FACTORS AFFECTING THE DIFFERENTIAL TOLERANCE OF TREE SPECIES TO HERBICIDES, PRIMARILY SIMAZINE

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
Fred Wesley Freeman
1963

THESIS

This is to certify that the

thesis entitled

FACTORS AFFECTING THE DIFFERENTIAL TOLERANCE OF TREE SPECIES TO HERBICIDES, PRIMARILY SIMAZINE

presented by

Fred Wesley Freeman

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Forestry

Major professor

Date February 19, 1963

0-169

LIBRARY Michigan State University

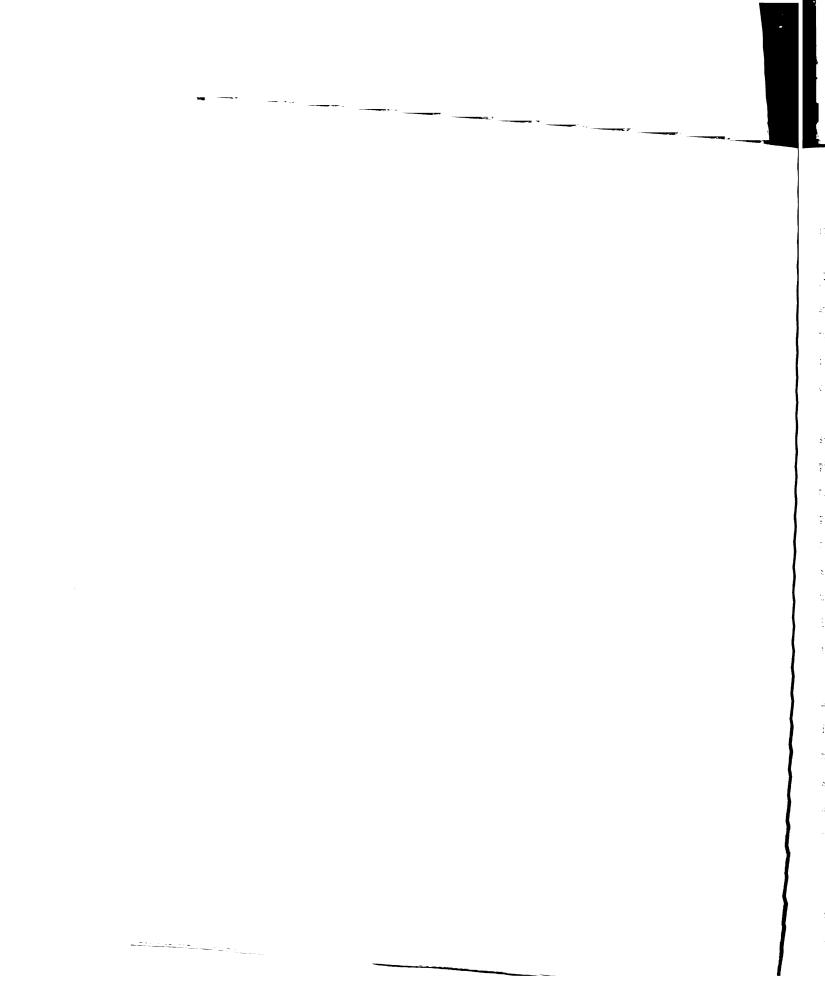
:r.

ABSTRACT

FACTORS AFFECTING THE DIFFERENTIAL TOLERANCE OF TREE SPECIES TO HERBICIDES, PRIMARILY SIMAZINE

by Fred Wesley Freeman

Weed control in nursery management is the most laborious and expensive part of the total operation. Although chemical weed control has been practiced to some extent in the past, field evaluation and basic research are not keeping pace with the large number of new weed control agents being placed on the market. The rapidly developing chemical weed control era in agricultural crops can also be adapted, with proper research and field appraisal, to controlling weeds in woody nursery stock.


The first phase of this nursery weed research, carried on in the Bogue Forest Nursery at East Lansing, Michigan, compared some of the newer soil fumigants and organic herbicides with those used in the past. Duration and thoroughness of weed control and extent of injury to germinating coniferous seedlings were recorded and analyzed during the growing season. Of the eleven different herbicides and soil fumigants tested, alone and in combination, simazine gave the best weed control over the longest period of time. Injury to the seven species of conifers used as test plants was severe with 2-chloro-4.p-bis(ethylamino)-s-triazine (simazine) treatments. White pine showed the greatest tolerance. 4.o-dinitro-o-sec-butyiphenol, amine salt (DNBP) gave good weed control during the early growing season and caused a minimum

7

amount of damage to young seedlings. The results obtained with DNBP indicate that additional testing of this herbicide is warranted.

Further investigation of simazine rates and placement was made in greenhouse experiments with both conifers and hardwoods. White pine again proved to be more resistant to simazine than all other conifers tested. While all conifers except white pine were killed within five weeks after germination by both the 4 and 8 pound treatments, red, white, and bur oak were not damaged by any of, the treatments. Surface applications were far less damaging to honeylocust and white pine than treatments in which simazine was mixed with the upper inch of soil.

Theorizing that the species most resistant to simazine. such as white pine and the oaks, extended their roots below the zone of high herbicide concentration more rapidly than the easily killed species, root elongation studies were made to check this point. It was found that the roots of white pine did not elongate any faster than those of simazine-susceptible Scotch and red pine. However, the roots of bur oak moved 0 inches deep in only 15 days. With the oaks, the maximum absorbing area of the root apparently moves quickly below the zone of high simazine concentration. Additional studies compared simazine toxicity symptoms of oak seedlings whose root systems were confined to the upper 3 inches of soil with those of normal growing plants. Results substantiate the belief that a good part of the tolerance in oaks is due to the root growth habit of the plant rather than

its inherent physiological makeup.

A third study was set up to investigate, by use of c¹⁴-labeled simazine, the wide difference in tolerance of red and white pine to simazine. In addition, the effect of the mycorrhizal relationship associated with these two pines was investigated. Two radioassay procedures, autoradiography and counting of plant parts, were used.

Results of this study showed the total uptake of simazine to be approximately equal for both red and white pine. The needles of red pine, however, contained approximately three times the amount of C¹⁴ as the needles of white pine. In white pine the simazine is concentrated more heavily in the roots of the seedlings, while distribution of simazine or its degradation products in red pine is fairly uniform throughout the plant. Since simazine kills by blocking the Hill reaction during photosynthesis, the reason for the greater tolerance exhibited by white pine seems evident.

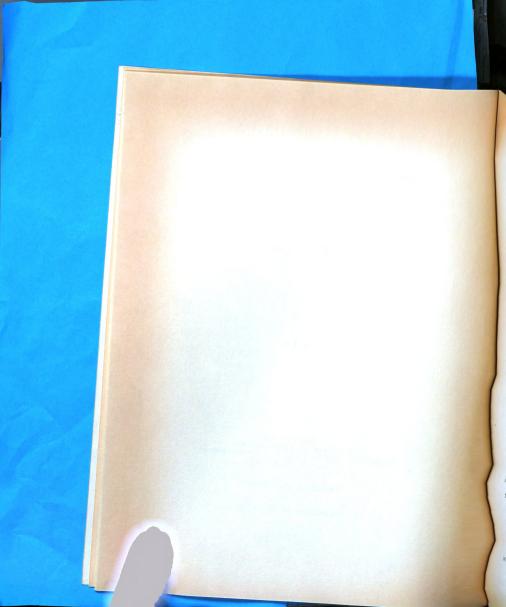
At the time of radioactive treatment, mycorrhizae had advanced only into the initial stage of development on the inoculated seedlings. Even at this early stage of development, however, the inoculated white pine seedlings contained significantly less radioactive material than the noninoculated white pines. In fact, counts of noninoculated plants were more than double those of inoculated plants.

No apparent differences were noted in simazine uptake between inoculated and noninoculated red pine. The mycorrhizal relationship either had no effect on simazine uptake with this species or perhaps develops slower on red pine and therefore had, not reached a stage where it could influence uptake.

FACTORS AFFECTING THE DIFFERENTIAL TOLERANCE OF TREE SPECIES TO HERBICIDES, PRIMARILY SIMAZINE

Ву

Fred Wesley Freeman


A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Forestry

1903

ACKNOWL EDGMENTS

The author expresses his deep appreciation to the many persons responsible for the successful completion of this study.

The Graduate Committee have given generously of their time and special skills, enabling the writer to combine all phases of the research into this final form. My sincere thanks to: Dr. Donald P. Watson, Professor of Horticulture. who encouraged me to begin work on this degree, arranged for the necessary leaves of absence and insisted on early completion of language requirements, a stumbling block for so many graduate students. Dr. Stanley K. Ries. Associate Professor of Horticulture, who first aroused my interest in chemical weed control and gave much thought, time, and equipment toward completion of the early stages of investigation. Dr. Jonathan W. Wright. Associate Professor of Forestry. whose assistance with design of experiments. program planning. and techniques of field scoring have been most helpful and time saving. Dr. Martin J. Bukovac. Associate Professor of Horticulture, who gave generously of his time in guiding me through the radioassay procedures performed at Hidden Lake Gardens and on campus.

Special thanks are due Dr. Donald P. White. Associate Professor of Forestry and chairman of the Graduate Committee. who closely supervised the development. organization, and

àï,

Wo

writing of the complete study. At Dr. White's suggestion and with his assistance, the phase of the study dealing with the mycorrhizal relationship was developed.

The writer is grateful to the Geigy Chemical Corporation of Ardsley. New York, for their contribution of ${\rm C}^{14}$ -labeled simazine.

An expression of gratitude is also due my wife, Jeanne, and the children, whose patience, understanding, sacrifice, and encouragement contributed much to the completion of this work,

To these and to all others who have contributed to this work but have not been mentioned, \boldsymbol{I} extend my thanks.

Fi:

du;

Fi.

ľ:

ira

L_Xp.

 $V_{i_1\cdots i_r}$

44.

VITA

Fred Wesley Freeman

Candidate for the Degree of Doctor of Philosophy

Final Examination: February 10, 1003

Dissertation: Factors Affecting the Differential Tolerance of Tree Species to Herbicides, Primarily Simazine

Outline of Studies:

Major subject: Forestry

Minor subjects: Horticulture, Botany

Biographical Items:

Born' August 27, 1024, Logan, Ohio

Undergraduate Studies:

Ohio University, 1940-1947

Michigan State University, 1947-1949

B.S. Forestry, 1949

Graduate Studies:

Michigan State University, 1950-1951 M.S. Forestry, 1951

Michigan State University, 1957-1903

Ph.D. Forestry, 1903

Experience:

Soil Scientist, Bureau of Reclamation (Bismarck, North Dakota), 1950; Ranger, Ohio Division of Forestry (Hocking State Forest). 1951-54; Forester. Ohio Division of Forestry (Athens. Ohio). 1954-55; Horticulturist. Michigan State University (Hidden Lake Gardens). 1955-01; Curator & Assistant Professor, Michigan State University (Hidden Lake Gardens), 1901 to date.

Member:

Society of American Foresters American Society for Horticultural Science American Association of Botanical Gardens and Arboretums

Xi Sigma Pi

Awards:

Fellowship in Horticulture awarded by the English Speaking Commonwealth and the Garden Club of America.

TABLE OF CONTENTS

Chapter		Page
Ι.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	4
	Comparison of s-triazines	o
	Plants	8
	the s-triazines	10
	of Simazine	11
	Microorganisms	14
	Plant	17
III.	METHODS AND PROCEDURE	20
	Comparison of Several Soil Fumigants and Herbicides in Nursery Seedbeds	20
	Weed Control Ratings	24
	Tree Seedling Injury Ratings	25 25
	Results and Discussion	25
	Weed Control	25 33
IV.	TOLERANCE OF SEVERAL HARDWOOD AND CONIFEROUS SPECIES TO SIMAZINE TREATMENTS	38
	Seedling Survival and Analysis Root Elongation	41 41
	Results and Discussion	4.2
	Seedling Survival	42 40
٧.	THE UPTAKE AND DISTRIBUTION OF C ¹⁴ -LABELED SIMAZINE OR ITS DEGRADATION PRODUCTS IN MYCORRHIZAL AND NON-MYCORRHIZAL RED AND WHITE PINE SEEDLINGS	5.3
	MILLE LINE OLLDELINGS	20

chapter	Page
Description of Growing Chamber and Growth Medium Treatment with Radioactive Simazine Autoradiograms and Counting Statistical Analysis	53 50 58 58
Results and Discussion	50
Autoradiograms	59 01
VI. SUMMARY AND CONCLUSIONS	07
LITERATURE CITED	7.2
APPENDIX	79

LIST OF TABLES

Table		Page
1	Weed control treatments used in nursery seedbeds	22
2	Tree species used in nursery weed control experiment	23
3	Mid-June weed control	28
4	Mid-July weed control	29
5	Mid-August weed control	30
0	Survival index of tree seedlings in the nursery weed control experiment	34
7	Percentage of seedlings remaining alive under DNBP and s-triazine treatments in mid-July	30
8	Tree species used in greenhouse simazine experiment	40
Q	Duration (weeks) of seedling survival under various simazine treatments	44
10	Mean counts of \mathbf{C}^{14} in red and white pine	01
11	Counts of \mathbf{C}^{14} in roots, stems, and leaves of red and white pine seedlings	ь3
12	Counts of \mathbf{C}^{14} in inoculated and noninoculated white pine seedlings	64
13	Distribution of \mathbb{C}^{14} in red and white pine (percentage basis)	64
14	Percentage of \mathbb{C}^{14} in leaves and roots of red and white pine	0.5

LIST OF FIGURES

Figure		Page
1	General view of Bogue Forest Nursery showing location of study on soil fumigants and herbicides in nursery seedbeds	21
2	Weed population in nursery seedbeds \dots	27
3	Extremes in weed control at six weeks after treatment	31
4	Layout of greenhouse experiment testing tolerance of several hardwood and coniferous species to simazine treatments	. 39
5	Tolerance of honeylocust and bur oak to various simazine treatments at 3 months after application	45
Ö	Root elongation of Scotch pine at 3 weeks after germination	47
7	Root elongation of red pine at 3 weeks after germination	48
8	Root elongation of white pine at 3 weeks after germination	49
C)	Root elongation of bur oak at 15 days \dots	50
10	Bur oak seedlings 10 weeks after treatment with 4 pounds per acre simazine. Autoradiogram of bur oak 5 weeks after treatment with 3 pounds per acre radioactive simazine	51
11	Polyethylene greenhouse used for growing inoculated and noninoculated red and white pine seedlings	54
12	Application of radioactive simazine treatments	57
13	Autoradiograms and seedling photographs of red pine	00
14	Autoradiograms and seedling photographs of white pine	62

LIST OF APPENDICES

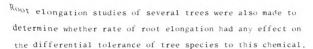
Appendix		Page
1	Self-absorption curve	79
2	Listing of common and chemical names of herbicides and soil fumigants mentioned in the text	80
3	Total weight, total counts per minute, background counts per minute, corrected counts per minute and adjusted counts per minute for red and white pine seedlings	81

CHAPTER I

INTRODUCTION

Chemical weed control is a relatively new field in agriculture which has received much stimulus since the end of the second World War. The majority of the work done in this field has been in connection with agricultural food crops. Chemical control of weeds in woody plant nurseries has developed slowly because of complications arising from the wide variety of plants grown on a small acreage, differences in the age of plants and by the fact that these plants are perennials which may remain in the same location for several years. Because of varied growth habits and inherent differences in their physiological makeup, plants often react quite differently to the same herbicide, thus precluding one treatment over a very sizable area. In addition, the perennial nature of the plants necessitates application of herbicides on the same acreage in successive years. Repeated applications may not allow time for complete breakdown of the herbicides. resulting in build up of chemicals in the soil to levels toxic to nursery stock.

As with many other products, the demand for nursery stock has increased more rapidly than the techniques of production. Aroused public interest in conservation has tended to increase the use of forest species by state, federal, and private landowners in reclaiming submarginal agricultural



land. In addition, the trend toward suburban living has enlarged the demand for both forest and ornamental transplants. Thus number and size of nurseries has grown steadily over the years to meet the demand of the public. Since chemical weed control research in nursery management has been very limited, manual methods of weed control have continued as an expensive and laborious operation. Another facet of the problem which often goes unnoticed is the production and use of coniferous stock for forest plantations, when in some instances hardwoods would be more desirable. This has been brought on by the necessity for almost complete hand weeding of hardwood seedbeds, while some of the weed population in conifers can be taken care of with petroleum and mineral spirits. Poor survival of hardwoods in forest plantations. due largely to weed competition, has also restricted their use.

Holm (1058) sums up our stage of advancement in chemical weed control practices with the statement. "The great potential of modern methods of chemical weed control in nurseries awaits both intensive basic research and continued field testing."

The initial phase of work in this investigation was designed to compare the weed control capabilities of several soil fumigants and herbicides and the effect of these weed control agents on germinating coniferous seedlings. The most promising chemical, simazine, was then investigated in more detail. Simazine was first screened against a wide variety of tree seedlings at different rates and depths of placement.

The final phase investigated, by use of ${\rm C}^{14}$ tracer techniques, the uptake and distribution of simazine in white pine which is relatively resistant to simazine and red pine which is easily killed by this chemical. Red and white pine seedlings, both with and without mycorrhizal inoculation, were used.

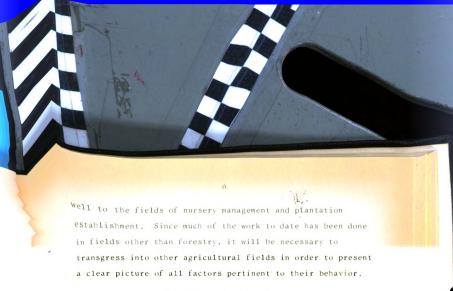


CHAPTER II

REVIEW OF LITERATURE

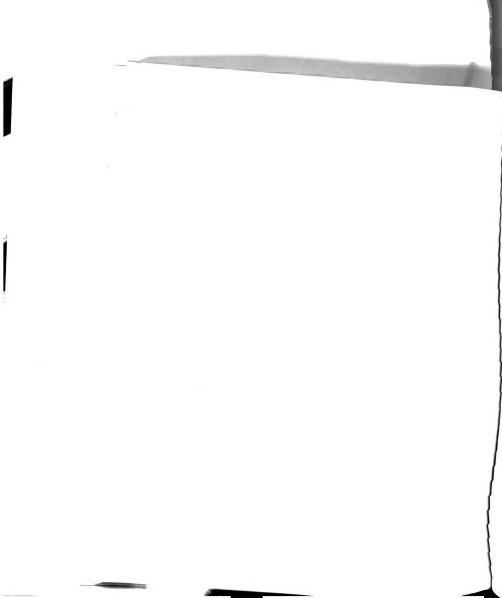
It has been estimated that losses to agricultural lands from weeds alone amount to almost four million dollars annually (Klingman, 1001). If losses to utility companies, highways, public recreation areas, and industrial sites were included, the figures would become even greater. The relative newness of chemical weed control is attested to by the fact that in 1055 there were only 125 federal, state, and industrial researchers and 8 state extension workers engaged in weed control work, whereas, in 1000 the Weed Society of America had over 500 active members and regional weed control conferences were meeting annually in four different sections of the United States. While some work was done in the early 1000's, the really big advance came with the advent of 2.4-D in 1941.

Early weed control practices in forest nurseries were largely confined to hand weeding, mulching, or mechanical cultivation where space was adequate. Poisonous gases and steam sterilization, where feasible, were also commonly used before 1950 for fumigation of seedbeds. Chemical control in coniferous seedbeds during this era, and to a great extent now, was accomplished with repeated applications of petroleum spirits and mineral spirits. Holm (1958) reports that organic chemicals were first tested for nursery weed control


5

in the Lake States Region in 1050. For example, trichloroacetic acid (TCA) was used as a pre-planting soil treatment
for control of perennial grasses and subsequently 2.2-dichloropropionic acid (dalapon) and maleic hydrazide also proved effective for grass control. Sodium 2.4-dichlorophenoxyethyl
sulfate (sesone) was probably the most commonly used herbicide until 1053 at which time the urea herbicides came into
usage, both alone and in combination with sesone and dalapon.
Recently, many of these different organic chemicals have
been tested in new forest plantations with promising results
(White, 1002).

Kozlowski (1000) reports that hand weeding costs in forest nurseries are as high as \$1,380.10 per acre while Taylorson and Holm (1058) cite a saving of \$450 per acre over hand weeding of coniferous transplants by use of 3-(p-chloropheny1)-1. 1-dimethylurea (Monuron) and 2.4-dichlorophenoxyacetic acid (2.4-D). In work carried on by Havis (1001). 2-chloro-4. o-bis(ethylamino)-s-triazine (simazine) applied during spring at 2 pounds per acre to lining-out beds with a repeat application in midsummer, required only one hand weeding during the season compared to six had weedings for the check.


One of the newer groups of herbicides is the s-triazines. Considerable screening and some basic research has been done with simazine and atrazine, two of the more commonly used chemicals in this group. Their selectivity and long residual action are desirable traits which lend themselves

Comparison of s-Triazines

Many investigators (Friesen, 1958), (Peters, 1957), (Taylorson and Holm, 1958), (Trevett and Burnham, 1957), (Vengris, 1957) have proclaimed the excellent weed control obtained with simazine when compared with other herbicides. This exceptional weed control is certainly due in part to the long residual action of this chemical (Switzer, 1958). Ries and Watson (1957) and Taylorson and Holm (1958) found that when simazine was applied at the rate of 4 pounds per acre to lining-out stock, weeds were satisfactorily controlled throughout the entire growing season. No11 (1900) and Talpert and Fletchall (1959), like most investigators, rate 2thloro-4-ethylamino-o-isopropylamino-s-triazine (atrazine) equal. to simazine for weed control. Schneider (1959) reports that deep rooted weeds, such as velvetleaf (Abutilon Theophrasti Medic.) are more sensitive to atrazine than simazine, probably because of the higher solubility of the former and for this same reason atrazine acts a little faster than simazine. On the other hand, simazine gives longer control of barnyard grass (Echinochloa crusgalli L.), several species of Panicum and crabgrass (Digitaria sanguinalis L.)

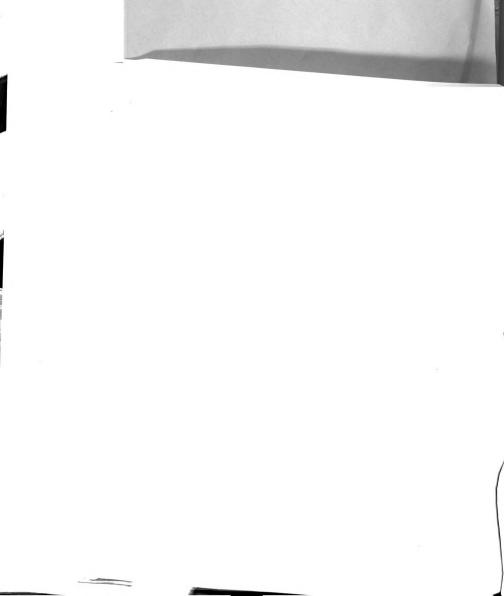
because of its lower solubility. Since atrazine does have Value as a contact herbicide, it can be used on young weeds while simazine must be used as a preemergence treatment.

Lovely (1958) found granular formulations of simazine as effective as spray formulations. Fletchall and Schweiss (1959), however, harvested 350 pounds of weeds per acre from a granular application, compared to 50 pounds per acre from a liquid application. Unpublished work by the writer also shows superior weed control from a wettable formulation.

Probably due to limited testing and different weed populations, there is much disagreement among researchers as to the herbicidal activity of many of the other triazine derivatives. It is generally agreed that 2-chloro-4-diethylamino-o-ethylamino-s-triazine (trietazine), 2-chloro-4-diethylamino-o-isopropylamino-s-triazine (ipazine) and 2-chloro-J.o-bis (diethylamino)-s-triazine (chlorazine) are among the least active of the more common derivatives. yet Talbert and Fletchall (1050) achieved 01 percent weed control with ipazine and trietazine compared to 05 percent control with the same rate of simazine. Havis (1901) rates 2-chloro-4.o-bis (isopropylamino)-s-triazine (propazine) equal to simazine for weed control, 2-methoxy-4,0-bis(ethylamino) s-triazine (simetone) is rated slightly less effective by Jansen et al. (1957), while 2-methoxy-4.o-bis(isopropylamino)s-triazine (prometone) and 2-methoxy-4-ethylamino-o-isopropylamino-s-triazine (atratone) are rated by No11 (1900) as having an activity intermediate between simazine and chlorazine.

Phytotoxic effect on weeds, they also show a difference in selectivity on crop plants. Many small fruits, tree fruits, ornamentals, and forest trees have shown a tolerance to simazine and atrazine depending on dosage used, time of application and other factors (Anonymous, 1960), (Anonymous, 1961). Larsen and Ries (1960) used simazine on young fruit trees at rates as high as 8 pounds per acre with no resultant injury. Grigsby (1958) has found that simazine is also a good algacide. At 5 p.p.m. simazine was lethal to mixtures of filamentous and unicellular green algae and this toxicity persisted for periods up to six months, whereas copper sulfate and sodium arsenite produced good initial kills but regrowth was found three to four weeks after treatment.

Use of Simazine and Atrazine on Woody Plants


A number of investigators have screened various woody species, both ornamental and forest, against simazine and atrazine when used alone and in combination with other chemicals. Ries et al. (1958) found simazine to be the best herbicide of the nine tested against four species of ornamental lining-out stock. A repeat application at 4 pounds per acreduring the second growing season still caused no injury.

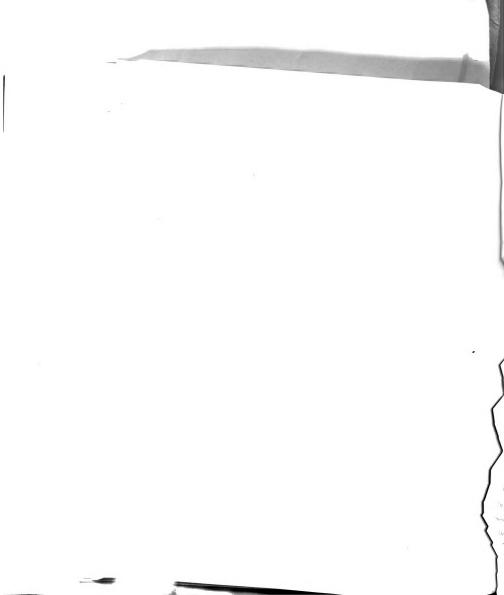
Runge (1960) reported no injury when simazine and atrazine were applied to numerous species of established nursery stock. Taylorson and Holm (1958) report no injury to 2-year-old Douglas-fir (Pseudotsuga menziessi Mirb., Franco.). Scotch

Pine (Pinus sylvestris L.), Austrian pine (Pinus nigra Arnold), white spruce (Picea glauca Moench, Voss.) and blue spruce (Picea pungens Engelm.) when treated with simazine at 4 pounds per acre. In windbreak plantings with ten common coniferous species. Bagley and Myoshi (1959) found no apparent chemical injury from 4 pounds per acre simazine treatments with the exception of a sandy loam soil on which the survival of eastern redcedar (Juniperus virginiana L.) and red pine (Pinus resinosa Ait.) was lower than the controls. They indicate that high rainfall and shallow rooted planting stock may have been the reason for injury with the red pine. Trees in control plots were soon overtopped by weeds, vigor and growth were impaired and survival was generally lower. Holm et al. (1957) report slight injury to seedling transplants of Scotch pine with a treatment of 2 pounds per acre of simazine. In this case the spring weather was very wet. In work carried on by Ahrens (1901), the tolerance of hemlock transplants to simazine was increased greatly by delaying treatment for a longer period after transplanting. It was also noted that tolerance to this herbicide also increased with the age of the transplants. Winget et al. (1900) arrived at the same conclusion in connection with red pine.

Moving from the nursery to the planting site, the competition is intensified between the transplants and the weeds for water and nutritive elements. Johnson (1000) states that as we continue to utilize the richer sites, weed problems seriously limit the early growth of tree seedlings. He cites as an example, the serious grass problems

anich exist on the spruce planting sites in the Lake States. White (1000) has demonstrated on these spruce sites significantly higher survival with chemical weed control as compared with no weed control. According to White. "The effectiveness of the simazine weed control in increasing survival, growth and foliage color of spruce on the test sites commends the adoption of this technique into regular silvicultural practice." Kuntz et al. (1000) have had similar experiences of increased survival with outplantings of pines and Norway spruce (Picea abies L. Karst.). Hovind (1950) has shown survival percentages in 2-year-old red pine to be 50 percent with 1-1/2 pounds of simazine plus 7-1/2 pounds of dalapon per acre, 42 percent with 3 pounds of simazine per acre, as compared to 17 percent survival in the furrow with no chemical treatment and a complete loss in those plantings where no furrow or chemical was used. Jokela et al. (1901) have demonstrated increased growth of hardwood transplants by using simazine immediately after outplanting.

Chemical and Physical Properties of the s-Triazines

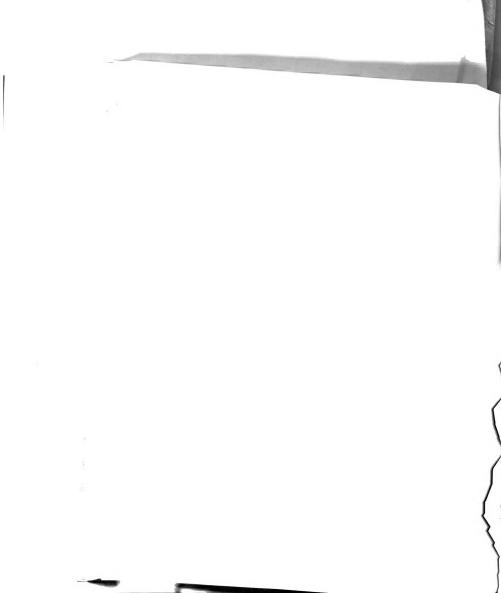

The triazines are heterocyclic nitrogen derivatives. meaning they have a ring structure composed of atoms of different kinds. If this ring is o-membered with two or more nitrogen atoms in the ring, it is known as an <u>azine</u>. The structural formula for simazine is:

$$C_{2}H_{5} - \frac{H}{N} - C_{2}H_{5}$$

Structurall, atrazine differs from simazine in that an NH C₃H- group is attached to the fourth carbon in the ring in place of the NH C₃H₅ in simazine. The technical material in both simazine and atrazine is a white crystalline substance with low solubility in water. Simazine at 5 p.p.m. has the lowest solubility of the better known s-triazines while simetone at 3200 p.p.m. has the highest. Solubilities of some of the other triazine compounds are propagine at 8.5 p.p.m.. chlorazine - 10 p.p.m., trietazine - 20 p.p.m., iapzine - 40 p.p.m., atrazine - 70 p.p.m., 2-chloro-4-methylamino-o-isopropylamino-s-triazine (G-3002o) - 2o0 p.p.m., prometone -750 p.p.m., and attratone at 1800 p.p.m. (Richards, 1900). The decomposition of simazine occurs as a first order reaction, meaning that under comparable conditions the same percentage of the original rate will be found in the soil at a given time, regardless of whether the rate was a high or low one (Burschel, 1001).

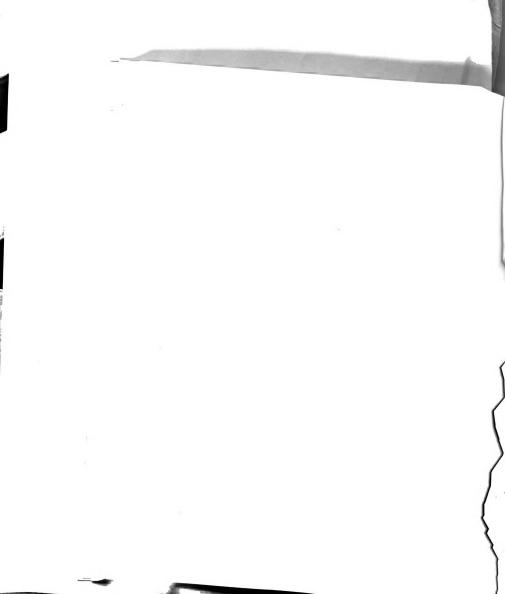
Factors Affecting Herbicidal Action of Simazine

Some of the factors affecting herbicidal action of simazine are the amount of precipitation, fixation by clay



and organic matter, depth of placement, time of application, soil temperature, and to some extent the pH of the soil.

Burnside and Behrens (1001b) reported that increasing soil temperature, within limits, caused increased simazine toxicity to corn. In another paper, Burnside et al. (1001a) reported that high temperature and to a lesser extent low pH (pH 4) caused a significant deactivation of simazine in water suspensions. However, the very high temperature necessary, indicates this would not be a significant factor in the field.


Maximum results with simazine are usually obtained when this herbicide is applied during early spring before active growth begins. However, Chadwick (1958) obtained excellent weed control even after eight months from the time of application in November. Havis (1901) also secured excellent control of quackgrass (Agropyron repens L.) in established nursery stock from fall applications of simazine and atrazine at a rate of 5 pounds per acre. Lovely (1958) found that working granular simazine into the soil does not improve its effectiveness. Results of work carried on by Freeman agree with this finding. When simazine in both granular and wettable form was worked into the soil and applied as a surface treatment, the surface treatment in wettable form gave the best weed control. Additional unpublished work regarding weed control as affected by depth of simazine placement, was carried on by the writer in 1958. Granular simazine was

¹Freeman, F. W., 1900. Unpublished data. Michigan State University.

placed at the rate of 4 pounds per acre at different depths in the soil mixture of one gallon tin cans. Four months after treatment, almost complete eradication of weeds was obtained from the surface application. The herbicide was of some value when placed at a depth of 1 inch, but when placed at a depth of 3 inches and below, no weed control was evident. This does not agree with the findings of Feddema (1958), who killed test weeds when simazine was placed from 4-12 inches below the soil surface.

Simazine leaches from the soil surface very slowly. Burschel (1901) found that even after application of 4 inches of water, 85-01 percent of the herbicide still remained in the upper inch of soil. Working with C¹⁴-labeled simazine and atrazine, Montgomery and Freed (1959) found maximum penetration of simazine at 7 inches and atrazine at 12 inches. after 10 pound per acre treatments of these herbicides were leached with 12 inches of water. However, maximum concentration of simazine was at the 0-1 inch level while maximum concentration of atrazine was at the 7-8 inch level. In unpublished work carried on by the writer, monthly bioassay tests were made to determine the rate of leaching and residual action of simazine under field conditions. Soil samples were taken at monthly intervals from an outdoor nursery experiment in which simazine had been applied at 1. 2, and 4 pounds per acre. These samples were taken at the soil surface, at a depth of 1 inch and at a 2-inch depth. Cucumber (Cucumis sativus L.) seedlings were then germinated

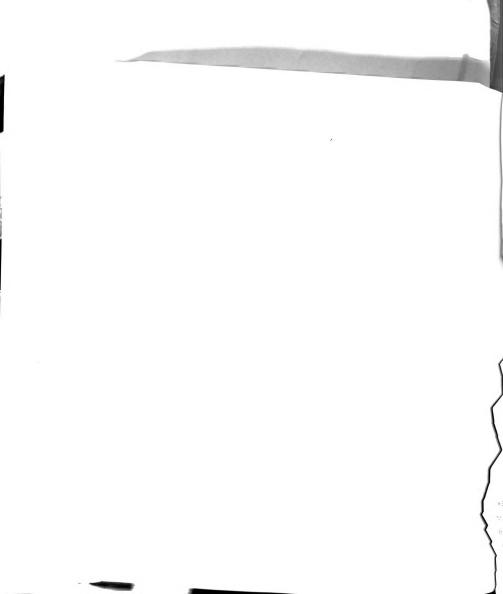
these soils and number of dead seedlings was recorded.

All tests were replicated four times. Results showed that the 1 and 2 pound applications never moved below the 1 inch level and that at the end of four months all simazine had been broken down. In addition, the 4 pound treatment never eliminated all of the cucumber seedlings at the 2 inch depth during the four months that the bio-assays were being run. Findings of Burnside et al. (100la) and Derscheid (1058) also at test to the slow movement of simazine through the soil profile.

Simazine at 5 and 10 pound per acre rates has remained in some soils for two growing seasons at levels toxic to germinating seedlings (Sweet et al. (1958). Low solubility and consequent slow leaching certainly contribute to the long residual action of this chemical. On the other hand, simazine and atrazine have been shown to lose their toxicity at rates of 2 pounds per acre within eight weeks, under conditions of high moisture and summer temperature (Switzer and Rauser, 1900). Stroube and Bondarenko (1900) found through oat bio-assays that twelve months after application of 4 pounds of simazine per acre, the simazine equivalent in the 0-3 inch level was 1/3 pound, 1/8 pound in the 3-0 inch level, and none in the 6-9 inch layer.

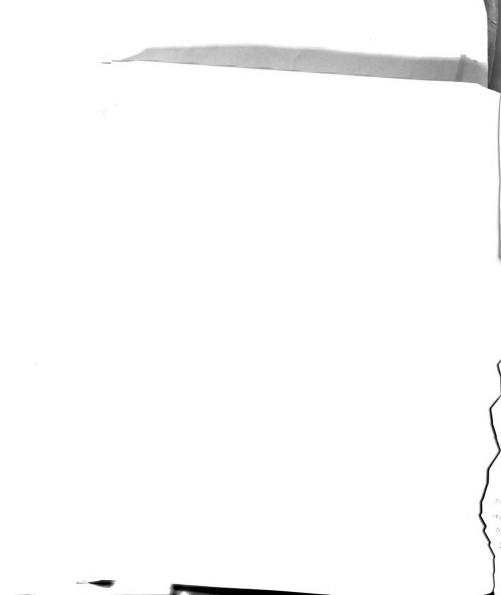
Deactivation of Simazine by Soil Microorganisms

As mentioned earlier, soils high in organic matter and/ or clay content caused reduced simazine phytotoxicity as

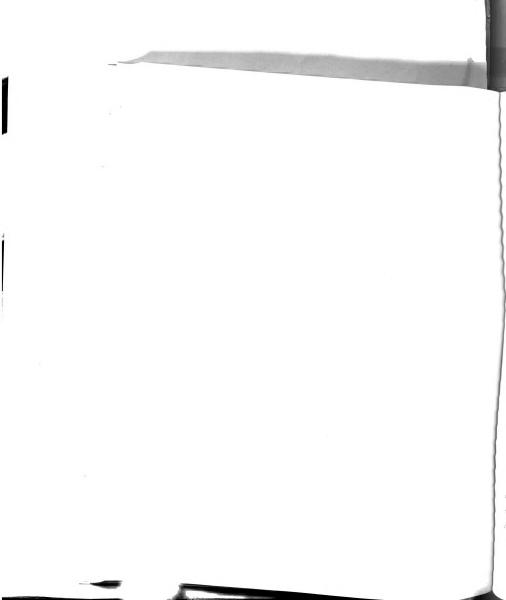


compared to soils low in these components (Burnside and Behrens, 1901b). Sheets and Danielson (1900) investigated in detail the effect of soil organic matter, clay content, cation-exchange capacity and pH on the phytotoxicity of simazine. Soil organic matter appeared to alter the initial toxicity of simazine most. They also found that in contrast to 2.4-D, repeat applications of the s-triazines are inactivated in the soil at about the same rate. Apparently the soil microorganisms capable of inactivating 2.4-D increase with repeated applications of this herbicide while those microorganisms which inactivate the s-triazines are passive in action, i.e., organisms utilize them but not selectively or preferentially. Burschel (1961) states that the decomposition of simazine in the soil is closely related to the amount of humus present. In fact, without humus, no decomposition will occur. Pure loess soil which contained no humus was analyzed for simazine 3-1/2 months after being treated with 2 and 4 p.p.m. and found to contain all of the original treatment. He found that the greater the amount of humus, and thus microorganisms, the more rapidly simazine is deactivated in the soil. Further study showed that lowering the temperature from 25°C, to 8.5°C, caused a sevenfold decrease in the rate of decomposition. Burschel attributes this decrease to the fact that microorganisms are also affected by lowering of temperature. This would indicate that fall applications of this herbicide will react much differently from those made in spring. Burnside et al. (1901a) found

that Soil microorganisms deactivated simazine, but very slow1y. Most of the deactivation occurred after the fourth month. Five microorganisms that were able to subsist for three months in media containing simazine as the sole source of nitrogen and nearly sole source of carbon were isolated and identified as Penicillium pupurogenum, Aspergillus ustus. and three Streptomyces species (Actinomycetes). However, these microorganisms did not deactivate simazine in solution cultures during a 30 day incubation period. According to Reid (1900), a group of soil bacteria, the soil diptheroids (Corynebacteriaceae) have been found to remove the s-triazines from the soil. Observations by Guillemat et al. (1900) emphasize the existence of fungi capable of metabolizing simazine and utilizing the nitrogen of this herbicide. It appears, in addition, that this degradation is tied to the abundance of carbon in the medium. The fungi listed as responsible for this degradation were Fusarium oxysporum. Fusarium avenaceum, Penicillium cyclopucin, Penicillium lanosen-coerulem, Cylindrocarbon radicicola, and Stachybotrys species.


In contrast to deactivation of simazine by telluric microorganisms. Castelfranco and co-workers (1001a) have found that calcium polysulfide, a pesticide and soil corrective, also has the property for decomposing simazine. Because of its safety and relatively low cost, they feel that it could be used to hasten the breakdown of s-triazines in soil.

It has been generally established that simazine has no deleterious effect on the soil microflora, even when applied at extremely heavy dosages. Burnside et al. (1901a) measured carbon dioxide evolution and found it unchanged 30 days after simazine was applied at rates up to 4000 p.p.m. Nitrate formation was not impaired even by larger applications of this herbicide. After applying 300 kilograms of simazine per hectare, Guillemat et al. (1900) observed only insignificant changes to the microorganisms. On the other hand. Chandra et al. (1900) observed depressed carbon dioxide evolution in simazine-treated soils, the percent decrease generally being greatest at 28 days and decreasing thereafter.


Physiology of the s-Triazines in the Plant

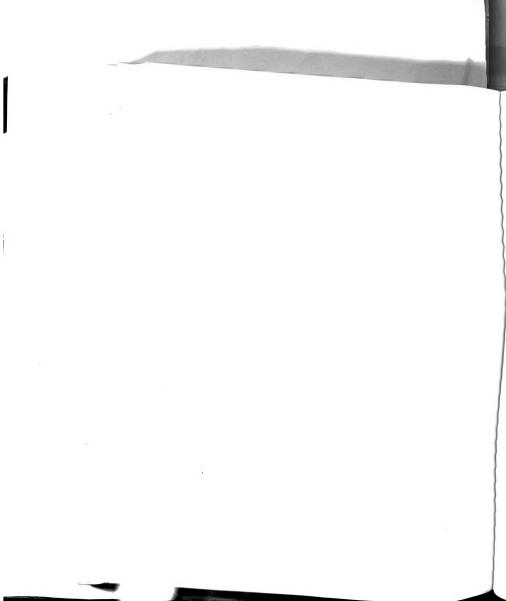
Typical symptom of simazine toxicity is the chlorosis which starts at the leaf tip and progresses along the margins to the base of the leaf. Necrosis occurs in the chlorotic area and chlorosis spreads to the entire leaf. These symptoms in the plant are a result of blockage of the Hill reaction, or the ability of chloroplasts to break down water into hydrogen and oxygen in the presence of light and iron (Schneider, 1958). Ashton et al. (1960) have demonstrated with excised leaves of kidney bean (Phaseolus vulgaris L.) that the degree of inhibition of carbon dioxide fixation increases with higher concentrations of the herbicide and longer exposure time. Roth (1958) has also shown with

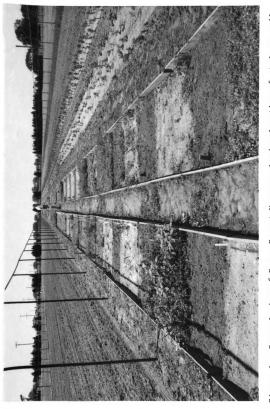
Elodea leaves that assimilation in simazine solutions is inhibited. Work by Moreland et al. (1959) showed that glucose supplied to barley plants through severed leaf tips kept plants alive and growing in the presence of lethal concentrations of simazine for more than two months. Experiments by Gast (1058) confirm these findings. The chloroplasts of starch free Coleus Bluemi leaves kept on a solution containing sugar and simazine were able to form starch again. Moreland found that simazine appeared to have a similar effect on the activity of both barley and corn chloroplasts even though barley is quite susceptible to this herbicide while corn is very tolerant. Therefore, he concluded that the mechanisms which control selectivity must act before the herbicide reaches the chloroplasts. Montgomery and Freed (1961) and many other investigators have shown that the corn plant is able to degrade the s-triazines and readily metabolize these compounds. Since heating of corn sap destroys its ability to decompose simazine, Roth (1957) suggests that the resistance of corn to simazine is due to a thermolabile system, perhaps fermentative, which can transform this substance into compounds devoid of biologic action. Castelfranco and co-workers (1901b) state that the action of simazine toward different species of grasses suggests that non-enzymic detoxification reactions catalyzed by small organic molecules may play a major role in determining the resistance or susceptibility of a particular species. Davis et al. (1050) have demonstrated through the radioactivity present in leaf samples that simazine is absorbed readily

by the roots of both corn (Zea Mays L.) and cucumber (Cucumis <u>mativus</u> L.). However, radioactivity was observed much sooner In cucumber than in corn and simazine or the ${\mathbb C}^{14}$ -labeled degradation products moved more readily in cucumber than in corn. In addition, Ragab and McCollum (1001) have proved that both resistant and susceptible plants decompose simazine. The fact that cucumber metabolized simazine at a more rapid rate than corn dispels the suggestion that toxicity is associated with inability to metabolize the herbicide. They also found that cucumber plants growing in nutrient moistened glass produced adventitious roots on the stems. indicating that the herbicide is toxic to the roots. Foy (1001) has found that some of the triazine compounds accumulate in the lysigenous glands of cotton (Gossypium). Since substances deposited in these glands are apparently removed from circulation at least temporarily, he postulated that such accumulation may constitute a protective mechanism against these herbicides in normal glanded cotton. Studies with genetically glandless varieties have thus far supported this hypothesis. Another important factor which has been discovered by Roth (1001) is that in certain cases corn absorbs relatively less simazine than other plants.

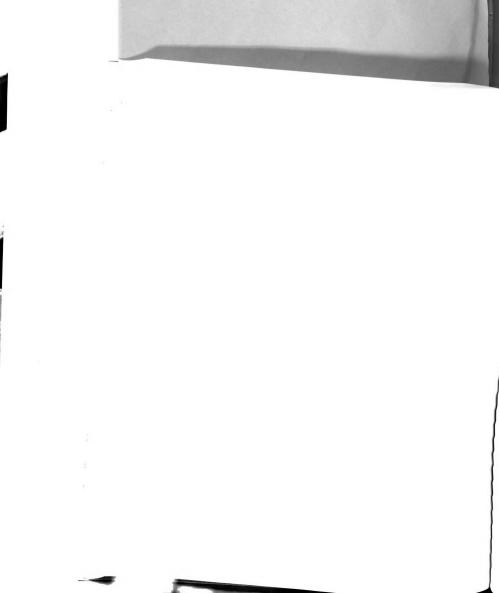
From these investigations, it becomes evident that different resistant plants have different mechanisms for neutralizing or minimizing the toxic effects of the triazine compounds.

CHAPTER III


METHODS AND PROCEDURE


The excellent. long-lasting weed control obtained with simazine and atrazine in preliminary investigations, prompted a more detailed investigation of these herbicides for use in nursery seedbeds. It was decided that the logical starting point would be a comparison of these s-triazines under field conditions with other recently developed herbicides and soil fumigants in addition to those in common usage. As an adjunct to the field work, a greenhouse experiment was set up to determine the reaction and tolerance of a wide range of germinating tree species to different rates of simazine applied both as a surface treatment and intermixed with the upper layer of soil.

The differential tolerance exhibited by the tree species in the above mentioned experiments, in turn led to the third phase of work. This study investigated by use of C^{14} -labeled simazine, the uptake of C^{14} by red and white pine seedlings, and, in addition, the effect of inoculation with mycorrhizal fungion this uptake.


Comparison of Several Soil Fumigants and Herbicides in Nursery Seedbeds

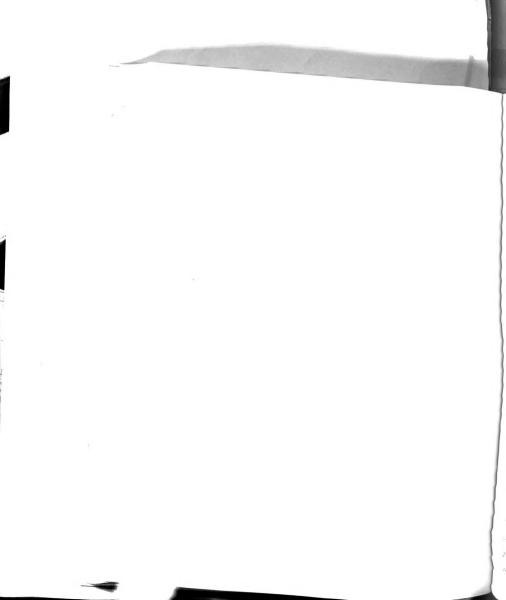
This portion of the study was set up in the Bogue Forest Nursery (Figure 1) located on the campus of Michigan State

General view of Bogue Forest Nursery showing location of study on soil funigants and herbicides in nursery seebbeds. Nure the weed free condition of the two simazine treated spruce transplant beds which lay parallel to the seedbeds. Figure 1.

22

Table 1. Weed control treatments used in nursery seedbeds.

Treat.	Treatment	Rate/acre (active)	Days applied before or after seeding
1	Control		
2	Handweed		As needed
3	Stoddard solvent	25 gal.	6 times during season
4	Methy1 bromide	870 lbs.	14 days before
5	EPTC	4 1b.	At seeding
6	DMTT	28 ₀ 1 _b .	25 days before
7	SMDC	100 gal.	25 days before
8	Chloropicrin	35 gal.	14 days before
Q	Ureaformaldehyde 85	127 gal.	20 days before
10	Ureaformaldehyde 85 plus allyl alcohol plus ethylene dibromide	72 gal. 56 gal. 8.4 gal.	20 days before
11	Ureaformaldehyde 85 plus simazine	127 gal. 4 lb. W	20 days before
1.2	DNBP	7 1b.	At seeding
13	Simazine	2 1b. W	At seeding
14	Simazine	4 1b. W	At seeding
15	Simazine	8 1b. W	At seeding
10	Simazine	2 1b. G	At seeding
17	Simazine	4 1b. G	At seeding
18	Simazine	8 1b. G	At seeding
10	Atrazine	4 1b. G	At seeding
20	Atrazine	8 1b. G	At seeding


University. The soil type is Hillsdale såndy loam.

Twenty treatments were used, consisting of soil fumigants and herbicides tested both alone and in combination (Table 1). Each treatment was sown to 10 coniferous species. Treatment plots measured 4 feet by o feet and each plot was separated by a 2-foot isolation strip. The tree seed was sown in rows 4 feet long and / inches apart. All treatments were randomized within the block and replicated six times.

The seedbeds were prepared quite early during the spring in order to allow a safe waiting period between application of soil fumigants and sowing of the seeds. Table 2 lists the 10 coniferous species sown to each treatment and the approximate number of seeds sown in each row. The tree seeds were sown on May 17 and seedbeds were covered with slat shading during germination and early growth of the seedlings. Table at the seedlings are covered with slat shading during sermination and early growth of the seedlings. The seedlings are covered with slat states was applied as needed during the growing season by an overhead sprinkling system.

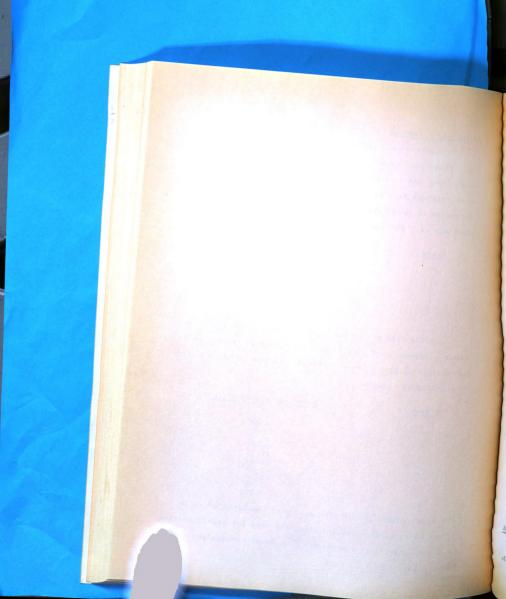
Table 2. Tree species used in nursery weed control experiment.

Common Name	Scientific Name	Approx. No. of seeds sown per row
B alsam fir W hite fir European larch	Abies balsamea (L) Mill. Abies concolor (Gord.) Engelm. Larix decidua Mill.	370 137 000
Norway spruce White spruce Jack pine Red pine	Picea abies (L.) Karst. Picea glauca (Moench.) Voss. Pinus banksiana Lamb. Pinus resinosa Ait.	420 n(0) n(0) 302
site pine stch pine uglas-fir	Pinus strobus L. Pinus sylvestris L. Pseudotsuga menziessi (Mirb.)	405 340 330
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Franco.	

Weed Control Ratings

Periodic weed counts were made during the growing season. These weed control ratings were made at weekly intervals during June and semi-monthly during July and August. The weekly ratings were divided into seven categories based on the number of weeds present in the area between two rows of seedlings (1.9 sq. ft.). The seven categories are as follows:

<u>Grade</u> '	Weeds per 1.0 square feet
()	. ()
1	1 - 3
2	4-8
3	O = 1
4	16-50
5	51-100
O	100 plus


During July and August it became more convenient, be
cause of denser weed populations, to rate weed control on the

percentage of plot covered by weeds. Eleven categories were

designated as follows:

Grade	Weed coverage in percent
()	0
1	1-10
2	11-20
3	21-30
4	31-40
5	41 - 50
b	51-00
7	01-70
3	71-30
C)	81-90
1()	91-100

The weed control grades were set up as indicated above in a_{so} to normalize data and eliminate need for transformation a_{so} to analysis. Convenience in ease of computation was

Tree Seedling Injury Ratings

The coniferous seedlings were checked periodically to determine the effect of the soil fumigants and herbicides on their germination and survival. Injury ratings were determined by recording the number of live seedlings per species. The ratings were divided into six categories as follows:

Grade	No. live seedlings per row
	•
()	()
1	1-10
2	11-3()
3	31-100
4	101-200
5	200 plus

As in the weed control ratings, grades were defined for convenience of computation and to normalize data and thus eliminate need for transformation prior to analysis.

<u>Statistical Analysis</u>

Each set of weed coverage or injury data was subjected to analysis of variance, using plot means as items. For each analysis the degrees of freedom were as shown below:

Source of Variation	Degrees of freedom	
Treatment	19	
B1 ock	5	
Error	95	
Tota1	119	

Results and Discussion

Ir eed Control

Weed species found on control plots during the course the growing season were: Agropyron repens (L.) Beauv.

(quack grass). Amaranthus retroflexus L. (redroot pigweed).

Ambrosia artemisiifolia L. (common ragweed). Capsella Bursa
pastoris (L.) Medic. (shepherd's purse). Chenopodium sp.

(lamb's quarters). Digitaria sanguinalis (L.) Scop. (hairy crabgrass). Lamium amplexicaule L. (henbit). Oxalis europaea

Jord. (European woodsorrel). Polygonum persicaria L. (spotted knotweed). Portulaca oleraceae L. (common purslane). and

Stellaria media L. (common chickweed).

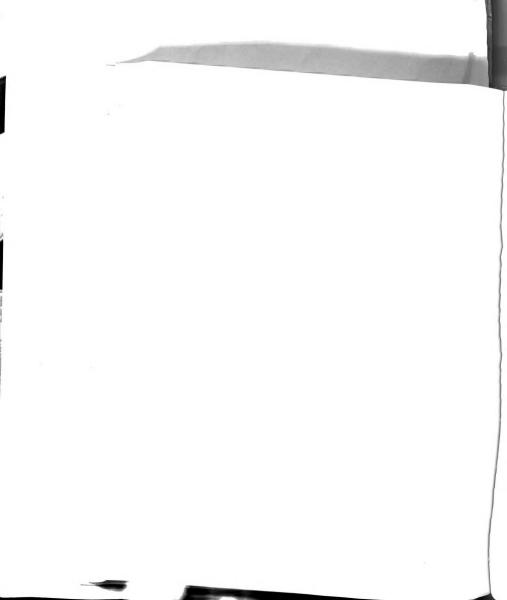

Although weed control ratings were made many times during the growing season, the results of three equally spaced ratings present a clear picture of the findings.

Figure 2 gives a graphic presentation of weed control at ind-June, mid-July, and mid-August. After the middle of Jugust all treatments had ceased to give effective control and no further weed ratings were made. Tables 3, 4, and 5 how the corresponding analysis of variance data for these three periods presented graphically in Figure 2.

The wide range of weed control obtained by the various treatments is shown in Figure 3. At six weeks after treatment most plots containing either simazine or atrazine were peactically weed free. In direct contrast, the weeds in the reaformaldehyde plots were much taller and healthier looking than those growing in the control plots.

In this experiment no appreciable weed control was obtained from Stoddard solvent, ureaformaldehyde, 3.5-dimethyltetrahydro 1.3.5 2H thiadiazine-2-thione (DMTT).

Scodjum methyl dithiocarbamate (SMDC), trichloronitromethane (SMDC) approprietin), ethyl N. N-di-n propylthiolcarbamate (EPTC)

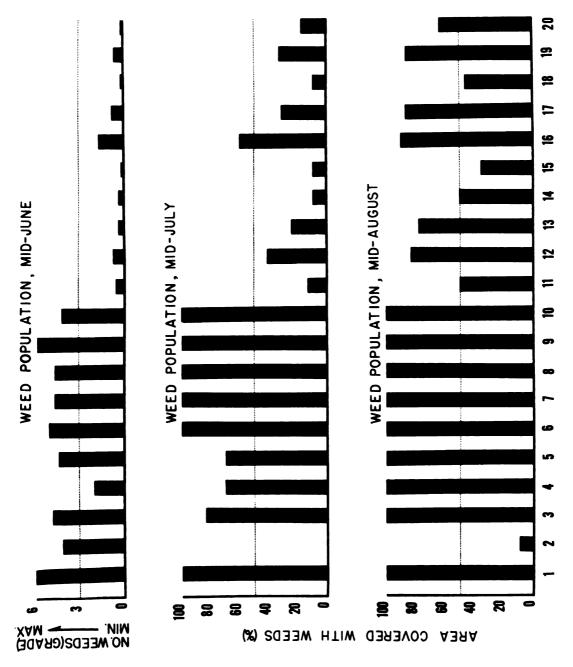


Figure 2. Weed population in nursery seedbeds.

Treat. No.	Treatment	Rate/acre (active)	Mean weed population	Statistical significance 5% level 1% level
1	Control		00.0	· -
	Ureaformaldehyde	127 gal.	5.83	
.0	DMTT	280 1b.	5.00	
~	Stoddard solvent	25 gal.	4.83	
[~	SMDC	100 gal.	4.00	
00	Chloropicrih	35 gal.	4.00	
5	EPTC	4 1b.	4.33	
2	Handweed 3	;	4.10	
10	Ureaformaldehyde	72 gal.	4.10	
	plus allyl alcohol	50 gal.		
	plus ethylene dibromide	8.4 gal.		
4	Methyl bromide	870 1b.	2.00	
10	Simazine	2 1b. G	1.00	_
17	Simazine	4 1b. G	.83	_
1.2	DNBP	7 1b.	00.	
10	Atrazine	4 1b. G	90.	
11	Ureaformaldehyde	127 gal.		
	plus simazine	4 1b. W	.50	
13	Simazine	2 1b. W	.33	
11	Simazine	4 1b. W	.33	
15	Simazine		.10	
18	Simazine	8 1b. G	.10	
00	A 4. 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0		

Table 3. Mid-June weed control.

Ratings based on number of weeds per 1.0 square feet. 0(0 weeds), 1(1-3 weeds), 2(4-8 weeds), 3(0-15 weeds), 4(1n-50 weeds), 5(51-100 weeds), o(100 plus weeds).

2All treatments not connected by a line are significantly different, as determined by buncan's multiple range test.

The relatively low position of handweed reflects rapid weed growth.

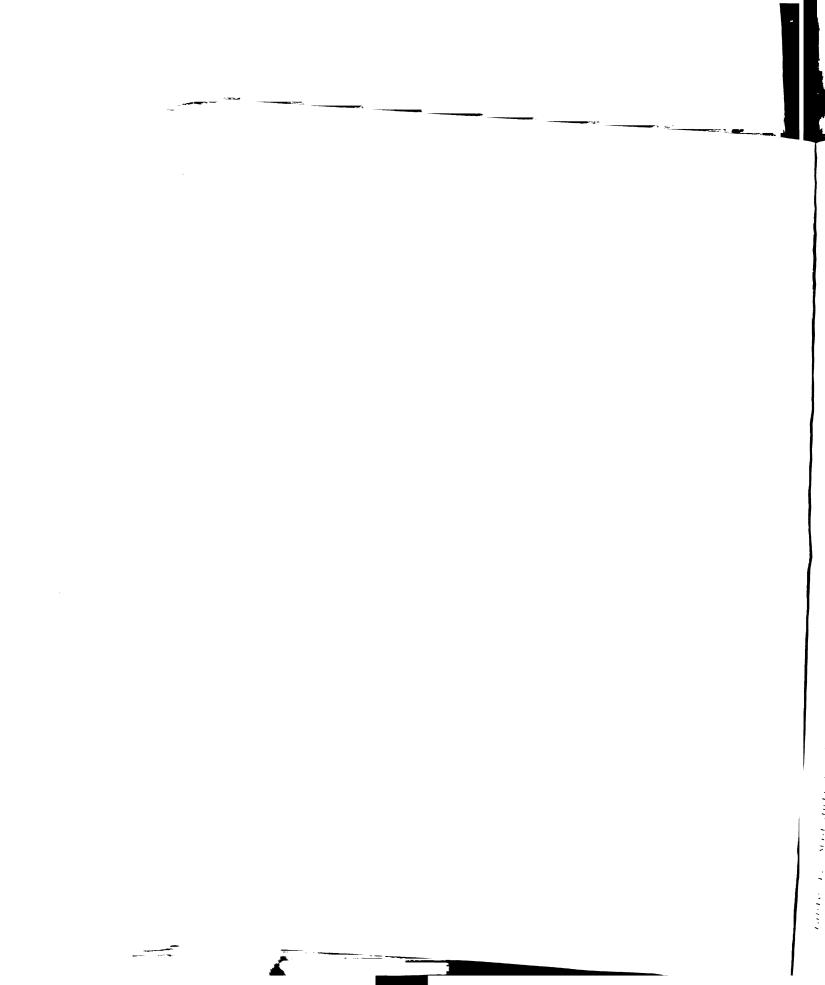


Table 4. Mid-July weed control.

Treat. No.	Treatment	Rate/acre (active)	Mean weed population ¹	Statistical, significance— 5% level 1% leve-
1	Control	1	10.00	
٤	DMTT	280 1b.	10.00	_
[~	SMDC	10c gal.	10.00	
X	Chloropicrin	iC pr	10.00	
σ	Ureaformaldehyde	127 gal.	10.00	
1()	Ureaformaldehyde	~1 ≈x	10.00	
	plus allyl alcohol	o o		
	plus ethylene dibromide	च		
∾	Stoddard solvent	5 ga1	8.33	
7	Methy1 bromide	0.2	00.7	4
ניר,	EPTC	4 1b.	00.1	
10	Simazine	2 1b. G	00.00	-
1.2	DNBP		•	
17	Simazine	4 1b. G		
10	Atrazine	1b.	3.33	
13	Simazine	15		
<u> </u>	Atrazine	1b		
11	Ureaformaldehyde	[~ ^]		
	plus simazine	1 b	1.33	
14	Simazine	15	1.00	
15	Simazine	8 1b. W	•	
χ. Τ	Simazine	1b	1.00	
^	Handweed	;	00.0	

Ratings based on percent of plot covered by weeds: 0 equals 0% weed coverage and 10 sequals 100% weed coverage.
All treatments not connected by a line are significantly different, as determined by Duncan's multiple range test.

Statistical, significance

Table 5. Mid-August weed control.

lreat. No.	Treatment	Rate/acre (active)	Mean weed population	Signilicance 5% Level 1% level
	Control	!	10.00	_
	DM T.T	280 1b.	10.00	
	SMDC	100 gal.	10.00	•
	Chloropicrin	35 gal.	10.00	
	Ureaformaldehyde	127 gal.	10.00	
	Ureaformaldehyde	72 gal.	10.00	
	plus allyl alcohol	50 gal.		
	plus ethylene dibromide	8.4 gal.		
	Stoddard solvent	25 gal.	0.83	_
	Methyl bromide	870 1b.	0.83	
	EPTC	4 1b.	0.83	
	Simazine	2 1b. G	00.0	
	Simazine	4 1b. G	8.00	
	Atrazine	4 1b, G	8.00	
	DNBP .	7 1b.	8.33	
	Simazine	2 1b. W	7.83	
	Atrazine	8 1b, G	6.33	
	Ureaformaldehyde	127 gal.		_
	plus simazine	4 1b. N	5.00	
	Simazine	4 1b. W	5.00	
	Simazine	S 1b. G	4.00	
	Simazine	S 1b. W	3.50	
	Handweed	1	1.00	

equals 100% weed coverage. All treatments not connected by a line are significantly different, as determined by Ratings based on percent of plot covered by weeds: 0 equals 0% weed coverage and 10 Duncan's multiple range test.

zight: A 2 pound rate of wettable simazine (lower left in seedbed) gives almost complete weed eradication.

Left: Premerge (lower left in seedbed) gives adequate early season weed control with less damage to tree seedlings than the simazine treatment pictured above.

Right t: Ureaformaldehyde (cen ter of seedbed) stime where the cont the cont terms of the cont

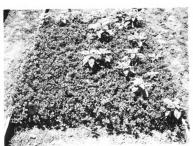
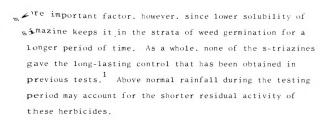


Figure 3. Extreme in weed control at six weeks after treatment.

32


and the combination treatment of ureaformaldehyde plus allylalcohol and ethylene dibromide. While all of the forementioned treatments, with the exception of ureaformaldehyde, were significantly different from the control at mid-June, none of them could still be considered effective. Lack of any noticeable control by the usually effective Stoddard solvent is possibly due to type of applicator used (fly sprayer) and also to poor timing.

All other treatments gave satisfactory weed control until July 1, at which time methyl bromide and the 2-pound granular simazine applications were no longer giving adequate control. By mid-July 4.o-dinitro-o-sec butylphenol. amine salt (DNBP), simazine (4# G), and atrazine (4# G) were beginning to lose their potency, although fair control was still being obtained. All of the simazine treatments applied as a wettable powder and the 8-pound granular applications of simazine and atrazine kept the plots sufficiently clean until learly August.

Simazine at the 8 pound rate gave the best weed control over the longest period. followed closely by the 4 pound rate applied as wettable powder. Two pounds of wettable sima ine gave equal or better control than 4 pounds of granular trazine. Likewise, 4 pounds of wettable simazine gave equal or better control than 8 pounds of granular atrazine. This is due in part to the better coverage obtained with wetta to be formulations. The lower solubility of simazine (5 p. p.m.) as compared to atrazine (70 p.p.m.) is likely the

Seedling Injury

Increased tree mortality was usually directly correlated with the effectiveness of the various weed control chemicals used in these tests, although DNBP did not follow this pattern. Table o shows data on survival of the seven comiferous species tested under the 20 chemical treatments. No results were obtained for European larch, white fir, and balsam fir because of poor germination.

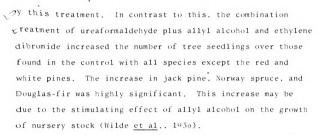
Stoddard solvent, DMTT, SMDC, and the combination trea tment of ureaformaldehyde plus allyl alcohol and ethylene dibromide caused no injury to any of the tree seedlings test ed. On the other hand, these same treatments gave little or noweed control. Chloropicrin, another ineffective weeding agen in this experiment, caused significant damage to jack pine red pine, white pine, and white spruce. Ureaformaldehyde which actually stimulated weed growth, damaged Scotch pine and red pine.

. The only treatment which reduced germination was EPTC. Germi nation of all tree seedlings was reduced significantly

 $^{$^{1}{\}rm Freeman},$ F. W., $10\,5^{\rm o},$ Unpublished data, Michigan State University.

Table o.

Tree Species


			Ч					- S
Freat. No.	Treatment	Ласк ріпе	Scotel	Red Pine	White eniq	ebince Noimsy	olida Spruce	Dougla rit
1	Control	2.50	3.33	1.60	2.83	3.10	3.50	4.00
^1	Handweed	3.10	3.10	2.00	2.83	3.10	3.10	3.00
~	Stoddard solvent	2.33	2.50	2.50	2.00	3.50	2.83	3.50
4	Methyl bromide	0.83	1.00	1.50	2.00	1.00	2.10	3.33
10	EPTC	1.10	1.33	1.10	1.50	2.33	1.00	0.83
c	DMTT	3.50	3.33	3.10	2.50	3.33	3.50	4.33
1~	SMDC	2.50	3.00	2.83	3.00	3.00	3.50	4.00
X	Chloropicrin	2.00	2.50	1.00	2.00	2.00	2.10	3.83
0	Ureaformaldehyde	3.00	2.10	1.83	2.00	2.00	2.00	3.83
10	Ureaformaldehyde	4.00	3.50	2.00	2.00	4.10	3.00	5.00
	plus allyl alcohol							
	plus ethylene dibromide							
11	Ureaformaldehyde	00.00	0.00	00.00	00.00	0.00	00.0	0.00
	plus simazine (4# W)							
1.2	DNBP	0.33	2.00	2.10	2.00	2.33	1.83	3.00
1.3	Simazine (2# W)	0.50	0.10	00.00	1.00	1.00	0.00	1.00
14	(4#	00.0	0.00	00.00	0.10	0.33	00.0	0.50
1.5	Simazine (8# W)	00.0	00.0	00.0	00.0	00.0	00.0	0.10
10	Simazine (2# G)	0.00	0.10	0.00	1.83	1.50	0.50	2.33
17	Simazine (4# G)	00.0	0.33	0.10	1.10	0.00	0.00	1.00
18	Simazine (8# G)	00.00	00.0	00.0	0.50	0.00	00.0	0.33
10	Atrazine (4# G)	00.0	0.10	0.33	1.00	0.00	0.00	00.0
20	Atrazine (8# G)	00.0	0.00	00.0	0.33	0.00	00.0	00.0
	5% level	s.s.	LS.	27.	00.	07.	.50	. 71
L.S.D.	1% level	1.13	1.15	00.	0.	60.	× 1	70.

trees). Significantly different from treatment 2 at 5% level. Significantly different from treatment 2 at 1% level.

34



All of the remaining treatments which gave better weed control (methyl bromide. DNBP, and various s-triazine treatments) also damaged the tree seedlings more severely. Methyl bromide and DNBP were not as severe on seedlings, however, as simazine and atrazine. With all species except Douglas-fir, seedling death in methyl bromide plots was significantly higher than controls.

DNBP shows definite promise as a herbicide which will give good weed control during the early part of the growing sea son with a minimum of damage to the germinating tree see clings. Survival of red pine and Douglas-fir was not significantly different from the control. With the exception of jack pine, the remaining species, even though significantly different from the control, still showed fair results as stance and survival. Table 7 shows the survival of the different tree seedlings under the DNBP, simazine, and atrazine treatments.

In the array of simazine and atrazine treatments, 4 pourmds of wettable or granular simazine was for practical

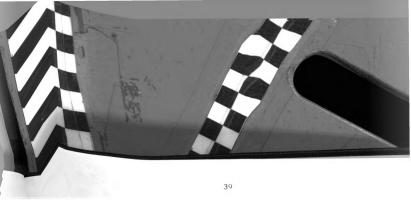


BP and s-triazine treatments at
IBP a
r DN
ⁱ ning alive under
ive
g alive
uinin
reme
sdu
seedli _n
es J
0
Percentage of s
•
Tab1e

			P (based on	Percentage ranking of	of	gs in	controls)	
reat. No.	Treatment	Jack pine	dotoo2 eniq	bəA əniq	əjidW əniq	sbrnce Normsy	ənads ənads	Salguod 1i1
13	DNBP	1()	63	∞	0.2	-13	58	$\frac{\infty}{2}$
13	Simazine (2= W)	10	Ŋ	0	ις «	31	С	27
14	Simazine (4# W)	0	С	0	c	10	0	14
15	Simazine (S# W)	0	С	С	0	0	0	4
10	Simazine (2= G)	21	37	25	40	47	10	04
17	Simazine (4# G)	0	1()	o	41	21	0	17
18	Simazine (S# G)	0	С	С	18	С	C	σ
10	Atrazine (4# G)	0	<i>ب</i> ر,	1.2	35	21	С	T X
07	Atrazine (8# G)	C	С	С	11	C	C	0

purposes as severe as 8 pounds of the same formulation. most cases these treatments destroyed practically all seedlings of all species, as did the two atrazine treatments. Under the 2 pound wettable and granular simazine treatments the kill of seedlings was reduced in some cases, indicating that even smaller dosages at more frequent intervals might be employed more successfully. White pine and Douglas-fir are more resistant to the s-triazines than the spruces and other pines tested. Kuntz et al. (1000b) also found that when atrazine was applied to emerging red pine and white pine seedlings, phytotoxic effects developed more rapidly and to a greater degree on red pine than on white pine, especially at higher dosages. Additional work by these same researchers. Bagley and Miyoshi (1050) and White (1002) has shown that the s-triazines can be used with lining-out size coniferous species with little or no resultant injury. Apparently chemical make up or some physical factor associated with older age increases the resistance of the young trees to these herbicides.

CHAPTER IV


TOLERANCE OF SEVERAL HARDWOOD AND CONIFEROUS SPECIES TO SIMAZINE TREATMENTS

The tolerance of eleven species of hardwoods and conifers (Table 8) to simazine was investigated. In addition to rates of application, the effect of simazine applied as surface treatments was compared with treatments in which the herbicide was mixed with the upper inch of soil.

The experiment was carried on in the greenhouse at Michigan State University's Hidden Lake Gardens, an arboretum located at Tipton, Michigan. The general layout of the experiment is shown in Figure 4. Utility grade plastic pots with a o-inch top diameter were used. The pots were arranged on the bench in a latin square design. Prior to sowing, all seed with the exception of the oaks, was soaked for two weeks in water maintained at a 38°F, temperature. The oaks had been stratified in moist sand during the winter. Sufficient seed was sown in each pot to permit thinning of conifers to 10 seedlings per pot and hardwoods to 3 seedlings per pot at two weeks after germination. A combination of approximately 20 percent sphagnum peat and 80 percent sandy loam (by volume) was used for the potting mixture. The rates and placement of active simazine applied were:

1. Four pounds per acre surface application of simazine.

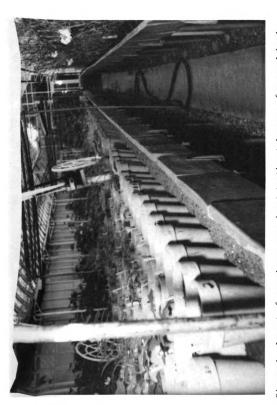


Figure 4. Layout of greenhouse experiment testing tolerance of several hard-wood and coniferous species to simazine treatments.

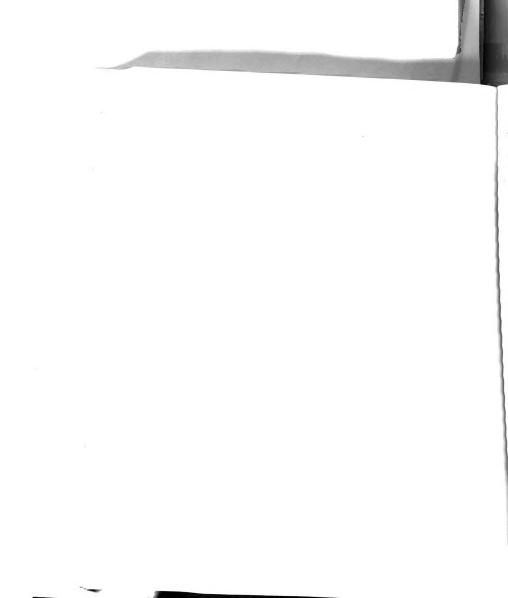


Table 8. Tree species used in greenhouse simazine experiment.

Common name	Scientific name
Green ash	Fraxinus pennsylvatica var. lanceolata (Borkh.) Sarg.
H oneylocust	Gleditsia triacanthos L.
Norway spruce	<u>Picea abies</u> (L.) Karst.
White spruce	Picea glauca (Moench.) Voss
White pine	Pinus strobus L.
Scotch pine	<u>Pinus sylvestris</u> L.
Douglas-fir	Pseudotsuga menziessi (Mirb.) Franco.
White oak	Quercus alba L.
Bur oak	Quercus macrocarpa Michx.
Red oak	Quercus rubra L.
Northern white-cedar	Thuja occidentalis L.

- 2. Four pounds per acre of simazine mixed with the upper inch of soil.
- 3. Eight pounds per acre surface application of simazine.
- 4. Eight pounds per acre of simazine mixed with the upper inch of soil.
- 5. Control.

Four percent granular simazine was used for all treatments and these treatments were applied at the time of sowing.

The soil was not sterilized, since this would reduce

eliminate the population of microorganisms. Captan

denches were applied during the first three weeks following

germination. The conifer seed, with the exception of northern white-cedar, had been coated with captan prior to sowing. Tap water was applied by greenhouse hose as needed.

Seedling Survival and Analysis

Or water borne organisms were going to complicate the procedure for recording results. Low germination percentage of some species, coupled with delayed germination of others, added to the problem. Number of weeks survival after germination was judged the system most applicable to all species and conditions. Accordingly, weekly ratings were made noting the dates of germination, condition of the seedlings, and their length of survival.

Survival of tree seedlings under these treatments was subjected to analysis of variance, using plot means as items. For each analysis the degrees of freedom were as shown below:

Source of Variation	Degrees of Freedom
Total variation	24
Among rows (blocks)	4
Among columns	4
Among treatments	4
Error	12

Resot Elongation

A preliminary investigation was also set up in the greenhouse to determine whether the rate of root elongation had any effect on the tolerance of different species to simulatine. Two species relatively resistant to simulatine white pine and bur oak) and two species easily killed by

The seeds were germinated in steam sterilized soil contained in thin, plexiglass containers (pictured in Figures o. 7. 8. and 9) measuring 9-1/2 inches long. 7 inches wide and 1/2 inch deep. These containers were held in a rack which tilted the bottom of the containers 30 degrees inward from the top. The rack was constructed in such a fashion that the roots were shielded from the light by black shade cloth, yet the containers could be slipped out readily for observation. In this position, the roots developed along the face of the plexiglass allowing easy observation and measurement.

An additional study compared the toxic effect of simazine on a normal rooted bur oak with one in which the root system was confined to the upper layer of soil. One o-inch pot was fitted with a false bottom which confined root elongation to a 3-inch depth while the other pot was left with the normal o-inch depth. This false bottom was constructed of aluminum foil covered cardboard which was sealed around the perimeter with paraffin. Four 1/4-inch drainage holes were drilled in the sides of the pot just above the false bottom. The pots were then sown to bur oak and simazine was applied as a 4 pound per acre surface treatment.

Results and Discussion

Se edling Survival

White pine, as was the case in the Bogue Nursery experiment described previously, proved to be more resistant

Anothern white-cedar. Douglas-fir, white spruce, and Norway spruce were all killed within 5 weeks after germination under all simazine treatments. Some of the white pine seed-lings not only survived the 4 and 8 pound treatments during the 12-week check after germination, but also put on second year growth the following spring. For practical purposes, the 4 pound treatments were as severe on the conifers as were the 8 pound rates. White pine survival was significantly higher under both 4 and 8 pound surface applications as compared to either the 4 or 8 pound rate mixed with the upper inch of soil. There was no significant difference, in respect to placement of simazine, with the other conifers tested.

The hardwood species, with the exception of green ash, as a whole, proved more resistant to simazine than the conifers. Green ash was killed quite readily by all simazine treatments.

Honeylocust showed considerable resistance to this herbicide. As with the white pine, surface treatments were far,less damaging to this species than the mixed treatments (Figure 5). While most of the honeylocust seedlings in the si mazine-soil mixed treatments and 8 pound surface treatments eventually died, many of them did survive and put on new EFOwth during the second spring.

None of the three oak species showed any apparent dan_{age} from any of the treatments (Figure 5).

					-	14					
.D.	1.07 2.35		4.21	3.33				3.30	5.04	4.00	2.81
L.S.D.	1.07	3.04	3.00	2.37				2.40	3.60	2.91	2.00
Control	12.0	12.0	8.0	12.0	12.0	12.0	12.0	7.4	12.0	12.0	10.0
S# simazine (mixed appl.)1	2.0.	2.0	3.0	8.2.	12.0	12.0	12.0	1.2	0.0	3.0	1.8
S# Simazine (Surf. appl.)		1.0	2.4	12.0	12.0	12.0	12.0	1.0	12.0	4.0	1.0
4# Simazine (mixed appl.)1		4.2	3.6	10.8	12.0	12.0	12.0	1.0	0.0	4.4	2.2
4# simazine (surf. appl.)	3.2	8.5	2.0	12.0	12.0	12.0	12.0	1.0	10.4	4.0	1.0
Tree Species	Green ash	Northern white-cedar	Douglas-fir	Honeylocust	Bur oak	Red oak	White oak	Scotch pine	White pine	Norway spruce	White spruce

 $Table^{-0}$. Duration (weeks) of seedling survival under various simazine treatments.

 $^{\mathrm{1}}\mathrm{Simazine}$ was mixed with the upper inch of soil before seeding.

A. 4-pound surface treatment, B. 4-pound treatment mixed with upper inch of soil, C. 8-pound surface treatment, D. 8-pound treatment mixed with upper inch of soil, E. control.

Figure 5. Tolerance of honeylocust (top photograph) and bur oak to various simazine treatments at 3 months after application.

The root elongation of Scotch, red and white pine at three weeks of age is approximately equal (Figures 0, 7, and 8). It seems likely, therefore, that the tolerance exhibited by white pine is not due to rapid root elongation. The absorbing area of the root apparently does not move out of the zone of high herbicide concentration any quicker than the roots of the other more sensitive conifers. On the other hand, roots of bur oak moved q inches deep in only 15 days, although the hypocotyl had not yet appeared (Figure q). In this case the maximum absorbing area of the root apparently moves quickly below the zone of simazine concentration.

Confining the roots of bur oak to the upper 3 inches of soil substantiated the belief that at least a good part of the tolerance observed in oaks is due to the root growth habit of the plant rather than the ability of the plant to render the herbicide harmless through some physiological process. Figure 10 shows the two bur oaks which have both been treated with 4 pounds per acre simazine. The plant on the left with the confined root system is showing the typical sequence of simazine toxicity, marginal chlorosis followed closely by necrosis and death. The plant on the right, however, is quite healthy. These symptoms appeared approximately eight weeks after treatment and eventually resulted in the death of the plant with a confined root system.

In a later experiment carried on with ${ t C}^{14}$ -labeled simazine, a bur oak seedling was treated with a 3 pound per

47

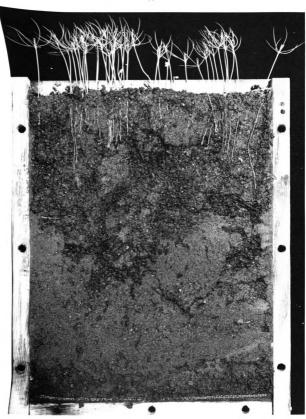


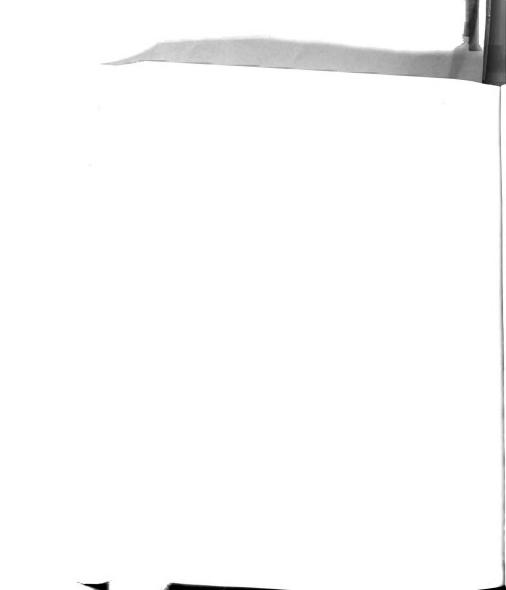
Figure 6. Root elongation of Scotch pine at 3 weeks after germination. The container is 9-1/2 inches deep.

Figure 7. Root elongation of red pine at 3 weeks after germination. The container is 9-1/2 inches deep.

Figure 8. Root elongation of white pine at 3 weeks after germination. The container is 9-1/2 inches deep.

50

rigure 9. Root elongation of bur oak at 15 days. Note that the hypocotyl has not yet appeared. The container is 9-1/2 inches deep.



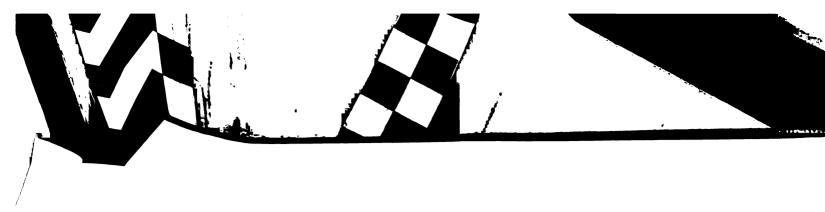
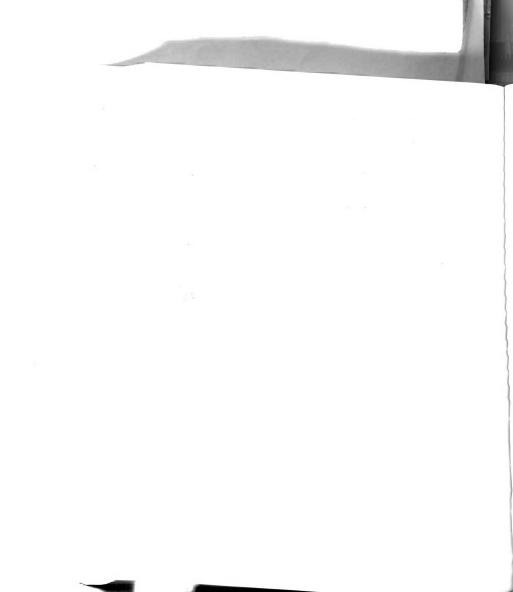
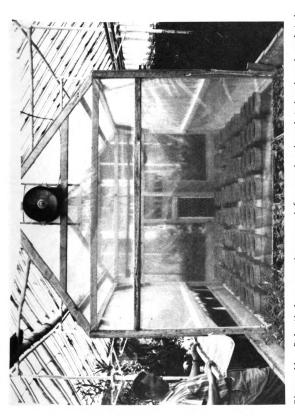


Figure 10. Bur oak seedlings (above) 10 weeks after treatment with 4 pounds per acre simazine. The seedling on the left has its root system confined to the upper 3 inches of soil. Autoradiogram of bur oak (below) 5 weeks after treatment with 3 pounds per acre radioactive simazine.

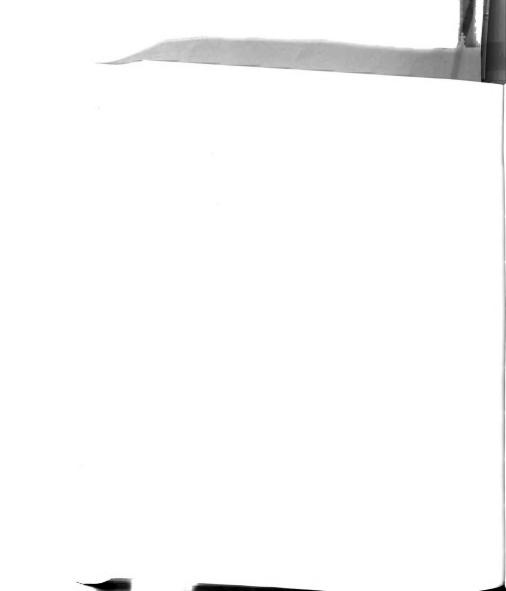
CHAPTER V

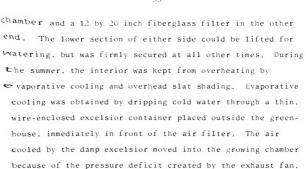
THE UPTAKE AND DISTRIBUTION OF C¹⁴-LABELED SIMAZINE OR


ITS DEGRADATION PRODUCTS IN MYCORRHIZAL AND NON
MYCORRHIZAL RED AND WHITE PINE SEEDLINGS

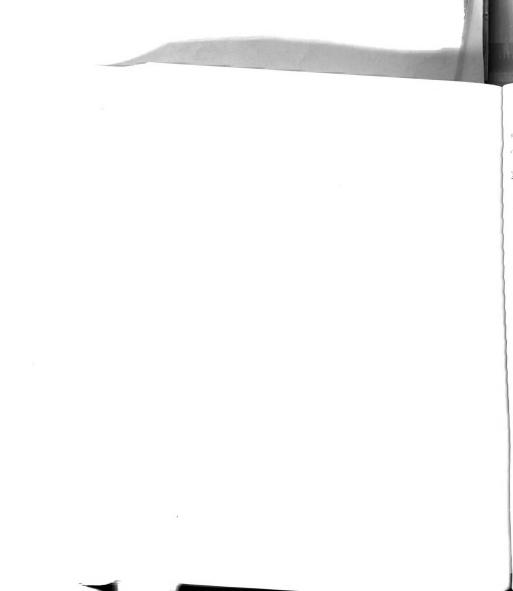

In both the Bogue Nursery and greenhouse experiments described previously, white pine seedlings exhibited far more tolerance to simazine than red pine seedlings. On the other hand, observations of root elongation by these two conifers show no marked differences. The roots of the more simazine-tolerant white pine were not moving below the zone of high simazine concentration any more rapidly than those of red pine. This third study was set up to determine by use of C^{14} -labeled simazine, if simazine is taken up in equal amounts by these two species. In addition, the distribution of the absorbed C^{14} was established by autoradiography and standard counting procedures. As a third objective, an attempt was made to determine whether the mycorrhizal relationship had any effect on the absorption and distribution of this herbicide.

Description of Growing Chamber and Growth Medium


A small polyethylene growing chamber (o' x 10') previously constructed for control of air borne organisms, was used to grow the red and white pine seedlings (Figure 11).


A 12-inch exhaust fan was installed in one end of this growing

Polyethylene greenhouse used for growing inoculated and noninoculated red and white pine seedlings. Hidden Lake Gardens, Tipton, Michigan. Figure 11.



A Prairie soil, Fordville sandy loam, was used as the growing medium. This soil, obtained in South Dakota. was free of fungi which form mycorrhizal relationships with coniferous tree roots. Six-inch plastic utility pots, fumigated with methyl bromide, were used for seed germination. It was soon evident, however, that seedling survival could not be obtained in the soil without some form of soil fumigation. The soil was then fumigated in the pots with methyl bromide. Ten days after fumigation the pots were again sown to red and white pine.

Approximately 2 months after germination, one-half of the red and white pine pots were inoculated with a nursery soil containing mycorrhizae-forming fungi. The nursery soil applied as an inoculum amounted to 1 percent of the original volume of soil in the pot. The inoculum was worked into the

¹Soil for the experiment was provided by Dr. L. O. Fine. South Dakota State College. Brookings. South Dakota.

 $\operatorname{surface}$ layer of the soil and the seedlings were grown for an additional 5 months.

Treatment with Radioactive Simazine

Five months after inoculation the seedlings were lifted or transplanting. The trees were sorted for size and the roots washed thoroughly under tap water. Fordville sandy loam was again used as the growth medium and o ounce, waxed Dixie cups served as growing containers. Drainage holes were punched in the bottom of the cups and they were placed on a shallow baking tray which had been covered with a wire screen. This tray was used to confine the leachate and thus prevent contamination. The growing containers were arranged on the tray in a split plot design. Treatments were replicated five times.

Two weeks after transplanting, 20 ml, of an aqueous suspension containing 7.08 microcuries of C¹⁴-labeled simazine² was applied to the soil medium of each plant (Figure 12). This quantity was equivalent to the rate of 3.10 pounds active simazine per acre. Non-treated controls of both inoculated and non-inoculated plants were carried throughout the experiment.

The plants were grown for an additional 5-1/2 weeks in the soil treated with radioactive simazine. They were then lifted, the roots washed thoroughly in tap water, and divided into tops and roots. Seedlings were then mounted

²Radioactive simazine (7.84 microcuries/mg.) supplied by Geigy Agricultural Chemicals, Saw Mill River Road, Ardsley, New York.

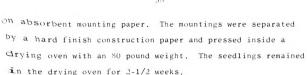


Figure 12. Application of radioactive simazine treatments. Upper photo: Close up showing container and seed-ling size. Lower photo: Arrangement of seed-lings on leaching tray.

Autoradiograms and Counting


Two radioassay procedures were used in this study. Autoradiograms of the seedlings were made and plant parts were also counted in a gas-flow Geiger-Muller counting assembly.

After the plants were removed from the drying oven, they were placed in contact with Kodak Blue Brand X-ray film for a 4-week exposure period.

When the autoradiograms were completed, the plants were removed and prepared for counting. Approximately 1/4 inch of the stem and root was removed at the point of severance. Needles, stems, and roots of each plant were cut into fine pieces to obtain even distribution within the planchets used in the Geiger counter. The plant parts were oven dried at 70°C. for 24 hours in a gravity flow oven and placed in a silica gel desicator prior to weighing. Immediately after weighing, the samples were counted with a gas-flow, thin window Geiger-Muller tube and Tracerlab "Versa/Matic" scaler. All counts were corrected for self-absorption before being subjected to statistical analysis (see Appendix).

Statistical Analysis

Data obtained from these treatments was tested by the

analysis of variance, using plot means as items. For each analysis the degrees of freedom were as shown below.

Source of variation	Degrees of freedom	
Tota1	()	
Replications	4	
Treatments	1	
Error	4	

Results and Discussion

treatment with radioactive simazine revealed that mycorrhizae had advanced only into the initial stage of development.

None of the plants had developed the typical fungal mantle normally found on young pine seedlings. Slow development of mycorrhizae is likely due to time of inoculation, since the inoculum was applied during early October. Even though the plants were given long days by incandescent lighting during the fall and winter months, top growth and apparently root growth were not very active during this period.

Autoradiograms

There was no apparent relationship between mycorrhizae and distribution of simazine in red pine seedlings (Figure 13). In some replications the uptake in the roots and tops appears heavier in the noninoculated treatments, while in other replications the reverse is true. As a whole, however, distribution of radioactive material appears to be more uniformly dispersed throughout the entire red pine seedling than is the case with white pine. Counts of radioactive plant

Figure 13. Autoradiograms and seedling photographs of red pine. Upper left: Autoradiogram of inoculated seedling. Lower left: Photo of this same tree. Upper right: Autoradiogram of noninoculated seedling. Lower right: Photo of this same tree.

varts, which appear later in the report, bear out the conclusion drawn from the autoradiograms.

Autoradiograms of white pine (Figure 14) in all five eplications show a much heavier concentration of radioactive material in the roots of noninoculated plants. Stem and meedle outlines of noninoculated plants also appear generally darker than those of inoculated plants.

Counts of Radioactive Plant Parts

Table 10 shows total uptake of simazine to be approximately equal for both red and white pine. However, seedlings were separated into roots, stems, and needles for counting in

Table 10. Mean counts of C^{14} in red and white pine (entire plant).

Treatment	White pine	Red pine
Inoculated	1.923	3.854
Noninoculated	4.084	3.082
Tota1	0.007	0.930

order to pick up differences in distribution of simazine within the plants. Total counts, after being corrected for self-absorption, were compared on a weight basis for purposes of analysis (Table 11).

In white pine all of the root counts of noninoculated plants are higher than the inoculated plants. In fact, the counts of noninoculated roots were more than double those of the inoculated roots (Table 11). Stem and leaf counts follow

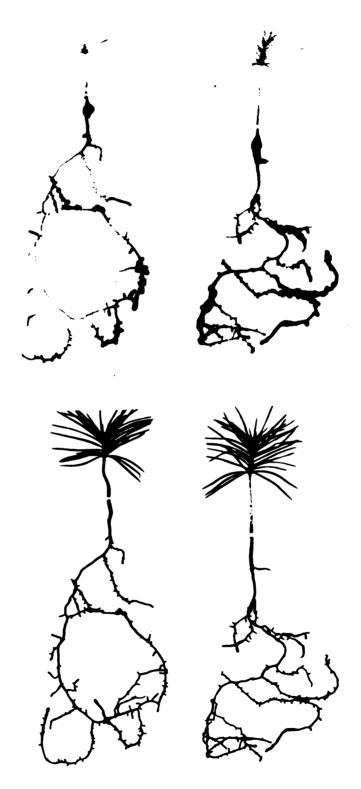


Figure 14. Autoradiogram and seedling photographs of white pine. Upper left: Autoradiogram of inoculated seedling. Lower left: Photo of this same tree. Upper right: Autoradiogram of noninoculated seedling. Lower right: Photo of this same tree.




Table 11. Counts of C^{14} in roots, stems, and leaves of red and white pine seedlings.

Counts per minute per milligram						
Replication	Inoculated white pine	Non- inoculated white pine	Inoculated red pine	Non- inoculated red pine		
		Root Counts				
1 2 3 4 5	.707 1.593 .903 .578 2.825	2.450 3.385 5.201 .700 3.008	1.944 1.255 2.828 .752 .852	.328 .848 1.450 .985 3.508		
		Stem Counts	i			
1 2 3 4 5	.343 .287 .707 .208 .400	.174 .489 .927 .459 1.048	.819 2.059 .042 1.040 .480	.028 .028 .058 .818 1.027		
		Leaf Counts	i			
1 2 3 4 5	.235 .154 .292 .120 .202	.075 .308 .347 .300 .312	1.046 2.430 .024 .184 1.100	.307 .421 .523 .504 2.079		

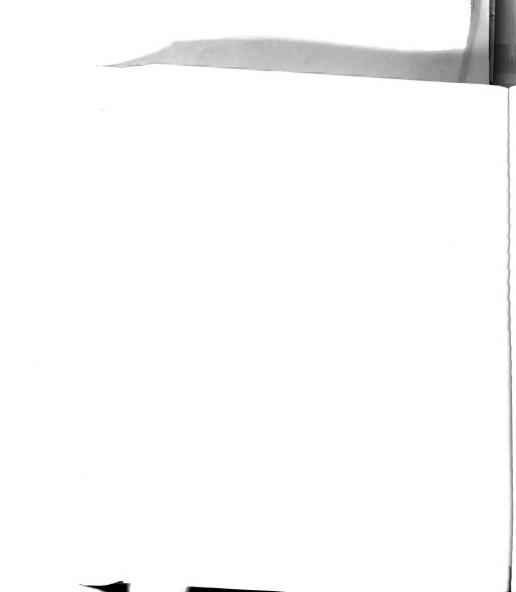
this same pattern with the exception of the first replication. Analysis of variance for the total seedling showed a significant difference in the amount of C^{14} present in inoculated and noninoculated plants (Table 12).

04

Table 12. Counts of ${\rm C}^{14}$ in inoculated and noninoculated white pine seedlings.

Treatment	Mean counts per milligram	
Inoculated	1.924	
Noninoculated	4.080	

F value for differences between treatments significant at 5% level.


Analysis of variance showed no difference in simazine uptake between inoculated and noninoculated red pine seed—lings. However, a more advanced stage of mycorrhizal—evelopment than that present in this study must be tested—before its effect on simazine uptake can be substantiated.

It is evident in Table 13 that distribution of ${\rm C}^{14}$ is extremely important. In red pine the ${\rm C}^{14}$ is fairly evenly distributed throughout the plant. A much higher percentage of the ${\rm C}^{14}$, however, is retained in the non-photosynthetic organs of the white pine.

Table 13. Distribution of ${\mathbb C}^{14}$ in red and white pine (percentage basis).

P1-ant part	Inoculated white pine	Non- inoculated white pine	Inoculated red pine	Non- inoculated red pine
Root	05.0	75.0	40'.0	43.0
Stem	22.8	16.0	28.1	32.0
Leaf	12.2	9.0	31.9	24.4

¹ Average of 5 replications.

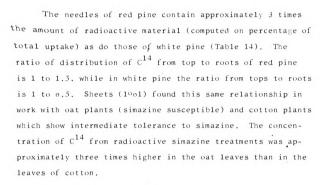
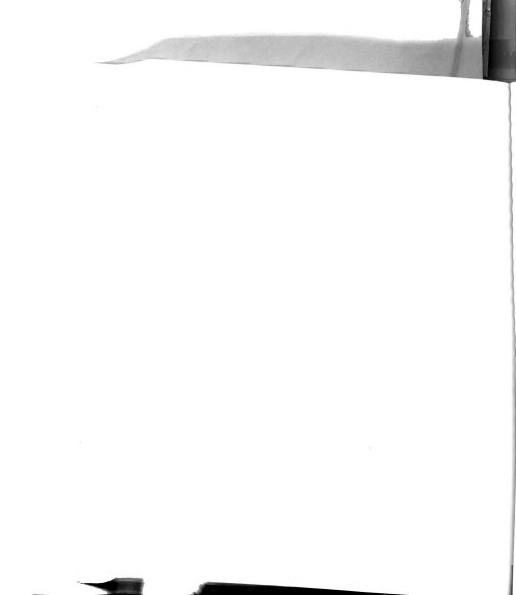



Table 14. Percentage of ${\bf C}^{14}$ in leaves and roots of red and white pine.

Tree species	Inoculated	Non- inoculated	Tree species
	Lea	aves	
White pine	12.2	9.0	10.00
Red pine	31.9	,24.4	28.15
	Re	oots	
White pine	05.0	75.0	70.0
Red pine	40.0	43.0	41.2

F value for difference between species significant at $5\,\mathring{\,}_{\circ}$ level.

There was no difference between stem counts of the two species at the 5 percent level. There was a difference, however, at the 10 percent level.

00

 $\label{eq:Analysis} Analysis \ of \ root \ counts \ (Table \ 14) \ also \ showed \ a \ difference \ between \ the \ two \ species.$

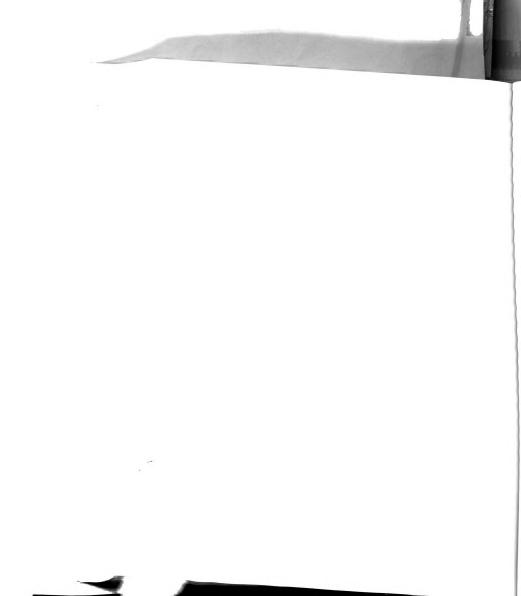

CHAPTER VI

SUMMARY AND CONCLUSIONS

Weed control in nursery management is a time consuming. expensive. never-ending operation. Chemical control prior to 1950 was confined largely to fumigation of seedbeds with poisonous gases and treatment of conifers with petroleum and mineral spirits. Since the advent of organic herbicides after the second World War. literally hundreds of weed control agents have been placed on the market. While many of these products have been tested to some extent, the surface has only been scratched.

The first phase of this nursery weed research compared some of the newer soil fumigants and herbicides with those used in the past. Comparison of duration and thoroughness of weed control was one objective and extent of damage to seven germinating coniferous species was the other. In the wet spring of 1000 no appreciable weed control was obtained from Stoddard solvent, ureaformaldehyde, DMTT, SMDC, chloropicrin, EPTC, and a combination treatment consisting of ureaformaldehyde plus allyl alcohol and ethylene dibromide.

EPTC reduced germination of most species. Chloropicrin caused significant damage to jack, red and white pines, and white spruce. Ureaformaldehyde damaged only Scotch pine and red pine. The remainder of the forementioned treatments caused no injury to any of the tree seedlings tested. The poor


08

weed control obtained with Stoddard solvent was attributed to poor timing of applications and the type of applicator used.

Methyl bromide and DNBP gave better weed control than the treatments discussed above, but the kill of seedlings was also far greater. Of these two treatments, DNBP gave longer-lasting weed control and was also less toxic to most tree species. DNBP shows definite promise as a herbicide which will give good control during the early part of the growing season with a minimum of damage to young seedlings. Survival of red pine and Douglas-fir was not significantly different from the control. From the results achieved with DNBP in this study, additional investigation of its full potential is definitely warranted.

Weed control with the s-triazines was superior to all other treatments. At six weeks after application most plots containing either simazine or atrazine were practically weed free. These two herbicides, when applied at 4 pound rates, continued to give adequate weed control until late July. Because of its lower solubility, simazine (5 p.p.m.) gave a longer weed free period than equal amounts of atrazine (70 p.p.m. solubility). Neither of these two s-triazines gave the season-long weed control that had been attained in previous tests by the writer. The above normal rainfall during the testing period may account for the shorter residual activity experienced in this test.

Damage to all germinating tree species by both simazine

and atrazine was quite severe. in many cases destroying all seedlings at the 8 pound rates. The 2 pound treatments were less damaging, indicating that very light dosages applied at more frequent intervals might be feasible with some species.

Of the seven conifers tested, white pine proved the most tolerant to these s-triazines.

Further testing of simazine rates and placement was made in greenhouse experiments in which both conifers and hardwoods were used as test plants. White pine again proved to be more resistant to simazine than the other conifers tested. Northern white-cedar, Douglas-fir, Scotch pine. Norway spruce, and white spruce were all killed within five weeks after germination by all treatments. In contrast to this, red, white, and bur oaks were not damaged by any of the treatments. Honeylocust showed considerable resistance to this herbicide, and as with white pine, surface applications were far less damaging to this species than treatments in which the herbicide was mixed with the upper inch of soil.

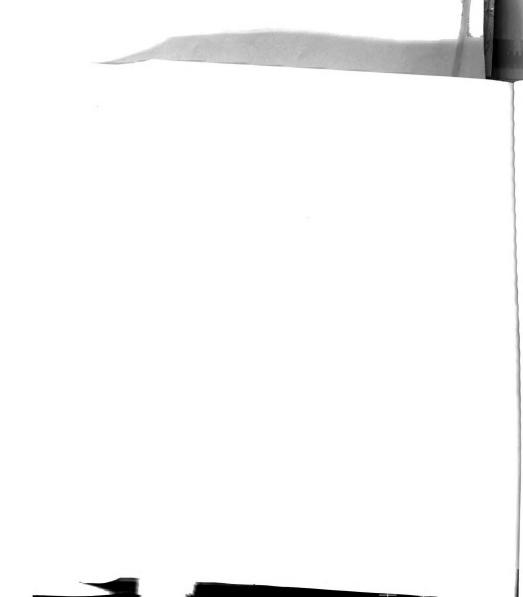
It was postulated that some of the species more resistant to simazine, such as white pine and the oaks, extended their roots below the zone of high herbicide concentration more rapidly than the easily killed species. Root elongation studies were therefore set up to determine whether rate of root elongation had any effect on tolerance. It was found that the roots of white pine did not elongate any faster than those of simazine susceptible Scotch and red pines. On the



days. In this case the maximum absorbing area of the root apparently moves quickly below the zone of high simazine concentration. Further work in which the roots of bur oak were confined to the upper three inches of simazine-treated soil, substantiate the belief that at least a good part of the tolerance observed in oaks is due to the root growth habit of the plant rather than the ability of the plant to break this herbicide down into harmless chemical products through some physiological process. The plant with the confined root system began to show typical simazine toxicity symptoms and eventually died, while those with normal root development remained healthy. Oak seedbeds can apparently be treated with up to 4 pounds active simazine per acre without damaging seedlings.

Since there is such a wide difference in the tolerance of red and white pines to simazine, a third study was set up to determine, by use of ${\rm C}^{14}$ -labeled simazine, the uptake and distribution of this herbicide in these two species. In addition, the effect of the mycorrhizal relationship associated with these two pines was incorporated into the study. Two radioassay procedures, autoradiography and counting of plant parts, were used.

Results of this study showed the total uptake of simazine to be approximately equal for both red and white pine. C¹⁴ is fairly uniformly distributed throughout red pine. but is confined more to non-photosynthetic organs in



71

white pine. The ratio of distribution of C¹⁴ from top to toots of red pine is 1 to 1.5, while in white pine the ratio from tops to roots is 1 to 0.5. Since simazine kills by blocking the Hill reaction during photosynthesis, the reason for the greater tolerance exhibited by white pine seems evident.

At the time of radioactive treatment, mycorrhizae had advanced only into the initial stage of development on the inoculated seedlings. Even at this early stage of development, however, the inoculated white pine seedlings contained significantly less C^{14} than the noninoculated white pines. In fact, counts in noninoculated plants were more than double those of inoculated plants.

No apparent differences were noted in simazine uptake between inoculated and noninoculated red pine. The mycorrhizal relationship either had no effect on simazine uptake with this species or perhaps develops slower on red pine and therefore had not reached a stage where it could influence uptake. Certainly a more advanced stage of mycorrhizal development than that present in this study must be tested before its effect on simazine uptake in red pine can be substantiated.

LITERATURE CITED

Anonymous.

1900. Herbicide Tech. Bul. o0-1. Geigy Chem. Corp. 8 pp.

Atrazine Herbicide Tech. Bul. ol-1. Geigy Chem. 1901. Corp. 8 pp.

Ahrens, J. F.

1901. Effects of granular herbicides on newly planted nursery liners. Proc. North Eastern Weed Cont. Conf. 15: 140-147.

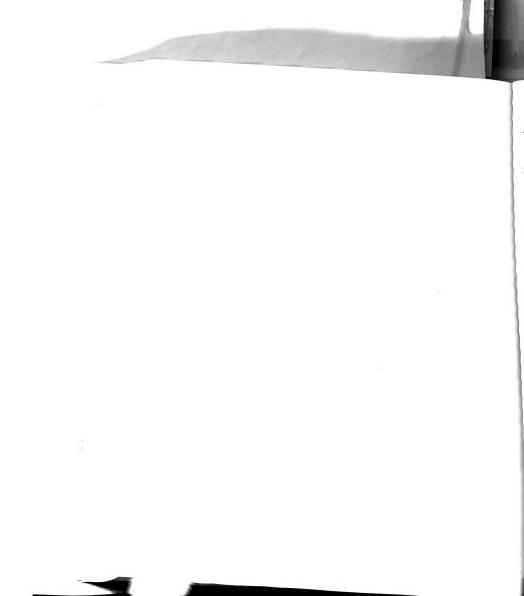
Ashton, F. M., G. Zweig, and G. W. Mason 1900. The effect of certain triazines on $C^{14}0_5$ fixation in red kidney beans. Weeds. 8: 448-451.

Bagley, W. T. and R. T. Myoshi
1050. Chemical weed control in windbreaks. Proc. North
Cent. Weed Cont. Conf. 1o: 43.

Burnside, O. C., E. L. Schmidt, and R. Behrens 1ºola. Dissipation of simazine from the soil. Weeds.

and R. Behrens 1001b. Phytotoxicity of simazine. Weeds. 0: 145-157.

Burschel. P. 1901. Studies on the behavior of simazine in soil. Weed Research. 1: 131-141.


Castelfranco, P. A., D. B. Deutsch, and M. S. Brown
10ola. Decomposition of simazine in soil by calcium
polysulfide. Weed Soc. of Amer. Abstr. p. o.

, C. L. Foy, and D. B. Deutsch 1961b. Non-enzymatic detoxification of 2-chloro-4.o-bis (ethylamino)-s-triazine (Simazine) by extracts of Zea mays. Weeds. 9: 580-591.

Chadwick, L. C.

1958. Controlling spring weed growth in Taxus by fall application of herbicides. Proc. North Cent. Weed Cont. Conf. 15: 0.

Chandra, P., W. R. Furtick, and W. B. Bollen $1900\,.$ The effects of four herbicides on microorganisms in nine Oregon soils. Weeds. 8:589-598.

7.3

Davis, D. E., H. H. Funderbunk, Jr. and N. G. Sansing $195^{\rm o}$. The absorption and translocation of ${\rm C}^{14}$ -labeled simazine by corn. cotton, and cucumber. Weeds. 7: 300-300.

Derscheid, L. A.
1958. Weather effects on preemergence applications of CDAA and simazin. Proc. North Cent. Weed Cont. Conf. 15: 23.

Feddema, L.

1058. The influence of depth of placement on herbicidal activity of monuron and simazin. Proc. North Eastern Weed Cont. Conf. 12: 41-44.

Fletchall, O. H. and L. W. Schweiss 1959. Comparison of granular and liquid applications of herbicides for weed control in corn. Proc. North Cent. Weed Cont. Conf. 16: 182.

Foy. C. L.
1001. Accumulation of s-triazine herbicides in the
lysigenous glands of cotton and its physiological
significance. Weed Soc. of Amer. Abstr. p. 41.

Friesen, G.
1058. Effect of several preemergence herbicides for weed control in corn. Proc. North Cent. Weed Cont. Conf. 15: 100.

Gast. A.

1058. Über Pflanzenwachstumsregulatoren. Beitrage zur
Kenntnis der phytotoxischen Wirkung von
Triazinen. Experientia. 14: 134-137.

Grigsby, B. H.
1058. Response of certain unicellular green algae to several herbicides. Proc. North Cent. Weed Cont. Conf. 15: 30.

Guillemat. J. et al.

1000. Interactions entre une chloro-amino-triazine
herbicide et la microflore fongique et bactérienne
du sol. Annales des Epiphyties. 261-205.

Havis, J. R. 1901. Progress Report on weed control in nursery crops. Proc. North Eastern Weed Cont. Conf., 15: 137-145.

Holm, L., R. Taylorson and T. Pinney 1057. Weed control in nursery plantings. Proc. North Cent. Weed Cont. Conf. 14: 50-51.

74

Holm. L

1938. Weed control in ornamental and forest nurseries.

Proc. North Cent. Weed Cont. Conf. 15: 71-72.

Hovind. H. J. 1950. The role of herbicides in establishing coniferous plantations. Proc. North Cent. Weed Cont. Conf. 10: 42.

Jansen, L. L., W. A. Gentner and J. L. Hilton 1957. A new method for evaluating potential algicides and determination of the algicidal properties of several substituted urea and s-triazine compounds. Weeds. p.: 390-397.

Johnson, R. R.

1000. The use of herbicides in forestry. Proc. North
Cent. Weed Cont. Conf. 17: 13-14.

Jokela, J. J., R. W. Lorenz and F. W. Slife

1ºol. Tolerance and response of eight tree species to
simazin, diphenatrile, and zytron. Weed Soc. of
Amer. Abstr. p. 28.

Klingman, G. C.

10ol. <u>Weed Control as a Science</u>. John Wiley and Sons,
<u>Inc., New York, N. Y.</u> 421 pp.

Kozlowski, T. T.

1000. Some problems in use of herbicides in forestry.

Proc. North Cent. Weed Cont. Conf. 17: 1-10.


Kuntz. J. E. et al. 1900a. Chemical weed control in forest plantings. Proc. North Cent. Weed Cont. Conf. 17: 14-15.

1000b. Leachability, movement and persistence of herbicides in forest nursery soils. Proc. North Cent. Weed Cont. Conf. 17: 12-13.

Larsen. R. P. and S. K. Ries
1900. Simazine for controlling weeds in fruit tree and
grape plantings. Weeds. 8: 071-077.

Lovely. W. G.
1058. Applying granular herbicides for control of weeds in corn. Proc. North Cent. Weed Cont. Conf.
15: 11.

Montgomery, M. and V. H. Freed
1959. A comparison of the leaching behavior of simazine and atrazine in Chehalis sandy loam. Western
Weed Cont, Conf. Res. Prog. Report. p. 79.

Montgomery, M. and V. H. Freed

1001. The uptake, translocation and metabolism of simazine and atrazine by corn plants. Weeds.

9: 231-237.

Moreland. D. E. et al.

1050. Studies on the mechanism of herbicidal action of 2-chloro-4-6-bis (ethylamino)-s-triazine.

Plant Physiology. 34: 432-435.

No11, C. J.

1000. A progress report on the chemical weeding of sweet corn. Proc. North Eastern Weed Cont. Conf. 14: 77-80.

Peters, R. A.

1957. Notes on simazin as an herbicide on corn compared with several other materials. Proc. North Eastern Weed Cont. Conf. 11: 283-285.

Ragab, M. T. H. and J. P. McCollum 1901. Degradation of ${\rm C}^{14}$ -labeled simazine by plants and soil microorganisms. Weeds. 9: 72-84.

Reid, J. J.

1000. Bacterial decomposition of herbicides. Proc.
North Eastern Weed Cont. Conf. 14: 10-30.

Richards, R. F.

1000. Recent research results with simazine and related triazines. Proc. Southern Weed Cont. Conf. 13: 228-234.

Ries, S. K. and D. P. Watson

1057. Weed control in lining-out stock of 4 species of ornamentals. Proc. North Central Weed Cont.

Conf. 14: 49-50.

. B. H. Grigsby and H. Davidson

The evaluation of herbicides for several species of ornamentals. Proc. North Cent. Weed Cont. Conf. 15: 7.

Roth, W.

1957. Etudé comparee de la réaction du Mais et du Blé
a la Simazine, substance herbicide. Académie
Des Sciences Comptes Rendus. 245 (10): 942-944.

1958. Substances régulatrices de la croissance végétale. Etude de l'action de la Simazine sur la physiologie d'Elodea. Experientia. 14(4): 137-138.

76

Roth, W. and E. Knüsli

1961. Beitrag zur Kenntnis der Reistenzphänomene einzelner Pflanzen gegenüber dem phytotoxischen Wirkstoff Simazin. Experientia. 17: 312.

Schneider, E. O.

1058. A progress report on the physiology of simazin in the corn plant. Proc. North Cent. Weed Cont. Conf. 15: 4.

1050. Comparison of simazine and atrazine for weed control in corn. Proc. North Cent. Weed Cont. Conf. 10: 52-33.

Sheets, T. J. and L. L. Danielson

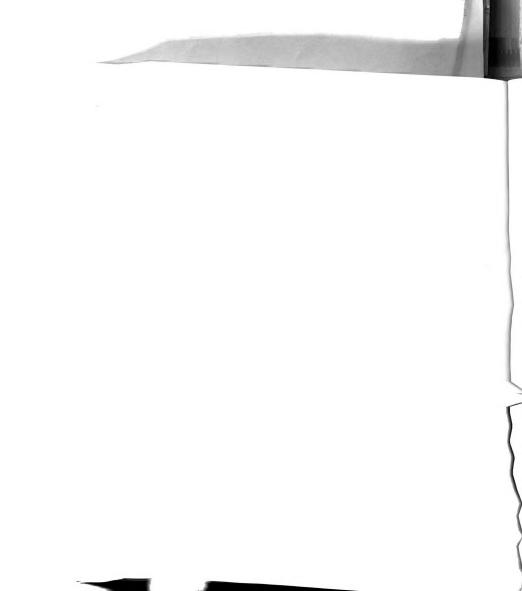
1900. Herbicides in soils, 170-181. In the Nature and Fate of Chemicals Applied to Soils, Plants. and Animals, (a symposium.) U. S. Dept. of Agric. Agric. Res. Service. 20-9.

1ºol. Uptake and distribution of simazine by oat and cotton seedlings. Weeds. 0: 1-13.

Stroube, E.W. and D. D. Bondarenko 1000. Persistence and distribution of simazine applied in the field. Proc. North Cent. Weed Cont. Conf. 17: 40-41.

Sweet. R. D. et al. 1058. Longevity of several Perbicides in soils. Proc. North Eastern Weed Cont. Conf. 12: 17-24.

Switzer, C. M.

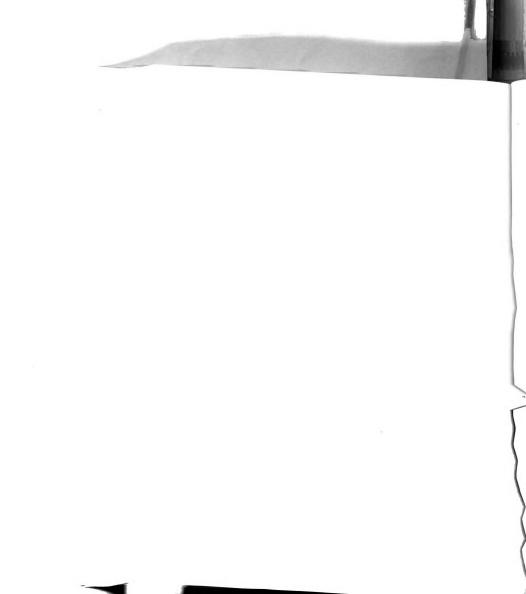

1958. Observations in 1958 on plots treated with simazin and monuron in 1957. Proc. North Cent. Weed Cont. Conf. 15: 128.

and W. E. Rauser

1900. Effectiveness and persistence of certain herbicides in soil. Proc. North Eastern Weed Cont. Conf. 14: 320-335.

Talbert, R. E. and O. H. Fletchall
1050. Preemergence weed control in grain sorghum. Proc.
North Cent. Weed Cont. Conf. 10: 84.

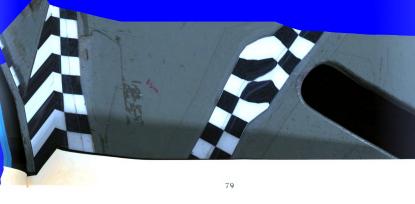
Taylorson, R. B. and L. Holm 1058. Weed control in coniferous nursery stock. Proc. North Cent. Weed Cont. Conf. 13: 05.

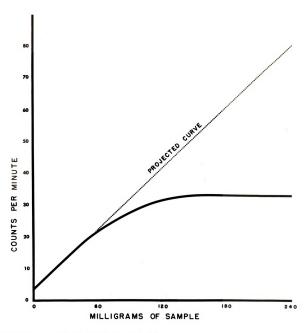


- Trevett, M. F. and R. Burnham

 1057. Dinitro, trichlorobenzoic acid, simazin and other herbicides for preemergence weed control in sweet corn. Proc. North Eastern Weed Cont. Conf. 11: 300-305.
 - Vengris, J.

 1057. Weed control in field corn. Proc. North Eastern
 Weed Cont. Conf. 11: 03-00.
 - Wilde, S. A., G. K. Voigt and D. J. Persidsky
 1950. Transmitted effect of allyl alcohol on growth
 of Monterey pine seedlings. Forest Sci. 2:
 58-59.
 - Winget, C. H., T. T. Kozlowski and J. E. Kuntz 1000. Effects of herbicides on red pine seedlings and transplants. Proc. North Cent. Weed Cont. Conf. 17: 12.
 - White, D. P.


 1000. Effect of fertilization and weed control on the establishment, survival and early growth of spruce plantations. Trans. of Seventh Int. Cong. of Soil Science. 3: 355-302.
 - 1002. Don't choke your trees: Control those weeds. American Forests. o8(o): 4 pp.



APPENDIX

Appendix 1. Self-absorption curve.

Appendix 2. Listing of common and chemical names of herbicides and soil fumigants mentioned in the text.

Common name	Chemical name
Allyl alcohol	allyl alcohol
Atratone	2-methoxy-4-ethylamino-o-isopropyl- amino-s-triazine
Atrazine	2-chloro-4-ethylamino-o-isopropylamino- s-triazine
Chlorazine	2-chloro-4.o-bis (diethylamino)-s- triazine
Chloropicrin	trichloronitromethane
Copper sulfate	copper sulfate
Dalapon Dalapon	2.2-dichloropropionic acid
Ethylene dibromide	ethylene dibromide
EPTC	ethyl N. N-di-n-propylthiolcarbamate
G-30020	2-chloro-4-methylamino-o-isopropyl- amino-s-triazine
Ipazine	2-ch1oro-4-diethy1amino-b-isopropy1- amino-s-triazine
Maleic hydrazide	maleic hydrazide
Methyl bromide	methyl bromide
Monuron	3-(p-chlorophenyl)-1, 1-dimethylurea
DMTT	3.5-dimethyltetrahydro 1.3.5 2 H thiadiazine-2-thione
DNBP	4.o-dinitro-o-sec-buty1pheno1 (amine salt)
Prometone	2-methoxy-4.o-bis(isopropylamino)-s-triazine
Propazine	2-chloro-4.o-bis(isopropylamino)-s- triazine
Sesone	sodium. 2.4-dichlorophenoxyethyl sulfate
Simazine	2-chloro-4.o-bis(ethylamino)-s-triazing
Simetone	2-methoxy-4.o-bis(ethylamino)-s- triazine
Sodium arsenite	sodium arsenite
Stoddard solvent	stoddard solvent
TCA	trichloroacetic acid
Trietazine	2-chloro-4-diethylamino-o-ethylamino- s-triazine
Ureaformaldehyde 85	ureaformaldehyde
SMDC	sodium methyl dithiocarbamate
2,4-D	2.4-dichlorophenoxyacetic acid

Total weight, total counts per minute, background counts per minute corrected counts per minutel and adjusted counts per minutel for inoculated white nine white pine. Appendix 3.

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Leaf 11.05 11.90	counts/min.	counts/min.	Adjusted counts/min.
ಆ ರುಹಕಣ ಆರ	11.95			
	11.90	30,30	18,35	20,55
		20.83	8.03	9.10
	11.90	25.04	13.74	13.74
	13.00	20.00	7.00	8.04
	13.00	28.10	15.10	16.52
	Stem			
	11.95	19.20	7.31	7.31
	11.95	17.82	5.87	5.87
	11.90	24.63	12.73	12.73
	13.00	10.33	3.33	3,33
	13.00	19.53	0.53	0.53
	Root			
	11.95	02.11	50.10	.53.07
	11.90	138.88	120.98	142.21
	11.90	01.34	49.44	40.44
	11.90	51.02	30.12	41.40
	13.00	250.41	243.41	282.35

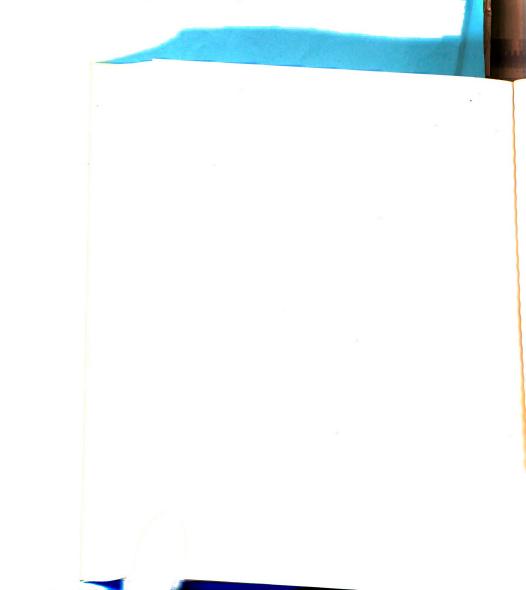
 $^{\rm 17}{\rm otal}$ counts minus background counts equals corrected counts per minute. $^{\rm 27}{\rm his}$ column obtained after correction from self-absorption curve.

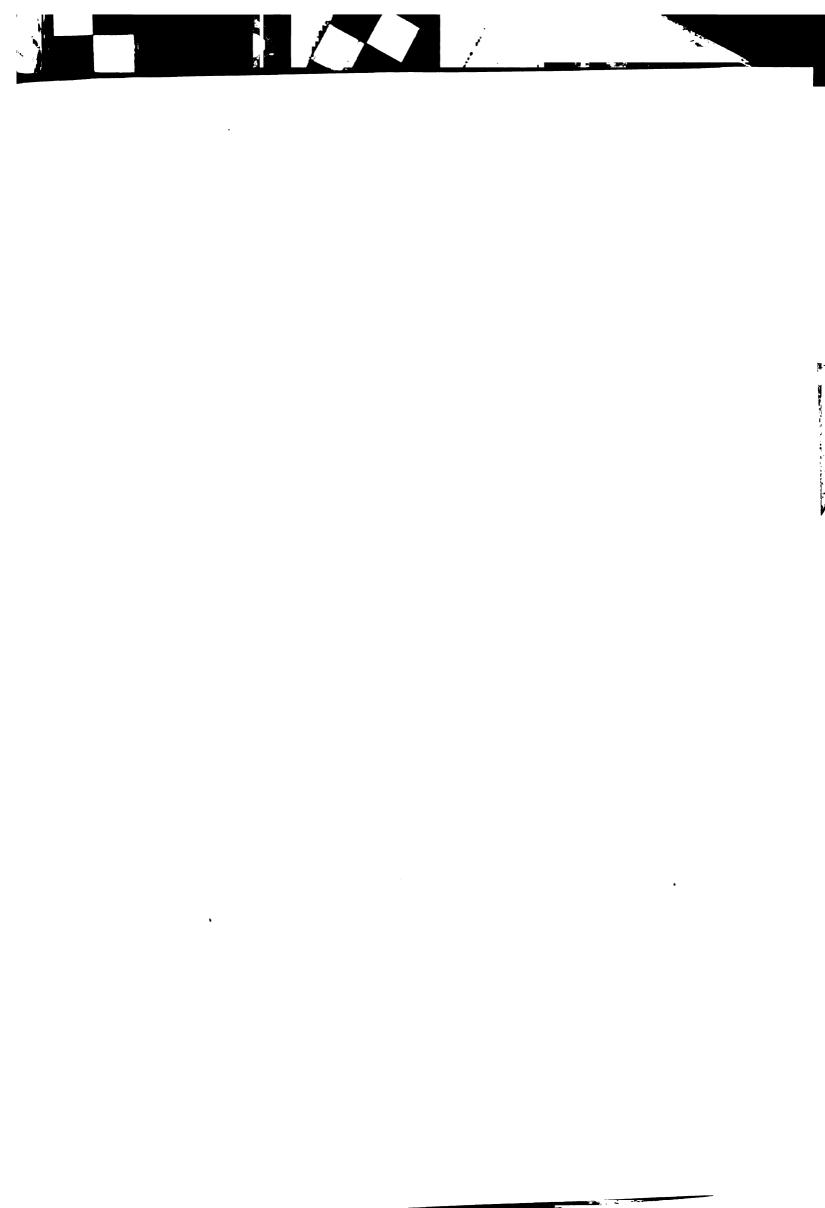
per per	Adjusted counts/min.		0.30 24.95	29.01 29.01 19.70		10.7.08 10.7.08 13.7.08 13.7.7.3	•	50 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
counts			. ,	, 1 				3 12 12 12 12 12 12 12 12 12 12 12 12 12
e. background and adjusted	Corrected counts/min			18.75 18.95 18.95		12.08 24.08 10.13 13.13		180.35 310.03 422.88 07.04 243.41
nts per minutes s per minute ¹ ed white pine	Total counts/min.		17.73 34.84	31.84 31.84		14.70 24.03 30.70 23.75		192.30 322.58 434.78 80.94 250.41
weight, total counts per minute, background corrected counts per minute ¹ and adjusted for noninoculated white pine.	Background counts/min.	Leaf	11.05	13.00 12.80	Stem	11.95 11.95 11.90 13.00	Root	11.95 11.95 11.90 13.00
. Total minute	Total weight (milligrams)		0.88.0	74.2 03.0		15.24.3 13.44.3		\$0.2 111.0 90.3 103.7
^ppendix 3 (continued)	Replication		⊣ ^} ~	ਹਜ਼ਾਨ		H (1 m → 10		ਜ਼ਹਨਜ਼ਿ


 1 Total counts minus background counts equals corrected counts per minute. This column obtained after correction from self-absorption curve.

Total weight, total counts per minute, background counts per minute, corrected counts per minute, and adjusted counts per minute. for inoculated red pine. opendix 3 (continued).

	Total weight (milligrams)	Background counts/min.	Total counts/min.	Corrected counts/min.	Adjusted : counts/m.in.
		Leaf			
1	30.3	11.05	70.02	58.97	58.97
~1	31.4	11.90	88.49	70.59	70.59
3	46.9	11.90	55.24	43.34	43,34
7	40.6	13.00	22.17	9.17	0.17
5	34.8	13.00	51.28	38.28	38.28
		Stem			
1	12.0	11.95	21.78	0.83	0.83
~1	10.3	11.90	33.11	21.21	21.21
~.	14.3	11.90	21.00	0.10	0.10
ব	1.0	13.00	23.09	10.09	10.09
5	12.8	12.89	19.12	0.23	0.23
				-	
		Koot			
1	25.8	11.95	62.11	50.10	50.10
~1	20.2	11.95	37.31	25.30	25.30
~	23.2	11.90	77.51	05.01	05.01
4	31.4	13.00	30.03	23.63	23.63
5	25.2	13.00	34.48	21.48	21.48


-Irotal counts minus background counts equals corrected counts per minute. -Inis column obtained after correction from self-absorption curve.



Total weight, total counts per minute, background counts per minute, corrected counts per minute, to ronnoinoculated red pine. Appendix 3 (continued).

Replication	Total weight (milligrams)	Background counts/min.	Total counts/min.	Corrected counts/min.	Adjusted counts/min.
		Leaf			
1	53.8	11.95	33.33	21.38	21.38
~1	40.8	11.90	31.04	19.74	10.74
3	47.2	11.90	30.03	24.73	24.73
4	47.0	13.00	37.17	24.17	24.17
c	50.3	13.00	120.87	110.87	110.87
		Stem			
1	14.4	11.05	21.00	0.05	0.05
^1	23.2	11.05	20.52	14.57	14.57
~	15.0	11.90	21.78	88.6	6.88
4	14.8	13.00	25.12	12.13	12.13
S	10.1	13.00	30.21	20.21	20.21
		Root			
-	53.0	11,95	29.07	17.72	17.73
~ 1	58.0	11.95	70.00	49.02	50.00
~	48.1	11.90	81.90	70.00	70.00
7	53.1	13.00	05.35	52.35	52.35
10	71.0	13.00	250.00	237.00	251.22

Trotal counts minus background counts equals corrected counts per minute. This column obtained after correction from self-absorption curve.

ROOM USE ONLY

ROOM USE ONLY

