
ABSTRACT

SOME GEOMETRIC PROPERTIES OF COMPRESSIBLE FLUID FLOWS

AND CERTAIN CLASSES OF SUCH FLOWS OBTAINED BY

INTRINSIC METHODS

by Lester B. Fuller

Steady nonviscous nonheat—conducting flow of a compres—

sible fluid in the absence of external forces is discussed

in this paper. In particular the geometry of such flows is

studied, the dynamical equations which characterize these

flows are reformulated, and some classes of flows are obtained.

In connection with the geometry, a condition is ob—

tained which is necessary and sufficient for the existence

of stream surfaces that contain the vortex lines. These

are called Lamb surfaces. Then, two necessary and sufficient

conditions are found; one for streamlines to be geodesics

on Lamb surfaces and the other for streamlines to be asymp-

totics on stream surfaces. More generally;two necessary

and sufficient conditions are obtained: one for the existence

of stream surfaces on which streamlines are geodesics and

the other for the existence of stream surfaces on which

streamlines are asymptotics°

Some of these conditions mentioned involve the magni-

tude of the velocity vector, and so, relationships between

it and the geometry are observed. Thus, the geometry and

the dynamics are related.

Concerning the dynamical equations and their solutions,

the following has been done. A system of equations equiva—

lent to the dynamical equations is obtained using two families
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of stream surfaces and the family of constant pressure sur-

faces as coordinate surfaces. From this reformulated system

of equations, two classes of plane flows are found, and a

single ordinary differential equation is obtained whose solu—

tion leads to a class of three dimensional flows.
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CHAPTER I

INTRODUCTION

1.1 Preliminaries
 

As the title of this paper indicates, it is our pur-

pose herein to make some observations concerning certain

fluid flows, the equations which characterize them, and

their geometry. Consequently, it seems appropriate that

we begin with a discussion and explanation of some of these

terms.

A fluid flow is a set of functions which satisfies

a certain system of nonlinear partial differential equa-

tions, and so, we first consider these equations which are

referred to as the dynamical equations throughout this
 

paper. We write the system using the standard summation

convention (i = 1, 2, 3) and, following it, explain the

notation and discuss its derivation.

(1.11) VEPV = 0

i _ l - _
(1.12) v Vivj — — P vgp (3 — 1,2,3)

(1.13) Vivin = o

In these equations we are using the customary notation

of tensor calculus, so v1 and v3. are the contravariant

and covariant components respectively of a vector field

called the velocity vector field, and 'VE represents the

1



2

covariant derivative. The quantities p, p, and q are

scalar point functions known as pressure, density, and

entropy, respectively. Consequently, the terms 'Viq and

V59 are gradients of scalar point functions.

The dynamical equations are derived from the basic

principles of conservation of mass, momentum, and energy.

These derivations are given in most standard fluid mechanics

texts, such as in the first chapter of H. Lamb [8]. The

form of equation (1.13) we are using is nicely developed

in R. Courant and K. O. Friedrichs [4, p. 14-16].

These equations are the mathematical model for steady

nonviscous nonheat—conducting flow of a fluid in the ab-

sence of external forces. By the term steady we mean that

the quantities appearing in these equations depend on posi-

tion only and are independent of time; by nonviscous we mean

the force an element of fluid exerts on an adjacent element

is normal to their common surface; by nonheat-conducting
 

we mean there is no flow of heat from a hotter portion of

the fluid to a cooler portion except that which takes place

by convection, that is, by the motion of the fluid itself.

A set of functions consisting of a vector function G,

with components vi or Vj’ and three scalar point func—

tions n, p, and p, which identically satisfy the dynamical

equations in some region of three dimensional space, is

called a flgw, Briefly, then, a flow is a solution of

equations (1.11) to (1.13). In the special case where the

density, p, is constant, the flow is called incompressible.
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Otherwise, it is known as compressible. If the vector func-
 

tion 5 is such that curl v — 5 throughout a region of

three dimensional space, the flow is irrotational in that
 

region. Otherwise, it is called rotational. Throughout
 

this paper we use I to denote curl v and call it the

vorticity or vortex vector. If the vorticity and velocity
 
 

vectors of a flow are parallel at each point in a region,

that is G x I = 5, then the flow is called Beltrami.
 

Each curve of the family of integral curves of the

velocity vector field is called a streamline, and, similarly,
 

a vortex line is a member of the family of integral curves
 

of the vortex vector field. From the physical vieWpoint,

a streamline in a steady flow is the path of a fluid particle.

Thus we see that certain families of curves may be associ—

ated with a fluid flow.

It is also possible to associate various families of

surfaces with a flow, as the following remarks indicate.

(We tacitly assume that any requirements such as continuity

and differentiability of functions is satisfied.) The

presence of the pressure gradient in (1.12) brings to mind

the concept from vector calculus of level surfaces of a

scalar point function. In this case, these are surfaces on

which p is constant and which have the property that, at

each point, a surface normal is collinear with the pressure

gradient. The partial differential equation vivie = 0

has two linearly independent solutions which we shall denote

by 61(X1, X2, X3) and 92(X1, X2, X3), where X1, X2, and
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X3 denote independent variables. If we let C1 and C2

be arbitrary constants, then 61(X1, X2, X3) = C1 and

92(X1, X2, X3) 3 C2 represent families of surfaces known

as Stream surfaces.
 

From the two preceding paragraphs, we notice that we

may associate with a flow geometric objects such as families

of curves and families of surfaces. Furthermore, for a

given flow, these curves and surfaces may have special

properties. For example, the streamlines may be straight,

or the streamlines and vortex lines may coincide as in a

Beltrami flow. Hence, we describe a flow in terms of these

geometric quantities and their properties and speak of the

geometry of a flow. In case the streamlines are plane
 

curves, and there exist stream surfaces which are planes

with the property that all quantities of the flow do not

change in the direction normal to them, we say the flow is

a plane flow.
 

1.2 Background Concerning Geometry
 

We would like to mention some of the previous research

in the area of the geometry of fluid flows which, to some

extent, motivates the geometric considerations undertaken

in this paper, or has a direct bearing upon them.

D. Gilbarg [5] poses the following question: In what

way is the flow pattern (i.e. the streamlines) related to

the velocity, and to what extent does one depend on the

other? Or, we might state the question this way: to what
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extent does the geometry of a flow determine its dynamics?

Some partial answers to this question have been obtained.

In the case of steady, incompressible, plane flow, Gilbarg

determines all incompressible flows having the same flow

pattern as an arbitrary given flow of an incompressible

fluid. In fact, he shows that, if the given flow does not

have a constant velocity magnitude along each individual

streamline, the only flows with the same streamline pattern

are those having velocity fields that are proportional to

that of the given flow. R. C. Prim [12] extends these find-

ings of Gilbarg to the three dimensional case. R. Wasser—

man [21] shows that, if the velocity vector v = qE (IEI

= 1), corresponding to each incompressible (compressible)

flow with ‘fiaté = 0 there is a compressible (incompressible)

flow having the same streamlines and constant pressure sur-

faces. He also proves the converse, namely, that if a

compressible and incompressible flow have the same (non-

straight) streamlines and constant pressure surfaces, then

they both have xyiti = O. R. c. Prim [13] points out that

among all flows having the same streamlines and constant

pressure surfaces, there is a flow containing a special

family of surfaces, which is not necessarily present in all

flows. We shall elaborate more fully upon this in Chapter II,

but, at present, simply point out that much of Chapters 11

and III are motivated by the articles mentioned in this sec-

tion.
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In other areas of flow geometry,<xxmributions have

been made by N. Coburn, E. R. Suryanarayan, and C. Truesdell.

N. Coburn [3] points out certain properties of the vorticity

and velocity vectors and demonstrates, the interesting fact,

that the pressure gradient lies in the osculating plane of

the streamlines. E. R. Suryanarayan [16] decomposes the

dynamical equations in terms of the tangent, principal nor—

mal, and binormal of the vortex lines and considers a flow

in which the vortex lines are right circular helices. In

another paper [17] he discusses the geometry of flows

(known as complex lamellar flows) containing surfaces or-

thogonal to the streamlines and derives conditions for the

orthogonal intersection of certain surfaces existing in

these flows. C. Truesdell [19] writes a comprehensive

article in which he emphasizes the generality of intrinsic

methods (to be discussed in Chapter II of this paper) in

analyzing flow geometry.

1.3 Background Concerning Solutions of the Dynamical

Equations
 

In attempting to solve the dynamical equations, numer—

ous difficulties are encountered, and so it is natural to

make some simplifying assumptions. One such assumption is

that there are Beltrami flows (5 x I = O) satisfying these

equations. Such flows, however, would include irrotational

flows as a special case, and the further assumption that

I = 0 would render the dynamical equations still less



7

complex. Additional simplification could be brought about

if flows that are both incompressible and irrotational are

sought. So, the various types of flows one might seek, in

order of increasing difficulty, are

(a) irrotational and incompressible,

(b) irrotational but compressible, and

(c) Beltrami.

We now discuss some of the progress that has been made

in the special cases mentioned above. Case (a) leads to

Laplace's equation and classical potential theory. For solu-

tions in this case see H. Lamb [8, Chap. 5]. Case (b) is

analyzed by R. Courant and K. O. Friedrichs [4, Chap. 4],

and in the case of supersonic plane flow, a class of solu-

tions known as Prandtl—Meyer flows is presented. In case

(c) Beltrami [1] sets forth, and Nemenyi and Prim [11]

discuss flows in which the streamlines are coaxial helices.

This is done for an incompressible flow.

In the special case where pressure is constant on

streamlines, R. Wasserman [21,22] obtains flows in which

the streamlines are helices and another class of three dimen—

sional compressible fluid flows.

1.4 Objectives of this Paper

As we pointed out, there seems to be an increase in

difficulty as one proceeds from irrotational, incompressible

flows to irrotational flows which allow compressibility

effects, and then to Beltrami flows. One might look upon
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this progression as being one in which we go from a consider-

ation of flows without vortex lines (I = 0) to a considera-

tion of flows in which streamlines and vortex lines coincide

(v x I = 5). As the next stepping stone of difficulty in

the advance from irrotational flow to general steady non-

viscous nonheat—conducting flows, in Chapter II we shall

discuss the geometry of flows in which streamlines and vor-

tex lines form surfaces. As we shall see, this need not

always be the case, even when G x I # 0. In Chapter III.

the classification of flows already indicated in this sec-

tion will be elaborated upon, and relations between the

geometry and [6| shown. In Chapter IV, we shall reformu-

late the dynamical equations (1.11) to (1.13) and then, in

Chapter V, use this reformulation to obtain two classes of

plane flows. In Chapter VI, we obtain a class of three

dimensional flows, and in both Chapters V and VI, the‘

geometry of the flows obtained is of the type discussed in

Chapter II.

There is no attempt to solve any boundary value prob—

lems in this paper, but, rather, we confine our considera—

tions to the dynamical equations only. It is also to be

understood that, in our discussion of geometry, we are con-

cerned with what is commonly referred to, in differential

geometry texts, as geometry in the small. Also, the solu-

tions we obtain are restricted to some limited region of

three dimensional space.



CHAPTER II

THE GEOMETRY OF COMPRESSIBLE FLOWS

2.1 The Equation of State
 

Equations (1.11) to (1.13) are a set of five equations

in six unknowns, but there is another relationship among

the unknowns which allows us to consider these as a system

of five equations in five unknowns. We shall now introduce

this relationship.

The laws of thermodynamics inform us that for any

given medium only two of the quantities, pressure, density,

and entrOpy, may be independent [4, p. 4]. This fact is

expressed in the equation of state, p = f(p,n).
 

If the medium is a gas in which the internal energy

is simply proportional to the temperature (with propor—

tionality constant cv), the gas is called polytrOpic, and
 

the equation of state is of the form

(2.11) p '-’ p SM).

where y is a constant having a value between 1 and -%

for most media. S(q) is given by

..1.
—1

5(a) = Ev - 1) exp CV (1 - may Y

with W0 an appropriate constant [4, p. 6,7]. The assump-

tion that a gas is polytrOpic is made in most applications.

For example, air at moderate temperature may be considered

polytropic with y = 1.40.
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In this paper we shall frequently assume that a

separable equation of state holds, namely one of the form

(2-12) p z P(p) 8(0).

with P(p) and S(q) assuming only positive values. We

notice that the equation of state for a polytropic gas is

a Special case of (2.12).

2.2 Intrinsic Methods

As we have already observed, various families of curves

and surfaces accompany a flow. Furthermore, these curves

and surfaces have associated with them certain quantities

of a geometric nature such as curvature, torsion, principal

normals and binormals, and first and second fundamental

forms. When these quantities, which are inherent to a flow,

are employed in its description, we speak of using intrinsic

methods or intrinsic quantities.

In the analysis of the geometry of flows, the use of

intrinsic methods has been a great aid [19, 10, p. 105,570].

Both as illustrative examples, and for future reference, we

derive some well known formulas by an intrinsic approach.

In particular, we avail ourselves of the moving trihedron

associated with a streamline, which consists of the three

orthonormal vectors E, H, and b; E being tangent to

the streamline, 5 the principal normal, and b the bi—

normal.
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Letting the velocity 6 = q E, (1.12) becomes

i
t.t.=—1 ., '=1,2,3.q vlqJ /p vjp 3

Expanding the left side of this equation and using the fact

that V&(q2/2) = q Viq yields

(2.21) qztlvitj + [tivi(q2/2)]tj = - 1/p vjp. j = 1,2,3.

We substitute into the first term on the left from the

Frenet formula, tlvitj = Knj, where K is the streamline

curvature, and obtain

(2.22) vjp = -p[tlvi(q2/2)]tj - pqunj: j = 1.2.3.

which says that the pressure gradient lies in the osculating

plane of the streamline.

Before deriving a second important result by means of

intrinsic methods, we define a function

 

where p0 is a function of q only. This function h(p,n)

is known as the enthalpy, and from its definition, we see

that

' =1 ah .
th ijp+57Vj"'

Now we may write (1.12) in the form

1 5h V
I t I = E 0’] - oh 0
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As in the derivation of (2.22), we obtain

1 2 2 : ah . _ . =

Forming the scalar product of both sides of this equation

with t and using (1.13) results in

i 2 = _ i
t Vi (q /2) t Vih.

Collecting terms, we have

l
l

0ti Vi(q2/2 + h)

We set

(2.23) q2/2 + h 3 B,

recognizing that B is constant along each streamline.

The fact that q2/2 + h is constant along each streamline

is known as Bernoulli's law, and B is called Bernoulli's
  

constant although it may vary from streamline to streamline.
 

If B has the same value on each streamline, (2.23) ex-

presses what is known as the strong form of Bernoulli's law.
 

A third example involving the moving trihedron of the

streamline is an expression for the vorticity derived by

N. Coburn [3, p. 118]. It is

a a
k tk k tk d B

(2'24) wj=q(b 57'“ Wtj ”"a'ihj + (‘1‘ ‘5%)bj'

j=1.2.3,

where partial derivatives with respect to n and b repre-

sent directional derivatives in the direction of the
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principal normal and binormal respectively.

2.3 On the Existence and Properties of Certain Stream

Surfaces

R. C. Prim [13, p. 436] has mentioned certain surfaces

that exist in some flows that are intimately related with

the substitution principle. Before generalizing a result

of Prim's, we summarize this principle. It says that, for

a separable equation of state, a solution of the dynamical

equations is a member of an infinite family of flows having

the same constant pressure surfaces and streamlines. Fur-

thermore, the flows of this family are related by the equa-

tions

*

‘7' WK! 9* - p

p* = mzp S(T]*) m2s (Tl)

where m is any scalar field such that viVyim = 0.

In these equations, the quantities without the stars (ex—

cept for m) refer to one flow and the starred quantities

to another flow. Prim points out that in such a family of

flows there is One for which the strong Bernoulli law holds,

and it has the special property of possessing a family of

surfaces with unit normals N for which N x (v x V x v)

= 0. In general, however, given a vector field 6, the

problem of finding a family of surfaces such that, for each

member of the family, the direction cosines of its normal,

at every point, are proportional to the components of the

member of the vector field at the point, is not solvable
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[24, p. 202]. Consequently, it is "natural" to seek a

necessary and sufficient condition for the existence of

such surfaces and to further investigate the geometry of

flows containing them. We shall do this, but before pro-

ceeding further with this investigation, we introduce some

terminology and state the problem in a slightly different

fashion, which will be helpful to us.

We shall use the term w congruence of curves (or

just w congruence) to mean the family of integral curves

2
|

of a vector field, or, more generally, by congruence

of curves we shall mean a family of curves with the property

that exactly one member of the family passes through each

point of some region of space [5, p. 78]. A congruence of

curves for which there exists a family of surfaces inter-

secting it orthogonally is called a normal congruence of

curves. A necessary and sufficient condition for a congru-

ence of curves to be normal is that any tangent vector field

w associated with it satisfies the condition G - <7x w = 0

[24, p. 202].

As a consequence of these remarks, we may rephrase the

property of the Prim substitution flows, relating to the

existence of certain surfaces, by saying that in such flows

the integral curves of the G x (‘V x 6) vector field form

a normal congruence. So, we could view our inquiry as that

of seeking a necessary and sufficient condition for the

existence of such a normal congruence in a flow.
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Theorem 2.31: The G x I congruence is normal if and only

if at least one of the following holds:

(a) entropy is constant on the vortex lines,

(b) pressure is constant on the streamlines.

Proof: We write (1.12) in the form

(v -v)\7 = -<1/p>v

and apply the vector identity

(\7 ~v>G= (1/2)V(\7 - \7) —\7x (vxx’r)

with G = qt. We get

(2312) p(\7 x I) - pv(q2/2) = VP-

We form the curl and obtain

VpX(\7xI)+p\7x(\7xJ>)—
Vva(((1)2/2 =5

Forming the scalar product with G x I and transposing

gives

5x5) - Vx (6x50) =1/p[(\-IX(I)) ~vpx v(q2/2)1.

From the equation of state, we see this may be written

- - - --1- - .3 %% 912
vxw-vx(vxw)--6vx (D‘ Vp+ v1] XV2 .

Equation (2.312) shows that V(q2/2), vp, and v x I are

coplanar, and hence, their scalar triple product is zero.

Therefore,
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(2.315) vxI - vx (\7xI) =%%%[(VX0—J)'VT]XV%2 :1.

If, to the right side of this equation, we apply the ident-

ity of Lagrange, which says that

(5x16) - (6x3):(a-E)(E-a)-(a-a)(E-E),

and drop the term involving v °§7n (by (1.13) this is zero),

then (2.315) becomes

2

(chb) - vx (5x25) =-%§~%(&3~ VUUV avg-L

It is to be inferred from Section 2.1 that p depends on

n inauchawaythat 3133750. Thus (5x513)- vx (\7xI)

‘Vqu/Z) = 0, and, conversely,<
1
!

=0 if I°Vn=0 or

if (vxI) 'Vx (vxI) 0, then either I-Vq=0 or

° V(q2/2)

- V(q2/2)

0. Equation (2.312), however, implies that<
|

0 if and only if v . VP = 0, and the<
l

theorem is proved.

Hence, entropy constant on vortex lines or pressure

constant on streamlines guarantees the existence of a

family of surfaces orthogonal to the G x I congruence.

In keeping with the terminology of Truesdell [18, p. 133],

we call these surfaces Lamb surfaces.

Corollary 2.32: If entropy is constant on the vortex lines,
 

then the entropy is a constant on each Lamb surface of the

flow.

Proof: By Theorem 2.31, the Lamb surfaces exist in the

flow, and G x I is a vector field normal to the Lamb
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surfaces. But, by hypothesis, I - §7n = 0, and by (1.13),

v . VT] = 0. Therefore,

qu(\-IXI)=(I'Vq)v-(V'Vq)I=O

and entropy is constant on the Lamb surfaces.

Corollary 2.33: If entropy is constant on the vortex lines,
 

the Bernoulli constant is the same for each streamline in a

Lamb surface. That is, B is a constant on each Lamb sur-

face.

Proof: Again, Theorem 2.31 implies the existence of the

Lamb surfaces, and that G x I is a vector field normal

to the Lamb surfaces. The Crocco-Vazsonyi equation [14,

p. 186] states that

§X(I): VB-Tvn’

where T represents absolute temperature. By Corollary

2.32, G x I>= Q‘Vfl for some scalar point function a.

Hence,

VB = (a + T)vn.

and the gradients of B and n are parallel, so their

level surfaces coincide.

By introducing the term Bernoulli surface for a level

surface of B, we may draw the following conclusions from

Theorem 2.31 and its corollaries, concerning a flow in which

pressure is not constant on streamlines. If Lamb surfaces

exist, then Bernoulli surfaces and constant entropy surfaces
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coincide and in fact are the same as the Lamb surfaces.

Or, if the Bernoulli surfaces and constant entropy surfaces

differ, then the flow cannot contain Lamb surfaces.

Two articles, one by R. C. Prim [13] and another by

P. Smith [15L motivated our investigation. For this reason,

we use the term Prim-Smith flow, throughout the remainder
 

of this paper, to designate a flow with the following two

properties:

(a) it possesses Lamb surfaces,

(b) its constant pressure surfaces are not stream

surfaces.

2.4 A Special Congruence of Curves Lying on the Lamb

Surfaces

Theorem 2.41: At each point of a Prim-Smith flow or a flow
 

in which constant pressure surfaces are stream surfaces,

the vectors VT)! VP: VP and vq are coplanar.

Proof: Case I - Prim—Smith flow: The equation of motion

in the form

(2.42) qu/z — \7 x (13 = - -Vp

implies that Vq, v x I and vp are coplanar. In a

Prim-Smith flow, however, 5 x I and V7n are collinear.

So vq lies in the plane of VT] and vp. From the equa-

tion of state, it is clear that ‘Vp is also in the plane

of Vp and V1], and hence, the four gradients, VT]: VP!

Vp. and Vq are coplanar.
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Case II - Constant pressure surfaces are stream surfaces:

In this case t - vp 0. This, together with equation

(2.42), implies that E ~vq = 0. Since E ~ VT) = o in

the flows under consideration, the equation of state implies

that t - VP = 0. So at each point of the flow VT], VP'

Vp and Vq lie in a plane normal to the streamline through

the point.

We observe that in Case II, n, p, p, and q are

constant on the streamlines and extend this property in

the following corollary.

Corollary 2.43: In a flow with constant pressure surfaces
 

and Lamb surfaces that are distinct, n, p, p, and q are

constant on the integral curves of the unit vector field

given by

(2.44) 2 2

[‘E-wgm‘: - [v’J-WSZIHE
 i = _

_ Z _ T _ f ._ 2 .. _

~/[t-V<% >12+[w- mg )12- 2[t-v(-§l )1[w-v(%)1w - t

 

where I = ww with l Q1 = 1.

Proof: Case I - Prim-Smith flow: By the symmetry in (2.44),

X - Vq = 0. Since E ' V7] = 0, according to the energy

equation, and §'- {7r[= 0 in a Prim—Smith flow, i ° V7n

= 0. According to Theorem 2.41, §7p and §7p lie in the

plane spanned by VT) and Vq. Therefore, )2 ° Vp

X - §7p = 0 and the corollary's conclusion holds for a

Prim-Smith flow.
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Case II - Constant pressure surfaces are stream surfaces:

As previou'sly noted E - Vp = 0 if and only if E - V (q2/2)

= 0. By hypothesis the constant pressure surfaces are dis-

tinct from the Lamb surfaces, so that a - <7(q2/2) # 0.

Therefore 2 = i t, and as observed immediately preceding

this corollary, q, p, p, and q are constant on the

streamlines, in this case. Thus the corollary is proved.

2.5 Geodesics and Asymptotics on Lamb Surfaces

We have already observed in Case II of the proof of

Theorem 2.41 that, when streamlines lie on constant pres—

sure surfaces, n, p, p, and q are constant on the stream-

lines. Since the equation of motion, (2.22), implies that

5 ° v7p is invariably zero, the additional property of p

being constant on the streamlines (E - V7p»= 0) implies

that the streamlines are geodesics [24, p. 99] on the con-

stant pressure surfaces. Conversely, if a streamline is

(a geodesic) on a constant pressure surface, E - §7p = 0,

and as we have shown in Case II of Theorem 2.41, q, p, p,

and q are constant on the streamlines. We summarize

these remarks in a theorem. Admittedly, the term geodesic

could be omitted from the statement, but we insert it because

we wish to draw attention to this geodesic property.

Theorem 2.51: The functions q, p, p, and q are constant
 

on the streamlines of a flow if and only if the streamlines

are (geodesics) on the surfaces of constant pressure.



21

In the case of constant pressure surfaces, then, the

streamlines need merely to lie on the surfaces in order to

be geodesics. In general, of course, this is not the case,

and we now obtain a necessary and sufficient condition for

a streamline to be a geodesic on a Lamb surface. Forming

the cross product of (2.24) with G, we obtain

(2.52) GxI=q(g—g-qx>fi+q§%6.

If v x J) ¢ 0, then (2.52) implies that aq/ab = E . Vq = o

if and only if E x I is collinear with H, the principal

normal of the streamline. But, at each point of a Lamb

surface, 6 x I is collinear with a surface normal. So,

a streamline is a geodesic on a Lamb surface if and only

if 5 ° §7q = 0. That is, q constant on each curve of

the E congruence is a necessary and sufficient condition

for streamlines to be geodesics on Lamb surfaces. Theorem

2.41 and the fact that E ' <7p = 0 imply that n, p. p.

and q are constant on each curve of the E congruence

whenever q is. Therefore, we can summarize our remarks

as follows:

Theorem 2.53: A necessary and sufficient condition for
 

streamlines to be geodesics on Lamb surfaces is that q,

p, p , and q are constant on the E congruence.

Since q being constant on each curve of the E con-

gruence (or b congruence) implies n, p, and p are also,

and conversely, we may consider Theorems 2.51 and 2.53 as
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relating dynamic properties of a flow to geometric properties.

In fact, they say that E ° §7q = 0 is a necessary and suf-

ficient condition for streamlines to be geodesics on con-

stant pressure surfaces, and 5 ° $7q = 0 is a necessary

and sufficient condition for streamlines to be geodesics on

Lamb surfaces (in a flow containing such surfaces). As a

consequence of these remarks, we have the following corollary.

Corollary 2.54: E - Vq = b ' Vq = 0 if and only if the
 

Lamb surfaces and constant pressure surfaces coincide.

A further consideration of Theorems 2.51 and 2.53 re-

veals that the i vector of Corollary 2.43 is collinear

with the E vector when streamlines are geodesics on con—

stant pressure surfaces, and collinear with the 5 vector

when streamlines are geodesics on Lamb surfaces. This leads

us to aSk if, under certain conditions, i is collinear

with 5. If it were, pressure would be constant on each

curve of the H congruence. Equation (2.22) shows that

H ' <7p = 0 if and only if K = 0, that is, the streamlines

are straight. So, we may immediately conclude, that if the

streamlines are not straight, the i and H vectors cannot

be collinear.

Since a straight line that lies entirely in a surface

is an asymptotic line of a surface [5, p. 237], the remarks

of the last paragraph draw our attention to asymptotic

curves on Lamb surfaces. Equation (2.52) implies that

5 x I and E are collinear if and only if
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-15 .-.
— q n n. V71n q.

At each point of a flow containing Lamb surfaces, 5 x I is

in the direction of a normal to the Lamb surface through

the point. So, at each point of a flow, a unit normal to

the Lamb surface and the 5 vector coincide if and only

if K = H ' V7ln q. Thus we have proved the following:

Theorem 2.55: In a flow containing Lamb surfaces, the
 

streamlines are asymptotics on these surfaces if and only if

K = 5 ° V7ln q.

E. R. Suryanarayan [17] has shown that (excluding

straight streamlines) K = 5 ° <7ln q is a necessary and

sufficient condition for Lamb surfaces and constant pressure

surfaces to intersect orthogonally, provided entropy is con-

stant throughout the region of flow. His assumption of con-

stant entropy is not necessary, however, as his conclusion

follows if H - VT] = E ° vq = 0. So, a slight modifica-

tion of his statement would be this: in any Prim—Smith flow

with non-straight streamlines, K = 5 ° <7ln q is a neces-

sary and sufficient condition for Lamb surfaces and constant

pressure surfaces to intersect orthogonally, as well as for

streamlines to be asymptotics on the Lamb surfaces.

We close this section by making a few remarks concern-

ing some similarities between Beltrami flows and flows con-

taining Lamb surfaces. R. C. Prim [13, p. 434] has pointed

out that V 7), VP! Vp, and vq are collinear in a

Beltrami flow. From (2.52), however, 5 x I = 0 implies

b - <7q = 0. Hence, for a Beltrami flow, q, p, p, and q

are constant on the E congruence. From equation (2.52),
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it is also clear that K = 5 ° <7ln q in a Beltrami flow.

Consequently, the conditions mentioned in Theorem 2.53 con—

cerning geodesics on Lamb surfaces, and the condition in

Theorem 2.55 for asymptotics on Lamb surfaces, are both en-

joyed by a Beltrami flow. Of course, we do not have Lamb

surfaces in a Beltrami flow except, perhaps, in a degenerate

sense.

2.6 Geodesics on Stream Surfaces

In the last section, we considered two cases in which

streamlines were geodesics on stream surfaces. It is our

purpose here to obtain a necessary and sufficient condition

for the existence of stream surfaces on which streamlines

are geodesics.

Equation (2.24) is not only valid for the vorticity

vector of a fluid flow but, also, for curl E of an arbi-

trary vector field E = qE where [E] = 1. We choose 5 = E,

an arbitrary unit vector, and substitute. This gives

a
'-H°S)E+Kb.<1 X (

H

II

’
0
‘
“

0
2
1
0
/

:
3
C
H

U
‘
I
r
‘
f
’
l

Thus fi'vxE=0.

Theorem 2.61: If the pressure gradient is not tangent to
 

the streamline throughout a flow, then a necessary and suf-

ficient condition for the existence of surfaces on which

streamlines are geodesics is that E ‘ V7p be constant

along the E congruence.
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Proof: For suitable scalar functions a and B, the equa-

tion of motion may be written as

dE+BH = Vp.

Forming the curl yields

(2.62) Vaxt+avxE+Vf5xfi+f5vxfi=0.

Dotting with H and using the fact that 5 ° V7x E - 0

yields

Therefore, (an ' Vx n = — b ' VOL.

By assumption B # 0, and so 5 ° V'x H = 0 if and only if

a = E - twp is constant along the B congruence. But

5 - V7x H = 0 means the H congruence is a normal con-

gruence, so there is a family of surfaces cutting it orthog-

onally. On these surfaces the streamlines are geodesics.

2.7 Asymptotics on Stream Surfaces

In Section 2.5 we obtained a necessary and sufficient

condition for streamlines to be asymptotics on Lamb sur—

faces. More generally, one might seek a necessary and suf-

ficient condition for the existence of stream surfaces on

which streamlines are asymptotics. We do this in this sec—

tion. Before embarking on such an investigation, however,

we note that the problem could be rephrased by saying we

seek a necessary and sufficient condition for the 5 x firp

congruence to be a normal congruence. Furthermore, since
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V'p lies in the osculating plane of the streamlines, we

are seeking a condition for which there exists a scalar

point function (h such that E ° V (p = 0 and 5 ~ V (D = 0.

Hence we must satisfy the integrability conditions [2, p.

186-187], namely

j£_j13 :
(tn nt)vjb£ 0.

Using the Frenet formula tJ §7jb£ = - THE, where T is

the torsion of the streamlines, and the fact that

tgnj <7.b£ = - bfinj<7.t the integrability condition becomes

3 32’

= 133'
(2-71) ’1' b n vjtg'

To investigate (2.71) further, we make use of the vec-

tor identity V(-u--\7) = (E1 °V)\7 + (\7 °V)G + G x (Vx \7) +

E x ( V'XG). Replacing G by 5 and E by E, we have

(2.72) 6:03-v)E+(E~v)fi+fix(vxE)+Ex(vxfi).

Using the Frenet formula (E ° V7)H = - KE + 15 and forming

the scalar product of the right side of (2.72) with 5, we

obtain

0:5'(H'V)E+T-E'th+r-1°vxn.

Substituting from equation (2.71) yields

(2.73) 21=E°VxE-H°vxfi.

From equation (2.62) and the fact that H ' V7x E = 0, we
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observe that

E -‘v'x E =

and

S
I

<
1

X s

n'

Substitution into (2.73) shows that

—-.l .1. _Q-. -
2T—b (aVB-tfivd) at Vx n.

By a well known vector identity,

 
 

V'E=V-(txn)=r-1'VxE—E°Vxn=-E°vxn,

and we have

2 2

V9+Vg — 2
- 2 2 g - b'VIVpl p -

= - V7- = e + - ,21 b 016 +0. b 2013 aVb

Hence, we have proved the following theorem.

Theorem 2.74: If firp is not collinear with either E or
 

n, a necessary and sufficient condition for the existence

of stream surfaces on which streamlines are asymptotics is

.that T, the torsion of the streamlines, be given by the ex-

pression
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We conclude this chapter with a few remarks about

Theorems 2.61 and 2.74. In both theorems, it is assumed

that H ' S7p is not zero. This simply means that the

special case of straight streamlines is not considered.

It happens that a straight line is both a geodesic and an

asymptotic on a surface containing it. Theorem 2.74 also

fails to take into account the situation in which

a = E ' :7p = 0. In this case, equation (2.62) implies that

5 ° V'x H = 0, and from (2.73), we see that a necessary and

sufficient condition for streamlines to be asymptotics on

stream surfaces is that 21 = E ° V x t.



CHAPTER III

RELATIONS BETWEEN x7 x I AND THE MAGNITUDE

OF THE VELOCITY VECTOR

3.1 Introductory Remarks

It has been proven by M. H. Martin [9, p. 470] that

for plane flow, a necessary and sufficient condition for

an irrotational flow is that q, the magnitude of the

velocity vector, depends on pressure only. In this chap—

ter, we would like to extend this remark by showing rela-

tionships between q and E x I.

We assume throughout this chapter that surfaces of

constant pressure are not stream surfaces, and we denote

by w = constant and m = constant, where w and w are

scalar point functions, two distinct families of stream

surfaces. Thus, we consider q to be a function of p,

m, and ¢.

3.2 Beltrami Flows

The equation of motion may be written in the form

\7 X <3= V(q2/2) + 1/p VP~

Expanding the term involving q yields

(3.21) \7 x I 3 (qqp + 1/p)Vp + qqcpva) + qquv¢°

By assumption E °vp5£0, t °V<I>=O, and E -vzp-0,

so (3.21) implies that

29
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(3.22) qq + 1/p = 0,

and consequently,

(3-23) ‘77 x I = q(q¢v¢ + qu 2L").

It follows immediately from this equation that 5 x I = 0

if q depends on pressure only, since then q¢ = qw = 0.

On the other hand, suppose E x I = 5 (q # 0) throughout

a region of space. For the coordinate system under consider—

ation, V <1) and v (0 are not zero, and so \7 x I = 0 implies

one of the following two possibilities:

32
(a) V¢=- Vgl/ or (b) q¢=qw=0.

Case (a) implies that the surfaces on which ¢ is constant,

and the surfaces on which w is constant coincide, which

contradicts the known independence of o and w. There—

fore, q¢ = q -= 0, and q depends on pressure only. In

2

summary we state

Theorem 3.24: If constant pressure surfaces are not stream
 

surfaces of a flow, the flow is Beltrami if and only if the

magnitude of the velocity vector depends only on the pres-

sure .

3.3 Prim-Smith Flows

Proceeding to flows in which streamlines and vortex

lines do not coincide but form Lamb surfaces, we observe a

special property of the velocity magnitudes, which we now

state.
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Theorem 3.31: If constant pressure surfaces are not stream

surfaces, a compressible fluid flow contains Lamb surfaces

if and only if q, the velocity magnitude, is a function of

pressure and entropy only.

Proof: We recall that Lamb surfaces are stream surfaces on

which q, the entropy, is constant provided E - vrp # 0.

Therefore, we may replace ¢ by n in equation (3.23) and

obtain

(3.32) ExI=q(qnvq+qd/Vz,l/).

By Theorem 2.31, if pressure is not constant on streamlines,

I - vrn = 0 whenever Lamb surfaces occur in a flow, and

therefore, forming the scalar product of (3.32) with I

yields

(3.33) o = q q¢I ~ :72).

Since q # 0, equation (3.33) implies either = 0 or

qw

I ° V'w = 0. The latter equation can not hold, however,

since I°Vzp=0, E°vn=0, I-vq=0,'and

v ° Vgl/ = 0 imply that

(E x I) x Vrn = (E x I) x V'w =‘O.

Hence, v q and Vz/J are collinear, which contradicts the

independence of n and w. Therefore,

constant represents any family of stream surfaces distinct

from the family of Lamb surfaces, and thus in a flow con-

taining Lamb surfaces, q = q(p. n)-
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Conversely, let us consider a flow in which q =

q(p, n), and the constant pressure surfaces are not stream

surfaces. Then, by a method analogous to the one for de-

riving equation (3.23) we obtain

ExI=qqnvq.

Hence, I ° V72 = 0, and according to Theorem 2.31, the

E x I congruence is normal. In other words, the flow is

of Prim-Smith type.

3.4 A Classification of Steady Compressible Flows

In the table below, we have attempted to picture a

classification of all flows of the type mentioned in our

introduction for which E ° <7p # 0. The left portion of

the interior of the table represents flows for which

E x I = 5, the upper part for irrotational flows and the

lower part for flows in which streamlines and vortex lines

coincide. The right side of the table represents flows for

which E x I # 0, the upper portion for flows in which

streamlines and vortex lines form surfaces and the lower

part for all others. We have also indicated the restric-

tions on the magnitude of the velocity in these cases.

 

 

 

E x I = 5 E x I # O

I = U streamlines and vortex

_ lines form surfaces

q — q(p) _

q = q(p.S)

streamlines and vortex .

lines coincide others

   q =q(p) q =q(p.w.S)

 

(E'VP#0)



CHAPTER IV

A REFORMULATION OF THE DYNAMICAL EQUATIONS

4.1 Preliminaries
 

A transformation of variables is frequently helpful

in putting a differential equation or system of equations

into a more desirable form. In the area of fluid mechanics,

the hodograph transformation is an example of this. We

illustrate it in the case of compressible, irrotational,

plane flow.

First, we introduce two functions, ¢(x,y) and ¢(x,y),

where w(x,y) is a constant on each streamline, and

¢(x,y) is constant on each orthogonal trajectory of the

streamlines. This can be done in the case of plane flow,

and under the assumption of an irrotational flow, q(x,y)

may be considered as a potential function, so V7¢ = E.

A function, such as ¢(x,y), which is constant on each

streamline, is called a stream function. Next, we let G

be the angle measured counterclockwise from a positive

x-axis to the velocity vector, and as usual, q = [51. The

other quantities p and c, which appear below, are de-

pendent on e and q. The function p, again, represents

density, and c is the sound speed defined by the equation

c2 = EE (it is a fundamental property of all actual media

that, entropy remaining constant, the pressure increases

33
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with increasing density). It can be shown [23, Chap. 4]

that a compreséible, irrotational, plane flow can then be

characterized by the following pair of equations, where the

intrinsic variables w and ¢ are used as independent

variables rather than x and y.

22-23- 29.:
anw( 1)acp 0

(4.11)

Interchanging the roles of the variables q, 9 and

w. w by using

33-- 1.5.2.

(p D59

56 = 1_5-

574? D q

Biz-1.312

a) Daq

(D $9

where D = q , we get from (4.11)

¢q $9 .

22-93__ 232:

anq (C2 1)59 O

(4.12)

84> a -

f3 55' - q q - 0
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These are known as the hodograph equations. We note that

equations (4.12) are linear while equations (4.11) are not.

Furthermore, we can, if we wish, eliminate either ¢ or w

and get a second order linear equation for a single variable.

For applications of these equations see R. Courant and K.

O. Friedrichs [4, p. 248-259].

A second type of transformation of variable occurring

in the field of fluid mechanics is mentioned by R. von Mises

[20, p. 433] and employed by M. H. Martin [9, p. 465-484]

in the case of plane flow. This change of variable amounts

to using the pressure, p, and a stream function (intrinsic

quantities) as independent variables, and considering the

other variables and the coordinates x, y as unknown func—

tions of them. In other words, under the assumption that

pressure is not constant on streamlines, the streamlines

and isobars (curves on which pressure is constant) are taken

as curvilinear coordinates rather than the streamlines and

their orthogonal trajectories as in equations (4.11). Using

this approach, M. H. Martin started with the system of dif-

ferential equations

introduced a stream function w, and considered p as a
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known functions of p and w. He then reduced the problem

of finding u, v, x and y as functions of p and ¢ to

the integration of one quasi—linear partial differential

equation for a single unknown function.

It is our purpose in this chapter to extend this tech-

nique, which was fruitful for M. H. Martin in the case of

plane flow, to a similar technique for three dimensional

flows. As in Martin's approach, the streamlines will be

coordinate curves. The other coordinate curves will con—

sist of two distinct families of curves on which the pres-

sure is constant. Such coordinate curves are realized by

introducing a family of constant pressure surfaces which

are not stream surfaces and two distinct families of stream

surfaces as coordinate surfaces. Using this coordinate sys—

tem, we shall reformulate the dynamical equations, (1.11)

to (1.13), and obtain an equivalent system.

4.2 Reformulation — Step One
 

We shall assume, now and throughout the remainder of

this paper, that a separable equation of state holds (see

Section 2.1) and rewrite the dynamical equations replacing

n with S in the last equation.
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The quantities vi (1 = 1,2,3), p, and S are considered

as the five unknowns of this system, and it is assumed that

P(p) is known. Hence, p is determined from the equation

of state. Since vi = qti and IE] = 1, we may also con-

sider the five dependent variables as q, p, S, and two

components of E.

We commence our reformulation of system (A) with its

first equation (the continuity equation), by substituting

qtl for v1 and obtain

i _

Vipqt ‘ 0'

Expanding this yields

i i _

quit + t Vipq _' 00

Since

V.
in .. L

1 pg. — Vipql

pq

dividing by pq results in

i i _
Vit +t Vi ln pq—O.

Substituting from the separable equation of state for p

gives

Vitl + t1 Vi ln PSq = 0.

Using this equation and the equation of motion in the form

of (2.22), with p replaced by PS, system (A) becomes the

equivalent system
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(4.21) Viti + tivi ln qu = o I

(4.22) PquKnj + PS[thi(q2/2)]tj = -Vjp, j = 1.2.3} (B)

(4.23) viViS =0.  

4.3 Reformulation - Step Two

We avail ourselves of the coordinate system mentioned

in the last paragraph of Section 4.1, letting X1 = p, the

pressure, X2 = w, and X3 = 4, where w is constant on

each member of one family of stream surfaces and ¢ is con-

stant on each member of another (distinct) family of stream

surfaces. In this coordinate system, the streamlines are

coordinate curves along which w and ¢ are constants and

p varies. Furthermore, we let Ni denote a unit normal

to the family of stream surfaces on which ¢ is constant

and let 'n1 denote a vector cross product of t1 and N1

such that t1, 'nl, and N1 form a right hand orthogonal

system (see Figure 1).

 

    
¢ = constant 

Figure 1.
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From equation (4.22) we obtain the components of the

pressure gradient in the directions of these three orthogonal

vectors. Since tjn. = 0 and tjtj = 1, the dot product

3

of (4.22) with t3 yields

(4.31) t3 Vjp = - PStl Vi(q2/2) .

Making use of the Frenet formula Knj = tl<7it. and the

fact that 'n3 and N3 are orthogonal to t], the scalar

product of (4.22) with 'nJ and NJ produces the follow-

ing two equations.

jIn vp - 2 I 3 i
j PSq n t Vit.

3

j - 2 j i
N V' - - PS N t ltn.310 q v1 3

According to the energy equation, th7iS = 0. Therefore,

thi(Sq2/2) = (q2/2>tlvis + Stl vi<q2/2) = Stlvi<q2/2>,

and (4.31) may be written as

j : _ i 2t Vjp P t Vi(Sq /2).

Consequently, system (B) may be written in the following

form.
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(4.32) viti + tivi ln PSq = 0 E

(4.33) tjvjp = - PtiVi(Sq2/2)

(4.34) 'njvjp = - PSq2 'nj tiVitj F (c)

(4.35) Nj vjp = - PSqZthivitj

(4.3s) tiViS = o -

1 J

commonly called the geodesic and normal curvature, respec-

It is true that the terms 'njtlvitj and thl<7.t. are

tively, and given abbreviated notations. For future compu-

tational purposes, however, it is more convenient to leave

them in their present form, so we do it.

4.4 Reformulation - Step Three

Upon examining system (C), we observe the term qu

appearing in three of the five equations. The first equa-

tion of this system may also be written in terms of qu,

and then (4.32) to (4.35) may be considered as a system of

four equations with four dependent variables, p, Sq2, and

ti. We now rewrite (4.32).

Multiplying (4.32) by two and using a property of log-

arithms, we get

2 Vitl + t1 Vi ln P282q2 = 0.

Using another property of the logarithm function and the

fact that tl‘Vi ln S = 0, this equation may be written in
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the form

2vitl + thi ln 132qu = 0.

Consequently, by replacing Sq2 with u, system (C) may

be written as follows.

2 Vjtj + tj Vj ln P2u = O -

tj Vjp = - PtiVi(u/2)

'nj vjp = - Pu ’nj tivitj D (D)

Nj vjp = - PuthiVitj

tj‘7jS = 0 A 

4.5 Reformulation - Step Four

We now observe a few facts which allow us to simplify

system (D). In the coordinate system we are using, X1 = p,

and p is independent of X2 and X3. Therefore,

1 j = 1

‘7jp =

0 j = 2,3

Consequently,

tJVjP = t1 . 'nJVjP = .nl’ vajp = N1.

The unit vector t1 is tangent to the streamlines, along

which only X1 = p varies, and hence t2 = t3 = 0. As a

result, such expressions as t1 Vitj and t1 ViS, in



42

system (D), become tlvltj and t1*v1s. In the light of

these remarks, the coordinate system we are considering

permits us to write system (D) (and hence the original

dynamical equations)in the form

(4.51) 2V1t1 + t1V1 ln qu = o 'l

(4.52) t1 = — Pt1V1(u/2)

(4.53) 'n1 = — Pu 'nj tlvltj ? (E)

(4.54) N1 = - Puthl Vltj

(4.55) t1 was = 0 _. 
4.6 Reformulation - Step Five - Introduction of the Metric

Coefficients and Final Form of (4.51) and (4.52)

 

Proceeding with our reformulation we let 51, E2, and

E3 denote a set of base vectors for the X1, X2, X3 coor-

dinate system chosen such that 5i is tangent to the curve

on which Xi varies. Then the vector E may be written

in the form

E = tlél + t252 + t3é3.

Since t2 = t3 = 0,

E = tlélo

But, E is a unit vector, and therefore,

- 2

t ° t = 1 = (t1) e1 ° e1.

LEtting 51 ° el = 911,
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t1 = 1/V911 -

We introduce the reciprocal base vectors 51 (i = 1,2,3)

defined by El ° éj =

Since N is a unit normal vector to the family of surfaces

6;, where 6; is the Kronecker delta.

x3 = ¢ = constant, N1 = N2 = 0 and,

N . N = 1 = (N3)2 53 - 53.

Denoting e3 ° 53 by g33, we have

N3 = l/Vgaa a

From differential geometry one knows that g11, as we have

defined it, is an element of the metric tensor and that

g33 is the reduced cofactor of another member of the metric

tensor, namely g33. Hence, we shall denote by gij (i,j

1,2,3) the elements of the space metric tensor and by g13

the reduced cofactor of gij' Since tj = gjitl and

t2 = t3 = 0, we see that

Similarly N3 = g31 Ni implies that

j3

N3 - c—i—o

.[533

We have defined 'n1 as the vector product of N1 crossed

with t1, and consequently [2, p. 145],



 

where g is the determinant of the gij' Substituting the

expressions for Nj and tk in terms of the elements of

the metric tensor we obtain

"912 911

'n1 = -—-——-—- , 'n2 - , and 'n3 = 0.

#9911933 ‘x/ 99119”

 

Prior to substituting into system (D), we collect the

formulas just derived in one place for ready reference and

state a formula for the divergence of a vector v1 [2, p. 171].

 

 

 

_ g

t3 -( 1 . 0, 0) t : __l_1_

V911 J V911

. 33

(461)4N-=(0,0. 1) N3=—9——-
~ 3 @255- J33"!

I J - 1 (

n - ———————- -912, 911: 0)

t— '“99119

(4.62) V.vj 1— ibrg VJ)

3 G 8x3

Using (4.62), the components of t3 given in (4.61), and

the fact that ln P2u is a scalar, equation (4.51) may be

written as

 

a + 1 a 1n P2u _ 0

5x1 911 J— 5X1 - °
911W

e
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Multiplying by V911 and recalling that X1 = p, this equa-

tion becomes

5 ln P2ug
= O.

5E; 911

Substituting for the component t1 in (4.52) and

realizing that

we obtain

H _ P
_ 5 (E).

V911 V911 ‘85'2

  

Multiplying by 2 #911 yields

2 + p 3%. = o.

4.7 Reformulation - Step Six - Another Form of (4.53) and

(4:54ZTH"

In equations (4.53) and (4.54), we have the expression

t1V71tj appearing. To expand this we use the formula

 

at.

(4.71) V t. =——-1 -1“? t,
k j BXk jk Z

where Pfk is a Christoffel symbol of the second kind ex-

pressed by

Zi a .. a . a .

(4.72) Mk: 12.. .333 . 91:1 - 23.2: .
3 5x 5x3 5x1

Substituting into (4.53) for 'n3 and t1 as given in (4.61),

we obtain



   

“912 _ Pu ’912 911

' '—"_"""" v1’51 + Vltz

49911953 ~19911333 4911 911

912

(4-73) 912 = Pu(\lg11 Vltz ‘ — Vltl)

911

As we shall now show, however, V71t1 = 0, and by means of

(4.71) we have

(4°74) 912 : Pu V911 (Eh _ Pg t2)5X1 21 1,...

To prove that Vltl = 0, we observe that tlvitjtj = 0.

This implies that tjtlvitj = 0. Substituting from (4.61)

for the components of E, we see that (1/g11)V71t1 = 0.

Hence, V1t1 = 0.

Expanding (4.54) in a manner analogous to that used

in expanding (4.53) yields

-Pu

(4-75) 913 = "“— (923V1t2 + 933V1t3)

V911

Since <71t1 = 0, (4.73) implies that

912

PW911

 

<71t2 =

Using this expression for :71t2 in (4.75), we obtain

23

‘9 912 Pu 33

911 ,fl§;;



47

Multiplying by gll/g33 and employing (4.71) gives

 

  

 

  

13 23

9119 + 9 912 at3

(4.76) = - Pub/911 —— - I‘fl tE

Since g13 is the reduced cofactor of gij’

913 = 921923 " 922931 . 923 = 921931 — 911932

9 9

2

911922 ' (912)

gas =

9

and

. 2

911913 + 923912 931[(921) ' 911922]

2 = — gal.

2

933 911922 ' (912)

Therefore, (4.76) may be written

— w— ata 2
(4'77) 931 — P 911 __ _ F 1 t

OX1 3 K

4.8 Reformulation — Step Seven - Final Form of (4.53) and

(4.54)

 

In the last section, (4.53) and (4.54) of system (E)

became equations (4.74) and (4.77), respectively. We write

these two equations in the form

at.

: I l __J. _ ’e ' :

glj Pu 911 8X1 le tg I j 213'

and put them entirely in terms of u, P, and the elements

of the metric tensor. To accomplish this, we first substitute
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the expressions for tj (and t2) given in (4.61). This

yields

9- g

glj - Pu V911 ap(-J—1'_ - PEI wil- , j " 2,3

V911 4911

Solving for the term involving the Christoffel symbols, we

 

obtain

E _ 5 glj glj

P. 9 ‘ 911 "‘ ‘
1 1 5 P

3 E ‘ P (a: u

' .8 1 6911

Since P.1 921 =-§ . [5, p. 98], we wee that (4.53)

and (4.54) of system (E) may finally be written

 

5911 q - g .

j = 2[“911 %E(—ll-_ -§%l]l j: 2:3-

BX 4911

4.9 Reformulation - Final Step

Combining the results we have obtained following system

of equations (E) and recognizing that (4.55) simply implies

that 8 depends on X2 and X3 only, we see that from

the dynamical equations we have derived the following system

of equations.
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(4.91) g—(Bfllfl) = o E
P 911

(4.92) 2 + p 2; = 0

5911 912 912

(4.93) 2 = 2['~/911 33(J—) " Fl:— p (F)

5X 911

5911 ' a 913 913

(4-94) 8X3 = 2[”911 hp (F " 131—1—

911

(4.95) s = s(x2, x3) 3.

On the other hand, each step in deriving (F) from (A)

is reversible. So, suppose we introduce into Euclidean

three space two independent families of surfaces and let

the curves in which they intersect be curves along which p

varies. One of the families of surfaces can be taken as a

family such that on each member X2 is constant and the

other as one such that on each member X3 is constant.

Then, if system (F) has a solution consisting of

u = f(p, X2, X3), S = h(X2, X3) and x, y, and 2 as func-

tions of p, X2, and X3, in a region where the Jacobian is

not zero, we may obtain a solution of system (A) consisting

of q, p, S and ti as functions of x, y, and 2.

It should, perhaps, be remarked that equations (4.93)

and (4.94) of system (F) can be put in a more compact form

provided g12 and 913 are not zero. Factor 912 and

g13 from the brackets, replace 1/P by -(1/2)up (using

equation 4.92), and introduce logarithms. Then these
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equations become

  

 
 

89 ug2

(4.96) 11 = (312 %— ln( 12)

5X2 P 911

8911 a u9§3

(4.97) 5X3 - 913 SP- ln( 911

In the next two chapters, however, we analyze situations in

which 912 = 0, and for this reason, leave (F) in its

present form.



CHAPTER'V

TWO CLASSES OF PLANE FLOWS

5.1 A Coordinate System for Plane Flows

In this chapter we obtain two classes of plane flows

using syStem (F). So, we consider the streamlines as lying

in planes parallel to an xy—coordinate plane.

X232

X3 = S = constant
A

 /
x /

Figure 2

 (
-

3: 3 p = constant

 

Under these conditions, we may choose the family of

stream surfaces composed of these planes as a family of

coordinate surfaces. We do this and let X2 = 2 be a con—

stant on each of these coordinate planes. As a second

family of coordinate surfaces, we choose the stream surfaces

that are cylinders, each of which has a streamline for

directrix and a line parallel to the z axis as generator

(see Figure 2). These are surfaces on which .X3 is constant.

But these cylindrical stream surfaces are Lamb surfaces

51
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because the vortex vector is perpendicular to the xy-plane

in flows such as we are considering, and consequently, the

vortex lines are generators of these surfaces on which X3

is constant. By Corollary 2.32, the function S that ap-

pears in the separable equation of state is constant on

each of these Lamb surfaces. Hence, S may be taken as

the X3 variable. To complete our coordinate system, we

take, as the third coordinate family, the family of cylin-

ders each of which has an isobar in the xy-plane as directrix

and a line parallel to the z axis as generator. This will

complete our coordinate system as long as pressure is not

constant on streamlines.

5.2 The Metric Tensor
 

The rectangular Cartesian coordinate system with x, y,

z coordinates and the coordinate system of Section 5.1 are

related by the transformation

x = x (p,S) y = y (p,S) z = X2,

where we assume that the Jacobian

J = Xp yS — XS yp # 0.

Since

 9.: 5X.-5-’-‘-.—+§1.§1.—+-5—?-.—§-z—.

13 5x1 5x3 5x1 5x3 5x1 5x3

I

the metric tensor is as follows:
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x2 + 2 0 x x +

9 Y9 p S ypys

(gij) = O 1 O

2 2
xpxS + ypys 0 XS + ys

Furthermore, the determinant of this matrix is

  

_ _ 2

and consequently,

-(X x + Y Y ) X2 + y2

913 = p S p 82 and 933 = pp p 2 .

(XpyS - ypxs) (Xpys — prS)

5.3 Equations (F) in the Case of Plane Flow

From the metric tensor of the previous section, we

observe that 921 = 0 and 911 is independent of X2,

so that equation (4.93) of equations (F) is identically

satisfied.

We assume g13 # 0, replace (4.94) by (4.97) and solve

for the expression Sg-ln.(§-) as follows:

11

 

5g
1 11 a 3 5 2

= _ l

913 BS 59 ln(911) + 59 n 913

u
a 1 5911 8913

ln (———) = -——— _ 2

55 911 913 55 5P

Next, we substitute the metric tensor components and simplify.

This yields
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5 u _ 1 5 x2+y2) 6 (x x +y y ) .

SPln<X2+y2\) _ XpXS-i-ypys [§§( P P ' 2 B-p. P S P S

P P

Expanding and simplifying the right side gives

 
 

a 1n ———2—u = -2(prxs + yppys) .

5 2 +

Substituting for g and 911 from the previous section,

equation (4.91) becomes

2
2 _.

 

O
/
|
O
/

r
U

II C

p yp

The problem of finding a plane flow satisfying (F) is

now the problem of finding functions x(p,S), y(p,S) and

u(p,S) which satisfy

 

 

—2(X X + y y)

(5.31) ggln __2_ = xgpiy ypps

X; + Y; P S p S

2 _ 2

(5,32) %__ P u(XPyS ypxs) = 0

‘ p x; w;

Bu _
(5.33) p.55 _ -2

where the last equation is a slight variation of (4.92).

Before proceeding to solve equations (5.31) to (5.33),

we make a remark concerning the requirement that g13 % 0.

This says that the isobars and streamlines are not perpen-

dicular. Suppose, however, that they were. Then V7p
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and E would be parallel and 5 ° §7p would be zero.

From equation (2.22) we find that 5 ° V7p = - quK, and

it follows that K = O, which means the streamlines are

straight. Conversely, for straight streamlines K = O, and

we observe from (2.22) that E is parallel to V7p. This,

in turn, implies that the streamlines and isobars are per-

pendicular. Thus the requirement that g13 # O excludes

plane flows in which the streamlines are straight.

5.4 A Class of Plane Flows Obtained byia Separation of
 

Variable Technique
 

We now return to equations (5.31) to (5.33) and attempt

to find functions x(p,S), y(p,S) and u(p,S) satisfying

these equations under the assumption that x = q(p) and

y = B(p)y(S). With x and y of this form, x = 0, and

equation (5.31) becomes

a u _ §_ —2

$1n(xz+y2) — aP ln yP

P P

Integration yields

f2 X2 2

(5.41) u= “MPH/P) ,
2

y?

 

where f2(S) is an arbitrary positive function.

Substituting from (5.41) into (5.32) and recalling that

XS = O, we obtain

 

(1213(3) xpys 2

yp

O
/
I
Q
/

'
U
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or

 

gEI(Pf(S)xpyS)= 0,

yp

Integration gives

P(p) f(S) ngs

y
 (5.42) = NS).

P

where h(S) is an arbitrary function. Substituting for

the derivatives of x and y in terms of q(p), B(p),

7(8) and their derivatives yields

P(p) f(S) a'(p) fi(p) y'(S) =

6'(p) 7(8) h(s)'

Separating the variables we have

P(p) a'lp) 5(9) = h(3) Y(3) = k
5'09) fTS) V'TS) '

where k is the separation constant. From this we see

that the following two equations hold.

 

(5.43) §'(22 = P(p) Q'(p)

fi(p) k

Jil§l_ = hiél.

(5'44) 1(8) kf(s>

In equation (5.33) we substitute for u from equation

(5.41) and get

a X2 +y2

Pf2 (S) 573(L5—E : -2.

yp

Therefore,
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Pa x2 +y2 : _2

55 y; f2(S)

But

2+2 X2

5 32.312 _L _2 _._5_

35( 2 )‘ap(2+1)‘ap(

yp yp @
“
N
H
E
.

) ,

so that the previous equation becomes

 

P35

0
/

A

k
:
}
U
x

N
N

V

II

H
I

I

A

m
m

In terms of the functions q(p), 5(p) and y(S), this is

g, Lawpnz _._ -2

p .IB'(p)]2v2(S) f2(3)

 

P

Separating variables we obtain

Pgi_ [a'figflz = 412(5) =R

d I 2 2

P [a (p)] f (S)

where R is a separation constant that must be negative.

From the last equation, we obtain two equations which must

be satisfied by q(p), fi(p) and y(S), namely,

2

L m = _L

(5'45) dp (B' (p)) P(p) (R < 0)

(5.46) 1%) = - %f2(S)

Thus we have four equations, (5.43) to (5.46), im-

posing restrictions on q(p), B(p), y(S), and the functions

of integration, f(S) and h(S). We first determine q(p)
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and 5(p) from (5.43) and (5.45) and then, determine y(S)

from (5.44) and (5.46). From (5.43) we see that

Q'(E) = k

5' (P) P(P) (33(9)

 

Substituting this into (5.45) yields a differential equa-

tion for 5(p) alone, that is,

k2 g... 1 2 = R

dp P(p) (Hp) P(p)

Integration yields

  

2

(5.47) (3%» = 2 k .
P (p)[R 1(9) + C1]

 

where I(p) is an integral of 1/P(p) and C1 is a con—

stant of integration chosen such that RI(p) + C1 > 0 in

the region of flow being considered.

We now proceed to find q(p). From (5.43), we see that

. _._ ks'm)

0‘ (P) P(p) (up)

Logarithmic differentiation of (5.47) followed by substitu-

tion in this last equation for fi'(p)/fi(p) gives

u : __:E__ u R

a (p) 2P2(P) [2]? (p) + RI(p) + C1]

and integration yields

 

  k k_R <19
2

(5-48) u(p) 3 -

P2(P)[RI(P) + C1]

+ c2 ,

where C2 is a constant of integration.
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Now, if we can choose the arbitrary functions f(S)

and h(S) and the constants k, R such that equations

(5.44) and (5.46) can both be satisfied, we will have a solu—

tion to the system of equations (5.31) to (5.33). Taking

the logarithmic derivathnaof (5.46) yields

S_f'S

y S f S

Substituting from (5.44) and multiplying by k f(S), we

have

(5.49) h(S) =k f'(S).

Consequently, choosing f(S) and k determines h(S).

In summary, we may obtain a plane flow satisfying

equations (5.31) to (5.33) by proceeding according to the

following steps.

(1) Pick an arbitrary function f(S) and two constants

k and R (R < 0). Then y(S) is determined by

(5.46). In order for the Jacobian (see Section

5.2) to be different from zero, f(S) must not

be a constant function.

(2) Choose constants C1 and C2, with C1 such that

RI(p) + C1 > 0. Then, determine u(p) from

(5.48) and B(p) from (5.47). Care must be ex-

ercised in choosing C1. and R (of first step)

so that B'(p) is not zero.

(3) Finally, u(p,S) is determined from (5.41).
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vIt is of interest to note that in these flows a con-

stant value of p implies a constant value of x. Hence,

the surfaces of constant pressure are parallel planes, each

of which is parallel to the yz-plane.

5.5 A Second Class of Plane Flows Obtained byfa Separation

of Variable Technique

Returning to equations (5.31)tx>(5.33) we attempt to

find another solution, namely one of the form x = q(p),

y = 5(p) + y(S). The function u is again obtained from

(5.31) and is given by

2 2 2

f (S) (xp + yp)

2

Y9

 u:

where f is an arbitrary function of S. As in the pre—

vious section, we can start with equation (5.32) and obtain

(5.42) which reads

P (p) f(S) xpyS

yp

 = h(S),

where h(S) is an arbitrary function. Under the present

assumption that y(p,S) = fi(p) + y(S), this equation leads

to

(5.51) P(p) f(S) CI. (p) Y. (S) =

ES‘(p) “S”

Separating variables yields
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P(p) a'(p) : h(S) = A

(5'(P) f(S) 7'(S) '

where A is a separation constant. From this, we have the

following two equations.

 

(5.52) 15'(p) = P0?) XWPL

. = h(S)
(5.53) V (S) Af(S)

In precisely the same way as in the previous section,

we begin with (5.33) and find that

 

a Xz 2
P (p) -E = —

BE y; f2 (S)

But under the present assumptions, when we substitute for

x and y , we obtain

P P

~_2

.d_ ELLE). : _ 2 :
P(p) dp [5. (9)] 132(5) D,

 

where D is a negative separation constant. This requires

that

(5.54) f2(S) = - 2_
D

and

(5.55) P(p) dp [:g'(p)2 = D.

Consequently, we see that to obtain a flow where X(P.S)

and y(p,S) are of the assumed form, the various constants

and functions involved must satisfy equations (5.52) to
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(5.55) with u being given by the same equation, namely

(5.41), as in the last section. Although P(p) was as-

sumed to be a given function, we notice that (5.52) and

(5.55) place a restriction on P(p) regardless of the form

of u(p) and 5(p). We substitute from (5.52) into (5.55)

and simplify as follows:

2

d A _

P(p) dp [P(p)] - D

2A2
_ = D + E I

P (p) p

where E is a constant of integration. Therefore, P(p)

must be of the form

2A2

P(p) Dp + E ’

where A, D and E are constants with D < O. This in-

cludes the equation of state used by Chaplygin, Karman, and

Tsien [20, p. 278]. With this restriction on the form of

P(p), however, we can proceed to obtain a solution of the

dynamical equations characterizing plane flow by the fol—

lowing procedure.

(1) Pick constants A, D and E arbitrarily with

D<0.



(2)
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Choose the functions u(p) and h(S) arbitrarily

(not constant).

Determine f(S), to within a plus or minus sign

from (5.54).

Determine B(p) and y(S) by integration of

(5.52) and (5.53), respectively.



CHAPTER VI

A CLASS OF THREE DIMENSIONAL FLOWS

6.1 Introductory_Remarks
 

In Chapter V one of the families of coordinate surfaces

that was introduced was a family of cylinders each member

of which has a streamline as a directrix. This family of

surfaces was a family of Lamb surfaces, and furthermore,

each streamline was a geodesic on one of its members. We

would now like to generalize what was done in the preceding

chapter by seeking a three dimensional (rather than two

dimensional) flow in which streamlines are geodesics on

Lamb surfaces.

Since S is constant on the Lamb surfaces of a Prim-

Smith flow (see Corollary 2.32), we may take it to be an

independent variable, say X3. If we again let X1 vary

along streamlines and take p = X1 and w = X2, the as—

sumption that streamlines are geodesics on Lamb surfaces

implies that g21 = 0. Thisfollows from the fact that the

members of the b congruence of curves lie on the constant

pressure surfaces (equation (2.22) implies b ‘ <7p = 0)

and also on the Lamb surfaces, if the streamlines are

geodesics on these surfaces. The requirement that g21 = 0

allows us to omit (4.93) from equations (F).

64
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6.2 The Metric Tensor
 

In the consideration of plane flows in Chapter V,

there was a general relationship among the variables X, y

and p, S, which we used (Section 5.2). In this chapter

we assume a particular relationship among the variables

x, y, z (rectangular Cartesian coordinates) and p, ¢,

S, namely one of the form

(6-21) X = X(p. w). y = Y(p. 8). z = z(p. ¢).

in which the Jacobian, J, is not zero. The metric tensor

is then of the form

2 2 2

X + + z 0

p yp p ypyS

.. = O x2 + 22 0(913) w w

2

ypys 0 yS

where zeros appear in the first row second column and second

row first column due to the requirement that g21 = g12 = 0.

Computing 912 and equating it to zero yields

(6.22) x X + zpz = 0.

We note that the determinant g is given by

_ 2 2 2
(6.23) g — yS (x; + z¢)(xp + z ).

Before introducing the metric tensor into system of

equations (F), we observe some of the geometric implications

of (6.21). If w is fixed, from (6.21) we have x = x(p)
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and z = z(p), which may be considered as the parametric

equations of a curve in the xz-plane. So, surfaces on

which w is constant are cylinders with generators parallel

to the y axis. Similarly, surfaces on which p is con-

stant are cylinders with generators parallel to the y

axis.

6.3 Introduction of the Metric Tensor into System of

Equations (F)

 

As in Chapter V we seek a solution to system of equa-

tions (F) for which g13 # O and replace equation (4.94)

with (4.97). We substitute the expressions for the terms

of the metric tensor into (4.97) and get

 

2 2

5 (x2 + y2 + ZZ) a u yp ys

T9 p p=YYg-ln

S p S p x; + y; + 2;

Taking the derivative with respect to S and dividing by

 

ypyS yields

2 2

y _ 55'1“ 2 2 2 °
S X +y +z

P P P

The left side of this equation is

5 2

531“ ys’

and therefore integrating with respect to p and solving

for u we obtain



67

F2(2,1/,S)(x2 + y; + 2;)

(6.31) u = E .

p

 

Y

where F2(¢,S) is an arbitrary positive valued function.

We now proceed to substitute for the metric coefficients

and u in (4.91) getting

[P2(p) F2(¢,S) y§(x: + 2;)(x; + 22):]

_P, _
2 — 0.

P
'55 Y

Simplification yields

P2<p> yg (x; + z;>(x; + 2;)

ll 0(6.32) éTp
2

yp

Shifting our attention to (4.92) and substituting for

u from (6.31), we obtain

( ) ( ) 5 (M ‘ 26.33 p p = ——

35 y; F2(w.s)

Thus, to find a three dimensional flow (of the form

indicated by equations (6.21)) with the property that stream-

lines are geodesics on Lamb surfaces is reduced to finding

x, y, z and u in terms of p, w, and S such that (6.22)

and (6.31) to (6.33) are satisfied.

6.4 An Application of a Separation of Variable Technique

In accordance with a standard separation of variable

technique, we assume there is a solution to the equations
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just mentioned of the following form.

X = a1(p) 51(w)

(6-41) y = a2(p) 7(8)

2 = a1(p) 52(w)

Substitution into (6.22) results in

a1<p)ai(p)[61(w)31(w) + 52(¢)Bé(¢)] =

“1(p)a1(p’ §_ [53(() + 5§(¢)1 z
2 d)
 

0.

Therefore, we must have (for a1(p) not constant)

(6.42) 53(1) + 53(w) = A.

where A is an arbitrary positive constant.

Substituting from (6.41) into (6.32) we find that

 

a [%2<p)a§<p)ty'(s>1zai(p)[ai(p)12[<51<¢>>2+<5;(¢))21[5i(w)+5§(¢)1]

'55
[aé(p)]272(S)

which means that

 

(6.43)

d_ (P(p)dz(P)G1(P)Oi(P))
:0,

dp 02(P)

provided the various functions appearing are not constant.

Finally, we must substitute into equation (6.33) from

(6.41). This gives

a [5;(p)12[5§(w) + 5§(¢)1 _ _ 2
P(p) -- - ---—--

a? [a5<p)12y2<S) F2<¢.S)
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Using (6.42) and isolating the terms involving only p

gives

I 2

C11 (P) _ __ 2Y2 (S)

05(P) A F2(¢:S)

  

P(p) 35

where C is a negative separation constant. We are thus

led to two conditions.

(6 44) d aim) 2 - (c 0)

dp 02(P) (p)

 

(6.45) )2(S) = -%_9F2((o.S)

Notice that (6.45) implies that F is independent of w.

For purposes of ready reference and summarization, we

gather up those requirements which must be met in order to

have a solution to system (F) of Chapter IV, of the type

we are considering here. These requirements are

(1) J = ) # O. From (6.41) we see that this

yS(szp - szw

is equivalent to

6&6)sz - (316m; (2)) 76 0°

(2) 5%(W) + 6%(w) = A, where A is a constant.

P(p)a1(p)ai(p)a2(p)

(3) ' = DI

a2(p)

 

where D is a constant. This is just a restatement of

(6.43).



7O

  

2

(4) — = (c < 0)

(5) f(S) = —-”=29F2(S).

To obtain a flow, we could proceed according to the

following steps:

(I) Pick a positive constant A, a negative constant

C, and an arbitrary function F(S).

(II) Determine 7(8) from the equation in requirement

(5).

(III) Pick 51(w) such that Pi(¢) < A, and then

determine 52(¢) from B§(¢) 3 A — B§(w). This

can be done, for example, by choosing 'A = 1

and B1(¢) = cos w. Then, 62(w) = sin ¢- Also,

requirement (1) is satisfied as long as |fi1(¢)|

is not equal to a multiple of .IPZ(¢)I°

(IV) Satisfy requirements (3) and (4) as indicated

below.

6.5 Determination of a1(p) and d2(p)
 

Requirement (4) implies that ai(p)/d$(p) is a known

function of p, namely

ai(P)
 

' = i"r(--:I(E)) + C]. I

O12(P)

where C1 is an arbitrary constant chosen such that

CI(p) + C1 > O in the region of flow, and the function

I(p) is again an integral of 1/P(p). Let us call this
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function k(p). With this notation, from requirement (3)

we see that

(11(P)C12(p) = FTP-7337B)— I

and hence, d1(P)02(P) is a known function of p. Let us

denote it by h(p). So, we have

 

ai(P)

(6.51) , = k(p)

O12(P)

and

(6.52) a1(p)a2(p) = h(p)-

From these two equations we obtain a single differential

equation with dependent variable o2. If this differential

equation can be solved, then a1(p) may be obtained from

(6.52), and we have a class of three dimensional flows. We

proceed as follows.

Solving (6.52) for a1(p) we get

= 2121.
a1(p) 02(p)

Differentiation yields

h' (9)62 (p) - h(P)O(2 (p)
 

ai (p) =

03(P)

Substituting this expression for ai(p) in (6.51) and

multiplying by a§(p)aé(p) yields

h' (pm (p) - h(pm; (p) = k(p)a§(p)aé(p).~
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Collecting terms we find that

(h(p) + k(p)a§(p))aé(p) - h'(p)a2(p) = o.

If we multiply by 2a2(p), this equation becomes

2

[h(p)-+ k(p)6§(p)1 §ElQ2(p’] - 2h'(p)6§(p) = 0.

Letting Y(p) = a§(p) and solving for dY/dp results in

gx_= 2h'(p)Y

(6'53) dp h(p) + k(p)Y

In order to put this in a standard form discussed by E.

Kamke [7, p. 24], we make the substitution l/r =

h(p) + k(p)Y. Differentiation of this yields

- —— = h'(p) + k'(p)Y + k(p)Y'(p)

Hence,

1 dr

k' Y + ‘—— .(9) 7r dpY'(P) = "f(S) [h

We substitute into (6.53), change the dependent variable

from Y to r, and get

—® h'(p) +11?!) (%-h(p))++;2 a-p]= %L(--h(P)).

Solving for r'/r2 we obtain

6 — 76,) [6.156 6.6)]. 2.6.6).

Multiplying by r2 we have
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dr

(6-54) 55': f1(p)r + f2(p)r2 + f3(p)r3,

where f1(p), f2(p) and f3(p) are known functions of p

 

with

f1(p) = - E'p

f2(p) = h£%g§'fipl- 3h'(p)

f3(p) = 2h(p)h'(p)-

Methods for solving (6.54) for various forms of the

coefficients fi (i = 1,2,3) are given on page 25 of E. Kamke.

In conclusion, the problem of finding a solution to

system (F) where x, y, and z are of the form (6.41), and

for which streamlines are geodesics on Lamb surfaces has

been reduced to the problem of solving a single first order

differential equation.

6.6 Some Remarks Concerning the Geometry of the Flows of

This Chapter
 

If the requirement (6.42) is satisfied by choosing

61(w) = cos w, 62(w) = sin ¢ and A = 1, as suggested in

Step IV in the procedure for obtaining a flow, equations

(6.41) become

x = a1(p)cos¢

(6.61) - azlp)v(8)"
< I

z = a1(p)sin¢.
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Let us consider the following three types of surfaces: (a)

Lamb surfaces on which S is constant, (b) constant pres—

sure surfaces, and (c) surfaces on which w = constant.

(a) If S is constant, (6.61) is of the form

X = a1COS¢

z = alsinw

y = f(Ql)

where f(al) is obtained as follows. Equations (6.43)

and (6.44) yield a functional relation between a1 and

a2 from which we can determine a2 in terms of a1. Sub-

stituting this result in the equation y = a2(p)y(S) and

holding S fixed yields y = f(a1)- Consequently, the

surfaces on which S is constant (these are Lamb surfaces)

are surfaces of revolution [5, p. 49].

(b) When p is held fixed, a1(p) is constant,

say C1. Consequently, from (6.41) we obtain

x = C1 cosw

Z = C1 Sim;

Y = C2 Y(S)

where C2 is the value of a2 for some fixed p. Then

x2 + 22 = Ci and the surfaces of constant pressure are

coaxial right circular cylinders [5, p. 47].

(c) When w is constant, (6.61) implies that z KX

[while y = a2(p) y(S)]. As a consequence, w - constant

surfaces are planes. (See Figure 3.)



   

  

S = constant

¢ = constant

 

Figure 3.

From (a) and (c) we observe that the streamlines (w =

constant and S - constant) are meridian curves of surfaces

of revolution, in fact, the Lamb surfaces. From (a) and

(b) we conclude that the parallels of these Lamb surfaces

are isobars. Furthermore, we note that the 2 vector of

Corollary 2.43 is tangent to these parallels and is collinear

at each point with the binormal vector of the streamline

through this point.
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