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ABSTRACT

THE APPLICATION OF BAYESIAN STATISTICS TO

AUDITING: DISCRETE VERSUS CONTINUOUS

PRIOR DISTRIBUTIONS

BY

Albert Kenning Francisco

It has been suggested in the auditing literature

that auditors adept Bayesian statistical techniques.

Studies have shown that auditors are willing to provide

information that can be used to construct prior distri—

butions for this purpose. Practicing auditors, however,

have not widely adepted Bayesian techniques, even though

such techniques have received considerable exposure in

the literature. The articles suggesting the use of

Bayesian techniques have all demonstrated such techniques

with discrete prior distributions.

Although less difficult to work with than contin-

uous prior distributions in simple examples, discrete

prior distributions have several practical disadvantages

which may partly explain the lack of adoption of Bayesian

methods by auditors. Discrete prior distributions are

poor approximations of the continuous range of possible

rates found in most audit attributes sampling situations.
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Albert Kenning Francisco

The derivation of specific discrete prior distributions is

difficult, because a number of points must be assigned

probabilities, and these probabilities must total 1.00.

It is difficult for an auditor to perceive the meaning of

a discrete distribution because only a few of the possible

points are assigned positive probabilities. Involved com—

putations (many multiplication and division Operations) are

required for the solution of any practical problem using

discrete distributions and Bayesian statistics. This would

usually require a computer.

Bayesian methods using beta prior distributions can

overcome most of these difficulties. Such a distribution

is continuous, and fits the large number of possible popu-

lation error rates better than does the discrete model.

It is easier for an auditor to visualize continuous curves.

Sketches of representative distributions deve10ped in this

research can allow an auditor to quickly pick the specific

prior desired, and write down the numeric parameters of that

distribution. Tables of statistics (mean, variance, and

mode) of these representative distributions can provide

additional information to the auditor seeking a prior for

a given audit situation. The revision of a beta prior by

a binomial sample result is not difficult. A few addition

and subtraction Operations are required. These can be
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Albert Kenning Francisco

performed by an auditor with the aid of nothing more

soPhisticated than a piece of paper and a pencil. Once

this is done, the auditor can refer again to his tables for

a sketch of the posterior distribution (or a very similar

one) and for statistics he wishes to know for that distri-

bution. Another set of tables deve10ped in this study can

give confidence intervals. What would have taken consider-

able computer time with a discrete prior distribution is

quickly taken care of with this method using a few tables

and a quick addition and subtraction Operation.

Although tables and sketches of the beta distribu-

tion are not currently available, techniques exist with

which such information can be generated. The formulas for

computing statistics of beta distributions are not complex.

Tables of such statistics can be generated in seconds on

modern computers. Similarly, sketches of such distribu-

tions can be created by plotters attached to computers.

Simpson's rule for the evaluation of definite integrals

can be used as the basis for computer programs which will

generate confidence intervals based upon representative

posterior beta distributions. Examples of sketches and

tables are included in the study.

It is concluded that, although auditors have not

adOpted Bayesian statistical methods, such methods hold
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promise. There are more SOphisticated statistical techni—

ques available than those demonstrated in the articles

which have prOposed Bayesian methods for use in auditing.

Such techniques, such as the beta prior distribution dis-

cussed here, may allow auditors to benefit from the advan-

tages Of Bayesian statistics that have been claimed in the

literature.
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CHAPTER I

INTRODUCTION

A. The Auditor in Society

The purpose of accounting is to provide informa-

tion useful for decision making which affects the alloca-

tion of resources. Such decisions occur at all levels of

organized society from the individual level to that of

entire political entities.1 The reliability of accounting

communication is essential to the effective conduct of

economic exchange and taxation. A high degree of accept—

ability of accounting communication is needed between the

Opposite parties in such transactions. Either intentional

or unintentional errors could retard the functioning of

the entire system.

The more separated the parties (or the more infre-

quent the contact between the parties) the more the reports

become susceptible to inaccuracy and misunderstanding. The

value of an independent third party reviewing the accounting

report and vouching for its reliability is apparent. For

example, investors are separated from the use of their capi-

tal by management. Thus, the financial statements of most

1
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publicly owned corporations are audited by independent

certified public accountants (CPAs). Audits are imposed

as a matter of governmental regulations or can be voluntarily

adopted by the parties concerned.2

Audits are performed by a variety of organizations

in the United States. Almost everyone has heard of the tax

audit, performed by Internal Revenue Service agents on indi—

vidual or business records to substantiate claims made on

income tax returns. The Congress of the United States has

organized its own auditing agency, the General Accounting

Office, to report on the spending of public monies. Many

business organizations have their own internal auditing

group which continually checks upon the accuracy of records

and upon compliance with managerial policies.

The most common type of audit in the business world,

however, is performed by an independent firm of accountants

upon the financial statements of a business. The goal of

this type of audit is for the auditing firm to render an

Opinion upon the fairness with which the financial state-

ments issued to stockholders, creditors, various government

regulatory agencies, and the public at large reflect the

true condition Of the business entity. This written Opinion

accompanies the statements when they are issued and provides

assurance that statement users are entitled to rely upon the
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statements to a greater extent than if management had issued

them with no outside check upon their accuracy.

B. Audit Sampling

At one time, an audit involved the examination of

every transaction entered into by the firm and the resulting

record in the accounts.3 Because of the increased size of

today's business entities and the number of transactions,

auditors now restrict their tests to a sample of the records.

This reduces the time required to perform an audit and gives

an acceptable degree of reliability that major errors will

not appear in the statements. Any sampling plan, however,

increases the risk that a material error will occur and not

be found by the auditor; since he selects and examines only

a part of the available evidence. This risk must be bal-

anced against the advantages of sampling.

Until rather recently, auditors in general sampled

by a "seat of their pants" approach and took a sample of

items from some population on the basis of past experience

and intuition. This method worked reasonably well in the

majority of cases, and the judgment of an experienced audi-

tor is an indefinable quality which can not be replaced by

sophisticated mathematics. However, it can be aided and

refined by certain tools, as it has been recently with the
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4

limited adoption of classical statistics as an auditing

tool.

Several methods are used in practice to obtain

audit samples. Some Of these methods are the block, month,

haphazard, random, and statistical methods of sampling.

A block sample is Obtained by selecting a group of

items listed together in a sequence. For example, out of

checks numbered from 1 to 10,000 written during the year

under examination, the auditor may examine those numbered

2,083 through 2,336. Because the selection of one sample

item is more likely to occur if another close to it in the

sequence is also drawn, the selections of items are not

independent of one another and inferences can not be made

using statistical theory on the basis of such a non-random

sample. This is true even though a random method may have

been used to select the particular block of items examined.

With some filing systems it is so difficult to locate spe—

cific items that the use of block sampling is justified,

even though statistically based inferences can not be made

on the results.

A relatively common practice, especially on smaller

audits, has been for the auditor to select one month out of

the year and then to carefully examine entries, vouchers,

etc., for that month. Similar items relating to the rest
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of the year are not examined. As was the case in block

sampling, statistical inferences can not be made on the

basis of such a procedure. The simplicity and convenience

of this method make it useful where specific documents are

filed by month instead of by serial number.

Another method used consists of the auditor selecting

a few items here and a few there, then making his decisions

on that basis. Appropriately, this method is known as the

haphazard method for Obtaining audit samples. As with the

other methods described above, statistical inferences can

not be made because the selection of one item is not statis—

tically independent of the selection of other items.

All three methods described above are non—random

selection methods, called judgmental methods. Any infer-

ences made on the basis of these methods are based solely

on the judgment of the individual auditor.

Statistically valid inferences are, in general,

made only on the basis of a truly random sample. A random

sample plan is any method of sampling in which the prob-

ability Of a given item being selected is not affected by

another item being selected. Samples can be either with

replacement (a given item can be drawn more than once) or

without replacement (a given item can not be drawn again

once it has been chosen). Different statistical theories
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have been derived to deal with these two cases.

C. Classical Statistigs

If a random sample is drawn, inferences can be made

on the basis of statistical theory. There are many models

for different situations in classical statistics, but all

share one common trait--probabilities can be mathematically

derived from a random sample result. These probabilities,

given a specific pOpulation and sample therefrom, should

be the same no matter which statistician computes them.

Judgmental inference, on the other hand, provides no means

for different auditors to come up with the same answers in

complex situations. Not only are statistical methods more

consistent from one user to the next, but a body of mathe-

matical theory is available to support statistical results.

No similar theory backs the user of judgmental methods.

In the last several years classical statistics has

become popular as an auditing tool. The larger CPA firms

engaged in auditing have statistical sampling worksheets,

tables, etc., which use classical statistical methods to

arrive at inferences based on audit samples. This increased

popularity is probably due to several factors. Among them

are the inherent applicability of classical statistics to

many audit sampling situations, the better education in
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statistics of recent college graduates entering the firms.

and the leadership of various groups such as the American

Institute of Certified Public Accountants in promoting the

use Of new methods.

Recent research suggests that Bayesian statistics

may be even more applicable to certain audit situations

than classical statistics. Bayesian methods are discussed

in the following section.

D. Bayesian Statistics

Bayesian statistics is similar to classical methods,

but uses a prior probability distribution as well as the

current sample result. The combination of the two distribu-

tions is called a pgsterior distribution and is a sort of

mathematical average of the two Obtained with the use of

Bayes theorem.

Bayesian methods recognize the subjective nature of

some types of audit evidence. Instead of ignoring these

sources as classical statistics models do, Bayesian statis-

tics attempts to accept them as part of the analysis. In

so doing, the auditor, based on his past experience, is

forced to put down on paper what he expects of various parts

of the audit. This can provide more evidence that a suit-

able audit will be conducted than do alternative methods
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which ignore these sources of information altogether. With

the increasing frequency of lawsuits naming auditing firms

as defendants for not living up to expectations in the work

done, adequate defense is more and more important to the

accountant engaged in auditing.

E. Purpose of this Study

The purpose of this study is to eXplore more deep-

ly the Bayesian method, which has been proposed and shown

to be of at least limited applicability in auditing.4

Classical statistics, as useful as it is, has certain

limitations, which will be explored. In addition, certain

practical difficulties inherent in the Bayesian methods

which have been prOposed in the literature will be discussed

and an alternative prOposed.

Any audit involves the gathering of evidence. The

amount and kinds of evidence which are obtained should be

determined by the audit variables. Whether judgmental

methods, classical statistics, or Bayesian statistics is

used, it is necessary that the audit variables be considered.

Because the subject is so important to any audit, Chapter

II is devoted to a discussion of audit evidence and audit

variables.
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Auditors have used classical statistics for several

years. It has proven to be a valuable audit tool. But it

has certain limitations, which advocates of Bayesian statis-

tics have claimed their method can overcome. In addition,

the method which auditors call classical statistics is not

the method used by statisticians who consider themselves

classicists. A discussion of this distinction, as well as

a description of "classical auditing" statistics is present-

ed in Chapter III.

The accounting literature has included several

suggestions that Bayesian statistics be used by auditors.

Examples have shown how Bayesian statistics with discrete

prior distributions can be applied to selected auditing

situations. Although both the binomial and the hyper—

geometric distributions have been used as prior distribu-

tions in those examples, no explanation of the difference

between the two or the advantages of either has appeared.

Chapter IV of this study shows how the discrete binomial

and hypergeometric distributions can be used as prior

distributions in auditing situations and explains the differ-

ence between the two.

Although continuous distributions are used in many

statistical applications, such distributions have not
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appeared in the literature as prior distributions in appli-

cations Of Bayesian statistics to auditing. One continuous

distribution which has potential in those applications is

the beta. To be used in auditing, however, it is necessary

to have tables and graphs of the beta. The use of the beta

as a prior distribution in auditing, as well as the develop-

ment of the necessary tables and graphs, is discussed in

Chapter V.

The application of Bayesian statistics to auditing,

with either discrete or continuous prior distributions,

requires that the relationship between the audit variables

and prior distributions be considered. Additionally, an

auditor attempting to use Bayesian methods needs informa-

tion about subjective probabilities and the criticism

which the use of such probabilities has brought from stat-

isticians who feel statistical methods should not be applied

to situations which can not be repeated. Others have

held that improved decision making capability is suffi—

cient justification for the use of subjective probabilities.

These tOpics are explored in Chapter VI of this study.
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F. Limitations of the Study

In audit variables sampling, classical statistics

gives almost the same results as those obtained through the

use of Bayesian statistics. This is because the prior dis—

tribution provided by the auditor in variables sampling

situations has a large variance. Internal control evalua-

tions, work on other accounts, and prior audit eXperience

gives little evidence to indicate whether the cash account

should be $100,000 or $150,000 for example. In attributes

sampling, on the other hand, these sources of information

do give the auditor a good basis from which to predict

likely error rates, so that the prior distribution provided

by the auditor can contribute significant information. For

this reason, the study is concerned only with attributes

sampling.

A Bayesian method using a continuous prior distri-

bution is prOposed in this study. Illustrative tables and

sketches, not complete enough for general use, are shown.

Extended tables and sketches would require computer time and

other resources beyond those available.

The general subject of Bayesian statistics in audit-

ing includes many subsets which have not yet been research—

ed. Although the exploration of most of these areas is
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beyond the sc0pe of this study, some are mentioned in the

last section of Chapter VII.
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CHAPTER I--FOOTNOTES

1The Study Group on Introductory Accounting, A New

Introduction 29 Accounting (Seattle, Washington: Price

Waterhouse Foundation, 1971), p. 11.

2

  

Ibid., p. 18.

3Bookkeepers' Handy Guide, (New York: The Ronald

Press Company, 1936), p. 518.

  

4For example, see John A. Tracy, "Bayesian Statisti-

cal Methods in Auditing, The Accounting Review, January,

1969, p. 90.



CHAPTER II

AUDIT EVIDENCE AND AUDIT VARIABLES

A. Audit Evidence

"The objective of the ordinary examination of

financial statements by the independent auditor is the

expression of an Opinion on the fairness with which they

present financial position and results of Operations."1

The auditor's Opinion, however, must be based upon evi-

dence obtained by the auditor in the course of his examin—

ation.

Sufficient competent evidential matter is to

be Obtained through inspection, observation,

inquires and confirmations to afford a reason-

able basis for an Opinion regarding the finan-

cial statements under examination.2

Audit evidence is a general term which includes all

those factors in a given audit upon which the Opinion is

based. In addition to written material, such as reconcilia-

tions and confirmations, the term evidence covers such

intangible factors as the competence of personnel in the

client's accounting system.

14
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The auditing profession provides few specific

guidelines for auditors to use in their determination of

what to require as evidence or how much evidence is neces-

sary in a given situation.

The amount and kinds of evidential matter re-

quired to support an informed opinion are

matters for the auditor to determine in the

exercise of his professional judgment after

a careful study of the circumstances in a

particular case.3

There are many kinds of audit evidence, some more

important to the auditor than others. Mautz and Sharaf

categorized audit evidence into nine general types in The

  

Philosophngf Auditing:

1. Physical examination by the auditor of the

thing represented in the accounts

Statements by independent third parties

written

oral

Authoritative documents

prepared outside the enterprise under

examination

prepared inside the enterprise under

examination

Statements by officers and employees of the

company under examination

formal

informal

Calculations performed by the auditor

Satisfactory internal control procedures
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7. Subsequent actions by the company under

examination and others

8. Subsidiary or detailed records with no

significant indications of irregularity

9. Interrelationships with other data4

The overall result of combining the individual items

of evidence is used as the basis for the auditor's opinion.

This involves an evaluation of the evidence gathered in

light of the materiality of the several accounting prOposi-

tions which the Opinion is to cover. In this evaluation,

several factors, or "audit variables", are considered by

the auditor in determining whether sufficient evidence has

been accumulated, as outlined in the following sections.

B. Audit Variables

An audit is an investigation, the extent of which

depends upon specific circumstances encountered. Even under

the most ideal conditions a certain minimum amount of evi-

dence must be gathered. For any given audit there will be

a minimum audit program which will be applied if all circum-

stances and the results of all tests meet the auditor's best

- 5
expectations.

The variables of the audit are those factors or

circumstances of a particular audit situation

which should affect an auditor's decision on

which procedures to apply and the extent of

their application.
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Some audit variables determine the minimum audit program,

while others result in procedures beyond the minimum audit

program.

The variety of situations encountered by an auditor

is quite large. To set forth here some of the more impor-

tant variables which the auditor may encounter, let us

summarize briefly two recent items from accounting litera—

ture. Extended discussions about audit variables appear in

a 1970 article by Anderson, Giese, and Booker? and in a 1970

thesis by Arens.8

Audit variables may be broken down into several cata-

gories. Here three general categories will be considered:

1) the auditor's environment, 2) the client's environment,

3) internal factors peculiar to that client.

The auditor’s environment includes several factors

which affect the evidence required for an audit. The rela-

tive sizes of the auditing firm and the client are an impor-

tant variable.9 If the auditing fee paid by that one client

is a substantial portion of the auditing firm's billings,

questions may arise as to the auditor's appearance of inde-

pendence. In such circumstances the auditor should be

extremely cautious to avoid arousing suspicion about his

work and therefore should take relatively large samples.
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Another variable from the auditor's environment is the

auditor's background. If he has had excellent experience

with this client and similar clients, he may be willing to

reduce sample sizes somewhat because his risk appears to be

lower than with other clients. In addition, previous years'

results of specific audit tests are important to the audi-

tor, when the results are available. If tests in the area

have produced few errors in past years, the auditor will

have some confidence that the area will again produce few

errors.

Another category of audit variables relates to the

client's environment. The absolute size of the client's

organization is of interest to the auditor.10 The auditor

of a small client which has little public exposure faces

less risk than the auditor of a larger client. This is

simply because there are fewer parties that can be damaged.

In the audit of a smaller client the only directly interest-

ed party may be a banker, who knows nearly as much about

the client's affairs as does the auditor. Consequently,

the auditor is less likely to have his work attacked.

Another variable of interest to the auditor is the client's

industry.11 Some industries are noted for steady growth

and others for wide fluctuations in sales and earnings and
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resulting management difficulties. An auditor would require

more evidence in the audit of a client in an unstable indus-

try than for a similar client in a stable one.12 Another

variable is the type of legal form used by the client.

Different legal obligations are placed upon the auditor

depending on the client's legal form, e.g. a corporation or

a partnership. If the client is listed on a major stock

exchange, requirements are often imposed which may increase

the risk assumed by the auditor. Similarly, if securities

issued by the client are subject to the registration re—

quirements Of the Securities and Exchange Commission, Spe-

cial rules are imposed by law upon the auditor. The mode

of financing chosen by the client is a variable of interest

to the auditor, as is the profitability of the client.13

Finally, general economic conditions can change the audi-

tor's risk, and these should be considered. A sharp

downturn in the economy can have adverse effects upon many

organizations, and difficulties caused by such a slump can

result in close scrutiny of the auditor's work.

The final category of audit variables is composed

of items from within the client's organization. Internal

auditing results are often an important variable to the

outside auditor, as are other items related to internal
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control.14 Another factor is the applicability of the

client's records to auditing and the condition of those

records. Each test made in the course of an audit has

variables associated with it, e.g. the pOpulation size and

the materiality of the item subject to the test.15

Many more variables could be listed. These should,

however, be sufficient for the purposes at hand. In an

audit the auditor weighs all these and more factors in his

mind and then produces an audit program, complete with

sample sizes and specific items to be examined. In the

past much of this process has been based upon arbitrary

judgments and previous practice. Audit variables should

have an effect upon the audit, whether judgmental or stat-

istical methods are used. This effect is discussed in the

following section.

C. Effect of Variables on Audit

When the auditor discovers variables which indicate

that more than the minimum audit program is necessary,

there are several routes he can take. If he feels the tests

are adequate for the circumstances, he can increase sample

sizes, thus increasing the probability that the sample re—

sult will reflect the actual situation. In some audits

he may wish to change the procedures performed in order to
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anticipate a greater variety of possible discrepancies.

When the situation is highly abnormal, new personnel may be

assigned to the audit to bring in skills especially appli-

cable to the areas of concern. Finally, the timing of the

tests may be changed.

These actions are, however, not without cost to

the auditor. Increased sample sizes, additional procedures,

timing variations, and more experienced personnel are all

actions which increase the cost of an audit. Situations

exist where all or a good portion of these costs can be

passed on to the client. In other cases, the auditor him—

self must absorb them. This limits the extent to which

the auditor can increase his costs without incurring losses.

Once the auditor understands the variables in a

particular engagement, he must have an algorithm to deter—

mine the evidence required. Because this study is about

statistical sampling in auditing, it is concerned only with

the size of the samples taken. The specific procedures

used in the audit, the timing of the tests, and the person—

nel are important items, but are not within the scope of

this study. However, the audit variables do influence

the selection of the population, the definition of the

attribute to be tested, and the precision limits and
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confidence level deemed necessary by the auditor. In the

following chapters the variables will be considered in the

context of Bayesian and classical statistics.
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CHAPTER III

ATTRIBUTES SAMPLING AND

CLASSICAL STATISTICS

A. Introduction

Statistics involves the use of probability distri-

butions to make inferences about some population using

random samples taken from that pOpulation. The taking of

one or more samples from a pOpulation is called an experi-

ment.1 One execution of an experiment is called a trial.

"A Bernoulli trial is an experiment which has two possible

outcomes, generally called success and failure."2 In this

study a trial will either produce an "error" in the account-

ing records, or will not produce an error. There are many

examples of Bernoulli trials in auditing: the result of

one audit is either an unqualified Opinion or it is not: a

bank confirmation either reconciles satisfactorily with the

cash account or fails to; an accounting student either

passes a course or fails it.

When one or more trials of a Bernoulli random

variable occur, the probability distribution of the number

24
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of errors found in those trials in called a binomial.
 

The probability of any possible result occurring can be

computed if two things are known

n the number of trials

p the probability of success on any one

trial.

The computation is made with the following formula in which

x is the number of errors for which the probability is being

found:

p (X) =' (2) pan‘x

where (2)8 (mi): 'x' 

n18 n'(n-l)‘(n-2)°°'---°(2)-(l)

q =l-p

Because there are tables and approximation methods

available, the formula can be bypassed. It is significant

‘with the binomial that the probability of a success must

be constant from one trial to the next, implying either

replacement of each item sampled in the pOpulation before

another is taken or an infinitely large pOpulation.

The hypergeometric distribution is similar to the

‘binomial except that it is drawn from a pOpulation of

finite size, resulting in a changing probability of success

after each trial. Computations are somewhat more involved
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than with the binomial because of this added variable.

Assume the existance of a finite pOpulation of m items of

which w are successes. If a sample of size n is drawn the

following formula gives the probability of z successes in

the sample:

(1‘1) (:23)

10(2) = (‘3) , k= 0,1,2, ..... n 

........using the convention (2)30 for a)b.3

For small samples taken from large populations the hyper-

geometric closely approximates the binomial because the

probability of a success changes very little when one item

is removed from the large pOpulation. Because tables are

more readily available for the binomial, it is Often used

to approximate the hypergeometric for large populations.

Statisticians and auditors have used classical

statistics in different manners. The distinction is covered

in the following section.

B. Classical Statistics as Used by Auditors

One way in which classical statistics is used in

auditing is the creation of confidence intervals. Confi-

dence intervals are ranges within which the actual value of

lsome variable is likely to be. For example, the result of

a sample may allow an auditor to state that he is 80%
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confident that the rate of errors made on payroll checks

subject to audit is less than 0.4%. Such a statement rep-

resents a one sided confidence interval. A two sided con—

fidence interval would result if a sample allowed an auditor

to state that the error rate on payroll checks was between

0.05% and 0.10% with 80% certainty.

Auditors using classical statistics do not neces-

sarily understand the meaning of such statements about con-

fidence intervals. Classical statistics makes statements

about an unknown population parameter on the basis of sample

results. The unknown pOpulation parameter is considered

fixed.4 Suppose an auditor takes a sample from a population

of items. Each sample item taken is either an error or not

an error. The auditor will want a confidence interval about

the percentage of errors (p) in the pOpulation. If the

sample consists Of 100 items, 20 of which are errors, class-

ical statistics would say that the maximum likelihood esti-

A
mator of the population error rate is p = 0.20. A two sided

90% confidence interval for the pOpulation error rate would

be computed in the following manner:

Confidence Limits = 3 5; 55% r—fig = 0.20 ;_I-_ l.645(0.04)

= 0.20 1 0.0658.

Classical statistics would interpret this to say that p

lies in the interval 0.1342 to 0.2658 with confidence
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coefficient 0.90.5 This means that if a very large number

of samples were taken from this same pOpulation and a

confidence interval constructed from each in the above

manner, 90% of those intervals would contain the actual

population error rate p.

This is not the manner in which auditors have typi-

cally used classical statistics. They have gone through

the computations shown above and then made probabilistic

statements about the population parameter, as though it

were the random variable instead of the sample result. This

is shown by statements made about the pOpulation parameter,

such as the following from Arkin.6

....if a random sample of 100 contains 50%

black balls, the universe from which it was

drawn probably (99% probability) would not

have contained less than about 37.1% or more

than 62.9% black balls....

This statement was made about a large binomial pOpulation,

from which a sample was found to contain 50% black balls.

It is clear that the person making this statement considers

the population parameter p a variable, while the sample

parameter‘S’is fixed at 0.50. The following equation'can

be constructed from Arkin's statement:

Probability (.371(p(.629|8 0.5) all0.99.

The only variable in this equation is the pOpulation para—

meter p. Classical statistics would not interpret the
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sample result in this manner, because it implies that the

population parameter p is not fixed, rather, that it was

drawn from some large number of possible populations. These

pOpulations would have some distribution of p among them-

selves. This distribution would be the prior. Thus, the

"classical auditing statistics" is not the classical stat-

tics, but is some combination of it and Bayesian statistics.

In this study the term "classical statistics" will refer to

the way such methods have been applied to auditing.

The following example illustrates the application

of classical statistics to auditing. Assume that an auditor

takes a sample of 169 from a large population and observes

55 errors in the sample. He would compute

 

91—21% (——-—55Mil—4.)
0;" n ‘3 169 159 = 0.0361

169

A one—sided confidence interval would be computed from the

sample mean (i) of 55/169, or 32.6%, and the product of<F%

and a factor taken from a table of the normal distribution.

If the auditor desired a 97.8% confidence level, this nor-

mal factor would be 2.03.7

Confidence Limit 3'; + 2.03«$%)

. 0.326 + 2.03(0.0361)

l
l

0.326 + 0.0735

3 0.400.
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Thus, the auditor using classical statistical methods would

have a 97.8% confidence level that the error rate in the

population would be less than 40%. If his maximum accept-

able error rate is 40% or greater, he will accept the sample

results and go no further. On the other hand, if his maxi—

mum acceptable error rate is smaller than 40%, he can either

reject the entire population as containing such a large per—

centage Of errors as to be useless, or expand his sample by

taking additional sample units in an attempt to produce an

acceptable sample result. This decision depends upon the

audit variables. The relationship between classical stat-

istics and audit variables is treated in the following

section.

C. Effect of Audit Variables
 

As discussed in Chapter II, audit variables are

the relationships which exist between circumstances en-

countered by the auditor and the appropriate sample sizes.

If the circumstances are good (excellent internal control,

few errors in the records, prOper valuation methods, low

risk of the client having difficulty in meeting the claims

of its creditors, etc.), the auditor is able to form an

unqualified Opinion with relatively small sample sizes.

This is due to few problem areas being encountered in the



31

audit and the low risk of sanctions being applied to the

auditor as a result of that engagement. In a less favor-

able situation, sample sizes must be increased in order

that the auditor can enjoy a similar degree of risk, be-

cause more questionable items are likely to arise during

the audit. These warn the auditor that he must be more

prepared to defend an unqualified opinion rendered as a

result of that engagement.

In the classical statistics model, the auditor

can keep the same small sample size under worsening audit

variables only by increasing the error rate he is willing

to accept or by decreasing the confidence level he has

that the actual error rate is within bounds acceptable

to him. Classical statistics allows the auditor to con-

sider the audit variables in calculating confidence inter-

vals, but only indirectly. One method of incorporating

the variables is to change the degree of confidence

required. For example, assume a test in the audit of one

client has produced no errors in each of the last six

audits. The same test in another audit has produced high

error rates in every one of the last six years. The audi-

tor may require an 80%,confidence level in the "errorless"

engagement, and a 90% level in the other. As a result of

a change in one of the audit variables, the auditor wishes
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to have a greater level of certainty in the more risky

engagement. If the auditor does not change the confidence

level, but instead decides to allow an increased acceptable

error rate, the risk of sanctions being imposed upon him

increases.

One audit variable which the classical statistics

model does explicitly consider is the size of the population

from which the sample is taken. On page 29, an example

shows how an auditor might construct a confidence interval

using classical statistical methods. In that example, a

large population (meaning that the population is consider-

ably larger than the sample size) was assumed. If this had

not been the case, it would have been necessary to correct

the result with a "finite correction factor." The formula

N - n

N - l

where the pOpulation size is referred to as "N" and the

for this factor is

sample size as "n". It should be noted that this factor

is very close to 1.00 when N is large relative to n, re-

sulting in the correction factor being passed by, as in the

example mentioned above. If n is a relatively large part

of the population, this factor must be referred to, how-

ever. It is used by multiplying it by the product of the
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value obtained from the normal table andfl'; in the confi-

dence limit computation.

In summary, classical statistics does not provide

a way in which subjective information can be directly in—

serted into the model. Adjustments can be made to sample

size by way of the acceptable error rate and the confidence

level, but it is not a simple task to determine which of

these to change and by how much it should be changed to

reflect a given change in the audit variables. This diffi-

culty is illustrated by the prevalence of 90%, 95%, and

99% confidence levels in academic studies of widely vary-

ing subjects, to the almost total exclusion of other con-

fidence levels.8

In contrast, Bayesian statistics directly incor-

porates this subjective information, as set forth in the

following chapters.
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CHAPTER IV

ATTRIBUTES SAMPLING USING BAYESIAN STATISTICS:

DISCRETE PRIOR DISTRIBUTIONS

A. Bayes Theorem

Bayes theorem is the basis of a method which allows

inferences to be made about a pOpulation on the basis of

more than one probability distribution derived from that

pOpulation. Classical statistics, discussed in the pre-

vious chapter, does not allow more than one input distri—

bution in an analysis. Bayes theorem is named for the

Reverend Thomas Bayes, one of the early writers on prob-

ability theory. Recently his theorem has been applied to

a wide variety of situations and is especially important

in many branches of applied statistics.1

Bayes theorem itself is a method for combining two

probabilitydistributions. The first distribution is

called a prior: the second is derived from the results of

a current sample, and the result of the combination is

known as the posterior distribution. conceptually the

method is not difficult, but in practice the decision as

35
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to which distributions to combine and the meaning of the

result present difficulties.

In the discrete form, Bayes theorem takes the

following structure. "Suppose that we are given k events

A A p 000000; Ak SUCh that:

1' 2

l. A]_\JA2LJ....UA.k : S

2. AinAj=¢ , for all i 3‘ j

(these events form a partition of S): then for any event
 

ECS.

PA- PEA.

P(Aj|E) k( 3) (‘3) , j: 1,2,....,k."

ZP(Ai)P(E|Ai)

i=1

 

The notation above may be read U (union),r\ (intersection),

#(not equal), S (the entire possible sample space), ¢

(the empty set--no possible result), ‘ (given), Z:(summa-

tion from the point under the symbol by intervals of one

to the point above the symbol), andC: (an element of).

To use Bayesian statistics in an auditing attributes

sampling situation, several steps must be completed. First,

a suitable prior distribution must be provided which ex—

presses the expectations of the auditor regarding a parti-

cular sample outcome. Secondly, an actual sample must be

taken from the population and the results (sample size and

number of errors found in the sample) recorded. That
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information is used with Bayes formula to revise the prior

distribution and obtain the posterior distribution. Fin—

ally, it is necessary that the posterior distribution be

used to create a confidence interval in a manner similar

to that used with the normal distribution in classical

statistics.

The prior distribution provided by the auditor can

be either a discrete or a continuous distribution. The

remainder of this chapter discusses the discrete case,

while a continuous prior distribution is the subject of

Chapter V.

B. Discrete Prior Distributions

The following examples showlunv Bayesian statis—

tics might treat one auditing situation with the use of two

discrete models that have been proposed in the literature.

The auditor would have to provide information about the

expected population error rate under consideration before

the sample was taken. This is in contrast to the classi-

cal approach, which would base the entire analysis on the

results of the sample.

Suppose the auditor felt, based on the results of

other samples taken during the current audit and on pre—

vious years' results, that only an 80%.population error
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rate (A) or a 20% rate (B) were possible and he felt that

A was twice as likely to occur as B. Since the total

probability (that of A and B) must equal 1.00, the auditor

must believe that

P(A):: 2/3

P(B) : 1/3.

The Bayesian statistician could use the formula for the

binomial distribution which was discussed in Chapter 3.

P(x) = (§)pxq“’x

If a sample of 3 were taken and no errors were found then

P(xzolA) = (3) (0.8)0(0.2)3= 0.008

P(x=0IB) :2 (g) (0.2)°(0.8)3 : 0.512

would be calculated. Using Bayes theorem, the following

computations would be made

Ptx=olA)P(A)
 

 

 

p(A\x=0) = P(x=0[ A)p(A)+P(x=0\B)P(B)

_ .008(2/3L ____ 0.03

.008(2/3)+.512(1/3)

P(BIX=0) _ P(X:0|B)P(B)

— P (x=0l A) P (A)+P (x=0| B)P (B)

= .512(L/3) :_0.97

.008(2/3r+.512(l/3)

He would check his results, knowing that the total proba-

bility of A or B must equal 1.00.

P(A|x=0) + P(B|x=o) = 0.03 + 0.97 = 1.00
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The auditor is 97% certain that the population error rate

equals 0.20. This example is, of course, highly simpli-

fied, but techniques are discussed in the following sec-

tions which are capable of incorporating much more complex

distributions that might better reflect reality

The Bayesian approach generally requires a smaller

sample size to reach the same confidence level as the

classical approach. This is not free information, however.

The auditor must have some reason for the prior distribu—

tion he provides, whether it is the result of his internal

control inquiries, other audit tests, or previous years'

audit results. Bayesian statistics simply provides a

method for formalizing the information available. Chapter

VI discusses the problems inherent in deriving a realistic

prior distribution.

In a 1968 Journal_g£ Accountancy article,3 William
 

H. Kraft, Jr., proposed using Bayesian statistics to solve

a problem similar to the preceding. He detailed a method

where the prior distribution (with six possible error rates)

can be specified from information the auditor has gained

previously. The binomial formula, used in the preceding

example and in Kraft's article, was meant for a situation

in which the pOpulation size is infinite or in which each

item sampled is replaced before another is taken. This
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implies a constant probability of obtaining a given result

from one sample item selection to the next. More infor-

mation can be obtained from the same size sample, however,

if each item is Egg replaced as it is sampled, making the

remaining population smaller with each successive item

drawn, and thus increasing the probability that any one

remaining item will be selected on one of the remaining

draws. A more complicated formula is necessary to gain

this advantage because the binomial does not consider the

decrease in pOpulation size which occurs as sample items

are removed.

The distribution which permits the use of this add-

ed information is known as the hypergeometric and was dis-

cussed with the binomial in Chapter III. In two 1969

4’5 prOposed the use of the hyper—articles, John A. Tracy

geometric distribution in auditing situations and gave

examples which depicted results obtained using the hyper-

geometric with Bayesian statistics in a payroll check

examination.

The following example depicts the same situation

as that in the binomial example above, except that the

population size is only 20. Using the hypergeometric

formula from Chapter III.
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(1‘2) (‘32)!)

 

 
 

 

 

 

P(X) = ———————— for k ==0,l,2,....

(R)

the following results are obtained.

MM) ”3:.
P(szB) =-. 0 3 = 13.3. :2-14

(20) 20: 3-19

3 17:3:

16 4 ._4_1_

P(X=~'OIA) :- ( 0H3) = 3:1: ____ 1

(20) 20: 15-19

3 17:3:

Using Bayes formula, the following results are obtained.

 

 

 

 

 

 

 

= -_- P(X=0|BIPIBI

P(B‘X 0’ P(X=0|A)P(A)+'P(X=O\B)P(B)

2‘14 (2.)

_, 3 19 3 __ g_8__9_ __
.. 2.14 (32)+ (i) - 281 _ 0.9964

3'19 15119 3

P(A|X=0) =-_ P£X=0 ‘ A) PUB)

P (x=olA) P (A)+P (x=0 IB) P (B)

1 (l)
.. 15° 19 3 _. __1_ =

. (2)+ (l) - 281 9J-9——-__9_3_§

319 15119 3

Since P(A|X=0)-t P(B\X=0)'= 140000, the results check.

It should be noted that the revised probability of B under

the hypergeometric assumption and a pOpulation of 20 is

99.64%. This is considerably more than the similar prob-

ability of 97% under the binomial distribution and the

infinite pOpulation size assumption. The greater proba-

bility obtained with the hypergeometric distribution is the
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result of the additional information gained by sampling

from a relatively small population without replacement of

items selected for the sample. As the population size

increases, less and less advantage is gained until finally

the cost of using the more complex hypergeometric formula

is greater than the value of the additional information

gained. Thus, where the sample size is large relative to

the pOpulation size and drawing is without replacement, the

hypergeometric would be used. In situations where the pOp-

ulation is much larger than the sample the binomial would

be used whether or not sampling is with replacement.

In this section the use of Bayesian statistics and

discrete prior distributions in auditing was discussed.

Most of what has been written by others about the applica—

tion of Bayesian statistics to auditing has relied upon

discrete distributions. The exception is a thesis written

6 which is con-at the University of Minnesota by Corless,

cerned with the ability of auditors to quantify expecta-

tions into both discrete and continuous prior distributions.

However, it does not concern itself with the use that might

be made of the distributions. Some implications of Corless'

study are considered in Chapter V. Important practical

difficulties found in the use of discrete prior distribu-

tions are discussed in the next section.
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C. Difficulties Found in the Use of Discrete

Prior Distributions

Discrete prior distributions have been the basis of

Bayesian methods prOposed to date for use in auditing situ-

ations. Several important difficulties are found, however,

in practical applications of such methods. These diffi-

culties include poor approximation of continuous phenomenon,

inconvenience of deriving discrete prior distributions, and

the complex computations which would require a computer in

practical situations.

The phenomenon being represented by the prior

distribution is continuous. Not only is the actual number

of errors in the population unknown (or a sample would be

unnecessary), but often the auditor does not know the pre-

cise number of items in the pOpulation being sampled. He

is interested in rates instead of absolute numbers. In

this situation, the actual error rate could take a vast

number of specific values because both the numerator and

denominator of the fraction which determines the rate are

unknown. Any listing of a workable number of possible

error rates making up a discrete distribution must neces-

sarily be an approximation of the actual continuous dis-

tribution. Even a relatively large number of possible

rates may be an inaccurate approximation because most of
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the probability could easily be concentrated between just

two or three of the listed rates with probabilities close

to zero assigned to the majority of the listed possible

rates.

An auditor who wishes to use Bayesian statistics

can approximate his feelings about a given attribute with

a relatively large number of possible rates in such a

fashion that the total of the probabilities is 1.00. This

would give a discrete prior usable with Bayes theorem and

the results of a current sample to produce a meaningful

posterior distribution. Tracy used this approach in his

Accounting Review article.7 He took 100 possible error

rates (0.002, 0.003, 0.004,....,0.099, 0.100, 0.101) and

assigned a probability to each of these which reflected

the auditor's prior thinking about that particular error

rate. First he took an easy approach by assigning an equal

probability to each of the 100 error rates so that the

prior distribution included p(rate=0.002)== 0.01, p(rate=

0.003)== 0.01, p(rate=0.004)== 0.01, etc. Such a prior

is called a uniform distribution. This uniform prior did

not, however, contribute much information to the posterior

distribution. The result was similar to a classical

statistics analysis of the same problem. He then decreased

the variance of the prior by lowering the probability
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associated with higher or lower error rates and by increas-

ing the probabilities associated with error rates near 2.2%

to 3.1%. As would be expected, this second prior had a

greater effect upon the posterior than did the original.

The difficulty with this approach is that listing 100 dif-

ferent probabilities is a considerable task. Furthermore,

making certain they sum to 1.00 while simultaneously re-

flecting the information desired makes this method of de-

riving prior distributions so time consuming as to be im-

practical. It is important, also, to note that error rates

other than the 100 listed are usually possible (anywhere

between 0.02 and 0.03 for instance) but all of these

possibilities are assigned a probability of zero with such

a discrete prior distribution. This can only contribute

error to the result.

To decrease the difficulty of listing 100 different

probability figures, the number of points considered can

be reduced. In the Kraft article8 only six points were

assigned probabilities. These represented error rates of

0.001, 0.01, 0.02, 0.03, 0.04, and 0.05. It would be a

rare audit situation indeed which could be accurately rep-

resented by so few possible error rates, although the

accuracy could be improved by increasing the number of

points as Tracy did. By increasing the number of error
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rates assigned probabilities, it becomes increasingly

obvious that this method of deriving prior distributions

produces only an approximation to some continuous distri-

bution which admits a range of possible rates instead of a

finite number, in most practical situations. Statistical

techniques exist which deal directly with continuous dis—

tributions instead of approximating them with various

discrete points. One of these techniques is considered in

the next chapter.

A final difficulty with the use of discrete distri-

butions is that the revision of a discrete prior distribu-

tion by a discrete sample result requires a large number of

multiplication and division Operations, even for relatively

simple problems. Most practical auditing problems would

require a computer for solution. This is an important

drawback, because computers and a means of translating in-

formation about the prior distribution and current sample

result into a computer-readable form without error are not

often available to the auditor in the field. Even with the

availability of computers, discrete distributions would

require significant input and processing costs.

The introduction of Bayesian statistics to auditors

by the use of discrete prior distributions has been an

excellent way to provide information about Bayesian
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statistics. Discrete distributions are easier to work

with in simple examples when tables are not available than

continuous distributions. But the practical limitations

of discrete prior distributions in all but the most limited

audit applications of Bayesian statistics are too important

to ignore. Discrete prior distributions provide a poor

approximation to continuous phenomenon, are inconvenient

for auditors to derive, are difficult to perceive, and re—

quire involved computations when used with Bayes theorem.

The use of Bayesian methods with discrete prior distribu-

tions which have been proposed in the auditing literature

is not feasible in practice. An alternative, the use of

Bayesian statistics with continuous prior distributions,

is discussed in the following chapter.
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CHAPTER V

BAYESIAN STATISTICS AND THE BETA:

A CONTINUOUS PRIOR DISTRIBUTION

A. The Beta Distribution

Continuous prior distributions, as well as the

discrete ones discussed in the previous chapter, can be

used with Bayesian statistics in auditing situations. In

attempts to apply Bayesian statistics to auditing which

have appeared in the literature to date, discrete prior

distributions have been almost exclusively employed. How-

ever, many other fields have found continuous distributions

or a mixture of the two more useful than discrete distri-

butions alone. For example, the normal distributibn is

widely employed in natural science studies. The normal

is not well suited to application as a prior distribution

in auditing situations because the revision of a normal

prior distribution by Bayes theorem can lead to widely

varying posterior distributions which can be difficult to

evaluate.

49
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One continuous prior distribution which produces

a more usable posterior distribution when revised by the

results of an audit attributes sample is the beta. Math-

ematically, a beta function is one which relates two unknown

variable terms by the use of three constants. The unknown

variables will be referred to as "x" and as "p(x)". The

value of p(x) is a function of the value of x. The three

constants will be called "mfl (alpha), ”9" (beta), and "c".

The relationship between these terms takes the form1

p(X) = cx“'1(1-x)‘3-1 (beta function).

A beta function can be graphed with x represented by the

horizontal axis and p(x) represented by the vertical axis.

When a graph of a beta function is drawn in this

study, it will be limited to the region between x=0 and

x=l. Auditors are concerned with rates of occurrence in

attributes sampling situations. In this discussion, these

rates will be referred to as error rates to make visualiza-

tion easier, although it is recognized that other rates

may sometimes be of interest. Two facts about rates are

of interest here. First, rates of occurrence such as those

found in auditing situation are never negative. Secondly,

such rates are never greater than 100%. The "x" from the

discussion of the beta function above will represent an

audit error rate. Therefore, it will be considered only
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to the extent that its value lies between x=0 and x=1,

inclusive.

The beta function is quite flexible, and by prOper

choice of the constants,oa, fl, and c, its graph can be made

to assume a wide variety of shapes. The graphs of two beta

distributions are shown in Figures 1 and 2.
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Auditors will, in general, be interested only in

beta distributions which have an "upside down bowl" shape

such as those in Figures 1 and 2. It can be shown that

any beta which exhibits such a shape will be the result of

a function with constants okand fl both greater than one.2

To make the beta function into a probability

distribution function (such as a prior distribution for use

by auditors), it is necessary to insure that the area be-

tween the curve and the x axis (see Figures 1 and 2) be

made equal to 1.00. OnceIX and 5 have been chosen, this

can be done by selecting the constant c in the beta func-

tion above so that this condition holds.

Under the conditions described, p(x) can be computed

at any point x along the horizontal axis, and plotted on a

graph. It will never have a negative value.

To illustrate the use of a beta function, an

example will be considered with 0k=2 and. 3:8. First, the

constant c must be found so that the area between the curve

and the x axis between XaO and x=l is equal to 1.00. The

function takes the form

p(x)'= cx2—1(l-x)8-l = cx(1-x)7.

The area under a beta curve between x=0 and x=1 can be

computed with gamma functions if both (X and B are integers.
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Since cc and fl are integers in this case, gamma functions

will be used to compute the area under

p00 = x(l-x)7

and the reciprocal of the area used in place of c in the

original formula to make the area between the curve and the

x axis between x=0 and x=l equal to 1.00. The value of a

beta integral over x=0 to x=l with 0‘ and 3 both integers

can be computed from the following formula.3

(Efl)1(9-lli
 

 

In the case at hand:

(2-1)1(8-l)1 1:7: 1 , 1
A = : ———— =-——— ~-—-—

rea (2+8-1): 9: 9.8 72 .

The reciprocal of this area will be substituted for c

in the original formula. The value of c is therefore equal

to 72 and the formula becomes:

p(X) = 72x(l-x) 7

A rough graph of that function can be drawn by computing

several points from the formula, plotting them, and

connecting the points. Such a graph for the function

above is shown in Figure 3. The points used are shown

below. Later in this chapter, it will be shown how the

highest point on a beta curve can be computed. In this

case that point occurs at x =:l/8. This information is

useful in plotting the curve shown in Figure 3.
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x P(X)

0 0

1/8 3.53

1/4 2.40

3/8 1.005

3/4 0.0033

1 0 
The function used to find the area under the curve

between x=0 and any point x = x1 is the beta integral. For

the example at hand, this integral takes the form
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Area = cjxle—x) 7dx = 72jX1x(l-x) 7dx.

0 0

This formula will be used to create confidence intervals

based upon the beta distribution determined by 0‘ = 2 and

fl: . It is necessary to integrate by parts to evaluate

this function. The formula for integration by parts is

x x x

l

fludv = uv - g 1vdu.

0 0 0

In this instance u and v are defined as follows:

 

u z: x dv :: (l-x)7dx

x1 x

v: (l-x)7dx ‘: — %(l—x)8

0 0 

X1 X

S udv = x(--;;_) (1—x)8 l - fl(—)é(l-x) 8dx

0 00  

 

X1 X1

:: —lx(1—x) 8 + 1 (l-x) 8dx

8 B'
O 0

8 X 9 X
-.-.-_1_x(1-x) - _l(1-x)

 

 

To check this substitution the area under the curve from

x=0 to x=l will be evaluated.
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1

Area ==-?13.,x(l-x)8

  

-.__l_(l-x)9

72
0 0

= (0 - 0) —.__1_(0) - (-) _1(1-0)9

72 72

= '(‘)—l.:-—l

72 72 °

This is the same answer as that obtained through the eval-

uation of the beta by gamma functions earlier. It should

be noted that the constant c, equal to the reciprocal of

the area computed above (c = 72), must be multiplied by

the function to insure that the area under the curve be-

tween x=0 and x=l equals 1.00. The formula for deriving

confidence intervals from this distribution becomes

Area under curve from x=0 to x=x
l

X X

= 72 -%x(l-x) 8

 

- _1(1-x) 9

72
0 0 

The area under the curve from x=0 to x=% can be computed

with the use of this formula.

Area under curve from x=0 to x:%

=72’-lav 8-10 —__1_ 9 .11-098(2)05) 8( ) 72(32) -+ 72 ( )

 
=72L-1-(———1)-_l(———)+—l

. 8 512 72 12 72

=1 _ 9 _ 1 512 - 10 502 =0 981
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When this value is compared to the graph of the function

(Figure 3), the answer appears to be reasonable. In a

similar fashion, the area under the beta curve with °£= 2

and p= 8 between x=0 and any other desired value of x can

be computed. If the above computation were made for the

purpose of obtaining a confidence interval, it would yield

a 98.1% confidence coefficient that the error rate of the

pOpulation did not exceed 50%. The confidence coefficient

is the probability that the computed confidence interval

contains the actual population error rate.

The methods demonstrated above are useful only

when the constants ok and )8 of the beta distribution under

consideration are integers. If either constant is not

an integer other computation techniques must be employed,

one of which is discussed in section D of this chapter.

The Beta $5.3 Prior Distribution. A prior distri-

bution is required before Bayes theorem can be employed to

produce a posterior. Prior distributions can be viewed

as providing an "additional sample" from the population

of interest to the auditor. The parameters N and {3 of the

prior distribution can be looked upon as being representa-

tive of this additional sample. The sum.°b+fi would rough—

ly correspond to the size of the additional sample, while
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utwould roughly represent the number of errors found in

that sample. Viewing the prior in this manner may aid

an auditor who is attempting to determine the parameters

Otand B in a specific audit situation. Other information

which the auditor may find useful in this task includes

various statistics computed for possible prior distribu-

tions. Some of these statistics are the mean, variance,

and mode. The formulas used to compute these statistics

from the O< and ,6 parameters of a specific beta distribu-

tion will now be discussed.

The mean of any function is the expected value of

that function. It can be shown that the mean of a beta

distribution occurs at an error rate of 4

._£§__

o<+p-

As an example, the mean of the beta distribution shown in

Figure 1, page 51, will be computed. The constants<x

and p of that distribution are ok=1.40 and p=8.60.

(x __ 1.40 __. 1.40
__.—__.. —- 2.0.14

°<+fl 1.40+8.60 10.00

Mean 1'

The variance of a distribution is an indication of

the relative density with which the values would be expect-

ed to occur about the mean. The variance of a beta

distribution is5
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The variance of the beta distribution shown in Figure 1

will now be computed.

. - up __ (1.4) (8.6)

Variance -— (OH-)6)7(°‘+p+1) "' (10,0)1(10.O+l.0)

= 12.04

1100.0
= 0.10945 .......

Another measure which is sometimes used is the

mode of a distribution. On a graph of a continuous func-

tion, the mode appears as the highest point on the curve,

as shown in Figure 4.
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The vertical distance of the beta curve from the x axis

is computed from the formula:

p (x) :: cxm"l (l-x)p—l

To find the maximum value of p(x) the first derivative is

found and set equal to zero.

dp(x) _ djcx“_ljl-x)p’l)

dx ‘ dx

=c(«-1>x°“2(1-x)P'1 + (-1)cx 403-1) (1905‘2

:2 (car-1)x°"2(1--x)'3'1 - x“‘1(p-1)(1-x)9‘2 = 0.

(d-1)Xq—2(l-X)B’l = (p-1)§'1(1-x>P'2

E :; x(l-x)-l

dram-1+x == fix-x

d'l ‘3 (6‘2”)x

The mode of the beta distribution occurs at

X: 00-1

“+fi-2

To illustrate the computation of the mode of a beta dis-

tribution, the mode of the distribution shown in Figure 1

will be computed.

o( -1 = 1

«+5-2 1.4 +

Mode:

= 0.05

The mean, variance, and mode discussed here are

useful to an auditor attempting to fit a prior beta
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distribution to evidence available to him. Once he has

determined the specific constants (0(and p ) which deter-

mine the prior distribution, it is necessary to revise the

prior by the results of a current audit sample. Determina—

tion of the prior distribution is discussed in Section B,

while the revision of the prior by the results of a

current audit sample is explained in Section C, and the

procedure used to make inferences from the result is

covered in Section D.

B. (Selection of a Prior Distribution

Before Bayes formula or a posterior confidence

interval can be used, a meaningful prior distribution must

be selected by the auditor. This prior is based upon evi-

dence actually available to the auditor: evidence which

relates to the error rate of the pOpulation under con—

sideration.

It is important that an auditor interested in

the use of Bayesian statistics understand the meaning of

the prior distribution he selects. To aid in this,

various statistics can be computed about representative

prior distributions. The mean, mode, and variance have

been discussed in this study, and such statistics can be

of value to an auditor who has had even limited
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statistical training. A short table of such statistics

computed for selected beta distributions appears in

Appendix A (Table l).

A useful aid to the auditor faced with the problem

of deriving a prior distribution might be a book of

sketches of representative beta prior distributions.

These might be arranged in a fashion similar to a police

department's books of "mug shots" which include a number

to identify each portrait. As the victim of a criminal

act might thumb through the "mug shots" and note the

identifying number of a picture which bears a resemblance

to the offender, an auditor attempting to fit a prior

distribution to specific circumstances might thumb through

the sketches and note the appr0priate o( and ,3 parameters

for the distribution which best fits his situation. These

sketches might be ordered in sections by mean or by mode

to provide the auditor with a starting point. A short

example of such a "mug boo " of sketches of Specific

beta distributions appears in Appendix B.

The use of such sketches would save time. In-

stead of listing a number of probability points (the

Inethod used by those who have prOposed the use of discrete

Iprior distributions in auditing applications of Bayesian
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statistics), the auditor would merely look through the

sketches until the appr0priate prior was located. Marked

on that sketch would be the parameters 6! and 5 which deter-

mine the function. After noting those parameters, the

auditor would be ready to take the current sample and

revise the prior with Bayes theorem.

Graphs of beta distributions, in the form of the

sketches discussed above, can be produced by a plotter

attached to a digital computer. The sketches shown in

Appendix B were derived in that fashion. The computer

programs which resulted in those sketches are shown in

Appendix D. Also shown in that appendix are the programs

used to produce the beta distribution tables which appear

in Appendix A.

Several statistics can be used by the auditor in

locating the apprOpriate prior distribution for his use.

One mark with which he might begin is the mean of his

prior expectations. This is not the single rate he feels

is most likely to occur, based on his prior expectations,

but rather is the expected value of the function. The

mean is a useful measure and it is widely employed.

However, when faced with the problem of specifying a

distribution, the typical auditor might well have
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difficulty identifying the expected value of the result.

He could specify the single error rate he feels is most

likely to occur. This is the definition of the mode,

another statistic discussed with reference to the beta

distribution earlier in this chapter. Because it appears

that the mode is less difficult for an auditor to use,

it is used to identify the distributions shown in Appendix

A and Appendix B of this study, although the mean is given

as supplementary information.

One factor the user of Bayesian statitics would

consider is the relative weights given to the prior dis-

tribution and the current sample in the derivation of

the posterior. As the sum (Xi-Sis increased, with the

mode of the prior held constant, the variance of the

prior decreases, implying greater certainty. An auditor

who has considerable evidence that an error rate is near

5% may use a prior distribution with a relatively large

(when compared to the current sample size):K4-fi3. Another

auditor with some smaller amount of evidence which also

indicates an error rate near 5% is likely to select a

prior in which the sum cup is somewhat smaller than did

the first auditor. If each draws the same current sample

result, the prior selected by the first auditor will
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have a greater relative effect upon the posterior than

that selected by the second auditor.

An auditor with no statistical training could

not be expected to derive meaningful prior distributions

for use with Bayes theorem. One study has shown that

auditors are "willing to quantify their conclusions as

probability distributions."6 The same study7 found that

different auditors produce different prior distributions

from the same data. This implies either a lack of agree-

ment between the auditors as to the audit variables under-

lying the situation, or a difference in how each auditor

subjectively interprets the audit variables. Either

alternative suggests that more than a quick introductory

lesson would be necessary before several auditors would

reach similar independent conclusions from the same data.

Once an auditor has selected a prior distribution

from a set Of sketches or tables of statistics, he has

the constants c: and (3 which are required for the revision

of a prior beta distribution by Bayes theorem. These

constants are combined with the results of the current

audit sample to find the posterior distribution upon

which statistical inferences will be based. The Operation

of revising a beta prior distribution by a binomial sample

result is discussed in the following section.
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C. Revision of a Beta Prior by a Binomial

Sample Result
 

After an auditor has selected a prior distribution

and taken the current sample, only two steps remain in

the use of Bayesian statistics with beta prior distribu-

tions in audit attributes sampling situations: The revi-

sion of the prior with Bayes formula and the creation of

confidence intervals based upon the posterior beta distri-

bution. This section discusses the revision Of the prior

distribution, while section D eXplains how a confidence

interval can be obtained from a beta posterior distribu-

tion. An example illustrating the entire process appears

in Section E of this chapter.

The revision of a beta prior distribution by a

binomial sample result is unexpectedly simple. A beta

distribution is determined by only two parameters, re-

ferred to as o( and f3 . The result of an audit sample can

be specified by n (the sample size) and x (the number of

errors found in the sample). If the prior is a beta

distribution with parameters at and p , and the sample a

binomial of size n with x errors, the posterior will be

a beta with parameters

a" z o<+ x - 1 and

fl'2 P-F n - X - l.
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The derivation of this result is shown in Appendix C.

Here it is important only to note that revision of a

beta prior by a binomial sample is a simple arithmetic

manipulation requiring no higher mathematics than addi-

tion and subtraction, no computer, and no tables. The

resulting posterior distribution is another beta, which

may be further revised by additional binomial samples, in

the same manner. The result will always be another beta

distribution.

The Bayesian method discussed in the preceding

paragraph would be relatively easy for an auditor in the

field to use. If he had sketches of a number of possible

beta prior distributions and tables of relevant statistics,

he could select the prior which best represents the evi-

dence available about a given error rate before a current

sample is taken. He would then write down the appr0priate

constantscx and f for that distribution. Once the current

sample has been completed, its outcome can be summarized

by two figures, n (the sample size), and x (the number

of errors found in the sample). (Note that this x is not

the same as the x used to represent the error rate in

the beta function. Statisticians use the same term in

two different ways.) The determination of the posterior
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distribution can be quickly accomplished with the aid of

a pencil, a piece of paper, and the two formulas discussed

previously in this section. The final step in the analysis

involves drawing inferences from the posterior distribu-

tion thus Obtained. This requires the derivation of

confidence intervals from posterior beta distributions.

The following section contains an example of the revision

of a beta prior distribution by Bayes theorem and explains

how confidence intervals can be obtained from beta

posterior distributions.

D. Confidence Intervals from Beta

Posterior Distributions

The procedure used to select a prior distribution,

summarize the results of the current audit sample, revise

the prior by those results, and obtain the posterior beta

distribution has been discussed in the three preceding

sections. Once this procedure has been followed in an

actual audit situation, there remains only the problem of

determining confidence intervals from the posterior

distribution.

In the first section of this chapter, an example

of the calculation of a confidence interval from a beta

posterior distribution was shown. The method used in
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that example involved the evaluation of a beta integral

through the calculus technique of integrating by parts.

That method is not generally applicable to beta integrals

in which the constants‘d.and p are not integers. Since

auditors would use beta distributions with non-integer

constants, an alternative computation technique is

required.

Mathematicians have deve10ped approximation

techniques for the evaluation of functions which can not

be computed directly. One of these techniques is

Simpson's rule for the approximation of definite integrals.

It approximates the area under a given curve by summing

the areas Of a number of segments which approximate the

area of portions of the desired area. A further discussion

of Simpson's rule can be found in Appendix E.

Simpson's rule can be used to create tables of

confidence intervals for the beta posterior distribution.

If a set of representative posterior distributions were

used as the basis for a group of confidence interval

tables, the auditor with access to such tables could

quickly determine the limits of the desired confidence

interval, once he had completed the tasks leading to the

posterior distribution. An abbreviated set of such
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tables, which were computed with the use of Simpson's

rule, is shown in Appendix A (Table 2, 3, and 4). Those

tables are shown as an example. They are not complete

enough for use in practical situations. The computer

programs which were used to obtain those tables appear in

Appendix D.

The entire procedure followed by the auditor,

from selecting a prior distribution through looking up

the limits Of the confidence interval in the tables,

would take only a few minutes (aside from the time required

to draw and examine sample documents, etc.). The auditor

would not require the use of a computer, or even an

adding machine.

To illustrate the use of a beta prior distribution

and a binomial sample result in an application Of Bayesian

statistics to auditing, it will be assumed that an auditor

has evidence regarding errors in some pOpulation which he

feels is represented by a beta distribution with para-

meters D(=1.4 and p=8.6. He takes a sample of 92 (n)

items and finds 30 (x) errors. What are the parameters

of the posterior beta distribution?

a' «+X-l. fl :fi+n-x-lI
I

= 1.4'+'30.0 - 1.0 ::8.6 +~92.0 - 30.0 - 1.0

=- 30.4 =69.6
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Illustrations of the shapes of both the prior and

posterior distributions in this example can be found on

page 51. It should be noted that the mode of the prior

is 0.05, while the information contained in the sample

results in the mode of the posterior equaling 0.30,

certainly a significant shift for most auditors. The

prior in this example has relatively less influence upon

the posterior than does the sample result.

Confidence intervals can be constructed from the

posterior beta distribution by referring to apprOpriate

tables, such as those in Appendix A (Tables 2, 3, and 4).

To use the confidence interval tables, the appropriate

at and p parameters are located along the left side of

the tables, while the confidence coefficient desired is

located in the body of the table on that same line. The

number at the tOp of the column in which the desired

confidence coefficient appears is the upper limit of a

one sided confidence interval. If the auditor in the

example discussed in the preceding paragraph wished to

construct a one sided confidence interval with a 97.8%

confidence coefficient, the tables would show him that

97.8% of the area under a beta curve with parameters

°( = 30.4 and flz69.6 would lie below an error rate of
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40%. In Chapter III, it was shown that the classical

statistics approach resulted in a similar conclusion of

a 97.8% confidence coefficient that the pOpulation error

rate was below 40%. That result, however, was based upon

a sample of 169, while the Bayesian example shown here

requires a sample of only 92 to reach the same confidence

interval. In each instance the sample error rate was

32.5%. Thus, the additional information contributed by

the auditor's prior distribution reduced the sample size

necessary to obtain the same assurance as that gained from

the classical model.

The relative effect upon the posterior distribution

by the prior and current sample result is determined by

both the "gentleness" of the prior curve and the size of

the sample taken. If a prior which is rather noncommittal

(has a large variance) is revised by a large sample, the

result will be largely determined by the sample. On the

other hand, if a prior with a small variance is revised

by a small sample, the result will be similar to the

prior.8 This matter is further considered in Chapter VI.

In summary, the use of a beta prior distribution

by auditors in applications of Bayesian statistics to

auditing requires several steps. In the first section Of
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this chapter, beta distributions were discussed and it

was demonstrated how computations can be made which yield

information about specific beta curves. Several ways

of aiding an auditor who is faced with the problem of

determining a beta prior distribution for specific circum-

stances were discussed in the second section Of this

chapter. That was followed by an explanation of the

process used to revise a beta prior by the results of a

current audit attributes sample, while the confidence

intervals necessary to the making of inferences based upon

beta posterior distributions were the subject of this

section. The last section of this chapter contains an

example of the use of this method in a specific auditing

situation.

E. An Example of the Use of a Continuous

Prior Distribution

The preceding sections have explained the pro-

cedures and computations necessary to arrive at a posterior

distribution from a beta prior distribution and a binomial

audit sample result. The following example illustrates

the application of a beta prior distribution to a common

audit situation in which classical methods result in an

illogical conclusion.
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Assume an auditor has been doing the field work

on a certain engagement for the past six years. Each year

he has sampled 40 of the approximately 6000 sales invoices,

and each year has found no errors. There have been no

significant changes in the internal control system over

sales or in the accounting staff. From the tables in

Arking, he determined that there was a 99% confidence

coefficient that the actual error rate was less than 10.8%.

Bayesian methods allow the auditor to create a

prior distribution which includes such information, when

desired. In this situation, the auditor would be likely

to use a prior with a very small mean and mode, probably

in the neighborhood of 1% to 2%, because he feels strongly

that the actual rate is at least that small, based upon

past experience. Assume that this auditor is attempting

to be very cautious in his prior and picks a beta prior

with «x: 2.98 and B = 59.02. This means that he feels

that "most likely“ error rate is the mode Of

«-1 __,_ 2.98 - 1.00 ____

“+fl-2 2.98 + 59.02 - 2.00

 

3 . 30%:

and that the "average" expected value is the mean of

, 2.98 2.980‘

«+13 " 2.98 + 59.02 60.00

  :1 4.83%.
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These values are both high (conservativex compared to the

auditor's expectation of the actual rate.

As stated above, the actual sample yielded no

errors (x=0) out of a sample of 40 sales invoices (n=40).

To determine the posterior distribution, the following

computations would be made:

at. on—X - 1 fl' ‘: fi-f- n - X - 1

:2.98+ 0 - 1 :59.02+ 40 - 0 - 1

=1.98. 298.02.

A one-sided classical confidence limit was found above to

yield a 99% probability that the actual rate was less than

10.8%. By referring to the beta table, a similar confi-

dence interval can be constructed from the posterior

Bayesian distribution (Table II in Appendix A). Such a

confidence interval would give a 99% confidence coefficient

that the actual error rate lies below 7.0%, instead of the

10.8% which the classical method resulted in. Thus, even

a very ”conservative" (in the sense of having mean and mode

greater than the actual expectation of the auditor) prior

distribution results in a more realistic posterior distri-

bution and resulting confidence interval than did the

classical methods. A prior which more accurately reflected

the expectations of the auditor would result in an even
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more reasonable confidence interval.

It should be noted that an auditor using classical

statistical methods in the example discussed above would

probably approach the situation by reducing the confidence

level he requires in the current year, knowing this will

reduce the sample size. But he must make this decision

by "feel", with no formal guide as to the effect of this

change upon the analysis. The Bayesian method, on the

other hand, allows the auditor to be as specific as he

desires in making up a prior distribution based upon the

results of previous years' audits.

The preceding situation is one to which Bayesian

methods seem naturally adOpted. Not all auditing situa-

tions are so constructed as to fit the Bayesian model in

this manner, however. For example, the audit variables

which affect the risk of the auditor being subject to

sanctions because of the bankruptcy of the client can be

considered. It would be difficult for an auditor, even

one with considerable training and experience in statis-

tical methods, to construct a prior distribution which

meaningfully reflected this possibility. It appears that

there is a sort of scale of audit variables, with those

obviously applicable to Bayesian methods at one end, and
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others, such as the bankruptcy example mentioned here,

at the opposite end.

Subjective probabilities, such as those used as

prior beta distributions, have been the subject of some

controversy. This is the subject of the following chapter.
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CHAPTER VI

SUBJECTIVE PROBABILITIES

A. Definition

An auditor who has decided to use Bayesian stat—

istics must express in a prior distribution the evidence

available to him. The mathematics associated with the

beta distribution was discussed in Chapter V. But the

auditor attempting to use Bayesian statistics needs more

than formulas, or tables, or other such aids. He needs

an understanding of what lies behind Bayes theorem. This

chapter attempts to provide some of that information.

Probability distributions are pOpularly thought

of as being based upon objective, verifiable evidence.

Thus, in the usual sense of the term, a probability dis-

tribution would not vary even when derived by different

auditors from the same sample. But a qualified auditor

may have Opinions as to the distributions underlying the

sample taken, in addition to the sample result. Often

these Opinions are based upon facts just as real as the

sample result, but not directly expressible as a

79
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probability distribution. These Opinions may give rise

to a "personalistic" or "subjectivist" probability dis-

tribution based upon the Opinion of the qualified auditor

instead of directly upon a sample. Since different audi—

tors have varying perceptions and experiences, these sub—

jective distributions are not necessarily constant. This

makes the information contained in them no less real, how-

ever. It simply reflects the differing information con-

tained in the Opinions of the various auditors.

Information of this type is sometimes criticized

because it is not based directly on solid, verifiable

evidence. It is said that this type of information is

so subjective as to be worthless. But if the auditor

generating the information is qualified and has relevant

experience, some part of the data will be ignored if this

entire class of information is not used.1

If the Bayesian method were employed, the audi—

tor would be forced to put down his expectations on

paper. At the very least he would be forced to pay

attention to this element, and if he were trained to use

an input distribution such as the beta which lends it-

self to simple adjustments for various subjective distri-

butions, it would be possible for him to approximate the
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sum total of his own experience which is relevant to the

decisions being made.

Some who criticize the subjective school contend

that unlimited repeatability is a prerequisite for an

experiment to be associated with a probability distribu-

tion. They would limit probabilistic inference to games

of chance, problems of social mass phenomena such as life

insurance, and mechanical phenomena such as the movement

Of molecules in a gas.2 A rebuttal against such criti-

cisms is that the formal inclusion of subjective factors

in the decision process is better than informal considera-

tion outside the statistical sampling model. As a minimum,

it provides written evidence of where information arose in

the event of a lawsuit or inquiry into the audit after the

fact. Another defense is that of usefulness. If one can

Obtain better results (in the sense Of more information

for the same cost or the same information for a lower

cost) through the application Of statistical principles

to one time only events, then one is in a more desirable

position using such tools than not using them.

When an auditor attempts to derive a prior dis-

tribution, it is imperative that he understand the

variance statistic and use it or a similar measure to

insure that his prior is not so clustered about a single
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point that other possibilities are excluded. In this

the traditional conservatism of an auditor may be an

asset because the use of a distribution with too small a

variance has the result of putting more information in

the prior than is justified by the supporting evidence.

This may expose the auditor to sanctions for not being

cautious enough in his work, while too large a variance in

the prior allows a margin of safety for the auditor. As

an auditor learns more about the use of statistics, he may

approach a smaller variance with less fear when he has

reason to justify the greater certainty implicit in such

a distribution. The auditor just beginning to use

Bayesian methods should be cautious to insure that any

errors made will tend toward larger than necessary sample

sizes.

Once it has been determined that Bayesian stat-

istics is to be used, there comes the problem of driving a

prior distribution that expresses the information avail-

able to the auditor before a current sample is taken.

Several approaches have been suggested. In one the audi-

tor lists error rates 0.00, 0.01, 0.02, 0.03,......, 0.98,

0.99, 1.00 and determines his "feelings" about the infor-

mation available to him by associating a probability

with each error rate in such a fashion that the sum of
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these 101 probabilities totals 1.00. Other approaches

use more or fewer possible error rates, and still others

utilize continuous distributions to reflect the prior

information available. Both continuous and discrete prior

distributions must be based upon available evidence. The

relationship between the audit variables and the selection

of priors is touched upon in the following section.

B. Audit Evidence and Prior Distributions

It has been shown3 that auditors are willing to

provide information about their feelings in an audit case

which can be used to construct probability distributions

adaptable to priors. One of these prior distributions can

be combined with the results of an audit sample using

Bayes theorem to produce a posterior probability distribu-

tion from which confidence intervals can be constructed

or tests of hypotheses can be conducted. A problem that

has plagued those considering the use of Bayesian stat-

istics in auditing has been the difficulty of translating

an auditor's feelings about the audit situation with which

he is faced into a statistical distribution usable in the

model.

The previously cited work with discrete distribu-

tions has required the precise listing of a number of
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sample points and the related probability of each. To

avoid a sacrifice of accuracy in the approximation, the

number of sample points must be large. This listing is not

an easy task for an auditor to undertake, and he is further

frustrated by the necessity that the sum of all the prob-

abilities totals l.00. Consistency is difficult to obtain

with such a method.

If continuous distributions are also considered,

however, the problem of creating a prior distribution from

the auditor's feelings is simplified considerably. Because

of the nature of continuous distributions, they are smooth

curves which may be plotted so that the auditor can com-

pare a specific curve with his feelings in a given situa—

tion. Once he has found a "picture" of the curve which

best fits his perceptions, the mathematical specifications

Of that curve may be noted and used as input to a computer

program or tables which have already solved the mathe-

matics involved.

An auditor attempting to construct prior distri-

butions must utilize information from his environment,

from the client's environment, and from within the client's

organization. Several audit variables from each of these

three categories were discussed in Chapter II. They vary

in applicability to Bayesian statistics.
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Information from the auditor's environment is

important in the derivation of meaningful prior distri-

butions. The auditor's general experience with this and

with similar clients aids in determining the variance

associated with prior distributions. Specific sample

results from other years' work papers provide an excellent

source of information about the likely rate in the current

year. Such information, it must be remembered, is only a

supplement to current test results, even though the infor-

mation contained therein is important.4 There are numerous

other audit variables from the auditor's environment, such

as the relative sizes of the auditor and client, which

provide some information useful in the determination of

prior distributions.

The client's environment is important to the

auditor. General economic conditions can determine whether

the client succeeds or fails. If the national economy

appears to be headed toward a depression, the auditor

may be less likely to rely upon information from prior

distributions derived in different economic circumstances.

There are many other factors, such as the absolute size

of the client, the industry, the legal form chosen by the

client, listing on stock exchanges, registration with the

Securities and Exchange Commission, and the mode of
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financing chosen by the client, which have some bearing

upon the risk faced by the client's owners and creditors,

and thus upon the risk that the audit results will be

challenged. Such information can be used in determining

the variance Of prior distributions and the resulting

weight contributed to the posterior by the prior distri-

bution and current sample results.

Information from within the client's organization

is especially important to the auditor attempting to derive

a specific prior distribution. If the client has an in—

ternal auditing staff, this fact, as well as the results

Of tests by the internal audit staff, can be very helpful

in determining rates which will probably be found in the

samples taken, and the variability to be associated with

the prior distributions. Other internal control factors

also contribute information useful in the derivation of

prior distributions. Finally, the auditor is interested

in facts about a specific area when making inferences

about that area. In deriving a prior distribution, he

needs information about such things as the materiality

of the items on the financial statements to which the

specific sample relates. Many more items of information

from the audit variables can be useful to the auditor in

choosing prior distributions for the audit, but is is not
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the purpose of this study to explore such items in depth.

In addition to being reflected in the prior, the

audit variables can be used in Bayesian statistics to

determine the confidence coefficient and interval limits

just as in classical statistics. This gives an additional

input to the model for such information. In general, a

smaller current sample size will be required with Bayesian

statistics to produce a given confidence coefficient and

interval limit as compared to classical statistics.

The ultimate decision as to whether Bayesian

statistics or classical statistics will be used in auditing

probably depends upon the ability of auditors to develOp

prior distributions. It was attempted, in this study, to

deve10p more feasible approaches to Bayesian statistics in

auditing than had before been prOposed. Although the pro-

cess of choosing a prior distribution in a Specific audit

situation is beyond the scope of this thesis, methods have

been suggested which may aid in that process. This area

is important to the development of Bayesian statistics in

auditing, and requires study beyond that which has been

devoted to the subject at this point in time.
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CHAPTER VII

CONCLUSION

A. Summary

The objective of an audit by an independent

accountant is to render an Opinion on the fairness of

financial statements prepared from the records being

audited. The Opinion must be based upon evidence ob-

tained by the application of auditing procedures. Audit

variables are the elements of an audit situation which

should be considered in the decision about Which proce-

dures to apply and how extensively they should be applied.

Some variables determine the minimum audit program and

others govern modifications to that program.

The auditor's objective is to obtain sufficient

evidence to justify an Opinion at the least cost. Non-

statistical methods, referred to as judgment sampling

methods, have been used since the early 1900's when audit-

ing changed from a check upon every transaction entered

in the accounting records to a sampling process. More

recently, classical statistics has also become commonly

89
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used in auditing to determine sample sizes and to construct

confidence intervals about attributes, among other uses.

Classical statistics as used by auditors is not

necessarily classical statistics. The difference lies in

the interpretation of confidence intervals. Classical

statistics considers pOpulation parameters, even though

unknown, as fixed. Auditors, however, typically make

statements about confidence intervals which refer to the

population parameter as an unknown, implying that it is

drawn from a group of possible values. This indicates

that a distribution of pOpulation parameters must exist.

Information about this distribution can be considered in

the Bayesian formula as a prior distribution and can be

used to make inferences about pOpulation parameters.

Bayesian statistics differs from classical methods

in that information from two sources (the prior distribu-

tion and the current audit sample) is combined into a

single distribution. Classical auditing statistics admits

only information from the current sample into the model.

The inferences made from classical auditing statistical

models approximate those arising from Bayesian methods

in which uniform prior distributions are used. Auditors

typically have information from prior audits, similar
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engagements, other audit tests, internal control evalua—

tions, and other sources which provide prior evidence about

attributes tests. This prior information would seldom

imply a uniform prior distribution, but instead would

indicate certain rates that are more likely to occur than

others. Auditors are taking larger samples than necessary

to the extent that they rely upon classical auditing

statistical methods when prior evidence indicates that

some possible rates are more likely than others.

Several articles have shown how Bayesian statisti-

cal methods utilizing discrete distributions can be applied

to auditing situations. Both the binomial and hypergeome—

tric distributions have been discussed. Little has been

said in the literature, however, about applications of

continuous probability functions to Bayesian audit

statistics.

Other fields of study, especially the natural

sciences, have found the normal distribution to be of value

in a wide variety of situations. When the normal distri—

bution is revised with Bayes formula, the posterior distri-

bution is sometimes very difficult to evaluate. There-

fore, it is not well suited to applications of Bayesian

statistics to auditing. A distribution which is adaptable
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to such uses is the beta. When a beta prior distribution

(continuous) is revised by Bayes formula and a binomial

sample (discrete), the result is always another beta dis—

tribution. This may be further revised by another binomial

distribution, if desired. The combination of continuous

and discrete distributions in this manner models the

typical attributes auditing sample.

Revision of a beta prior distribution by a bi-

nomial sample result with Bayes theorem requires only a

few addition and subtraction Operations. NO computer

or tables are necessary. This makes the technique feasible

for use by auditors who have had the necessary training,

and who have tables and graphs Of the prior and posterior

distributions. Although these are not currently available

to auditors, methods for producing the necessary tables

and sketches do exist.

To produce the tables required for the derivation

of confidence intervals from posterior beta distributions,

it is necessary to evaluate beta integrals. Such integrals

cannot be evaluated with the methods of calculus. They

can, however, be approximated to any desired degree of

accuracy with Simpson's rule for the approximation of

definite integrals. Even though this approximation is
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not practical if done by hand, modern digital computers

can perform the necessary calculations in seconds, at a

very low cost.

Some applications of Bayesian statistics have been

criticized because subjective probabilities were used. It

is argued that statistics should be applied only to situa-

tions that can be repeated a large number of times. Suffi—

cient justification for the use of such methods in the

analysis of one time only events exists, however, if the

application of these methods provides a basis for better

decisions at a reasonable cost. In addition, the formal

consideration of subjective factors in a statistical model

is preferable to informal consideration.

B. Relative Advantages of Various Distributions In

Applications of Bayesian Statistics to Auditing

If Bayesian statistics is to be used by auditors,

a decision must be reached as to which of the many stat-

istical distributions available best fits the auditing

situation and is most efficient in actual use. Discrete

distributions have been found less difficult for those

not trained in higher mathematics to use than continuous

distributions. But this study has shown that the actual

revision of a prior distribution by a sample result is
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less complex if a continuous prior distribution, the beta,

is used. Continuous distributions are also more exact

representations of the prior information available to

auditors.

In situations where discrete prior distributions

are used, it was discovered that the hypergeometric pro-

vides more information from samples which are large rela—

tive to the size of the pOpulation than the binomial

distribution. But this advantage was found to be out-

weighed if the sample was small compared to the pOpula-

tion size because of the additional complexity of

computations involving the hypergeometric.

The combination of a beta (continuous) prior

distribution and a binomial (discrete) sample result with

Bayes formula was found to closely fit the situation

found in attributes audit sampling. Once the prior has

been determined by the auditor and the sample taken, the

actual Operation of obtaining the posterior beta distri-

bution is easily accomplished in a few minutes by simple

addition and subtraction. This was not found to be the

case with situations in which discrete prior distributions

are used. If discrete priors are used, lengthy computa—

tions, generally involving a computer, are required to
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obtain the posterior in practical auditing situations.

Evaluation of the beta prior and posterior distributions

is the only difficult part of a Bayesian analysis using

beta prior and posterior distributions and a binomial

sample result. Graphs and tables of representative distri—

butions can be prepared in advance, which would make the

use of this technique feasible in actual auditing situa-

tions, even if no computer were available.

C. Conclusions
 

Judgment sampling was once relied upon almost

exclusively in auditing, but has been supplemented by,

and in some cases, replaced by, classical statistical

methods. Statistical methods provide more consistent

answers and are more readily defended in the event of a

challenge to the results of the audit than judgmental

methods. Some audit situations do not lend themselves

to statistical methods, due to the small size Of the

audit, or the organization of the records, and in such

cases judgmental methods should continue to be used.

It has been suggested that Bayesian statistics

may be used in some auditing situations. Discrete

distributions (the binomial and hypergeometric) have been

used in examples where Bayesian statistics was suggested
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for use in attributes audit sampling. Discrete distri-

butions are, however, unusable in practical auditing

situations. They are poor approximations of the contin-

uous range of possible values found in most audit attri-

butes samples. The derivation of specific discrete prior

distributions is difficult, because a number of points

must be assigned probabilities, and these probabilities

must total 1.00. Involved computations (many multiplica-

tion and division Operations) are required for the solu-

tion of any practical problem using discrete prior dis-

tributions and Bayesian statistics. This would require

a computer and a means for getting information about the

prior and current sample result into the computer without

error. These are usually not available in the field. At

this time auditors have not adOpted these methods, even

though such methods have received rather wide exposure

in the literature.

Bayesian methods using a beta prior distribution

can overcome most of these difficulties. Such a distri—

bution is continuous, and therefore fits the large number

of possible pOpulation error rates better than does the

discrete model. Visualization of the priors is easier

because continuous curves can be drawn (plotted on a
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computer). Sketches of representative distributions can

allow an auditor to quickly pick the specific prior he

wants and write down the numeric parameters of that

distribution. Tables of statistics (mean, mode, variance,

etc.) can be prepared for these representative distribu-

tions.

The revision Of a beta prior by a binomial sample

result is not difficult. Once this has been done, the

auditor can refer again to his tables for a sketch of the

posterior distribution (or a very similar one) and for

statistics he wishes to know for that distribution.

Another set of tables can give confidence intervals from

that distribution (one sided or two sided) at several

confidence levels. What would have taken considerable

computer time with a discrete prior distribution is

quickly taken care of with this method by using a few

tables in a book and a quick addition and subtraction

Operation.

This study has attempted to help convert an

infeasible technique with a great deal of potential into

a method feasible for use by auditors. It has been

limited in several respects, however. NO attempt was

made to discuss variables sampling in auditing. A
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proposal was made suggesting the use of a continuous

prior distribution in auditing applications of Bayesian

statistics. For this it was necessary that tables and

sketches of representative beta distributions be deve10ped.

These were restricted to illustrative models. Additional

resources would be necessary to the develOpment of complete

sets of these tables and sketches.

D. Suggestions for Further Research

More questions arose during this study than could

possibly be answered by this project. One area yet Open

for investigation is the application of Bayesian statisti-

cal methods to variables sampling. In addition, there

are numerous statistical distributions and combinations

of distributions which may prove applicable to auditing

applications and have not yet been investigated.

Some studies have been done which used Bayesian

statistics with discrete prior distributions in "real

world" audit situations. Much can be learned by more

studies of this type, especially where applications of

classical statistics and Bayesian statistics utilizing

various distributions are compared.
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The derivation of prior distributions from evidence

available to the auditor is an area about which little is

known. Studies drawing On the behavioral sciences are

needed to make prior distributions in Bayesian statistical

applications more meaningful to auditors. Comparisons can

also be made between the various types of discrete and

continuous distributions used as priors to determine the

relative efficiency of each in arriving at correct deci—

sions from the information available to auditors.

Finally, it would be helpful to have information

as to how some Of the many audit variables fit into the

Bayesian model. This could provide insight as to the

types of audit situations in which judgmental sampling,

classical statistics, and Bayesian statistics are most

applicable.
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APPENDIX A

BETA DISTRIBUTION TABLES

Table l Of this Appendix gives statistics of

selected beta distributions. The mode, mean, and vari-

ance of each distribution are shown. If explanation is

necessary, any introductory statistics discusses these

measures.

Also shown are the parameters a and p , and

their sum. The sum ov+p roughly corresponds to the sample

size that would be required if the beta distribution were

derived from a sample, while the value of<x roughly corres-

ponds to the number of errors found in that sample.

Tables 1, 2 and 3 of this appendix give approx—

imations of the value of selected beta integrals eval—

uated from 0 to the point shown along the tOp of the

table. These were found using Simpson's rule for the

approximation of definite integrals. The computer programs

are shown in Appendix D, while Simpson's rule is discussed

in Appendix E.
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APPENDIX B

SKETCHES OF BETA DISTRIBUTIONS

Plots of selected beta distributions are shown

in this Appendix. Certain statistics related to each

of the curves shown here were given in Appendix A.

Two curves, with the same mode, are shown on each

plate. The error rate corresponding to the highest point

on each of the two curves is the same. indicating they

share the same mode.

These plots were done by the CDC 3600 computer in

the Michigan State University Computer Center. The

actual program, written in the FORTRAN IV language, is

shown in Appendix D.
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APPENDIX C

REVISION OF A BETA PRIOR DISTRIBUTION BY

A BINOMIAL SAMPLE RESULT

Given the prior distribution with mean, mode,

variance, etc. chosen to reflect a belief about the under-

lying pOpulation parameter 9, and expressed as

_ “-1 B-1 001
139(0) _. C19 (1-0) pm

where C1 is chosen so that

l (K-1 -1

Cl J6, 0 (1—9)8 d9 = 1

then the prior distribution can be revised using the re-

sults of a sample of n items, x of which were errors.

_' n x _ n-x

fX|9(X19)—-(X)9 (1 9)

The joint (unconditional) distribution of X and 9

is simply the product

fX 9(x,0) = fx|9(X\9)f9(9)
I

__ OK-l _ fl—l n x _ n-x
fX,Q(X'9) _. C19 (1 9) (X)9 (l 9)

__ n OH-X-l B+n-x-l

The margional density of X can be found by inte-

grating the joint density fX e(x,9) over the range of 9

(O to l).
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lll

fx(X):: /fX 9(X.9) d9

Range

of 9

—_- l n 06+X-1 _ 3+n-x-1
A cl(x)0 (1 0) d9

:0 (n) 10“+X’1(1-9)B+n_x’ 100
l x O

The posterior function f9lX(elX) is found by divid-

ing the joint distribution by the margional distribution.

f .x 9(X 9)

fg‘XWIX): fx(x)

 

C1 (:2) e«H-x-l (1_9)A+n-x-1

r1 *1;q+x—1 B+n—x41

(21(x)/O 9 (1-9) d9

eu+X-l (1_e) 3+n-X’l

‘/019“+X-1(l_9)fl+n-X‘ld9

However, the denominator is a definite integral, equal to

a constant, C2.

c2 :.-. [019“+X'1(1-9)3*“’X'1d9

._ F (OH-x) Fig +n—XL

I r“ (096”!)

Since we wish the integral (cumulative distribution

function) of the revised distribution to be equal to 1

over the range (0,1)

1 _ _ _

[1 —— 0‘“+X 1(1-0)’Mn X 100 2 1
0 c2

then C3 may be set equal to %— and

2
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OHx-l __ B+n—x-—l
fglxwlx) -_-. c 9 (1 e)

3

which is another beta distribution, with parameters

o('= d-i-x-l

(3': fl+n-x-l.





APPENDIX D

COMPUTER PROGRAMS

This appendix contains the computer programs

used to produce the beta distribution tables in Appendix

A and the plots in Appendix B. All programs were written

in FORTRAN IV. The plotting program was run on the

Michigan State University CDC 3600 machine, while the

other routines were run on the CDC 6500. These programs

are given here for reference only since certain software

features used are not commonly available on other machines

and changes would be necessary before they could be run

on most other computers.

This set of programs was written as a group.

Program TABLE computes statistics for a beta distribution

with various modes and with A+B (ddfi) of either 10 or 100.

It punches a deck of cards, one card for each mode and

A+B combination, which gives A, B, and the constant c for

the basic beta distribution formula discussed in Chapter V.

In addition, TABLE prints a table of statistics giving

the mean, mode,and variance of each distribution. The main

program determines A, B, and the mode. Subroutine WORK

computes the mean and variance of that function and prints

113
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the table. Subroutine SIMPSON uses the Simpson rule for

the approximation of definite integrals to find the con-

stant of integration, c, which will make the value of the

integral over the range X30 to X=l equal to 1.00. Sub-

routine ONE finds the Y value of the beta function at each

specific X value called for by SIMPSON.

Program TABLE and its subroutines follow on the

next three pages.
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Program PLOTIT uses the cards punched by TABLE

as input data and directs a routine on file in the Michi-

gan State University Computer Program Library to plot the

curves in Appendix B. One plot is produced for each run

of the program and several curves may be plotted on the

same set of X and Y axes by running the apprOpriate in—

put data cards together in one run. PLOTIT first initial-

izes the plotter pointer, then directs the drawing of the

X and Y axes, and finally computes and plots the apprOp-

riate X and Y values for the beta curve determined by the

A, B,and C values found on the input card being read. The

last call to PLOT prepares the plotter mechanism for the

call of the next user.

Program PLOTIT appears on the following page.
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TABLE 6. COMPUTER PROGRAM I'PLOTIT"

FDCTFQ -LOTIT

9“ FORMAT (?F10050F40020)

1? ”FA” PQOAORQC

-- Is—+Foswsfi+—Ienwss--—ww~—~

QR C=lOoO**C

——~»~*-_mCALt*PLOTlhufiqfioOoOQIOU“!100000,

CALL pLOT(OOOO‘loO0?)

~u-~-—-~CALL~PLOTI01010.0.0I -----

X3000

 

 

-——————-——69—+¢6—+k$%w¢

XAalA

-"*"—*"‘"~X:XAfau0M“-"“_—m-L~

CALL PLOTIanoXol)

' fiALtrpLOTtnafitXrtium-m“"*

140 CALL PLOTIOoOoXot)

 

 

‘—————————€&tb—Pt9¥+91fiTfivfiT+}v ~*"

Y=OOO

60‘145MIHtrTIO““ ”"”

X9218

-.- ¥=YF§HOofi—m-—————--- --- -~ —- -' --

CALL PLOT(Y900091)

 

 

cast 9L9¥+¥T910+ff§——mwmm‘”—*"”“‘ 

1a: CALL PLOTIYQOOOCII

“~W"-_~-~CALL PLOTIOOOIOOOol)-

DO ISO 1:! 100

‘---'-<-~-~-—XI=I--~ *- - ~ -* “I

x=xI/Innon

_.___—————¥:€#+y4&+a-}1eq+%I(1.0-X)**IB-Io0)I

1%" CALL pLOT(Y9X01’

-~cntt—9L0ch.x;2>-ww~sww-ww‘w

CALL PLOTIT"00009-1,

“—"“‘"”“GO"TO37"" ’ “

Inn CONTINUE

' ‘ffifi‘ ”'“‘
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Program VALUE computes an approximation of the

definite integral of the beta function discussed in Chapter

V. The value of A, B,and C are gathered from punched cards

previously prepared by program TABLE. The main program in

VALUE reads this data, converts C from its lOgarithmic

 

value and prints the values determined by the subroutines. f

Subroutine SIMPSON uses the Simpson rule for the approxi- ;

mation of definite integrals to find the integral value.

Subroutine ONE computes the Y value for a given X value b

for the parameters A, B,and C read in by the main program.

The approximations are not perfect. They could be made

better by dividng the X axis into more than the 100 parts

which SIMPSON uses. This would, however, require addi-

tional computer time which should be weighed against the

added accuracy. The effect of this approximation may be

noted as xl approaches 1.0 under the smaller modes in the

last table in Appendix A. It can be seen that the approx—

imation to the value of the integral reaches a peak and

then decreases slightly before xl=l.O. If two place

accuracy were sufficient for the purposes at hand the

accuracy here obtained should suffice; however, more

computer time would be required for greater accuracy.

The following two pages contain program VALUE.
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APPENDIX E

EVALUATION OF INTEGRALS NOT SOLVABLE BY NORMAL MEANS

In order that statements may be made about the

probability of the result of an experiment represented

by a beta distribution it is necessary to evaluate defin-

ite integrals of the form

f _. _

p(d<x<f): ,j; ex“ l(l-x)g ldx.

Unfortunately, the calculus does not provide a general

method for handling such functions. However, any definite

integral can be considered as a series of areas, and the

value of the integral approximated by any method which

approximates the area. Simpson's rule for the approxima-

tion of definite integrals takes advantage of this fact and

approximates the value of the integral by summing the areas

of many small slices which themselves approximate small

parts of the integral. It divides the width of the

integral into n equal parts, each of width h::.%. The area

is bounded on the left by x0 and on the right by Xn' with

the ”inside" broken up by x1, x2, ...... Xn—Z' Xn—l' At each

x point the apprOpriate vertical distance from the x axis

to the curve is computed; yo, yl, ..., Yn-l'yn' The approx-

imate value of the integral is found by the formula
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_ h
1

As" 3 [y6r4yI+2y2+4y3+2y4+ .....+2yn_2+4yn_ffyn].

This formula can be used to advantage in finding the approx-

imate value of beta integrals which can not be directly

computed by the usual techniques. In general, the larger

the number of sections into which the area is divided, the

better the approximation will be. For smooth curves such

as the beta which do not have sharp peaks the approxima-

tion is quite good with a rather small number of divisions

(say 20) and approaches the actual value rapidly as the

number of divisions gets larger. With the digital com—

puter, division of the integral width into 100 or 1000 parts

for computation is easily accomplished and provides accuracy

far beyond the needs of general audit use.

 

1George B. Thomas, Jr., Calculus and Analytic

Geometry (Addison-Wesley, Reading, Massachusetts, 1968),

p. 309.

 



SELECTED BIBLIOGRAPHY

 



   

l
u
l
l
-
h
u
l
l
.

.
.
.
H
u

I
4
1
:

 



SELECTED BIBLIOGRAPHY

Reference Works
 

Arens, Alvin A. "The Adequacy of Audit Evidence Accumula-

tion in Public Accounting." Unpublished Ph.D.

dissertation, Graduate School of Business, Univer-

sity of Minnesota, 1970.

Arkin, Herbert. Handbook 9f_Samplinq for Auditing and

Accounting, Volume I, Methods. New York: McGraw-

Hill Book Company, Inc., 1963.

 
 

 

Bookkeepers' Handy Guide. New York: The Ronald Press

Company, 1936.

  

Committee on Auditing Procedure of the American Institute

of Certified Public Accountants. Auditing Stan-

dards and Procedures. New York: AICPA, 1963.

 

 

Corless, John C. "The Assessment of Prior Distributions

for Applying Bayesian Statistics in Auditing Situa-

tions." Unpublished Ph.D. dissertation, Graduate

School of Business, University of Minnesota.

Larson, Harold J. Introduction 32 Probability Theory and

Statistical Inference. Monterey, California:

John Wiley and Sons, 1969.

 

 

LaValle, Irving H. ‘Afl Introduction £9 Probability, Deci-

sion, and Inference. New York: Holt, Rinehart

and Winston, 1970.

  

  

Mautz, R. K. and Sharaf, Hussein A. The Philosophy 9f

Auditing. Evanston, Illinois: American Account-

ing Association, 1961.

 

 

Mendenhall, William. Introduction £9 Probability and Stat-

istics. Belmont, California; Wadsworth Publishing

Company, Inc., 1967.

 

125

 



126

Schlaifer, Robert. Introduction :2 Statistics for Business

Decisions. New York: McGraw—Hill Book Company,

Inc., 1961.

 
 

 

The Study Group On Introductory Accounting. A_New Intro—

duction 32 Accounting. Seattle, Washington:

Price Waterhouse Foundation, 1971.

 

 

Thomas, Jr., George B. Calculus and Analytic Geometry.

Reading, Massachusetts: Addison—Wesley Publishing

Company, 1968.

  

Von Ness, Richard. "Probability: An Objectivist View,"

Elementary Statistics for Economics and Business.

Edited by Edwin Mansfield. New York: Norton, 1970.

 

Periodical Literature
 

Anderson, H. M., Giese, J. W., Booker, Jon. "Some PrOpo-

sitions About Auditing", The Accounting Review,

July, 1970.

  

Fisher, Sir Ronald. "The Nature of Probability,” The

Centennial Review, Summer, 1958.
 

Kraft, William H. "Statistical Sampling For Auditors: A

New Look," Journal gf Accountanqy, August, 1968.
 

Mautz, R. K., and Mini, Donald L., "Internal Control

Evaluation and Audit Program Modification," The

Accounting Review, April, 1966.
 

Sorensen, James E. ”Bayesian Analysis In Auditing", The

Accounting Review, July 1969.
 

Tracy, John A. "Bayesian Statistical Confidence Intervals

For Auditors," Journal 2: Accountancy, July, 1969.
 

Tracy, John A. "Bayesian Statistical Methods in Auditing,"

The Accounting Review, January, 1969.
 

 



 
 



       

   

   

 

TYLBR

MIWWMIWIWW! HUN
3 119 3 0 3 0 5 6 6420

Ill”   

 


