Xk) = ti means to decide that element ti of O

is the index of the pattern class being observed.

 

*For notational convenience, terms which have been

defined to denote random variables will also denote the

values of the random variables.
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10

Use of the Bayes decision process is motivated by

its well-known prOperties which include being the minimum

risk strategy and being the strategy which leads to

minimum probability of error. A standard derivation

generates the Bayes decision function as the solution

to an extremum problem, in which the extremum sought is

the minimum of the expectation of a risk function.

Upper bounds on the probability of error for the

Bayes decision process have been established for inde-

pendent, continuous random variables by a number of in-

vestigators [C-lO, F—3, H-S, K-2, L—2, L—3, L-4, R—3,

R-4]. Chu and Chueh established bounds by defining a

suboptimum decision rule called the majority decision

rule. The Central Limit Theorem implied that the sub-

optimum procedure converged and established the asymptotic

behavior of the probability of error for the Bayes decision

rule, and the majority decision rule, as a function of

the number of observations.

Several closely related approaches to the problem

of bounding the probability of error rely on some measure

of "distance" between the distributions of the pattern

classes.* The underlying decision procedure uses the

likelihood ratio. The goal (which in general has not

yet been reached) is to find a monotonic relation between

the distance_between the distributions of the pattern

 

*

The term distance appears in quotes here because

the measures do not always obey the triangle inequality

required of a metric [K-l, K-2, K-S].
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11

classes and the probability of error. One measure, the

divergence, is defined as follows in the two-class case

with the class distributions fl(x) and f2(x), respectively.

fl(x) fl(X)

J=Elan'E21nf-2—m

where

f1(X) fl(x) _

Ei 1n W = ln f-E—(X—Y fi(X) dX, 1 = 1,2.

Kailath, in his well-documented paper on these techniques

[K-2], points out that if one can choose the distributions

of one's signal sets to increase the divergence, then there

exists a set of prior probabilities under which the distri—

butions with the larger divergence provide a lower proba-

bility of error than would distributions with a smaller

divergence. However, this falls short of providing an

effective computational technique for selecting signal

distributions even if that option were available.

The Bhattacharyya coefficient, denoted p, is defined

in the two-class case as

 

p = f/fl(x)f2(x) dx.

Several investigators [K-2, L—2, L—3, L—4] have

obtained results using the Bhattacharyya coefficient which

are more encouraging than the results stemming from the
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divergence approach. Kailath obtains both upper and lower

bounds on the probability of error which are functions of

the Bhattacharyya coefficient. This measure, like the di-

vergence, indicates the potential effectiveness of the

underlying probability distributions for maximum likeli-

hood decision making. If one tries to apply either the

divergence or the Bhattacharyya coefficient to a sequence

of observations in a multihypothesis situation, then in

spite of the simple form of the bounds, one still has the

usual situation that computing the error bounds can be more

formidable than computing the decision function.

The late Alfréd Rényi proposed a highly interesting

method for using information theoretic measures to show

the convergence of Bayes decision processes [R-3, R-4,

R-S]. Rényi saw the observations as providing information

concerning the classification parameter. He studied the

equivocation (average entropy) of the observations and

found that the equivocation approaches zero as an exponen-

tial function of the number of observations. Hellman and

Raviv [H-5] related Rényi's results to the probability of

error. This approach provides an absolute upper bound on

the probability of error of the Bayes decision process

for any number of observations. In contrast, the tech-

nique of Chu and Chueh, mentioned earlier, describes only

the asymptotic behavior of the probability of error. This

thesis shows the applicability of this information theo-

retic point of view to dependent random variables.
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Another view of pattern recognition considers the

observations as originating from a process which is

described by a mixture [T-l, T-2, Y-2] of the distri-

butions of individual component processes. The prior

distribution of the classes serves as an unknown mixing

distribution. Some of the approaches to estimating mix-

ing distributions [C-4, D-l, R-7, Y-l, Y-3] have resulted

in procedures which require either a steadily growing

estimator space or an infinite set of finite distributions.

However, Robbins [R-6] has shown how to calculate a

sequence of strongly consistent estimators for the mixing

distribution when the observations are statistically

independent. His procedure can be shown to be equivalent

to a stochastic approximation algorithm. Chien and Fu

[C-2] related Bayesian learning to stochastic approxi-

mation and gave bounds on the variance of such estimators

as a function of the number of observations. The work

presented here applies these ideas in concert to dependent

random variables.

C. K. Chow [C-6, C-7, C-8] has investigated inter-

dependence between pattern elements (features) that is a

variation on the idea of the Markov prOperty. Chow

hypothesized that the features might be ordered such that

elements having interdependence would not necessarily be

adjacent. This suggestion grew from character recognition

work where the order in which features were measured did

not necessarily reflect the history of their generation.
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He conceived a tree structure imposed on the features to

describe the dependencies, and devised techniques for

establishing the most effective tree. One interesting

result showed that if one limits the form for approxi-

mating a probability distribution to products of low order

dependent distributions; and if the low order distributions

are chosen to be those for which the components exhibited

a maximum mutual information; then the resulting approxi-

mation has minimum mutual information with the distri-

bution being approximated [C-8].

There is no attempt to extend Chow's work in this

thesis, since Chow worked in a supervised learning mode

(which uses classified training data to evaluate parameters

of the decision function), and this thesis is concerned

with unsupervised techniques.

Many pattern recognition researchers have available

independent, identically distributed (i.i.d.) training

samples with which they can use supervised learning tech—

niques. This avoids the high cost of optimum unsupervised

processing, and no underlying probability distribution on

the sample space need be specified. The training data are

used either to construct approximations to the probability

distributions [A-2, B-l, K-4, M-6, P-4, Y-4] or to calcu-

late weighting parameters for discriminant functions

[C-ll, C-12, C-13, C-l4, D-S, F-S, I—l, N-2, 8—1, 8—2,

8-4]. Various supervised learning techniques are often

compared by tuning them on the same set of training data
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and then evaluating their performance on another set of

test data. Other researchers [K-4, P-4] have proved that

the decision functions produced by a particular scheme

would agree with the decision function which would optimize

some criterion function if the number of training samples

were unlimited. This thesis has not pursued supervised

techniques primarily because the motivating problem, that

of symbol synchronization, seemed more plausible in an

unsupervised operation. Further, the symbol synchroni—

zation problem very definitely produces statistically

dependent data, and the theoretically pleasing results

in the works cited collapse when the i.i.d. assumption is

removed. Many of the strictly empirical techniques could

be applied equally well to i.i.d. or non-i.i.d. data.

1.4 Contributions of the Thesis

This thesis identifies the symbol synchronization

problem with unknown symbol code length as a problem in

unsupervised, multicategory pattern recognition with dis-

crete,dependent random variables. A sequence of decisions

based on a Bayes strategy is shown to converge and allow

one to simultaneously determine the synchronization and

learn the parameters in the source distribution. Even

though the process at the source which selects successive

symbols for encoding selects symbols independently, the

data-gathering model at the receiver produces dependent

patterns. It is pointed out that if the symbol selection
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process at the source were Markov, then the synchronization

and source parameters could still be learned by the decision

process at the receiver. The binary symmetric channel pro-

vides a specific example of parameter learning which is

studied. The convergence properties of such decision pro-

cedures are thoroughly examined for dependent random

variables.

A subOptimum decision procedure, the majority

decision procedure, is used to derive expressions for the

asymptotic behavior of the probability of error for the

optimum procedure; such expressions are derived for both

continuous and discrete dependent random variables. An

information theoretic argument, applied to the dependent

random variables, provides an upper bound on the proba-

bility of error of the optimum procedure as a function of

the number of observations. This thesis also extends to

dependent random variables some techniques for determining

error bounds which use measures of the distance between

probability distributions, specifically, the Bhattacharyya

coefficient, and the Kolmogorov variational distance, and

presents the role of these quantities in the more elaborate

error bound techniques, those using equivocation and the

majority decision function. Another procedure is based on

stochastic approximation of a mixing distribution, and the

algorithm's convergence rate is discussed. Finally,
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computer simulations of selected techniques demonstrate

the feasibility of the type of processing which has been

analyzed.

1.5 Organization of the Thesis

Chapter II places the symbol synchronization problem

in the framework of a pattern recognition problem and

establishes convergent decision processes. Chapter III

concentrates on various methods of computing error bounds

for the Bayes decision process as functions of the number

of observations. Chapter IV presents several examples

which illustrate the theory, while Chapter V summarizes

the thesis and suggests alternate approaches to unsuper-

vised decision making.
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CHAPTER II

THE SYMBOL SYNCHRONIZATION PROBLEM

Detailed explanations of the symbol synchronization

problem, the decision procedure, and the convergence of

the decision procedure are presented in this chapter. It

will be shown that the processing technique must deal with

dependent random variables. The exact effect of this

dependence on the decision process is described. While

in the basic problem description the only unknown param—

eters are the source active and synchronization instant,

it is shown that other unknown parameters, such as could

arise from either a noisy channel or a less complete

specification of the source, can be accommodated within

the framework of the class of decision procedures

described.

2.1 The Data Generation Model

The information to be received can be generated by

one of several sources, and each source encodes the infor-

mation in binary form. The assumption of binary data does

not restrict the generality of the results obtained. Many

18



data

nal

and ‘

data

a la]



19

data transmission systems--such as remote computer termi-

nal facilities, equipment monitors in earth satellites,

and various character recognition schemes--use binary

data, so the binary data model is directly applicable to

a large class of existing systems.

Let L denote the number of sources. All sources

transmit at the same bit rate, and all sources use the

same signal to represent a binary digit. A particular

source uses the same symbol code length, or number of

binary digits per coded symbol, for all symbols in its

alphabet. Throughout this thesis, the term symbol refers

to an element of a source alphabet, and the term symbol

code refers to the encoded version of a symbol. Two or

more different sources might use the same symbol code

length; however, it is also possible that different

sources use different symbol code lengths.

By letting the letter 2 stand for the index of the

source, £e{l,2,...,L}, one can then have m stand
R

for the symbol code length used by source 2. Every mk

time units (the time unit is the reciprocal of the trans-

mission bit rate) source 2 randomly selects a symbol from

its alphabet, encodes the symbol using m binary digits,
£

and transmits the m binary digits. At some time, not
2

necessarily as the source begins transmitting, a receiver

locks on to one of the sources and receives from that

source for the rest of the time. The receiver does not
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know which source is transmitting. Two immediate tasks

face the receiver. The first is to determine which source

is being observed, which in turn specifies the symbol code

length. It is assumed that the symbol code length of

each source is known to the receiver. As a second task

the receiver must determine the "synchronization instants,"

that is, the binary digit which is the first digit of

each symbol code. Note that the first binary digit re-

ceived is not necessarily the first digit of a symbol code.

Methods for solving these two tasks will be developed.

The receiver observes patterns which it obtains by

separating the input stream into successive sets of n

binary digits. The input stream then could be recon-

structed as a concatenated version of the patterns; no

digits are lost in extracting the patterns from the input

stream. The sequence of patterns is represented by

X1,X2,... and each Xi (i = 1,2,...) has n binary components

where n is at least as large as the largest symbol code

length, i.e., 1‘: m2 : n. The notation Xk denotes the

first k patterns; Xk = (X1,X2,...,Xk). The notation Tk

stands for the synchronization instant in the k-th pat-

tern, Xk’ and is defined as follows:

a. If exactly one symbol code has its beginning

binary digit in X then T is the position of
k' k

that binary digit in Xk.
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b. If more than one symbol code has its beginning

binary digit in Xk (which can happen whem mi < n),

then Tk is the position in Xk of the beginning

digit of the first symbol code which begins in

Xk.

This definition of Tk comes from the following idea: if

there are exactly i binary digits (1 = 0,1,...,m£-1) in Xk

which belong to a symbol code which began in Xk-l’ then

Tk = i+l, and Tk

left over from a symbol started in Xk_1) starts in Xk'

tells where the first new symbol code (not

Figure 2.1 shows examples of sequences of values for

T Values of m = 2 and n = 3 are assumed, and the two

k' 1

possible values for T1 produce the sequences of values for

T ,T as shown. Effectively then, Figure 2.1 illustrates

  

     

    

     

2 3'...

. . . o o 1 o 1 o o o 1 o 1 1 . . . (a)
* * * *

X1 X2 X3 X4

Tl=l T2=2 T3=1 T4=2

. . . +_g o 1 o 1 g_y_g o 1 o 1 1 . . . (b)
* * * *

x1 x2 x3 x4

Tl=2 T2=l T3=2 T4=l

Figure 2.1 Genesis of Pattern Dependence

tWKD ways in which the same sequence of patterns, Xk' could

Eriseefrom a source which uses two binary digits for a

SYHflmol code. Pairs of underlined digits represent symbol
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codes. The values of T are shown. The "*" under a digit
k

shows that the digit is the one which determines the value

of Tk'

The value of Tk cannot exceed the symbol code length

of the source. Since n might exceed mg, T is not neces-
k

sarily equal to Tk+l° However, given m n, and T the
R' k-l'

number of digits which carry over to X from a symbol code
k

started in xk-l is mi minus the remainder of

n - (Tk-l - 1)L/h£ so that

Tk = mx — [n - Tk-l + I] + l 2.1.l

mod m
2

The distinguishing feature of this chapter is the

assumption that once the receiver has selected a stream to

observe, the receiver stays with that one stream. Sections

2.2 through 2.4 develop an Optimum receiver and discuss its

convergence for the case in which the symbol code length

and synchronization instants are the only unknowns; the

probability model for the sources will be completely known

and the channel between the source and receiver will be

noiseless. Sections 2.5 and 2.6 allow unknown parameters

in the source distributions and include a noisy channel.

2.2 Estimating the Symbol Code Length

and Synchronization Instant

 

Each source performs a random experiment to select

a symbol to be encoded. The probability of any source
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selecting a given symbol is assumed known, fixed and

independent of previously selected symbols. The stream

of binary digits (binits) so produced represents obser-

vations on a discrete—parameter, discrete-time stochastic

process. The values of the sample conditional probability

mass function, for a noiseless channel

P(XI9.,T 5L=l,2,...,L;T =1,...,£
k” k

is known for all 2n mass points and fixed. In the expres-

sion above, X--which has represented a random variable--is

used to represent the value of the random variable as well.

This practice will be continued, and the context will indi-

cate whether the random variable or the value of the

random variable is intended.

A symbol code might have its initial binits in Xk__1

and its final binits at the start of Xk' which causes Tk

to be greater than one. Yet no single symbol code could

overlap more than two patterns, because the length of a

pattern is as great as the longest code length. That

being so, the value of X could depend on the value of
k

Xk_1 but not on Xj for j < (k-l); recall that successive

symbols are independent. Furthermore, since stationary

probability models for all sources are known, the con-

ditional probability of Xk given the value of xk-l can

be specified. In short, the sequence of random variables
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X1,X2,... is a first-order Markov chain with stationary

transition probabilities. Thus, P(Xk|£,Tk,Xk-1) =

P(XkI£,Tk,Xk_l).

The procedure for estimating the active source, 2,

and the synchronization instant, T is based on formingk’

posterior estimates of the probability mass function for

the active source given the first k patterns observed--

denoted P(£|Xk); R = l,...,L--and of the probability mass

function for the synchronization instant given the first

k patterns observed and the active source--denoted

P(Tk|£,xk); l = l,...,L; T = l,...,l. Expanding these
k

quantities by the Bayes rule gives the following recursive

expressions.

 

 

 

 

k P(xk|2,xkl)PULIXk 1)

P(£IX ) = L

z P(XkI£,Xklk)PULIX1)

2:1

2.2.1

1£>(xk|r,xk'l">130lek 1)
= k— l) 9, = 1'2'ooopL

P(XkIX

k P(xk|Tk,2,x l)P(Tk|9.,xk'l)

P(Tk|£,X ) =

2:PM IT ,2.x"‘1)1=<'r Isaack1)
k k k

T =1
k

k 1 k 1 2.2.2

P(X IT ,£,x ' )P(T |2,x )
k k k _

= k-l 2 — l,2,...,L

P(xk|2,x )
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The denominator of 2.2.2 shows how to compute the first

factor in the numerator of 2.2.1. All that is left is to

Specify initial values for

PO(2) P(2|X0) and

_ O

PO(Tkl2) — P(Tk|2,X )

because P(X|Tk,2) is assumed fixed and known.

With the procedure for computing the posterior

probabilities specified in 2.2.1 and 2.2.2 one can con-

sider ways of estimating the value of 2 and T One esti-k.

mator, called the Bayes estimator, uses the mean of the

posterior distribution. The Bayes estimators of 2 based

on Xk is denoted by 2 (the estimator for the source
kB

index after k observations) and that for T, by T (the
kB

estimator for the synchronization instant after k obser—

vations). These estimators are defined by:

A L k

2kB = z 2p(£|x )

2:1

and

m

T = z z“ T P(T I2,Xk)P(2,Xk)
kB _ k k

2 Tk-l

However, these estimators tend to give fractional values

for quantities defined as integers, so some rounding

algorithm would have to be specified.
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Another, perhaps more intuitively satisfying,

estimator is the maximum likelihood estimator. The maxi-

mum likelihood estimators of 2 and Tk based on Xk are

denoted by 2 and T and are defined by:
kM kM’

EkM = 2os.t. P(2O|Xk) = max P(2|Xk)

and

TkM = Toks°t' P(Tok|2kM,Xk) = max P(Tkl2kM,Xk).

Tk

2.3 Convergence of the Posterior

Probability Mass Functions

 

 

The receiver is connected to a single source, 20,

so all symbol codes have the same symbol code length, mg .

The receiver stays connected to the source, missing none0

of the binary digits produced after the connection is made.

Consequently, the sequence of true synchronization in-

stants, {T }00 will satisfy 2.1.1 with T0 substituted

0k k=1 k

for T . It is essential to show that the posterior
k

probability mass functions computed according to 2.2.1

and 2.2.2 converge in the sense that as k+w they have all

of their mass at 20 and Tok, respectively. In order for

that to happen, a theorem of Spragins requires that the

following conditions be met:

(1) the posterior probabilities must be computed

by the Bayes rule,



27

(2) the true value of 20 and TO must have non-zero

1

prior probabilities, and

(3) there must exist sequences of functions of the

observations, {fk(Xk)} and {gk(Xk)}. such that

k k k k
fk(X )-—'*2O w.p.l. and gk(X )-—-->T0k w.p.l.

where w.p.l means "with probability one."

Equations 2.2.1 and 2.2.2 show that condition 1 is

met, while proper choice of prior probabilities

that condition 2 is met. The following theorem

existence of the strongly consistent estimators

in condition 3.

assures

shows the

required

Theorem 2.3.1
 

If (a) the sequence of patterns represent obser-

vations on a regular Markov chain;

(b) only one synchronization, denoted by 20, TO

k

exists during the transmission of all

Xk, k: 1,2,...;

(c) members of the family {P(Xk|2,Tk); 2 = l,...,L;

Tk = l,...,mfi} are distinct;

(d) P(Xkl2,Tk) is the same for all k = 1,2,...

then there exist sequences of minimum dis-

tance estimators 2 and T for 2 and T
m m k

which converge to 20 and T0 with probability

k

one.*

 

*Theestimators 2m and Tm imply a sequence of esti-

mators 2m,T1m,T2m,...,Tmm,..., for which ij is not
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Proof: Define the empirical discrete probability

mass function for X, §h(x), as follows:

F(x)=-1- 11fx=x
m m

IX(Xk) a.e. where Ix(Xk) k

"
>
1
8

k 1

IX(Xk) 0 1f Xk # X.

This is the proportion of the first m observations

which equal X.

Define the estimators 2m and Tm by

inf supIPm (X) - P(X|2, Tk)I = supIPm (X) - P(X|2m,Tm)l

2 'Tk X

w.p.l

The infimum on the left allows us to write

suple(X) — P(Xl2m,Tm) Issupl'fimm

X X

- P(XI2O,TO )|—l“—+o w.p.l. 2.3.1

m

Convergence to zero with probability one is by the

Glivenko-Cantelli theorem (using Signori's extension

to regular Markov chains). Now the triangle in-

equality is used to write

 

necessarily the estimator T based on the j--th pattern,

for j#m. Correct estimation of the synchronization means

that the value of 2m is 20 and Tkm gives the value TO .

k
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sup|P(Xl2m,Tm) - P(XI2O,TO )l = suplP(X|2m,Tm)

X m X

- Pm(X) + Pm(X) — P(XI2O,TOm)] s s;plP(Xl2m,Tm)

- §m(X)| + sup|5m(X) - P(X|2O,TO )| 2.3.2

X m

Equation 2.3.1 says that both quantities on the right

in 2.3.2 go to zero with probability one so that

A A m

consequently P(Xl2m,Tm)-——+P(XI2O,TO ) w.p.l. Hy-

m

pothesis (c) then provides that

2m-+ 2O w.p.l and T —+ T w.p.l.

Q.E.D.

This result in turn implies that, because of

Spragins' theorem, either of the decision procedures of

section 2.2 will give correct estimates of 20 and T0k if

the process continues long enough. With the estimators

discussed so far, the rate of convergence and probability

of error are difficult to specify. Section 2.4 provides

an algorithm which allows statements about the rate of

convergence.

2.4 A Stochasticquproximation Approach

Synchronization is completely specified by the combi-

nation of source index and synchronization instant, (2 Tk).

I
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The probability of a given pattern can be represented by

the mixture

2

1"
b
4
;

P(X) = P(X|2,Tk)P(2,Tk) 2.4.

I
l
b
a
b

2 l T

For a convenient change of notation, observe that since

L

6 n and l s T s m there arexn = 2 m or at most,
2 k 2 2:1 2

nL distinct pairs (2,Tk) which can specify the synchroni-

l s m

zation. The notational change comes through letting an

unknown parameter A€{l,2,...,m} index the possible source-

synchronization pairs expressed relative to the first pat-

tern. A sequence of functions Yk(2,Tk) is defined such

that Yk(2,Tk) is a l-l map between the values of A and

the values of the ordered pair (2,Tk). Further, yk(2,Tk)

is defined such that given the value of the pair (2,Tl),

the sequence of values of (2,T2),(2,T3),... generated

according to 2.1.1--with 2 held constant--maps under

Yk(2,Tk) to the same value A for k = 1,2,... .

The parameter A has an unknown probability vector

G = {gl,...,gm}, gi ) 0, 2m gi = 1 such that P(A=i) = gi.

i=1

Assuming that a single source with one synchronization,

(2O,To ), produces all of the observation vectors implies

k

that one value of A is in effect for all observations.

So the system being observed has a probability vector

G = {gl,...,gm} such that for 1 = 10, gi0 = P(A = 10) = l

and for all other 1, 9i = 0. The entry of G which has
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the value 1 is unknown. Once i0 is known, gi = l and

0

all other gi, iiio, must be zero.

The parameters and notation above leads to rewriting

2.4.1 as

L rn’Q

P(Xk) = E E P(Xkl2 = a,Tk = b)P(2 = a,Tk = b)

a—l b—l

m

- .E P(Xlek(a.b) = 1)P(Yk(a.b) = 1)

1—1

m

1—l

where 2 = a, Tk = b maps under Yk to A = i,

Pi(Xk) = P(Xklyk = 1), and

Estimating the synchronization now implies finding

i0, the true value of A, for which P(A = i0) = l. The

approach will be to estimate the probability vector G. A

decision on the value of i0 can then be made from the

estimates of G.

If one can obtain a sequence of estimates gi,n for

gi such that gi,n converges to gi, then one can use a

maximum likelihood decision rule for deciding on the

synchronization. The following theorem shows the
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existence of a set of strongly consistent estimators for

9i (i = l,...,m) which can be computed by a stochastic

approximation algorithm (of. [A-4]).

Theorem 2.4.1

If (a) {Pi(X)}IE=1 is an identifiable [T-l, T—2, Y—3]

family of probability mass functions

_ m _ .
(b) G — {gl,...,gm}, gi a 0, 21:1 gi — l 18 a

finite mixing distribution, and

(c) X (k = 1,2,...) is a Markov chain with the
k

. . . = m
d1str1but1on PG(Xk) Zi=l gipi(xk)

then there exists a sequence of estimators for the

mixing distribution, G, which converges to G with

probability one.

Proof: The sequence of estimators developed in the

proof will have the form of a stochastic approxi-

mation algorithm. The proof follows that of

H. Robbins [R-6] for a related theorem. A member

of the family {Pi(X)} will be denoted by the vector

Pi(X), i = l,...,m which has 2n elements, one for

each of the 2n possible values of the observations

X; recall that X is an n element binary vector.

Yakowitz and Spragins [Y-3] show that identifiability

assures that the vectors Pi(X), i = l,...,m are

linearly independent and span the space Rm (and form

a basis for Rm). Let Hj denote the m-l dimensional
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(X) P
—j--1. “—j+l(x)

subspace Spanned by P1(X),...,P.

ooo’EIn(X)o Then

33. (X) = g). (X) + 23. (X) where

g]. (X)€Hj , g]. (X) j_ Hj and gj (X) a! 0. 2.4.3

Define

¢.(X) = P."(X)/2[P."(X)12
J J x 3

so that

i ¢j(X)Pk(X) = 1 if j = k

= o if j 7! k.

The elements of the set ¢j(X): j = l,...,m form a set

of orthonormal components of gj(X).

Now define

n
— +

Z ¢.(X) and g. = [g. ] X [g. ]

k=1 1 k 1,n 1,n ///j-1 j, nfi
o
|

I
:

ll

S
I
P

where [a]+ = max (a,0).

Hypothesis (c) and the above result imply that

for all k

m

E¢.(X)=E¢ik(X)ZgP.k(X)= Eg.2¢ikjk(X)P(X)=g.

2.4.4
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Signori [8-3] formulated a theorem, based on

a proof of Raviv [R-2],extending the law of large

numbers to Markov chains. Signori's theorem pro-

vides that when ¢i(X) is a Baire function integrable

with respect to a Lebesque measure on X then 2.4.4

implies that

31 n n’91 with probability one, hence

I

n
.

O I

gi,n __+gi w1th probab111ty one.

QoEoDo

In 2.4.3, the vector gj"(x) was defined to be ortho-

gonal to Hj; Pj"(x) can be obtained by applying the

Gram-Schmidt orthogonalization procedure to P1(X),...,

P (X).P-j-l _j+l(X),...,Em(X), wh1ch span Hj' The result 15

an orthogonal basis for Hj' Then the final orthogonali-

zation step finds the portion of gj(X) which is ortho—

gonal to the orthogonal basis of Hj, hence orthogonal to

Hj; this gives the vector gj"(X).

While the estimators developed in Theorem 2.3.1

estimated 20 and T0k and required only one source active

to converge, the estimator of Theorem 2.4.1 estimates

the probability distribution of the synchronization. So

the estimator of Theorem 2.4.1 suggests a decision rule

for learning the probability law which governs a receiver
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when the receiver's data generation model selects a differ-

ent source for each observation. Additional complications

would be introduced in defining 2 and Tk' Those compli-

cations would motivate the addition of data buffering to

more completely state the data generation model of such

a problem. It is not clear what the practical value of

such a device would be.

Rewriting the definition of g. to give it the form
1,n

of a stochastic approximation algorithm begins with

_ _ 1 n l n-l

gi,n ' i,n-l = H kil¢i(xk) ' HIT kil¢i(xk’

n-l

-1 £-__1
_ n ¢i(xn) + (n n-l kil¢i(xk)

_ l _ —
— n[¢i(Xn) gi'n_1].

So the recursive expression

— _ — l: _ _

has the form of a stochastic approximation algorithm.

Chien and Fu [C-2] show that, according to Dvoretsky's

theorem, 3: converges to 91 in mean square and with

,n

probability one. Letting B denote an upper bound on the

variance of ¢i(Xk), Chien and Fu show further that the

mean squared error of Si n decreases at least as i for k

I
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observations and is less than or equal to B/k. This gives

a bound on the rate of convergence of estimators for the

mixing distribution.

2.5 Synchronization and Learning

Unknown Parameters
 

A processor might not be fortunate enough to know

the probability model for the received patterns (given the

synchronization information). A likely situation would

have the receiver see each source transmitting through a

channel having unknown noise parameters. This section

considers such unknown parameters. The functional forms

of the probability distributions for the patterns, given

the synchronization, are assumed known. The parameters

must be learned.

The model by which data are generated is now estab—

lished. Several sources generate binary data in the

manner described at the beginning of this chapter. The

operation of the sources is exactly as described before.

At some point in time the receiver connects to the channel

for one of the sources and receives from that one source

through that one channel from that time forward. Each

source has its own channel, such as would be the case for

two space satellites whose signal paths experience differ-

ent kinds of distortion, and the channel might contain

noise. Each source-channel combination might contain

unknown parameters which will be denoted by G where 2
2"

is the source index. The notation {02}:=1 denotes the

/—""l .. __
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set of all unknown parameters. As before, the first bit

of the first observation vector is not necessarily the

first bit of a symbol code, so that the unknown synchroni-

zation instant, Tk’ must be learned; Tk is defined

exactly as in the introductory paragraphs of this

chapter.

The received data will be processed as n binary-

digit patterns denoted by X k = 1,2,.... The functional
kl

form of the parameter conditional probability of the re-

ceived pattern is known, so that P(Xkl2,Tk,{O£},Xk-1) is

the fundamental known quantity from which posterior

distributions will be calculated. Recursive formulas for

the posterior densities follow.

k-l k-l
p(xk|{e£}.x )f({GR}IX )

k-l)

 f ({e£}|xk) =
p(XkIX

£=1’000’L;k=l'2'ooo

k-l k—l
P(xkl2,{oz},x )P(2I{0£},X )

k-l)

 P(2I{G£},Xk) =

p(xk|{e£},x

2 = l,...,L; k = 1,2,...

k-l k-l
P(Xkl2,Tk,{92},X )P(Tkl2,{9£},x )

k-l)

 

k
P(T 12,{e },x )

k “ p(xk|£.{e£} .x

2 = l,...,L; k = 1,2,...; Tk = l,...,mz

2.5.1
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Denominator terms come from integrating the numerator over

{9%}, summing the numerator over 2, and summing the numer-

ator over T respectively, for the three equations ofk’

2.5.1. Lower case f represents probability density

function as Opposed to probability mass function. Channel

noise could make possible a continuum of values for com-

ponents of the patterns. However, if a preprocessor were

to convert the received data into binary valued pattern

features, then conditional probability mass functions for

the observations would be appropriate.

If 20 denotes the index of the source being observed,

TO the true synchronization instant, and Go the value of

the parameters for the channel, then the patterns are

distributed according to the conditional density

P(X) = P(XIGO,2O,TO), k = 1,2,....

In this case the system must learn the parameters of the

channel for the source as well as the source index and

synchronization instant. Spragins' theorem can be applied

again to the posterior densities of 2.5.1, with the criti—

cal matter being the existence of strongly consistent

estimators for O , 2 , and T .

o o 0

Theorem 2.5.1
 

If (a) all observations are taken from the channel

connected to the source with symbol code
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length m2 , synchronization To' and channel

0

parameters Go so that

P(Xk) = P(XkIGO,2O,TO) for k = 1,2,...

(b) members of the family {p(kac%) ,2,Tk)}£’Tk

are distinct

A

then there exist sequences of estimators Gm, 2m,

and Tm which converge to 00' 20, and To, respec-

tively, with probability one.

Proof: The proof used for Theorem 2.3.1 applies

almost identically here. The empirical distribution

function and the extended Glivenko-Cantelli theorem

. A A A m

establish P(Xklem,2m,Tm)-—+P(XkIOO,2O,TO) w.p.l.

Hypothesis (b) then assures that the limiting

é , 2 and T are unique and equal 0 , 2 and T ,
m o o om m

respectively.

QOEOD.

Notice that under this mode of operation, information

is obtained about the parameters of only one channel, the

channel over which the symbols are received. In general

the system provides no improvement over the prior infor-

mation about the parameters of the other channels.

In classical unsupervised learning [8-5] the class

identification is random from observation to observation.
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The k-th pattern there is represented by (Xk,ak), where

ak indicates the parameters of the class being observed

through the k-th pattern. The set {ck} are usually

assumed to be independent identically distributed random

variables for which a set of prior probabilities, P(ak = Z)

must be defined. Over a long run of observations, all

classes are sampled and the parameters of all classes are

learned. By contrast with classical unsupervised learning,

the problem considered here assumes that the class identifi-

cation is fixed, though unknown.

While the formulation of problems of unsupervised

learning of unknown parameters is reasonably straight-

forward, the computational problems in most instances are

severe. Unless the functional forms are exceptionally

convenient to deal with, one is forced to make discrete

approximations to the continuous parameter values. This

leads to the usual difficulties associated with numerical

techniques, with a very difficult tradeoff between the

small discretizing intervals desired for accuracy and the

cost in memory and computing time that results; questions

of roundoff and truncation error cannot be ignored, of

course. Hellman and Cover [H-4] have worked toward a

theory of the computational overhead involved in pattern

recognition algorithms.
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2.6 Markovian Symbol Selection

Many interesting symbol generation experiments

are modeled better by assuming Markov dependence

than by assuming stochastic independence among symbols.

If the sources described in the single source case were

modeled by first order Markov chains, then what kind of

model would be apprOpriate for the sequence of patterns?

Some insight can be gained from an example.

Assume that patterns of length n = 3 are taken from

a source whose symbol code length is m2 = 3. Let

= 010, X = 110, and T = 2, as illustrated in
xk-l k k

Figure 2.2. The symbol denoted by 10? is incompletely

observed in Xk and might be either 100 or 101. Since

I

0.1 o l1.10 ! ?
I I I I

l6X-———+L——X+—efi

= 110, T = 2, and m = 3.
k-l k k 2

The binary digits underlined by | lare a single

n = 3, X = 010, X

coded symbol. Digits through the k-th pattern are

known.

Figure 2.2 Pattern Dependency with Markov

Symbol Selection

the symbols are generated under first order Markovian

dependence, knowledge of the previous symbol, 101, allows

one to specify the probability that 10x will turn out

to be 100. The distribution of Xk+1 is conditioned on
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the source, symbol code length, synchronization instant,

X and X is needed.
k k-l' k-l

Consequently, when the source has a symbol code length of

No information prior to X

3 and first order Markovian dependence between symbols,

the sequence of patterns of length 3, {X is also
k}k=l'

a first order Markov chain whose states correspond to

the eight possible values of a pattern.

In order to generalize to all possible code lengths

and pattern lengths for first order Markov sources, observe

that having T > 1 caused part of X to be an incomplete
k+1

observation of a symbol. So m

k

2 - (Tk+l - 1) d1g1ts of the

incompletely observed symbol are in X The symbol pre-k.

ceding the incompletely observed symbol has m2 code

digits, which, together with the ma - - 1) digits
(Tk+l

2 - (Tk+l g - Tk + l d1gits which have

already been observed and which have to be considered

makes 2m - l) = 2m

to give the conditional distribution of Xk+l° Since

- T + 1 6 2n - T + 1 < 2n

2 k+l k+1

when Tk+1 > 1. As a result, the patterns observed prior

ml 6 n by assumption, 2m

to X have no influence on the prior conditional
k-l

distribution of X Therefore, if the source generates

k+1'

symbols by using a first order Markov process, and if

the source symbol code length does not exceed the ob-

served pattern length, then the observed process can be

represented by a second order Markov chain. A similar

analysis can show that if the source generates symbols



43

by using an i—th order Markov process, and if the

source code length does not exceed the observation vector

length, then the observed process can be represented by a

Markov process of order less than or equal to i + 1. The

fact that an equivalent first order Markov process can be

defined for any higher order Markov process allows one to

conclude that the theorems developed for sources with

independent symbols also apply to Markov sources of any

order. As is well known, however, the number of states

in the first order equivalent of a higher order chain

increases exponentially with the order of the chain, which

presents an effective restraint on the application of the

technique of first order approximation. The effect of

the large number of states shows up both in storage re-

quirements and in the number of Operations that must be

performed.

2.7 Summary
 

It has been shown that the Bayes posterior distri-

butions of the unknown parameters have a converging be-

havior when dependent random variables are observed

and consequently the Bayes decision process is an effec-

tive procedure for deciding the symbol synchronization.

In the process of proving convergence, a strongly

consistent minimum distance estimator for the unknown

parameters is defined, which suggests other decision

procedures which are not pursued here. One alternative



 

 

 

decis

appro

has a

proce

zatio.

of th

decis

sourc(

ing, 1

then 1

tive s

 



44

decision procedure which is pursued uses a stochastic

approximation technique, whose estimator of the parameter

has a linearly decreasing variance. The Bayes decision

process can be applied simultaneously to the synchroni-

zation problem and to the problem of learning parameters

of the source being observed, and the sequences of

decisions on both problems will converge. Finally, if the

sources use Markov processes to select symbols for encod-

ing, rather than stochastically independent experiments,

then the Bayes decision process still provides an effec-

tive solution to the symbol synchronization problem.



CHAPTER III

ERROR BOUNDS FOR DECISION PROCESSES

This chapter follows several approaches to determine

the rate of convergence and probability of error of a

decision procedure described in Chapter II. First, a sub-

Optimum procedure is defined for which the asymptotic error

probability can be determined. This asymptotic behavior Of

the error of the suboptimum procedure is used to describe

the asymptotic behavior of the minimum error procedure.

The second approach uses an information theoretic measure

to define an upper bound on the error probability of the

Optimum procedure as a function of the number of obser-

vations. Subsequently, measures of the hypothesis con-

ditional probability distributions, namely the Bhattacharyya

coefficient and the Kolmogorov variational distance, give

error bounds that are formally elegant but whose asymptotic

properties are difficult to describe.

All of the error estimating and bounding theorems

presented here require the same basic functions, the hy-

pothesis conditional densities of the patterns, although the

processing operations which are specified by each theorem

45
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vary widely in their computational requirements. The

underlying question throughout is: Is it worthwhile to

compute this bound on the basis of n observations? Any

worth must be measured against the computational costs,

which for some of the theorems tend to offset the payoff

Obtained from computing the error bounds.

3.1 Majority Decision Functions and Error

Probability for Dependent Random Variables

This section uses a subOptimum procedure called the

majority decision procedure to obtain an upper bound on

the error probability of the optimum decision procedure.

Chu and Chueh [C-lO] invented this approach and studied

its prOperties for the i.i.d. case. Here, the technique

will be extended to dependent random variables. An exact

expression for the suboptimum error probability provides

the upper bound for the Optimum procedure. The asymptotic

behavior of the exact expression indicates the asymptotic

behavior of the Optimum probability of error. Details of

the application to both continuous and discrete first

order dependent random variables are presented.

In an m-class decision problem, let G = {tl,t2,...,tm}

denote the m classes, where class i occurs with proba-

bility pi for i = l,...,m and 2m pi = 1. Let {Xk}

i=1

k = 1,2,..., denote a sequence of vector-valued r.v.'s, all

having the same distribution. When discrete Xk are con-

sidered then Pi(xk) stands for the conditional probability
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mass function for Xk when class i is active. Similarly,

when continuous X are considered, the corresponding con-
k

ditional probability density is written fi(xk)' First order

dependence (l-dependence) of the X is assumed; i.e.,
k

Pi(xk|xl,...,xk_l) = Pi(xk|xk_l) for i = l,...,m.

3.1.1 Asymptotic Error Probability

for Two Pattern Classes

In the two-class case (m = 2), with probabilities

2 +
p1 and p2, let d(X n l) = D[d1(xl)""'d2n+flx2n+l)] where

dk(Xk) depends only on X so that dk(Xk) = t1 or t2 for

2n+l

k

k = l,2,...,2n+l. Then d(X ) is a majority decision
 

function if it follows the decision of the majority of

dk(xk)' Here, dk(Xk) is a mapping from the domain of

values for the k-th r.v. to the set (tl,t2); there can be

a different mapping for each k. The function D, on the

other hand, maps from the cartesian product 92n+l to O.

The decision regions in the Observation space for Xk and

the conditional probabilities of error are:

Sik = {Xk dk(xk) = ti};

“1k = X2ES P.(Xk) — X2 5 X2 Pi(xklxk_l)Pi(xk_1)

k jk kE jk k-l

for i¢j , i,j = 1,2 , and k = l,2,...,2n+l.

3.1.1.1
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An exact expression for the probability of error

for the majority decision function will be developed with

the aid of random variables which indicate the decision

dk(xk)' These random variables are purposely redundant

in order to provide a clear expression for the error

probability and to facilitate application of the Central

Limit Theorem. The approach largely follows the lead of

Chu and Chueh with appropriate allowances and new defi-

nitions for handling discrete and l-dependent random vari-

ables.

Decision indicator random variables are defined as

U = 0 and Vk k 1 1f dk(X
k)

3.1.1.2

l

wl and VC

ll 0 1f dk(Xk) — 2

In terms of these variables, the majority decision is

2n+1

) = t if Z V 2 n+1
x2n+1 1 k

k=l

d(

2n+1

= t if 2 U2 2 n+1. 3.1.1.3

k=1
k

The distribution of Uk is related to the conditional

error probability as follows:

ll

(
1
'

k=1|e
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and

P(Uk = ole = t1) = X2ES P1(Xk) = 1 — “1k

k 1k

so that

= — — E“ ' _ 1_€ —P(Uk ale — t1) — alk(l alk) , g — 0.1

where alk is the probability of the decision error that

O = t2 when in fact 0 = t1 based on Xk alone.

By a similar develOpment,

_ _ _ v _ l-v _
P(Vk _\k|9 — t2) — a2k(l a2k) ,v — 0,1.

The exact expression for the error probability for the

majority decision on 2n+1 observations is

_ 2n+1 _ _

Pe(d) — P(d(X ) — t2,O — t1)

2n+1 _ _
+ P(d(X )— t1,O — t2)

2n+1

Pe(d) = plP kil Uk 2 n+1IO = t1

n+1

2 v 2 n+1IO = t2 3.1.1.4
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U* 2n+1

Pe(d) = pl 2 kgz p(uk|e = tl,Uk_l)Po(UlIO = t1)

V* 2n+1

+ p2 2 kgz P(VkIO = t2,vk_l)Po(v1|® = t2).

3.1.1.5

 
where Po(° O) is the prior conditional mass function of

the indicated random variable and 2°* is the sum over all

sequences for which the sum of the indicated random vari—

able exceeds n. The random variables Uk and Vk are both

functions Of single, l-dependent random variables and so

are, in turn, l-dependent random variables.

Equation 3.1.1.5 can be written somewhat more com-

pactly by defining conditional error probabilities

a1k(Uk-l) = P(Uk = 1'9 = tl'Uk-l)

and

“2k(Vk—1) P(vk = lIO — tZ'Vk-1)°

Now, P(Uk = 0|e = tl,Uk_l) = 1 - alk(Uk_l)

and similarly

P(Vk = 0'9 = tZ'Vk-l) = l ‘ a2k(Vk-1)'
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If one further defines

all(UO) = PO(U = lIO t1) and

“21(Vo) = PO(V = lIO t2) then

these newly defined quantities can be used in 3.1.1.5

to give

U". 2n+1 U
l-Uk

Pe(d) = pl 2 kgl alk (Uk-l) l - alk(Uk-l)

V* 2n+1 Vk 1-Vk

+ p2 Z knl “2k (Vk-l) l ‘ a2k(Vk-l) .

The form Of 3.1.1.4, containing probabilities of

sums of l-dependent random variables, leads one to apply

the Central Limit Theorem. In particular, consider the

following factor from 3.1.1.4:

2n+1

P E U 3 n+1]@ = t1 .

k=1
k

In order for the Central Limit Theorem for 1—dependent

random variables to apply [F-4] the following three

conditions are sufficient

l. E(UkIO = t1) = 5 < m must exist for k = 1,2,...
k

2. 2(lukl3le = t1) < w for k = 1,2,...
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A = A must exist uniformly

1I
I
M
Z
S

3. lim l

nn+m h k+h

for all k, where

A = 2cov1{Uk'Uk+l} + varl{Uk+l}
k

and where covi(-) and vari(-) denote the covariance and

variance, respectively, of the argument when class i,

i = 1,2, is active. The first condition can be seen to

be satisfied by considering the expectation directly,

5(Ukle = t1) = o-Pwk = ole = t1)

+ 1-P(Uk = 1|e = t1) = elk

for k = 1,2,... .

In fact, from the eXpansion of the first moment,

E{Uk|O = t1}, one can see that all moments and absolute

moments of U about zero are equal to alk’ so that con—
k

dition 2 for the Central Limit Theorem is satisfied by

the random variables {Uk}’

The expression for Ak reduces to terms containing

the various conditional error probabilities already de-

fined. The variance term is

_ 2 _ _ —2

var1{Uk+1} ' E(|Uk+ll '9 ‘ t1) Uk+1

_ .- 2— —

‘ 0"1,k+1 a1,k+l ‘ 0‘1,k+1‘l “1,k+1)°
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The covariance term is

°°V1{Uk'Uk+1} = E{(Uk ' alk)(Uk+1 ’ °‘1,k+1’IO

= E{UkUk+1IG = t1} ’ O‘1k"‘1,k+1°

Writing the expectation of the product,

3{Ukuk+l|0 = t1} = o-o-P(Uk==o,Uk+l - oltl)

+ o-1eP(Uk==o,uk+l = 1|9 =

+ 1-O-P(Uk==1,uk+l = Oltl)

+ 1°1'P(Uk==l,Uk+l = 1|e — t

= p(uk = 1,0k+l = 1|e = t1)

— P(Uk+l 1|0 =«t1,Uk — 1)

pmk - 1|e = t1)

= 2,11; ° ..

Combining the previous three equations,

Ak = 2°°vl{Uk’Uk+l} + varl{Uk+l}

= 2“ (l) ' “1k ' 20‘11:"‘1,k+1 + O‘1,k+1 ' (1 ‘
1,k+l

= t1}

O‘1,k+1)'
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If P.(X ) is stationary for i = 1,2, then the a.

1 k 1,k

and d(j) are constant for all k and uniform convergence

i'k n 00

1 . . .
of the sequence {# hil Ak+h}n=lls assured. V1ew1ng the

terms in the sequence as sample averages, one can see that

the uniform convergence allows one to disregard an ini-

tial finite number of Ak and the average of the remain-

ing Ak remains unchanged. So when the XR are stationary,

or under any other circumstance in which the sequence of

sample averages on A converges uniformly, one can apply

k

the Central Limit Theorem for dependent random variables

[F-4] to sums of U to Obtain

k

2n+1 2n+1

P 2 U ) n+l|O = t1] + @[n+l, Z k,(2n+l)Aa

k=1 k k=1 1

where A is the uniform limit described in condition 3

and 0 is defined in 3.1.1.6. A similar result applies to

the sum of V in 3.1.1.4 so that the following theorem
k

has been proved.

Theorem 3.1.1.1

If (a) X1,X2,..., are stationary, 1-dependent random

variables under either hypothesis of a two-

hypothesis decision problem,

(b) Uk and Vk are indicator functions, as defined

in 3.1.1.2, for the decision based on Xk, and

(c) Z¢* represents the sum of the function ¢ over

all sequences of length 2n+1 which give a

sum 2 n+1,
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then the probability of error for the majority

decision function after 2n+1 observations is

U* 2n+1

pe(d) = p12 kgz P(Ukle = t1.uk_1)PO(U1|e = t1)

V* 2n+1

+ pz 2 n P(VkIO = t2,Vk_l)Po(VlIO = t2)

k=2

0* 2n+1 Uk l-Uk

= pl )3 II (11k "(UK-1) EI- - alk(Uk-1):l

k=1

V* 2n+1 vk l-Vk

+ p2 2 II 02k (Vk’l) E'- - a2k‘ Vk-l’] .

k=1

Further,

  

2n+1

Lim P (d) = p 0 n+1, 2 a ,(2n+l)A
n+w e l k=1 1k

2n+1

+ p20 n+1, E a2k,(2n+l)B

k-l

where

co

¢(X.u.02) = f (21102)-;5 exP[-(y-uL/202]dyr 3.1.1.6

X

alk and 02k are defined in 3.1.1.1, A is defined

in condition 3 and B is defined similarly to A,

that is,
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1 n

B = 1im — 2 B and

n+w n h=l k+h

Bk = 2cov2{Vk,Vk+1} + var2{Vk+1}.

The above theorem holds whether the XR are contin-

uous or discrete random variables. For continuous random

variables, the definitions of Sij'aik' alk(Uk-l) and

02k(vk_1) involve appropriate integrals rather than dis-

crete sums. However, the resulting Uk and Vk’ which are

used in the theorem, are discrete in either case so that

the analysis above holds. Further, the theorem implies

convergence of the majority decision function regardless

of the local decision function used on each individual

observation. If the Xk were independent, then the

expression for A would reduce to A
k k = O‘1,k+1(1 ‘ O‘1,k+1)

and Theorem 3 of Chu and Chueh is thereby Obtained as a

special case.

The asymptotic distribution of the probability of

error provides a method for deciding on the number of

observations required to achieve a particular level of

performance. The Central Limit Theorem showed that

2n+1

2 n+1IO = t1] —E+ ¢[n+l,k:l alk,(2n+l)AProb ZUk

3.1.1.7
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and a similar statement holds for sums of the random vari-

ables Vk' If the goal is to make Pe(d) < 5, then one must

choose n at least large enough to force both terms of the

type in 3.1.1.7 to be less than 5, because Pe(d) is the

average of such terms. Defining

2n+1

a' = Z a

k=1
1k

and

n+1 -a'

/(2n+1)A

 

one can use tabulated values to find 8 such that

00

‘§? g exp(-x/2)dx = g

and in turn solve for n in the definition of 8.

3.1.2 Bayes Majority Decision Functions

Application of the previous theorem can require

substantial computing effort to evaluate the conditional

error probabilities, aik' for each decision region. Re-

stricting the decision functions at each step to a class

which is formally similar to a Bayes decision produces

the Bayes majority decision function, whose precise

definition follows shortly. Under the Bayes majority

decision function, the expressions for the mean and
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variance of the limiting distribution take on a much

simplified form. This simplified form contains a factor

which is derived from an upper bound on the Kolmogorov

variational distance between the class distributions.

In what follows, one needs to use a particular

prOperty of the probability of error of individual

decisions in a two-hypothesis decision problem. Using

essentially the same notation as above, for a discrete

random variable X let P1(-) and P2(-) denote the proba-

bility mass functions for X given O t and O = t

l 2'

respectively. Also let

_ . = = I
S1 — {x . d(x) t1} and S2 S1 .

Then

on = Z P (x) and a = 2 P (x)

l x582 l 2 xeSl 2

are the conditional probabilities of error for rule d.

The overall probability of error, Pe’ is then

Pe plal + pzaz where pl + p2 = 1.

e l

in which case

This implies that min(o:.l dz) 6 P s max(a a2) with

I I

equality holding only if a1 = a2,

a1 = a2 = Pe' Def1ne
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‘g E m1n(alra2),

a : max(al’a2) and

n E E - g = Ial - a2]

so that n denotes the length of the interval within which

Pe is bounded.

Theorem 3.1.2.1
 

m
u
d

I

a
n
»

+

a
n
:

*If ilp1(X) - P2(x)l a 25 then Pe s

Proof: Case 1: pl 2 p2. By steps which are

identical to those in Theorem 2 of Chu and Chueh

[C-10] one gets

1 ‘ Pe 3 91‘8 + Pzaz + p1°‘1 = 91‘3 + Pe'

Substituting a lower bound for Pe on the right

gives

and the Pe term can be isolated on the right by

 

*The quantity §|Pl(x) - P2(x)|, or £|fl(x) - f2(x)|dx

when x is a continuous r.v., is the Kolmogorov variational

distance.
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Next, add 5 to both sides

1 - p16 + E -‘g a Pe + 3.

But Fe + E a 2 P8 and n = E - g so that

l - p16 + n Z 2 Pe

or

1

Pex< '2-(1 - p15 + U)

(l - g + n).

N
I
H

and if p1 2 p2 then pl ;,% so P s

Case 2: pl < p2. In this case 1 - Pe 2 p26 + Pe

and an analysis of the type above with pl replaced

by p2 again produces the conclusion of the theorem.

Q.E.D.

Still considering the two-class decision problem, a

Bayes majority decision function is a majority decision
 

function such that for every k = l,2,...,2n+l, the

decision regions, Sik' are defined as

s (xk)} and s = s '
lk = {xk ‘ qlkPlk(xk) > qZkPZk 2k 1k

where qlk’qZk 2 0 and q1k + q2k = l. The qik need not be

the true probability, pi, that O = ti’ nor need they be

the Bayes posterior estimates of pi.
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The least favorable distribution of O with respect

to P1k(-) and P2k(-) is defined to be that set Of values

for q1k and q2k wh1ch m1n1mizes nk = ak - Ek’ where

ak = max(alk,a2k) and 2k = m1n(alk,a2k) and alk is de-

fined in 3.1.1.1. This distribution is least favorable

in the sense that, since 2k is a lower bound on

Pe[dk(xk)), and since minimizing nk implies maximizing 3k

(because alk and 02k are measures of complementary regions

in the sample space), then minimizing nk maximizes the

lower bound which 2k places on Pe(dk(xk)). However,

minimizing nk does minimize the general upper bound of

the previous theorem. For continuous random variables,

the minimum value of nk is zero, provided that f1(x)if2(x).

In the case of continuous random variables, the

following theorem results:

Theorem 3.1.2.2

2n+1 is a sequence of l-dependent, con-If (a) x

tinuous random variables;

(b) if d(x) is the Bayes majority decision

function such that for k = l,...,2n+l, q1k

and q2k are the least favorable distribution

of O with respect to flk(xk) and f2k(xk); and

(c) if for every k, fIf1k - f2k| > 26 > 0

then

Lim Pe‘d) s 1im <I>(n+l,(2n+l)e,3(2n+l)e(l-e)) w.p.l

n+°° n+oo

where
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. Consequently, Pe(d)+0as n+m, w.p.1

.
M
o
:

6 = % -

Proof: The least favorable distribution for con-

tinuous random variables makes alk = a2k and n = 0,

so by the above theorem aik 6 e < %, i = 1,2. The

d can be replaced by e in Theorem 3.1.1.1 and the
ik

variance terms are bounded above by 35(1-6). That

is,

Ak = 20‘11<("‘1,k+1(1) ‘ O‘1,k+1) + O‘1,k+1‘l ’ O‘1,k+1)

s 26(1-6) + 5(1-5) = 3€(l-€).

Consequently

1 n

Lim — Z A 6 38(1-8).
n+m h=1 k+h

A similar approach holds for Bk and B. Thus,

both normal distribution functions in 3.1.1.6

are bounded above by

n+1 - (2n+l)e

/3(2n+l)e(l-€)

0,1 . ¢ n+1,(2n+1)€,(2n+1) - 36(1-8) = 4
 

Since 6 < %, the first argument is positive and

32
increases as n so the theorem follows.

Q.E.D.



63

One encounters difficulty in attempting to apply

the above proof technique to a similar theorem for dis-

crete random variables. In particular, since n¢0 in the

definition of least favorable distribution, it is not

necessarily the case that proper choice of qlk and q2k can

force both a. < A for i = 1,2. As an example, consider

1k 2

the following two discrete distributions on {0,1}.

0.8Pl(0) 0.9 P2(0)

ll

0 H

ll

0 O NP1(1) P2(l)

The full set of possible partitionings of the sample space

into decision regions, and the resulting conditional error

probabilities are:

d1(xk) d2(xk> d3(xk) d4(xk)

sl {0.1} {o} {1} {<1}

52 {4:} {1} {0} {0,1}

a1 0.0 0.1 0.9 1.0

a2 1.0 0.8 0.2 0.0    
For this example, no decision function exists for which

both 01 and a2 are less than %. Consequently, substitution
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of an upper bound for aik’ i = 1,2, in 3.1.1.6 is fruit-

less.

However, for sample spaces which can be partitioned

so that ai < %, i = 1,2, the above theorem extends to

discrete l-dependent distributions.

3.1.3 Asymptotic Error Probability for

m Pattern Classes

In the m-hypothesis case, 0 = {tl,...,tm}, the maxi-

mum likelihood-Bayes decision regions for a single Obser-

vation are defined as

T. ={x:p.f.(x) =max p.f.(x)}, i=1,...,m

l 11 j=lpooopm J J

and the pairwise decision regions are

= {X : pifi(x) a p fj(X)} ilj = lice-rm.S..
13 J

In the expressions above, fi(x) is the conditional proba-

bility density of x given 0 = ti. The error probability

for the Bayes decision procedure is

P (Bayes) = X f p.f.(x)dx + f p.f.(x)dx .

e i<j Ti 3 J Tj l 1

. , .

Since Ti_<:_: Sij and T3. S Sij’ it follows that

Pe(Bayes) S .2. f pjfj(x)dx + f. pifi(x)dx .

1<j S.. S..

13 13
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Consider the problem of deciding O = t1 vs. 0 # ti

by a Bayes majority decision function when there are m

classes. That is, m such two-class partitionings can be

made. Under the hypothesis 0 = t1' x has the density

fi(x). Under the composite hypothesis 0 # ti’ x has the

density

1 m

f’.‘(X) : _ Z p.f.(X).

1 1 pi j=l 1 j

j#i

Let

I

Sik = {Xk ‘ qikfik(xk) > qikfik(xk)} and Sik = Sik

where qik’qik a O and qik + qik = l. The decision

for xk is: Decide O = ti if xkesik and decide 0 # ti other-

wise. Then the above theorem says that if for all k,

flfik - f?1k| a 26 > 0 then

Lim Pe(d) s Lim¢(n+1,(2n+1)e,(2n+1)t(1-e))

moo n+oo

where e = % - %. Define the compound Bayes majority

decisionyprocedure, dCB’ by making Bayes majority decisions

 

for the mmdecisions O = ti vs. 0 # ti’ 1 = l,...,m, and

deciding O = tj where j is the value of i for which the

two-way Bayes majority decision was 0 = ti, provided that

exactly one such j exists. Otherwise, no compound decision

is made, but another Observation would be taken.
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Theorem 3.1.3.1

If (a) x is a sequence of 1—dependent Observations

in an m-class decision problem, and

(b) if for all i = l,...,m and k = 1,2,...,

flfik - f. 2 25 > o
1kl

then

{
I
I
-
J
“
]

lim P (dCB) < (m—1)1im[%(n+l,(2n+1)€p3(2n+l)€(l-€){]2

n+oo n+oo

a.e.

o
n
»

where e = % -

 
Consequently 11m Pe(dCB) = 0 a.e.

n+oo

Pgoof: Of the decisions which dCB can make, m-l

represent errors, and each of those results from

exactly two errors in the two-way Bayes majority

decision procedures. Since the above theorem applies

to the probability of error of the Bayes majority

decision procedures, the result follows.

Corollary: Under the same hypotheses

lim Pe(Bayes) s (m-l)lim[%(n+l,(2n+l)€,3(2n+l)€(l‘€)i]2

11+co n+m

a.e.

Proof: The Bayes decision procedure minimizes the

error probability, so the error of any other decision

procedure, such as dCB' provides an upper bound for

Pe(Bayes).
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3.2 Bounding the Probability of Error

After a Finite Number of Samples

 

In studying m-class hypothesis testing using de-

pendent random variables, the results presented so far

have shown the existence of a strongly consistent mini—

mum distance estimator for the pattern class, that Bayes

rule calculations of posterior distributions converge

in the sense that eventually the mass of the posterior

distribution lies at the point corresponding to the correct

class index, and that the error probability of a suboptimum

procedure--and consequently Of the Bayes procedure-~vanishes

as the number of Observations grows without bound. Now it

will be shown that an upper bound exists for the probability

of error of the Bayes decision process, and that the upper

bound decreases exponentially as the number of obser-

vations increases. An exact expression for the upper

bound is obtained as a function of the number of patterns

observed. The expression is derived from information

theoretic considerations, and it turns out that the inter-

class Bhattacharyya coefficients are factors of terms in

the bound.

This presentation will use the general notation which

applies to the class of m-hypothesis decision-making

problems for which there is first order dependence be-

tween successive Observations. The symbol synchronization

problem with unknown source code length is a member of

that class. For convenient reference, the Specification
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of the m-class decision-making problem and the notation

to be used will be briefly reviewed. This is the same

problem and notation which was described in detail

earlier.

Let X1,X2,...,X be a sequence of identicallyk""

distributed discrete* random variables having first order

dependence. The common distribution of Xk’ k = 1,2,...,

depends on the pattern class, indexed by O = {t1,t2,...,tm}

and the prior probability for the pattern class j is

given by Prob(0==tj) = p. > 0. The parameter conditional

3

distribution of the Xi will be written

Prob{Xk|O tj} = Pj(Xk), j = l,...,m;

k 1,2,...,

and the first order dependence provides that

k—l)'
Pj(xk|xl,x2,...,xk_l) = Pj(XkIX

It is assumed that each class has a unique probability

d1str1bution; that 13, Pj(xklxk_1) and Ph(Xk|Xk-l) are not

identical for all values of the arguments when j#h.

3.2.1 An Information Theoretic

Approach

After k Observations, the amount of information

contained in the sequence of random variables

 

*The arguments to be set forth would apply to con-

tinuous random variables as well.



69

Xk = X1,X2,...,Xk about 0 is the mutual information

1k = Ik(xk:0) = H(0) ' E(H(9|Xk))r

where H(O) is Shannon's entropy:

H(O) =

j

u
t
n
a

9:) 1°9 (31‘)
1 j

and pj = Pr0b(9=tj) as described above. Similarly

 H(OIXk) =

"
H
H
S

P e=t.|xk log 1 k .

3 1 3 P(O=tj|X-)

Logarithms are to the base 2, and throughout this chapter,

E(-) denotes the expectation with respect to the joint

distribution of Xk.

The develOpment which follows is based on work done

in 1964 by A. Rényi [R-3]. Rényi described the behavior

of the average entropy for independent random variables

and used his results to show the almost sure convergence

of a decision procedure which was similar to the maximum

likelihood decision procedure. Hellman, Raviv and others

have called the expectation of the entrOpy E(H(lek)),

the equivocation. Hellman and Raviv [H-S] showed that
 

for the Bayes decision procedure, the probability of

error, PB(e), is bounded above by one—half the equi-

vocation, i.e.,
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PB(e) \< %E(H(lek)).

They showed also that in the i.i.d. case,

3(H(e|xk)) s K(p**)k

where p** is defined as follows.

pgj = inf 2 Pi(x)aP.(x)l—a and

Osasl x 3

p** = max pt.

i¢j 13

When a = %, the argument of the infimum is called the inter-

class Bhattacharyya coefficient, so that Hellman and Raviv's

result for i.i.d. random variables defines an upper bound

on the error probability of the Bayes decision procedure

which is an exponentially decreasing function of the maximum

interclass Bhattacharyya coefficient. In order to Obtain

related results for dependent random variables, two lemmas

must be established.

Lemma 3.2.1.1

(Rényi) A universal constant C > 0 exists such

that for any set p1,...,pm of positive numbers

forming a probability distribution
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The logarithm is to the base 2.

Proof: This is Rényi's proof, although he used

 

 

=1a 2.

x loglfil (l-x)1og[i%;]

Both a and a are continuous

x x

in [0,1].

Define

xloglil (l-x)log[I%§]

C1 = max a and C2 = max a

Osxsl x Osxsl x

for 0 s a 6 1

Then by breaking the entropy expression into two

parts, one gets bounds on each part of

 

l
m m p. log[-—]

1 .

.2 Pj 109(57] = .2 3 p3 p? s c ? p9
j=2 3 3:2 a j 1 .=2 3

Pj 3

and
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1 m 1
pl log —— = 1 - X p. log

P -= J m

l 3 2 1 - 2 p.

-_ J
3—2 ,

’ 1

m m

l - : pj log 1 - .: pJ m a

= J l. 3 2 2 p

m a ._2 j

2 p. 3-

j=2 3  

M 0

n
:

T
7

"
:
3
8

N

”
'
0

L
1
4 Q

I O

N

L
J "
h
a
s

N
)

”
O

U
Q

The lemma follows with C = C

Q.E.D.

Lemma 3.2.1.2
 

If Y1,Y2,...,Y is a sequence of random vari-kl...

ables having the Markov prOperty, and if E(Yk|Yk_l)

exists and is bounded for all k, say

E(Yk|Y s K , k = 2,3,... w.p.1
k-l)

then

k k-l
E 2 Y. s E(Y1)K where K = E(Y2|Yl).

i=1 1

Proof: Expanding the expression for the expectation

of the product of k random variables having the

Markov prOperty gives
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k

E .E Yi = 2 ...2 Yl-YZ...YkP(YkIYk_1)...P(y2|Yl)P(Yl|Y0)

1—1 Yl Yk

2 '.'§ Y1...Yk_1§ YkP(YkIYk_1)P(Yk_1IYk_2)...

1 k-l k

P(YZIY1)P(Y1IY0)

Y1...Yk_lE(Ylek_l)P(Yk_llYk_2)...2

Yk-1

P(YZIY1)P(Y1|YO)

/
A

M O O yl. . 'Yk-1KP(Yk-1|Yk-2) . . .P(Y2|Y1)P(Y1|YO)Oz

Yk-l

This process repeats k-2 more times to yield the

lemma.

Q.E.D.

These lemmas will be used in proving the following

theorem.

Theorem 3.2.1.1

If (a) O is a discrete random variable taking on m

different values tl,t2,...,tm with positive

prior probabilities pj Prob(O = tj),

j = 1,2,...,m;

(b) the discrete random variables X1,X2,...,Xk,...

have, for each j, identical conditional, given
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O = tj, distributions with the Markov

property; and

(c) the conditional joint distributions of

Xk_1,Xk g1ven O = tj versus 0 = th are

different for each j#h, i.e., there is no

value Of Xk_1 such that Ph(Xk|Xk_l)

then there exist positive constants A and q < 1

such that

O s E(H(O|Xk)) s Aqkm1 for k = 1,2,...

h k - *

Proof: Letting 9h denote the subset of the full

probability space, 9, on which 0 = t (h = l,...,m),

h

the equivocation is expanded in terms of the parameter

conditional equivocation as follows-**

3(H(e|xk)) = phE(H(OIXk)IQh) 3.2.1.1

"
b
a
a

h 1

The Bayes posterior distribution of 0 given Xk, which

is needed to evaluate the entropy factors in 3.2.1.1

is:

 

*Korsh [K-6] proved a similar theorem using a

different proof.

  
**The notations E(- 0h) and E(° O = th) mean the same

thing. They are alternative notations for the same con-

ditional expectation.



P(e = thXk) = i

. k P. (X. |x. )

< —l H i1 3.2.2.2

ph i=-l Ph(xi [xi-1)

where the strict inequality holds for all finite

k and h = 1,2,...,m. Here, Pj(X1IXO) stands for

the prior conditional probability of X the first
ll

pattern.

Now the entropy expression can be expanded,

Lemma 3.2.1.1 applied to the expansion, and then the

bound in 3.2.1.2 applied to the result:

 

 

 

m

H(O|Xk) = 2 P(O = t.IXk)1og 1 k

j=l 3 p(0 = tle )

m

s c 2 [P(O — t Ix )]

i=1

j#h

m p ak Pji(X|Xi_l)0L

< C 2 H Ph (x. X. )
j=l ph i=1 1l i--1

j#h

for 0 s a s 1. 3.2.1.3

The function Pj(Xi|Xi_l) depends on the random vari-

able Xi_1, so one can take the expectation of the
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bound in 3.2.1.3 given 9h, recalling that Qh specifies

the distribution of Xk. The expectation wanted is

m [oiJOE E [Pj(X1|Xi_l)]d 9h .

 

k
EH(GIX)|Q]<C 2

1 h j=l ph i=1 Ph1inXi-l1  

3.2.1.4

The rest of the proof proceeds using a = % for the

sake of a helpful cancellation which develops. Lemma

3.2.1.2 can be applied to the E{...} on the right of

3.2.1.4 as soon as the K bound is demonstrated. In

particular, it will be shown that

P.(X2|Xl) s

E 3 9h < l to give a bound on the

Ph(x21xl)
 

equivocation which decreases monotonically with k.

 

 
9h

E Pi(X2|Xl) 3

Ph1lexl)

P.(X IX ) k

2 1~ 2 1 P (x ,x )

xl.x2[Ph(X2[x1)] h 2 1

= 2 Pj(x2'xl)|Pj(Xl) %P (x .x )

Xl'xz Ph(x2,x17]Ph(xl) h 2 1

 

P-j—Thml) 15 ( ) ( ) 1‘5= Z P. X [X P X Ix

Xl'xz Pj Xl [ j 2 l h 2 1 J

Ph(xl) 1: .fi

=§ 3.7377 3; [Pj (XZ'X11Ph(x2'Xl))
1 2
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2 [Ph(X1) * 3
< Z P.(X ,X )2 P (X ,X )

X1 szxl) X2 3 2 1 X211 2 1

3.2.1.5

The inequality in 3.2.1.5 is an application of the

Schwarz inequality. Strict inequality is a result

of the assumption of unique parameter conditional

distributions, i.e., the condition for which equality

would hold in the Schwarz inequality is equivalent to

Pj(X2|Xl) E Ph(X2IXl) for some j and h, j#h. The

right side of 3.2.1.5 reduces to 1, so there exists

a qjh’ 0 s qjh < 1, such that

E [pj(x2|xl)]a

< 1 3.2.1.6
Ph(X2|X1) “h = qjh

 

Letting a = % in 3.2.1.4 and applying Lemma 2 with

K = q results in 3.2.1.4 becoming

 

 

jh

m p- % P-(X ) h -

E(H(lek)|0h) < c 2 —l s 517217 a q1h1 .

j=1 ph h 1 3

Also, 3 h 3.2.1.7

P.(X)15 P-(X)1§ 1
l _ l _ 1

E [FfiTXIT] 9h - i [PfiTXIT] Ph(Xl) - i [Pj(x1)Ph(Xl)]

1 1

= pjh < 1 3.2.1.8

This expectation turns out to be precisely the inter-

class Bhattacharyya coefficient [H-S, K-2, L-3] for

the prior distributions of the first Observation, X1.
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As in 3.2.1.5, the strict inequality in 3.2.1.8 is

from the Schwarz inequality and the unique parameter

conditional distributions. Now defining

q A max (q.h) < l and using this q with 3.2.1.7

1sj<h

and 3.2.1.8 in 3.2.1.1 gives

m m p. 8 _

E(H(OIXk)) < 2 ph c 2 —1 p.hqk 1 3.2.1.9

h=1 j=1 ph 3

jfih

This proves the theorem with

A = c 2 2 (p.ph) p.h < C(m-l) 3.2.1.10

h=1 j=1 3 3

j#h

Q.E.D.

In Rényi's derivation for the case of independent

random variables q turns out to be the maximum interclass

Bhattacharyya coefficient.

Corollary: Under the hypotheses of the theorem, the

probability of error for the Bayes decision pro-

cedure is bounded by

1
P(e) S E Aq , k = 1,2,... 0 3.2.1011

where A is defined in 3.2.1.10 and q is the maximum

of the qjh defined in 3.2.1.6.
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Proof: Hellman and Raviv [H-S] showed that the

error probability for the Bayes decision procedure

is bounded by % the equivocation which this theorem

shows is bounded in turn by Aqk-l.

Q.E.D.

In the argument between 3.2.1.4 and 3.2.1.5,

a value of a = % was chosen in order to argue that qjh < l

in 3.2.1.6. With that accomplished, one can establish a

tighter bound on the probability of error by defining, as

an alternative to qjh in 3.2.1.6,

 Q

Pj(X2IX1) a

hPh(szX1’
 

q.‘ = inf E

0<a$1

N
I
H

Since the definition of qjh exhibits a value of a, a =

for which the expectation is less than 1, then

I

qjh s qjh < l

Letting 3 denote the value of a for which the infimum

is obtained, and following the subsequent steps of the

theorem gives an alternative to 3.2.1.9.

2(H(0|xk)) <

"
P
4
3

p
1 h j=1

J#h

c 2 31-5 (‘)( ')n‘1 3 2 1 13h ph pjh a q . . .

where
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q1 = max(q.fi) and

Ji‘h 1

— _ a 1-5

1

This approach gives the result of the theorem with q'

defined differently from q and

> ll

(
'
3

H
0
4
3

m
.
u
0
1
5

While 3.2.1.13 gives the strongest version of the theorem

obtainable with this approach, there is no straightforward

general algorithm for computing 3, so that 3.2.1.9 is

probably easier to use except when the distributions have

a convenient form. Also, pjh(3) is not necessarily

algebraically less than pjh(%) so 3.2.1.9 might= thr

give smaller values than 3.2.1.13 in some cases.

3.2.2 Bounds Based on the Distance

Between Distributions

Several investigators [K-l, K-2, L-2] have used the

Bhattacharyya coefficient to bound the probability of

error of a maximum likelihood rule. Kadota and Shepp [K-l]

and other statistical literature call this quantity the

Hellinger integral. This coefficient is an inner product

of two hypothesis conditional probability densities. Using

0 to denote the Bhattacharyya coefficient for two—class
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hypothesis testing, the definition of p for discrete

distributions is

_ ‘1
p — (Pl(x)P2(x))Z

X

where Pi(X), i = 1,2, is the mass function under hypothesis

Hi. From Schwarz's inequality one can see that 0 < p 6 1

since

2P(X)P(X)1"1s 2P(X)P(X)1”’=1

and the arguments are non—negative over their domains.

Several functions of p can be used to describe a "distance"

between the density functions, with - log 0 being a

favorite since it is non-negative and - log 0 = 0 when

P1(X) E P2(X). Since the Bhattacharyya coefficient has

played such a significant role in the recent literature,

several results will be presented in order to show its

role in providing error bounds for m—class maximum likeli-

hood hypothesis testing using dependent random variables.

In m-class hypothesis testing with m > 2, the inter-

class Bhattacharyya coefficient, pij’ is given by

= g ..=
p.. (Pi(X)Pj(X)) for 1,3 l,...,m.Z
13 X
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The derivations of error bounds related to the

Bhattacharyya coefficient are designed by treating all of

the Observed patterns as a single pattern, rather than

defining a bound that is a function of the number of

patterns. This is in distinct contrast to the kinds of

bounds derived by using either majority decision functions

or equivocation. Further, it changes the mathematical

treatment of the dependence to a matter Of the computation

of 0, making that computation more complex as the number

of observations increases.

In order to use the Bhattacharyya coefficient

approach to bound the error probability after the k-th

pattern in a sequence one must let the argument of Pi(')

be Xk, a sequence of real variables whose possible values

are the set of possible sequences of the first k patterns.

When the patterns have first order dependence, the proba-

bility pi(xk) is given by

k

Pi(Xk) = 1 Pi(xylxy-1)

where Pi(Xl|X0) is the prior probability of X1 under

hypothesis Hi’ and Xk = X1,X2,...,Xk. Then the interclass

Bhattacharyya coefficient between class i and class j

after k Observations is given by

k

= 2 H P.(X IX _

Xk y=1 1 Y Y 1

(k) k
on P. X 3.2.2.]-913 ) 3( ley_1)

 



83

When each pattern, Xy' has n binary digits then X

k

Y

has 2n possible values, and the sum in 3.2.2.1 has 2n

(k)

ij

summing m(m-l)-2nk terms. While this technique does not

terms for each 0 . Computing all pig) for i < j requires

provide a closed form solution for the error bound as a

function of the number Of observations, it does suggest

computerized experiments to determine a sequence of error

bounds, subject to whatever limits exist on computing

resources .

(k)
The computational technique for evaluating pij can

 

take a recursive form evidenced by expanding 3.2.2.1 as

(k) _ 8
pij — 2 2 (Pi(xklxk_l)Pj(xk|xk_l)) .

x x
k k-l

%
2 (Pi(Xk_1IXk_2)Pj(Xk_lIXk_2)) ...

x
k-2

%
2 (Pi(X3|X2)Pj(X3IX2)) .

x
2

t
X (Pi(X2IXl)Pj(XZIXl)Pi(XlIX0)Pj(XlIX0))

1

3.2.2.2

Defining the factors in the equation above

_ %
rij(X2) — é (Pi(x2|xl)Pj(lexl)Pi(x1|xo)Pj(xllx0))

1
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and

r..(X ) = 2 (P.(x |x )P (x |x ))5r (x )
1] k X 1 k ,k-l j k k-l ij k-l

k-l

for k > 2

gives

(k) _
pij — Z r1j(Xk) for k 2 2

X

k

. . . (k) -
W1th th1s techn1que, one can compute the pij sequent1ally

by saving the 2n values of rij(Xk) at each stage for use

at the next stage.

The use of pig) in computing error bounds will now

1]

be considered. The quantity pij for a single observation

appeared in Theorem 3.2.1.1 and it was pointed out that

for the i.i.d. case the theorem became

E[H(OIXk)) s Ap*k

where p*Emax pij and the superscript represents exponen-

i753

tiation. If one starts with the approach of the previous

(k)
theorem and attempts to include pij in the expression for

the error bound, then one obtains the following theorem.

Theorem 3.2.2.1
 

Under the hypotheses of Theorem 3.2.1.1,

m

1: (k)
X . .j=1(pjph) oh]

j#h

2(H(e|xk)) < c

I
I
M
B

h 1

 ‘
.
A
X
.
‘

I
~
.
-
.

1
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Proof: The proof commences in the same manner as

before through 3.2.1.4. Following 3.2.1.4,

  

 

   

h ph

E g :3;:1|:1' ; 8 ab = 2 E :3::1::1’1: LSPh(xk)

i=1 h 13 i-l Xk i=1 h 1 1-1

1‘ I»;
= 1k i:l(Pj(XiIXi-11Ph(XiIXi-l)) = phj(k)

x

so that

m p. %

E{H(O|Xk)|0h} < C 2 —l] ph.(k)°

j=1 ph 3

j#h

Therefore

k m m 31 3 (k)
E(H(O]X )) < E phC Z phj

1 j=1

j#h

which is the result stated in the theorem.

Q.E.D.

While this does show the role of the interclass

Bhattacharyya coefficient for k Observations, it is not

as tight a bound as Lainiotis [L-3] has achieved working

from Chu and Chueh's premise that

P < 2 P (iqj) .
e i<j e
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Lainiotis' upper bound on the error probability of the maxi-

mum likelihood decision is given in the following theorem.

Theorem 3.2.2.2

In the m-class hypothesis testing problem with prior

probability pi of hypothesis Hi and conditional proba-

bility Pi(X) under hypothesis Hi' the probability of

error of the maximum likelihood decision is bounded

 

above by

aij -aij dij l-aij

P s 2 p. p. XP.(X) P.(X) 3.2.2.3
e i<j 1 j X 1 j

for 0 S 0.. s l and i,j = l,...,m.

1]

Proof: The proof is given by Lainoitis [L-3] and

will not be repeated here.

For maximum likelihood decisions using the Bayes

posterior distribution after k observations on

dependent random variables, the argument X in

3.2.2.3 becomes xk, and the Pi(Xk) are the Bayes

posterior distributions.

While there is no general way to choose the

aij in 3.2.2.3 to minimize the bound, one is free

to choose any convenient value in [0,1] for aij'

When the hypotheses have equal prior probability,

choosing aij = % for all i and j, and applying

Lainiotis' theorem gives
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'
U

I
A

5
“
“

E p..

i<j 13

for a single observation or

P s 1 2 p..(k) 3.2.2.4

m <

for the decision after k observations, which compares

with Pe < C(m-l)pij(k) in Theorem 3.2.2.1. Even using ;

3.2.2.4, there is the possibility that the bound 2

 is greater than 1. There are m(m-l)/2 terms in the

sum in 3.2.2.4, and if all Of the pij or pij(k)

very close to 1, then the bound can be close to

u
l
‘
O
‘

(
[
'
1

are

(m-l)/2. However, in the case described, all of

the distributions are nearly identical, and one

would anticipate difficulty in making decisions.

Lainiotis' theorem agrees with results pub—

lished by Kailath [K-2] and Kadota and Shepp [K-l].

Kailath's upper and lower bounds for the two class,

equal prior probability, maximum likelihood decision

are

u
b
l

l
-
'

'
0

I
A

'
U

/
A

N
I
H

'
0

while Kadota and Shepp retain the prior probabili-

ties, p1 and p2, for the bounds

1 . 2

-2-m1n(P1,p2)o \< Pe s “P p o-
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G. T. Toussaint, in a recently published paper

[T-3],derived an upper bound on the interclass

Bhattacharyya coefficient by using the Kolmogorov

variational distance, which might be easier to

calculate than is the Bhattacharyya coefficient.

The Kolmogorov variational distance between two

hypothesis conditional distributions is defined as

 
Vij = §|P1(X) - Pj(X)

The theorem is as follows:

Theorem 3.2.2.3
 

(Toussaint) In m-class hypothesis testing using

maximum likelihood decisions with equal prior

probabilities, the probability of error is bounded

by

"
U

/
A

5
|
“

2 (l - V../2)

i<j 13

Proof: Using Chu and Chueh's upper bound

P s X P (ilj)
e i<j e

with

Pe(1,j) = §m1n{piPi(X);ijj(X)} 3.2.2.5

and

 :
l
-
I
’
.

.
..

.
-
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l . .
pi = pj = a for 1,] = l,...,m

gives

P < l 2 2m1n{P (X)-P (X)} 3 2 2 6
e ‘ m . . i ' j ° ' ' ’

1<j X

‘
_
'
1

5

Kailath [K-2] shows that

. . l

Pe(l,j) = pi - 5 leiPi(X) - p.Pj(X)| 3.2.2.7

X J

 One can use 3.2.2.5 on the left of 3.2.2.7, so that

for pi = p3. = %, the prior probabilities factor and

cancel leaving 3.2.2.7 reduced to

. _ _ 1 _
m1n{Pi(X),Pj(X)} — 1 2 iIPi(X) Pj(X)I

= 1 - % v.. 3.2.2.8
1]

Using 3.2.2.8 in 3.2.2.6 completes the proof.

Q.E.D.

The functional form of the Kolmogorov variational

distance prohibits the type of factoring used in

3.2.2.2 to compute pij(k)' So when the argument of

the hypothesis conditional probability is Xk, the

sequence of k observations, the storage requirements

for Pi(Xk) grow exponentially with k.
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3.3 Summary

The majority decision procedure is designed to allow

one to apply the Central Limit Theorem to describe the

error probability as the number of observations grows with-

out bound. The behavior of the resulting normal distri-

bution function is well known, and tabulated values are

readily available if one wants to obtain an estimate of

the error probability in a specific case. There is no way

to compute a number of Observations (finite) which is

sufficient to guarantee that such an estimate is an upper

bound on the error probability. Computationally, this

procedure has the advantage that, once the single pattern

variational distance is computed, arguments for the limit-

ing distribution can be easily hand calculated.

Consideration of the equivocation of a sequence of

Observations provides the valuable insight that the expec-

tation of the amount of additional information that can

be Obtained by taking additional samples goes to zero as

the number of samples increases. The functional form of

the equivocation, coupled with the probability of error

expression for the Optimum processor described in Chapter

II, defines a computable upper bound for the error proba-

bility--which was missing in the first approach using the

Central Limit Theorem. Once the parameters of the bound

have been computed--generally a job which requires the

aid of a digital computer-—one can use a slide rule to
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determine the number of Observations required in order for

the error bound to assure a given error level.

The error bounds obtained from the Bhattacharyya

coefficient and the variational distance appear to be

easier to calculate than the equivocation bound, but have

the drawback that the bound might exceed 1 regardless of

(k)
the number of observations. Also the computation of pij

and Vij' when the distance is between Pi(Xk) and Pj(Xk),

can be as burdensome as computing the quantities needed

for the equivocation bound. The recursive method

described for the Bhattacharyya coefficient produces an

algorithm for which the computation increases linearily

with the number of Observations, and the storage require-

ments are fixed. The variational distance bound, on the

other hand, forces exponentially growing amounts of compu-

tation and storage as one tries to compute the bound for

successively larger numbers of observations.

 ”
a
“

.
"

.



CHAPTER IV

EXAMPLES OF DECISION PROCESSES

AND ERROR BOUNDS

The results presented in the previous two chapters

suggest a wide variety of test cases to illustrate the

 
theory involved. Several such tests have been simulated E

on the CDC 6500 computer, and the results are summarized

in this chapter. The first example shows how the processor

learns the symbol code length of the source when the

sources have different code lengths and there is no

channel noise. Next, a noisy channel--the binary sym-

metric channe1--is used, and the sources all have the same

code length. In this latter case, only the symbol distri-

butions distinguish the sources, and the channel error

rate is unknown. Decisions are compared with decisions

made using a minimum distance estimator. Computational

overhead for computing Bayes posterior conditional distri-

butions from the l-dependent Observations is examined, and

a processing technique is proposed which reduces the com-

putational overhead to the amount one would require if

the Observations were independent. The proposed processing

92
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technique is used on the binary symmetric channel with

favorable experimental results. The convergence and

error probability theorems of Chapters II and III do not

apply to this subOptimum technique.

Finally, the various error bounds presented in

Chapter III are compared for a Specific example of distri-

butions for three sources. The upper bounds in particular

indicate a requirement for a large number Of observations

to obtain a desired error rate, although the limiting

distribution derived from the majority decision function

suggests that low error probability could be obtained from

relatively fewer observations.

4.1 The Bayes Decision Process Applied

to the Symbol Synchronization Problem

Experiments programmed for the CDC 6500 computer

illustrate the behavior of the posterior distributions

used in the optimum decision procedure described in

Chapter II. Figure 4.1 shows the results of one set

of experiments. In these experiments each of three sources

used a different symbol code length--one, two and three

binary digits, respectively. The probability law govern-

ing the i.i.d. symbol selection process for the respective

sources is shown in Table 4.1. The receiver was simu-

lated by making observations on patterns containing 3

binary digits, the smallest pattern length that could be

used and still satisfy the requirement that the length

 t
1
-
I
'
.
-

,
~
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Table 4.1 Symbol Generating Probabilities.

_g —

 

 

 

 

Source Source Code Source Probability

...... ..
2

l l 0 0.75

l 0.25

00 0.127

2 2 01 0.375

10 0.375

11 0.125

000 0.09375

001 0.125

010 0.15625

3 3 011 0.125

100 0.125

101 0.09375

110 0.09375

111 0.1875

 

Symbol selections by the sources mentioned in the

example of Figure 4.1 are governed by the respective

distribution shown above.
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of Xk be at least the longest symbol code length. Figure

4.1 shows the posterior conditional probability that

each source is active as a function of the number of

observations. The ordinate intersections represent the

prior probabilities. After any particular Observation,

the decision procedure decides that the source with the

greatest posterior probability is active.

Figure 4.1 illustrates that the initial bias, im-

posed by the prior distributions, can be overcome by this

decision process. The discussion in Chapter III suggests

that the distance between the probability distributions

of the Observations, which is influenced by the source

distributions, should affect the number of Observations

required to overcome this initial bias. Posterior distri-

butions for the synchronization instant P(Tkl2,Xk) were

computed as well. In the first example with m2 = l, Tk

is l for all k, so that once the source is correctly

decided the synchronization instants are obvious. In the

second example with 2 = 2 and m = 2, the true value of
2

Tk alternates between 1 and 2. Since the prior proba-

bility for the correct value of T was 0.714, the posterior

l

probabilities P(Tkl2 = 2,Xk) produced correct decisions

for all k. In the third example with 2 = 3 and m = 3,
2

the prior probability for the correct value of T1 was

0.222, vs. values of 0.333 and 0.445 for the other possi-

bilities for T1' This, combined with the probability

'
.
.
a

.
N
_

 I
1
'

1
.
'
5
.
‘

4



98

distribution for source 3, led to needing over 20 pattern

Observations before correct synchronization decisions were

made, even though the source decision was correct after

every observation.

4.2 The Binary Symmetric Channel

The binary symmetric channel illustrates the notion l

of an unknown channel parameter. As the name implies, the

noise in the channel has the net effect of changing a code

digit one to a digit zero with probability p and of chang— 1

 ing a code digit zero to a one with probability p, as Em

diagrammed in Figure 4.2. Thus p is the probability

that a binary digit is complemented as it passes through

the channel, and will be called the complementation rate.

 

 

 

Figure 4.2

The Binary Symmetric Channel

A digit passes through the channel unchanged with proba-

bility l-p. As in the data generation model previously

considered, the channel is connected to a source which

generates a binary digit code of length m and transmits
21'

the codes in a continuous stream. The receiver processes



99

the output as n binary digit patterns, Xk, k = 1,2,...,

n 2 m2 for all 2. Yk will denote the input which pro-

duced the output Xk. Both Xk and Yk can be any one of the

2n vectors having n binary elements, but Xk is not neces-

sarily equal to Yk because of the noise properties of the

channel. The quantity p is an unknown parameter.

The full set of assumptions for this special case

follows.

1. Patterns of n binary elements, Xk’ are received

through the binary symmetric channel of Figure

4.2.

2. The value of the parameter p is unknown.

3. Changes of distinct binary digits in a pattern

are mutually independent.

4. Given the index of the active source, 2, and

synchronization instant, T the distribution
kl

of Yk at the 1nput, denoted by Pin(Yk|2,Tk), 18

known.

Define C(kak) as the number of bit positions in which Yk

and Xk differ; C(Yk,Xk) is the Hamming distance between Y
k

and Xk'

Let Zj, je{l,2,...,2h}, denote the base 10 values

corresponding to the strings of base 2 digits which can

be assumed by Yk and Xk' The probability of receiving

Xk = Zj when Yk = 21 was transm1tted 1s

‘
W
w
o
-

.
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C(Z ,Z.) n-C(Z ,Z )

P(Xk = ZjIY = Z-) = P l J (l-p) l J

i,je{l,2,...,2n}

The conditional probability of receiving a particular

vector, Xk = Zj, can be represented by

P(xk zjlp.2,Tk)

 
n

2

= 1:1P1n(Yk = Zilp,2,Tk)P(Xk = szYk = Zi,p,2,Tk) ,

2n

= i:lPinwk = Zi|2,Tk)P(Xk = zjlyk = zi)

n

2 C(Zi,Z.) n-C(Zi,Zj)

= 1:1P1“(Yk = zi|2.Tk)p (l-p)

|
|
l
>

i,je{l,2,...,2n}, 0 s p s 1, 2 = l,...,L,

and Tk = l,...,2.

This equation defines the quantity Qj(p,2,Tk) =

P(Xk = Zjlp,2,Tk) as a polynomial in p of degree n. Given

2 and Tk’ there are 2n of these polynomials, one for each

possible value of Xk'

Theorem 2.5.1 says that if members of the family

{P(X Ip,2,T )} are distinct, then strongly consistent

estimators exist for p, 2, and Tk' Saying that members
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of the family are distinct means that for any (a,b)?(c,d)

there exists at least one value Zj such that

P(Xk = Zjlp,2 = a,Tk = b)7€P(Xk = Zjlp,2 = c,T = d) when
k

those quantities are defined. As a result, the hypotheses

of Theorem 2.5.1 require that no two synchronizations

have exactly the same set of Zn polynomials Qj(p,2,Tk)

for all 2n values of j. Equivalently, for (a,b)#(c,d)

Qj(p,2 = a,Tk = b) must not have the same set of coef-

k = d), j€{l,2,...,2n}, when é

(a,b) and (c,d) are such that Qj(:) is defined. In turn,

ficients as Qj(p,2 = c,T

 
the coefficients of Qj(p,2,Tk) are defined above to

be linear combinations of Pin(YkI2,Tk), so it is reason—

able to look for a condition on the family {Pin1Ykll’Tk)2tTk

which guarantees that linear combinations of members of

that family are unique.

Identifiability is such a sufficient condition.

Consequently, one can proceed with the Bayes decision

process to simultaneously decide the source, synchroni—

zation, and channel complementation rate and assume that

the sequences of decisions will converge provided that

{Pin(Yk|£’Tk)}2,Tk is known to be an identifiable family

[T-l, T-2, Y-3] or provided that the members can be shown

to be linearly independent.

The learning capability of the processor was demon-

strated for a binary symmetric channel with unknown comple—

mentation rate. The complementation rate was the parameter
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to be learned. A Fortran language program, BSC MC--for

Binary Symmetric Channel, Monte Carlo--provides appropri-

ate data generation, channel simulation, and Bayes rule

processing. For coding convenience, BSC MC processes

sources whose code length is 3 binary digits and uses

observations of 3 binary digits. BSC MC allows up to 10

discrete values for the channel complementation rate; two

values, 0.05 vs. 0.1, were used in the examples which are

reported here. The program is set to cut off after 500

observations. Then the prior distributions can be re-

initialized for as many Monte Carlo iterations as one

desires.

As a check on the data generated, BSC MC maintains

counts of the number of times each symbol is generated,

the number of bits changed by the channel and the number

of times each observation vector value is Observed. This

last is used to compute the empirical mass function

P(Xk) which can be used in an alternative minimum dis-

tance estimate in which

distance = min max I P(Xk) - P(X) '-

2,Tk X

The decision procedure decides that the values of the

minimization arguments for which the minimum is achieved

give the source and synchronization. In the examples run,

the optimum decision and the minimum distance decision

 ‘
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agreed with respect to the source and synchronization, but

not always with respect to the channel parameter (channel

complementation rate).

A second program, called BMCIND (for Binary symmetric

channel, Monte garlo, INerendent) is identiCal to BSC MC

except for a subroutine named POST which computes the

-
‘
1
(
m
a
x
i
m

posterior distributions. For BMCIND, POST computes the

posterior distributions as if the Observations were inde- I

pendent. After the k-th observation, the version of

POST used with BMCIND computes

1
r
— 

P(xklp.2,Tk)P(p|2.Tk.xk_1)

= :P(xklp.2.Tk)P(pl2.Tk.xk_1)
 P(pl2.Tk.xk)

where the denominator is defined to be P(Xkl2,Tk),

= P(Xkl2,Tk)P(TkI2,Xk_l)

g P(XkT2,Tk)P(Tk|2,Xk_l)

k

P(Tkl2,Xk)

where the denominator is defined to be P(Xkl2),

= P(xk|2)P(2|xk_l)

P(xklz)P(2[xk_17‘°
 P(2IXk)

By contrast, the version of POST used in connection with

BSCMC computes

. k. k :P(Xk[Pp2,Tk.Xk_lIP(pr2,Tk,xk_l)
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where the denominator is defined to be P(Xkl2,Tk,Xk_l),

= P(Xkl2,Tk,Xk_1)P(TkI2,Xk_l)

é P(xkl2,Tk,xk_l)P(Tk12,xk_l)

k

 P(Tkl2,Xk)

where the denominator is P(Xkl2,X and We
k-l) '

P(xklz,xk_l)P(2|xk_l)

— iP(Xk[2,Xk_1)P(2IX

 P(2le)

k-l)

 

M
y
:

.
(
.
-
"
1

.
a

.

1'

The "posterior distributions,’ computed in connection with

BMCIND, when used with a maximum likelihood decision pro-

cedure, learned the unknowns but appeared to converge less

rapidly than did the Bayes processor. The quantities com-

puted by the version of POST used with BMCIND coincided

with the Bayes posterior conditional distributions only if

the observations were independent. The motivation for using

these quantities when the observations are dependent stems

from a consideration of storage requirements and compu-

tation volume, which is discussed next.

In considering the storage requirements for computing

the Bayes posterior conditional distributions for the pro—

cessor described in Chapter II, one must first realize

that there are 2n values of the conditional probability

k-l
P(Xkl2,Tk,X ) for each set of values of the conditional

k l
arguments. The dependence on X - is a result of the

possibility that Tk#l, i.e., a symbol code begins in Xk-l
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and ends in Xk as described in Section 2.1. Since suc-

cessive symbol codes are independent, only the cases in

which symbol codes overlap observations Xk-l and Xk will

tend to affect the storage of the posterior conditional

distributions. If Tk = 1, then the conditional probability

is independent of X and F‘
k-l'

k-l
P(Xkl2,Tk,X ) = P(Xkl2,Tk).

.
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If Tk = 2, then the conditional probability is dependent

on the last m2 — 1 digits of Xk-l‘ In general, 1_

k...

 
P(Xkl2,Tk,X 1) is dependent on the last

d = [m — Tg k + 1]
mod mfi

digits of X While d is in fact a function of m2 and
k-l'

Tk' writing d rather than d(m£,Tk) is convenient because d

will be used as an exponent in subsequent expressions.

Taking into account the above description of how

the value of T describes the dependence on xk-l’ one can
k

k-l
see that there are 2n+d values of P(Xkl2,Tk,X ) for each

value of 2 and Tk' Given 2 = A, there are mA values of

T so for each source, A, there are
kI

n+0Z 2 = 2 + 2n+mA—1 n+1
+ ... + 2
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k-l) to compute and store, whichvalues of P(Xk|£,Tk,X

could tax the capacity of a very large computer. For

example, suppose one of the sources which might be ob-

served uses a symbol code length, including parity digits,

of 9 binary digits. Suppose further that this is the

longest possible source code length, so n is chosen to be

9. Then

- l) = 2 - 2 > 2 .

This shows that just storing the conditional distribution

for a single source could use up all of the immediately

accessible, individually addressable core storage of the

latest model computers. The usual storage requirement for

a Markov chain having 29 states is 218 values, but the

analysis based on the value of Tk was aimed at identifying

redundant values that need not be stored.

The technique used by subroutine POST in the BMCIND

program would reduce the storage requirements to 29 in

the case cited above, or a reduction factor of over 2(n—l).

Table 4.2 summarizes the results of one computer

experiment with the binary symmetric channel. In this

instance, each of three sources used three binary digits

in its symbol codes. The channel error rate was to be

either 0.05 or 0.10. Ten runs were made, and after the

500-th observation a decision was made about the channel
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error rate, about which source was active, and about the

synchronization instant. Results of the optimum processor

(BSC MC), one subOptimum processor (BMCIND), and the mini-

mum distance decision described earlier in this section

are compared.

Table 4.2 Comparison of Three Decision Processes.

 

Number of Correct Decisions in

10 Monte Carlo Runs

 

 

[
fi
w
v

A
u
,
-

1

 

Channel Bit Active Synchronization

Complementation Rate Source Instant

BSC MC 4 10 10

BMCIND 2 10 10

Minimum

Distance 6 lO 10

 

The Bayes decision process, a Bayes-like process,

and a minimum distance decision process were used to decide

the bit complementation rate, source, and synchronization.

In these experiments, the prior distributions were

randomly generated before the first run, and the same

prior distributions were re-established for each of the

following 9 runs.

It is heartening to note that BSC MC, which uses the

Bayes posterior distribution, performs somewhat better

than BMCIND, which uses the Bayes formula with the

marginals of the conditional distributions. But the

superior performance of the minimum distance estimator

was unexpected.
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Examination of the history of the posterior distri—

butions computed by both BSC MC and BMCIND shows that the

decisions made after the earlier observations vary, but

after about 25 observations, all subsequent decisions are

identical, whether they are correct or not. This suggests

that a type of bias develops that is unlikely to be over-

ruled if the probability distributions are very close.

The posterior distributions of quantities that are quite

distinctive,such as the source and synchronization in-

stant in this case, tend to be capable of producing correct

decisions even if the decisions regarding other quantities

are incorrect.

4.3 Error Estimates and Bounds

This section presents numerical results obtained by

applying the various error bounds of Chapter III to a

specific example. Details of the example were chosen for

computational expediency rather than to represent a par-

ticular application. Specifically, the example is not

typical of the models one would expect in the symbol

synchronization problem.

In the example there are three pattern classes, for

which a pattern is one binary digit. Each class has a

stationary first order dependent distribution. This is

intended to mean that for fixed 2 and m--£,me{0,l}--and

any class i

 I
A
-

_
D
v
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= m) is constant for all k = 2,3,....

The values used for the class conditional joint proba-

bility distributions are tabulated below.

Pi(Xk = 0,xk_l = 0)

Pi(xk = o,xk_1 = 1)

P.(xk 1,xk_1 = o)

Pi(Xk = 1.xk_l = 1)

The values of

i=1

0.40

 

i=2 i=3

0.30 0.10 §_-

5
a

s
0.05 0.20 *

0.45 0.30

0.20 0.40

the joint distributions lead to the sample

conditional distributions below, which are used to obtain

the upper bound based on the equivocation measure.

P.(Xk = lek-l = 0)

P.(Xk = 0|xk__l = 1)

P.(xk — 1|xk_1 = 0)

Pi(Xk = 1|xk_1 = 1

0.375

0.333

0.625

i=2 i=3

0.400 0.250

0.200 0.333

0.600 0.750

0.800 0.667

An important part of the equivocation bound argu—

ment, 3.2.1.6 of Chapter III, states that
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 Q < l for j#h

[Pj(xklxk_l)]k

E h
PhkaTXk-l)  

A matrix of the values obtained for the above expectations

obtained for this example is given below.

h=1 h=2 h=3 {7

j=1 1.000 .968 .963 i

j=2 .971 1.000 .988

j=3 .945 .987 1.000

 
The diagonal terms should obviously be 1 and serve as a

check on the computation.

The classes were assumed to be equally probable.

The prior class conditional distribution of the first

observation and the corresponding interclass Bhattacharyya

coefficients are tabulated below. The values of Pi(xl = -)

were chosen to make Pi(Xk) stationary with respect to k.

l=l i=2 1=3

Pi(xl = 0) 0.529 0.25 0.308

P.(X1 = 1) 0.471 0.75 0.692

Prior Class Conditional Distributions

of the First Observation
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013 = 031 = 0.974

023 = 032 = 0.997

Interclass Bhattacharyya Coefficients for the

Distribution of the First Observation

Assuming that C of Lemma 1, Chapter III, is not

greater than 2, the value of A in 3.2.1.10, is 3.907, and

the value of q in 3.2.1.9 is 0.988. So the error bound

is

Pe < 1.953 x 0.988k'1.

Under this approach, one is very much at the mercy of the

value of q, which in this case is very close to the maxi-

mum possible value, one. Figure 4.3 shows that for this

example the equivocation bound gives the largest values of

all the techniques which were compared. Approximately

367 observations would be required in order for this error

bound to assure an error rate of less than 0.05.

Comparing the above analysis based on the equi-

vocation bound with the asymptotic distribution from the

majority decision function approach reveals sizable differ-

ences in the error estimates. Using the form for the m

pattern class case, one calculates

"
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n
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Equivocation

Bound

      

  

 

  

Lainiotis' Bound

(Average Interclass

Bhattacharyya Coefficients)

Toussaint's

Variational

Distance Bound

Asymptotic Distribution

from Majority Decision Function

1 i, 11 1 l __J

5 10 15 20 25 30

Number of Observations

Figure 4.3 Comparison of Error Bounds
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1. m

P? X = —_ X .P. x

1( k) 1 " Pi j=1 p] 3( k)

j#i

and obtains the values tabulated below.

i=1 i=2 i=3

1»ink = 0) 0.279 0.419 0.390 f.

i

A = ipi(xk 1) 0.721 0.581 0.610 S

The next task is to find 5 such that  
fiipi(xk) - P§(Xk)l ; 26

where the Kolmogorov variational distances on the left

turn out to be 0.501, 0.337, and 0.164, respectively, for

i = 1,2,3. Taking one-half the minimum distance for 6

gives 6 = 0.082, and e = — - — = 0.479. The values of

the asymptotic distribution of the error probability as

a function of the number of observations is given in the

lowest curve of Figure 4.3 labeled "Majority Decision

Function Asymptotic Distribution."

The bound suggested by Lainiotis in 3.2.2.4 is

plotted as the middle curve in Figure 4.3. The values

are all smaller than the values obtained from the

equivocation method, plotted in the top curve, for the

number of observations investigated. Whether this is

true for large numbers of observations is not clear, since
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the form of the Lainiotis bound does not reveal its

asymptotic behavior. A consequent advantage of the

equivocation bound is that, once the coefficient and base

are calculated, one can estimate values for large numbers

of samples by using a slide rule. Conversely, the

Lainiotis bound requires a rather tedious recalculation,

best done on a digital computer, for each successive

number of observations.

As one comes to the error bound proposed by

Toussaint, the storage requirements for the probability

distributions threaten to be very costly. However, the

bound was computed on the basis of three observations and

came out to be 0.707, the smallest value provided by any

of the analyses. The value is spotted on Figure 4.3.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary of the Thesis r:
 

Pattern recognition techniques offer a choice be-

tween unsupervised learning, which requires prior knowl—

edge of the probability distributions governing the events

 producing the patterns, and supervised learning, which re-

quires a set of training data for computing parameters of

the decision function. This thesis has ignored supervised

learning techniques and the problems that arise in deter-

mining that the training data are sufficiently representa-

tive of the total population to assure a low probability

of error. Instead, this work has demonstrated that cer—

tain statements about probability of error for m-class

(m > 2) unsupervised pattern recognition can be extended,

in an apprOpriately modified form, to problems involving

statistical dependence.

The motivating problem for this research, symbol

synchronization for an unknown source code length, has been

shown to be a problem in unsupervised learning with sta—

tistically dependent data. Several solutions to this

problem have been presented, including a Bayes decision

115
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process and a stochastic approximation technique, both of

which were shown to produce a sequence of decisions which

converge to the correct decision. A subOptimum technique,

formally like the Bayes process for independent random

variables,was suggested, and empirical results were en-

couraging.

New results include applying the interclass

Bhattacharyya coefficient to a sequence of observations

having first order dependence in order to bound the proba—

 bility of error of the Bayes decision process. Other error

1
1
"
»
.

i

bounds are presented, one based on the eXpectation of the

additional information in successive samples and one based

on the Kolmogorov variational distance. The asymptotic

distribution of the error probability for a subOptimum

process provides an in-the-limit statement about the

error rate of the Bayes decision procedure. It is inter-

esting to note that the Bhattacharyya coefficient appears

in the information theoretic bound and the Kolmogorov

variational distance plays a role in the asymptotic distri—

bution of the error probability. The probability of error

statements which are applied to decision problems using

dependent random variables have turned out to use these

two measures on the distributions, the Central Limit

Theorem and expectations of products of a very limited

class of dependent random variables. In all of this, the

computational expediency of the resulting algorithms has

been a foremost consideration.
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5.2 Recommendations for Continued Research

Unsupervised learning methodology would benefit from

an influx of new decision processes which could be used

as alternatives to the Bayes decision process. The

majority decision techniques may be an important step in

this direction. Chu and Chueh recommended that the error

lg“-

estimates derived from the majority decision process be ”

considered as upper bounds on the error of the Bayes pro- ,

cess, but that decisions should be made by the Bayes pro-

cess in order to achieve the minimum decision error

 probability. An alternative approach would be to use :—

easily computed local decisions as each pattern is ob-

served and refine the estimate of the error probability

based on properties of those local decision functions.

This is essentially the philoSOphy behind the Bayes

majority decision function, and others might be feasible.

The objective, of course, is to reduce the computational

burden imposed by the Bayes decision process but with a

technique whose convergence and error properties could be

well defined. The "posterior distributions" described in

Chapter IV in connection with the program called BMCIND

provided a computational advantage to the Bayes posterior

distributions, but the convergence properties of the

BMCIND process need to be determined. The BMCIND process

was a semi-Bayes process which would be the Bayes decision

process if the observations were independent. As work

moves toward decision processes which are more and more

unlike the Bayes decision process,it will most likely be
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conducted by considering i.i.d. random variables at first,

with the hOpe of generalizing to dependent random variables

at a later time.

Since the Bhattacharyya coefficient has proved to

have an important relationship to the error probability

for the Bayes decision process, additional studies of its r“

properties might prove useful. In particular one might be .

able to describe the class of distributions for which

pij(k) defined by 3.2.2.1 is a monotonically decreasing  
function of k. One could also attempt to determine

I
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relationships between the Bhattacharyya coefficient

and error rates for non-Bayes decision procedures in

either a supervised or an unsupervised mode.

Supervised learning techniques include the use of

a linear combination of functions called potential

functions [A-Z, B-l, P-4] to approximate unknown proba-

bility distributions. Unsupervised learning has tra-

ditionally proceeded by assuming that, if one did not

have classified training data, then one would assume that

the probability distributions for the pattern classes are

known to provide a starting point around which a decision

process can be built. Knowing the probability distributions

has been a demanding assumption for unsupervised learning.

It is tempting to try to relax that assumption, and per-

haps that could be done by using potential functions.

The first task would be to determine whether there are
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any conditions for the traditional unsupervised learning

problem (in which all pattern classes are represented

randomly in the data) under which combinations of potential

functions would provide useful estimates of unknown pattern

class distributions.

In general the properties of supervised learning

I
.
1
! )6

techniques using dependent observations are not described

in existing literature. The work of C. K. Chow is an

'
I
“
(
J
r

9
m
u
m
'
s
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exception, of course. Aside from the mathematical com-

plexities introduced by considering dependent random vari-  
ables, there are problems in that a large number of

dependency models are candidates for consideration. Chow

has had some success in applying information theoretic

methods to this type of problem. Perhaps other methods

could be fruitful as well.
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