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ABSTRACT

A STRENGTH CRITERION FOR GRANULAR MATERIALS WITH
SPECIAL REFERENCE TO ARCH FORMATIONS IN SEEDS

By Robert Dean Fox

The gravity flow of granular material is limited by the formation
of bridges or arches in the material as it flows through chutes or bin
outlets. These arches may stop the flow and disrupt the process using
the granular material. As an introduction to the study of arch formations
in agricultural materials, observations were made of the arch systems
formed in pea beans, oats and raw sugar beet seeds. These observations
were made to determine the properties of the granular materials which
affected the strength of the material for forming arches. The materials
were selected for their differences in kernel size, shape and expected
potential for forming arches.

All arches were formed over a long narrow slit in the bottom of
a flat-bottomed, model bin. Tests were made of the effect of the
following factors on the arching characteristics of the materials:

1. compacting the seeds by vibrating the bin

2. applying a vertical load to the upper surface of the material

in the bin

3. changing the moisture content of the material

4. changing the orientation of the particles.

After these studies, it was determined that several properties

not included in commonly used yield criteria do indeed affect the arching
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strength of a material. Thus a yield criterion was developed which
was dependent not only on the internal friction and cohesive strength
of the material, but also on the angle of the shearing plane, the
particle shape and the particle orientation in the mass of material.

This criterion was developed for a specific stacking arrange-
ment of ellipsoidal particles. The stacking arrangement was made as
general as possible, while still maintaining mathematical workability.
The yield criterion was based on the assumption that the forces acting
along the failure surface in the material are transmitted across this
surface only at the contact points between the individual particles on
each side of the failure plane. The particulate nature of the material
was expressed in a yield criterion which could be used in the mathe-
matical formulations commonly used for continuous materials.

The yield criterion developed in this study has the following
properties:

1. The material has a minimum strength at a shearing angle

which is determined from the particle shape and stacking

arrangement,

2. The maximum strength occurs for shearing in a plane

parallel to the shortest axis of the particles.

3. If the friction or cohesion between particles in the

material increases, or if the void ratio of the material

decreases, the effect of the angle of shearing decreases.
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Although no data was collected to test the yield criterion
directly, the expected failure derived from the yield criterion agrees

well with the failures observed in the arch tests.
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I. INTRODUCTION

1.1. Definition of the Problem

A bridge or a stable arch system will be used interchangeably
in this study to describe a condition where particles of grain become
arranged in a dome-like formation with sufficient strength to support
the material above the dome or bridge. A bridge will obviously
impede the smooth flow of grain or even stop flow entirely. A stable
arch system is most likely to occur at a bin outlet or in a grain chute.

With the increase in the use of automatic materials handling
and feeding systems on farmsteads, the problems of arching in grain
have increased greatly, Not only has the possibility for arching
increased, through the use of more bins, chutes and pipes, but with
time clock controlled, automatic feeding systems, the amount of feed
delivered to a group of animals could unknowingly be reduced or
stopped. This problem is often encountered in milking parlors where
a ground ration is stored in a bin above the milking stations and is
gravity fed into the individual feeding boxes. Stable arch systems
which form over the chutes leading to the feeding boxes require that
the operator leave his milking station to break the arches before the
milking operation can continue.

Menear and Holdren (1965) found that hay wafers, a relatively
new agricultural product, formed a very strong bridge over the outlet
in the bottom of a storage bin. These bridges were very difficult to
destroy; this important property may limit the acceptance of this

material by farmers.



An agricultural material gaining widespread use at the present
time is high moisture grain. The British agency NAAS (1967) reported
bridging problems in removing high moisture grain from bottom-
unloading airtight silos, especially if the moisture content of the grain
was above 24% or if the grain contained trash.

In situations where the flow rate of granular materials is being
controlled by using a narrow opening, bridging can again cause problems.
An example of this is the feeding of corn kernels into the slots of the
plate of a corn planter. Khan (1966) found that the shape of the floor of
the grain box around the plate had an influence on the percentage of
plate slots which would fill with seeds.

Other industries have also been plagued for many years with
flow stoppages due to bridging materials and are still fighting the
problem with many means, such as changing the physical properties
of the flow materials (solids conditioning), redesigning the hopper
shape, or using air pressure, vibrators, and the old standby, the
rubber mallet, to stimulate flow.

1.1.1. The objectives of this study

The objectives of this study were:

1. to observe arch formations in granular materials to identify
the mechanics of arch building,

2. to identify factors which influence the size, structure, and
strength of the arch systems,

3. to find a relationship between these factors which will

explain the formation of arches, with the hope that this information
about arches might lead to an insight into a system of preventing

or destroying them.
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1.2. Preliminary Considerations

Selection of materials

Before deciding on a theoretical approach, preliminary

observations were made of arch systems in different materials. For

this preliminary study several decisions about the selection of methods

and materials had to be made.

1. In order to limit the study to the two dimensional case, the
grain bridge was formea over a long narrow slit in the bottom
of a flat bottomed bin.

2. Pea beans were selected as one of the arching materials
because they were approximately spherical in shape and were
large enough to make the individual particles in the arch
observable (see Figure 1.1 for a picture of the test materials).
3. To test the effect of a differently shaped material on arch
formation, oats were also selected. The oat kernel is
approximately a long, thin cylinder in shape.

4. Raw sugar beet seeds were selected as a third test material.
They have a somewhat irregular shape with points and corners,
but they could be best described as spherical in outline. Sugar
beet seeds tend to lock together when compacted; thus they
were expected to have a high potential for arching.

Definition of terms

1. Stable arch system - any arrangement of particles over the
slit that prevents the flow of material; usually composed of
several primary and secondary arches. Figure 1.2 shows a
stable arch system in pea beans; note the primary-secondary

arch structure.



(c) raw sugar beet seed

Figure 1.1. The materials used in this study.
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2. Primary arch - a short arch, usually perpendicular to the
slit which appears to support the remainder of the arch system.
3. Secondary arch - an arch which forms between primary
archs, either parallel to the slit or obliquely across the slit.

4. Flow arch - a stable arch system which forms in a flowing
material and stops the flow.

5. Initial arch - a stable arch system which forms immediately
after the slit is opened and prevents flow from developing; only
a few kernels of grain fall out and the kernels in the grain mass
do not move.

6. Compacted material - material compacted by shaking the
model bin for 10 seconds; the shaking was done manually, in a
direction parallel to the slit length.

7. Preloaded material - material compacted by applying a load
(preload) to the top of the grain column for a short time and
removing the load before the slit was opened.

8. Constant load - the load applied to the grain column and
remaining in place until after the slit was opened and the trial
run completed.

Observations of stable arch systems

The following observations were made in the apparatus described

in Section 3.1, but were discussed here because they directly affected

the selection of the theoretical methods used in this study.

arches.

The arch systems which formed in pea beans were usually flow

The orientation of the particles during flow and their random

positioning seemed to bring about the necessary conditions for arch



Figure 1.2. A typical stable arch system in pea beans.
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Figure 1.3. A typical stable arch system in oat kernels.



formation. The dimension of a bean which affected arch formation
appeared to be its smallest diameter (considering the bean as an
ellipsoid). A bean in an arch rarely was positioned with its longest
dimension parallel to the arch direction. The primary-secondary
arch structure was more pronounced in beans than in the other
materials tested (see Figure 1.2). This structure made it apparent
that the arch system in beans could not be considered a purely two
dimensional problem. Furthermore the stable arch system would
form only over slit widths of two particle diameters or less, which
meant that only two or three particles made up most primary arches.

Oat kernels formed mainly initial arch systems; they would
form flow arches occasionally but not often. Stable arch systems in
oats tended to be very flat and quite uniform along the length of the
slit, that is, with very little secondary arch structure (see Figure
1.3). The critical dimension of the oat kernel in the formation of
arches seemed to be the length of the kernel. When forming an arch
the kernels tended to lie flat (with the long axis parallel to the bottom
of the bin) and extended across the slit, being held in place by and at
the same time supporting the kernels in higher tiers.

When sugar beet seed was poured loosely into the bin, its
arching properties were similar to those of beans. However when the
beet seeds were compacted by shaking the bin before opening the slit,
their behavior changed considerably. Compacted seeds formed very
stable initial arch systems over wide slit widths. These arch systems
were so stable that the lower portion of the material, defined as the

Primary arches in beans, could be removed until the arch had a nearly



smooth cylindrical shape over the entire length of the slit (see Figure
1.4). This arch system appeared to be a series of parallel primary
arches placed side by side. In this condition, there seemed to be a
thin layer of particles, located within two or three particle diameters
of the arch bottom, which were the key to the support of the arch.

If a hole was made in this layer, the seeds flowed out rapidly.

1.3. Selection of an Approach

After making these preliminary observations of the materials
selected for this study, a model based on the force system between
individual particles seemed to provide a more accurate description
of the mechanics than one based on the assumption of a continuous
material. Thus this study concentrated on trying to find a particle-
mass model Which would describe the formation of arches in a
granular material. However, continuous models have been developed
to explain the behavior of granular materials under many different
conditions and some of these models were used for comparison with

the test results of this study.



(a) as formed (b) after the lower particles
were removed

an arch 2-1/2 in. wide, (d) an end view of (c)
formed under a surface
load of 1 psi.

(c

Figure 1.4. A stable arch system in compacted sugar beet seed.



II. THE MECHANICS OF THE PROBLEM

2.1. The Material as a Mass of Discrete Particles

2.1.1. Review of literature

Trollope (1957) studied the stability of a granular wedge
under conditions of a single (horizontal) surface constraint (see
Figure 2.1). He evaluated the stress distribution within a granular
mass under the influence of gravity from an analysis of the static
equilibrium of a systematically packed system of mono-sized, smooth,
non-frictional, rigid spheres. The necessary stability in such a wedge
was satisfied with a unique packing arrangement, the hexagonal

rhombohedral. A two-dimensional view of this type of packing is

wedge of granular
material

Figure 2.1. Deflection of the supporting base under a wedge of
granular material (Trollope).

10
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shown in Figure 2.2. The loading forces, £q, mq and nq, acting on
the particle considered in this figure were known from the boundary
conditions; £, m and n represented integers. The support forces
acting on this particle were Zl’ ZZ’ and X. The two limiting
conditions for static equilibrium are also shown in this figure.
Trollope defined

Z, = @ r—?%] Zy o
where a' was an "'arching factor' which was related to the deflection
of the supporting base. No arching occurred over a rigid base but
arching occurred if the base was allowed to deflect. The arching
factor a' was dependent upon the deflection coefficient of the base
(A/L), which is shown in Figure 2.1. Trollope found good agreement
between the predicted and measured pressure distribution across the
base of laboratory models of sand wedges.

Laszlo (1962) discussed the factors affecting the stability of
the particles in the surface layer of a granular slope. Using cylinders
and spheres as models, he derived expressions for the forces acting
on the surface particles under the action of friction. The force system
considered by Laszlo is shown in Figure 2.3. In this figure Qi was
the force acting on the surface particle by the particles in the interior
of the mass; all Q-forces acted at an angle 6, Pi was the force acting
on a surface particle by the next lower surface particle; all P-forces
acted at a, the slope angle of the stack.

. was the coefficient of friction between the particles.

In this force system, P, must be greater than Qi to maintain

the equilibrium of moments acting on the particles. The force on any
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fq maq lq mq
nq X nqg=0 X=0
Z1 Z,=0 le(m+1)q ZZ=(1+1)q

(a) full arching (b) no arching

Figure 2.2. Force systems acting in a mass of rhombohedrally
packed disks (Trollope).

HQ, B Q

P'(Qi -Z Qi-odds

tz Qi -evens)

Figure 2.3. Forces acting on slipping cylinders on a granular
slope (Laszlo).
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particle was found in terms of the force balance of the uppermost
particle and the number of particles in the surface layer. Laszlo
seems to have made an error in deriving the final expressions for
Qi and Pi .

Ross and Isaacs (1961) used the force system between particles
to derive expressions for the total vertical force on the bottom of a
bin and for the vertical and lateral pressures acting in a bin. They
assumed the particles were inelastic spheres, then defined a
characteristic particle size, E, and stacking angle 6 for each material
tested. These characteristic values were determined from the
porosity and specific density of the materials. They considered only
the static case where friction could be neglected. The stacking system
used for their calculations is shown in Figure 2.4. The stacking
arrangement in the yz-plane was exactly like the arrangement in the
xz-plane shown in Figure 2.4. Thus four 6 -axes pass through each
particle. The length of a 6 -axis is upward from the particle to the
boundary of the particle mass. Figure 2.5 shows the forces acting
on an individual particle in the center of the stack., Each of four
particles above act with a force m on this particle and each of four
particles below support this particle with a force F. By summing the
forces acting on the particles in successive tiers, Ross and Isaacs
found the total vertical force exerted by a particle on its support to

be

F = few/g,

TV-n

where fe is the average length of the four 8 -axes and w is the
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0 axis 0 axis

99\ S

Figure 2.4. Section view of a model particle stack (Ross-Isaacs).

Figure 2.5. Forces acting on a particle in the particle stack
(Ross-Isaacs).



15

weight of each particle. To find the forces acting in a particle stack
enclosed by a retaining wall, Ross and Isaacs assumed that the
retaining walls acted as a weightless particle column, that is, the
wall supported the particles as if the particle stack continued beyond
the wall, but did not apply any additional force to the lower particles.

The total force acting on the bin floor was found to be

2 2
- J~ wh _ J wh (2.1)

4 53 cosze sin O 8 53 cos 0O sinze

Ffloor

where J is the width of the square bin and h is the height of the grain
in the bin. This equation is valid for grain heights up to J tan 0 .
They found good agreement between the values calculated from
Equation (2.1) and experimental measurements. The equations for
the vertical and lateral pressures acting in a bin were:

T, w

= — (2.2)

floor 4 —&3 cos2 0

and

(1 + cos 0)
P = L+ —e2t el (2.3)
wall 0 8 d3 sinZ O cos O

where L'e is the length of the 6 -axis 1n the xz-plane. Ross and Isaacs
showed that the lateral pressure measured by Saul (1953) agreed closely
with Equation (2.3), but the vertical pressure on the bin floor measured
by Saul was 10% to 15% higher than calculated from Equation (2.2).
Mogami (1965) derived a relationship between the statisiical
distribution of the void ratios and the principal stresses in a granular
mass. He considered the granular mass as a series of elements such

as is shown in Figure 2.6. He classified these elements according to
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V - the total
8 volume of
that portion of
the grains inside
the element

V_ - the volume of
the void

Figure 2.6. The element of volume in a granular mass
(Mogami).

their void ratios and volumes as is shown in Table 2.1, where
€)5€5,...,€ were the void ratios in ascending order, vy (i=1,2,...,n)
were the total volume of the elements having the void ratio e; and
Ni (i=1,2,...,n) were the total volume of the grains contained in the
elements which had the void ratio € in terms of the number of grains.
Mogami then applied the methods of statistical mechanics to this system

and found an expression for the probability of the state in terms of the

Table 2.1. The distribution of volume elements (Mogami)
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void ratios and their standard deviation. Then by relating the volumetric
strain in plane stress to the change in void ratio, he derived expressions
for the principal stresses in terms of the void ratio, the maximum
shearing strain and a suitable constant. In a later paper Mogami (1966)
compared the constant, k', which he calculated from published data of
triaxial and plane shear tests in sand and found k' to be consistent within
each set of tests.

2.1.2. Outline of approach

During the initial part of this study, several attempts were made
to describe the forces acting between individual particles in a mass of
material; particularly particles in grain arches. These methods were
not successful because the force system acting between the particles
in the mass involved many possible combinations of forces and force
directions. Thus, before the system could be solved, such assumptions
had to be made that the validity of the solution was highly questionable.
Many of these problems would be overcome if the influence of the mass
surrounding the critical area could be included while still recognizing
the particle nature of the failure area. This could be achieved if the
particle nature of the system could be incorporated into a continuous
mass type of description.

The following development was made to find a yield criterion of
this kind. From continuum mechanics was utilized the concept of an
imaginary plane through the particle mass, separating the mass into
two bodies. Taken over a sufficiently large area of this plane, the
resultants of the forces are assumed to be proportional to the area. The

internal force state in the original mass can be represented by forces
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perpendicular and tangential to the imaginary plane.

From particle mechanics were taken the concepts that forces
are transmitted between bodies at the contact points, that the directions
of the forces should be related to the common normal to the bodies at
the points of contact and that there exists a relationship between the
normal and tangential contact forces.

The two approaches are combined by the assumption that appropriate
components of the resultant of the contact forces in the particle picture
are the same as the unit area forces in the continuum representation.

The yield criterion was designed to consider both pure friction
and cohesion between the particles, and also the orientation of the particles.
The following sections discuss the assumed particle stacking arrangement
and the force system between the particles necessary to arrive at the yield
condition.

2.1.3. The arrangement of the particles in a stack

The stacking arrangement of the particles in a mass of material
determines the points of contact between the particles and the direction
of the normal at the contact points; this essentially establishes the force
system which acts between the particles. The assumptions made in
selecting the packing system for this study and the properties resulting
from this arrangement of particles are given below.

Assumptions:

1. The particles had an ellipsoidal shape with the two minor

axes equal (the length of the minor axes = 2b).

2. All particles were oriented with their longest axis parallel

to the x-axis (the length of the major axis = 2a).
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3. The particles were arranged in a systematic manner with

equidistant spacing; the spacing was independent of position in

the mass.

4. Each particle was in contact with all adjacent particles.

Figure 2.7 shows the arrangement of particles used in the
following discussion. Four stacking arrangements which satisfy the
above conditions are possible. They are:

1. a simple rectangular arrangement with a center spacing of

2a in the x-direction and 2b in the y- and z-directions.

2. a body centered rectangular arrangement with a center

spacing of 26a in the x-direction, 2nb in the y-direction and a

z-distance dependent on 6 and n (this is the arrangement shown

in Figure 2.7, the z-distance is shown in this figure but the

derivation of this distance will be given later).

3. an arrangement which has face centered particles in the

xz-plane and is rectangular in the yz-plane. The center spacings

in this arrangement are 26a in the x-direction, 2b in the y-direction

and a z-distance determined by 6.

4. an arrangement which has face centered particles in the

yz-plane and is rectangular in the xz-plane. The center spacings

in this arrangement are 2a in the x-direction, 2nb in the y-

direction and a z-distance determined by n.

To include these four arrangements in one mathematical
forrmulation, the stacking constants m and n were used. The only
possible values for m and n are 0 and 1. These constants are used in

the description of the distance between the centers of particles in
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adjacent tiers. In Figure 2.7, the center spacing between particles
1 and 2 in the x-direction is nba and the center spacing between these
particles in the y-direction is mnb. Thus the four arrangements

mentioned above are given by the following values of m and n:

Arrangement m-value n-value
1 0 0
2 1 1
3 0 1
4 1 0

These four arrangements were made more general by including
the stacking variables 6 and n. These variables allow the distance
between the center of particles in the same tier to be varied. The
distance in the x-direction between the centers of particles 1 and 3
in Figure 2.7 is 26a. The y-distance between the centers of particles
1 and 4 is 2nb. The minimum value for these variables is 6§ =n = 1.

The stacking constants and variables are used only in the x-
and y-directions. The particles in higher tiers are assumed to be
supported by the lower particles, so that the z-distance between
centers can be calculated if the x- and y-distances are known.

Using this method, the distance between the centers of any
particle can be calculated from the position of the adjacent particle.

Thus for particles in the same tier

h3 =h1 + 26a and k4:k1 + 2nb

where (h, k) is the center of each particle shown in Figure 2.7, and

for particles in adjacent tiers
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hZ = h1 + nbéa and kz = kl + mnb

The particles in tier three were placed directly above those in
tier one; tier four was exactly like tier two, etc.

The following method was used to calculate the z-coordinate of
the center of particle 2 (see Figure 2.7). The x- and y-coordinates
of the center of this particle were fixed at (abén, bnm). Let the desired

z-coordinate be c, then the equations of particles 1 and 2 are

4 + 2 -,
az b2 bZ
and (2.4)
(x -abn)” _ (y-bnm; (z-¢) _ ,
2 2
a b b

These two particles touch only at the point (xl, Yy zl), where they
have a common tangent plane. The direction numbers of the normals
at this contact point were found by taking the gradient of Equations 2. 4.

These direction numbers were:

0 S O

a2 b2 b2

X, - adn vy - bnm z) -c¢
a2 b‘Z b2

respectively.
The normals are parallel, but have opposite directions.

Therefore

(x, -~ abn)

1

2 ’

X

1
-— = K
a a
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Y]. (Yl - bnm)
- = K — and
b b
zy (z1 - c)
- —2 = K >
b b

In order to satisfy Equations 2.4, K =1, and the point of contact

becomes:

6 b
(Xlx}’luzl) = (a;zﬂt _gﬂ’ %)- (2.5)

(These results could also be found from symmetry arguments.)

From Equations 2. 4,

¢ = W4-6%n® - nim? . _ (2.6)

Thus the center of particle 2 becomes:

-

(adn, bnm, bJ4 - 62n2 - an? )

The vaues of & and n must be restricted in size, for if they
become too large, the particles in tier three will touch the particles -
in tier one without touching the parficles in tier two. Thus the z-
coordinate of the center particle 5 (see Figure 2.9) must be greater

than 2b, giving,

. |
2b«[4 - 62n2 - nzmz > 2b
or

62n2 + nzm2 < 3

This, in combination with the conditions that 6 >1, n 21, m=1 or 0,

n =1 or 0, gives the possible values of & and n shown in Figure 2. 8.
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Figure 2.8. The possible values for & and n include the shaded
area and the line segments AB and BC.

To find the porosity of this packing system, consider the paral-
lelepiped outlined by the heavy lines in Figure 2.9. This parallelepiped
contains the volume of two particles. Thus the volume of the material -
is 81ra.b2/3, and the porosity of this system is;

volume of material
total volume

1 -

porosity , Or

™

1 - . (2.7)
3 6n3 4 - 6Zn2 - anZ

The porosity of this stacking system for various values of the

porosity

stacking numbers are shown in Figure 2.10. The system is symmetric
with respect to 6§ and n. Although Figure 2.10 is drawn for 6 with

curves for various values of 7n, the same relationships would hold if
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the & and n symbols were exchanged.

As can be seen from the diagram, the minimum porosity of
0.26 is achieved for § =1 =1, n=m =1. The maximum porosity
of 0.47 occurs for n =m = 0, which fixes 6§ =n=1.

As a comparison, Ross and Isaacs (1961) measured the porosity

of several materials; their results were:

material porosity
shelled corn 0.39
oats 0.50
soybeans 0.39
wheat 0.39

All of these porosity values, except oats, fall within the range given
in Figure 2.10. From measurements of the bulk density of loose and
compacted oats, it appears that the porosity of compacted oats would
be approximately 0.46. Thus the stacking model developed here may
be used to describe the porosity of the materials quite accurately.

2.1.4. The normal and tangential forces acting on a failure surface

The failure was assumed to occur along a plane containing the
y-axis and passing through the particle mass at an angle a to the
z-axis (see Figure 2.11). Any movement in the mass involved the
body on the left side of the a -plane sliding over the body on the right
side. This implied that motion in the y-direction was zero. This
a -plane divided the mass of particles into two bodies; this discussion
considers the forces which act between these two bodies.

Because the mass was made up of particles which were assumed

to remain intact, the boundary between the two bodies was not exactly
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-or n=m=0
© "l
-4 m =0
n=1
& =1
@
o)
5
S, <3
A n=m-=1
n =1.3
B n=m-=1
2 n=1.1
®© n=m=1
n=1
i;l | | | | 1 | | | ]
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Figure 2.10. Porosity of the particle stack for various values of
the stacking constants.
a plane, but appeared to zigzag across the a -plane following the particle
boundaries. The position of the center of the particle determined the
dividing line between the two bodies; any particle whose center was on
or to the left of the a -plane was considered to be in the left body and
any particle whose center was to the right of the a -plane was in the
right body (see Figure 2.11).
The only contact points between the particles which affected the

forces between the two bodies were those along the zigzag boundary.

All other forces occurred within the bodies and were not considered.
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Figures 2.12, 2.13 and 2.14 show close-ups of the contact points
between several particles.

All forces between the two bodies act in one of two planes;
these two kinds of contact planes were defined as type I and type II.
Figures 2.12 and 2.13 show type I and type II contacts for the case
m =0, n=1; however as is shown in Figure 2.14, the casem =n =1
can be treated with the same type of contact forces by using the position
equations developed in Section 2.1.3. For ease of visualization, all
future figures will show the case n =1, m = 0, but the equations will
be derived for the general case of all combinations of n and m equal
Oorl.

The direction of movement of the body to the left of the a -plane
over the body to the right affects the force system between the bodies.

Figure 2.15 defines ''plus' and ""minus'' directions of motion.

left body

Figure 2.15. Definition of the ''plus' and ""minus'' directions
of movement along the a -plane.
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Looking at Figure 2.13 again, it can be seen that after a very
small "plus'' movement, the type I contact forces no longer act, so
that all of the resisting force takes place at type II contacts. On the
other hand, for '""minus' movement, only the type I contact forces are
active. Therefore, the force system acting for each type of motion
can be treated separately. If the movement between bodies is large,
it is obvious that displacement of particles would have to occur,
however this study will limit its discussion to incipient movement so
that the particles can be assumed to retain their position in the particle
stack.

In the previous discussion, it was shown that minus motion of
the left body was associated with the forces acting between particles
at type I contacts and that plus motion of the left body was associated
with the forces acting between particles at type II contacts. These
two types of movement will be considered separately.

The case of minus movement - type I contacts will be discussed
first. The total force acting at a type I contact will be determined and
then the components of this force in the directions normal (H.) and
tangential (?) to the a -plane will be calculated. The force acting at
the type I contact was taken to be the force that a particle in the right
body exerted on a particle in the left body.

Consider the type I contact between particles 4 and 5 in
Figure 2.12. The unit vector in the direction normal to particle 5 at
this point is

Adén nm 3

=)

5 5

’
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where

and

cg = J4+(X2-1)62n2

Thus the normal force acting on particle 5 in the left body at one type I

contact is:

F. = F + == k) . (2.8)

N N (- " Cg C
This force is only one of a pair of forces which act on each
particle in each (projected) contact plane. In this case there is a
particle directly behind particle 4 which acts on particle 5 from the
other side with a normal force,

m - C3
J

Aén — +——k.),
5

1 -

]

Fn = Inb)

Q
)

so that the two normal forces acting in each contact plane are balanced
in the y-direction. Because only motion in the xz-plane is being
considered, only one normal force of each force-pair in a contact
plane will be considered in the following discussion.

The friction force, F.p , acts in the same plane as the motion
and opposes this motion. In this case, it would act in the xz-plane,
i.e., perpendicular to the -_].. direction. The friction force also must
act in the plane tangent to the particles at the contact point, i.e.,

N

direction of -(N x j'-‘). Normalizing this resulting vector and taking

perpendicular to the normal force F... Thus i‘.“ will act in the
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the magnitude of the friction force as pF f‘; for minus motion

N,
becomes:
C
F, = pFN(—3i + )‘Cén K) , (2.9)
4 4
where,
2 2’ 2 2 2
C4='\/C3+()\6n) = CS-nm

Figure 2.16 shows the forces at a type I contact, acting in the
directions which will be considered positive for this case. From the
figure, it is apparent that the normal force in Equation 2.8 and the
friction force in Equation 2.9 were acting in the positive direction.
The total force acting in the xz-plane at a type I contact at incipient

minus motion is:

(FT)xz (FN + Fp )xz !
which can be written:
- RCy . C —~
F.. = F (-X8n  _ 3y 7 4 (2 42200, ¢ (2.10)
T N C5 C4 C5 C4

Defining the angle between (F and the z-axis as B, (see Figure

N)xz

2.12), i.e., B = arc tan )‘Cén )
3

as is shown in Figure 2.17, gives:
FT=FN (-C—531n13+p.cos6)1 +(E;cos[5+p.51nﬁ)k .

(2.11)

The unit vectors normal and tangential to the a -plane are

o = (-cos a, 0, sina) and t = (sina, 0, cosa), (see Figure 2.18).
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The components of f‘.T in the normal and tangential directions are

FT T and FT - T . Thus the total force on the a -plane becomes:

F. =(F.-mMn+(F.-t)t

Ta T Tot)t ., or
C
F. = F {—4 sin (a +B) - cos(a+ﬁ)};
Ta N C5
C4 -
+ {g=cos(a+B)+pusin(a+p)} t |. (2.12)
5
Cy
Now define an angle Yy ; » = Ksiny and c - Kcos y.
5

Introducing these expressions into Equation 2.12 gives:

FTQ = FNK[sin(a+B-y)—n.+cos(a+ﬁ-y)-t-:.:l . (2.13)

Let b be the ratio of the magnitudes of the tangential component to
the normal component acting on the a -plane. Then p for minus

motion becomes:

n = cot(a+pB -v) . (2.14)

a,-I

In the same way, B, can be computed for the plus motion -
type II contact case. Figure 2.19 shows the positive directions for
the forces acting at a type II contact. In this case, two regions were
considered separatel?r, a < B and a > B. This was necessary so
that the friction force would always resist the movement of the left
body. The positive tangential direction along the a -plane was defined
as t = (- sina, 0, -cosa). Then, making the same calculations as
for the minus movement case, the ratio By for positive motion was

found to be:
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F
M
°3
Cs
P\ F
N
Figure 2.16. The forces acting on Figure 2.17. The components of
a particle in the left body the angle B.

during incipient minus motion,
showing the pogitive directions
— —

for FN and Fp. .

COSQ‘ - COs a

sin a

Figure 2.18. The x- and z-components Figure 2.19. The forces acting

of the unit vectors normal and on a particle in the left
tangential to the a -plane, for body during incipient plus
this case. motion, showing the

positive directions for
—

FN and FP .
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“a,+II=C°t(p'°'Y) (2.15)

where Yy is positive for a < 8 and negative for a > .

A discussion of the regions of validity of these equations (2.14
and 2.15) along with numerical values of q 2re given in Section 2.1. 5.

The relationship between the angle a and the number of type I
and type II contacts was considered next. From Figure 2.11, itis
apparent that for a = Oo, 50% of the contacts are of each type, but that
for a = as 100% of the contacts are type I. The value of a for the case
where all contacts between the particles in the two bodies are type 1
except for one particle in the top tier is shown in Figure 2.20. There

is always one contact for each tier of particles and a type II contact will

—-— Nth tier

NbC3

— NbC, tana
3 o

Figure 2.20. A particle stack showing the a -plane for particles with
all type I contacts except the particle in the Nth tier,



38

occur only when the a -plane passes through or to the left of the center
of a particle. In Figure 2.20, a was chosen so that the a -plane passed
through the center of the first particle to the left of the ao-particle in
the N'D tier.

From Figure 2.20, 26a = Nb C3 tana - N b C3 tan a . Since
there is only one type II contact in this case, the fraction of contacts
which are type II is 1/N. It follows from the above expression that the

frequency of type II contacts is:

N C3 (tan a - tan a)

I S
=~ °"2% .
) _1 tan a
Nowtanuo-x C3 , SO fn— > (1 -——tanao)f (0 < af_ao).

The remainder of the contacts are type I, so

£ =1 - f._ = tan a
tanao

I 11 1+

), for (050'5.“0)'

38 Lo

where fI and fII are the frequency of the type I and II contacts.
Although this solution was developed for the special case of

only one type II contact, the same construction can be used for the

a -plane passing through the center of any particle in the N"'h tier.
Because the length of the section along the a -plane is N b C3/cos a,

the number of contacts per unit length becomes:

_ 1 sin a _ 1 sin a
NI_ZbC3 (Cosa+tanao)) NII-ZbC3 (COSO- 'tanao): (2016)

where NI and NII

length along the a -plane.

are the number of each type of contact per unit
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This development would be more general if an interparticle
cohesive frictional force was included, because most materials
exhibit some cohesive property. This cohesive force can be included

in the friction force; thus the magnitude of the friction force becomes,

I f"“] = p.FN + FC , where FC is the apparent cohesion. Making this
addition to the previous derivations will change the p-term in the

F
definition of y to (p + ?ﬁ) .
N

2.1.5, A discussion of the yield criterion

The ratio By s of the tangential force acting on the a -plane to
the normal force acting on the a -plane, is an expression for the failure
strength of a material. When the failure criterion is written as
Fto. e FnG , it is similar in form to the Coulomb yield criterion.
Although it may not be obvious from Equations 2.14 and 2.15, Ko is
a function of the stacking arrangement, the particle shape, the angle
of the failure plane through the mass and the internal friction and
cohesion of the material.

The expressions obtained for Ry in Equations 2.14 and 2.15
are not defined for all combinations of the angles a, p and y. The
following discussion will point out these critical values.

Case 1. Minus motion - type I contacts

This case is valid only for 0 < a < 900 -B. For a < 0,
this case is equal to case 2 for -~ a, due to symmetry. Fora > 90° - B,

the contact force will become negative.

N = © for 0<a<y-p.
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Case 2. Plus motion - type II contacts

This case is valid mainly for 0 < a < B. The lower limit
applies for the same reason given in case 1. For a > f only a very
small movement can take place before both type II and type I contacts

are established.

Bo 4= @ for B-lyl <a<p+]y],

because at a = 3 the tangential component of —I;T is perpendicular to
the (projected) contact surface.
This summary, together with the illustration given in Figure 2,21,

show that p is not a suitable measure of the yield strength of a

a, +II
material during incipient plus movement. However, it was shown in

the previous section that as a increases, the frequency of type II
contacts along the a -plane decreases (see Figure 2.21). As a becomes
larger, the tangential force acting along the a -plane will be concentrated
on a small number of particles and will probably cause the particles to
move out of their stacking positions. This violates one of the assumptions
made earlier, If small movements in the particles with type II contacts

occur, the locus for Bo would likely be similar to the minus move-
?

+1I
ment case.

On the other hand, for minus movement, p.a, -1 gives reasonable
results whenever a > y - B. Thus .this yield criterion can be used only
for the case of minus movement and whena > y -f. To show the
relationship between a and Py » 2 specific case was considered. A
plot of Ko for a -values between 0 and a, is shown in Figure 2.21,
for the case whenm =0, n=1, n=1, 6 =1, Fc =0, \ =0.5, and

b o=0.1,
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The By values were

calculated for the case:

m-=20 n=1
n =1 6 =1
r =0.1 F =0
A =0.5 ¢

a
(o)
| | \[

10 20

30 40 50

a (in degrees)

0.4

0.3

0.2

0.1

Figure 2.21. The effect of the shearing angle on Mg and the frequency

of type II contacts.

Frequency of type II contacts along the a -plane
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The yield strength for minus movement is a maximum at
a +B8 =Yy and a minimum ata = 90° - B. Thus failure is more
likely for a -values near this minimum than in other planes. The
effect of some of the other variables can be seen from the equations
used in deriving Equation 2.14. These observations are:

1. The yield strength is a function of the shearing angle a

and p 2 K.

2, As the particles are moved farther apart in the stack,

the strength decreases.

3. As the particle shape becomes longer and more slender,

the strength increases.

4, As the internal friction of the material increases, the

effect of the shearing angle decreases, that is, the strength

at small a -values decreases and the strength at large a -values

increases.

5. If the void ratio of the stack decreases, the effect of the

shearing angle decreases.

6. As the cohesion of the material increases, the effect of

the shearing angle decreases.

A related topic which should be investigated in future studies
is the effect of an internal compressive force (stress) in the body
on the yield strength. If this stress acts parallel to the a -surface
it should tend to increase the possible tangential force along the
a -plane before sliding takes place. Another point which should be
studied is the internal force state necessary to prevent the surface
particles from rotating when a tangential and normal surface force

is applied.
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This study was limited to incipient motion (failure). The case
of continued motion (plastic flow) should also be studied using the
same methods.

2.2. The Continuous Mass Approach

2.2.1. Review of literature

The assumption of a continuous material with the added constraints
of isotropy and homogeneity has been used extensively to reduce complex
problems to a more easily solvable form. In the area of stresses in
grain, the first theoretical study using this assumption was made by
Janssen (1895). He considered the element shown in Figure 2.22 and
derived formulas for the lateral and vertical pressures exerted by
grain in bins. With this force balance and by defining k = PL/Pv =
constant, Janssen was able to integrate the derived differential

equation to obtain

R! -kp'h
P =’LY<TT' (1 -exp———ﬁt?—- ), (2.17)

where R' = A/U, the hydraulic radius and h was the height of the grain.
The assumption that k was constant throughout the material has not
been supported by experiments; however Janssen's formula is still
commonly used and is recommended by Hall (1961) for calculating
grain pressures in deep bins.

Terzaghi (1943) considered arching in sand over a yielding
trap door. Using the forces acting on the element of material shown
in Figure 2.23, and the same procedure as Janssen, he found the

vertical pressure on the yielding surface to be
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P A
v
, Y
)
am— dz P .
‘Y PLU dz
f b P U dz
Ay dz
(P +dP ) A
v v
vertical pressure
lateral pressure
bulk density of the grain
circumference of the bin
coefficient of friction of grain on the wall
cross sectional area of the bin
Figure 2.22. The force element used by Janssen.
q
i P
v
Y
_—‘_.. ' P
dz I -— L,
(4 ' KL - coefficient of
' f f ctu Pr internal friction
P +dP
vV 2L - width of the
2Lydz yielding trap
door
| S L 1 3
¢ - cohesion of

e—— 2L ——y

the material

Figure 2.23.

The force element used by Terzaghi.
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_ L - ¢c/L) - k uh) (- k ph)
PV- am (1 - exp T + q exp T (2.18)

In tests with sand, Terzaghi (1936) found that the stresses in the sand
mass above a height equal to two or three slit widths (4L to 6L) were
not changed by the yielding of the trap door. Thus the shearing stresses
which act on the sides of the element were assumed to be active only in
the lower portion of the mass. The upper portion of the mass acted
only as a surcharge on this shearing section.

Love (1929) derived the stress distribution equations for a
vertical load applied over a rectangular surface area of a semi-infinite
elastic material.

Frohlich (1934) considered the similarity between the vertical
pressures in an incompressible, isotropic, elastic material contained
in a silo and the same material lying in a semi-infinite space. He
derived an expression for the vertical pressure in a silo by taking a
semi-infinite space of material and assuming that only the material
inside the silo boundary had weight; the portion of the semi-infinite
space outside the silo boundary was weightless but could transmit
stresses. The equation for the vertical pressure in a semi-infinite
space of elastic material with a uniform applied load on part of the
boundary had been solved by earlier researchers (Boussinesq).
Applying a uniform load on the boundary of the semi-infinite space
over a region equal to the silo cross section, Frohlich found that the
vertical pressure at similar points in the two situations would give
equal deformation if the applied load had a magnitude of YE, where
Yy was the bulk density and E was the modulus of elasticity of the

material.
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Figure 2.24. A finite square plate with a hole in the center
showing the boundary conditions used by
Schlack and Little.

The problem of determining the stresses acting in an arched
cohesive material is somewhat similar to the elasticity problem of a
finite plate with a hole in the center. Solutions to problems of this
type, shown in Figure 2.24, were obtained by Schlack and Little (1964)
and for a slightly different case by Thompson (1965). This type of
approach might give an approximation to the stress field in a shallow
bin filled with a cohesive material under a load.

Richmond and Gardner (1962) obtained expressions for the
maximum arch span that a cohesive material could form in a vertical
channel and the minimum span that could possibly flow under the same

conditions. They assumed that:
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1. the material obeyed Coulomb's failure condition

2. the stress was invariant with respect to the vertical
coordinate near the free arch surface

3. the radial stress component was everywhere equal to the
circumferential stress component.

They used differential equations of equilibrium

Bcrx asz 80'2 asz
(%% * 32, =% B T ax Y

to derive their formulas. Tests with clay agreed closely with the
arch spans obtained for the minimum span that could possibly flow.

This equation was

L = ZC—Y (1 + sin ¢) , where ¢ = angle of internal friction.

Lenczner (1966) extended this development to non-vertical walls.
Jenike (1962) developed a comprehensive solution to the

problem of gravity flow of granular materials based on the theories

of plasticity. He assumed that the materials were rigid-plastic,

and that in the plastic regions the solids were isotropic, frictional,

cohesive and compressible. Jenike and Shield (1959) developed a

special yield function for granular materials; this yield surface was

a generalization of the commonly used Tresca yield criterion. The

yield surface was made a function of the hydrostatic pressure, which

changed the hexagonal prism of Tresca into a pyramid. This pyramid

was bounded on the pressure side by a flat hexagonal base perpendicular

to the axis.and the vertex of the pyramid was rounded off. The size

of the pyramid was a function of the density of the material, time of
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consolidation at rest, the temperature, and the moisture content of
the solid. These assumptions were applied to the theories of plasticity
and resulted in a series of complex differential equations. Jeﬁike
obtained solutions to these equations numerically and displayed these
solutions in a series of graphs. He also developed a special direct
shear testing machine for evaluating the properties of the solids; the
properties measured were the effective angle of friction, the flow
functions, the bulk density, and either the static or kinematic angle
of friction. This system was used for designing a bin and hopper
system with optimum gravity flow characteristics, based on the
measured properties of the material.

Many studies have been made to measure the pressures exerted
by grain in storage bins. Early experimental work was carried out by
Roberts (1883), who concluded that the total vertical force on the bottom
of a bin was much less than the total weight of the grain in the bin. He
found that the total vertical force on the bottom of the bin did not
increase after the height of grain exceeded two bin diameters. The
theory of Janssen was checked by many observers. Jamieson (1903)
and Lufft (1904) confirmed Janssen's formula by experiments with
grain in both model and full sized bins and silos. Ketchum (1919)
summarized the work of the research workers of that period (Roberts
(1883), Airy (1887), Janssen (1895), Tolz (1897), Bovey (1903),
Jamieson (1903), Lufft (1904)). From the work published up to that
time, Ketchum concluded that Janssen's assumption of a constant
ratio, k, between the lateral and vertical pressures in a bin was not

completely true. Data showed that k was not constant but varied
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with different grains and different bins and that k increased with the
depth of grain.

Several research workers have attempted to measure k for
different materials and different bins. Caughey et al. (1951) measured
k for wheat, shelled corn, soybeans, sand, pea gravel, and cement,
in an 18 inch inside diameter, 5 feet deep, concrete bin. They found
that k decreased slightly with depth for wheat and pea gravel, but
that k increased with depth for cement and that no relation between
depth of material and k was apparent for soybeans, shelled corn,
and sand. They concluded from their tests that corn, soybeans, and
pea gravel do not follow Janssen's theory, because Janssen's formula
gave values of lateral pressure which were larger than their experimental
values.

The assumption that a granular mass is isotropic was found to
be inaccurate by some researchers. Saul (1953) measured the lateral
pressure on the wall and the vertical pressure on the floor of a large
bin filled with 10 feet of shelled corn. The bin was filled with corn
by three methods and the wall pressures at various depths and the
vertical pressures at points along a line across the center of the bin
were measured. Saul found that both the lateral and vertical pressure
distributions varied considerably with the method of filling the bin.

This suggests that the orientation of the grain kernels affected the
pressure exerted on the sides and bottom of the bin.

The '"dynamic pressures' which act during the filling or emptying
of a bin have been found to be much higher than the pressures calculated

from Janssen's formula. The magnitude of these pressures was also
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influenced by the methods of filling and unloading. This again suggests
that kernel orientation affects the pressures acting in a granular mass.
This study will not consider moving force systems, however a very
good discussion of the research on dynamic pressures can be found in
Isaacson (1963) or Turitzin (1963).

Collins and Yin (1965) used motion pictures to analyze the flow
patterns in grain. They concluded,

""The observations that raised the most questions were those
of the discharge from a central orifice. The gradual orientation of
the grains and development of the flow pattern made it clear that no
theory could be very useful if it contained the assumption that the
grain behaved as an isotropic substance. In particular, if a region
of shear failure were predicted by calculation based on this assumption,

the actual shear region in the moving grain might be quite different."

2.2.2. Application of the continuous mass approach

Although the experimental evidence from tests with grain seems
to make the assumption of a continuous mass somewhat doubtful, these
theories have been applied for many years with good results. It is
also likely that some agricultural materials such as ground grain,
with small granules and some cohesion, might fit the continuous mass
assumption quite well. Thus a few of these theories will be used in
this study for comparison with experimental results.

The study by Terzaghi (1936) on the pressure in sand over a
yielding trap door seemed very similar to the study of arches in
grain. Figure 2.25 shows the force system for tests where an arch
was formed in a mass of material under a vertical load. In this force
system, the assumption was made that the active shearing region was
6L or three slit widths deep and that the portion of the upper section

not supported by the side walls acted as a surcharge on the shearing
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region. Following the methods of Terzaghi (1943) and assuming
c = c' = 0 the vertical pressure acting on the yielding section of

the bin floor was found to be:

Pv = YL(ag + a2b3) +qb,b, (2.19)

where

b3 = exp(-kn2 )

_ 1
ay = o m (1 —-b3)
2 kn1 P!
b, = exp (- ™ )
™

a, = 5% w (l-bz).

At the bottom surface of a stable arch, the vertical pressure
Pv must be zero. Using this, along with the assumption that c¢' = 0,

Equation 2. 18 was modified to find the cohesion, ¢, of a material
necessary to form a stable arch. The expression for ¢ was

Ly a, b3 q b3 bZ

c = Ly +

a a

3 3

This solution indicates a maximum arch width for a given material.

The problem of an arched material acting as an elastic body
was also considered. A section of such a material with possible
boundary conditions is shown in Figure 2. 26.

In this solution the arch was assumed to be cylindrical in shape;
this allowed the system to be approximated by the plane strain condition.
Only the half bin shown in Figure 2.26 needed to be considered because

of symmetry. The method of solution follows Schlack and Little; an
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Figure 2.25. The force system in an arched material under
an applied vertical load.
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Figure 2.26. An arched material considered as an elastic
body.
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Airy stress function in the form of an infinite series could be selected
so that the conditions on the curved surface are satisfied term by term.
Then the boundary conditions on the edges could be satisfied by the
method of least squares, that is, by minimizing the specified conditions
at a selected number of points on the boundary. This would fix the
constant in the truncated stress function and would allow the stress
field to be calculated.

The boundary condition of Tz = 0 at x = a shown in Figure
2.26 does not describe the actual conditions in a bin very well. The
actual boundary condition at x = a should be Tz = K T where K
is a constant. It may be possible to satisfy this condition if L is
assumed to be the force necessary to prevent movement of the boundary
at x=a, i.e., o is the stress on the boundary x = a necessary to
maintain u = 0. Then using the same procedures as above, the

boundary conditions of u = 0 and Tz = K o, may possibly be satisfied.

2.3. The Forces Acting in Particle Arches

2.3.1. Review of literature

Allan (1890) developed the force system acting in a masonry
arch by considering a suspended cable; the shape of this cable was
determined by the applied load. If this cable was assumed to have
rigidity and was inverted, it became an arch. The shape of the cable
was also the optimum shape for a masonry arch under similar loading
and was defined by Allan as the ''line of pressure'' of the arch. Under
a load which acted uniformly per unit span such as shown in Figure 2.27,

this '"line of pressure' assumed the form of a parabola.
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Figure 2.28 shows an arch under a load with a "horizontal
top.' With this type of loading, the line of pressure assumed the
shape of a catenary.

Roberts (1884), from his tests on the pressures produced by
grains in deep bins, concluded that the shape of the grain mass which
contributed to the total force acting on the bin floor was parabolic.

In studies mentioned earlier, Richmond and Gardner (1962) derived

an expression for the shape of the arch formed in a cohesive material;
this shape was parabolic. Jenike (1961) arrived at the sarm‘e conclusion
from his more complex study of the same problem.

These results indicated that the shape of an arch might influence
its maximum size. Therefore a study was made of the arrangement of
particles along arches which were shaped both as parabolas and as
catenaries. This study also attempted to determine the force system
necessary for the static equilibrium of the particles. Note that the
symbols a, L, m, andn as used in this section represent different
quantities than in previous sections.

2.3.2. The two-dimensional parabolic arch

The arrangement of particles located along a parabolic arch
was studied using the following assumptions:
1. The particles are discs of a uniform size (with radius R).
2. The center of each particle is located on the characteristic
parabola.
3. Adjacent particles are in contact.
The arch considered was constructed with relatively few particles.

Figure 2.29 shows the position of the particles if the arch is constructed
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uniform load per unit span

F
F
parabolic arch
Figure 2.27. An arch under a uniform load per unit span.
/- load with a horizontal top
/
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catenary shaped
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Figure 2.28. An arch under a load with a horizontal top.
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of an odd number of particles. The following discussion will treat
this case; however, the results will apply to the case of an even
number of particles if the coordinates of the center of the first
particle are changed. Several of the symbols used in the discussion
are defined in Figure 2. 29.

The starting condition for the odd-number-of-particles arch
was that the center of particle one (hl’ kl) = (0,a). The center
coordinates of any particle (hi’ ki) must satisfy the equation of the
parabola, that is,

h‘:’ - 4a2 + 4aki =0
and (2.20)

2 2
hi+1-4a +4aki+1 =0

The point of contact (xi, zi) of two adjacent particles lies on a straight

line connecting the centers; thus

S ik 3 RO Sl 1 (2.21)
i~ 2 i~ 2 : :
Geometry gives
2 . 2 2
(hi - hi+l) +(k, - ki+1) = (2R)" . (2.22)

Now substituting ki+l from (2.20) into (2. 22), gives

4 2 2
h 1+(8a +8aki) hi+

o +A=0, (2.23)

2
p - 3%a h b

where

2

A = 16a° (h.l2+kiz - 2ak, +a - 4r%)
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The Newton-Raphson formula,
F(x) = x - f(x)/{'(x) (2.24)

was used to obtain a numerical solution for hi+1 . For this case,

Equation (2. 24) becomes

4 2 2

_ 3hyyy *thyy,y (B +8aky) - A . (2.25)
Flb) = 4h> . +h.. . (16a® + l6ak,) - 32a°h
i+1 T Ryp (102 aky) - 2ea ny

Values for the radius R and the parabola characteristic '"a' were
assumed and hi+l was found by successive iteration of equation (2.25).
The z-coordinate of the center of particle i+l and the contact point
between particles itl and i were then calculated from Equations
(2.20) and (2.21). A FORTRAN program was written to carry out
these calculations.

This same procedure was also used to compute the positions of
particles along a catenary, however the results were nearly the same
as for the parabola; therefore they were not included here.

"

2.3.3. Computation of the parabola shape factor '"'m"

The method outlined above calculated the position of each particle
on the parabolic arch for a specified parabola and particle size. However
the desired information was the particle position on a parabolic arch
when the width of the base of the arch and the number of particles in
the arch were specified. To accomplish this the computer program
used to calculate the particle position was modified. The steps to

carry out this computation are given below:
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Figure 2.29. A parabolic arch formed with an odd number
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1. A first approximation was made for the parabola shape
constant m by considering the particle centers as lying on
a straight line (see Figure 2.30), thus

_ sZ—L2

L

where s = NR, and N is the total number of particles in
the arch.

2. The parabola characteristic a was chosen so that the

parabola would pass through the point (L, a-mL), so

a=L/4m
3. The coordinates of all the particles were computed using
the methods of Section 2.3.2 using estimated values of a
and m. This gave estimated values for (hn’ kn).

4. The x-coordinate, of the intersection of the parabola

xd s
and the particle n was computed. This point should have the

value L. If, however x4 Wwas not sufficiently close to L,

then m was corrected by the equation

m1=mxd/L

and the computations repeated from Step 2 until (x ,-L) was

d
sufficiently small. Thus m was found as a function of LL/R
and N.

Forces acting in an arch

The force system acting on the particles along an arch was

calculated using the following assumptions.

1. The arch was symmetric with respect to the yz-plane.
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2. The external force on the uppermost particle acted downward.
3. The external forces on all particles except the top particle

(FZ’ F F4) acted at an angle ¢2 to the vertical.

32
4. The friction coefficients acting at all points were equal.
5. The moments acting on the particles were zero, so the sum
of the friction forces on each particle had to be zero. This
implied that the magnitude of the reaction force on the particle

was greater than the sum of the magnitudes of the other forces

acting on the particle. Thus F, > F

R + FZ’ in the case of

12
the three particle arch.
These assumptions lead to the force system shown in Figure

2.31 for the three particle case.

From this force system, the following equations were derived:

FIZ = (F1+W)/(Z sin¢12+2p.cos ¢12) (2.26)

["W cos ¢)23 + FIZ{Sln (¢’23'¢12) = HC05(¢12-¢23)'P~}]

F. =

2. [k sin (¢,5-0,) + cos (¢,,-,) + p]
(2.27)
FR = [Flz(cos ¢12 - K sin ¢12 - M sin ¢23) - FZ (sin ¢2
+ M cos 4)2 + usin ¢23)]/cos ¢23 (2.28)

The same type of analysis was carried out for four and five
particle arches. The computer program written for Section 2.3.3

was expanded to compute these forces.
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Figure 2.31. The force system acting on particles in an arch.
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A force system was considered to be unstable if any force
acted in tension, if an external force (FZ’ F3, F4) necessary for
equilibrium was one order of magnitude larger than the applied force
Fl’ or if assumption five was not satisfied.

The three particle arches were found to be stable for friction
coefficients between - 0.2 and 0.1 and assumption five was satisfied
for at least one value of the friction coefficient for all values of ¢2
fested. Figure 2.32 shows the relationship between ]:7‘2/17‘1 and the
friction coefficient for two values of L/R. (The ratio L/R will be
designated in Section 3.4 by the symbol M.)

The four particle arches were unstable in all conditions;
assumption five was not satisfied for any situation tested.

With ¢2 = 30° and with friction coefficients of 0.0 and 0. 1,
the five particle arches were stable for most L/R values. However
as 4)2 increased, the force system became unstable. Figure 2.33
shows the relationship between FZ/ Fl’ F3/F1 and the friction
coefficient for two values of L/R.

Even though this part of the study was not carried to a point
where conclusions about the stability of arches could be drawn, it
might be used as a starting point for future studies. It could be
modified by assuming that only every other particle center is on
the arch line and that the intermediate particles are some distance
behind on a parallel arch, similar to the approach used in Section 2.1.

This model would correspond more closely to a real arch.
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Figure 2.32. The external forces acting on a three particle arch
in equilibrium.
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Figure 2.33. The external forces acting on a five particle arch
in equilibrium.



III. THE FACTORIAL STUDY

3.1. The Testing System

3.1.1. Apparatus

The model bin used in this study is shown in Figure 3.1. The
front and back of the bin were made of Plexiglas so the orientation of
the seeds could be observed during the formation of arches. The
sides of the bin were made of plywood and could be shifted to permit
sloping sides in the bin as well as the flat bottom shown in Figure 3.1.
The bottom of the bin was made of two pieces of plywood. The space
between these pieces could be adjusted by moving either or both
pieces. This space formed the slit through which the test materials
flowed and over which the arch systems formed. The bottom pieces
were cut on a 45° bevel along the slit. This increased the visibility
of the arch through the slit and also insured that the plug, similarly
beveled, would fit closely into place and form a smooth bottom in
the bin.

For the tests using an applied load, a soft synthetic sponge
was placed on top the mass of seeds to distribute the applied load
evenly over the surface area. A board was placed on the sponge and
lead and steel bricks were used as weights.

3.1.2. Test procedures

The temperature was controlled at 70° F and the relative humidity
was maintained between 50% and 60% during the tests, except where
otherwise stated.

Before every test, all the seeds were removed from the bin;

that was to prevent the seeds reposed on the bin floor from affecting

65
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Figure 3.1. The model bin used in the tests.
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the orientation of the seeds which were poured in for the next test.

The seeds were compacted by shaking the bin vigorously for ten seconds
after each two inch increment of seeds had been added to the bin. The
direction of shaking was parallel to the slit length. For all tests, the
plug was removed as quickly and gently as possible.

3.1.3. Materials used in the tests

Some information about the materials used in the tests is shown
in Table 3.1, and a picture of a sample of each material was shown in

Figure 1.1. The pea beans and oats were screened carefully on a

Table 3.1. Particle information

Material Information Bulk density (1b/ft3)
Variety Mean size (in.) Loose Compacted
axb

Pea bean unknown 0.32 x 0.25 52.0 55.0
Oats unknown 0.43 x 0.10 33.6 36.5
Sugar beets U.S. 215 x 0.172 18.7 21.0

216 raw

seed

Clipper laboratory seed cleaner; the mean size was assumed to be the
average of the two screens used. The beans passed through a number
17 screen (0.266 in. dia. holes) and stayed on a number 15 screen
(0.235 in. dia. holes). The oats passed through a slot screen with
0.109 x 0. 75 inch slots and stayed on a screen with 0.094 x 0.75 inch
slots. This determined the short dimension of the seeds; the long
dimension of the beans and oats was found by measuring a sample of

individual seeds.
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A sample of sugar beet seeds was taken with a Boerner sampler
(see Hall (1957), p. 92). This sample was screened manually and each
size division weighed; the weighted average of the size divisions was
considered to be the mean diameter of the seeds.

Approximately one-half bushel of each material was used for
the tests. During the tests some beans tended to crack and split;

these damaged beans were removed by inspection.

3.2. Observations of Arch Systems
Sections 1.2.1 to 1.2.3 contain some introductory statements
about arch systems. Included in these sections were definitions of
several terms used in the following discussion, photographs of typical
arch system in the test materials and a brief description of the arch
formations in the test materials. |

3.2.1. Orientation of particles

As was stated earlier, beans tended to form flow arches while
oats formed mainly initial arches. These characteristics could be
partly explained by the shape of the seeds and by their orientation in
an arch.

The critical dimension of a bean in forming arches seemed to
be its short diameter. The best arch forming position for the
individual bean was with the lor.lg axis parallel to the slit, however
a good arching position was any position with the short axis perpendicular
to the slit. For forrhing arches in oats, the critical dimension seemed
to be the length of the kernel. Therefore the oat kernel formed arches
best if its long axis was parallel to the bottom of the bin and perpendicular

to the slit.
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When particles flowed, their long axes tended to line up with the
flow lines which formed in the material. These flow lines radiated up
and out from the slit in a hyperbolic shape. Thus when beans were
flowing, their axes were positioned in a good position for arching
while the oat kernel was placed in an unlikely arching position during
flow.

Compacting these materials before opening the outlet tended to
position them with their long axes parallel to the bin bottom and
perpendicular to the slit. Tests showed that the arching properties
of beans were not affected by compacting, but that the arch span of
an oat arch was increased by compacting.

Beet seed did not have any prominent axial symmetry, so no
conclusions about its arching properties could be drawn from particle
orientation.

3.2.2. Primary-secondary arch systems

These types of arch systems were defined in Section 1.2.2 and
photographs of actual arch systems wére shown in Section 1. 2. 3.

In a stable arch condition, primary arches normally occurred
about four to eight particle diameters apart along the length of the
slit. However occasionally several primary arches formed adjacent
to one another, resulting in a stronger arch system. Usually only
three to five particles made up a primary arch in beans; thus the
arch was strong in the vertical direction but weak in the lateral

direction. Certain particle arrangements in primary arches appeared

frequently; they were classified into three divisions:
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a. typel, linear

b. type 2, delta based

c. type 3, square based
Sketches of these three types of arches are shown in Figure 3. 2.

These arches were idealized; an actual arch system had many variations
due to the random arrangement of the particles in the material. From
observing many arch systems, the delta-based arch seemed to occur
more often than the others.

A series of tests was made to determine the effect of primary
arches. A group of narrow (less than one particle diameter) sheet
metal strips was laid across the slit at regular intervals to simulate
primary arches. After the strips were in place, the bin was filled with
beans, the slit opened and flow observed. If flow stopped at any time
during the outflow of approximately ten inches depth of beans which was
used in each trial, a stable arch system was considered to have formed.

The results of the tests with beans are shown in Table 3. 2.

™~

Type 1, linear Type 2, delta based Type 3, square based

Figure 3.2. Types of primary arches.
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Table 3.2. Percent of trials in which stable arch systems
formed in beans for various slit widths and
strip spacings.

Width of slit Strip spacing in particle diameters*

(part. dia. *) 47 15.2 7.2 6.0 5.2 4.6 4.0
1.75 100% 100%
1.9 10 40 100%
2.0 0 0 30 80%
2.13 0 0 0 10 40% 100%
2.25 0 0 0 0 0 30 100%
2.4 0 0 0 0 0 0 0

As can be seen from Table 3.2, the strips did cause stable arches to
form over wider slits. However, from observing arches formed over
slits, it appeared the strips were not as effective in forming arch systems
as granular primary arches because the strips did not provide the same
support for adjacent arches as did the granular arches.

Tests with strips in sugar beet seed increased the width of the
arched systems in loosely poured granules; however, the same widths
were obtained without strips in compacted seed. Using the strips with
oat kernels had very little effect on the width of slit over which a stable
arch system would form.

Secondary arches were formed by five to ten particles, were four
to eight particle diameters in length and extended up to four particle
diameters into the grain mass. Secondary arches were much more

prominent in systems formed with nearly spherically shaped particles

*
Particle diameter was assumed to be 0.25 inches.
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such as beans than with cylindrically shaped particles such as oats.

Because of their size, it would seem that the secondary arches
would be very unstable in the lateral direction and would also contain
particles which are difficult to support in the vertical direction. How-
ever the arch system over a slit was constructed similar to a vaulted
ceiling along a corridor with supporting cross arches (primary arches)
at regular intervals, so the secondary arches received both vertical
and lateral support from the primary arches and adjacent secondary
arches.

Secondary arches were much more variable in shape, size and
construction than were primary arches.

3.2.3. Other observations

Preliminary tests were made using a plug for the slit which did
not fit into position exactly. After a few tests, a properly fitting plug
was made and a change in the formation of arches was noted. Further
experimentation showed that if the plug was slightly below the bottom
of the bin, stable arch systems formed more readily than with a
properly fitting plug. But if the plug was very loose (about one-half
particle diameter below the bottom of the bin), stable arch systems
did not form as often as with a properly fitting plug. This was probably
due to the positioning of the particles into favorable arching positions
in the first case and into unfavorable positions in the second case.

A second construction error pointed out another factor which
influenced arch formation. During the building of the bin a small gap
was left between the bottom of the side walls and the moveable bottom.

This gap was originally large enough to permit some particles to fall
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out. After reducing this gap a noticeable increase in the frequency
of stable arch systems was found. This is possibly the same effect
as was mentioned by Lee (1963) in his discussion of the ""expanded

outlet' method of promoting flow.

3.3. Factors Influencing Arching

After these initial observations, a more systematic study of the
factors influencing the arching of the test materials was outlined and
partly executed. The factors selected as having the most influence
upon the arching of a material were assumed to be:

A, Particle properties

1. size
2. shape
3. density

4. friction

5. elastic properties
6. adhesion

7. cohesion

B. Stacking characteristics

1. particle orientation
a. in flow and initial arches
b. as a result of flow
c. due to bin shape
1) slope of walls
2) flat bottomed

3) bin outlet size and shape
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2. load on particles
a. at the time of arch formation
b. previous loading history
Only some of these factors were studied systematically; the

results are reported in Sections 3.4, 3.5 and 3. 6.

3.4. Gap Width-Particle Size Relationship

3.4.1. Review of literature

The ratio M of width of opening to the mean particle diameter
has been used by several authors to describe the smallest opening
through which a material will flow. Aytaman (1959) investigated the
"hanging'' of dry granular sandstone in vertical pipes. He found that
flow from a pipe depended on the ratio M. Based on his tests the

flow results were:

free flow range 4,21 < M
probable flow range 2.24 < M < 4,21
no flow M< 2.24

In the probable flow range Aytaman determined a critical height of

material in the pipes which was necessary to cause '"hanging'. If a

pipe was filled with sand below this critical height, no hanging would

occur, but if sand was filled above this critical depth, hanging did occur.
Brown and Richards (1959) listed values for M for several

materials; these values are given in Table 3.3. They found the ratio

M for circular orifices to be approximately twice the M value for

flow through narrow slits.
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In the discussion following Brown and Richards' paper, Fowler
reported ''bridging'' and erratic flow at an M of between four and six.

Langmaid and Rose (1957) measured the minimum opening
size for flow of ground and forged steel balls, flint gravel, and sheet
iron punchings (9/64 by 6/64 and 8/64 by 4/64, all dimensions in
inches) and found that M was nearly equal for these materials. The
values they found were M = 2. 68 for slits and M = 4.32 for circular
apertures.

‘Because the flow became erratic and flow stoppages occurred
randomly as the aperture became smaller, direct measurement of
this dimension was very difficult. In a further study Brown and
Richards (1960) noted that very few particles flowed through a region
near the edges of an aperture. They measured the flow rate for their
test materials through several sizes of circular and rectangular
openings. They plotted the dimension of the opening against the

characteristic length

9 2/3,
fp\@J

where Q was the flow rate, £ was the slit length, p was the density
of the material, and g was the acceleration of gravity. This plot
formed nearly a straight line which Brown and Richards extended to
the zero flow point. This intercept point they termed the "dk" of
the material; the '"empty annulus'' or small region around the edge
of an opening through which very little material flowed was equal to

leZ . The dk value was nearly equal for both circular and rectangular
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apertures. In other tests they found that the smallest size of slit
through which a material could be induced to flow by tapping agreed
with the predicted dk’ however the minimum size of circular opening
through which a material would flow was two to three times dk'

Brown and Richards correlated their flow data to an effective aperture
size which was the apparent size minus the empty annulus. Other
authors have defined this effective aperture as (D-CZE), where D is
the actual aperture size, C2 is a material constant, and d is the mean
particle size. This value was calculated from the data given by Brown
and Richards and listed with their original data for comparison.

Table 3.3. Flow properties of several materials
(Brown and Richards)

Material mean size M -value d C

d (cm) (circular orifice) (c:n) :
Large beads 0.101 0.13 1.29
Small beads 0.025 4.1 0. 041 1.64
Sand 0.059 0.10 1.7
Tapioca 0.168 0.22 1.31
Sand Y1 0.074 4.3 0.12 1.62
Sand Y2 0.051 4.6 0.079 1.55
Sand Y3 0.025 5.6 0.036 1.44
Coal 0.098 7.0 0.14 1.43

Welschof (1960) carried out much the same procedure with

wheat. He plotted the opening size against the characteristic length

Q )2/5
p'Ng

’

where Q was the flow rate, g was the acceleration of gravity, and



77

p' was the '"flow density' of the material. Welschof found dk for
wheat (d = 0.391 cm) to be 0.6 cm or C2 to be 1.53. The minimum
orifice diameter for flow of wheat was found to be 1.5 cm, giving
an M value of 4.

Beverloo, et al. (1961) also considered a region of no flow
around the edge of an orifice in a flat bottomed cylindrical container.
They defined the effective orifice diameter as (D - CZ E) and calculated
C2 for several materials from their flow data. Table 3.4 gives their
results. With the exception of sand, their results agree closely with
the data of Brown-Richards.

Table 3.4. Orifice reduction constant for several small
seeds (Beverloo, et al.)

Material Mean size CZ Material Mean size C
d (cm) d (cm)

Sand 0. 045 2.9 Rapeseed 0.17 1.

Linseed 0.25 1.5 Kale 0.18 1.

Spinach 0.30 1.4 Swede 0.18 1.

Watercress 0.16 1.3 Turnip 0.17 1.

Several other researchers, Deming and Mehring (1929), Rausch (1948),
Rose and Tanaka (1959), have conducted studies of the flow of granular
materials from conical outlets. Their data agreed in general with the
values quoted above.

3.4.2. Results of tests

The tests made in this study measured the maximum slit over
which an arch would form, whereas the data reported above measured
the smallest opening through which a material would flow. These two

dimensions should be quite similar, however, for non-cohesive

2

I
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materials. Table 3.5 gives the M-values measured in this study.

Table 3.5. Maximum arch widths for test materials

Material M-value - over a slit M-value - over a slit
(based on large particle (based on small
dimension) particle dimension)

Bean 1.5 1.9

Beet seed - loose 3.0 3.0

Beet seed - compacted 6.0 6.0

QOats - loose 1.2 5.3

Oats - compacted 1.4 6.0

These M-values were for flow through a narrow slit and must
be doubled for comparison with the values in Table 3.3, which were
measured for flow through a circular orifice. Considering this, the
values measured here are generally similar to the previous measure-
ments, but they show a wider range because the variability of the
particle characteristics was greater in this study than in the other
studies.

3.4.3. Comparison with the results of Section 2.3.4

The assumptions made in the analysis of Section 2.3. 4 limited
the value of the calculated results. Assumption three excluded the
possibility of only one or two of the friction forces acting in the
opposite direction to those shown in Figure 2.31. However, if this
assumption was not made, many combinations of force systems would
be generated. This assumption also was the basis for assumption
five.

The arches with all of the particles in one plane used in the

analysis were not often observed in real arch systems. Instead the
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arch would normally have two supporting particles at either or both
ends (see Figure 3.2). However the theoretical results could be
extended to the non-plane case by using an apparent radius R' based
on the contact points between the particles.

Real primary arches in beans, the test material most nearly
fitting the assumptions of the theory of Section 2.3.4, were very short,
usually less than a three-particles-in-a-plane arch in length. The
theoretical analysis showed the best stability for the three particle
arch. The five particle system was found to be stable under some
conditions, but no five particle arches were found in the tests.

One reason why five particle arches did not form in beans
was the low probability that five particles would be in the proper
position to form an arch. Because these tests were made over a long
slit, flow stopped only if several primary arches formed at nearly
the same instant, reducing the probability of a stable arch system
even more.

Another reason for the destruction of five particle arches
might have been an unbalance of forces in the y-direction. An
assumption inherent in the linear arch system was that the lateral
forces were in equilibrium. The formation of a five particle arch
was probably affected more by lateral instability than the formation

of a three particle arch.
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3.5. Effect of Applying a Vertical Load to the Grain Mass

It seemed very likely that the stress state in the grain mass
should influence the formation of arches. For an initial arch, the
static stress conditions would apply. Therefore some studies of
these conditions were included.

3.5.1. Review of literature

Kramer (1944) measured the ratio of lateral to vertical pressure,
k, in a bin of rough rice 2 ft deep and 1 ft square. He used 4 in. square
pressure sensors to measure the pressure on the wall and floor of the
bin. He found that k increased from 0.3 to 0.47 as the vertical pressure
increased from 100 psf to 500 psf. Kramer also noted that only 27% of
the applied load was transmitted to the bottom of the bin. In tests on
small grains, Lorenzen (1957) measured the ratio k in a '""pressure
resolution chamber''. He believed that the best method of determining
k was with a triaxial compression chamber, but the '""pressure
resolution chamber, ' which measured the stresses in all three
dimensions was easier to use than a triaxial compression chamber.
For applied vertical pressure of 1 to 11 psi, Lorenzen found that k
varied with the applied pressure, especially for vertical pressures
below 3 psi. The variation depended upon the grain, increasing with
some grains and decreasing with others.

In tests with commercial white sand Aytaman (1959) studied the
arching of sand under high pressures. He found the pressure needed
to cause arching depended on M. He observed that the effect of
pressure on the sand in the pipes seemed to be confined to the 2 or 3 in.

directly below the piston applying the pressure. The shape of the arches
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Figure 3.3. Arch shape factors measured by Aytaman.

was measured (see Figure 3.3); the rise of the dome decreased as

the pressure increased and for a given pipe size the arch rise increased
as the particle size decreased. Crown thickness also increased as
pressure increased. The pipe was initially filled with sand.

LaForge (1962) measured the flow rate of several materials
through orifices in the sides and bottoms of cylindrical, flat bottomed
bins. During tests in an 8 in. diameter bin with a 1.25 in. circular
orifice in the bottom, he found a slight decrease in the flow rate of
plastic globules (3 = 0.0226 in., Y = 53.4 1b/ft3) as the pressure
applied to the surface of the globules increased from 0 to 4 psi.

The flow rate remained nearly constant for pressures from 4 to

7 psi. The flow tests were terminated when about eight in. of globules
remained in the bin. Other tests with wooden beads (E = 0.390 in.,

Y = 25.8 1b/ft3) through a 1.75 in. orifice in the same bin were
unsuccessful as the beads stopped flowing before the tests were finished

whenever any pressure was applied.
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Simons and Hare (1965) attempted to measure the elastic
modulus of grain in an 8 in. diameter cylinder, 54 inches long, by
applying pressure to the top of the grain column. They found that
applying pressure increased the lateral pressure much more at the
top of the grain column than at the bottom. A Teflon lining was
applied to the cylinder walls to reduce friction and the load transmitted
to the bottom of the cylinder increased from 28% to 45.6% of the top
load which was still not suitable for obtaining accurate data. Simons
and Hare then changed to a 1 in. deep grain column and measured the
stress strain relationship for shelled corn at several moisture contents.
They found that the sample had to be vibrated a minimum of 90 seconds
to give reproducible results over the pressure range of 2 to 30 psi
which they used.

Narayan and Bilanski (1966) used 5 in. deep grain samples in
cylinders with 4 in., 6 in. and 8 in. nominal diameters to measure the
elastic properties of wheat. They applied pressures over the range of
125 to 3000 psi, measured the lateral pressure and vertical strain,
and used these values to compute the apparent elastic modulus and
apparent Poisson ratio. From their data the value of the ratio of
lateral to vertical pressure, k, appeared to remain nearly constant
for the high applied pressures used in their tests. The diameter of
the grain column did not influence the results of the tests.

In tests in a shallow bin, Moore and Shaw (1952) found the
lateral pressure exerted by wheat increased by approximately 45%
after vibrating the bin. The vertical pressure on the bottom increased

only about 5%.
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Stewart (1964) measured the internal friction properties of
sorghum grain with a triaxial compression test. He plotted the data
in the form of the Mohr envelope of principal stresses to determine
the internal friction and found that sorghum displayed an apparent
cohesion in the range of 0.5 to 0.8 psi. While some of this cohesion

may have been accounted for by instrument effect, Stewart felt some

was caused by actual cohesion between the grains, due to grain moisture.

De Josselin (1959) in discussing a similar phenomenon in the
Mohr diagram of dry sand stated, ''--, an apparent cohesion caused by
an interlocking effect which is produced by angularity of the grains."

3.5.2. Effect of applying a vertical load to pea beans

A stable arch system could be formed over a wider slit with
~a vertical load applied than with no applied load. The maximum width
for flow arches with no load was about 0. 45 in. (M = 1.8), but with
1 psi of applied load, the maximum width was increased to 0.55 in.
(M = 2,2) for an initial arch system. The type of arch system formed
in beans changed from flow to initial under the action of an applied load.
Actually the effect of loading on the flow arch system could not be
evaluated with this simple test stand because the grain did not flow
evenly from all sections of the slit. Often the beans in one end would
flow out rapidly causing the weights to be wedged against the side or
end of the bin.

A slit width of 0.45 in. was selected for the tests with beans
because at this width stable arch systems would be formed within the
range of loading used in these tests. Flow arches formed in beans with

no load about 10% of the trials at 0. 45 in. slit width. All arch systems
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formed in beans were not strong and those formed under a load nearly
always failed when the load was removed.

The relationship between the depth of grain and the load
necessary to form stable arch systems in 50% of the test runs is
shown in Figure 3.4, This figure shows that the load necessary to
produce stable arch systems increased rapidly with an increase in
grain depth.

Earlier investigations, mentioned in Chapter 2, indicated that
the effect at the bottom of a bin of a pressure applied to the surface
diminishes as the height of the grain layer increases. The relationship
found in this study and represented by the curve in Figure 3.4 could,
therefore, be interpreted as representing a more constant stress state
in the area surrounding the arch than at the surface. This verifies
the logical assumption that the tendency for arch formation is influenced
by the vertical and horizontal stress components in the area close to
the opening.

Several methods for determining the vertical pressure at the
bottom of a bin filled with a granular material under an applied load
have been discussed earlier in this study. Three of these methods
included some allowance for attenuation of the vertical pressure with
an increase in depth of material. They will be compared here using
the values of depth and surface load represented by the curve in
Figure 3. 4.

First, the method of Terzaghi (1943) was used. Using Equation
2.19, with the applied load taken from the curve in Figure 3.4, the

vertical pressure on the center of the bottom of the bin was calculated
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for several depths of material. The values of the parameters used
for the calculations were: ¢ =0, ¢'=0, B = 0.5, and p' = 0.4.
The results of these calculations are plotted in Figure 3. 5.

Second, assuming that the stress distribution in the material
in the model bin was similar to the stress distribution in a semi-
infinite elastic material, the solution of Love (1929) (discussed briefly
in Section 2.2.1) was used to calculate the vertical stress under the
same conditions as were used above. Due to the symmetry of the point
at which the computations were made, Poisson's ratio for the material
did not affect the calculated vertical stress. These results are also
plotted in Figure 3. 5.

Last, the force system of Ross and Isaacs (1961) (discussed in
Section 2.1.1) was extended to include the action of an applied load.
Calculations were made for the same conditions as in the first two
methods. The parameters used for these calculations were the values
listed by Ross and Isaacs for soybeans. The results are also shown in
Figure 3. 5.

Since the tendency for arch formation was the same for all
points on the curve in Figure 3.4, it might be assumed that the vertical
stress around the arch should also be the same, i.e., represented
by a horizontal line in Figure 3.5.

The results shown in Figure 3.5 indicate that a least two of the
methods used did not accurately calculate the stress state which occurred
in these tests. Terzaghi's method showed that the vertical pressure at
the bottom of the bin was twice as great at an 8 in. depth as at a 2 in.

depth of material for loads according to Figure 3. 4.
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The method of Ross and Isaacs was not intended for this type
of force system and gave poor results. Their method would probably
be improved if an arching factor such as used by Trollope (1957) was
included in the calculations.

Love's method gave the best results even though the conditions
of these tests did not seem to fit his model.

The results of these three methods might have been improved if
other values of the parameters had been chosen.

3.5.3. Effect of applying a vertical load to oat kernels

The arching properties of oat kernels were also changed by the
application of a vertical load. Loading increased the rate of occurrence
of initial arches at a given slit width and also increased the maximum
width of a stable arch system. But more noticeably, loading increased
the occurrence of flow arches.

A slit width of 0. 55 in. was selected for the loading tests because
this slit width gave about 5% formation of initial arches with compacted
oat kernels without a load. Table 3.6 shows the effect of increasing
loads on the formation of initial arches. This effect was much less than
was observed in navy beans. The depth of grain under the load did not
have much affect on the formation rate of this type of arch. When the
load was removed from the grain mass, the arch system normally

failed.
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Table 3.6. Relation between applied load and the formation of
initial arches for various depths of oats over a slit
width of 0.55 in.

Load Depth of grain (in.)

(psi) 2 4 6 8
0.0 <5% <5% <5% <5%
0.5 10% 10% 5% <5%
0.65 10% 10% 10% 5%
1.0 30% 30% 30% 30%

Table 3.7 shows how loading affected the flow arches in oats.
A load of 1.0 psi increased the formation of flow arches from less
than 5% to nearly 100% of the trials. Loads of 0.5 psi caused flow
arches to form in 50% of the trials.

Table 3.7. Relation between applied load and the formation of
flow arches for various depths of oats over a slit width

of 0.55 in.
Load Depth of grain (in.)
(psi) 4 6 8
0.0 <5% <5% <5%
0.5 30% 50% 60%
0.65 50% 60% 80%
1.0 100% 100% 100%

As the depth of the material increased, the frequency of flow arch
formations increased slightly. This was probably due to the greater
amount of material which had to flow out during the tests at greater
depths.

The application of the load seemed to prevent the reorientation
of the oat kernels during flow, which increased the tendency to form

arches.
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3.5.4. Effect of applying a vertical load to sugar beet seed

The formation of stable arch systems in sugar beet seed was
influenced by compacting the seeds and also by applying a vertical
load to the seeds. Applying a load to the compacted seeds increased
the arch widths to greater values than with no applied load. Figure
3.6 shows the relationship between the vertical load applied to a column
of seeds and the percent of cases when stable arch systems formed.

The particles of the beet seed seemed to interlock during
compacting, which increased the internal friction and cohesion of the
compacted mass. Considering the equations derived in Section 2.1. 4
for the failure strength, Fto. = My Fna , it can be seen that an increase
in the internal friction and cohesion increases the strength of a material
in the region of the minimum strength. The observed increase in arch
width due to compacting indicated an increase in material strength,
which agrees in general with the results of the yield criterion. Applying
a load would increase the interlocking action between particles still more.

These results agree well with the results of Williams and Ross
(1967). In tests with dried citrus pulp (a2 material which arches readily),
they measured the vertical pressure at the bottom of the stacks of pulp
and found that the pressure was much higher than predicted by Janssen's
equation (see Section 2.2.1) or by the equations of Ross and Isaacs
(see Section 2.1.1). Thus it appears that materials which have a
tendency for particle interlocking and thus a high arching potential
tend to act more like a unit mass than non-cohesive materials. By
this action, forces are transmitted through the particle mass with

less attentuation than through a mass of non-cohesive particles.
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3.6. Effect of Relative Humidity cf the Ambiert Air on Arch Formstion

The relative humidity of the ambient air seemed to have an
influence on the width of the stable arch systems which formed in sugar beet
seeds. In these tests the relative humidity was kept constant at the
desired value for three days before any tests were made. As the relative
humidity increased from 30% to 80%, the width of a stible arch system in
compacted seeds increased from 0.9 in. to 2.0 in. Figure 3.7 shows the
relationship between the relative humidity of the air and the percentage
of trials forming stable arch systems. Relative humidity did not
noticeably affect the formation of arch systems (normally flow) in
loosely poured seeds. The effect was also not so striking in the other
materials tested.

The effect of the change in relative humidity may be explained by
assuming a change in the surface properties of the seed. This would
change the cohesion and interlocking between particles which probably

occurs with seeds of this kind.



IV. CLOSURE
4,1. Conclusions

1. The observations made of arch formations indicate that for the
materials used in this study, the orientation and shape of the particle
affect the failure strength.

2. The primary-secondary arch structure was apparent in all materials
with a nearly spherical particle shape.

3. The arching tendency of the granular materials used in this study
increased when a vertical pressure was applied to the upper surface of
the particle stack.

4. The arching tendency of sugar beet seed was greatly increased with
an increase in its moisture conrtent.

5. The yield criterion developed in this study was a function of shearing
angle, particle shape and stacking arrangement of the particles and the
internal friction and cohesion of the material.

6. Although no data was collected to test the yield criterion directly,
the expected failure derived from the yield criterion agreed well with

the failures observed in the arch tests.

4,2. Suggestions for Future Study

1. Experimentally measure the strength of granular materials at
various shearing angles to determine the effect of

a. particle orientation

b. particle shape

c. particle stacking

d. coefficient of friction between pzrticles.

93
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2. Study the occurrence and nature of cohesion and interlocking .
between particles, including time effects on these properties.

3. Study the forces acting on elements along the stress-free surface

of the arch. Can the yield criterion predict the critical arching width?
4. Irregular particles such as sand seem to have certain stacking
arrangements which give very high strengths; can these high strength
packing systems be described by the yield criterion and packing system
developed here?

5. Measure the stress field in a particle mass. In a cohesive material
such as preloaded sugar beet seed, is the assumption of an elastic body
reasonable? If so, does the elastic body with a hole in the center
mentioned in Section 2. 2.3 give an accurate picture of the stress field?
Does this stress field along with the yield criterion of this study describe
the failure condition for arching?

6. Experimentally test materials with very small particles, such as
clays to determine if the yield criterion of this study describes the

shearing strength of these materials.
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