ABSTRACT
SOME GEOMETRIC PROPERTIES OF COMPRESSIBLE FLUID FLOWS
AND CERTAIN CLASSES OF SUCH FLOWS OBTAINED BY
INTRINSIC METHODS

by Lester B. Fuller

Steady nonviscous nonheat-conducting flow of a compres-
sible fluid in the absence of external forces is discussed
in this paper. 1In particular the geometry of such flows is
studied, the dynamical equations which characterize these
flows are reformulated, and some classes of flows are obtained.

In connection with the geometry, a condition is ob-
tained which is necessary and sufficient for the existence
of stream surfaces that contain the vortex lines. These
are called Lamb surfaces. Then, two necessary and sufficient
conditions are found; one for streamlines to be geodesics
on Lamb surfaces and the other for streamlines to be asymp-
totics on stream surfaces. More generally, two necessary
and sufficient conditions are obtained; one for the existence
of stream surfaces on which streamlines are geodesics and
the other for the existence of stream surfaces on which
streamlines are asymptotics.

Some of these conditions mentioned involve the magni-
tude of the velocity vector, and so, relationships between
it and the geometry are observed. Thus, the geometry and
the dynamics are related.

Concerning the dynamical equations and their solutions,
the following has been done. A system of equations equiva-

lent to the dynamical equations is obtained using two families
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of stream surfaces and the family of constant pressure sur-
faces as coordinate surfaces. From this reformulated system
of equations, two classes of plane flows are found, and a
single ordinary differential equation is obtained whose solu-

tion leads to a class of three dimensional flows.
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CHAPTER I

INTRODUCTION

1.1 Preliminaries

As the title of this paper indicates, it is our pur-
pose herein to make some observations concerning certain
fluid flows, the equations which characterize them, and
their geometry. Consequently, it seems appropriate that
we begin with a discussion and explanation of some of these
terms.

A fluid flow is a set of functions which satisfies
a certain system of nonlinear partial differential equa-
tions, and so, we first consider these equations which are

referred to as the dynamical equations throughout this

paper. We write the system using the standard summation
convention (i = 1, 2, 3) and, following it, explain the

notation and discuss its derivation.

(1.11) T, pvt =0

i _ 1 A
(1.12) \% Vivj = - ) ﬁgp (3 =1,2,3)
(1.13) viviq -0

In these equations we are using the customary notation
of tensor calculus, so v> and vj are the contravariant
and covariant components respectively of a vector field

called the velocity vector field, and 'V& represents the

1
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covariant derivative. The quantities p, p, and n are
scalar point functions known as pressure, density, and
entropy, respectively. Consequently, the terms v;n and
vjp are gradients of scalar point functions.

The dynamical equations are derived from the basic
principles of conservation of mass, momentum, and energy.
These derivations are given in most standard fluid mechanics
texts, such as in the first chapter of H. Lamb [8]. The
form of equation (1.13) we are using is nicely developed
in R. Courant and K. O. Friedrichs [4, p. 14-16].

These equations are the mathematical model for steady
nonviscous nonheat-conducting flow of a fluid in the ab-
sence of external forces. By the term steady we mean that
the quantities appearing in these equations depend on posi-

tion only and are independent of time; by nonviscous we mean

the force an element of fluid exerts on an adjacent element

is normal to their common surface; by nonheat-conducting

we mean there is no flow of heat from a hotter portion of
the fluid to a cooler portion except that which takes place
by convection, that is, by the motion of the fluid itself.
A set of functions consisting of a vector function v,
with components vi or Vj' and three scalar point func-
tions 1, p, and p, which identically satisfy the dynamical
equations in some region of three dimensional space, is
called a flow. Briefly, then, a flow is a solution of

equations (1.11]) to (1.13). 1In the special case where the

density, p, is constant, the flow is called incompressible.
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Otherwise, it is known as compressible. If the vector func-

tion v is such that curl v = 0 throughout a region of

three dimensional space, the flow is irrotational in that

region. Otherwise, it is called rotational. Throughout

this paper we use ® to denote curl Vv and call it the

vorticity or vortex vector. If the vorticity and velocity

vectors of a flow are parallel at each point in a region,
that is v x w = 0, then the flow is called Beltrami.
Each curve of the family of integral curves of the

velocity vector field is called a streamline, and, similarly,

a vortex line is a member of the family of integral curves

of the vortex vector field. From the physical viewpoint,
a streamline in a steady flow is the path of a fluid particle.
Thus we see that certain families of curves may be associ-
ated with a fluid flow.

It is also possible to associate various families of
surfaces with a flow, as the following remarks indicate.
(We tacitly assume that any requirements such as continuity
and differentiability of functions is satisfied.) The
presence of the pressure gradient in (1.12) brings to mind
the concept from vector calculus of level surfaces of a
scalar point function. 1In this case, these are surfaces on
which p is constant and which have the property that, at
each point, a surface normal is collinear with the pressure
gradient. The partial differential equation vivie =0
has two linearly independent solutions which we shall denote

by 6,(x', x2, x3) and 6,(x', X2, x3), where X!, X2, and
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X3 denote independent variables. If we let C; and C,
be arbitrary constants, then 6,(X!, X2, x3) = ¢, and
6,(X1, X2, x3) = C, represent families of surfaces known

as stream surfaces.

From the two preceding paragraphs, we notice that we
may associate with a flow geometric objects such as families
of curves and families of surfaces. Furthermore, for a
given flow, these curves and surfaces may have special
properties. For example, the streamlines may be straight,
or the streamlines and vortex lines may coincide as in a
Beltrami flow. Hence, we describe a flow in terms of these
geometric quantities and their properties and speak of the

geometry of a flow. In case the streamlines are plane

curves, and there exist stream surfaces which are planes
with the property that all quantities of the flow do not
change in the direction normal to them, we say the flow is

a plane flow.

1.2 Background Concerning Geometry

We would like to mention some of the previous research
in the area of the geometry of fluid flows which, to some
extent, motivates the geometric considerations undertaken
in this paper, or has a direct bearing upon them.

D. Gilbarg [5] poses the following question: In what
way is the flow pattern (i.e. the streamlines) related to
the velocity, and to what extent does one depend on the

other? Or, we might state the question this way: to what
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extent does the geometry of a flow determine its dynamics?
Some partial answers to this question have been obtained.
In the case of steady, incompressible, plane flow, Gilbarg
determines all incompressible flows having the same flow
pattern as an arbitrary given flow of an incompressible
fluid. 1In fact, he shows that, if the given flow does not
have a constant velocity magnitude along each individual
streamline, the only flows with the same streamline pattern
are those having velocity fields that are proportional to
that of the given flow. R. C. Prim [12] extends these find-
ings of Gilbarg to the three dimensional case. R. Wasser-
man [21] shows that, if the velocity vector v = qt (|t]
= 1), corresponding to each incompressible (compressible)
flow with Q&ti = 0 there is a compressible (incompressible)
flow having the same streamlines and constant pressure sur-
faces. He also proves the converse, namely, that if a
compressible and incompressible flow have the same (non-
straight) streamlines and constant pressure surfaces, then
they both have w;t' = 0. R. C. Prim [13] points out that
among all flows having the same streamlines and constant
pressure surfaces, there is a flow containing a special
family of surfaces, which is not necessarily present in all
flows. We shall elaborate more fully upon this in Chapter II,
but, at present, simply poin% out that much of Chapters 11
and III are motivated by the articles mentioned in this sec-

tion.
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In other areas of flow geometry, contributions have
been made by N. Coburn, E. R. Suryanarayan, and C. Truesdell.
N. Coburn [3] points out certain properties of the vorticity
and velocity vectors and demonstrates, the interesting fact,
that the pressure gradient lies in the osculating plane of
the streamlines. E. R. Suryanarayan [16] decomposes the
dynamical equations in terms of the tangent, principal nor-
mal, and binormal of the vortex lines and considers a flow
in which the vortex lines are right circular helices. 1In
another paper [17] he discusses the geometry of flows
(known as complex lamellar flows) containing surfaces or-
thogonal to the streamlines and derives conditions for the
orthogonal intersection of certain surfaces existing in
these flows. C. Truesdell [19] writes a comprehensive
article in which he emphasizes the generality of intrinsic
methods (to be discussed in Chapter II of this paper) in

analyzing flow geometry.

1.3 Background Concerning Solutions of the Dynamical

Equations

In attempting to solve the dynamical equations, numer-
ous difficulties are encountered, and so it is natural to
make some simplifying assumptions. One such assumption is
that there are Beltrami flows (v x w = 0) satisfying these
equations. Such flows, however, would include irrotational
flows as a special case, and the further assumption that

®w = 0 would render the dynamical equations still less
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complex. Additional simplification could be brought about
if flows that are both incompressible and irrotational are
sought. So, the various types of flows one might seek, in
order of increasing difficulty, are

(a) 1irrotational and incompressible,

(b) irrotational but compressible, and

(c) Beltrami.

We now discuss some of the progress that has been made
in the special cases mentioned above. Case (a) leads to
Laplace's equation and classical potential theory. For solu-
tions in this case see H. Lamb [8, Chap. 5]. case (b) is
analyzed by R. Courant and K. O. Friedrichs [4, Chap. 4],
and in the case of supersonic plane flow, a class of solu-
tions known as Prandtl-Meyer flows is presented. 1In case
(c) Beltrami [1] sets forth, and Nemenyi and Prim [11]
discuss flows in which the streamlines are coaxial helices.
This is done for an incompressible flow.

In the special case where pressure is constant on
streamlines, R. Wasserman [21,22] obtains flows in which
the streamlines are helices and another class of three dimen-

sional compressible fluid flows.

1.4 Objectives of this Paper

As we pointed out, there seems to be an increase in
difficulty as one proceeds from irrotational, incompressible
flows to irrotational flows which allow compressibility

effects, and then to Beltrami flows. One might look upon
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this progression as being one in which we go from a consider-
ation of flows without vortex lines (w = 0) to a considera-
tion of flows in which streamlines and vortex lines coincide
(G X ® =0). As the next stepping stone of difficulty in
the advance from irrotational flow to general steady non-
viscous nonheat-conducting flows, in Chapter II we shall
discuss the geometry of flows in which streamlines and vor-
tex lines form surfaces. As we shall see, this need not
always be the case, even when Vv x ® # 0. 1In Chapter III,
the classification of flows already indicated in this sec-
tion will be elaborated upon, and relations between the
geometry and |v| shown. 1In Chapter IV, we shall reformu-
late the dynamical equations (1.11) to (1.13) and then, in
Chapter v, use this reformulation to obtain two classes of
plane flows. 1In Chapter VI, we obtain a class of three
dimensional flows, and in both Chapters Vv and vI, the
geometry of the flows obtained is of the type discussed in
Chapter II.

There 'is no attempt to solve any boundary value prob-
lems in this paper, but, rather, we confine our considera-
tions to the dynamical equations only. It is also to be
understood that, in our discussion of geometry, we are con-
cerned with what is commonly referred to, in differential
geometry texts, as geometry in the small. Also, the solu-
tions we obtain are restricted to some limited region of

three dimensional space.



CHAPTER II

THE GEOMETRY OF COMPRESSIBLE FLOWS

2.1 The Equation of State

Equations (1.11) to (1.13) are a set of five equations
in six unknowns, but there is another relationship among
the unknowns which allows us to consider these as a system
of five equations in five unknowns. We shall now introduce
this relationship.

The laws of thermodynamics inform us that for any
given medium only two of the quantities, pressure, density,
and entropy, may be independent [4, p. 4]. This fact is

expressed in the equation of state, p = f(p,n).

If the medium is a gas in which the internal energy

is simply proportional to the temperature (with propor-

tionality constant Cv)‘ the gas is called polytropic, and

the equation of state is of the form

1
(2.11) p=p /Y S (n),

where vy 1is a constant having a value between 1 and %

for most media. S(n) is given by
P
-1
S(n) = Bv - 1) expC, (1 - Woﬂ Y

with 1o an appropriate constant [4, p. 6,7]. The assump-
tion that a gas is polytropic is made in most applications.
For example, air at moderate temperature may be considered

polytropic with vy = 1.40.
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In this paper we shall frequently assume that a

separable equation of state holds, namely one of the form

(2.12) p = P(p) S(1),

with P(p) and S (n) assuming only positive values. We
notice that the equation of state for a polytropic gas is

a special case of (2.12).

2.2 Intrinsic Methods

As we have already observed, various families of curves
and surfaces accompany a flow. Furthermore, these curves
and surfaces have associated with them certain quantities
of a geometric nature such as curvature, torsion, principal
normals and binormals, and first and second fundamental
forms. When these quantities, which are inherent to a flow,
are employed in its description, we speak of using intrinsic
methods or intrinsic quantities.

In the analysis of the geometry of flows, the use of
intrinsic methods has been a great aid [19, 10, p. 105,570].
Both as illustrative examples, and for future reference, we
derive some well known formulas by an intrinsic approach.

In particular, we avail ourselves of the moving trihedron
associated with a streamline, which consists of the three
orthonormal vectors t, n, and b; t being tangent to
the streamline, n the principal normal, and b the bi-

normal.
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Letting the velocity v = q t, (1.12) becomes

i
t'g.qt, = - 1 p, 3§ =1,2,3.
qtTv;aty /p 95, 3

Expanding the left side of this equation and using the fact

that V&(q2/2) = q v.q yields
2.21)  a®th gty + (¢h vy @2/2)1ty = - p v, 5= 1,2.3.

We substitute into the first term on the left from the
Frenet formula, tl‘Vitj = Knj, where « is the streamline
curvature, and obtain

(2.22)  vyp = -plth v, (@?/2)]t5 - palkn,,  J = 1,2.3,

which says that the pressure gradient lies in the osculating
plane of the streamline.
Before deriving a second important result by means of

intrinsic methods, we define a function

P qu
o pu,n)

7

h(P:‘]) = f
p

where po is a function of n only. This function h(p,n)
is known as the enthalpy, and from its definition, we see

that

1 3h
Vih =0 V3R 5y vy

Now we may write (1.12) in the form

i dh
t . . = . - .h.
aq V&qtj gﬁ'VG'l VG
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As in the derivation of (2.22), we obtain
[ti V. (@2/2)1t. + gq2kn. = oh V.1 - ©v.h, j =1,2,3.
i j i T3 V3 j

Forming the scalar product of both sides of this equation

with t and using (1.13) results in

e v, @®/2) = - t* v,
Collecting terms, we have

g Vi(q2/2 + h) = 0.
We set
(2.23) q?2/2 + h = B,

recognizing that B 1is constant along each streamline.
The fact that g2/2 + h is constant along each streamline

is known as Bernoulli's law, and B 1is called Bernoulli's

constant although it may vary from streamline to streamline.
If B has the same value on each streamline, (2.23) ex-

presses what is known as the strong form of Bernoulli's law.

A third example involving the moving trihedron of the
streamline is an expression for the vorticity derived by

N. Coburn [3, p. 118]. 1It is

o) 3

k9% _ x 9% d d

(2.24) wj=q(b & - Bf-tj+§%nj+(q'c_5%)bj’
i =1,2,3,

where partial derivatives with respect to n and b repre-

sent directional derivatives in the direction of the
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principal normal and binormal respectively.

2.3 On the Existence and Properties of Certain Stream

Sur faces

R. C. Prim [13, p. 436] has mentioned certain surfaces
that exist in some flows that are intimately related with
the substitution principle. Before generalizing a result
of Prim's, we summarize this principle. It says that, for
a separable equation of state, a solution of the dynamical
equations is a member of an infinite family of flows having
the same constant pressure surfaces and streamlines. Fur-
thermore, the flows of this family are related by the equa-

tions

*

v¥ = v/m p* = p

p*¥ = mzp S (T]*) m2s (n)

where m 1is any scalar field such that vi<7im = 0.

In these equations, the quantities without the stars (ex-
cept for m) refer to one flow and the starred quantities
to another flow. Prim points out that in such a family of
flows there is one for which the strong Bernoulli law holds,
and it has the special property of possessing a family of
surfaces with unit normals N for which N x (v X ¢ x V)
= 0. In general, however, given a vector field v, the
problem of finding a family of surfaces such that, for each
member of the family, the direction cosines of its normal,
at every point, are proportional to the components of the

member of the vector field at the point, is not solvable
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[24, p. 202]. cConsequently, it is "natural" to seek a
necessary and sufficient condition for the existence of
such surfaces and to further investigate the geometry of
flows containing them. We shall do this, but before pro-
ceeding further with this investigation, we introduce some
terminology and state the problem in a slightly different
fashion, which will be helpful to us.

We shall use the term w congruence of curves (or

just w congruence) to mean the family of integral curves
of a w vector field, or, more generally, by congruence

of curves we shall mean a family of curves with the property
that exactly one member of the family passes through each
point of some region of space [5, p. 78] . A congruence of

curves for which there exists a family of surfaces inter-

secting it orthogonally is called a normal congruence of

curves. A necessary and sufficient condition for a congru-
ence of curves to be normal is that any tangent vector field
w associated with it satisfies the condition w - gxw = 0
[24, p. 202].

As a consequence of these remarks, we may rephrase the
property of the Prim substitution flows, relating to the
existence of certain surfaces, by saying that in such flows
the integral curves of the vx (V¥ x v) vector field form
a normal congruence. So, we could view our inquiry as that

of seeking a necessary and sufficient condition for the

existence of such a normal congruence in a flow.
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Theorem 2.31: The Vv x w congruence is normal if and only

if at least one of the following holds:
(a) entropy is constant on the vortex lines,

(b) pressure is constant on the streamlines.
Proof: We write (1.12) in the form
(v -v)v = -(1/p)wp
and apply the vector identity
(v -¥)v = (1/2) g (Vv " V) -V X (T xV)
with v = gt. We get
(2.312)  p(v x w) - p w(@?/2) = vp.

We form the curl and obtain

vp X (Vx ) +pvux (Vxa -ygp x vig2/2) =0.
Forming the scalar product with v x w and transposing
gives
VXD gx (vVx o =1/p[(vxa cvpx T(@2/2)].

From the equation of state, we see this may be written

VX®-*- 9x (Vo = %-6 X O * Kép vp + gngq) x ‘7%{].

Equation (2.312) shows that W(g2/2), wyp., and Vv x ® are
coplanar, and hence, their scalar triple product is zero.

Therefore,
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- - - - - - 2
(2.315) vxw-vx(vxw)=%%%[(vxw)'vqxv% ]
If, to the right side of this equation, we apply the ident-
ity of Lagrange, which says that
(@xb) - (ecxd) =(a-c)b -4 - (- -~d(®d -,
and drop the term involving v *yn (by (1.13) this is zero),
then (2.315) becomes
- - - - dp - - q2
vxow * ¥VYVx (vxw =-= w (v -V35 ).
( ) 5h v 5 )

It is to be inferred from Section 2.1 that p depends on

n in such s way that %%;éo. Thus (v x &)+ T x (¥ x @)

<1

=0 if o+ yn =0 or - Vv (g2/2) = 0, and, conversely,
if (vx o) * vx (vxw =0, then either o - yn =0 or
v + VI(Q2/2) = 0. Equation (2.312), however, implies that
v - v(@2/2) =0 if and only if Vv - yp = 0, and the

theorem is proved.

Hence, entropy constant on vortex lines or pressure
constant on streamlines guarantees the existence of a
family of surfaces orthogonal to the v x ® congruence.
In keeping with the terminology of Truesdell [18, p. 133],

we call these surfaces Lamb surfaces.

corollary 2.32: If entropy is constant on the vortex lines,

then the entropy is a constant on each Lamb surface of the

flow.

Proof: By Theorem 2.31, the Lamb surfaces exist in the

flow, and Vv X ® is a vector field normal to the Lamb
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surfaces. But, by hypothesis, - yn = 0, and by (1.13),

v - yn = 0. Therefore,
ynx (vxw = (@ gnv- (v - yno=0
and entropy is constant on the Lamb surfaces.

Corollary 2.33: 1If entropy is constant on the vortex lines,

the Bernoulli constant is the same for each streamline in a
Lamb surface. That is, B 1is a constant on each Lamb sur-

face.

Proof: Again, Theorem 2.31 implies the existence of the
Lamb surfaces, and that v x ® is a vector field normal
to the Lamb surfaces. The Crocco-Vazsonyi equation [14,

p. 186] states that

;XC—Dz VB-TVT]'

where T represents absolute temperature. By Corollary
2.32, v x o =aqayn for some scalar point function a-.

Hence,
VB = (a + T)Y?n,

and the gradients of B and 1 are parallel, so their
level surfaces coincide.

By introducing the term Bernoulli surface for a level

surface of B, we may draw the following conclusions from
Theorem 2.31 and its corollaries, concerning a flow in which
pressure is not constant on streamlines. If Lamb surfaces

exist, then Bernoulli surfaces and constant entropy surfaces
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coincide and in fact are the same as the Lamb surfaces.
Or, if the Bernoulli surfaces and constant entropy surfaces
differ, then the flow cannot contain Lamb surfaces.
Two articles, one by R. C. Prim [13] and another by
P. Smith [15], motivated our investigation. For this reason,

we use the term Prim-Smith flow, throughout the remainder

of this paper, to designate a flow with the following two

properties:

(a) 1t possesses Lamb surfaces,
(b) its constant pressure surfaces are not stream

surfaces.

2.4 A Special Congruence of Curves Lying on the Lamb

Sur faces

Theorem 2.41]: At each point of a Prim-Smith flow or a flow

in which constant pressure surfaces are stream surfaces,

the vectors 7, p, Yyp and vq are coplanar.

Proof: Case I - Prim-Smith flow: The equation of motion

in the form

(2.42) va?/2 - vxw= - %Vp

implies that g, Vv x w and yp are coplanar. 1In a

Prim-Smith flow, however, v x o and w7 are collinear.
So wq lies in the plane of yn and ¥p. From the equa-
tion of state, it is clear that wp is also in the plane
of vp and ¢, and hence, the four gradients, vn, wp,

¥Vp, and Ygq are coplanar.
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Case II - Constant pressure surfaces are stream surfaces:

In this case t +* 7p

0. This, together with equation
(2.42), implies that t * g = 0. Since t : Yn =0 in
the flows under consideration, the eguation of state implies
that t - Vp = 0. So at each point of the flow ¢ 1., yp.
VP and 9 lie in a plane normal to the streamline through
the point.

We observe that in Case II, . p. P and g are
constant on the streamlines and extend this property in

the following corollary.

Corollary 2.43: In a flow with constant pressure surfaces

and Lamb surfaces that are distinct, =7, p, p, and q are
constant on the integral curves of the unit vector field
given by

(2.44) 2 2
(B-VE)Iw - [wv@)lt

X

B - - — 2 - 2 - -
JIE-v@H1z+a v@H12- 218 v @ 1w v 1w - €

where o = uw with | w| = 1.

Proof: Case I - Prim-Smith flow: By the symmetry in (2.44),

X - ¥Y4q =0. Since t * gn = 0, according to the energy
equation, and w : 7 = 0 in a Prim-Smith flow, X - ¢ 7
= 0. According to Theorem 2.41, yp and gp lie in the
plane spanned by tfyn and y¥q. Therefore, X - vp =

X - ¢¥p =0 and the corollary's conclusion holds for a

Prim-Smith flow.
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Case II - Constant pressure surfaces are stream surfaces:
As previously noted t - p = 0 if and only if E - ¢ (q2/2)
= 0. By hypothesis the constant pressure surfaces are dis-
tinct from the Lamb surfaces, so that w - %7 (q2/2) # O.
Therefore X = * t, and as observed immediately preceding

this corollary, =10, p, p, and g are constant on the

streamlines, in this case. Thus the corollary is proved.

2.5 Geodesics and Asymptotics on Lamb Surfaces

We have already observed in Case II of the proof of
Theorem 2.41 that, when streamlines lie on constant pres-
sure surfaces, 1, p, p, and g are constant on the stream-
lines. Since the equation of motion, (2.22), implies that
b - wp is invariably zero, the additional property of p
being constant on the streamlines (t * p = 0) implies

that the streamlines are geodesics [24, p. 99] on the con-

stant pressure surfaces. Conversely, if a streamline is
(a geodesic) on a constant pressure surface, t - vp =0,
and as we have shown in Case II of Theorem 2.41, 1, p, p,

and g are constant on the streamlines. We summarize
these remarks in a theorem. Admittedly, the term geodesic
could be omitted from the statement, but we insert it because

we wish to draw attention to this geodesic property.

Theorem 2.51: The functions 17, p, p, and g are constant

on the streamlines of a flow if and only if the streamlines

are (geodesics) on the surfaces of constant pressure.
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In the case of constant pressure surfaces, then, the
streamlines need merely to lie on the surfaces in order to
be geodesics. 1In general, of course, this is not the case,
and we now obtain a necessary and sufficient condition for
a streamline to be a geodesic on a Lamb surface. Forming

the cross product of (2.24) with v, we obtain

(2.52) Gx&=q(g—g—q,c>ﬁ+q§%6.

If v x ®# 0, then (2.52) implies that Jdgq/db =b - yq =
if and only if v x @ is collinear with n, the principal
normal of the streamline. But, at each point of a Lamb
surface, VvV X ® is collinear with a surface normal. So,
a streamline is a geodesic on a Lamb surface if and only
if b - g = 0. That is, g constant on each curve of
the b congruence is a necessary and sufficient condition
for streamlines to be geodesics on Lamb surfaces. Theorem
2.41 and the fact that b * <gp = 0 imply that N: p+ P
and g are constant on each curve of the b congruence
whenever q is. Therefore, we can summarize our remarks

as follows:

Theorem 2.53: A necessary and sufficient condition for

streamlines to be geodesics on Lamb surfaces is that 7,
p. P, and g are constant on the b congruence.

Since q being constant on each curve of the t con-

0

gruence (or b congruence) implies n, p, and p are also,

and conversely, we may consider Theorems 2.51 and 2.53 as
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relating dynamic properties of a flow to geometric properties.
In fact, they say that t - yg = 0 is a necessary and suf-
ficient condition for streamlines to be geodesics on con-
stant pressure surfaces, and b * g = 0 is a necessary
and sufficient condition for streamlines to be geodesics on
Lamb surfaces (in a flow containing such surfaces). As a

consequence of these remarks, we have the following corollary.

Corollary 2.54: t - ¥q =b * yyq =0 if and only if the

Lamb surfaces and constant pressure surfaces coincide.

A further consideration of Theorems 2.51 and 2.53 re-
veals that the X vector of Corollary 2.43 1is collinear
with the t vector when streamlines are geodesics on con-
stant pressure surfaces, and collinear with the b vector
when streamlines are geodesics on Lamb surfaces. This leads
us to ask if, under certain conditions, X is collinear
with n. If it were, pressure would be constant on each
curve of the n congruence. Equation (2.22) shows that
n - vp =0 if and only if « = 0, that is, the streamlines
are straight. So, we may immediately conclude, that if the
streamlines are not straight, the X and n vectors cannot
be collinear.

Since a straight line that lies entirely in a surface
is an asymptotic line of a surface [5, p. 237], the remarks
of the last paragraph draw our attention to asymptotic
curves on Lamb surfaces. Equation (2.52) implies that

vxw and b are collinear if and only if
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19 =

= =n

g on v 1ln q.

At each point of a flow containing Lamb surfaces, v x o is

in the direction of a normal to the Lamb surface through

the point. So, at each point of a flow, a unit normal to

the Lamb surface and the b vector coincide if and only

if k =n - <1ln gq. Thus we have proved the following:

the

Theorem 2.55: 1In a flow containing Lamb surfaces,

streamlines are asymptotics on these surfaces if and only if
k =n - wln q.
E. R. Suryanarayan [17] has shown that (excluding

straight streamlines) « = n ¥ 1ln @ 1is a necessary and

sufficient condition for Lamb surfaces and constant pressure
surfaces to intersect orthogonally, provided entropy is con-
stant throughout the region of flow. His assumption of con-

stant entropy is not necessary, however, as his conclusion

Twvn =t

tion of his statement would be this:

follows if n vn = 0. So, a slight modifica-

in any Prim-Smith flow

* ln g is a neces-

with non-straight streamlines, « = n
sary and sufficient condition for Lamb surfaces and constant

pressure surfaces to intersect orthogonally, as well as for

streamlines to be asymptotics
We close this section by
ing some similarities between

taining Lamb surfaces. R. C.

out that ¢ n, <p, vp, and

Beltrami flow. From (2.52),

b - xvq = 0. Hence,

are constant on the b

however,
for a Beltrami flow,

congruence .

on the Lamb surfaces.

making a few remarks concern-
Beltrami flows and flows con-
Prim (13, p. 434] haé pointed

v q are collinear in a

vxw=0 implies

1., p, P, and g

From equation (2.52),
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it is also clear that « = n * ¥1ln g in a Beltrami flow.
Consequently, the conditions mentioned in Theorem 2.53 con-
cerning geodesics on Lamb surfaces, and the condition in
Theorem 2.55 for asymptotics on Lamb surfaces, are both en-
joyed by a Beltrami flow, Of course, we do not have Lamb
surfaces in a Beltrami flow except, perhaps, in a degenerate

sense.

2.6 Geodesics on Stream Surfaces

In the last section, we considered two cases in which
streamlines were geodesics on stream surfaces. It is our
purpose here to obtain a necessary and sufficient condition
for the existence of stream surfaces on which streamlines
are geodesics.

Equation (2.24) is not only valid for the vorticity
vector of a fluid flow but, also, for curl v of an arbi-
trary vector field v = gt where |[t| = 1. We choose v =

an arbitrary unit vector, and substitute. This gives

Thus n " wx t = 0.

Theorem 2.61: 1If the pressure gradient is not tangent to

the streamline throughout a flow, then a necessary and suf-
ficient condition for the existence of surfaces on which
streamlines are geodesics is that t °* wp be constant

along the b congruence.

t

’
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Proof: For suitable scalar functions ¢ and £, the equa-

tion of motion may be written as

QE+BH = v p.

Forming the curl yields
(2.62) ggxt+aowvxt+vpxn+pwvxn-=0.

Dotting with n and using the fact that n * wx t = 0

yields

ox
4
Q
+
™
of |
N
b
o]
H
(=)

Therefore, fn " ¥YXn=-b - <wa-

By assumption B8 # 0, and so n < xn =0 if and only if
a =t - wp is constant along the b congruence. But
n - vxn-=0 means the n congruence is a normal con-

gruence, so there is a family of surfaces cutting it orthog-

onally. On these surfaces the streamlines are geodesics.

2.7 Asymptotics on Stream Surfaces

In Section 2.5 we obtained a necessary and sufficient
condition for streamlines to be asymptotics on Lamb sur-
faces. More generally, one might seek a necessary and suf-
ficient condition for the existence of stream surfaces on
which streamlines are asymptotics. We do this in this sec-
tion. Before embarking on such an investigation, however,
we note that the problem could be rephrased by saying we
seek a necessary and sufficient condition for the Vv x ¥p

congruence to be a normal congruence. Furthermore, since
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v p lies in the osculating plane of the streamlines, we
are seeking a condition for which there exists a scalar
point function ¥ such that t <y =0 and n * vy = 0.
Hence we must satisfy the integrability conditions [2, p.

186-187), namely

B/ Y =

Using the Frenet formula tJ ijz = - 1n where 1 is

zl
the torsion of the streamlines, and the fact that

tﬂnjvjbﬂ = - bf’njvjtﬁ, the integrability condition becomes

(2.71) r=pfalg.t .
J 4

To investigate (2.71) further, we make use of the vec-

tor identity V(uev) = (@ V)V + (Vv )T +ux (Yxv) +

vV X ( ¥ xu). Replacingﬁbyr_land v by t, we have
(2.72) O=(n- -v)t+(t " Yn+nx(wvxt)+tx(wvxn).

Using the Frenet formula (t * ¥ )n = - kt + tb and forming
the scalar product of the right side of (2.72) with b, we

obtain

0O=5b +*(n+-)t+1-t  "vxt+n " vxn.
Substituting from equation (2.71) yields
(2.73) 27 =t *VYXt-n-°wxn.

From equation (2.62) and the fact that n * vx t = 0, we
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observe that

%(6 - VB -Bt - wxn),

E -vxt

and

’Vxn—‘%ﬁ v Q.

S

Substitution into (2.73) shows that

21 =6 - (%Vﬁ'i‘%‘Va)—%E'VXE-

By a well known vector identity,

V-b=Vv-(Exn) =n"wvxt-t-vxn=-t-wxn,

v§2+va2 - 2
2t = b - 2 2 Byg-p=kr: VvV |vp| +B v- 5.
aB a 2 ab a

Hence, we have proved the following theorem.

Theorem 2.74: If ¥p is not collinear with either t or

n, a necessary and sufficient condition for the existence
of stream surfaces on which streamlines are asymptotics is
that 1, the torsion of the streamlines, be given by the ex-

pression

where
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We conclude this chapter with a few remarks about
Theorems 2.61 and 2.74. 1In both theorems, it is assumed
that n * < p is not zero. This simply means that the
special case of straight streamlines is not considered.
It happens that a straight line is both a geodesic and an
asymptotic on a surface containing it. Theorem 2.74 also
fails to take into account the situation in which
a=t *p=0. 1In this case, equation (2.62) implies that
n - wvxn =0, and from (2.73), we see that a necessary and
sufficient condition for streamlines to be asymptotics on

stream surfaces is that 2t =t * ¥ x t.



CHAPTER III

RELATIONS BETWEEN V X & AND THE MAGNITUDE

OF THE VELOCITY VECTOR

3.1 Introductory Remarks

It has been proven by M. H. Martin [9, p. 470] that
for plane flow, a necessary and sufficient condition for
an irrotational flow is that g, the magnitude of the
velocity vector, depends on pressure only. In this chap-
ter, we would like to extend this remark by showing rela-
tionships between q and Vv x .

We assume throughout this chapter that surfaces of
constant pressure are not stream surfaces, and we denote
by ¥ = constant and ¢ = constant, where y and ¢ are
scalar point functions, two distinct families of stream
surfaces. Thus, we consider g to be a function of p,

¢, and .

3.2 Beltrami Flows

The equation of motion may be written in the form

vxo=v(@Q?2/2) +1/p vp-
Expanding the term involving g vyields
(3.21) vx o= (qa, + 1/p)vp +aq,ve + a9,V ¥ -
By assumption t - vp #0, t *+ v¢ =0, and t *+ Yy =

so (3.21) implies that
29
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(3.22) aq_ + 1/p =0,

and consequently,
(3.23) VX ®=4q(q,Ve t Q).

It follows immediately from this equation that v x w = 0

if g depends on pressure only, since then a, = qw = 0.

On the other hand, suppose v x w =0 (g # 0) throughout

a region of space. For the coordinate system under consider-
ation, Y ¢ and Wy are not zero, and so v x ® = 0 implies
one of the following two possibilities:

q
= _ X = -
(a) o q, vy or (b) q, qw 0 .

Case (a) implies that the surfaces on which ¢ is constant,
and the surfaces on which % 1is constant coincide, which

contradicts the known independence of ¢ and y. There-

fore, qcp = 0, and g depends on pressure only. 1In

qw'

summary we state

Theorem 3.24: If constant pressure surfaces are not stream

surfaces of a flow, the flow is Beltrami if and only if the
magnitude of the velocity vector depends only on the pres-

sure.

3.3 Prim-Smith Flows

Proceeding to flows in which streamlines and vortex
lines do not coincide but form Lamb surfaces, we observe a
special property of the velocity magnitudes, which we now

state.
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Theorem 3.31: If constant pressure surfaces are not stream

surfaces, a compressible fluid flow contains Lamb surfaces
if and only if g, the velocity magnitude, is a function of

pressure and entropy only.

Proof: We recall that Lamb surfaces are stream surfaces on
which 1, the entropy, is constant provided t - wp # O.
Therefore, we may replace ¢ by 7 in equation (3.23) and

obtain
(3.32) \-fx<5=q(quT]+qu1l/)e

By Theorem 2.31, if pressure is not constant on streamlines,
w *n =0 whenever Lamb surfaces occur in a flow, and
therefore, forming the scalar product of (3.32) with o

yields
(3.33) 0= g q¢ch> v Y.

Since g # 0, equation (3.33) implies either =0 or

Ty
® * ¥y = 0. The latter equation can not hold, however,
since ® vy =0, v-wvn=0, ®-vn=0, and

v +- ¥ =0 imply that

(Vo xvn= (vVxa) xwvy = 0.

Hence, sy m and ¥ are collinear, which contradicts the

independence of n and . Therefore, = 0, where y. =

Ty
constant represents any family of stream surfaces distinct
from the family of Lamb surfaces, and thus in a flow con-

taining Lamb surfaces, q = q(p, 7).
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Conversely, let us consider a flow in which q =
d(p, n). and the constant pressure surfaces are not stream
surfaces. Then, by a method analogous to the one for de-

riving equation (3.23) we obtain

\7x53=qquq.

Hence, w * ¢ n = 0, and according to Theorem 2.31, the
Vv X ® congruence is normal. In other words, the flow is

of Prim-Smith type.

3.4 A Classification of Steady Compressible Flows

In the table below, we have attempted to picture a
classification of all flows of the type mentioned in our
introduction for which t * ¥p # 0. The left portion of
the interior of the table represents flows for which
v x ® =0, the upper part for irrotational flows and the

lower part for flows in which streamlines and vortex lines

coincide. The right side of the table represents flows for

which Vv x © # 0, the upper portion for flows in which
streamlines and vortex lines form surfaces and the lower
part for all others. We have also indicated the restric-

tions on the magnitude of the velocity in these cases.

Vx®=0 vxw#O
© =0 streamlines and vortex
q = ql(p) lines form sur?aces
qa = g(p.,S)
streamlines and vortex .
lines coincide others
qa = dq(p) qa =q(p,¢¥.S)

(t -vp#0)



CHAPTER 1V

A REFORMULATION OF THE DYNAMICAL EQUATIONS

4.1 Preliminaries

A transformation of variables is frequently helpful
in putting a differential equation or system of equatiocns
into a more desirable form. In the area of fluid mechanics,
the hodograph transformation is an example of this. We
illustrate it in the case of compressible, irrotational,
plane flow.

First, we introduce two functions, y (x,y) and ¢ (x,v),
where Y (x,y) 1is a constant on each streamline, and

®(x,y) 1is constant on each orthogonal trajectory of the

streamlinres. This can be done in the case of plane flow,
and under the assumption of an irrotational flow, ¢ (x,y)
may be considered as a potential function, so W¢ = v.

A function, such as ¥ (x,y), which is constant on each

streamline, 1is called a stream function. Next, we let &

be the angle measured counterclockwise from a positive
x-axis to the velocity vector, and as usual, gq = |[v|. The
other quantities p and ¢, which appear below, are de-
pendent on 6 and q. The function p, again, represents
density, and ¢ 1is the sound speed defined by the equation
c? = %% (it is a fundamental property of all actual media
that, entropy remaining constant, the pressure increases

33
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with increasing density). It can be shown [23, Chap. 4]
that a compressible, irrotational, plane flow can then be
characterized by the following pair of equations, where the
intrinsic variables ¥ and ¢ are used as independent
variables rather than x and vy.

pqg—z-(g-z--l)g% =0
(4.11)

36
937y P

Interchanging the roles of the variables g, 6 and

¢, ¥ by using

3
"
l

Oj=

(i

%9.: 1990
v D 96
3 _ 13
do D 9q
06 - _ 12¢
Sy D 3q
¢ ¢
where D = q g , we get from (4.11)
Vg Ve

e _fa? _ 4\ v -

(4.12)
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These are known as the hodograph equations. We note that
equations (4.12) are linear while equations (4.11]) are not.
Furthermore, we can, if we wish, eliminate either ¢ or ¥
and get a second order linear equation for a single variable.
For applications of these equations see R. Courant and K.
O. Friedrichs [4, p. 248-259].

A second type of transformation of variable occurring
in the field of fluid mechanics is mentioned by R. von Mises
[20, p. 433] and employed by M. H. Martin [9, p. 465-484]
in the case of plane flow. This change of variable amounts
to using the pressure, p, and a stream function (intrinsic
quantities) as indepeﬂdent variables, and considering the
other variables and the coordinates x, y as unknown func-
tions of them. 1In other words, under the assumption that
pressure is not constant on streamlines, the streamlines
and isobars (curves on which pressure is constant) are taken
as curvilinear coordinates rather than the streamlines and
their orthogonal trajectories as in equations (4.11]). Using
this approach, M. H. Martin started with the system of dif-

ferential equations

introduced a stream function ¥, and considered p as a
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known functions of p and ¢. He then reduced the problem
of finding wu, v, x and y as functions of p and ¢ to
the integration of one quasi-linear partial differential
equation for a single unknown function.

It is our purpose in this chapter to extend this tech-
nique , which was fruitful for M. H. Martin in the case of
plane flow, to a similar technique for three dimensional
flows. As in Martin's approach, the streamlines will be
coordinate curves. The other coordinate curves will con-
sist of two distinct families of curves on which the pres-
sure is constant. Such coordinate curves are realized by
introducing a family of constant pressure surfaces which
are not stream surfaces and two distinct families of stream
surfaces as coordinate surfaces. Using this coordinate sys-
tem, we shall reformulate the dynamical equations, (1.11)

to (1.13), and obtain an equivalent system.

4.2 Reformulation - Step One

We shall assume, now and throughout the remainder of
this paper, that a separable equation of state holds (see
Section 2.1) and rewrite the dynamical equations replacing

n with S in the last equation.

v V.V. - "% Vp ] J = 11213 4 (A)
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The quantities vi (i =1,2,3), p, and S are considered
as the five unknowns of this system, and it is assumed that
P(p) is known. Hence, o is determined from the equation
of state. Since vt = qti and |t| = 1, we may also con-
sider the five dependent variables as g, p, S, and two
components of t.

We commence our reformulation of system (A) with its
first equation (the continuity equation), by substituting

qt1 for v' and obtain

Vipqtl = 0.
Expanding this yields
i i _
pqvit + t v,pd = 0.

Since

AVAH

i pa = VipCL

pd
dividing by pd results in
i i _

Vit + t Vi In pg = 0.
Substituting from the separable equation of state for p
gives

Vitl + th ¥, ln Psq = 0.
Using this equation and the equation of motion in the form

of (2.22), with p replaced by PS, system (A) becomes the

equivalent system
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(4.21) vitt +t'y, ln psq = 0

(4.22) PSq?kny + PS[tivi(qz/z)]tj = -V4p. 3 =1,2,3) (B)

(4.23) vy, s =o.

4.3 Reformulation - Step Two

We avail ourselves of the coordinate system mentioned
in the last paragraph of Section 4.1, letting X! = p, the
pressure, X2 =y, and X3 = ¢, where ¢ is constant on
each member of one family of stream surfaces and ¢ is con-
stant on each member of another (distinct) family of stream
surfaces. 1In this coordinate system, the streamlines are
coordinate curves along which ¢ and ¢ are constants and
p varies. Furthermore, we let Ni denote a unit normal
to the family of stream surfaces on which ¢ is constant

and let 'n' denote a vector cross product of t' and Nt
such that tl, 'nl, and N' form a right hand orthogonal

system (see Figure 1).

¢ = constant

Figure 1.
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From equation (4.22) we obtain the components of the
pressure gradient in the directions of these three orthogonal
vectors. Since tjnj = 0 and tjtj = 1, the dot product

of (4.22) with tJ yields
(4.31) tJ vip = - pst’ v, @%/2).

Making use of the Frenet formula Knj = tl<7it. and the
fact that 'n? and N? are orthogonal to tJ, the scalar
product of (4.22) with 'n  and N’ produces the follow-

ing two equations.

- lei
j PSq n- t Y?it.

]

NI V.p

- 2 nJ 41
i PSg“ N t Vit. .

J

According to the energy equation, tl<7iS = 0. Therefore,

tT Vv, (5q%/2) = (@2/2)t* Vs + st’ v, (@%/2) = st* v, (q%/2),
and (4.31]) may be written as
tjvjp = - P t'v, (sq?/2).

Consequently, system (B) may be written in the following

form.
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(4.32)  w.t* + t'v, 1npsq =0 ]
(4.33) tjvjp = - ptt v, (sq?/2)

(4.34) 'njvjp = - pPsq? 'n3 tivitj ? (c)
(4.35) N VP = - Pquthivitj

(4.36) tlg.s=o0 |

It is true that the terms 'thlvitj and thlvitj are
commonly called the geodesic and normal curvature, respec-
tively, and given abbreviated notations. For future compu-

tational purposes, however, it is more convenient to leave

them in their present form, so we do it.

4.4 Reformulation - Step Three

Upon examining system (C), we observe the term Sg2
appearing in three of the five equations. The first equa-
tion of this system may also be written in terms of Sg2,
and then (4.32) to (4.35) may be considered as a system of
four equations with four dependent variables, p, Sg2, and
t'. We now rewrite (4.32).

Multiplying (4.32) by two and using a property of log-

arithms, we get

2 Vitl + tt V; ln P252g? = 0.

Using another property of the logarithm function and the

fact that thi In S = 0, this equation may be written in
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the form

2Vit:l + tlvi ln P2sq? = 0.

consequently, by replacing Sg2 with u, system (C) may

be written as follows.

2\7jtj +tjvj ln P2u =0 ]

¢ Vip = - Ptivi(u/Z)

'nJ VP = - pu 'nJ ti'vitj ) (D)
NI vip = - PuthiVitj

¢ Vs =0 i

4.5 Reformulation - Step Four

We now observe a few facts which allow us to simplify
system (D). 1In the coordinate system we are using, X! = p,

and p is independent of X2 and X3. Therefore,

1 j =1
Vjp =
0 j =2,3.
Consequently,
tj vjp = tl , an vjp = lnll NJVJP = Nl.

The unit vector t* is tangent to the streamlines, along
which only X! = p varies, and hence t2 = t3 = 0. Aas a

result, such expressions as tlvitJ and tl'vas, in
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system (D), become t1§71tj and tlwv;s. 1In the light of
these remarks, the coordinate system we are considering
permits us to write system (D) (and hence the original

dynamical equations)in the form

(4.51) 2v,t! + tly, 1n P2u = 0 |
(4.52) tl = - ptlv,(u/2)

(4.53) 'nl = - pu 'n’ tlvltj P (E)
(4.54) Nl = - PuN3t1<71tj

(4.55) tlvis =0 B

4.6 Reformulation - Step Five - Introduction of the Metric
Coefficients and Final Form of (4.51) and (4.52)

Proceeding with our reformulation we let e;, e,, and
e; denote a set of base vectors for the X!, X2, X3 coor-
dinate system chosen such that éi is tangent to the curve
on which Xi varies. Then the vector t may be written

in the form

(e}

= tlg 25 c
= tle; + t2e,; + t3ej .

Since t2 = t3 = 0,

E = tlél.
But, £ is a unit vector, and therefore,

- - 2 -
t -t=1=(t1)" e; * e;.

Letting e; * e; = g11.
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t! = 1Ngy; -
We introduce the reciprocal base vectors e- (i = 1,2,3)
defined by e* - éj = 6;, where 6; is the Kronecker delta.

Since N 1is a unit normal vector to the family of surfaces

X3 = ¢ = constant, N; =N, = 0 and,

N -N=1=(Ng)? &3 - &3.

Denoting e3 - e3 by g33, we have

N3 = 1/\/ g33 °

From differential geometry one knows that g;;, as we have
defined it, is an element of the metric tensor and that

g33 is the reduced cofactor of another member of the metric

tensor, namely gz3. Hence, we shall denote by gij (i.3
1,2,3) the elements of the space metric tensor and by glJ
the reduced cofactor of g... Since ¢t. = g..tl and
1] J J1
t2 = t3 = 0, we see that
9

Similarly N) = ng N, implies that
j3
NJ - —Lo

,n;ﬁi

We have defined ‘'n' as the vector product of N' crossed

with t', and consequently [2, p. 145],



where g 1is the determinant of the gij' Substituting the
expressions for Nj and tk in terms of the elements of

the metric tensor we obtain

—di132 di11

'nl = —_— ’ 'n2 = - ’ and 'n3 = 0.
vVggy,933 Vag119°3

Prior to substituting into system (D), we collect the
formulas just derived in one place for ready reference and

state a formula for the divergence of a vector vt [2, p. 171].

— g
tJ =( L o, 0) s L
Vdi11 ) Ng11
o o 1 j - _ g%
N. = , ' N -
1) = 1 (
n- = —————— (“912/+ Y911/ 0)
= V9911953
(4.62) o) =i g v))
J Ja' dxI

Using (4.62), the components of tJ given in (4.61), and
the fact that 1n P2u is a scalar, equation (4.51) may be

written as

3 [< L 1 9 1nPlu _
ox! V911 V9., OX!

allw
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Multiplying by ~g;; and recalling that X! = p, this equa-
tion becomes

0 1ln P2ug
= 0.
55 d11

Substituting for the component t! in (4.52) and

realizing that

Vi =S @),

we obtain

1 - P

o)
- (
vdgi11 Ngi11 EE'

) .

=

Multiplying by 2 ~g;; yields

2+p%‘§ =0.

4.7 Reformulation - Step Six - Another Form of (4.53) and

(4.54)

In equations (4.53) and (4.54), we have the expression

t1<71tj appearing. To expand this we use the formula

dt. ’
(4.71) thj = -—1an - ij te,

where ka is a Christoffel symbol of the second kind ex-
pressed by
(a72) pf o ot (0% a9 |

] 3X 3x? ax*

Substituting into (4.53) for 'n? and t! as given in (4.61),

we obtain



—912 - Pu ~d12 di1
- Vit + Uity
Ngg119°3 Vag11933 \Na11 J11

or

di2
(4.73) g1z = Pu(\'gn Vitg = — V1t1> .
911

As we shall now show, however, 7,:t; = 0, and by means of

(4.71) we have

(4.74) 912 = Pu~Ngy; (B_tz_ - 1y t£>

dx1 21 —
To prove that < t; = 0, we observe that tlvitjtj = 0.
This implies that tJt% Vitj = 0. Substituting from (4.61)

for the components of t, we see that (1/gy;) Vit = O.
Hence, Vltl = 0.
Expanding (4.54) in a manner analogous to that used

in expanding (4.53) yields

-Pu
(4.75) gld3 = —— (g“vltz + g33v1t3) .
vVgig

Since <7.t; = 0, (4.73) implies that

di1g
Puvgjy,

vity =

Using this expression for <y;t, in (4.75), we obtain

23
~9%%d12 Pug33
g13 = ————— - -—9— Vlta'

d11 ,(_"'gu
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Multiplying by g3,/9%%® and employing (4.71) gives

g119'3 + g23q,, ots 7
(4.76) = - P d11 _— - F31 tz
Since glJ is the reduced cofactor of gij'
413 = 921923 ~ 922931 423 = 921931 ~ 911932
g g
2
911922 -~ (912)
g33 =
9
and
2
91193 + g23gy, 931((921)" - 911922]
= = - 931-
2
g33 911922 - (912)
Therefore, (4.76) may be written
= Pwgy, Otg y/
(4.77) 931 = Pwayy [ % _ pr o,
31 .
3x1 y

4.8 Reformulation - Step Seven - Final Form of (4.53) and

(4.54)

In the last section, (4.53) and (4.54) of system (E)
became equations (4.74) and (4.77), respectively. We write

these two equations in the form

ot
= ,/ —-1 - ﬂ 1 =
glj Pu gll axl Fjl tz v J 2137

and put them entirely in terms of wu, P, and the elements

of the metric tensor. To accomplish this, we first substitute
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the expressions for tj (and tg) given in (4.61). This

yields
- d (941 . 91 .
g,. - Pun~Ngj; y( —F-l —1, j = 2,3.
tJ P Ng11 ] Nd11

Solving for the term involving the Christoffel symbols, we

obtain
) _ o) g1j g1j
r:. g = di1 Ry - .
1 1 e} P
R e
. J) 1 agll
Since T3, g, =3 : [5, p.- 98], we wee that (4.53)

and (4.54) of system (E) may finally be written

3911 g, - g, .
; = 2[“911 %E(—ll- -5%1 . J =2,3.
oX Ndi11

4.9 Reformulation - Final Step

Combining the results we have obtained following system
of equations (E) and recognizing that (4.55) simply implies
that S depends on X2 and X3 only, we see that from
the dynamical equations we have derived the following system

of equations.
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(4.91) %—(P—zgﬂ) =0 ]
p 911
du  _
(4.92) 2+ PS> =0
3911 d 912 912
(4.93) Sx? —2["/911 B_P(Jg_lj - Pu_ b (F)

9911 ) di13 913
(4.94) 2['4911 'g_p(“—" - P
Nd11

(4.95)

0n
1

s(x2, x3) -

On the other hand, each step in deriving (F) from (A)
is reversible. So, suppose we introduce into Euclidean
three space two independent families of surfaces and let
the curves in which they intersect be curves along which p
varies. One of the families of surfaces can be taken as a
family such that on each member X2 is constant and the
other as one such that on each member X3 1is constant.
Then, if system (F) has a solution consisting of
u = f(p, x2, x3), s =h(x2%, x3) and x, y, and z as func-
tions of p, X2, and X3, in a region where the Jacobian is
not zero, we may obtain a solution of system (A) consisting
of g, p, S and ti as functions of x, y, and z.

It should, perhaps, be remarked that equations (4.93)
and (4.94) of system (F) can be put in a more compact form
provided g;, and g;3 are not zero. Factor g;, and
g;3 from the brackets, replace 1/P by —(1/2)up (using

equation 4.92), and introduce logarithms. Then these
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equations become

dg ug?
(4.96) 11 = glz g— ln ( 12)
dx2 P d11
9911 d ugia
4.97 = 1
( ) dx3 J13 55 n( d11

In the next two chapters, however, we analyze situations in
which g3, = 0, and for this reason, leave (F) in its

present form.



CHAPTER' V

TWO CLASSES OF PLANE FLOWS

5.1 A Coordinate System for Plane Flows

In this chapter we obtain two classes of plane flows
using system (F). So, we consider the streamlines as lying

in planes parallel to an xy-coordinate plane.

X2 = z

X3 = S = constant
| ::

|
/ I
x y///<\\\\:n—-x' = p = constant

Figure 2

Under these conditions, we may choose the family of
stream surfaces composed of these planes as a family of
coordinate surfaces. We do this and let X2 =z be a con-
stant on each of these coordinate planes. As a second
family of coordinate surfaces, we choose the stream surfaces
that are cylinders, each of which has a streamline for
directrix and a line parallel to the =z axis as generator
(see Figure 2). These are surfaces on which X3 is constant,
But these cylindrical stream surfaces are Lamb surfaces

51
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because the vortex vector is perpendicular to the xy-plane
in flows such as we are considering, and consequently, the
vortex lines are generators of these surfaces on which X3
is constant. By Corollary 2.32, the function S that ap-
pears in the separable equation of state is constant on
each of these Lamb surfaces. Hence, S may be taken as
the X8 wvariable. To complete our coordinate system, we
take, as the third coordinate family, the family of cylin-
ders each of which has an isobar in the xy-plane as directrix
and a line parallel to the 2z axis as generator. This will
complete our coordinate system as long as pressure is not

constant on streamlines.

5.2 The Metric Tensor

The rectangular Cartesian coordinate system with x, vy,
z coordinates and the coordinate system of Section 5.1 are

related by the transformation

x =x (p,s) y=y (p.s) z=x2,

where we assume that the Jacobian

J = X Yo = Xg Yp #Z0.

P
Since
g.. = ox_ 9x . Qdy Qy_ , 9z_ 0z
1J dxt  dxI dxt dx? dxt  dx’

the metric tensor is as follows:
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x2 + y2 0 +
p Yp ¥p¥s T Yp¥g
(gij) = 0 1 0
2 2
xpxS + ypys 0 XS + ys

Furthermore, the determinant of this matrix is

= - 2
g = (xyvg - ¥ %)% o
and consequently,
-(x %X, + Y V) x2 4+ y®
gl3 p S 1 52 and g33 = b % S -
(xp¥g = ¥ %g) (x¥g = ¥ %g)

5.3 Egquations (F) in the Case of Plane Flow

From the metric tensor of the previous section, we
observe that g,; = 0 and gy; is independent of X2,
so that equation (4.93) of equations (F) is identically
satisfied.

We assume g,3 # 0, replace (4.94) by (4.97) and solve

for the expression gé 1n (E—-) as follows:

p 911
1 9911 - ! + 9 14 o2
Jdi3 oS - 3p " (911 op N J13
dg dg )
d a _ 1 11 13
5p 1° (911 = 91s ( 55 " 23p

Next, we substitute the metric tensor components and simplify.

This yields
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d u _ 1 O (x2+y2) 3 (x x.+y v.) |-
ggln(x“yz) X g *Y Vg [gg PP 235p PSsps
PP

Expanding and simplifying the right side gives

—2(x X + V.. V)

o) u pp S pp?s

Sp 1in ( 2 + y2 = X X + ‘
p x3 * g p¥s * Yp¥g

Substituting for g and g;; from the previous section,

equation (4.91) becomes

2
2 -

I
o

o

op 2 2
x2 +

p = ¥p

The problem of finding a plane flow satisfying (F) is

now the problem of finding functions x(p,S), y(p.S) and

u(p,S) which satisfy

-2(x_ %X, +Y_ Y.)
(5.31) < 1n 5 = —Be = _ PpS
P x; + y; p's T Yp¥s
2 - 2
(5.32) 2 PPulxp¥s - ¥p¥s) -0
_ 5 T
p P
Ju
(5.33) p Sp - -2

where the last equation is a slight variation of (4.92).
Before proceeding to solve equations (5.31) to (5.33),

we make a remark concerning the requirement that g;g4 #0.

This says that the isobars and streamlines are not perpen-

dicular. Suppose, however, that they were. Then wvp
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and t would be parallel and n * wvp would be zero.
From equation (2.22) we find that n - vp = - pq2k, and
it follows that « = 0, which means the streamlines are
straight. Conversely, for straight streamlines « = 0, and
we observe from (2.22) that t is parallel to wvp. This,
in turn, implies that the streamlines and isobars are per-
pendicular. Thus the requirement that g;g # 0 excludes

plane flows in which the streamlines are straight.

5.4 A class of Plane Flows Obtained by a Separation of

variable Technique

We now return to equations (5.31) to (5.33) and attempt
to find functions x(p.,S), y(p.S) and u(p,S) satisfying
these equations under the assumption that x = g(p) and

y = B(p)y(S). With x and y of this form, xg = 0, and

equation (5.31) becomes

s) u _ 9o -2
'yp 1n ( ———xz . y2 ) = ap 1n Yp
P p

Integration yields

£2 %2 2
(5.41) u = (8)(xp * ¥p) ,

2
Yp

where f2(S) 1is an arbitrary positive function.
Substituting from (5.41) into (5.32) and recalling that

Xg = 0, we obtain

£ 2
PE(S) x_ vg
y

O/IO/
'O

p
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3 P£(S)x y
B ()

or

Integration gives

P(p) £(8) x yg

Yp

(5.42) = h(s),

where h(S) is an arbitrary function. Substituting for
the derivatives of x and y in terms of af(p)., B(p).
v(S) and their derivatives yields

P(p) £(S) a'(p) B(p) ¥'(S) -
5 (B) Y(S) h(s).

Separating the variables we have

P(p) o' (P) B(P) - h(S) Y(6) - 4
B (p) £(s) y' (8) '

where %k 1is the separation constant. From this we see

that the following two equations hold.

E'(e) - P(p) a'(p)
(5-43) ) X

') _- h(s)
(5.44) Y(S) KE (3)

In equation (5.33) we substitute for u from equation

(5.41) and get

a xz +y2
Pf2 (S) $<_L2.E = -2.
yP

Therefore,
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p 2 Xp Y YR\ _ -2
op Yp, £2(s)

But

2 4 2 %2
3 (¥ " ¥p | _ 3 [T _
?p( 2 )‘ap(z“ = 3p

Yp

o ol
~—

x2 9
P L] = =
B—‘S(Yf;) £2(s)

In terms of the functions a(p), B(p) and vy(S), this is

Pl —leen® .oz
P 1g' ()2y2(S) £2(s)

Separating variables we obtain

d [a' (]2 _ -23y2(5) -
Pdp [ 2 2 R
(B (p)] £ (s)

where R 1is a separation constant that must be negative.
From the last equation, we obtain two equations which must

be satisfied by a(p), Ff(p) and vy(S), namely,

2
4 [aoi(p) = _R_
(5-45) dp (a' (p)) P(F) (R < 0)

(5.46) Y2 (s) = - % £2(s)

Thus we have four equations, (5.43) to (5.46), im-
posing restrictions on a(p), B(p), ¥(S), and the functions

of integration, £(S) and h(S). We first determine ¢ (p)
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and p(p) from (5.43) and (5.45) and then, determine Y (S)

from (5.44) and (5.46). From (5.43) we see that

a' (p) k

a - ——
B' (p) P(p) B(p) °

Substituting this into (5.45) yields a differential equa-

tion for E(p) alone, that is,

k2 i_ _1__ ? - R
dp | P(p) B(p) P(p) °

Integration yields

2
(5.47) p2 (p) = ——= :
P? (p) [R I(p) + Ci]

where I (p) 4is an integral of 1/P(p) and C; is a con-
stant of integration chosen such that RI(p) + C; > 0 1in
the region of flow being considered.

We now proceed to find q(p). From (5.43), we see that

v(p) = =B
o P P(p) B(p)

Logarithmic differentiation of (5.47) followed by substitu-

tion in this last equation for p'(p)/B(p) gives

, - -k , R
Ol G o

and integration yields

(5.48) ) = oy - & J - +Cy

P2 (p) [RI(p) + C4]

where C, 1is a constant of integration.
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Now, if we can choose the arbitrary functions f£(S)
and h(S) and the constants k, R such that equations
(5.44) and (5.46) can both be satisfied, we will have a solu-
tion to the system of equations (5.31) to (5.33). Taking

the logarithmic derivative of (5.46) yields

x'isg _ f'(s
y(S f(s

Substituting from (5.44) and multiplying by %k f(S), we

have
(5.49) h(s) =k £'(s).

Cconsequently, choosing £(S) and k determines h(S).

In summary, we may obtain a plane flow satisfying
equations (5.31) to (5.33) by proceeding according to the
following steps.

(1) Pick an arbitrary function £(S) and two constants

k and R (R <O0). Then <vy(S) is determined by
(5.46). 1In order for the Jacobian (see section
5.2) to be different from zero, f(é) must not
be a constant function.

(2) Cchoose constants C; and Cy, with C; such that

RI(p) + C; > 0. Then, determine a(p) from
(5.48) and B (p) from (5.47). Caré must be ex-
ercised in choosing C; and R (of first step)
so that Rg' (p) is not zero.

(3) Finally, u(p,S) is determined from (5.41).
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It is of interest to note that in these flows a con-
stant value of p implies a constant value of x. Hence,
the surfaces of constant pressure are parallel planes, each

of which is parallel to the yz-plane.

5.5 A Second Class of Plane Flows Obtained by a Separation

of variable Technigque

Returning to equations (5.31) to (5.33) we attempt to
find another solution, namely one of the form x = qg(p),
y = B(p) + Y(S). The function u is again obtained from

(56.31) and is given by

£2 2 4 y2
Y = (s) (Xp Yp) ,
2

Yp

where £ 1is an arbitrary function of S. As in the pre-
vious section, we can start with equation (5.32) and obtain

(5.42) which reads

P(p) £(S) x v,
y

= h(s),
p

where h(S) 1is an arbitrary function. Under the present
assumption that y(p.,S) = B(p) + y(S), this equation leads

to

P(p) £(S) a'(p) ¥'(S) .
(5.51) = o) h(s).

Separating variables yields
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P() o' (p) - ns) -,
B' (p) £(S) v' (5) '

where A 1is a separation constant. From this, we have the

following two equations.

(5.52) pr(p) = ElRlaotle)
L. _ h(s
(5.53) y' () = pTi(-S—;-

In precisely the same way as in the previous section,
we begin with (5.33) and find that

x2 PN

P (p) g-( .
2
p £2(8)

But under the present assumptions, when we substitute for

X and vy _, we obtain
P P

—2
a | «(p) = =2 =

where D 1is a negative separation constant. This requires
that
2 - 2
(5.54) fe(s) = - D
and
5.55 P = D.
(5-55) ®) dp[ﬁ (p)

Consequently, we see that to obtain a flow where x(p,S)
and y(p,S) are of the assumed form, the various constants

and functions involved must satisfy equations (5.52) to



62
(5.55) with u being given by the same equation, namely
(5.41), as in the last section. Although P(p) was as-
sumed to be a given function, we notice that (5.52) and
(5.55) place a restriction on P(p) regardless of the form

of a(p) and PB(p). We substitute from (5.52) into (5.55)

and simplify as follows:

2
a [a _
PP) 3p I:P(P):I - D

Integration yields

eme— b4 +E’
P (p) Dp

where E 1is a constant of integration. Therefore, P (p)
must be of the form

22
P(P) = 55 +E

where A, D and E are constants with D < 0. This in-
cludes the equation of state used by Chaplygin, Karman, and
Tsien [20, p. 278]. With this restriction on the form of
P(p), however, we can proceed to obtain a solution of the
dynamical equations characterizing plane flow by the fol-
lowing procedure.

(1) pPick constants A, D and E arbitrarily with

D < 0.



(2)

(3)
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Choose the functions a(p) and h(S) arbitrarily

(not constant).

Determine f(S), to within a plus or minus sign

from (5.54).

Determine A(p) and y(S) by integration of

(5.52) and (5.53), respectively.



CHAPTER VI

A CLASS OF THREE DIMENSIONAL FLOWS

6.1 Introductory Remarks

In Chapter V one of the families of coordinate surfaces
that was introduced was a family of cylinders each member
of which has a streamline as a directrix. This family of
surfaces was a family of Lamb surfaces, and furthermore,
each streamline was a geodesic on one of its members. We
would now like to generalize what was done in the preceding
chapter by seeking a three dimensional (rather than two
dimensional) flow in which streamlines are géodesics on
Lamb surfaces.

Since S 1is constant on the Lamb surfaces of a Prim-
Smith flow (see Corollary 2.32), we may take it to be an
independent variable, say X3. If we again let X! wvary
along streamlines and take p = X! and ¢ = X2, the as-
sumption that streamlines are geodesics on Lamb surfaces
implies that g3; = 0. This follows from the fact that the
members of the b congruence of curves lie on the constant
pressure surfaces (equation (2.22) implies b * wp = 0)
and also on the Lamb surfaces, if the streamlines are
geodesics on these surfaces. The requirement that g5, =0

allows us to omit (4.93) from equations (F).
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6.2 The Metric Tensor

In the consideration of plane flows in Chapter Vv,
there was a general relationship among the variables x, y
and p, S, which we used (Section 5.2). 1In this chapter
we assume a particular relationship among the variables
X, ¥, z (rectangular Cartesian coordinates) and p, ¥,

S, namely one of the form

(6.21) x =x(p, ¥), v =vy(p, 8), z=2z(p., ¢),

in which the Jacobian, J, is not zero. The metric tensor

is then of the form

2 2 2
x° + + z 0
p  ¥p T % Yp¥s
L) = 0 x2 + z2 0
(913) ; v
2
YpYg 0 Yg

where zeros appear in the first row second column and second
row first column due to the requirement that g,; = g;5, = 0.

Computing g3, and equating it to zero yields

(6.22) XXy, + 202, = 0.

We note that the determinant g is given by

2 2y(.2 2
(6.23) g = vg (xi + zw)(xp + zp).

Before introducing the metric tensor into system of
equations (F), we observe some of the geometric implications

of (6.21). If y is fixed, from (6.21) we have x = x(p)
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and z = z(p), which may be considered as the parametric
equations of a curve in the xz-plane. So, surfaces on
which ¢ 1is constant are cylinders with generators parallel
to the y axis. Similarly, surfaces on which p 1is con-
stant are cylinders with generators parallel to the vy

axis.

6.3 1Introduction of the Metric Tensor into System of
Equations (F)

As in Chapter V we seek a solution to system of equa-
tions (F) for which g;3 # O and replace equation (4.94)
with (4.97). We substitute the expressions for the terms
of the metric tensor into (4.97) and get

2
d (%% + y2 + z22) _ Yg

2

: = 9 1n R

s P PP = Y¥s §p 2 . oz
P

+ z2
P

Taking the derivative with respect to S and dividing by

ypys yields

2 .2
“Yps _ 3 . " ¥p¥s
Ys 3p x; + y; + z;

The left side of this equation is

d 2
3p It Y5
and therefore integrating with respect to p and solving

for u we obtain
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2 2 + 2 + 2
F2(y.8)(x; + vy, +2))
2 ’

Yp

(6.31) u =

where F2(y,S) 1is an arbitrary positive valued function.
We now proceed to substitute for the metric coefficients

and u in (4.91) getting

|:1>2(p) F2(y,S) y;(x; + z;)(x; + z;):|

S y2 = 0.
p
Simplification yields
P2(p) y2 (x2 + 27)(x2 + 22)
) S Yy y''p P _
(6.32) 3 2 = 0.
Yp

Shifting our attention to (4.92) and substituting for

u from (6.31), we obtain

( ) (p) 9 (’_‘E_"_ZE -2
6.33 P(p 5-5 2 = T_.___.
Y F°(y,s)

Thus, to find a three dimensional flow (of the form
indicated by equations (6.21)) with the property that stream-
lines are geodesics on Lamb surfaces is reduced to finding
X, vy, z and u in terms of p, ¥, and S such that (6.22)

and (6.31) to (6.33) are satisfied.

6.4 An Application of a Separation of Variable Technique

In accordance with a standard separation of variable

technique, we assume there is a solution to the equations
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just mentioned of the following form.

x = ay(p) B1(¥)

(6.41) y = az(p) v(s)

ai(p) B2(¥)

z

Substitution into (6.22) results in
a1 (Paz (P) [Br W)B1 (W) + B2 (¥)B2 (4)] =

ay (P)aj (p) d_ [gi(w) + ﬁ§(¢)] =

5 ) 0.

Therefore, we must have (for aj(p) not constant)

(6.42) 2 ) +B3(y) = A,

where A 1is an arbitrary positive constant.

Substituting from (6.41) into (6.32) we find that

d [%2(p)a§(p)[v'(S)]zaf(p)[ai(p)lz[(Bi(w))2+(6§(¢))2][6§(¢)+5§(¢)i]
dp

las ()] 2Y2 (5)

which means that

(6.43) = =0,

a [B®az(Plas(P)a; (p)
dp

az (p)
provided the various functions appearing are not constant.
Finally, we must substitute into equation (6.33) from
(6.41). This gives
) 2 2
5 [aa®)18T ) + B3 @) _ 2

P(p) = = .
op [as (0)122 (S) F2 (4,5)
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Using (6.42) and isolating the terms involving only p

gives
' 2
a [@o1(P) _ = 2y2(s) _
P(p) g5 (= = = C
az (P) A F2(y,S)

where C 1is a negative separation constant. We are thus

led to two conditions.

4d Q;. (p) 2

c
(6.44) S = = (c < 0)
P la; (p) P @)
(6.45) ) = - B r2g.s)

Notice that (6.45) implies that F 1is independent of .
For purposes of ready reference and summarization, we
gather up those requirements which must be met in order to
have a solution to system (F) of Chapter IV, of the type
we are considering here. These requirements are
1 J = X, Z = X 2Z 0. Fro 6.41) we see that this
(1) vg (X2, = %p2,) # m (6.41) i
is equivalent to
B1 ()82 (W) - B1 (¥)B2 () # O.

(2) S%(w) + S%(w) = A, where A is a constant.

P (p)a; (P)ay (P)az (p)

i
o

(3) -
az (P)

where D 1is a constant. This is just a restatement of

(6.43) .
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az (p) \?
(4) %5 = =S (c < 0)

as (p) P(p)

(5) Y2 (s) = - %§'F2(S).

To obtain a flow, we could proceed according to the
following steps:
(I) Pick a positive constant A, a negative constant
C, and an arbitrary function F(S).
(II) Determine Y (S) from the equation in requirement
(5) .

(III) Pick B, (@) such that p2(y) <A, and then
determine B, (y) from pZ(y) = A - g2 (y). This
can be done, for example, by choosing .A =1
and By (y) = cos ¥. Then, By (¥) = sin y¥. Also,
requirement (1) is satisfied as long as [y (¢) |
is not equal to a multiple of |8y (¥)].

(IVv) Satisfy requirements (3) and (4) as indicated

below.

6.5 Determination of qo;(p) and a; (p)

Requirement (4) implies that ai(p)/aé(p) is a known
function of p, namely

ay (p)

, = WNCI(p) +Cp
az (P)

where C; 1is an arbitrary constant chosen such that
CI(p) +C; > 0 in the region of flow, and the function

I(p) is again an integral of 1/P(p). Let us call this
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function k(p). With this notation, from requirement (3)

we see that

ay (Plag (P) = FTET%TET '

and hence, a; (p)ag(p) 1is a known function of p. Let us

denote it by h(p). So, we have
a (p)
(6.51) : = k(p)
ag (p)
and
(6.52) aj (P)ag (p) = h(p).

From these two equations we obtain a single differential
equation with dependent variable a,. If this differential
equation can be solved, then a3 (p) may be obtained from
(6.52), and we have a class of three dimensional flows. We
proceed as follows.

Solving (6.52) for aq,(p) we get

hip)

ai (p) Qg (p)

.

Differentiation yields

. h' (p)ag (P) - h(p)az (P)
ay (p) = 2 .
ag (P)

Substituting this expression for ai(p) in (6.51) and

multiplying by ag(p)a;(p) yields

h' (p)ag (P) - h(p)as (B) = k(P)a2 (p)ag () -
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Collecting terms we find that
[h(p) + k(P)a3 (P)laz (P) - h' (P)agip) = O.
If we multiply by 2as(p)., this equation becomes

2
[h(p) + k(p)a2 (p)] S=[22®)) _ op+ (5)o2 (p) = o,

dp
Letting Y (p) = ag(p) and solving for dy/dp results in
dy 2h' (p)Y

(6.53) 35 T Wip) + k()Y

In order to put this in a standard form discussed by E.
Kanke [7, p. 24], we make the substitution 1/r =

h(p) + k(p)Y. Differentiation of this yields

- S & =h'(p) + k' (p)Y + k(p)¥Y'(p).

1 dr

Y'(p) = -k—l(;y [h'(p) tk(pY + 7 g

We substitute into (6.53), change the dependent variable

from Y to r, and get

ey o) g (2 nee) < B gE]- e (2 ).

Solving for r'/r?2 we obtain

Loyl fakele . ' (2) |+ 2n(e)n (o).

Multiplying by r2? we have



73

dr
(6.54) 3p = fi(p)r + £2(p)r? + £5(p)r3,

where f,(p), f,(p) and £f,(p) are known functions of p

with
fl(p) = T X
f2(p) = = - 3h*'(p)

2h(p)h'(p).

f3(p)

Methods for solving (6.54) for various forms of the
coefficients f; (i =1,2,3) are given on page 25 of E. Kamke.
In conclusion, the problem of finding a solution to
system (F) where x, y, and 2z are of the form (6.41), and

for which streamlines are geodesics on Lamb surfaces has
been reduced to the problem of solving a single first order

differential equation.

6.6 Some Remarks Concerning the Geometry of the Flows of

This Chapter

If the requirement (6.42) is satisfied by choosing
By (¥) = cos ¥, Ba(y) = sin y and A = 1, as suggested in
Step IV in the procedure for obtaining a flow, equations

(6.41) become

X = qp (p)cosy
(6.61) y = az (p)Y(S)
z = qq (p)siny.
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Let us consider the following three types of surfaces: (a)
Lamb surfaces on which S 1is constant, (b) constant prés—
sure surfaces, and (c) surfaces on which ¥ = constant.

(a) If S 1is constant, (6.61) is of the form

X = qpcosy
zZ = qpsiny
y = f(ay)

where f(a;) 1is obtained as follows. Equations (6.43)
and (6.44) yield a functional relation between a3 and
ag from which we can determine g, in terms of ;. Sub-
stituting this result in the equation y = ag(p)y(S) and
holding S fixed yields y = f(a;). Consequently, the
surfaces on which S 1is constant (these are Lamb surfaces)
are surfaces of revolution [5, p. 49].

(b) When p is held fixed, aj;(p) 1is constant,

say Cj. Consequently, from (6.41) we obtain

X = Cy cosy
z = Cy siny
y = Cg Y(S)

where C, is the value of q; for some fixed p. Then
x2 + z2 = ¢c2  and the surfaces of constant pressure are
coaxial right circular cylinders [5, p. 47].

(c) wWhen y is constant, (6.61) implies that 2z = Kx
[while y = az (p) Y(S)]. As a consequence, ¥ = constant

sur faces are planes. (See Figure 3.)



S = constant

Yy = constant

p = constant

Figure 3.

From (a) and (c) we observe that the streamlines (y =
constant and S = constant) are meridian curves of surfaces
of revolution, in fact, the Lamb surfaces. From (a) and
(b) we conclude that the parallels of these Lamb surfaces
are isobars. Furthermore, we note that the X vector of
Corollary 2.43 is tangent to these parallels and is collinear
at each point with the binormal vector of the streamline

through this point.
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