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ABSTRACT

A STRENGTH CRITERION FOR GRANULAR MATERIALS WITH

SPECIAL REFERENCE TO ARCH FORMATIONS IN SEEDS

By Robert Dean Fox

The gravity flow of granular material is limited by the formation

of bridges or arches in the material as it flows through chutes or bin

outlets. These arches may stop the flow and disrupt the process using

the granular material. As an introduction to the study of arch formations

in agricultural materials, observations were made of the arch systems

formed in pea beans, oats and raw sugar beet seeds. These observations

were made to determine the pr0perties of the granular materials which

affected the strength of the material for forming arches. The materials

were selected for their differences in kernel size, shape and expected

potential for forming arches.

A11 arches were formed over a long narrow slit in the bottom of

a flat-bottomed, model bin. Tests were made of the effect of the

following factors on the arching characteristics of the materials:

1. compacting the seeds by vibrating the bin

2. applying a. vertical load to the upper surface of the material

in the bin

3. changing the moisture content of the material

4. changing the orientation of the particles.

After these studies, it was determined that several properties

not included in commonly used yield criteria do indeed affect the arching
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strength of a material. Thus a yield criterion was developed which

was dependent not only on the internal friction and cohesive strength

of the material, but also on the angle of the shearing plane, the

particle shape and the particle orientation in the mass of material.

This criterion was developed for a specific stacking arrange-

ment of ellipsoidal particles. The stacking arrangement was made as

general as possible, while still maintaining mathematical workability.

The yield criterion was based on the assumption that the forces acting

along the failure surface in the material are transmitted across this

surface only at the contact points between the individual particles on

each side of the failure plane. The particulate nature of the material

was expressed in a yield criterion which could be used in the mathe-

matical formulations commonly used for continuous materials.

The yield criterion developed in this study has the following

properties:

1. The material has a minimum strength at a shearing angle

which is determined from the particle shape and stacking

arrangement.

2. The maximum strength occurs for shearing in a plane

parallel to the shortest axis of the particles.

3. If the friction or cohesion between particles in the

material increases, or if the void ratio of the material

decreases, the effect of the angle of shearing decreases.
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Although no data was collected to test the yield criterion

directly, the expected failure derived from the yield criterion agrees

well with the failures observed in the arch tests.
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I. INTR ODUC TION

1.1. Definition of the Problem

A bridge or a stable arch system will be used interchangeably

in this study to describe a condition where particles of grain become

arranged in a dome -like formation with sufficient strength to support

the material above the dome or bridge. A bridge will obviously

impede the smooth flow of grain or even stop flow entirely. A stable

arch system is most likely to occur at a bin outlet or in a grain chute.

With the increase in the use of automatic materials handling

and feeding systems on farmsteads, the problems of arching in grain

have increased greatly. Not only has the possibility for arching

increased, through the use of more bins, chutes and pipes, but with

time clock controlled, automatic feeding systems, the amount of feed

delivered to a group of animals could unknowingly be reduced or

stopped. This problem is often encountered in milking parlors where

a ground ration is stored in a bin above the milking stations and is

gravity fed into the individual feeding boxes. Stable arch systems

which form over the chutes leading to the feeding boxes require that

the operator leave his milking station to break the arches before the

milking operation can continue.

Menear and Holdren (1965) found that hay wafers, a relatively

new agricultural product, formed a very strong bridge over the outlet

in the bottom of a storage bin. These bridges were very difficult to

destroy; this important property may limit the acceptance of this

material by farmers .



An agricultural material gaining widespread use at the present

time is high moisture grain. The British agency NAAS (1967) reported

bridging problems in removing high moisture grain from bottom-

unloading airtight silos, especially if the moisture content of the grain

was above 24% or if the grain contained trash.

In situations where the flow rate of granular materials is being

controlled by using a narrow Opening, bridging can again cause problems.

An example of this is the feeding of corn kernels into the slots of the

plate of a corn planter. Khan (1966) found that the shape of the floor of

the grain box around the plate had an influence on the percentage of

plate slots which would fill with seeds.

Other industries have also been plagued for many years with

flow stoppages due to bridging materials and are still fighting the

problem with many means, such as changing the physical properties

of the flow materials (solids conditioning), redesigning the hopper

shape, or using air pressure, vibrators, and the old standby, the

rubber mallet, to stimulate flow.

1.1.1. The objectives of this study
 

The objectives of this study were:

1. to observe arch formations in granular materials to identify

the mechanics of arch building, .

2. to identify factors which influence the size, structure, and

strength of the arch systems,

3. to find a relationship between these factors which will

explain the formation of arches, with the h0pe that this information

about arches might lead to an insight into a system of preventing

or destroying them.



1.2.1.

1. 2. Preliminary Considerations

Selection of materials
 

Before deciding on a theoretical approach, preliminary

observations were made of arch systems in different materials. For

this preliminary study several decisions about the selection of methods

and materials had to be made.

1. In order to limit the study to the two dimensional case, the

grain bridge was formed over a long narrow slit in the bottom

of a flat bottomed bin.

2. Pea beans were selected as one of the arching materials

because they were approximately spherical in shape and were

large enough to make the individual particles in the arch

observable (see Figure 1.1 for a picture of the test materials).

3. To test the effect of a differently shaped material on arch

formation, oats were also selected. The oat kernel is

approximately a long, thin cylinder in shape.

4. Raw sugar beet seeds were selected as a third test material.

They have a somewhat irregular shape with points and corners,

but they could be best described as spherical in outline. Sugar

beet seeds tend to lock together when compacted; thus they

were expected to have a high potential for arching.

Definition of terms
 

1. Stable arch system - any arrangement of particles over the

slit that prevents the flow of material; usually composed of

several primary and secondary arches. Figure l. 2 shows a

stable arch system in pea beans; note the primary-secondary

arch structure.



 
(c) raw sugar beet seed

Figure 1.1. The materials used in this study.
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2. Primary arch - a short arch, usually perpendicular to the

slit which appears to support the remainder of the arch system.

3. Secondary arch — an arch which forms between primary

archs, either parallel to the slit or obliquely across the slit.

4. Flow arch - a stable arch system which forms in a flowing

material and stops the flow.

5. Initial arch - a stable arch system which forms immediately

after the slit is opened and prevents flow from developing; only

a few kernels of grain fall out and the kernels in the grain mass

do not move.

6. Compacted material - material compacted by shaking the

model bin for 10 seconds; the shaking was done manually, in a

direction parallel to the slit length.

7. Preloaded material - material compacted by applying a load

(preload) to the top of the grain column for a short time and

removing the load before the slit was opened.

8. Constant load - the load applied to the grain column and

remaining in place until after the slit was opened and the trial

run completed.

Observations of stable arch systems
 

The following observations were made in the apparatus described

in Section 3.1, but were discussed here because they directly affected

the selection of the theoretical methods used in this study.

arches.

The arch systems which formed in pea beans were usually flow

The orientation of the particles during flow and their random

positioning seemed to bring about the necessary conditions for arch



 

Figure 1. 2. A typical stable arch system in pea beans.
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Figure 1.3. A typical stable arch system in oat kernels.



formation. The dimension of a bean which affected arch formation

appeared to be its smallest diameter (considering the bean as an

ellipsoid). A bean in an arch rarely was positioned with its longest

dimension parallel to the arch direction. The primary-secondary

arch structure was more pronounced in beans than in the other

materials tested (see Figure 1. 2). This structure made it apparent

that the arch system in beans could not be considered a purely two

dimensional problem. Furthermore the stable arch system would

form only over slit widths of two particle diameters or less, which

meant that only two or three particles made up most primary arches.

Oat kernels formed mainly initial arch systems; they would

form flow arches occasionally but not often. Stable arch systems in

oats tended to be very flat and quite uniform along the length of the

slit, that is, with very little secondary, arch structure (see Figure

1. 3). The critical dimension of the oat kernel in the formation of

arches seemed to be the length of the kernel. When forming an arch

the kernels tended to lie flat (with the long axis parallel to the bottom

of the bin) and extended across the slit, being held in place by and at

the same time supporting the kernels in higher tiers.

When sugar beet seed was poured loosely into the bin, its

arching properties were similar to those of beans. However when the

beet seeds were compacted by shaking the bin before opening the slit,

their behavior changed considerably. Compacted seeds formed very

stable initial arch systems over wide slit widths. These arch systems

were so stable that the lower portion of the material, defined as the

primary arches in beans, could be removed until the arch had a nearly



smooth cylindrical shape over the entire length of the slit (see Figure

1.4). This arch system appeared to be a series of parallel primary

arches placed side by side. In this condition, there seemed to be a

thin layer of particles, located within two or three particle diameters

of the arch bottom, which were the key to the support of the arch.

If a hole was made in this layer, the seeds flowed out rapidly.

1. 3. Selection of an Approach

After making these preliminary observations of the materials

selected for this study, a model based on the force system between

individual particles seemed to provide a more accurate description

of the mechanics than one based on the assumption of a continuous

material. Thus this study concentrated on trying to find a particle-

mass model which would describe the formation of arches in a

granular material. However, continuous models have been deve10ped

to explain the behavior of granular materials under many different

conditions and some of these models were used for comparison with

the test results of this study.
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(a) as formed (b) after the lower particles

were removed

  
(c) an arch 2-1/2 in. wide, (d) an end view of (c)

formed under a surface

load of 1 psi.

Figure 1.4. A stable arch system in compacted sugar beet seed.



II. THE MECHANICS OF THE PROBLEM

2.1. The Material as a Mass of Discrete Particles

2.1.1. Review of literature

Trollope (1957) studied the stability of a granular wedge

under conditions of a single (horizontal) surface constraint (see

Figure 2.1). He evaluated the stress distribution within a granular

mass under the influence of gravity from an analysis of the static

equilibrium of a systematically packed system of mono-sized, smooth,

non-frictional, rigid spheres. The necessary stability in such a wedge

was satisfied with a unique packing arrangement, the hexagonal

rhombohedral. A two -dimensional View of this type of packing is

wedge of granular

material

 

 
 

Figure 2.1. Deflection of the supporting base under a wedge of

granular material (Trollope).

10
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shown in Figure 2. 2. The loading forces, fq, mq and nq, acting on

the particle considered in this figure were known from the boundary

conditions; I, m and n represented integers. The support forces

acting on this particle were Z1, Z2, and X. The two limiting

conditions for static equilibrium are also shown in this figure.

Trollope defined

Z2 = a' 2117-1-73 Z1 ,

where a' was an "arching factor" which was related to the deflection

of the supporting base. No arching occurred over a rigid base but

arching occurred if the base was allowed to deflect. The arching

factor a' was dependent upon the deflection coefficient of the base

(A/L), which is shown in Figure 2.1. TrolloPe found good agreement

between the predicted and measured pressure distribution across the

base of laboratory models of sand wedges.

Laszlo (1962) discussed the factors affecting the stability of

the particles in the surface layer of a granular slope. Using cylinders

and spheres as models, he derived expressions for the forces acting

on the surface particles under the action of friction. The force system

considered by Laszlo is shown in Figure 2. 3. In this figure Qi was

the force acting on the surface particle by the particles in the interior

of the mass; all Q-forces acted at an angle 9 . Pi was the force acting

on a surface particle by the next lower surface particle; all P-forces

acted at a, the slope angle of the stack.

p. was the coefficient of friction between the particles.

In this force system, Pi must be greater than O1 to maintain

the equilibrium of moments acting on the particles. The force on any
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le(m+l)q zz=(1+1)q

(a) full arching (b) no arching

Figure 2. 2. Force systems acting in a mass of rhombohedrally

packed disks (Trollope).

  

 

”(Qi - 2 Qi-odds

+ 2 Q. )
1-evens

Figure 2. 3. Forces acting on slipping cylinders on a granular

slope (Laszlo).
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particle was found in terms of the force balance of the uppermost

particle and the number of particles in the surface layer. Laszlo

seems to have made an error in deriving the final expressions for

Q1 and Pi . _

Ross and Isaacs (1961) used the force system between particles

to derive expressions for the total vertical force on the bottom of a

bin and for the vertical and lateral pressures acting in a bin. They

assumed the particles were inelastic spheres, then defined a

characteristic particle size, d, and stacking angle 6 for each material

tested. These characteristic values were determined from the

porosity and specific density of the materials. They considered only

the static case where friction could be neglected. The stacking system

used for their calculations is shown in Figure 2. 4. The stacking

arrangement in the yz -plane was exactly like the arrangement in the

xz -plane shown in Figure 2.4. Thus four 9 -axes pass through each

particle. The length of a 9 -axis is upward from the particle to the

boundary of the particle mass. Figure 2. 5 shows the forces acting

on an individual particle in the center of the stack. Each of four

particles above act with a force m on this particle and each of four

particles below support this particle with a force F . By summing the

forces acting on the particles in successive tiers, Ross and Isaacs

found the total vertical force exerted by a particle on its support to

be

FTV-n 2 L9 w/d ,

where E9 is the average length of the four 9 -axes and w is the
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 9 axis 9 axis

 

 

 
Figure 2. 4. Section view of a model particle stack (Ross-Isaacs).

 
Figure 2. 5. Forces acting on a particle in the particle stack

(Ross-Isaacs).
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weight of each particle. To find the forces acting in a particle stack

enclosed by a retaining wall, Ross and Isaacs assumed that the

retaining walls acted as a weightless particle column, that is, the

wall supported the particles as if the particle stack continued beyond

the wall, but did not apply any additional force to the lower particles.

The total force acting on the bin floor was found to be

2 2

2 J wh _ th (2.1)

4 d3 c0529 sin 9 8 d3 cos 9 sin'2 9

  

Ffloor

where J is the width of the square bin and h is the height of the grain

in the bin. This equation is valid for grain heights up to J tan 9 .

They found good agreement between the values calculated from

Equation (2.1) and experimental measurements. The equations for

the vertical and lateral pressures acting in a bin were:

 

 

Le w

P : _. (2.2)

floor 4 d3 c0529

and

P _ L' . WLl+C089)
(Z 3)

wall - 9 '
8 d3 sing 9 cos 0

where L'e is the length of the 9 “axis in the xz-plane. Ross and Isaacs

showed that the lateral pressure measured by Saul (1953) agreed closely

with Equation (2. 3), but the vertical pressure on the bin floor measured

by Saul was 10% to 15% higher than calculated from Equation (2. 2).

Mogami (1965) derived a relationship between the statistical

distribution of the void ratios and the principal stresses in a granular

mass. He considered the granular mass as a series of elements such

as is shown in Figure 2. 6. He classified these elements according to
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V - the total

g volume of

that portion of

the grains inside

the element

V - the volume of

the void

 
Figure 2. 6. The element of volume in a granular mass

(Mogami).

their void ratios and volumes as is shown in Table 2.1, where

e1, e2, . . . , en were the void ratios in ascending order, vi (i=1, 2, . . . , n)

were the total volume of the elements having the void ratio ei and

Ni (i=1, 2, . . . , n) were the total volume of the grains contained in the

elements which had the void ratio ei, in terms of the number of grains.

Mogami then applied the methods of statistical mechanics to this system

and found an expression for the probability of the state in terms of the

Table 2.1. The distribution of volume elements (Mogami)

e1 6.2 3 n

V1 V2 V3 Vn

N N N N
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void ratios and their standard deviation. Then by relating the volumetric

strain in plane stress to the change in void ratio, he derived expressions

for the principal stresses in terms of the void ratio, the maximum

shearing strain and a suitable constant. In a later paper Mogami (1966)

compared the constant, k', which be calculated from published data of

triaxial and plane shear tests in sand and found k' to be consistent within

each set of tests.

2. 1. 2. Outline of approach
 

During the initial part of this study, several attempts were made

to describe the forces acting between individual particles in a mass of

material; particularly particles in grain arches. These methods were

not successful because the force system acting between the particles

in the mass involved many possible combinations of forces and force

directions. Thus, before the system could be solved, such assumptions

had to be made that the validity of the solution was highly questionable.

Many of these problems would be overcome if the influence of the mass

surrounding the critical area could be included while still recognizing

the particle nature of the failure area. This could be achieved if the

particle nature of the system could be incorporated into a continuous

mass type of description.

The following development was made to find a yield criterion of

this kind. From continuum mechanics was utilized the concept of an

imaginary plane through the particle mass, separating the mass into

two bodies. Taken over a sufficiently large area of this plane, the

resultants of the forces are assumed to be proportional to the area. The

internal force state in the original mass can be represented by forces
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perpendicular and tangential to the imaginary plane.

From particle mechanics were taken the concepts that forces

are transmitted between bodies at the contact points, that the directions

of the forces should be related to the common normal to the bodies at

the points of contact and that there exists a relationship between the

normal and tangential contact forces.

The two approaches are combined by the assumption that appropriate

components of the resultant of the contact forces in the particle picture

are the same as the unit area forces in the continuum representation.

The yield criterion was designed to consider both pure friction

and cohesion between the particles, and also the orientation of the particles.

The following sections discuss the assumed particle stacking arrangement

and the force system between the particles necessary to arrive at the yield

condition.

2.1.3. The arrangement of theparticles in a stack
 

The stacking arrangement of the particles in a mass of material

determines the points of contact between the particles and the direction

of the normal at the contact points; this essentially establishes the force

system which acts between the particles. The assumptions made in

selecting the packing system for this study and the properties resulting

from this arrangement of particles are given below.

Assumptions:

1. The particles had an ellipsoidal shape with the two minor

axes equal (the length of the minor axes = 2b).

2. All particles were oriented with their longest axis parallel

to the x-axis (the length of the major axis 2 2a).
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3. The particles were arranged in a systematic manner with

equidistant spacing; the spacing was independent of position in

the mass.

4. Each particle was in contact with all adjacent particles.

Figure 2. 7 shows the arrangement of particles used in the

following discussion. Four stacking arrangements which satisfy the

above conditions are possible. They are:

l. a simple rectangular arrangement with a center spacing of

2a in the x-direction and 2b in the y- and z-directions.

2. a body centered rectangular arrangement with a center

spacing of 26a in the x-direction, 2nb in the y-direction and a

z-distance dependent on 6 and n (this is the arrangement shown

in Figure 2. 7, the z-distance is shown in this figure but the

derivation of this distance will be given later).

3. an arrangement which has face centered particles in the

xz -plane and is rectangular in the yz-plane. The center spacings

in this arrangement are 26a in the x-direction, 2b in the y-direction

and a z-distance determined by 6.

4. an arrangement which has face centered particles in the

yz -plane and is rectangular in the xz «plane. The center spacings

in this arrangement are 2a in the x-direction, an in the y-

direction and a z-distance determined by T).

To include these four arrangements in one mathematical

formulation, the stacking constants m and n were used. The only

possible values for m and n are 0 and 1. These constants are used in

the description of the distance between the centers of particles in
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adjacent tiers. In Figure 2. 7, the center spacing between particles

1 and 2 in the x-direction is n6a and the center spacing between these

particles in the y-direction is mnb. Thus the four arrangements

mentioned above are given by the following values of m and n:

Arrangement m-value n-value

1 O O

2 l l

3 O l

4 1 0

These four arrangements were made more general by including

the stacking variables 6 and n . These variables allow the distance

between the center of particles in the same tier to be varied. The

distance in the x-direction between the centers of particles 1 and 3

in Figure 2. 7 is 26a. The y-distance between the centers of particles

1 and 4 is an. The minimum value for these variables is 6 = n = 1.

The stacking constants and variables are used only in the x-

and y-directions. The particles in higher tiers are assumed to be

supported by the lower particles, so that the z-distance between

centers can be calculated if the x- and y-distances are known.

Using this method, the distance between the centers of any

particle can be calculated from the position of the adjacent particle.

Thus for particles in the same tier

h3 = 111+ 26a and k4 = k1+ an

where (h, k) is the center of each particle shown in Figure 2.7, and

for particles in adjacent tiers



22

h2 = h1 + n6a and k2 : k1 + mnb

The particles in tier three were placed directly above those in

tier one; tier four was exactly like tier two, etc.

The following method was used to calculate the z-coordinate of

the center of particle 2 (see Figure 2. 7). The x- and y-coordinates

of the center of this particle were fixed at (a6n, bnm). Let the desired

z-coordinate be c, then the equations of particles 1 and 2 are

— + + —- :1 ,

a2 b2 b2

and (2.4)

2 (2 2
(x-a6nL + (L— bnm; +(z -c) _ 1

a2 b2 b2 —

These two particles touch only at the point (x1, yl, 21), where they

have a common tangent plane. The direction numbers of the normals

at this contact point were found by taking the gradient of Equations 2. 4.

These direction numbers were:

respectively.

The normals are parallel, but. have Opposite directions.

Therefore

 

 



 

y]. (Y1 ' bflm)

- —2 = K 2 , and

b b

z1 (z1 - c)

- —2 : K 2

b b

In order to satisfy Equations 2. 4, K = l, and the point of contact

becomes:

_ __ E

(X12Ylizl) ‘ 2 a 2 9 2)‘ (2'5)

(These results could also be found from symmetry arguments.)

From Equations 2. 4,

 

c = b’J4 - 62nZ - 11sz . _ (2.6)

Thus the center of particle 2 becomes:

 j

(a6n, bnm, bN/4 - 6ZnZ - 112mZ )

The values of 6 and 11 must be restricted in size, for if they

become too large, the particles in tier three will touch the particles ‘

in tier one without touching the particles in tier two. Thus the z-

coordinate of the center particle 5 (see Figure 2. 9) must be greater

than 2b, giving,

 fl

2b 4 _ 62n2 — 17sz 3 2b

01'

62n2 + 77sz E 3

This, in combination with the conditions that 6 i l, n :1, m = l or O,

n = l or 0, gives the possible values of 6 and 7') shown in Figure 2. 8.
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1.8-

A7-

m=1

16- /—n=O

n —

m=n=l

1.4-

m=0

1.2F' n=1

1. B —3

0‘ C

Figure 2. 8. The possible values for 6 and 77 include the shaded

area and the line segments AB and BC.

To find the porosity of this packing system, consider the paral-

lelepiped outlined by the heavy lines in Figure 2. 9. This parallelepiped

contains the volume of two particles. Thus the volume of the material ‘

is 81rab2/3, and. the porosity of this system is;

l _ volume of material or

total volume ’

 

porosity

TI’

1 - . (2.7)

.3 51134 - 52112 - anZ

The porosity of this stacking system for various values of the

porosity

stacking numbers are shown in Figure 2.10. The system is symmetric

with respect to 6 and n . Although Figure 2.10 is drawn for 6 with

curves for various values of n , the same relationships would hold if
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the 6 and 11 symbols were exchanged.

As can be seen from the diagram, the minimum porosity of

0. 26 is achieved for 6 = n = l , n = m = 1 . The maximum porosity

of 0.47 occurs for n = m = O, which fixes 6 = n = 1.

As a comparison, Ross and Isaacs (1961) measured the porosity

of several materials; their results were:

material porosity

shelled corn 0. 39

oats O. 50

soybeans 0.39

wheat O. 39

All of these porosity values, except oats, fall within the range given

in Figure 2.10. From measurements of the bulk density of loose and

compacted oats, it appears that the porosity of compacted oats would

be approximately 0. 46. Thus the stacking model developed here may

be used to describe the porosity of the materials quite accurately.

2.1. 4. The normal and tangential forces acting on a failure surface

The failure was assumed to occur along a plane containing the

y-axis and passing through the particle mass at an angle a to the

z-axis (see Figure 2.11). Any movement in the mass involved the

body on the left side of the a -p1ane sliding over the body on the right

side. This implied that motion in the y-direction was zero. This

0. -plane divided the mass of particles into two bodies; this discussion

considers the forces which act between these two bodies.

Because the mass was made up of particles which were assumed

to remain intact, the boundary between the two bodies was not exactly
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'5— n=m=0

o

.4—

m=0

n=1

3 =1
'3

o

S
9‘03—

A n=m=1

n_=l.3

E n=m=l

2— n=11

0 n=m=l

n=1 
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Figure 2.10. Porosity of the particle stack for various values of

the stacking constants.

a plane, but appeared to zigzag across the a -p1ane following the particle

boundaries. The position of the center of the particle determined the

dividing line between the two bodies; any particle whose center was on

or to the left of the a -plane was considered to be in the left body and

any particle whose center was to the right of the a -plane was in the

right body (see Figure 2.11).

The only contact points betvveen the particles which affected the

forces between the two bodies were those along the zigzag boundary.

All other forces occurred within the bodies and were not considered.
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Figures 2.12, 2.13 and 2.14 show close-ups of the contact points

between several particles.

All forces between the two bodies act in one of two planes;

these two kinds of contact planes were defined as type I and type 11.

Figures 2.12 and 2.13 show type I and type 11 contacts for the case

m = 0, n = 1; however as is shown in Figure 2.14, the case m = n = 1

can be treated with the same type of contact forces by using the position

equations developed in Section 2.1. 3. For ease of visualization, all

future figures will show the case n = l, m = 0, but the equations will

be derived for the general case of all combinations of n and m equal

0 or 1.

The direction of movement of the body to the left of the a -plane

over the body to the right affects the force system between the bodies.

Figure 2.15 defines "plus" and ”minus" directions of motion.

left body

  

«KR K

Figure 2.15. Definition of the "plus" and “minus" directions

of movement along the a -p1ane.
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Looking at Figure 2.13 again, it can be seen that after a very

small "plus" movement, the type I contact forces no longer act, so

that all of the resisting force takes place at type 11 contacts. On the

other hand, for "minus" movement, only the type I contact forces are

active. Therefore, the force system acting for each type of motion

can be treated separately. If the movement between bodies is large,

it is obvious that displacement of particles would have to occur,

however this study will limit its discussion to incipient movement so

that the particles can be assumed to retain their position in the particle

stack.

In the previous discussion, it was shown that minus motion of

the left body was associated with the forces acting between particles

at type I contacts and that plus motion of the left body was associated

with the forces acting between particles at type 11 contacts. These

two types of movement will be considered separately.

The case of minus movement - type I contacts will be discussed

first. The total force acting at a type I contact will be determined and

then the components of this force in the directions normal (5.) and

tangential (E) to the a -plane will be calculated. The force acting at

the type I contact was taken to be the force that a particle in the right

body exerted on a particle in the left body.

Consider the type I contact between particles 4 and 5 in

Figure 2.12. The unit vector in the direction normal to particle 5 at

this point is

O

1:; _ (_>\__5n Izr_n A)

5 5

,
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where

 

and
 

c5 = J4+()\2-1)62n2 .

Thus the normal force acting on particle 5 in the left body at one type I

contact is:

X6n —.>

1 +77C—‘1T+—3’-T€). (2.8)

5 5
FN z FN("

This force is only one of a pair of forces which act on each

particle in each (projected) contact plane. In this case there is a

particle directly behind particle 4 which acts on particle 5 from the

other side with a normal force,

C
-+ _ X6n-.* Elli-7r __3 “-r
FN — FN(--—--C5 1 - C5 j + C5 k),

so that the two normal forces acting in each contact plane are balanced

in the y-direction. Because only motion in the xz -plane is being

considered, only one normal force of each force-pair in a contact

plane will be considered in the following discussion.

The friction force, F.“ , acts in the same plane as the motion

and Opposes this motion. In this case, it would act in the xz -plane,

i. e. , perpendicular to the T direction. The friction force also must

act in the plane tangent to the particles at the contact point, i. e. ,

N

direction of -(N x j“). Normalizing this resulting vector and taking

perpendicular to the normal force F" . Thus F.“ will act in the
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the magnitude of the friction force as uF F; for minus motion
N,

becomes:

C
-‘ _ 3 T’ h6n —*

F — ”FN( 1 + C k) 3 (209)

“L 4

 

#
3

where,

  

c4 2 «(Ci +(>.z5n)Z = «(cg -n2m2

Figure 2.16 shows the forces at a type I contact, acting in the

directions which will be considered positive for this case. From the

figure, it is apparent that the normal force in Equation 2. 8 and the

friction force in Equation 2. 9 were acting in the positive direction.

The total force acting in the xz-plane at a type I contact at incipient

minus motion is:

 

(FT)xz : (FN+F)L)xz ’

which can be written:

_. #C _. C _.
F = F ("k—(5J—l + 3) i +(—2 Mil—51) k. (2.10)
T N C5 C4 C5 C4

Defining the angle between (EN)XZ and the z-axis as B, (see Figure

 

2.12), i.e., [3 : arc tan C611 ,' as is shown in Figure 2.17, gives:

3

F =F (-——sin8+ucosfi)i +(——cos[3+p.sinf3)k .
T N C5 C5

(2.11)

The unit vectors normal and tangential to the a -plane are

h. = (-cos a, 0, sin a) and t. = (sin a, 0, cos a), (see Figure 2.18).
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—>

The components of FT in the normal and tangential directions are

E ° 3’ and E - l7. Thus the total force on the a -plane becomes:
T T

FTO = (FT- n)n+(FT- t)t , or

C

E =F {—isin(a+B)-ucos(a+fll};

To N C5

C4 _.

+ {E—cos(a+fl)+usin(a+f3)} t . (2.12)

5

C4
Now define an angle Y ; p. = K sin y and C— = K cos y .

5

Introducing these expressions into Equation 2.12 gives:

FTa = FNK[sm(a+(3-y)n+cos(a+(3-y)t] . (2.13)

Let Ha be the ratio Of the magnitudes of the tangential component to

the normal component acting on the 0. -plane. Then pa for minus

motion become 3:

“(1,-1 = cot (6+6 -y) . (2.14)

In the same way, (.La can be computed for the plus motion -

type 11 contact case. Figure 2.19 shows the positive directions for

the forces acting at a type 11 contact. In this case, two regions were

considered separately,ia < 6 and a > (3. This was necessary so

that the friction force would always resist the movement of the left

body. The positive tangential direction along the a -p1ane was defined

as l? = (- sin 0. , 0, - cos a. ). Then, making the same calculations as

for the minus movement case, the (ratio ”a for positive motion was

found to be:
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F

p.

32

Cs

[3 F
N

Figure 2.16. The forces acting on Figure 2.17. The components of

a particle in the left body the angle (3 .

during incipient minus motion,

showing the positive directions
-0 -—D

for FN and FH .

 

COSQ‘ -COS(1

 

sin a

 
 

 
Figure 2.18. The x- and z-components Figure 2.19. The forces acting

of the unit vectors normal and on a particle in the left

tangential to the a -plane, for body during incipient plus

this case. motion, showing the

ppsitive d_i.rections for

FN and F“ .
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ua’+H=cot((3-a-y) (2-15)

where Y is positive for a < (3 and negative for a > (3.

A discussion of the regions of validity of these equations (2.14

and 2.15) along with numerical values of p. a are given in Section 2.1. 5.

The relationship between the angle (1 and the number of type I

and type 11 contacts was considered next. From Figure 2.11, it is

apparent that for o. = 00, 50% of the contacts are of each type, but that

for a = (10, 100% of the contacts are type I. The value of o. for the case

where all contacts between the particles in the two bodies are type 1

except for one particle in the top tier is shown in Figure 2. 20. There

is always one contact for each tier of particles and a type 11 contact will

 

n———— NbC3 tana

N
b
C
3

 
 

 

l't NbC tana

3 0

Figure 2. 20. A particle stack showing the a -plane for particles with

all type 1 contacts except the particle in the Nth tier.
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occur only when the a -plane passes through or to the left of the center

of a particle. In; Figure 2. 20, a was chosen so that the a -plane passed

through the center of the first particle to the left of the (lo-particle in

the Nth tier.

From Figure 2.20, 26a 2 N b C3 tan do - N b C3 tan 0. . Since

there is only one type 11 contact in this case, the fraction of contacts

which are type II is l/N. It follows from the above expression that the

frequency of type II contacts is:

1 l. C3 (tan (10 - tan a)

fII:N: 25 °
 

tau.__ 6 _1_
NowtanO‘o—x C , so fH— 2(1-tanao

3

The remainder of the contacts are type I, so

)for (0: a_<_o.o).

f:1-f ___ tana

tano.0I II (1 +
 

), for (0: 0.50.0),

N
|
H

where fI and fII are the frequency of the type I and 11 contacts. 
Although this solution was deve10ped for the special case of

only one type 11 contact, the same construction can be used for the

 a -plane passing through the center of any particle in the Nth tier.

Because the length of the section along the 0. -plane is N b C3/cos a ,

the number of contacts per unit length becomes:

_ l sina _ l sina

N172bC3 (“35° +tanaol)’ NII_ZbC3 “ms“ ”tanao)’ (2°16)

where NI and N11

length along the (1 -plane.

are the number of each type of contact per unit
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This development would be more general if an interparticle

cohesive frictional force was included, because most materials

exhibit some cohesive property. This cohesive force can be included

in the friction force; thus the magnitude of the friction force becomes,

I F”) = uFN + FC , where EC is the apparent cohesion. Making this

addition to the previous derivations will change the peterm in the

F

definition of Y to (u + f3) .

N

2.1. 5. A discussion of the field criterion
 

The ratio [la , of the tangential force acting on the O -plane to

the normal force acting on the a -plane, is an expression for the failure

strength Of a material. When the failure criterion is written as

Fta': = [La Fna ., it is similar in form to the Coulomb yield criterion.

Although it may not be obvious from Equations 2.14 and 2.15, “'0. is

a function of the stacking arrangement, the particle shape, the angle

of the failure plane through the mass and the internal friction and

cohesion of the material.

The expressions obtained for ”a in Equations 2. 14 and 2.15

are not defined for all combinations of the angles a, (3 and y . The

following discussion will point out these critical values.

Case 1. Minus motion - type I contacts

This case is valid only for o _<_ a 5 90° — (3. For a < 0,

this case is equal to case 2 for - O , due to symmetry. For a > 900 - [3,

the contact force will become negative.

)1 :00 for Oiafiy-fi.
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Case 2. Plus motion - type II contacts

This case is valid mainly for 0 E o. E (3 . The lower limit

applies for the same reason given in case 1. For a > B only a very

small movement can take place before both type II and type I contacts

are established.

P'o.,+II: °° for F3'IYI EGEB+|YI.

because at a = B the tangential component of ET is perpendicular to

the (projected) contact surface.

This summary, together with the illustration given in Figure 2. 21,

show that pg 11 is not a suitable measure of the yield strength of a+

material during incipient plus movement. However, it was shown in

the previous section that as (1 increases, the frequency of type II

contacts along the a -plane decreases (see Figure 2. 21). As (1 becomes

larger, the tangential force acting along the a -plane will be concentrated

on a small number of particles and will probably cause the particles to

move out of their stacking positions. 'This violates one of the assumptions

made earlier. If small movements in the particles with type II contacts

occur, the locus for (La would likely be similar to the minus move-
, +II

ment case.

On the other hand, for minus movement, ”a, -I gives reasonable

results whenever a > Y - 8. Thus this yield criterion can be used only

for the case of minus movement and when a > y - (3. To show the

relationship between a and (La , a specific case was considered. A

plot of (La for a -values between 0 and 0.0 is shown in Figure 2. 21,

forthe casewhenm=0, n =1, n=1, 6:1, FC = 0, k = 0.5, and

p. = 0.1.
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8. 0 -

The (La values were

[.La +11 calculated for the case:

7. 0 - (plus movement) m = 0 n = 1

r) = l 6 : 1

p. = 0.1 F = O

i = o. 5 C

6. 0

I;

5. 0 «'0,

Frequency of

type 11 contacts

6

4o O -

— O.

3. 0 - — 0.

2- 0 -
— o. 2

“0., -I \

1. 0(_ (minus movement) _ 0.1

\ °

(3 _ “o

o l \ l l l ,0

10 20 3O 40 50

o. (in degrees)

Figure 2. 21. The effect of the shearing angle on (La and the frequency

of type II contacts.
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The yield strength for minus movement is a maximum at

a + [3 = y and a minimum at a : 90O - 8 . Thus failure is more

likely for a -values near this minimum than in other planes. The

effect of some of the other variables can be seen from the equations

used in deriving Equation 2.14. These Observations are:

l. The yield strength is a function of the shearing angle a

and (La 2 p. .

2. As the particles are moved farther apart in the stack,

the strength decreases.

3. As the particle shape becomes longer and more slender,

the strength increases.

4. As the internal friction of the material increases, the

effect of the shearing angle decreases, that is, the strength

at small a -values decreases and the strength at large a -values

increases.

5. If the void ratio of the stack decreases, the effect of the

shearing angle decreases.

6. As the cohesion of the material increases, the effect of

the shearing angle decreases.

A related topic which should be investigated in future studies

is the effect of an internal compressive force (stress) in the body

on the yield strength. If this stress acts parallel to the a -surface

it should tend to increase the possible tangential force along the

0 -plane before sliding takes place. Another point which should be

studied is the internal force state necessary to prevent the surface

particles from rotating when a tangential and normal surface force

is applied.
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This study was limited to incipient motion (failure). The case

of continued motion (plastic flow) should also be studied using the

same methods.

2. 2. The Continuous Mass Approach

2. 2.1. Review of literature
 

The assumption Of a continuous material with the added constraints

of isotropy and homogeneity has been used extensively to reduce complex

problems to a more easily solvable form. In the area of stresses in

grain, the first theoretical study using this assumption was made by

Janssen (1895). He considered the element shown in Figure 2. 22 and

derived formulas for the lateral and vertical pressures exerted by

grain in bins. With this force balance and by defining k = PL/Pv =

constant, Janssen was able to integrate the derived differential

equation to Obtain

R' -k'h
pV =-1Y<—H—, (1 -exp—-T{$— ), (2.17)

where R' = A/U, the hydraulic radius and h was the height Of the grain.

The assumption that k was constant throughout the material has not

been supported by experiments; however Janssen's formula is still

commonly used and is recommended by Hall (1961) for calculating

grain pressures in deep bins.

Terzaghi (1943) considered arching in sand lover a yielding

trap door. Using the forces acting on the element of material shown

in Figure 2. 23, and the same procedure as Janssen, he found the

vertical pressure on the yielding surface to be
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_L(Y -c/L) -k h) (-k(1h)
Pv — k H (1 - exp L + q exp L (2.18)

In tests with sand, Terzaghi (1936) found that the stresses in the sand

mass above a height equal to two or three slit widths (4L to 6L) were

not changed by the yielding of the trap door. Thus the shearing stresses

which act on the sides of the element were assumed to be active only in

the lower portion of the mass. The upper portion of the mass acted

only as a surcharge on this shearing section.

Love (1929) derived the stress distribution equations for a

vertical load applied over a rectangular surface area of a semi -infinite

elastic material.

FrOhlich (1934) considered the similarity between the vertical

pressures in an incompressible, isotropic, elastic material contained

in a silo and the same material lying in a semi-infinite space. He

derived an expression for the vertical pressure in a silo by taking a

semi-infinite space of material and assuming that only the material

inside the silo boundary had weight; the portion of the semi-infinite

space outside the silo boundary was weightless but could transmit

stresses. The equation for the vertical pressure in a semi-infinite

space of elastic material with a uniform applied load on part of the

boundary had been solved by earlier researchers (Boussinesq).

Applying a uniform load on the boundary of the semi-infinite space

over a region equal to the silo cross section, FrOhlich found that the

vertical pressure at similar points in the two situations would give

equal deformation if the applied load had a magnitude of v E, where

Y was the bulk density and E was the modulus of elasticity of the

material.
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Figure 2. 24. A finite square plate with a hole in the center

showing the boundary conditions used by

Schlack and Little.

The problem of determining the stresses acting in an arched

cohesive material is somewhat similar to the elasticity problem of a

finite plate with a hole in the center. Solutions to problems of this

type, shown in Figure 2. 24, were obtained by Schlack and Little (1964)

and for a slightly different case by Thompson (1965). This type of

approach might give an approximation to the stress field in a shallow

bin filled with a cohesive material under a load.

Richmond and Gardner (1962) obtained expressions for the

maximum arch span that a cohesive material could form in a vertical

channel and the minimum span that could possibly flow under the same

conditions. They assumed that:
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1. the material obeyed Coulomb's failure condition

2. the stress was invariant with respect to the vertical

coordinate near the free arch surface

3. the radial stress component was everywhere equal to the

circumferential stress component.

They used differential equations of equilibrium

30x 87x2 ao—z sz

(’5 + ‘57 = 0' —
 

to derive their formulas. Tests with clay agreed closely with the

arch spans Obtained for the minimum span that could possibly flow.

This equation was

L
ZY (1 + sin (b) , where Cb = angle of internal friction.L :

Lenczner (1966) extended this development to non-vertical walls.

Jenike (1962) developed a comprehensive solution to the

problem of gravity flow of granular materials based on the theories

of plasticity. He assumed that the materials were rigid-plastic,

and that in the plastic regions the solids were isotropic, frictional,

cohesive and compressible. Jenike and Shield (1959) deve10ped a

special yield function for granular materials; this yield surface was

a generalization of the commonly used Tresca yield criterion. The

yield surface was made a function of the hydrostatic pressure, which

changed the hexagonal prism of Tresca into a pyramid. This pyramid

was bounded on the pressure side by a flat hexagonal base perpendicular

to the axis.and the vertex of the pyramid was rounded off. The size

of the pyramid was a function of the density Of the material, time of
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consolidation at rest, the temperature, and the moisture content of

the solid. These assumptions were applied to the theories of plasticity

and resulted in a series of complex differential equations. Jenike

obtained solutions to these equations numerically and displayed these

solutions in a series of graphs. He also developed a special direct

shear testing machine for evaluating the properties of the solids; the

properties measured were the effective angle of friction, the flow

functions, the bulk density, and either the static or kinematic angle

of friction. This system was used for designing a bin and hopper

system with optimum gravity flow characteristics, based on the

measured properties of the material.

Many studies have been made to measure the pressures exerted

by grain in storage bins. Early experimental work was carried out by

Roberts (1883), who concluded that the total vertical force on the bottom

of a bin was much less than the total weight of the grain in the bin. He

found that the total vertical force on the bottom of the bin did not

increase after the height Of grain exceeded two bin diameters. The

theory of Janssen was checked by many observers. Jamieson (1903)

and Lufft (1904) confirmed Janssen's formula by experiments with

grain in both model and full sized bins and silos. Ketchum (1919)

summarized the work of the research workers of that period (Roberts

(1883), Airy (1887), Janssen (1895), T012 (1897), Bovey (1903),

Jamieson (1903), Lufft (1904)). From the work published up to that

time, Ketchum concluded that Janssen's assumption of a constant

ratio, k, between the lateral and vertical pressures in a bin was not

completely true. Data showed that k was not constant but varied



49

with different grains and different bins and that k increased with the

depth Of grain.

Several research workers have attempted to measure k for

different materials and different bins. Caughey et a1. (1951) measured

k for wheat, shelled corn, soybeans, sand, pea gravel, and cement,

in an 18 inch inside diameter, 5 feet deep, concrete bin. They found

that k decreased slightly with depth for wheat and pea gravel, but

that k increased with depth for cement and that no relation between

depth of material and k was apparent for soybeans, shelled corn,

and sand. They concluded from their tests that corn, soybeans, and

pea gravel do not follow Janssen's theory, because Janssen's formula

gave values of lateral pressure which were larger than their experimental

values.

The assumption that a granular mass is isotropic was found to

be inaccurate by some researchers. Saul (1953) measured the lateral

pressure on the wall and the vertical pressure on the floor of a large

bin filled with 10 feet of shelled corn. The bin was filled with corn

by three methods and the wall pressures at various depths and the

vertical pressures at points along a line across the center of the bin

were measured. Saul found that both the lateral and vertical pressure

distributions varied considerably with the method of filling the bin.

This suggests that the orientation of the grain kernels affected the

pressure exerted on the sides and bottom of the bin.

The "dynamic pressures" which act during the filling or emptying

of a bin have been found to be much higher than the pressures calculated

from Janssen's formula. The magnitude of these pressures was also
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influenced by the methods of filling and unloading. This again suggests

that kernel orientation affects the pressures acting in a granular mass.

This study will not consider moving force systems, however a very

good discussion of the research on dynamic pressures can be found in

Isaacson (1963) or Turitzin (1963).

Collins and Yin (196 5) used motion pictures to analyze the flow

patterns in grain. They concluded,

"The observations that raised the most questions were those

of the discharge from a central orifice. The gradual orientation of

the grains and development of the flow pattern made it clear that no

theory could be very useful if it contained the assumption that the

grain behaved as an isotropic substance. In particular, if a region

of shear failure were predicted by calculation based on this assumption,

the actual shear region in the moving grain might be quite different. "

2. 2. 2. Application of the continuous mass approach
 

Although the experimental evidence from tests with grain seems

to make the assumption of a continuous mass somewhat doubtful, these

theories have been applied for many years with good results. It is

also likely that some agricultural materials such as ground grain,

with small granules and some cohesion, might fit the continuous mass

assumption quite well. Thus a few of these theories will be used in

this study for comparison with experimental results.

The study by Terzaghi (1936) on the pressure in sand over a

yielding trap door seemed very similar to the study of arches in

grain. Figure 2. 25 shows the force system for tests where an arch

was formed in a mass of material under a. vertical load. In this force

system, the assumption was made that the active shearing region was

6L or three slit widths deep and that the portion of the upper section

not supported by the side walls acted as a surcharge on the shearing
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region. Following the methods of Terzaghi (1943) and assuming

c = c' = 0 the vertical pressure acting on the yielding section of

the bin floor was found to be:

 

PV = yL(a3 + a2b3) + qb2b3 (2.19)

where

b3 = exp(- an H)

a = 1 (1 --b )
3 k p. 3

2 knl (1'

b2 — exp (- m1 )

In1

8‘2 = 2k (.1.‘ (1 ‘b2)

At the bottom surface of a stable arch, the vertical pressure

Pv must be zero. Using this, along with the assumption that c' = 0,

Equation 2.18 was modified to find the cohesion, c , of a material

necessary to form a stable arch. The expression for c was

Ly a2 b3 q b3 b2

3

c=Ly+

a a

3

This solution indicates a maximum arch width for a given material.

The problem Of an arched material acting as an elastic body

was also considered. A section of such a material with possible

boundary conditions is shown in Figure 2. 26.

In this solution the arch was assumed to be cylindrical in shape;

this allowed the system to be approximated by the plane strain condition.

Only the half bin shown in Figure 2. 26 needed to be considered because

of symmetry. The method of solution follows Schlack and Little; an
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Airy stress function in the form Of an infinite series could be selected

so that the conditions on the curved surface are satisfied term by term.

Then the boundary conditions on the edges could be satisfied by the

method of least squares, that is, by minimizing the specified conditions

at a selected number of points on the boundary. This would fix the

constant in the truncated stress function and would allow the stress

field to be calculated.

The boundary condition of sz = 0 at x = a shown in Figure

2.26 does not describe the actual conditions in a bin very well. The

actual boundary condition at x = a should be 'sz = K ox, where K

is a constant. It may be possible to satisfy this condition if (TX is

assumed to be the force necessary to prevent movement of the boundary

at x = a , i. e. , O'X is the stress on the boundary x = a necessary to

maintain uX = 0 . Then using the same procedures as above, the

boundary conditions of uX = 0 and 'TXZ : K ox may possibly be satisfied.

2. 3. The Forces Acting in Particle Arches

2.3.1. Review of literature
 

Allan (1890) developed the force system acting in a masonry

arch by considering a suspended cable; the shape of this cable was

determined by the applied load. If this cable was assumed to have

rigidity and was inverted, it became an arch. The shape of the cable

was also the optimum shape for a masonry arch under similar loading

and was defined by Allan as the "line of pressure" of the arch. Under

a load which acted uniformly per unit span such as shown in Figure 2. 27,

this ''line of pressure" assumed the form of a parabola.
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Figure 2. 28 shows an arch under a load with a "horizontal

top. ” With this type of loading, the line of pressure assumed the

shape of a catenary.

Roberts (1884), from his tests on the pressures produced by

grains in deep bins, concluded that the shape of the grain mass which

contributed to the total force acting on the bin floor was parabolic.

In studies mentioned earlier, Richmond and Gardner (1962) derived

an expression for the shape of the arch formed in a cohesive material;

this shape was parabolic. Jenike (1961) arrived at the same conclusion

from his more complex study of the same problem.

These results indicated that the shape of an arch might influence

its maximum size. Therefore a study was made of the arrangement of

particles along arches which were shaped both as parabolas and as

catenaries. This study also attempted to determine the force system

necessary for the static equilibrium of the particles. Note that the

symbols a, L, m, and n as used in this section represent different

quantities than in previous sections.

2. 3. 2. The two-dimensional parabolic arch
 

The arrangement of particles located along a parabolic arch

was studied using the following assumptions:

1. The particles are discs of a uniform size (with radius R).

2. The center of each particle is located on the characteristic

parabola.

3. Adjacent particles are in contact.

The arch considered was constructed with relatively few particles.

Figure 2. 29 shows the position of the particles if the arch is constructed
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Figure 2. 27. An arch under a uniform load per unit span.
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Figure 2. 28. An arch under a load with a horizontal top.
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of an Odd number of particles. The following discussion will treat

this case; however, the results will apply to the case of an even

number Of particles if the coordinates of the center of the first

particle are changed. Several of the symbols used in the discussion

are defined in Figure 2. 29.

The starting condition for the Odd-number-of-particles arch

was that the center of particle one (hl’ k1) = (0, a). The center

coordinates of any particle (hi’ 1(1) must satisfy the equation of the

parabola, that is,

h.2 - 4a2 + 4ak. : 0

l l

and (2. 20)

2 2

hi+1-4a +4aki+1 - 0

The point of contact (Xi’ zi) of two adjacent particles lies on a straight

line connecting the centers; thus

h.+h. k.+k.

Xi = 1_lei and Z1 2 '—1——Z—'—1+1- . (2.21)

Geometry gives

2 , 2 2 -

(hi — hi+l) + (ki - k1“) — (2R) . (2.22)

Now substituting k1+ from (2. 20) into (2. 22), gives
1

4 2 2 2

hi+1 + (8a + Saki) hi+1 - 32a hi hi+ + A — 0 , (2.23)
l

where

A : 16a2 (hi2 + ki2 - Zaki + a2 - 4R2)
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The Newton-Raphs on formula,

F(x) = x - f(x)/f'(x) (2.24)

was used to obtain a numerical solution for hi+1 . For this case,

Equation (2. 24) becomes

 

4 2 2

3h1+1 + h1+1 ‘83 + 8ak1) ' A . (2.25)

Fulfil) : 4113 +11 (16 2 +16 k) 32 2h
1+1 1+1 a a1 ‘ a 1

Values for the radius R and the parabola characteristic "a" were

assumed and hi+l was found by successive iteration of equation (2. 25).

The z-coordinate of the center of particle i+1 and the contact point

between particles 1+1 and i were then calculated from Equations

(2. 20) and (2. 21). A FORTRAN program was written to carry out

these calculations.

This same procedure was also used to compute the positions of

particles along a catenary, however the results were nearly the same

as for the parabola; therefore they were not included here.

2. 3. 3. Computation of the parabola shape factor "m"

The method outlined above calculated the position of each particle

on the parabolic arch for a specified parabola and particle size. However

the desired information was the particle position on a parabolic arch

when the width of the base of the arch and the number of particles in

the arch were specified. To accomplish this the computer program

used to calculate the particle position was modified. The steps to

carry out this computation are given below:
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Figure 2.29. A parabolic arch formed with an odd number

of particles.
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1. A first approximation was made for the parabola shape

constant m by considering the particle centers as lying on

a straight line (see Figure 2. 30), thus

_ sZ-LZ

L

where s 2 NR , and N is the total number of particles in

the arch.

2. The parabola characteristic a was chosen so that the

parabola would pass through the point (L, a-mL), so

a = L/4m

3. The coordinates of all the particles were computed using

the methods of Section 2. 3. 2 using estimated values of a

and m. This gave estimated values for (hn, kn).

4. The x-coordinate, Of the intersection of the parabolaXd ,

and the particle n was computed. This point should have the

value L. If, however xd was not sufficiently close to L,

then m was corrected by the equation

ml=mxd/L

and the computations repeated from Step 2 until (xd-L) was

sufficiently small. Thus m was found as a function of L/R

and N.

Forces acting in an arch
 

The force system acting on the particles along an arch was

calculated using the following assumptions.

1. The arch was symmetric with respect to the yz-plane.
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2. The external force on the uppermost particle acted downward.

3. The external forces on all particles except the tOp particle

(F2, F3, F4) acted at an angle (#2 to the vertical.

4. The friction coefficients acting at all points were equal.

5. The moments acting on the particles were zero, so the sum

of the friction forces on each particle had to be zero. This

implied that the magnitude of the reaction force on the particle

was greater than the sum of the magnitudes of the other forces

acting on the particle. Thus FR: F12 + F2 , in the case of

the three particle arch.

These assumptions lead to the force system shown in Figure

2. 31 for the three particle case.

From this force system, the following equations were derived:

F12 = (F1+w)/(2 sin¢12+2ucos (1)12) (2.26)

[" W COS (p23 + F12{Sln(¢23'¢12)' ”COS(¢12‘¢23) 'l‘l‘}]

 F :

2' [u s1n(¢,3-¢2)+cos (¢23-¢2)+H]

(2.27)

FR = [F12 (cos 4312 - usin ((912 - usin (1323) - FZ (sin ((32

+ ucos (1)2 + psin $23)]/cos 4223 (2.28)

The same type of analysis was carried out for four and five

particle arches. The computer program written for Section 2. 3. 3

was expanded to compute these forces.
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Figure 2. 31. The force system acting on particles in an arch.
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A force system was considered to be unstable if any force

acted in tension, if an external force (F2, F3, F4) necessary for

equilibrium was one order of magnitude larger than the applied force

F1, or if assumption five was not satisfied.

The three particle arches were found to be stable for friction

coefficients between - 0. Z and 0.1 and assumption five was satisfied

for at least one value of the friction coefficient for all values Of 492

tested. Figure 2. 32 shows the relationship between F2/ F1 and the

friction coefficient for two values of L/R. (The ratio L/R will be

designated in Section 3. 4 by the symbol M.)

The four particle arches were unstable in all conditions;

assumption five was not satisfied for any situation tested.

With (1)2 = 300 and with friction coefficients Of 0. 0 and 0.1,

the five particle arches were stable for most L/R values. However

as ¢2 increased, the force system became unstable. Figure 2.33

shows the relationship between F2/ F1, F3/F1 and the friction

coefficient for two values Of L/R.

Even though this part of the study was not carried to a point

where conclusions about the stability of arches could be drawn, it

might be used as a starting point for future studies. It could be

modified by assuming that only every other particle center is on

the arch line and that the intermediate particles are some distance

behind on a parallel arch, similar to the approach used in Section 2.1.

This model would correspond more closely to a real arch.
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Figure 2. 32. The external forces acting on a three particle arch

in equilibrium.
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Figure 2. 33. The external forces acting on a five particle arch

in equilibrium.



III. THE FACTORIAL STUDY

3.1. The Testing System

3.1.1. Apparatus
 

The model bin used in this study is shown in Figure 3.1. The

front and back of the bin were made of Plexiglas so the orientation of

the seeds could be Observed during the formation of arches. The

sides of the bin were made of plywOod and could be shifted to permit

sloping sides in the bin as well as the flat bottom shown in Figure 3.1.

The bottom of the bin was made of two pieces of plywood. The space

between these pieces could be adjusted by moving either or both

pieces. This space formed the slit through which the test materials

flowed and over which the arch systems formed. The bottom pieces

were cut on a 450 bevel along the slit. This increased the visibility

of the arch through the slit and also insured that the plug, similarly

beveled, would fit closely into place and form a smooth bottom in

the bin.

For the tests using an applied load, a soft synthetic sponge

was placed on top the mass of seeds to distribute the applied load

evenly over the surface area. A board was placed on the sponge and

lead and steel bricks were used as weights.

3.1. 2. Test procedures
 

The temperature was controlled at 700 F and the relative humidity

was maintained between 50% and 60% during the tests, except where

otherwise stated.

Before every test, all the seeds were removed from the bin;

that was to prevent the seeds reposed on the bin floor from affecting

65
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Figure 3.1. The model bin used in the tests.
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the orientation of the seeds which were poured in for the next test.

The seeds were compacted by shaking the bin vigorously for ten seconds

after each two inch increment Of seeds had been added to the bin. The

direction of shaking was parallel to the slit length. For all tests, the

plug was removed as quickly and gently as possible.

3.1. 3. Materials used in the tests
 

Some information about the materials used in the tests is shown

in Table 3.1, and a picture of a sample Of each material was shown in

Figure 1.1. The pea beans and oats were screened carefully on a

Table 3.1. Particle information

Material Information Bulk density (lb/ft3)

Variety Mean size (in.) Loose Compacted

a x b

Pea bean unknown 0.32 x 0.25 52.0 55.0

Oats unknown 0.43 x 0.10 33.6 36.5

Sugar beets U.S. 215 x 0.172 18.7 21.0

216 raw

seed

Clipper laboratory seed cleaner; the mean size was assumed to be the

average of the two screens used. The beans passed through a number

17 screen (0. 266 in. dia. holes) and stayed on a number 15 screen

(0. 235 in. dia. holes). The oats passed through a slot screen with

0.109 x 0. 75 inch slots and stayed on a screen with 0. 094 x 0. 75 inch

slots. This determined the short dimension of the seeds; the long

dimension of the beans and oats was found by measuring a sample of

individual se eds .
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A sample of sugar beet seeds was taken with a Boerner sampler

(see Hall (1957), p. 92). This sample was screened manually and each

size division weighed; the weighted average of the size divisions was

considered to be the mean diameter of the seeds.

Approximately one -half bushel of each material was used for

the tests. During the tests some beans tended to crack and split;

these damaged beans were removed by inspection.

3. 2. Observations of Arch Systems

Sections 1. 2.1 to l. 2. 3 contain some introductory statements

about arch systems. Included in these sections were definitions of

several terms used in the following discussion, photographs of typical

arch system in the test materials and a brief description of the arch

formations in the test materials. .

3. 2.1. Orientation of_particles
 

As was stated earlier, beans tended to form flow arches while

oats formed mainly initial arches. These characteristics could be

partly explained by the shape of the seeds and by their orientation in

an arch.

The critical dimension of a bean in forming arches seemed to

be its short diameter. The best arch forming position for the

individual bean was with'the long axis parallel to the slit, however

a good arching position was any position with the short axis perpendicular

to the slit. For forming arches in oats, the critical dimension seemed

to be the length of the kernel. Therefore the oat kernel formed arches

best if its long axis was parallel to the bottom of the bin and perpendicular

to the slit.
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When particles flowed, their long axes tended to line up with the

flow lines which formed in the material. These flow lines radiated up

and out from the slit in a hyperbolic shape. Thus when beans were

flowing, their axes were positioned in a good position for arching

while the oat kernel was placed in an unlikely arching position during

flow.

Compacting these materials before Opening the outlet tended to

position them with their long axes parallel to the bin bottom and

perpendicular to the slit. Tests showed that the arching properties

of beans were not affected by compacting, but that the arch span of

an oat arch was increased by compacting.

Beet seed did not have any prominent axial symmetry, so no

conclusions about its arching properties could be drawn from particle

orientation.

3. 2. 2. Primary-secondary arch systems
 

These types of arch systems were defined in Section 1. 2. 2 and

photographs of actual arch systems were shown in Section 1. 2. 3.

In a stable arch condition, primary arches normally occurred

about four to eight particle diameters apart along the length of the

slit. However occasionally several primary arches formed adjacent

to one another, resulting in a stronger arch system. Usually only

three to five particles made up a primary arch in beans; thus the

arch was strong in the vertical direction but weak in the lateral

direction. Certain particle arrangements in primary arches appeared

frequently; they were classified into three divisions:
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a. type 1, linear

b. type 2, delta based

c. type 3, square based

Sketches of these three types of arches are shown in Figure 3. 2.

These arches were idealized; an actual arch system had many variations

due to the random arrangement of the particles in the material. From

observing many arch systems, the delta-based arch seemed to occur

more often than the others.

A series of tests was made to determine the effect of primary

arches. A group of narrow (less than one particle diameter) sheet

metal strips was laid across the slit at regular intervals to simulate

primary arches. After the strips were in place, the bin was filled with

beans, the slit opened and flow observed. If flow stopped at any time

during the outflow of approximately ten inches depth of beans which was

used in each trial, a stable arch system was considered to have formed.

The results of the tests with beans are shown in Table 3. Z.

 

 

Type 1, linear Type 2, delta based Type 3, square based

Figure 3. 2. Types of primary arches.
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Table 3. 2. Percent of trials in which stable arch systems

formed in beans for various slit widths and

strip spacings.

Width of slit Strip spacing in particle diameters*

(part. dia.>:<) 47 15.2 7.2 6.0 5.2 4.6 4.0

1. 75 100% 100%

1. 9 10 40 100%

2. O 0 0 3O 80%

2.13 O 0 0 10 40% 100%

2. 25 0 O O 0 0 30 100%

Z. 4 O O O 0 O O 0

As can be seen from Table 3. 2, the strips did cause stable arches to

form over wider slits; However, from observing arches formed over

slits, it appeared the strips were not as effective in forming arch systems

as granular primary arches because the strips did not provide the same

support for adjacent arches as did the granular arches.

Tests with strips in sugar beet seed increased the width of the

arched systems in loosely poured granules; however, the same widths

were obtained without strips in compacted seed. Using the strips with

oat kernels had very little effect on the width of slit over which a stable

arch system would form.

Secondary arches were formed by five to ten particles, were four

to eight particle diameters in length and extended up to four particle

diameters into the grain mass. Secondary arches were much more

prominent in systems formed with nearly spherically shaped particles

 

Particle diameter was assumed to be 0. 25 inches.
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such as beans than with cylindrically shaped particles such as oats.

Because of their size, it would seem that the secondary arches

would be very unstable in the lateral direction and would also contain

particles which are difficult to support in the vertical direction. How-

ever the arch system over a slit was constructed similar to a vaulted

ceiling along a corridor with supporting cross arches (primary arches)

at regular intervals, so the secondary arches received both vertical

and lateral support from the primary arches and adjacent secondary

arches.

Secondary arches were much more variable in shape, size and

construction than were primary arches.

3. 2. 3. Other observations
 

Preliminary tests were made using a plug for the slit which did

not fit into position exactly. After a few tests, a prOperly fitting plug

was made and a change in the formation of arches was noted. Further

experimentation showed that if the plug was slightly below the bottom

of the bin, stable arch systems formed more readily than with a

pr0perly fitting plug. But if the plug was very loose (about one -half

particle diameter below the bottom of the bin), stable arch systems

did not form as often as with a properly fitting plug. This was probably

due to the positioning of the particles into favorable arching positions

in the first case and into unfavorable positions in the second case.

A second construction error pointed out another factor which

influenced arch formation. During the building of the bin a small gap

was left between the bottom of the side walls and the moveable bottom.

This gap was originally large enough to permit some particles to fall
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out. After reducing this gap a noticeable increase in the frequency

of stable arch systems was found. This is possibly the same effect

as was mentioned by Lee (1963) in his discussion of the “expanded

outlet" method of promoting flow.

3. 3. Factors Influencing Arching

After these initial observations, a more systematic study of the

factors influencing the arching of the test materials was outlined and

partly executed. The factors selected as having the most influence

upon the arching of a material were assumed to be:

A. Particle properties
 

1. size

2. shape

3 . density

4. friction

5. elastic pr0perties

6. adhesion

7. cohesion

B. Stacking characteristics
 

1. particle orientation

a. in flow and initial arches

b. as a result of flow

c. due to bin shape

1) slope of walls

2) flat bottomed

3) bin outlet size and shape
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2. load on particles

a. at the time of arch formation

b. previous loading history

Only some of these factors were studied systematically; the

results are reported in Sections 3. 4, 3. 5 and 3. 6.

3. 4. Gap Width-Particle Size Relationship

3. 4.1. Review of literature
 

The ratio M of width of Opening to the mean particle diameter

has been used by several authors to describe the smallest opening

through which a material will flow. Aytaman (1959) investigated the

"hanging" of dry granular sandstone in vertical pipes. He found that

flow from a pipe depended on the ratio M. Based on his tests the

flow results were:

free flow range 4. 21 < M

probable flow range 2. 24 < M < 4. 21

no flow M < 2. 24

In the probable flow range Aytaman determined a critical height of

material in the pipes which was necessary to cause “hanging". If a

pipe was filled with sand below this critical height, no hanging would

occur, but if sand was filled above this critical depth, hanging did occur.

Brown and Richards (1959) listed values for M for several

materials; these values are given in Table 3. 3. They found the ratio

M for circular orifices to be approximately twice the M value for

flow through narrow slits.
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In the discussion following Brown and Richards' paper, Fowler

reported "bridging" and erratic flow at an M of between four and six.

Langmaid and Rose (1957) measured the minimum opening

size for flow of ground and forged steel balls, flint gravel, and sheet

iron punchings (9/64 by 6/64 and 8/64 by 4/64, all dimensions in

inches) and found that M was nearly equal for these materials. The

values they found were M = 2. 68 for slits and M : 4. 32 for circular

apertures.

Because the flow became erratic and flow stOppages occurred

randomly as the aperture became smaller, direct measurement of

this dimension was very difficult. In a further study Brown and

Richards (1960) noted that very few particles flowed through a region

near the edges of an aperture. They measured the flow rate for their

test materials through several sizes of circular and rectangular

openings. They plotted the dimension of the opening against the

Characteristic length

2

_<_)... /3

1 9 V?

where Q was the flow rate, 1 was the slit length, p was the density

of the material, and g was the acceleration of gravity. This plot

formed nearly a straight line which Brown and Richards extended to

the zero flow point. This intercept point they termed the ”dk“ of

the material; the ”empty annulus" or small region around the edge

of an opening through which very little material flowed was equal to

dk/Z . The dk value was nearly equal for both circular and rectangular
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apertures. In other tests they found that the smallest size of slit

through which a material could be induced to flow by tapping agreed

with the predicted d however the minimum size of circular openingk,

through which a material would flow was two to three times dk'

Brown and Richards correlated their flow data to an effective aperture

size which was the apparent size minus the empty annulus. Other

authors have defined this effective aperture as (D-Czd), where D is

the actual aperture size, C is a material constant, and d is the mean
2

particle size. This value was calculated from the data given by Brown

and Richards and listed with their original data for comparison.

Table 3. 3. Flow prOperties of several materials

(Brown and Richards)

Material mean size M~va1ue dk CZ

d (cm) (circular orifice) (cm)

Large beads 0.101 0.13 1.29

Small beads 0. 025 4.1 0. 041 1. 64

Sand 0.059 0.10 1.7

Tapioca 0.168 0.22 1.31

Sand Y1 0.074 4.3 0.12 1.62

Sand Y2 0.051 4.6 0.079 1.55

Sand Y3 0.025 5.6 0.036 1.44

Coal 0.098 7.0 0.14 1.43

Welschof (1960) carried out much the same procedure with

wheat. He plotted the opening size against the characteristic length
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where Q was the flow rate, g was the acceleration of gravity, and
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p' was the "flow density" of the material. Welschof found dk for

wheat (d = 0. 391 cm) to be 0.6 cm or C2 to be 1. 53. The minimum

orifice diameter for flow Of wheat was found to be 1. 5 cm, giving

an M value of 4.

Beverloo, et a1. (1961) also considered a region of no flow

around the edge of an orifice in a flat bottomed cylindrical container.

They defined the effective orifice diameter as (D - C2 3) and calculated

C2 for several materials from their flow data. Table 3. 4 gives their

results. With the exception Of sand, their results agree closely with

the data Of Brown-Richards.

Table 3. 4. Orifice reduction constant for several small

seeds (Beverloo, et a1.)

Material Mean size CZ Material Mean size C2

d (cm) (1 (cm)

Sand 0.045 2.9 Rapeseed 0.17 1.4

Linseed 0.25 1.5 Kale 0.18 1.4

Spinach 0.30 1.4 Swede 0.18 1.4

Watercress 0.16 1.3 Turnip 0.17 1.4

Several other researchers, Deming and Mehring (1929), Rausch (1948),

Rose and Tanaka (1959), have conducted studies of the flow of granular

materials from conical outlets. Their data agreed in general with the

values quoted above.

3.4.2. Results Of tests
 

The tests made in this study measured the maximum slit over

which an arch would form, whereas the data reported above measured

the smallest Opening through which a material would flow. These two

dimensions should be quite similar, however, for non-cohesive
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materials. Table 3. 5 gives the Me-values measured in this study.

Table 3. 5. Maximum arch widths for test materials

Material M-value - over a slit M-value - over a slit

(based on large particle (based on small

dimension) particle dimension)

Bean 1. 5 l. 9

Beet seed - loose 3. 0 3. 0

Beet seed - compacted 6. 0 6. 0

Oats - loose 1.2 5.3

Oats - compacted l. 4 6. 0

These M-values were for flow through a narrow slit and must

be doubled for comparison with the values in Table 3. 3, which were

measured for flow through a circular orifice. Considering this, the

values measured here are generally similar to the previous measure-

ments, but they show a wider range because the variability of the

particle characteristics was greater in this study than in the other

studies.

3. 4. 3. Comparison with the results of Section 2. 3. 4
 

The assumptions made in the analysis of Section 2. 3. 4 limited

the value of the calculated results. Assumption three excluded the

possibility Of only one or two of the friction forces acting in the

Opposite direction to those shown in Figure 2. 31 . However, if this

assumption was not made, many combinations of force systems would

be generated. This assumption also was the basis for assumption

five.

The arches with all Of the particles in one plane used in the

analysis were not often Observed in real arch systems. Instead the
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arch would normally have two supporting particles at either or both

ends (see Figure 3.2). However the theoretical results could be

extended to the non-plane case by using an apparent radius R' based

on the contact points between the particles.

Real primary arches in beans, the test material most nearly

fitting the assumptions Of the theory Of Section 2. 3. 4, were very short,

usually less than a three-particles-in-a-plane arch in length. The

theoretical analysis showed the best stability for the three particle

arch. The five particle system was found to be stable under some

conditions, but no five particle arches were found in the tests.

One reason why five particle arches did not form in beans

was the low probability that five particles would be in the proper

position to form an arch. Because these tests were made over a long

slit,’ flow stopped only if several primary arches formed at nearly

the same instant, reducing the probability of a stable arch system

even more.

Another reason for the destruction Of five particle arches

might have been an unbalance of forces in the y-direction. An

assumption inherent in the linear arch system was that the lateral

forces were in equilibrium. The formation of a five particle arch

was probably affected more by lateral instability than the formation

Of a three particle arch.
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3. 5. Effect of Applying a Vertical Load to the Grain Mass

It seemed very likely that the stress state in the grain mass

should influence the formation of arches. For an initial arch, the

static stress conditions would apply. Therefore some studies of

these conditions were included.

3. 5.1. Review of literature
 

Kramer (1944) measured the ratio of lateral to vertical pressure,

k, in a bin Of rough rice 2 ft deep and 1 ft square. He used 4 in. square

pressure sensors to measure the pressure on the wall and floor Of the

bin. He found that k increased from 0.3 to 0. 47 as the vertical pressure

increased from 100 psf to 500 psf. Kramer also noted that only 27% Of

the applied load was transmitted to the bottom of the bin. In tests on

small grains, Lorenzen (1957) measured the ratio k in a "pressure

resolution chamber". He believed that the best method Of determining

k was with a triaxial compression chamber, but the ”pressure

resolution chamber, " which measured the stresses in all three

dimensions was easier to use than a triaxial compression chamber.

For applied vertical pressure of l to 11 psi, Lorenzen found that k

varied with the applied pressure, especially for vertical pressures

below 3 psi. The variation depended upon the grain, increasing with

some grains and decreasing with others.

In tests with commercial white sand Aytaman (1959) studied the

arching of sand under high pressures. He found the pressure needed

to cause arching depended on M. He Observed that the effect Of

pressure on the sand in the pipes seemed to be confined to the 2 or 3 in.

directly below the piston applying the pressure. The shape of the arches
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Figure 3.3. Arch shape factors measured by Aytaman.

was measured (see Figure 3.3); the rise of the dome decreased as

the pressure increased and for a given pipe size the arch rise increased

as the particle size decreased. Crown thickness also increased as

pressure increased. The pipe was initially filled with sand.

LaForge (1962) measured the flow rate of several materials

through orifices in the sides and bottoms of cylindrical, flat bottomed

bins. During tests in an 8 in. diameter bin with a l. 25 in. circular

orifice in the bottom, he found a slight decrease in the flow rate Of

plastic globules (d = 0. 0226 in. , Y = 53. 4 lb/ft3) as the pressure

applied to the surface Of the globules increased from 0 to 4 psi.

The flow rate remained nearly constant for pressures from 4 to

7 psi. The flow tests were terminated when about eight in. of globules

remained in the bin. Other tests with wooden beads (d = O. 390 in. ,

y = 25. 8 lb/ft3) through a 1. 75 in. orifice in the same bin were

unsuccessful as the beads stopped flowing before the tests were finished

whenever any pressure was applied.
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Simons and Hare (1965) attempted to measure the elastic

modulus of grain in an 8 in. diameter cylinder, 54 inches long, by

applying pressure to the top of the grain column. They found that

applying pressure increased the lateral pressure much more at the

top Of the grain column than at the bottom. A Teflon lining was

applied to the cylinder walls to reduce friction and the load transmitted

to the bottom Of the cylinder increased from 28% to 45. 6% Of the top

load which was still not suitable for Obtaining accurate data. Simons

and Hare then changed to a l in. deep grain column and measured the

stress strain relationship for shelled corn at several moisture contents.

They foundothat the sample had to be vibrated a minimum Of 90 seconds

to give reproducible results Over the pressure range Of 2 to 30 psi

which they used.

Narayan and Bilanski (1966) used 5 in. deep grain samples in

cylinders with 4 in. , 6 in. and 8 in. nominal diameters to measure the

elastic properties of wheat. They applied pressures over the range of

125 to 3000 psi, measured the lateral pressure and vertical strain,

and used these values to compute the apparent elastic modulus and

apparent Poisson ratio. From their data the value of the ratio of

lateral to vertical pressure, k, appeared to remain nearly constant

for the high applied pressures used in their tests. The diameter of

the grain column did not influence the results of the tests.

In tests in a shallow bin, Moore and Shaw (1952) found the

lateral pressure exerted by wheat increased by approximately 45%

after vibrating the bin. The vertical pressure on the bottom increased

only about 5%.
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Stewart (1964) measured the internal friction properties of

sorghum grain with a triaxial compression test. He plotted the data

in the form Of the Mohr envelope of principal stresses to determine

the internal friction and found that sorghum displayed an apparent

cohesion in the range of 0. 5 to 0. 8 psi. While some Of this cohesion

may have been accounted for by instrument effect, Stewart felt some

was caused by actual cohesion between the grains, due to grain moisture.

De Josselin (1959) in discussing a similar phenomenon in the

Mohr diagram Of dry sand stated, "--, an apparent cohesion caused by

an interlocking effect which is produced by angularity of the grains. "

3. 5. 2. Effect Of applying a vertical load to pea beans
 

A stable arch system could be formed over a wider slit with

' a vertical load applied than with no applied load. The maximum width

for flow arches with no load was about 0. 45 in. (M = l. 8), but with

1 psi Of applied load, the maximum width was increased to 0. 55 in.

(M = 2. 2) for an initial arch system. The type Of arch system formed

in beans changed from flow to initial under the action of an applied load.

Actually the effect of loading on the flow arch system could not be

evaluated with this simple test stand because the grain did not flow

evenly from all sections of the slit. Often the beans in one end would

flow out rapidly causing the weights to be wedged against the side or

end Of the bin.

A slit width of 0. 45 in. was selected for the tests with beans

because at this width stable arch systems would be formed within the

range of loading used in these tests. Flow arches formed in beans with

no load about 10% Of the trials at O. 45 in. slit width. All arch systems
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formed in beans were not strong and those formed under a load nearly

always failed when the load was removed.

The relationship between the depth Of grain and the load

necessary to form stable arch systems in 50% Of the test runs is

shown in Figure 3. 4. This figure shows that the load necessary to

produce stable arch systems increased rapidly with an increase in

grain depth.

Earlier investigations, mentioned in Chapter 2, indicated that

the effect at the bottom Of a bin Of a pressure applied to the surface

diminishes as the height of the grain layer increases. The relationship

found in this study and represented by the curve in Figure 3. 4 could,

therefore, be interpreted as representing a more constant stress state

in the area surrounding the arch than at the surface. This verifies

the logical assumption that the tendency for arch formation is influenced

by the vertical and horizontal stress components in the area close to

the Opening.

Several methods for determining the vertical pressure at the

bottom of a bin filled with a granular material under an applied load

have been discussed earlier in this study. Three Of these methods

included some allowance for attenuation of the vertical pressure with

an increase in depth of material. They will be compared here using

the values of depth and surface load represented by the curve in

Figure 3. 4.

First, the method Of Terzaghi (1943) was used. Using Equation

2.19, with the applied load taken from the curve in Figure 3. 4, the

vertical pressure on the center of the bottom of the bin was calculated
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for several depths Of material. The values of the parameters used

for the calculations were: c = 0, c' = 0, p = 0. 5, and }J.' = 0.4.

The results Of these calculations are plotted in Figure 3. 5.

Second, assuming that the stress distribution in the material

in the model bin was similar to the stress distribution in a semi-

infinite elastic material, the solution of Love (1929) (discussed briefly

in Section 2. 2.1) was used to calculate the vertical stress under the

same conditions as were used above. Due to the symmetry of the point

at which the computations were made, Poisson's ratio. for the material

did not affect the calculated vertical stress. These results are also

plotted in Figure 3. 5.

Last, the force system Of Ross and Isaacs (1961) (discussed in

Section 2.1.1) was extended to include the action Of an applied load.

Calculations were made for the same conditions as in the first two

methods. The parameters used for these calculations were the values

listed by Ross and Isaacs for soybeans. The results are also shown in

Figure 3. 5.

Since the tendency for arch formation was the same for all

points on the curve in Figure 3. 4, it might be assumed that the vertical

stress around the arch should also be the same, i. e. , represented

by a horizontal line in Figure 3. 5.

The results shown in Figure 3. 5 indicate that a least two of the

methods used did not accurately calculate the stress state which occurred

in these tests. Terzaghi's method showed that the vertical pressure at

the bottom of the bin was twice as great at an 8 in. depth as at a 2 in.

depth of material for loads according to Figure 3. 4.
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The method Of Ross and Isaacs was not intended for this type

Of force system and gave poor results. Their method would probably

be improved if an arching factor such as used by Trollope (1957) was

included in the calculations.

Love's method gave the best results even though the conditions

of these tests did not seem to fit his model.

The results of these three methods might have been improved if

other values Of the parameters had been chosen.

3. 5. 3. Effect Of apply-1gp. vertical load to oat kernels

The arching properties of oat kernels were also changed by the

application of a vertical load. Loading increased the rate of occurrence

Of initial arches at a given slit width and also increased the maximum

width Of a stable arch system. But more noticeably, loading increased:

the occurrence Of flow arches.

A slit width of 0. 55 in. was selected for the loading tests because

this slit width gave about 5% formation Of initial arches with compacted

oat kernels without a load. Table 3. 6 shows the effect of increasing

loads on the formation of initial arches. This effect was much less than

was Observed in navy beans. The depth Of grain under the load did not

have much affect on the formation rate of this type of arch. When the

load was removed from the grain mass, the arch system normally

failed.



Table 3. 6.

Load

(psi)

0. 0

0. 5

0.65

1.0
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Relation between applied load and the formation of

initial arches for various depths of oats over a slit

width of 0. 55 in.

Depth of grain (in.)

2 4 6 8

<5% < 5% < 5% < 5%

10% 10% 5% < 5%

10% 10% 10% 5%

30% 30% 30% 30%

Table 3. 7 shows how loading affected the flow arches in oats.

A load of l. 0 psi increased the formation of flow arches from less

than 5% to nearly 100% of the trials. Loads of 0. 5 psi caused flow

arches to form in 50% of the trials.

Table 3. 7.

Load

(psi)

0. 0

0. 5

0.65

1.0

Relation between applied load and the formation of

flow arches for various depths Of oats over a slit width

Of 0. 55 in.

Depth Of grain (in. )

4 6 8

< 5% < 5% < 5%

30% 50% 60%

50% 60% 80%

100% 100% 100%

As the depth Of the material increased, the frequency of flow arch

formations increased slightly. This was probably due to the greater

amount of material which had to flow out during the tests at greater

depths .

The application of the load seemed to prevent the reorientation

of the oat kernels during flow, which increased the tendency to form

arches.
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3. 5. 4. Effect of applying a vertical load to sugar beet seed
 

The formation of stable arch systems in sugar beet seed was

influenced by compacting the seeds and also by applying a vertical

load to the seeds. Applying a load to the compacted seeds increased

the arch widths to greater values than with no applied load. Figure

3.6 shows the relationship between the vertical load applied to a column

of seeds and the percent of cases when stable arch systems formed.

The particles of the beet seed seemed to interlock during

compacting, which increased the internal friction and cohesion of the

compacted mass. Considering the equations derived in Section 2.1. 4

for the failure strength, Fta = pa Fno. , it can be seen that an increase

in the internal friction and cohesion increases the strength of a material

in the region of the minimum strength. The Observed increase in arch

width due to compacting indicated an increase in material strength,

which agrees in general with the results Of the yield criterion. Applying

a lOad would increase the interlocking action between particles still more.

These results agree well with the results Of Williams and Ross

(1967). In tests with dried citrus pulp (a material which arches readily),

they measured the vertical pressure at the bottom of the stacks of pulp

and found that the pressure was much higher than predicted by Janssen's

equation (see Section 2. 2.1) or by the equations Of Ross and Isaacs

(see Section 2.1.1). Thus it appears that materials which have a

tendency for particle interlocking and thus a high arching potential

tend to act more like a unit mass than non-cohesive materials. By

this action, forces are transmitted through the particle mass with

less attentuation than through a mass of non-cohesive particles.
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92

3. 6. Effect of Relative Humidity of the Ambient. Air on Arch Formation

The relative humidity of the ambient air seemed to have an

influence on the width of the stable arch systems which formed in sugar beet

seeds. In these tests the relative humidity was kept constant at the

desired value for three days before any tests were made. As the relative

humidity increased from 30% to 80%, the width of a stable arch system in

compacted seeds increased from 0. 9 in. to 2. 0 in. Figure 3. 7 shows the

relationship between the relative humidity of the air and the percentage

of trials forming stable arch systems. Relative humidity did not

noticeably affect the formation of arch systems (normally flow) in

loosely poured seeds. The effect was also not so striking in the other

materials tested.

The effect of the change in relative humidity may be explained by

assuming a change in the surface properties of the seed. This would

change the cohesion and interlocking between particles which probably

occurs with seeds of this kind.



IV. CLOSURE

4.1. Conclusions

1. The observations made Of arch formations indicate that for the

materials used in this study, the orientation and shape of the particle

affect the failure strength.

2. The primary-secondary arch structure was apparent in all materials

with a nearly spherical particle shape.

3. The arching tendency of the granular materials used in this study

increased when a vertical pressure was applied to the upper surface of

the particle stack.

4. The arching tendency of sugar beet seed was greatly increased with

an increase in its moisture content.

5. The yield criterion developed in this study was a function of shearing

angle, particle shape and stacking arrangement of the particles and the

internal friction and cohesion Of the material.

6. Although no data was collected to test the yield criterion directly,

the expected failure derived from the yield criterion agreed well with

the failures observed in the arch tests.

4.2. Suggestions for Future Study

1. Experimentally measure the strength of granular materials at

various shearing angles to determine the effect of

a. particle orientation

b. particle shape

c. particle stacking

d. coefficient of friction between particles.
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2. Study the occurrence and nature of cohesion and interlocking 9

between particles, including time effects on these properties.

3. Study the forces acting on elements along the stress-free surface

of the arch. Can the yield criterion predict the critical arching width?

4. Irregular particles such as sand seem to have certain stacking

arrangements which give very high strengths; can these high strength

packing systems be described by the yield criterion and packing system

developed here?

5. Measure the stress field in a particle mass. In a cohesive material

such as preloaded sugar beet seed, is the assumption of an elastic body

reasonable? If so, does the elastic body with a hole in the center

mentioned in Section 2. 2. 3 give an accurate picture Of the stress field?

Does this stress field along with the yield criterion of this study describe

the failure condition for arching?

6. Experimentally test materials with very small particles, such as

clays to determine if the yield criterion of this study describes the

shearing strength of these materials.
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