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ABSTRACT

THE MATHEMATICAL MODELS OF NUTRITIONAL PLASTICITY AND THE
BIFURCATION IN A NONLOCAL DIFFUSION EQUATION

By

Yu Liang

The thesis consists of two parts. In the first part, I investigate the developmental mechanisms

that regulate the nutritional plasticity of organ sizes in Drosophila melanogaster, the fruit fly. Here

I focus on the insulin-like signalling pathway (IIS) through which the developmental nutrition is

signalled to growing organs. Two mathematical models, an ODE model and a PDE model, are

established based on the IIS pathway. In the ODE model, the gene expression of each component

in IIS pathway is considered as model variables. By analyzing the steady states of the ODE model

under different parameter settings, the hypothesis that the difference of the nutritional plasticity

among all organs of Drosophila melanogaster is due to the variation of the total gene expressions

of components in IIS pathway is verified. Furthermore, the forkhead transcription factor FOXO,

a negative growth regulator that is activated when nutrition and insulin signaling are low, is a key

factor to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity. In the

PDE model, I include the cellular structure and transportation within the cell. The transportation of

proteins between the nucleus and the cell membrane is modelled with an advection-diffusion pro-

cess. In simulations of the PDEs system, the hypothesis that the concentration of FOXO decreases

as the concentration of insulin increase is verified.

In the second part of the thesis, I study the bifurcation properties of the nonlocal Chafee-Infante

problem:

Lεu + λ(u − u3) = 0.



Here, instead of the Laplacian, Lεu is an integral defined by

Lεu =

∫ π

0
ε−3J(

y − x
ε

)(u(y) − u(x))dy,

where J(x) is a continuous, non-negative, radially symmetric kernel with J(0) > 0. It is shown

that as the scaling parameter ε approaches zero, the equation has pitchfork bifurcations at the

eigenvalues of Lε and these eigenvalues are close to those of cJ∆, with cJ constant. A concrete

example is considered, and the bifurcation result is demonstrated by solving the equation with

Newton’s Method.
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Chapter 1

Introduction of the mathematical models of

nutritional plasticity

One of the defining qualities of life is that organisms are able to respond to environmental

stimuli, either developmentally, physiologically or behaviorally. This process, called phenotypic

plasticity, underlies such diverse phenomena as the effect of developmental nutrition on adult body

size in animals, the melanization of human skin in response to UV irradiation, and escape response

to perceived predators in animal prey. An important aspect of phenotypic plasticity is that the

degree of the response is appropriate to the degree of the stimulus. A poor match between stimulus

and response can have severe implications for organismal form and function. For example, in

humans anaphylaxis results from an inappropriately severe reaction to allergens. Conversely, type

2 diabetes is a result of a reduced response to circulating sugars in the blood stream. Work over

the last 50 years has revealed myriad signaling pathways that transduce environmental information

to developmental, physiological or neurological processes. Nevertheless, whilst we have a good

understanding of the components of these pathway, the factors that regulate whether a signaling

pathway amplifies or attenuates variation in an environmental signal are less well elucidated. More

generally, we have a poor understanding of how organisms and the cells within them are able

to manipulate signal transduction pathways to regulate the degree of response to environmental

change.
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Due to the innate complexities of signaling pathways, a fruitful approach to understanding how

they amplify or attenuate environmental signals is to model them in silico. These models can be

used to explore how changes in pathway structure and function affects how the pathway trans-

duces environmental information. The resulting hypotheses can then be tested in vivo, in model

organisms where genetic engineering allows precise manipulation of the signaling pathway. The

insulin/IGF-signaling (IIS) pathway is an ideal system with which to explore the function of sig-

naling pathways that underlie phenotypic plasticity (here referred to as plasticity pathways). In

developing animals the IIS pathway regulates growth and development in response to nutrition. In

adult animals the IIS pathway regulates, among other things, the uptake of sugars from the blood

stream (in vertebrates) or hemolymph (in arthropods). In mammals, these metabolic and mitogenic

processes are mediated by the insulin receptor and the insulin-like growth factor (IGF) receptors,

respectively. In contrast, arthropods such as Drosophila have a single insulin receptor. Neverthe-

less, all insulin/IGF receptors feed into the same pathway, which is extremely conserved among

all animals and has been well elucidated. Briefly, insulin-like peptides (ILPs) are released into the

blood stream or hemolymph in response to developmental nutrition. These peptides then bind to

the insulin receptor on the cell membrane and initiate a signal-transduction cascade that ultimately

regulates the expression of genes that, when translated into proteins, regulate cell growth, prolif-

eration and metabolism. In developing animals, a reduction in nutrition reduces signaling through

the pathway, which in turn initiates the transcription of growth inhibitors. The result is a reduction

in cell growth and proliferation leading to a decrease in final organ and body size. Importantly, not

all organs show the same growth response to changes in developmental nutrition and IIS. In the

fruit fly, Drosophila melanogaster, a reduction in developmental nutrition has more of an effect on

wing size than on genital size, and this is a consequence of genital growth being less sensitive to

changes in IIS. Similarly, in mammals the developing brain is relatively insensitive to changes in
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nutrition, a phenomenon called head sparing. Such organ-specific differences in nutritional- and

insulin-sensitivity is fundamental to ensure that final body proportion is correct across a range of

adult sizes.

Work on Drosophila has revealed that the reduced insulin-sensitivity of the genitalia is a con-

sequence of changes in the expression of key genes in the IIS pathway, specifically the forkhead

transcription factor FOXO, a negative growth regulator. When IIS is high, FOXO is phosphorylated

by the IIS pathway. This disrupts DNA binding and causes FOXO to translocate to the cytoplas-

m. A decline in IIS leads to de-phosphorylation of FOXO, which accumulates in the nucleus and

initiates the transcription of growth inhibitors, as well as the insulin receptor itself. The genitalia

of Drosophila are able to limit their size response to changes in nutrition and IIS by expressing

only low levels of FOXO. Consequently, a decline in developmental nutrition does not result in

the activation of growth inhibitors in the genitalia, allowing them to maintain growth even as the

growth of other organs and of the body as a whole is slowed.

These studies demonstrate that changes in the expression or activity of genes within plasticity

pathways can affect whether they amplify or attenuate variation in an environmental signal. What

is unclear is the generality of this finding. Do changes in expression/activity of other components

in the pathway have the same effect? How do feedback loops within the plasticity pathway af-

fect how it transduces the environmental signal? Can we make broad generalizations as to how

changes in a plasticity pathways structure and function changes sensitivity of phenotype to envi-

ronmental signals? In this dissertation, we establish the mathematical models of the insulin-like

signaling pathway, which serve as the fundamental tools for exploring the mechanisms regulating

the nutritional plasticity of organs in Drosophila melanogaster.
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Chapter 2

Backgrounds

2.1 Size and shape in insects

Intuitively, individuals with larger bodies tend to have larger constituent parts. For instant,

larger humans will have longer arms and legs, bigger livers and larger hearts. Bigger fruit flies

tend to have larger wings and legs. This scaling relationship between the sizes of individual traits

and the size of the whole body is called allometry ([13]). Allometries are traditionally modelled

using the allometric equation y = axb, where x and y are two given traits. A Log-transformation of

this equation produces the linear equation log(y) = log(a) + b log(x), i.e., a linear relation between

the log of trait size x and the log of trait size y. Furthermore, the slope of the linear relation is

represented by the real number b. Thus, we are able to classify the allometries according to the

value of b. We say that two traits scale isometrically when b = 1. This is the case of palp size

against body size in D. melanogaster (see fig 2.1). Trait y scale hypometrically to trait x when

b < 1, which is the case of genital size against body size in Drosophila melanogaster in fig 2.1.

Trait y scale hypermetrically to trait x when b > 1.

Allometry not only describes the scaling relationship between traits and body, but also the scal-

ing relationship among traits themselves. Generally, it is defined by the proportional change in the

dimensions of one trait relative to another trait or to overall body size. More specifically, there are

three types of allometries: ontogenetic, evolotionary, and static allometries. Ontegenetic allome-

tries describe the growth trajectories within a single individual. They characterize the growth of
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an organ relative to the growth of another organ or growth of the body in a single individual. Evo-

lutionary allometries describe the relative size of different organs among individuals at the same

developmental stage across species. Static allometries are similar to evolutionary allometries but

they describe the relative size of different organs within species. While the variation of growth in

evolutionary allometries is caused by the evolving of different species in the evolutionary process,

the variation of growth in static allometries may due to the genetic difference between individuals,

the difference in the environment in which they developed or due to the interaction between the

two. Hence, the mechanisms behind the static allometries according to genetic and environmental

factors are very different. Furthermore, both the genetic and environmental factors could generate

various allometric relationships due to the different sources of those genetic and environmental

factors. For instance, temperature, nutrition, sunlight, etc, are different environmental factors that

could contribute to the static allometries. Similarly, there may be different sources of genetic

variation, such that allelic variation at one locus may produce a different allometries than varia-

tion at another. This suggests that researchers should investigate different biology mechanisms in

regards to any specific factor of the static allometries. In this dissertation, we mainly focus on

investigating the mechanisms related to the environmental static allometries, especially for stat-

ic allometries due to the nutritional variation. We eliminate the genetic factors by reproducing

Drosophila melanogaster, fruit fly, with the same genotype in the lab and study any environmental

factors by controlling the environment where the fruit flies are raised.

Environmental factors affect the static allometries because they regulate the rate and duration

of cell growth and division. The developmental response to the environment is called phenotypic

plasticity. The response of trait size against the value of a particular environmental variable for

a single genotype is the reaction norm. It describes the pattern of phenotypic variation produced

by a single genotype reared under a range of environmental conditions. For instance, malnutrition
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Figure 2.1: The relationship between reaction norms and allometries.

during development reduces final adult size in Drosophila melanogaster. Fig 2.1 a and b show

the reaction norms for wing area and thorax length of Drosophila melanogaster as a function of

larval nutrition. Combining fig 2.1 a and b, we get the nutritional static allometries between wing

area and thorax length. ([13]) Hence, the environmental static allometries of two traits are directly

related to the reaction norms of the two traits with respect to an environmental variable.

As one of the typical holometabolous insects, Drosophila melanogaster begin life as worm-like

larvae, molting through three larval instars before undergoing complete metamorphosis as pupa and

eventually closing into their adult form, shown in fig 2.2. Adult flies have a stiff exoskeleton and

so they cannot continue to grow. Hence, adult body size is entirely regulated by growth during the

premetamorphic larval stages. Further, the adult organs of Drosophila melanogaster are not visible

until after metamorphosis. In fact, they grow as imaginal discs within the developing larvae, each

disc corresponding to an adult structure. During metamorphosis their imaginal discs differentiate

and evaginate to form the adult organs. Thus, the adult organ size is also determined by growth

of the imaginal discs during the larval stages. Those physiological processes controlling the meta-

morphosis of Drosophila melanogaster are regulated by several hormones. At some point in the

final larval instar, attainment of a particular body size is associated with a reduction in the levels

of circulating juvenile hormones. This size is called the critical size. Once critical size is attained,
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Figure 2.2: The life cycle of Drosophila melanogaster.

a larva irreversibly initiates the hormonal cascade that ends in metamorphosis, and so there is a

delay between the attainment of critical size and the termination of body growth. This period is

referred to as the terminal growth period (TGP). Thus, we have the following formulas about the

final body or organ size of Drosophila melanogaster:

F = CS + Rδt,

where F is the final body or organ size, CS is critical size, R is the rate of growth during TGP and
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δt is the duration of TGP.

Figure 2.3: The nutritional regulation of body and organ size in Drosophila melanogaster.

2.2 The insulin signaling pathway

The final body and organ sizes in all animals vary when the developmental nutrition changes. In

Drosophila melanogaster particularly, the growth response to nutrition is mediated through several

inter-connected hormonal systems. One of them is through the release of dILPs in the brain.([12])

The insulin-like signaling pathway (IIS) system is comprised of three pathways (fig 2.4): the IIS

pathway; the Target of Ramapmycin (TOR) signaling pathway, and the AMP-dependent kinase
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(AMPK) pathway. These pathways are extremely conserved among all animals, and are essnetial-

ly identical in Drosophila melanogaster and vertebrates. However, in Drosophila melanogaster

the metabolic and mitogenic roles of IIS, which in vertebrates are separated into insulin-like and

growth-factor signaling respectively, are combined into a single pathway with a single insulin-

receptor (InR). A reduction in dILP production causes a reduction in body and organ size, while

increasing the cencentration of dILPs casuses an increase in body and organ size.

Figure 2.4: The IIS and TOR-signaling pathway in Drosophila melanogaster.

The freely diffusing dILPs molecules circulate in the extracellular fluid of Drosophila melanogaster,
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where they bind to insulin receptors (InR) located on the cellular membrane of dividing cells. Bind-

ing of dILP to Inr results in receptor autophosphorylation. The receptor may then either bind a sec-

ond dILP, which does not affect its phoshphorylation state, or may dissociate from the first dILP,

which causes dephosphorylation. The dInr molecule may also be dephosphorylated by protein

tyrosine phosphotases (PTP). Membrane-bound phosphorylated receptors can be reversibly inter-

nalized through endocytosis, where dephosphorylation by PTP releases them into the intracelluar

pool of free InR. These free receptors can then be reversibly reintegrated into the cell membrane,

where they become available to binding with dILPs. In addition to this recycling of InRs from the

cell membrane, unphosphorylated receptors also enter the intracellular pool through synthesis and

leave it through degradation. The phosphorylated InR recruits insulin receptor substrate (Chico) to

the membrane and phosphorylates it, where upon it forms a complex with Pi3K. The resulting IRS-

PI3K complex is an active protein kinase. The phosphorylated IRS-PI4K complex phosphrylates

phosphatidylinostiol 4,5-bisphosphate, PI(4,5)P2 to PI(3,4,5)P3, at the cell membrane. Addition-

ally, PI(3,4)P2 is converted to PI(3,4,5)P3 independently of IRS-PI3K. The Akt molecule binds

to PI(3,4,5)P3 at the cellular membrane and activates the serine/threonine kinase Akt. Activated

Akt detachs from the cell membrane and translocates to the nucleus (J. Cell Sci. 114, 2903-2910),

where it phosphorylates the forkhead transcription factor FOXO. Transcriptional targets of FOXO

include negative growth regulators, for example 4E-BP, as well as the insulin receptor Inr. Phos-

phorylation by Akt cause FOXO to translocate out of the nucleus and hence lose its transcriptional

activity.
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Chapter 3

A ODE model

3.1 Preliminary

To get a mathematical model of the IIS pathway including dFOXO, we develop an ODE system

based on Sedaghat et la’s model ([11]). We take Sedaghat et la’s model with variables from x2 to

x17, then include new variables for the activated and deactivated dFOXO. For better exploring our

questions and modelling the reality of the pathway, we modify Sedaghat et la’s model from several

aspects. First, we add degradations for each of the complex in the pathway and include the basal

transcriptions to the unphosphorylated states of insulin receptor, Chico, PI3K, Akt and dFOXO.

Second, we model the lipids, Akt of the pathway by concentration instead of percentage. Third,

a mathematical model of dFOXO subsystem is developed by the mechanism of the interaction of

dFOXO and Akt. A positive feedback from activated dFOXO to insulin receptors is included in

the model. Fourth, the relation between activity of PTPases and activated Akt is modeled by a

smoothly exponential function instead of a linear function. The illustration of the new model about

the IIS pathway is shown in figure 3.1.

Here we list the variables representing the molecules concentrations in the signalling pathway:

ILP:

I, concentration of insulin

InR:

R1(t), concentration of unbound unphosphorylated cell-surface receptors,

11



R2(t), concentration of once-bound unphosphorylated cell-surface receptors,

R3(t), concentration of phosphorylated twice-bound cell-surface receptors,

R4(t), concentration of phosphorylated once-bound cell-surface receptors,

R5(t), concentration of unbound unphosphorylated intracellular receptors,

R6(t), concentration of phosphorylated twice-bound intracellular receptors,

R7(t), concentration of phosphorylated once-bound intracellular receptors.

Chico:

C1(t), concentration of unphosphorylated Chico,

C2(t), concentration of phosphorylated Chico,

PI3K:

Φ3(t), concentration of deactivated PI3K,

Ξ(t), concentration of phosphorylated Chico-PI3K complex.

Lipids:

P3(t) be the concentration of PI(3, 4, 5)P3,

P4(t) be the concentration of PI(3, 4)P2,

P5(t) be the concentration of PI(4, 5)P2.

Akt:

A(t), concentration of deactivated Akt,

Ap(t), concentration of activated Akt.

dFOXO:

F(t), concentration of activated FOXO,

f (t), concentration of deactivated FOXO.

PTP:

P(t): A prefactor representing the relative activity of PTPases in the cell.
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3.2 The Ordinary Differential Equations model of the IIS path-

way

3.2.1 Insulin receptor subsystem

In the drosophila insulin receptors subsystem, each free drosophila insulin receptor could be

potentially bound with two insulin. Unbound and bound insulin receptor cycle between cell mem-

brane and cytoplasma. Bound insulin receptors on the cell membrane would phophorylate Chico

and initiates a signal transduction cascade.

The synthesis of R1: Free insulin receptors (R1) on the membrane bind to insulin (I) and be-

come once-bound unphosphorylated surface receptors (R2) at the rate k1. That reaction is reversible

with rate k−1. Phosphorylated once-bound surface receptors (R4) are dephosphorylated by PTPas-

es, release their insulin and become unbound unphosphorylated surface receptors (R1) with rate

k−3P. At the same time, free surface receptors (R1) pass through the cell membrane to become

intracellular receptors (R5) with rate k4 and the intracellular receptors attach to the cell membrane,

becoming surface receptors with rate k−4. Finally, a certain fraction (d) of receptors degrade and

are lost. Therefore, the synthesis rate of free receptor on the membrane, R1, is expressed by

Ṙ1 = −k1IR1 + k−1R2 + k−3PR4 + k−4R5 − k4R1 − dR1. (3.2.1)

The synthesis of R2: In addition to the exchanges with R1, described above, the once-bound

unphosphorylated surface receptors (R2) degrade at the same rate d and are phosphorylated to

become phosphorylated once-bound surface receptors (R4) at the rate k3. Therefore, the synthesis

13



rate of R2 is

Ṙ2 = k1IR1 − k−1R2 − k3R2 − dR2. (3.2.2)

The synthesis of R3: Phosphorylated once-bound surface receptors (R4) bind to insulin (I) and

become phosphorylated twice-bound surface receptors (R3) with rate k2. This reaction is reversible

with rate k−2. At the same time, phosphorylated twice-bound surface receptors (R3) pass through

the cell membrane with rate k
4′

to become phosphorylated twice-bound intracellular receptors

(R6). This process is reversible with rate k
−4′

. Therefore, the synthesis rate of R3 is

Ṙ3 = k2IR4 − k−2R3 + k
−4′

R6 − k
4′

R3 − dR3. (3.2.3)

The synthesis of R4: In addition to the exchanges with R1,R2, and R3, described above, phos-

phorylated once-bound surface receptors (R4) pass though the membrane with rate k
4′

, becoming

phosphorylated once-bound intracellular receptors (R7). That process is reversible with rate k
−4′

.

Therefore, the synthesis rate of R4 is

Ṙ4 = −k2IR4 − k−3PR4 + k3R2 + k−2R3 + k
−4′

R7 − k
4′

R4 − dR4. (3.2.4)

The synthesis rate of R5: The source terms are the basal transcription to unbound unphosphory-

lated intracelluar receptors (R5), b6 and the positive feedback from the activated dFOXO, l =
f dαF
1+αF ,

which is modeled by the Michaelis-Menten equation (α is a constant representing the affinity of

activated dFOXO bound with the DNA strand. The stronger the affinity is, the larger the value of

α will be). The phosphorylated twice-bound intracellular receptors (R6) and phosphorylated once-

bound intracellular receptors (R7) are dephosphorylated and become unbound unphosphorylated
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intracelluar receptors (R5). Thus, the equation for the synthesis rate of R5 is

Ṙ5 = b5 + l − dR5 + k5P(R6 + R7) + k4R1 − k−4R5 (3.2.5)

The synthesis rate of R6 and R7: Through the interactions with free insulin receptors in cyto-

plasma (R5) and bound insulin receptors in the cell membrane, we have

Ṙ6 = k
4′

R3 − k
−4′

R6 − k5PR6 − dR6 (3.2.6)

Ṙ7 = k
4′

R6 − k
−4′

R7 − k5PR7 − dR7 (3.2.7)

3.2.2 Chico/PI3K subsystem

In the insulin-like signaling pathway of Drosophila melanogaster, phosphorylated bound in-

sulin receptors could phosphorylate chico, hence forming a chico-PI3K complex in the cell.

The synthesis rate of C1: At the cell membrane the phosphorylated surface receptors (R3 and

R4) phosphorylate Chico, according to a mass-action law with rate k7. Also, phosphorylated Chico

(C2) is dephosphorylated by PTPases, according to a mass-action reaction with rate k−7. Mean-

while, unphosphorylated Chico is translated from RNA with the rate denoted by bc and degrades

with the rate denoted by dc. Therefore, the synthesis rate of unphosphorylated Chico is

Ċ1 = bc − dcC1 + k−7PC2 − k7C1(R3 + R4) (3.2.8)

The synthesis rate of C2: Besides the interations with unphosphorylated Chico, the phosphory-

lated Chico (C2) bind with deactivated PI3K (Φ3) forming Chico-PI3K complex (Ξ) with the rate
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of k8. Therefore, the equation to describe the synthesis rate of phosphorylated Chico (C2) is

Ċ2 = k7C1(R3 + R4) − k−7PC2 + k−8Ξ − k8Φ3C2 − dcC2. (3.2.9)

The synthesis rate of Φ3: Unphosphorylated PI3K (Φ3) is translated form RNA with the rate

denoted by bp. The degradation rate of unphosphorylated PI3K (Φ3) is denoted by dp. Thus, the

equation to describe the synthesis rate of unphosphorylated PI3K (Φ3) is

Φ̇3 = bp − dpΦ3 + k−8Ξ − k8Φ3C2 (3.2.10)

The synthesis rate of Ξ: As mentioned above, through a mass-action reaction the production

rate of the phosphorylated Chico-PI3K complex is denoted by k8 and the dissociation rate is de-

noted by k−8. With the degradation rate of phosphorylated PI3K-Chico complex to be dpc, the

synthesis rate of phosphorylated Chico-PI3K complex (Ξ) is

Ξ̇ = k8C2Φ3 − k−8Ξ − dpcΞ. (3.2.11)

3.2.3 Lipids subsystem

Adjacent to the cell membrane, the phosphorylated

Chico-PI3K complex (Ξ) converts the substrate phosphatidylinositol 4,5-bisphosphate (PI(4, 5)P2)

to the substrate product phosphatidylinositol 3,4,5-trisphosphate

(PI(3, 4, 5)P3). Furthermore, there is spontaneous phosphorylation and dephosphorylation caus-

ing transitions between these two states and between PI(3, 4, 5)P3) and another, PI(3, 4)P2. Some

of these are catalyzed by PTEN and SHIP, whose concentrations we take to be constant and are

implicitly included in the rate constants shown below. We assume that the total amount of PIP is
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conserved.

Let L ≡ P3 + P4 + P5 be the total amount of PIP, the equations to describe the synthesis rates

of P3, P4 and P5 are

Ṗ3 = k9pΞP5 + k9bP5 + k10P4 − k−9P3 − k−10P3, (3.2.12)

Ṗ4 = k−10P3 − k10P4, (3.2.13)

Ṗ5 = k−9P3 − (k9pΞ + k9b)P5. (3.2.14)

3.2.4 Akt subsystem

The synthesis rate of A and Ap: The lipid PI(3, 4, 5)P3 (P3) phosphorylates deactivated Akt

at a rate proportional to the concentrations of the lipid and A with the rate constant denoted by

k11. Activated Akt is dephosphorylated spontaneously and becomes deactivated Akt with the rate

k−11. At the same time, deactivated and activated Akt (A and Ap) degrade at the rate of dA. The

deactivated Akt is translated from RNA with the rate of bA. Hence, the equations to describe the

synthesis rate of A and Ap are

Ȧ = bA − dAA + k−11Ap − k11P3A (3.2.15)

Ȧp = k11P3A − k−11Ap − dAAp (3.2.16)
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3.2.5 dFOXO subsystem

In the dFOXO subsystem, different from previous subsystem, activated dFOXO (F) is un-

phosphorylated dFOXO and deactivated dFOXO ( f ) is phosphorylated dFOXO. The activated Akt

phosphorylates the activated dFOXO, turning it from activated state to deactivated state. On the

other hand, the deactivated dFOXO simultaneously unphophorylates itself back to activated state.

To model the process of Akt phosphorylating dFOXO, we notice that when activated Akt in-

teracts with activated dFOXO, a small amount of temporary complex [AF] forms quickly. Then

[AF] degrades to free activated Akt and phosphorylated dFOXO f .

Using the Michaelis-Menten formalism, assuming quasi steady state for this fast reaction, and

ignoring higher order terms of small quantities, we find the production of phosphorylated dFOXO

f is proportional to the amount of [AF]:

k12
βApF

(β + 1)F + Ap
,

where β is the ratio of the rate at which the [AF] forms to the rate at which it dissociates.

With the degradation rate of F and f being d f and the basal transcriptional rate to F being bF ,

we have

Ḟ = −k12
βApF

(β + 1)F + Ap
+ k−12 f + bF − d f F (3.2.17)

ḟ = k12
βApF

(β + 1)F + Ap
− k−12 f − d f f (3.2.18)
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The reaction process that dFOXO is phosphorylated by Akt is modelled as a MichaelisMenten

kinetics. Specifically, let E be the free enzyme, S be the substrate, [ES ] be the enzyme-substrate

complex, and Et be the total enzyme (free enzyme plus enzyme-substrate complex). One have the

following equation:

˙[ES ] =
konES

E + [ES ]
− ko f f [ES ].

At equilibrium point, ˙[ES ] = 0. Therefore,

konES = ko f f [ES ]E + ko f f [ES ]2;

E =
ko f f [ES ]2

konS − ko f f [ES ]
.

Let

α =
kon

ko f f
.

Since the Et is a constant, Et = E + [ES ] gives us:

[ES ] =
αEtS
αS + Et

.

Hence, the production rate of S
′

is:

q
αEtS
αS + Et

.

The activity of PTPases is modelled by an exponential function of activated Akt (Ap) ([17]).

P = exp(−kAp) (3.2.19)
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3.3 Steady state of the system

The model consists of an eighteen ordinary differential equations with the concentration of the

insulin as the model input. To analyse the relations of the components in the IIS pathway with

the model input, the concentration of the insulin, I turn to look at the steady state of the ODE

system. Thus, I need to solve the eighteen-equation algebraic system. The strategy to solve the

algebraic system is by constructing an iteration mapping which converges to the solution of the

algebraic system. Specifically, I separate the algebraic system into five subsystems as how the

model is established in the above section. In the dFOXO subsystem, I solve the activated dFOXO

as a function of the activated Akt.

F =
−(k12β + k−12 + dF)Ap − (bF + k−12

bF
dF

)(β + 1)

2(dF + k−12)(β + 1)
+√

((k12β + k−12 + dF)Ap − (bF + k−12
bF
dF

)(β + 1))2 + 4(dF + k−12)(β + 1))((bF + k−12
bF
dF

)Ap))

2(dF + k−12)(β + 1)

(3.3.1)

and

P = exp(−0.003Ap).

In the Akt subsystem, I solve the activated Akt as a function of the PI(3, 4, 5)P3.

Ap =
aAk11P3

k11P3 + k−11 + dA
.
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In the lipid subsystem, I solve the PI(3, 4, 5)P3 as a function of the phosphorylated Chico-Pi3k

complex.

P3 =
1

1 + 29/31 +
k−9

k−9pΞ+k9b

.

In the Chico subsystem, I solve the phosphorylated Chico-Pi3k complex as a function of the

insulin-bounded receptors on the cell membrane.

Ξ =
−B −

√
B2 − 4AC
2A

where

A =
k8(dc + k7(R3 + R4))

k−7P + dc + k7(R3 + R4)
;

B =
−k8(dc + k7(R3 + R4))(ap + ac −

bc
dc+k7(R3+R4)

k−7P + dc + k7(R3 + R4)
− d − k8;

C =
k8(dc + k7(R3 + R4))(ap + ac −

bc
dc+k7(R3+R4)

k−7P + dc + k7(R3 + R4)
.

For the insulin receptor subsystem, I solve the insulin-bounded receptors on the cell membrane

as a function of the activated dFOXO. Then I compose those functions together to get an itera-

tion of the activated dFOXO. Finally, I keep iterating the composition function until the iteration

converges.

In the steady state, the total amount of insulin receptor is equal to:

R1 + R2 + R3 + R4 + R5 + R6 + R7 =
b5 + l

d
.

Assuming the degradation rate of Chico, phosphorylated Chico and Chico-PI3K complex are

the same, i.e. dc = dp = dpc, one can derive that the total amount of Chico is equal to:
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C1 + C2 + Ξ =
bc
dc

and

Φ + Ξ =
bp

dp
.

Similarly, in the Akt subsystem, one can derive that the total amount of Akt is equal to:

A + Ap =
ba
da
,

and in the dFOXO subsystem, the total amount of dFOXO is equal to:

F + f =
bF
d f
.

I define that

a5 =
b5
d
,

f eedback =
f b
d
,

ac =
bc
dc
,

ap =
bp

dp
,

aA =
ba
da

and

aF =
bF
d f
.
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Those variables serve as the parameters regulating the total amount of insulin receptors, Chico,

PI3k, Akt and dFOXO. In Drosophila melanogaster, the concentrations of those proteins are dif-

ferent in various organs. Thus, by introducing those parameters, I could investigate the allometries

of various organs by manipulating the values of those parameters. For any fixed set of parameters

a5, ac, ap, aA, aF , f eedback and model input, the concentration of insulin I, I compute the con-

centration of activated dFOXO, F. Hence, varying the concentration of insulin I, I get a curve of

the concentration of activated dFOXO F. For instance, let a5 = 1pM, ac = 1pM, ap = 0.1pM,

aA = 5pM, aF = 5pM, f eedback = 0.5pM, I has the curve in figure 3.2.

The dFOXO is a negative growth factor. In order to establish the relation between the concen-

tration of the insulin and the organ size of flies, I used empirical data to estimate the relationship

between dFOXO activity and organ size, and hence the nutritional plasticity of organ size. We

plot the relationship between wing Size and active dFOXO. The size of the wing decreases as the

concentration of active dFOXO increases. Moreover, there is a lower limit for the wing size. The

size of the wing is never smaller than 8 × 105 no matter what the concentration of active dFOXO

and environmental conditions are. Thus, the natural way to fit the relationship between the wing

size and the concentration of active FOXO is to use the rational function.

Organsize =
a

F + b
+ c,

where F represents the concentration of activated dFOXO, from the empirical data of wing cell

number of flies. I observe from the empirical data that the lower limit for the wing size, c, is

8 × 105. Then we use the Least Square method to fit the parameter a and b. Since the relationship

of Wing size and active dFOXO differs as the environmental conditions vary, the coefficient a and

b also vary. From our methods, parameter a ranges from 2.5 × 105 to 3.5 × 105 and b ranges from
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0.4 to 0.6. To simplify the computation and analysis, I pick a to be 3× 105 and b to be 0.5. Hence,

fixing the same parameters as a5 = 1pM, ac = 1pM, ap = 0.1pM, aA = 5pM, aF = 5pM,

f eedback = 0.5pM, the relation between the number of cells of wing and the concentration of

insulin is shown in figure 3.3.

3.4 The nutritional plasticity

In Drosophila melanogaster, the response of the body and organ size to changes in develop-

mental nutrition is called the nutritional plasticity. Malnutrition during development reduces adult

body size of Drosophila melanogaster. However, not all the organs respond to the malnutrition to

the same extent. Some organs, for example, the male genitalia, are remarkably resistant to changes

in developmental nutrition. Like the mammalian brain, they are more or less the same size in large

and small individuals. One hypothesis is that the nutritional plasticity is regulated through the IIS

pathway. The amounts of gene expressions of components in the IIS pathway are the factor affect-

ing the nutritional plasticity in Drosophila. Hence, I establish a mathematical model to represent

the nutritional plasticity. The nutritional plasticity in the paper is defined to be the difference of the

logarithmic organ size at two insulin concentration levels. Specifically, let OrganS ize = S (I) be

the function of the organ size with respect to the concentration of insulin. I define:

Plasticity = log(S (I + δ)) − logS ((I)) (3.4.1)

where I + δ and I are two different levels of insulin concentration. Without further remark, I

take I = 20pM and δ = 1000pM in this dissertation.
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3.5 The results

In figure 3.4, the nutritional plasticity is regulated by the total gene expression of insulin re-

ceptors. Fixing the gene expression of Chico, PI3K, Akt and dFOXO to be 1pM, 0.1pM, 5pM

and 5pM respectively, the nutritional plasticity increases as the gene expression of total insulin

receptors increase. But the rate of increase (the tangent line of the curve) decreases.

In figure 3.5, the nutritional plasticity is regulated by the total gene expression of Chico. Fixing

the gene expression of Inr, PI3K, Akt and dFOXO to be 5pM, 0.1pM, 5pM and 5pM respectively,

the nutritional plasticity increases then decreases as the gene expression of total insulin receptors

increase.

In figure 3.6, the nutritional plasticity is regulated by the total gene expression of PI3K. Fixing

the gene expression of Inr, Chico, Akt and dFOXO to be 5pM, 1pM, 5pM and 5pM respectively,

the nutritional plasticity increases then decreases as the gene expression of total insulin receptors

increase.

In figure 3.7, the nutritional plasticity is regulated by the total gene expression of Akt. Fixing

the gene expression of Inr, Chico, PI3K and dFOXO to be 5pM, 1pM, 0.1pM and 5pM respec-

tively, the nutritional plasticity increases then decreases as the gene expression of total insulin

receptors increase.

In figure 3.8, the nutritional plasticity is regulated by the total gene expression of dFOXO.

Fixing the gene expression of Inr, Chico, PI3K and Akt to be 5pM, 1pM, 0.1pM and 5pM re-

spectively, the nutritional plasticity increases then decreases as the gene expression of total insulin

receptors increase. There is a non-linear relationship between FOXO expression and nutritional

plasticity. This graph is coincident with the real experiment results (See figure 3.9). ([15])

From the simulation of the figure 3.8, the nutritional plasticity has a nonlinear relationship
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with the total gene expression of dFOXO. For those organs with either very high or very low

total gene expression of dFOXO, they are more or less insensitive to the change of nutrition. The

high nutritional plasticity is achieved when total gene expression of dFOXO is at medium level.

This does not change when the total gene expression of insulin receptosr increase. However,

maximum nutritional plasticity increases as the total gene expression of insulin receptors increase.

In addition, the value of total gene expression of dFOXO at which the maximum is achieved

increases as well. See the figure 3.10 for a three dimensional graph of the nutritional plasicity

versus the total gene expression of insulin receptors and the total gene expression of dFOXO when

the gene expression of Chico, PI3K and Akt to be 1pM, 0.1pM and 5pM respectively.

In the three dimensional figure 3.11 of the nutritional plasticity versus the gene expression of

Akt and dFOXO, the ridge is in the direction of Akt. That is due to the bell curve of the nutritional

plasticity versus the dFOXO.

3.6 Model coefficients

Here lists those model coefficients that are taken from [11]:

k1 = 6 × 10−5 pM−1 · min−1;

k−1 = 0.2min−1;

k2 = k1min−1;

k−2 = 20min−1;

k3 = 2500min−1;

k−3 = 0.2min−1;

k4 = 0.0003min−1;

k−4 = 0.003min−1;
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k4′ = 2.1 × 10−3min−1;

k−4′ = 2.1 × 10−4min−1;

k6 = 0.461min−1;

k7 = 4.638min−1;

k−7 = 1.396min−1;

k8 = 0.707pM−1 · min−1;

k−8 = 10min−1;

k−9 = 42.148min−1;

k9b = 0.131min−1;

k9p = 1.390min−1;

k10 = 2.961min−1;

k−10 = 2.77min−1;

k11 = 2.484min−1;

k−11 = 6.932min−1.

The new coefficients of the ordinary differential equations are:

k = 0.03;

k12 = 30pM−1 · min−1;

k−12 = 1min−1;

α = 1;

β = 2;

d5 = 0.01min−1;

dc = 0.01min−1;

dp = 0.01min−1;

dpc = 0.01min−1;
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dA = 0.01min−1;

d f = 0.01min−1;

b5 : 0.1 − −10pM · min−1;

bc : 0.1 − −10pM · min−1;

bp : 0.1 − −10pM · min−1;

ba : 0.1 − −10pM · min−1;

bF : 0.1 − −10pM · min−1.

The illustration of the abbreviations in the model are:

ILP:

Insulin (protein) is a hormone central to regulating carbohydrate and fat metabolism in the body.

It is the model input which binds to inr and initiates a signal transduction cascade involving the

phosphorylation of multiple intermediate proteins.

Inr:

It is a protein kinase on the cell membrane which can bind with insulin. When insulin binds to the

insulin receptor on the cell surface, the receptor changes shape so that the kinase regions inside the

cell become activated. The activated insulin receptor then activates a number of different targets

within the cell.

Chico/IRS:

Insulin receptor substrate is a protein containing a phosphotyrosine binding-domain (PTB-domain).

The insulin receptor contains a NPXpY domain. The PTB-domain binds with the NPXpY domain.

Thus, IRS binds with insulin receptor.

PI3K:

Phosphatidylinositol 3-kinases or PI 3-kinases are a family of enzymes involved in cellular func-

tions such as cell growth, proliferation, differentiation, motility, survival and intracellular traffick-
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ing. They interact with IRS (insulin receptor substrate) through a series of phosphorylation events.

PI(3,4)P2, PI(4,5)P2, PI(3,4,5)P3:

Various phosphoinositol lipids on the cell membrane.

Akt:

Akt, also known as Protein Kinase B (PKB), is a serine/threonine protein kinase. Akt possesses a

protein domain known as a PH domain (Pleckstrin Homology domain). This domain binds to PIP3

on the cell membrane. Once Akt is correctly positioned at the membrane via binding of PIP3, it

can then be phosphorylated and become activated.

FOXO:

FOXO is a transcription factor which can negatively regulate the body growth. FOXO can be phos-

phorylated by activated Akt at three conserved residues. Phosphorylated FOXO exports from the

nucleus to the cytoplasm, thereby inhibiting FOXO-dependent transcription.

PTP:

PTPases are a class of enzymes that can regulate tyrosine kinase activity by removing a phosphate.
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Figure 3.1: The structure of IIS pathway.
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Figure 3.2: The concentration of activated dFOXO v.s. the concentration of insulin.

Figure 3.3: The number of cells of wing v.s. the concentration of insulin.
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Figure 3.4: The nutritional plasticity v.s. the gene expression of Inr.
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Figure 3.5: The nutritional plasticity v.s. the gene expression of Chico.
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Figure 3.6: The nutritional plasticity v.s. the gene expression of PI3K.
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Figure 3.7: The nutritional plasticity v.s. the gene expression of Akt.
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Figure 3.8: The nutritional plasticity v.s. the gene expression of dFOXO.

Figure 3.9: There is a non-linear relationship between dFOXO expression and nutritional plasticity
.
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Figure 3.10: The nutritional plasticity v.s the gene expression of Inr and dFOXO.

Figure 3.11: The nutritional plasticity v.s the gene expression of Akt and dFOXO.
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Chapter 4

A PDE model

4.1 Preliminary

The insulin and insulin-like signaling (IIS) pathway propagates a signal from receptors in the

cell membrane to the nucleus via numerous molecules. Some of these molecules reside on or

contiguous to the cell membrane, some reside in or contiguous to the nucleus and some are in the

cytosol, being transported between these two regions in a somewhat stochastic way. Included in

this pathway is the forkhead transcription factor FOXO, which promotes the expression of negative

growth regulators ([12]). FOXO is negatively regulated by the insulin signaling pathway, and it is

the reduction in insulin signaling and the resulting activation of FOXO that is, in part, responsible

for inhibiting organ growth in conditions of reduced nutrition ([4]). The result is that organ growth

is nutritionally plastic. However, different organs show different levels of nutritional plasticity,

essential to ensuring that certain key organs, for example the mammalian brain, are largely spared

the effects of malnutrition. Recent research has suggested that these differences in nutritional

plasticity are mediated by differences in the structure of the insulin-signaling pathway in different

organs. However, how changes in the structure of the insulin signaling pathway affects how the

pathway regulates growth with respect to nutrition is unclear. Here we use mathematical modeling

to help solve this problem.

In the ODE model, the variables of the equations are the circulating concentration of each com-

ponents of IIS pathway. We don’t model the movement of the molecular of proteins components
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of IIS. However, although many of the protein components of the insulin signaling pathway are

attached to, or associated with, the cell membrane they are all at some point transported through

the cytoplasm. All proteins are synthesized at the endoplasmic reticulum (ER), which is contigu-

ous with the nuclear membrane. The proteins are then packaged into vesicles, first by the ER and

then by the Golgi apparatus, before these vesicle, and the proteins within them, are transported to

their final destination. Vesicle transport is through the action of molecular motors, e.g. kinesin,

which attach to the vesicle and walk it along the microtubules that form the cytoskeleton of the cell.

Because the transportation process has a stochastic aspect to it, due to the distribution of motors

and micro- tubules (or other scaffolding) and the processivity of the motors, this is modeled as an

enhanced or directional diffusive process. For simplicity we use a spherically symmetric cell with

the nuclear shell having radius r1 and the cell membrane having radius r2 (r1 < r2).

Among other things, this diffusive transport builds a delay into the dynamics described in [11],

which may be important in regulation. We also include degradation and basal transcription of

molecules into the model. As mentioned above, the growth of organs is negativly regulated in part

by the transcription factor FOXO, the active state of which resides in the nucleus. A protein kinase,

Akt, downstream from the insulin receptors, in its active (phosphorylated) state, deactivates FOXO

by phosphorylating it. Phosphorylation of FOXO by Akt both inhibits its activity as a transcription

factor and causes it to be transported out of the nucleus. The inactive FOXO in the cytoplasm can

be reactivated and targeted for nuclear localization through phosphorylation or monoubiquitination

by proteins in other signaling pathways. Importantly, activated FOXO promotes the transcription

of the insuin receptor, creating a negative feedback loop between the top and the bottom of the

pathway ([7]). Thus, our system becomes more complex by adding both molecular species with

transcriptional feedback, and spatial transport of some molecules. Part of our purpose for this is to

determine the mechanism whereby organ size plasticity is regulated. We believe that this regulation
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of plasticity is achieved through the insulin-signaling pathway in general and FOXO specifically.

Our model explores that hypothesis.

4.2 The Partial Differential Equations model of the IIS path-

way

We divide the system into several coupled subsystems, starting with the

4.2.1 Insulin receptors subsystem

Let I denote the concentration of insulin, which is a constant in this paper (we take two values

of I when computing sensitivity). An insulin receptor in the cell membrane may bind one or two

insulin molecules and when bound, autophosphorylation occurs and so initiates a signal transduc-

tion cascade. Receptors may also reside temporarily in the cytosol, where they are transported to

the cell membrane.

Thus we have the state variables:

Receptors:

R1(t), concentration of unbound unphosphorylated cell-surface receptors,

R2(t), concentration of once-bound unphosphorylated cell-surface receptors,

R3(t), concentration of phosphorylated twice-bound cell-surface receptors,

R4(t), concentration of phosphorylated once-bound cell-surface receptors,

R5(r, t), concentration of unbound unphosphorylated intracellular receptors,

R6(r, t), concentration of phosphorylated twice-bound intracellular receptors,

R7(r, t), concentration of phosphorylated once-bound intracellular receptors.
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PTP:

P(r, t): A prefactor representing the relative activity of PTPases (the class of enzymes that regulate

tyrosine kinase activity by removing a phosphate) in the cell. This factor depends upon the level

of activated Akt, which varies according to a partial differential equation coupled to the rest of the

system.

FOXO:

F(r, t), concentration of activated FOXO,

f (r, t), concentration of deactivated FOXO.

The synthesis of R1: Free insulin receptors (R1) on the membrane bind to insulin (I) and

become once-bound unphosphorylated surface receptors (R2) at the rate k1. That reaction is re-

versible with rate k−1. Phosphorylated once-bound surface receptors (R4) are dephosphorylated

by PTPases, release their insulin and become unbound unphosphorylated surface receptors (R1)

with rate k−3P. At the same time, free surface receptors (R1) pass through the cell membrane to

become intracellular receptors (R5) with rate k4 and the intracellular receptors attach to the cell

membrane, becoming surface receptors with rate k−4 ([8],[9]). Finally, a certain fraction (d) of

receptors degrades and is lost. Therefore, the synthesis rate of free receptor on the membrane, R1,

is expressed by

Ṙ1 = −k1IR1 + k−1R2 + k−3PR4 + k−4R5(r2, t) − k4R1 − dR1. (4.2.1)

The synthesis of R2: In addition to the exchanges with R1, described above, the once-bound

unphosphorylated surface receptors (R2) degrade at the same rate d and are phosphorylated to

become phosphorylated once-bound surface receptors (R4) at the rate k3. Therefore, the synthesis
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rate of R2 is

Ṙ2 = k1IR1 − k−1R2 − k3R2 − dR2. (4.2.2)

The synthesis of R3: Phosphorylated once-bound surface receptors (R4) bind to insulin (I) and

become phosphorylated twice-bound surface receptors (R3) with rate k2. This reaction is reversible

with rate k−2. At the same time, phosphorylated twice-bound surface receptors (R3) pass through

the cell membrane with rate k
4′

to become phosphorylated twice-bound intracellular receptors

(R6). This process is reversible with rate k
−4′

. Therefore, the synthesis rate of R3 is

Ṙ3 = k2IR4 − k−2R3 + k
−4′

R6(r2, t) − k
4′

R3 − dR3. (4.2.3)

The synthesis of R4: In addition to the exchanges with R1,R2, and R3, described above, phos-

phorylated once-bound surface receptors (R4) pass though the membrane with rate k
4′

, becoming

phosphorylated once-bound intracellular receptors (R7). That process is reversible with rate k
−4′

.

Therefore, the synthesis rate of R4 is

Ṙ4 = −k2IR4 − k−3PR4 + k3R2 + k−2R3 + k
−4′

R7(r2, t) − k
4′

R4 − dR4. (4.2.4)

The synthesis of R5: The gene responsible for creating insulin receptors is transcribed in the

nucleus and the resulting RNA passes through pores in the nuclear shell entering the cytoplasm.

Once in the cytoplasm, with the help of a ribosome, translation starts to the protein (receptor) and

is completed in the ER (endoplasmic reticulum), which is contiguous to the nucleus. The receptor

is then packaged into vesicles (the vesicle membrane holds the receptor which is a transmembrane

protein) and is taken to the Golgi apparatus, and then finally the cellular surface membrane. All

via transport vesicles that are moved by one of the motor proteins along microtubules. Here, we
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simplify this process by postulating the production of free insulin receptors (R5) on the nuclear

surface (r = r1) due in part to the activated transcription factor FOXO which enhances basal

transcription. The resulting receptors are actively transported to the outer cell membrance, but in

a stochastic way. Thus, R5 has a spatio-temporal distribution that is governed by an equation with

advection and diffusion terms, as well as reaction terms, exchanging between other states, and a

degradation term. The advection-diffusion operator we employ has the form

Lu ≡ D∆u − δ∇ · (
x
|x|

u),

giving radially-directed transport towards the cell membrane. In the equations below, we express

this operator in radial coordinates since we assume spherical symmetry. Boundary conditions

represent a FOXO-dependent source at r1 and a sink at r2, as receptors leave the cytoplasm to

become embedded in the cell membrane. The way in which activated FOXO (F) operates in

creating free receptors at the nucleus is modeled using the Michaelis-Menten relation, giving a

term l =
γαF

1+αF , where α is a constant representing the affinity of FOXO binding to DNA and γ is

a rate factor. We may also consider a mass-action reaction rate, which gives qualitatively similar

results. The exchanges between other states in the cytoplasm include only intracellular receptors

which are phosphorylated and have one or two insulin molecules bound become unphosphorylated

at a rate k6P, releasing their insulin, thereby contributing to R5.

Therefore, the distribution of R5 is described by

∂R5
∂t

=
D
r2

∂

∂r
(r2∂R5

∂r
) −

δ

r2
∂

∂r
(r2R5) − dR5 + k5P(R6 + R7), (4.2.5)
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Figure 4.1: The structure of the cell.

with the boundary conditions obtained through a flux calculation,

D
∂R5
∂r

(r1, t) − δR5(r1, t) = −l − b5,D
∂R5
∂r

(r2, t) − δR5(r2, t) = k4R1 − k−4R5, t > 0.

The synthesis of R6 and R7: As described above, the twice-bound (R6) and once-bound (R7) in-

tracellular receptors may pass through the membrane to become surface receptors, and vice-versa.

Also these receptors become unphosphorylated at a rate k6, releasing their insulin, and contribut-

ing to R5. While in the cytosol, we assume that these receptors are actively transported towards

the plasma membrane in the same way as the free receptos, that is, according to an advective and

diffusive process. Again, their degradation rate is given by d. Therefore, the synthesis rates of R6

and R7 are

∂R6
∂t

=
D
r2

∂

∂r
(r2∂R6

∂r
) −

δ

r2
∂

∂r
(r2R6) − dR6 − k5PR6, (4.2.6)
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with boundary conditions

D
∂R6
∂r

(r1, t) − δR6(r1, t) = 0, D
∂R6
∂r

(r2, t) − δR6(r2, t) = k
4′

R3 − k
−4′

R6, t > 0,

and

∂R7
∂t

=
D
r2

∂

∂r
(r2∂R7

∂r
) −

δ

r2
∂

∂r
(r2R7) − dR7 − k5PR7, (4.2.7)

with boundary conditions

D
∂R7
∂r

(r1, t) − δR7(r1, t) = 0, D
∂R7
∂r

(r2, t) − δR7(r2, t) = k
4′

R4 − k
−4′

R7, t > 0.

4.2.2 Chico-PI3K complex subsystem

Chico is an insulin receptor substrate, which acts as a scaffold bringing together other molecules

responsible for the signal. PI3Ks are a family of related intracellular signal transducer enzymes

capable of phosphorylating the 3 position of a lipid when in a complex with Chico. Phosphorylated

insulin-bound surface receptors phosphorylate Chico, leading to the Chico-PI3K complex in the

cell, a product upstream of the activation of Akt and the deactivation of FOXO.

In this subsystem, the state variables are Chico:

C1(r, t), concentration of unphosphorylated Chico,

C2(t), concentration of phosphorylated Chico, and PI3K:

Φ3(r, t), concentration of deactivated PI3K,

Ξ(t), concentration of phosphorylated Chico-PI3K complex.

The synthesis of C1: As with free receptors, the gene for Chico is transcribed in the nucleus and

the RNA is translated to unphosphorylated Chico at a location contiguous to the nuclear membrane
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from where it is actively transported to the cell membrane. At the cell membrane the phosphory-

lated surface receptors (R3 and R4) phosphorylate Chico according to a mass-action law with rate

k7. Also, phosphorylated Chico (C2) is dephosphorylated by PTPases according to a mass-action

reaction with rate k−7. The basal transcription rate of unphosphorylated Chico is denoted by bc

and it degrades at a rate denoted by dc. Therefore, the synthesis rate of unphosphorylated Chico is

∂C1
∂t

=
D
r2

∂

∂r
(r2∂C1

∂r
) −

δ

r2
∂

∂r
(r2C1) − dcC1, (4.2.8)

with boundary conditions

D
∂C1
∂r

(r1, t) − δC1(r1, t) = −bc,

D
∂C1
∂r

(r2, t) − δC1(r2, t) = k−7PC2 − k7C1(R3 + R4).

The synthesis of C2: Phosphorylation of Chico by surface receptors (R3 and R4) is described

above, as is its dephosphorylation by PTPases. Phosphorylated Chico (C2) binds with deactivated

PI3K (Φ3) according to mass-action kinetics forming the Chico-PI3K complex (Ξ) at a rate denoted

by k8. The dissociation of the phosphorylated Chico-PI3K complex into its two components takes

place at a rate denoted by k−8. Phosphorylated Chico degrades at a rate denoted by dc. Therefore,

the synthesis rate of phosphorylated Chico is

Ċ2 = k7C1(r2, t)(R3 + R4) + k−8Ξ − k−7PC2 − k8Φ3(r2, t)C2 − dcC2. (4.2.9)

The synthesis of Φ3: This unphosphorylated PI3 kinase is translated adjacent to the nucleus

from where it is transported to the cell membrane, as with other proteins described above. The

basal transcription rate of unphosphorylated PI3K is denoted by bp and the degradation rate is
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denoted by dp. As mentioned above the dissociation rate of the phosphorylated IRS-PI3K complex

is denoted by k−8. Therefore, the synthesis rate of unphosphorylated PI3K is

∂Φ3
∂t

=
D
r2

∂

∂r
(r2∂Φ3

∂r
) −

δ

r2
∂

∂r
(r2Φ3) − dpΦ3, (4.2.10)

with boundary conditions

D
∂Φ3
∂r

(r1, t) − δΦ3(r1, t) = −bp, D
∂Φ3
∂r

(r2, t) − δΦ3(r2, t) = −k8Φ3(r2, t)C2 + k−8Ξ.

The synthesis of Ξ: As mentioned above, through a mass-action reaction the production rate of

the phosphorylated Chico-PI3K complex is denoted by k8 and the dissociation rate is denoted by

k−8. We use dpc to denote the degradation rate of phosphorylated PI3K-Chico complex. Therefore,

the synthesis rate of phosphorylated Chico-PI3K complex (Ξ) is

Ξ̇ = k8C2Φ3(r2, t) − k−8Ξ − dpcΞ. (4.2.11)

4.2.3 Lipids subsystem

Adjacent to the cell membrane, the phosphorylated

Chico-PI3K complex (Ξ) converts the substrate phosphatidylinositol 4,5-bisphosphate (PI(4, 5)P2)

to the substrate product phosphatidylinositol 3,4,5-trisphosphate (PI(3, 4, 5)P3). Furthermore,

there is spontaneous phosphorylation and dephosphorylation giving transitions between these t-

wo states and between PI(3, 4, 5)P3) and another, PI(3, 4)P2. Some of these are catalyzed by

PTEN and SHIP, whose concentrations we take to be constant and are implicitly included in the

rate constants shown below. We assume that the total amount of PIP is conserved.
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Let

P3(t) be the concentration of PI(3, 4, 5)P3,

P4(t) be the concentration of PI(3, 4)P2,

P5(t) be the concentration of PI(4, 5)P2.

Notice that conservation gives L ≡ P3 + P4 + P5. The equations to describe the synthesis rates

of P3, P4 and P5 are

Ṗ3 = k9pΞP5 + k9bP5 + k10P4 − k−9P3 − k−10P3, (4.2.12)

Ṗ4 = k−10P3 − k10P4, (4.2.13)

Ṗ5 = k−9P3 − (k9pΞ + k9b)P5. (4.2.14)

4.2.4 Akt subsystem

Akt is also known as Protein Kinase B (PKB), and as this name suggests it is a (serine/threonine)

protein kinase, that is, it acts as a catalyst for protein interactions. It is produced in the vicinity of

the nucleus, in its inactive or unphosphorylated state from where it is actively transported to the

cell membrane where it becomes phosphorylated by the lipid PI(3, 4, 5)P3.

The state variables for Akt are denoted by:

A(r, t), concentration of deactivated Akt,

Ap(r, t), concentration of activated Akt.

The synthesis of A and Ap: The basal transcription to unphosphorylated Akt (A) is denoted by

bA and its degradation rate (decay constant) is denoted by dA. We assume that the degradation of

activated Akt (Ap) occurs at the same rate. The lipid PI(3, 4, 5)P3 (P3) phosphorylates inactive Akt
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at a rate proportional to the concentrations of this lipid and of A with the rate constant denoted by

k11. Activated Akt is dephosphorylated spontaneously and becomes deactivated Akt with the rate

k−11. Also, activated Akt is transported from the cell membrane to the nucleus, where it interacts

with activated FOXO, deactivating it through phosphorylation ([16]). Hence, the equations to

describe the synthesis rates of A and Ap are

∂A
∂t

=
D
r2

∂

∂r
(r2∂A

∂r
) −

δ

r2
∂

∂r
(r2A) − dAA + k−11Ap, (4.2.15)

with boundary conditions

D
∂A
∂r

(r1, t) − δA(r1, t) = −bA, D
∂A
∂r

(r2, t) − δA(r2, t) = −k11A(r2, t)P3,

and

∂Ap

∂t
=

D
r2

∂

∂r
(r2∂Ap

∂r
) +

δ

r2
∂

∂r
(r2Ap) − dAAp − k−11Ap, (4.2.16)

with boundary conditions

D
∂Ap

∂r
(r1, t) + δAp(r1, t) = 0, D

∂Ap

∂r
(r2, t) + δAp(r2, t) = k11A(r2, t)P3.

4.2.5 FOXO subsystem

As indicated above, FOXO is a transcription factor, coding for insulin receptors among other

proteins. Its active state is unphosphorylated but activated Akt phosphorylates FOXO, making it

inactive ([5]). In its inactive state, FOXO leaves the nucleus and, while in the cytoplasm, spon-

taneously becomes unphosphorylated, and is transported back to the nucleus ([14]). We assume

that both states of FOXO degrade in the cytoplasm at a common rate d f (see [6] ) and that active
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FOXO has a basal transcription rate of bF in the nucleus.

The state variable for FOXO are denoted by:

F(r, t), concentration of activated FOXO,

f (r, t), concentration of deactivated FOXO.

To model the process of Akt phosphorylating FOXO at the nuclear membrane, we notice that

when activated Akt interacts with activated FOXO, a small amount of temporary complex [AF]

forms quickly. Then [AF] degrades to free activated Akt and phosphorylated FOXO f .

Using the Michaelis-Menten formalism, assuming quasi steady state for this fast reaction, and

ignoring higher order terms of small quantities, we find the production of phosphorylated FOXO

f is proportional to the amount of [AF]:

k12
βApF

(β + 1)F + Ap
,

where β is the ratio of the rate at which the [AF] forms to the rate at which it dissociates.

We thus have the synthesis rates of F and f :

∂F
∂t

=
D
r2

∂

∂r
(r2∂F

∂r
) +

δ

r2
∂

∂r
(r2F) + k−12 f − d f F, (4.2.17)

with boundary condition

D
∂F
∂r

(r1, t) + δF(r1, t) = k12
βApF(r1, t)

(β + 1)F(r1, t) + Ap(r1, t)
− bF ,

D
∂F
∂r

(r2, t) + δF(r2, t) = 0,
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and

∂ f
∂t

=
D
r2

∂

∂r
(r2∂ f

∂r
) −

δ

r2
∂

∂r
(r2 f ) − k−12 f − d f f , (4.2.18)

with boundary condition

D
∂ f
∂r

(r1, t) − δ f (r1, t) = −k12
βApF(r1, t)

(β + 1)F(r1, t) + Ap(r1, t)
,

D
∂ f
∂r

(r2, t) − δ f (r2, t) = 0.

4.2.6 PTPases

In the model in [11], the activity of PTPases, P, is described as a piecewise linear function

of the percentage of activated Akt (the ratio of activated Akt over total Akt) in such a way that

P degenerates to zero when the percentage of activated Akt exceeds 36.4%, in accordance with

experimental data. To get smoothness of P(r, t), we use an exponential function instead to model

the activity of PTPases:

P(r, t) = e−kAp(r,t), (4.2.19)

where the coefficient k is chosen by fitting to the piecewise linear function above.

4.3 The results

It is possible to show that the large system of reaction-diffusion equations coupled to ODE’s

through boundary values has a unique solution, existing for all time, at least for nonnegative initial

data. However, the point of interest here is the qualitative behavior of solutions, and in particular,

whether or not the system reproduces experimental data. We will also be interested in the evolution
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of the pathway and to what extent it is robust and optimized in some sense. These will be topics of

further study. The results we report here are twofold.

Fist of all, the insulin signalling leads to a reduction in activated FOXO. The insulin (or more

generally, insulin-like) signalling pathway regulates the growth of the cell through the negative

growth regulator, FOXO. Specifically, developmental nutrition leads to the release of insulin-like

peptides in the blood stream. When insulin is high, FOXO is phosphorylated downstream along

the IIS pathway. This disrupts DNA binding and causes FOXO to translocate to the cytoplasm. A

decline in insulin leads to an accumulation of active FOXO in the nucleus, increasing the transcrip-

tion of growth inhibitors. Also, the transcription of insulin receptors increases, which strengthens

the insulin signal and thus moderates the increase of growth inhibitors. In the figure 2, we vary the

concentration of model input–insulin and look at the concentration of activated FOXO in the nucle-

us at 10 minutes (F(r1, 10)). The concentration of activated FOXO decreases as the concentration

of insulin increases. This agrees with our understanding of the IIS pathway.

Secondly, the sensitivity of activated FOXO is regulated by the expression of total FOXO. For

animals, all the organs of an individual share the same structure of IIS pathway. However, not all

organs show the same growth response to changes in developmental nutrition. For instance, in the

fruit fly, Drosophila melanogaster, a reduction in developmental nutrition has more of an effect on

wing size than on genital size, and this is a consequence of genital growth being less sensitive to

changes in IIS. Similarly, in mammals the developing brain is relatively insensitive to changes in

nutrition, a phenomenon called head sparing. Such organ-specific differences in nutritional- and

insulin-sensitivity is fundamental to ensure that final body proportion is correct across a range of

adult sizes.

Work on Drosophila melanogaster has revealed that the reduced insulin-sensitivity of the gen-

italia is a consequence of changes in the expression of key genes in the IIS pathway, specifically
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Figure 4.2: Nuclear FOXO vs. Insulin

the forkhead transcription factor FOXO ([15]). In order to verify the hypothesis with our model,

we define the Sensitivity of Activated FOXO as the differences of the concentration of activated

FOXO in the nucleus (F(r1, 10)) at two insulin levels:

Sensitivity = F(r1, 10; I1) − F(r1, 10; I2)

where the two insulin levels are I1 = 1 picomol and I2 = 105 picomol.

Then by fixing the degradation rate of activated FOXO and manipulating the basal transcription

rate, we change the expression of FOXO. Consequently, the sensitivity of activated FOXO is a

function of the basal transcription rate. In Figure 3, the simulation shows that the sensitivity of

activated FOXO increases as the basal transcription rate increases from 0 to 10 picomolar/min.

Thus the sensitivity of activated FOXO to the signal from the IIS pathway is manipulated by the

expression of FOXO itself, which verifies our hypothesis.
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Figure 4.3: The Sensitivity of Activated FOXO

4.4 Model coefficients

The prefactor k in the exponent of the equation of PTP was taken to be 0.03 based on the

observation that activated Akt inhibits the action of PTP1B with a 25% decrease after maximal

insulin stimulation. The ratio of activated Akt to deactivated Akt is 1:10 after the maximal insulin

simulation ([11]) and the total steady state amount of Akt is taken to be 100pM, and so from the

equation of PTP k should be 0.11∗log 4
3 . The radius of cell, r2, was chosen to be 6 µm based on

experimental data that gives the cross-sectional area of Drosophila wing cells ranging from 87.59

µm2 to 279.83 µm2 ([10]). Assuming the radius of a cell nucleus is half that of the cell, which is

common, we took r1 to be 3 µm. We performed simulations with other values of r1 and r2 giving

very similar results. In ([1]), transport by molecular motors is given as being around 800 nm · sec−1

which is about 50 µm·min−1. Thus, we took δ to be 50. We took D to be 25, equivalent to assuming

that 5% of the molecules are transported by diffusion. The rate of feedback, γ, from activated
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FOXO to insulin receptors is unknown and we took it to be unity. Other unknown parameters,

taken to be unity for lack of experimatal data, include α, the affinity coefficient of the activated

FOXO binding with the DNA, β, the affinity coefficient for activated Akt binding with activated

FOXO, k12, the other parameter in the Michaelis-Menten reaction deactivating FOXO, and k−12

the rate at which deactivated FOXO is dephosphorylated in the cytoplasm, thus returning to its

active state. The degradation coefficients are assumed to be 0.1 min−1 and the basal transcripiton

constants ranging from 0 to 10 pM · min−1 were based on the initial conditions of the molecular

concentrations in the original ODE model ([11]).

Here are the lists of the variable in the partial differential equations:

R1(t): the concentration of unbound unphosphorylated cell-surface receptors;

R2(t): the concentration of once-bound unphosphorylated cell-surface receptors;

R3(t): the concentration of phosphorylated twice-bound cell-surface receptors;

R4(t): the concentration of phosphorylated once-bound cell-surface receptors;

R5(r, t): the concentration of unbound unphosphorylated intracellular receptors;

R6(r, t): the concentration of phosphorylated twice-bound intracellular receptors;

R7(r, t): the concentration of phosphorylated once-bound intracellular receptors;

P(r, t): a prefactor representing the relative activity of PTPases;

C1(r, t): the concentration of unphosphorylated Chico;

C2(t): the concentration of phosphorylated Chico;

Φ3(r, t): the concentration of deactivated PI3K;

Ξ(t): the concentration of phosphorylated Chico-PI3K complex;

P3(t): the concentration of PI(3, 4, 5)P3;

P4(t): the concentration of PI(3, 4)P2;

P5(t): the concentration of PI(4, 5)P2;
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A(r, t): the concentration of deactivated Akt;

Ap(r, t): the concentration of activated Akt;

F(r, t): the concentration of activated FOXO;

f (r, t): the concentration of deactivated FOXO.

The coefficients that are taken from [11] are (pM = picomolar and µm = micrometer):

k1 = 6 × 10−5 pM−1 · min−1;

k−1 = 0.2min−1;

k2 = k1min−1;

k−2 = 20min−1;

k3 = 2500min−1;

k−3 = 0.2min−1;

k4 = 0.0003min−1;

k−4 = 0.003min−1;

k4′ = 2.1 × 10−3min−1;

k−4′ = 2.1 × 10−4min−1;

k6 = 0.461min−1;

k7 = 4.638min−1;

k−7 = 1.396min−1;

k8 = 0.707pM−1 · min−1;

k−8 = 10min−1;

k−9 = 42.148min−1;

k9b = 0.131min−1;

k9p = 1.390min−1;

k10 = 2.961min−1;
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k−10 = 2.77min−1;

k11 = 2.484min−1;

k−11 = 6.932min−1.

The new coefficients of the ordinary differential equations are:

r1 = 3µm;

r2 = 6µm;

D = 25µm2 · min−1;

δ = 50µm · min−1;

k = 0.03;

k12 = 30pM−1 · min−1;

k−12 = 1min−1;

α = 1;

β = 2;

d5 = 0.1min−1;

dc = 0.1min−1;

dp = 0.1min−1;

dpc = 0.1min−1;

dA = 0.1min−1;

d f = 0.1min−1;

b5 = 1pM · min−1;

bc = 1pM · min−1;

bp = 1pM · min−1;

ba = 1pM · min−1;

bF = 1pM · min−1.
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Chapter 5

The bifurcations of a nonlocal

Chafee-Infante problem

5.1 Introduction

In the second part of the thesis, I consider the nonlocal diffusion equation:

Lεu + λ(u − u3) = 0.

where Lεu is an integral defined as

Lεu =

∫ π

0
ε−3J(

y − x
ε

)(u(y) − u(x))dy.

Bates and Zhao study the spectra of this operator. It is shown that as the scaling parameter ε tends

to zero, the spectrum of the nonlocal operator converge to the spectrum of the Laplace operator

with Neumann boundary condition ([26]). Hence, when ε is small, one may compare the above

nonlocal diffusion equation with the steady states of the Chafee-Infante equation:


uxx + λ(u − u3) = 0, in 0 < x < π,

u′(0) = 0, u′(π) = 0.
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It is known that the Chafee-Infante equation has global bifurcations. The trivial solution of constant

zero bifurcates when λ equal to the spectrum of the Laplace operator with Neumann boundary

condition ([30]). The natural question is whether the nonlocal operator has the similar bifurcation

properties as the Chafee-Infante problem. In chapter five of the thesis, it is shown that as the scaling

parameter ε approaches zero, the nonlocal diffusion equation has the local pitchfork bifurcation at

the spectrum of the nonlocal operator Lε . In the later part of this chapter, a concrete example

is discussed. For a concrete kernel, I solve the nonlocal diffusion equation with the Newton’s

Method and the first, second and third bifurcation diagrams are plotted. For the concrete example,

the bifurcations of the nonlocal diffusion equation fail to be global. To show that, the case with

λ being large is consider. It is shown that as the parameter λ is large, the solution on the first

bifurcation branch has a jump discontinuity.

5.2 The local bifurcation

Let Ω be an open set with smooth boundary on Rn. Define a nonlocal operator Lε on the Hilbert

space L2(Ω) as follows:

(Lεω)(x) =

∫
Ω
ε−2Jε(x − y)[ω(y) − ω(x)]dy.

where ε > 0, Jε(x − y) = ε−nJ( x−y
ε ) and J(·) ∈ Cc(Rn) with suppJ ⊂ BR, BR = {x ∈ Rn :| x |≤

R}, J ≥ 0, J(z) = J(| z |). It is easy to verify that Lε is a bounded linear operator on L2(Ω).

In this paper, we are looking for the bifurcation points of the following equation:

Lεu + λ(u − u3) = 0, in Ω (5.2.1)
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where λ ∈ R is the parameter.

This equation can also be formulated to a functional equation:

G(λ, u) = 0 (5.2.2)

where G : R × X 7→ X, X = L2(Ω) is a Banach space.

Notice that Gu(λ, 0) = Lε +λ and (λ, 0) is the trivial solution of the nonlocal diffusion equation.

Inspired by the implicit function theorem, we investigate the spectrum of the operator Lε , i.e. where

Gu(λ, 0) is not invertible. In fact, at λ where Gu(λ, 0) has finite dimensional kernel, Gu(λ, 0) is a

Fredholm operator.

Lemma 5.2.1. Assume λ ∈ σ(Lε) and dim(N(Gu(λ, 0))) < ∞, then Gu(λ, 0) is a Fredholm operator

with index zero.

Proof. One can verify that Gu(λ, 0) = Lε + λ is a self-adjoint operator on L2(Ω). In fact,

((Lε + λ)u, v)

=

∫
Ω

(Lε + λ)uvdx

=

∫
Ω

Lεuvdx +

∫
Ω
λuvdx

=

∫
Ω

∫
Ω
ε−2Jε(x − y)(u(y) − u(x))v(x)dydx +

∫
Ω
λuvdx

=

∫
Ω

∫
Ω
ε−2Jε(x − y)u(y)v(x)dydx −

∫
Ω

∫
Ω
ε−2Jε(x − y)u(x)v(x)dydx +

∫
Ω
λuvdx

=

∫
Ω

∫
Ω
ε−2Jε(x − y)u(x)v(y)dydx −

∫
Ω

∫
Ω
ε−2Jε(x − y)u(x)v(x)dydx +

∫
Ω
λuvdx

=

∫
Ω

∫
Ω
ε−2Jε(x − y)(v(y) − v(x))u(x)dydx +

∫
Ω
λuvdx

= ((Lε + λ)v, u).

(5.2.3)
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Thus, Gu(λ, 0) is a self-adjoint bounded linear operator on Hilbert space L2(Ω), N(Gu(λ, 0)) =

N(G∗u(λ, 0)) = (Range(Gu(λ, 0)))⊥. Hence, codim(Range(Gu(λ, 0))) = dim(N(Gu(λ, 0))).

In addition, Range(Gu(λ, 0)) is closed. Indeed, Gu(λ, 0) has a finite dimensional kernel. So

N(Gu(λ, 0)) is closed and L2(Ω)/ker(Gu(λ, 0)) is a Banach space. Define the map

S : L2(Ω)/ker(Gu(λ, 0))
⊕

(Range(Gu(λ, 0)))⊥ → L2(Ω)

to be: S (x, c) = T (x) + c. Then, S is a bounded linear isomorphism. Hence by open mapping

theorem, it is a topological isomorphism. Thus, Range(Gu(λ, 0)) � L2(Ω)/ker(Gu(λ, 0))
⊕
{0}

and Range(Gu(λ, 0)) is closed.

Therefore, Gu(λ, 0) is a Fredholm operator with index zero.

�

Let 4N : D(4N) ⊂ L2(Ω) 7→ L2(Ω) be the Neumann realization of the Lapacian in Ω defined

by

D(4N) = {u ∈ H2(Ω) :
∂u
∂ν

= 0, on ∂Ω}

where 4Nu = 4u =
∑n

i=1
∂2u
∂x2

i
, u ∈ D(4N) and ν = (ν1, ..., νn) is outward normal unit vector to the

boundary ∂Ω.

Then we rewrite the following equation:


cJ4u + λu = 0, in Ω

∂u
∂ν = 0, on ∂Ω
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cJ = 1
2

∫
Rn J(z) | z |2 dz. in an abstract way:

F(λ, u) = 0 (5.2.4)

where F : R × D(4N) 7→ L2(Ω) is a mapping.

By ([26]), on any bounded close set, the spectrum of the operator Gu(λ, 0) converges to the

spectrum of F(λ, u) as ε is sufficiently small. Hence, we analyse the bifurcation properties of

equation G around any bifurcation points (µ, 0) of the equation F. And we have the following

theorem:

Theorem 5.2.2. Suppose that −µ ∈ σ(cJ4
N) is a simple eigenvalue of cJ4

N . And let Bδ(µ) =

{λ ∈ C :| λ − µ |≤ δ} with δ > 0 so small that Bδ ∩ σ(cJ4
N) = {−µ}. Then (a), there exists

ε > 0 so that when ε is sufficiently small Bδ ∩ σ(Lε) = {−λ0} and −λ0 is a simple eigenvalue

of Lε . (b), if we assume N(Gu(λ, 0)) = span{ω0} and Z be any complement of N(Gu(λ, 0)) in

L2(Ω), then the solution set of G(λ, u) = 0 near (λ0, 0) consists precisely of the curves u = 0 and

{(λ(s), u(s)) : s ∈ I = (−a, a)}, where λ : I 7→ R is a C2 function and z : I 7→ Z is a C1 function

such that u(s) = sω0 + sz(s), λ(0) = λ0, z(0) = 0 and λ
′
(0) = λ

′′
(0) = 0.

Proof. According to the theorem 2.1 of [26], we have part (a) that −λ0 is a simple eigenvalue

of Lε . By Lemma 5.2.1, Gu(λ, 0) is a Fredholm operator with index 0, i.e dim(N(Gu(λ, 0))) =

codim(R(Gu(λ, 0))) = 1. Gu(λ, 0) is an isomorphism from Z to R(Gu(λ, 0)).

We apply the Lyapunov-Schmidt process, denoting Q as the projection from L2(Ω) into R(Gu(λ, 0)).

Then G(λ, u) = 0 is equivalent to Q ◦G(λ, u) = 0 and (I − Q) ◦G(λ, u) = 0.

Define that:

f (λ, t, g) = Q ◦G(λ, tω0 + g) = 0
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where t ∈ R and g ∈ Z. Calculation shows that fg(λ, 0, 0) = Q ◦Gu(λ, 0), which is an isomorphism

from Z to R(Gu(λ, 0)). Hence, by the implicit function theorem, for (λ, t) near (λ0, 0), there exists

g = g(λ, t) ∈ C2 such that f (λ, t, g)) = 0. Since the codim(R(Gu(λ, 0))) = 1, there exist l ∈

(L2(Ω))∗ such that R(Gu(λ, 0)) = {v ∈ L2(Ω) :< l, v >= 0}. Thus, u = tω0 + g(λ, t) is the

solution of Q ◦Gu(λ, 0) = 0 if and only if (I − Q) ◦G(λ, tω + g(λ, t)) = 0, i.e., the scalar equation

< l,G(λ, tω + g(λ, t)) >= 0.

Notice that

f (λ, t, g(λ, t)) = Q ◦G(λ, tω0 + g(λ, t)) = 0

is true for all (λ, t) near (λ0, 0). Differentiating f and evaluating at (λ0, 0), we obtain

0 = 5 f = (Q ◦ (Gλ + Gu[gλ]),Q ◦Gu[ω0 + gt])

Since (λ, 0) are the trivial solutions of the nonlocal diffusion equation, Gλ(λ0, 0) = 0 and Gu(λ, 0)

is an isomorphism from Z to R(Gu(λ, 0)), we can conclude that gt(λ0, 0) = gλ(λ0, 0) = 0.

Define h(λ, t) =< l,G(λ, tω + g(λ, t)) >, we can apply Theorem 2.1 of [32] to h.

5h(λ0, 0) = (hλ, ht) = (< l,Gλ + Gu[gλ] >, < l,Gu[ω0 + gt] >) = (0, 0).

For the Hessian matirx, we have

Hess(h) =


hλλ hλt

htλ htt


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where

htλ = hλt =< l,Gλu[ω0 + gt] + Guu[ω0 + gt, gλ + Gu[gλt]] >=< l,Gλu[ω0] >;

hλλ =< l,Gλλ + 2Gλu[gλ] + Guu[gλ, gλ] + Gu[gλλ] >=< l, 0 >= 0;

htt =< l,Guu[ω0 + gt, ω0 + gt] + Gu[gtt] >=< l,Guu[ω0, ω0] > .

In summary,

Hess(h) =


0 < l,Gλu[ω0] >

< l,Gλu[ω0] > < l,Guu[ω0, ω0] >

 .
For the determinant, we have detHess(h) = − < l,Gλu[ω0] >2< 0. By theorem 2.1 of [31], the so-

lution set of G(λ, u) = 0 near (λ0, 0) is a pair of intersection curves, (λi(s), ui(s)) = (λi(s), ti(s)ω0 +

g(λi(s), ui(s))), with i = 1, 2. where vi = (λ
′

i (0), t
′

i (0)) are the solution of

2 < l,Gλu[ω0] >2 v1v2+ < l,Guu[ω0, ω0] > v2
2 = 0.

The solution (v1, v2) = (1, 0) correspond to the line of trivial solutions and the solution (v1, v2) =

(0, 1) gives the λ
′
(0) = 0.

�
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5.3 A concrete example

We consider a concrete example. Let the dimension n equal to 1 and define the kernel J(x) as

follows:

J(x) =



0; x < −1

c j
−1cos(πx

2 ); −1 ≤ x ≤ 1

0; x > 1

with c j = 1
2

∫ 1
−1cos(πx

2 )x2 dx. J(x) is a positive even function. It is a cosine function when x is

within the interval (−1, 1) and 0 otherwise.

Figure 5.1: The kernel function J(x).
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Hence, we have the following one dimensional nonlocal integral equation:

Gε(λ, u) = Lεu + λ(u − u3) = ε−2
∫ π

0
Jε(y − x)(u(y) − u(x)) dy + λ(u(x) − u(x)3) = 0 (5.3.1)

By the mathematical analysis of the above section, when the scaling parameter ε is small,

Gε(λ, u) has the pitchfork bifurcation at λ = n2 with n being the positive integer. We apply the

Newton’s method to find the solution of the equation on its first bifurcation branch. Specifically,

we take the initial guess to be the function uε0 = tanh(
√
λ
2 (x− π2 )) and apply the Newton’s iteration:

uεn+1 = uεn −Gε
u(λ, un)−1 ◦Gε(λ, un)

where {un} is the convergent sequence generated by the Newton’s Method.

With ε to be 0.02 and λ to be 1, 2, 3 and 4 respectively, we get the simulations (figure 5.1).

Figure 5.2: solutions of the nonlocal equation

In the simulations of figure 5.2, the blue curve stands for the solutions when λ = 1, which is
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a trivial solution 0. The red curve stands for the solution when λ is 2. The green curve stands for

the solution when λ is 3; the yellow curve stands for the solution when λ is 4. As λ increases, the

solution uε(x) bifurcates from the trivial solution 0 and ‖u‖L∞(0,π) increases from 0 to 1.

We known that the spectra of such nonlocal operators converge to the spectrum of a Laplace

operator with the Neumann boundary condition as the scaling parameter ε tends to zero. Thus,

we want to know if the solutions of the nonlocal diffusion equation is, to some extent, close to the

Chafee-Infante problem. Hence, we solve the one dimensional Chafee-Infante problem with the

boundary condition below by the Newton’s Method as well and compare them with the nonlocal

diffusion equation.


uxx + λ(u − u3) = 0, in 0 < x < π,

u′(0) = 0, u′(π) = 0.

In figure 5.3, figure 5.4, and figure 5.5, the red curves stand for the integral equations and the

blue curves stand for the Chafee-Infante equation. Those simulations show that when the scaling

parameter of the nonlocal diffuison equation ε is 0.02, for various λ values, the solutions of the

nonlocal diffusion equation are very close to the solutions of the Chafee-Infante equation.

Furthermore, we would like to see the bifurcation diagrams of the nonlocal diffusion equation.

It is well known that the solutions of the Chafee-Infante equation bifurcate at n2. Inspired by figure

5.2, we modified the initial value of the Newton’s method and find another two bifurcation points

of the nonlocal diffusion equation.

The figure 5.6, figure 5.7, and figure 5.8 show that the nonlocal diffusion equation has the pitch-

fork bifurcation at points around 1, 4, and 9, which verify the hypothesis that when ε is approaching

zero, the bifurcation points of the nonlocal diffusion equation converges to the bifurcation points
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Figure 5.3: Comparison of the solutions of the nonlocal equation with λ = 2 and the Chafee-Infante
equation.

of the Chafee-Infante equation.

In figure 5.9, the three dimensional graph shows how the solutions of the nonlocal diffusion

equation on the first bifurcation branch vary as the parameter λ increase from 0 to 20. When λ is

less than a point close to 1, solutions of the nonlocal diffusion equation are constant. When λ is

greater than the first bifurcation point, there are non-constant increasing odd solutions. The L∞

norm of those solutions increase as λ increases.

Figure 5.10 shows the extreme case that when λ is 10000. When λ is 10000, the simulation

shows that a non-trivial solution of the nonlocal diffuison equation exists and it is a discontinuous

function with a jump discontinuity at x = 0.
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Figure 5.4: Comparison of the solutions of the nonlocal equation with λ = 3 and the Chafee-Infante
equation.

Figure 5.5: Comparison of the solutions of the nonlocal equation with λ = 4 and the Chafee-Infante
equation.
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Figure 5.6: The first bifurcation of the nonlocal equation

Figure 5.7: The second bifurcation of the nonlocal equation
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Figure 5.8: The third bifurcation of the nonlocal equation

Figure 5.9: The solutions of the nonlocal equation with varying λ
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Figure 5.10: The solution of the nonlocal equation the first bifurcation branch when λ = 10000
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