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ABSTRACT

THE PROBABILITIES OF MODERATE DEVIATIONS OF

U-STATISTICS AND EXCESSIVE DEVIATIONS

OF KOLMOGOROV-SMIRNOV AND

KUIPER STATISTICS

BY

Gerald Marlowe Funk

Let X1, X2, . . . be independently and identically distributed

random variables. The U-statistic, Um) generated by a function

symmetric in its k arguments based on X1, . . . , Xn was defined by

Hoeffding (Ann. Math. Statis (1948)). Under certain moment condi-

tions Rubin and Sethuraman (Sankhy'a’ Ser. A (1965) ) obtained order

results for probabilities of moderate deviations of these statistics.

These results are extended to obtain expressions of the form

2

/2 -1/2n-1/Zc
P(U(n) - BUM) > ckcr(logn/n)1 )~ (chzlog n)

if c > 0 and o- > O is the standard deviation of the limiting distri-

bution of V}? (UM) - EU(n)). Similar results are obtained for

Lehmann-generalized U-statistics, and for some functions of

U-statistics.

A related problem, that of obtaining asymptotic expansions of

probabilities of excessive deviations of the Kolmogorov-Smirnov and

Kuiper statistics is considered. Let F denote the c.d.f. of Xi and

let Fn be the sample c. d. f. based on X1, . . . , Xn . Let

D: = Slip (F(x) - Fn(x)) . Suppose F is continuous and let n A: = 0(1)

and n A: .4 00.

Then



 



Ge rald Marlowe Funk

2

+ '2an

P[D > x ]~e
n 11

This result was obtained by Rubin and Sethuraman (Sankhya’ Ser. A

(1965)).

In this paper a different proof of this result is presented and

the problem is solved for larger deviations, i. e. , when the condition

n A: = 0(1) is relaxed. Similar results are obtained for the two-sided

Kolmogorov-Smirnov statistic and the Kuiper statistic.
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PROBABILITIES OF MODERATE DEVIATIONS

OF U-STATISTICS

1. 0 Introduction and Summary

The primary result of this chapter is the development of an

asymptotic expansion for probabilities of moderate deviations of U-

statistics.

Wassily Hoeffding [11] defined a U-statistic based on n indepen-

dent random variables, X1’ 2, . . . , Xn’ and a real valued function of

m(f_ n) arguments, Y, as

-l

U' (X ,...,X ) = [m1(n)] zwx. X )
1y 1 n m 1 1

1 m

where the summation is extended over all permutations (11, . . . , im) of

m different integers, iJ. , such that 1 S ij _<_n .

Without loss of generality, any U-statistic may be written as

-1

U¢(X1,...,X)=(n) Z ¢(X.1,...,X. ) (1.0.1)

1<i <. . .<i <n 1 1m
_1 m—

where (p is a real valued function symmetric in its m arguments and

the summation is extended over all distinct sets of m integers

{11,...,1}suchthat1:1jf_n and 1j<1j+1for1:J:m-1.

I — ‘

90(0' 0: oz )2 —1 21140: oz )
l’2’°"’m n.' i""’i

1 m



where the summation is extended over all permutations of {1, 2,

Among other results, Hoeffding found that

lim P[U (X1,...,Xn) > max/J3] = 1-¢(x)

n—>CD (’0

. ( )2

prov1ded E¢(X1,...,Xm) = O , E cp(X1,...,Xm) < co and

2

0‘2 = E E[¢(x1,...,xm)lxl]) > 0. Here

X 1X2

“ 1
¢(x) : _1_._ f e 2 dxl.

VZn -m

Clearly there was no loss of generality in assuming the first moment of

q) to be zero.

If all moments of (p up to order p exist for some p > x‘2 + 2

then for fixed x > O

1/2

logP[U(X,...,X)>mox(1—O£P—) ] Z

1. 740 1 n n
1m

n—>oo

-11...

_-Zlogn

The latter result was obtained by Herman Rubin and Jayaram

Sethuraman [17]. They define deviations of the U-statistic from its

1/2

mean of the form c<£9—§1—ll) to be moderate deviations.

Our main result is that, with no additional assumptions,

 

1 1/2

P[U (X1,...,X )>mo*x(—952) ]

lim : ‘P n n , = 1 (1.0.2)

“Tm 1 - ¢(X\/I0gn)

Since the sample mean is a U-statistic, this may be viewed as a

generalization of the following theorem due to Herman Rubin and Jayaram

Sethuraman [l7] .

 



 



 

 

Theorem 1. 0 Let X1, X2, . . . be independently and identically distrib-

uted real valued random variables such that EX1 : O, EXZ : 0'2 and

E|X|p<ao forsome p>x2+2 and x>0. Then

1 n 10 n 1/2
P[— z X. > ax(—&—) ]

n ._1 1 n

lim 1‘ = 1 (1.0.3)

n->oo 1 - ¢(x\/17)EH)

and

 

1 10 n 1/2

P[|H Z Xil>ox(—-§—-) I

1. i=1 __

1m — 1 .

n—>oo 2(1-¢(x'\/logn)

The theorem remains true if the constant x is replaced by

 x+e wherec=o( 1).
n n logn

In section 1.1 the proof of (1. O. 2) is presented. In section 1.2

some extensions of this result are discussed. However, the problem of

extending these results to deviations larger than moderate deviations

remains open. In Chapter 2 moderate and excessive deviation results

are presented for the Kolmogorov-Smirnov statistics. This problem

is formally introduced in section 2. 0.

1. 1 U-Statistics

Let X1, X2, . . . be a sequence of independently and identically

distributed random variables defined on some probability space

(0,58, P). Let (p be a Borel measurable, real valued function symmetric

in its m arguments. The U-statistic generated by (p and the first n

random variables is defined as in (1. 0. 1):



 



—1
n

.,xn)=(m) 1. Z (p(X.1,...,Xi )(1.1.1)

Given this sequence of U-statistics, {Uém} , we wish to study

the rate at which the corresponding sequence of probabilities of moder-

ate deviations from the mean, {P[U((pn) - EUfpn)> c 22.5.2] } , tends to

zero as n becomes large. Our approach is to exhibit a sequence of

real numbers which is asymptotically equivalent to this sequence of

probabilities. (Two sequences of real numbers, {an} and {bu}, are

defined to be asymptotically equivalent if lim an/bn = l in which

n—>oo

case we write a m b ).
n n

Our main result is

Theorem 1. l
 

Let {USU} be the sequence of U-statistics defined in (1. 1. l)

and suppose that:

Elrp(X1,...,Xm)lp<co for some p>x2+2 and x>O. (1.1.2)

E¢(X1,...,Xm) = 0. (1.1.3)

0'2 = E(E[<p(X x [X ])2>o (114)1,..., m 1 .

Then

x2

(n) 10 n ”2 2 -1/2 “2‘
P U¢ > ma'x —§— ~(21rx logn) n (1.1.5)

and 2

1/2 _

P[lU;n)l > ma’x(1—O§—Q) ]~ 2(21rleogn)-l/2 n 2 . (l. 1.6)



Proof.

It will be shown that there is a real valued function (alt) such

that the U-statistics generated by (pl and X1, X2, . .. have the

following propertie s:

 

 

 

 

1/2 c ‘ Z

P[U(n) > x0‘ (1353) a: “ 1 2]~(2nx210gn)‘1/2n‘x /2

s01 n (nlo /g“)

(1.1. 7)

1/2 c 2.

P[|U(n)| > x0‘(—12&-11\) :I: n ]~ 2(21'rleogn)-1/Z n—x /2

(01 n (nlo 1/2gn)

(1.1.8)

2
xmcre: -x /2

P[IU(n> - mU(n)| > 31/2]: 0(2-————) (1.1.9)

(0 ((71 (n log n) x/log n

where {an} is a positive sequence such that En = 0(1) and logn = o(sn).

Now for any two real valued random variables Y1 and Y2 and

constants a and 5 > 0

P[Y +Y >a] > P[Y >a+6] - P[Y < -5]
1 2 - 1 2

and

P[Y1+Y2 > a] : P[Y1> a-b] + P[Y2 > 6].

(n) 10 n ”2
Inparticular if Y +Y :U , Y =U -mU , a=mx0'———g——

1 2 .p 2 .p «.1 n

1/2
and 6 = (mx (ran) (n log n)_ then these inequalities together with

(1.1. 7) and (1.1. 9) will verify (1. l. 5). Similarly, the inequalities

P[|Y1+YZ| >a] _>_ P[|Y1l>a+6]- P[|YZ| > 6]

and

 



 



P[|Y1+Y2| >a] 5 P[|Y1|>a—6]+P[IY2|> 6]

together with (1. 1. 8) and (1.1. 9) will verify (1. 1. 6).

Define

._ l I I l ._

<pl(){1) ‘ E[¢(X1:XZ)--'9Xm)lxl_x1]

=/¢(xl,x2,...,xm)F(dx2)...F(dxm) a.s.

where X' , . . . , X' are inde endentl and identicall distributed with
1 m P Y Y

the common distribution F being that of the Xi's. Then (1. 1. 3) and

(1. 1. 4) insure the real valued random variables ¢1(X1).¢1(X2),

are independently and identically distributed with expectation

2 Z

E¢1(X1)=O and variance E(<p1(Xl)) :0- >0. Finally, (1.1.2)

and Jensen's inequality yield

Elqollp = E<IE[¢IX1HP> :EE[l¢lplX1] = Elwlp < .0 for some p > c2+2.

Thus the conditions of Theorem 1. l are satisfied for the sequence

cp(X1),(p(XZ), Since

(n) 1 n
U = — E (p (X.)

“’1 n i=1 1 1

and since

. i l ~x2/2

11m (— e )/(1-¢(x)) :1

X->oo x 211'

the asymptotic equivalences (1. 1. 7) and (l. l. 8) have been verified.

To show that (l. l. 9) is also true, Ufpn) is decomposed into k

U-statistics as follows:

 



 



Define (pm(x1,...,x )=go(xl,...,xm) andfor lir<m set

- l l 1__
. .

(pr(x1,...,xr) - E[¢(Xl,...,Xm)|Xi—xi for l_<_1:r](l.1.10a)

11 (x1, .xr)

ZCP (X 1 1X )+(-1) 2 ~ (P (X ’X 9 ,X

r 1 r l<i <...<i <r r-1 1 1 1r-1)

—-1 r-1—

2 r-l

+ (-1) E) 90. Z(xi, ,x.1 1+...+(-1) Z <0 (X.)
l<i <. .<i <r 1 r-Z 1< i<r

—1 r-Z— ——

(1.1.10b)

r=1 r

< > m m (n) (n) (n) m m (n)
Then U n : Z ( )U . In particular U - mU '2 23 U .

(P r ‘1’ 90 (P1 1.22

Note this is the same decomposition as that used in [17]. For

m = 1 Um) : U01) and (1.1. 9) is trivial. Suppose m > 1. Evidently,

’ ‘P (P1

 

p ,Um) (n) ”ma
-mU l > 1f2

<p (pl (nlogn)

m [(m) l (n) m X(Ten

P U l > ]

r=2 r Iffr m-l (r110gr1)1/Z

|
/
\

 

|
/
\

V m V V

(fi) (n1ogn)"/2 2 (m) E|U(n)l (1.1.11)
mxeen r y

r22 r

for O<v:p.

The latter inequality was obtained using the Markov inequality

[15, p. 158].

It is interesting to note that Yr often has zero (marginal) expec-

tion. In fact, if 1 Si _<_ r and the x. are distinct for l :j i r then

 



  



lvr(xl.....xr)F(dx.) = 0. (1.1.12)

To verify this fact it suffices to prove

H O[Yrbcl’ . .. ,xr)F(dx1)

Referring to the definition of (Ir (1. 1. 10b) it is evident that \yr may

be written as

1 <ir-j: r-J 11 r-j

_( Z 90 . (X , ,X. a

. . r—J—l 1 1 _._

ZE1I<...<1r_j_1:r 1 r] 1

T0(x x ) (x )

1 1' ’ r “”1 1

Clearly

[‘pl(x1)F(dx1): 0'

and

O .

[Tr-j(xl""’xr)F(dxl):O for O_<_J<r-l (1.1.13)

since

 



 



 

jqp ( X (pr_j(x11, ,x r-J) 1f no x.J 15 x1

r-J 11 lr-j) (dxl) :

(p _._ (X.',...,X., . .

r J 1 11 lr-j-l) 1f one Xi. is x1

J

where {x.,,...,x., )2 {x. ,...,X. } - {x1}. This verifies

11 lr—j-l 11 lr-j

(l. l. 13) and hence (1. l. 12).

Returning to line (1. 1.11), if v is an even integer then

E|U(n)|v: (“1)“)
Yr r

n -1

:(r) EZ---Z\yr(Xi ,...,Xi )--oxyr(Xi ,...,Xi )

11 1r v1 vr

(1.1.14)

Of the (2) v terms in this summation of products all those terms in

which a particular X.1 occurs exactly once have zero expectation. Thus

a term with non-zero expectation can have no more than 352". distinct

X's .

To see that there is a common upper bound to these expectations,

observe that repeated applications of Hb'lder's inequality [15, p. 156]

yields

Eln vr(xi ,...,xi )| :Elvr(x'1,...,x;)lv

jzl j] jr

provided the moments on the right hand side exist. Referring back to

the definition of Yr in line (1. l. lO)it is evident that these moments

exist provided ijv < 00 for 1 :j _<_ r . Fortunately this is easily

shown since





_ 1 1 1 1V
Erp - E(E[¢(X ,...,Xm)lX1,...,Xj])

V 1 1 1 1
:E(E[(p(X,...,Xm)lX1,...,Xj])

= Eq,”

v/p

[EIcp [p] < co provided v is an even integer and v :p .

|
/
\

Here the conditional variant of Jensen's inequality [15, p. 159, 348]

was used and assumption (1. 1. Z) assures the finiteness of E)<p Ip. We

v/

conclude that each term in (l. l. 14) is bounded by va(El(p (p) p.

Of course only those terms with £1 or fewer distinct X's
2

have nonzero expectation. The re are at most

rv

'2—

c(n) : Z c(n)

j=r JJ

such terms where cj is the number of ways j distinct X's may be

arranged in the rv positions in a term. Apparently c(n) = O(n ) so

that in (1.1.14)

TV TV

EIUY l" = (n)-vo<n7) = O(n-T) for 2__<__r<m.

Finally, returning to (1. 1. 11) it is seen that

N
|
< v
:

 

(n), XI’I’lO‘E

n —v ‘3
(p1 > [2] : O(gn (logn) n ).P[|U(n) _ mU 1

(p (n log n)

Let v be an even integer such that c'2 < v E p then (1. l. 9) is verified

and the proof is finished.
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1.2 Extensions.

Let F denote a distribution function and 1y a real valued function

m

_IIintegrable with respect to the product measure

1:1

F.1 . Define a para-

meter 9(F) as

G(F)= /°'-/\y(xl,x2,...,xm)F(dxl)F(dx2) ---F(dxm), (1.2.1)

Hoeffding [11] calls O(F) a regular functional of F . Given n (_>_m)

independent random variables, X1, X2, . . "Xn , a reasonable method of

estimating 6(F) is to replace F by the sample distribution function

Fn. This leads to a statistic of the form:

1m n n

6(Fn):(fi) Z Z Y(Xi,Xi,...,Xi ). (1.2.2)

11:1 1m=l 1 2 m

This statistic is closely related to the U-statistic discussed in

the previous section. (Note that 1)! does not depend on n.)

Define

cp(x1,...,x )=Z‘i’(x.,...,x.) (1.2.3)

where the summation is extended over all permutations of {1, 2, . . . ,m} .

For lij < m define

‘1’m_j(xl,...,xm_j) = Z ‘1’(xi1,...,xim) (1.2.4)

where the summation is over the distinguishable permutations in which

each Xi’ l i i _<_m-j , occurs at least once. Then

m _ n (n) n (n) n (n)
n 9(Fn)—()U +(m )U +”'+()U‘Y (1.2.5)

m (P
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Hoeffding showed that if E[9(F )]2 < 00 then the asymptotic distribu-

tion of (I; (earn) - 9(F)) is that of J; (Uén) - 6(F)) .

The following theorem shows, under additional moment condi-

tions, that a similar result is true for moderate deviations. (The

notation developed in (1.2. 1) through (1. 2. 4) is used in the statement

of the theorem)

Theorem 1. 2.1
 

Let {Xi} be a sequence of independently and identically dis-

tributed random variables with common distribution F and let

{8(Fn)} be the corresponding sequence of regular functionals of the

sample distribution function (1. 2. 2). If

[...] [<p(x1,...,xm)]pF(dxl)---F(dxm)<oo for some p>x2+2

(1.2.6)

andfor l_<_j:m-1,

j” [11’ (x1,...xJ.1)]qF(dx ) °--F(dxj)<oo for some q> 1, q>x2

(1.2.7)

and 0'2 > 0 where

0'2 =/[/” -(/——1-—¢p(xl,...,xm) -9(F)) F(dx1) ---F(dxm_1)]2F(dxm)

(1.2.8)

then for x > 0

1/2
2

)- 9(F) > mxo-(lggll) I,” (anzlogn)-l
/Z n-x /2

1319‘F (1.2.9)n

and

1/2 2
p[|e(Fn) _ 9(F)| >mx0'(.1£§l_r_l.) ]~ 2(21rleogn) ”2 n_.x({.22.10)
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Proof.

Using the expansion (1. 2. 5) 9(Fn) may be written as

m-l . (n) m-l 1 m-j-l . (

9(F)=(II (1-1—))U ,+ z: —.—( r1 (1-1—))U
n n (p/m. :1 n‘] n

i=1 3' 1:1 m-j/(m-j)!

Since any weighted sum of finitely many U-statistics is itself a U-statis-

tic (provided the weights are constants independent of n), 9(Fn) may be

written as

m-l 1 (n)

9(F ) 2 23 —.-U (1.2.11)

n j=0 r1J

Clearly (p0 = go/m.l and the 475 are weighted sums of 90 and the 1y]. .

 

 

 

 

Evidently,

1 1/2

Pszan) -6(F)>mx0‘(—9-§—n—) :]

< pEJln) 9 (log n)1/2 En :|
_ I - (F) >mx0‘ ‘ 1/2

(p0 n (n logn)

m-l e nJ.1/Z

+ 2: FEUWB n 1/2 (1.2.12)

i=1 "’1 (m-1><Iogn)

and

(n) logn 1/2 E:n

P:PU,-9(F)>mx0‘ + 1F2

(po 11 (nlogn)

m_1 _8 nj.1/2

_ 2: p[U(n,)< “ 172:] (1.2.13)

1:1 "’1 (m-1)<Iogn)

where 8n is the positive sequence defined after line (1. 1. 9). In View

of Theorem 1. 1, (l. 2. 6) and (l. 2. 8) the first term on the right sides

of 1. 2. 12 and 1. 2. 13 are asymptotically equivalent to the right hand
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side of(l. 2. 9). To see that the remaining terms are asymptotically

negligible Markov's inequality is used to obtain

)1)

pl |U(n,)l > 5 I < zs“’13:lU(’,1 [ (1.2.14)
(pJ. n — n cpj

and for v > 1 Minkowski's inequality is repeatedly used to Show

1/v 1/v

/
\

F
:

3 /
\

17
¢

(EIU .l") _ max {(Elcpl")l/V,<Elt.l">l/V}
(Pj ‘Pj _ 1<i<m-l 1 ‘

”‘“ “ (1.2.15)

Select v so that the moments on the right hand side of l. 2. 15 exist and

v>1 and v>x2. Set

r1+J-1/Z

 6:“

(n log n
)1/2

Then the right hand side of (l. 2. 14) is asymptotically negligible com-

2
..1/2 n-x /2 for 1:1 :m-l , and (1.2.9) is verified.pared to (log n)

A similar argument verifies (1. 2. 10).

The latter part of this proof is a special case of

Lemma 1. 2.1
 

Let {Xn} and {Yn} be sequences of real random variables

such that

1/2

PEXn > x(1_0&_) ]~1-¢(X~/logn) for x e (O,x0).
n

n

Then

Yn 10 n 1/2

P1:Xn+ 7>x(—g——) :'~1-¢(xlogn)

n

I).

if c > 1/2 and, for some fixed M, ElYnlviM< co for some

2

v>-2-—}E—_-l andalln.
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Proof.

Use inequalities analogous to(1. 2. 12)and (1. 2.13)and apply

Markov's inequality.

We give one further example of how Theorem 1. 1 may be

extended. Let {XS-h , 1 :j i r , denote r independent sequences of

independently and identically distributed random variables and let Fj

denote the common distribution of the random variables in the jth

sequence. Let T0 be a Borel measurable, real valued function of

r

m: _2 mj arguments. Let T0(---,x.,~-,xk,--o):T0(--o,xk,--o,x.,-~

3:1 1 1

if mj<i<k:m.J+1 for some j,0:j:r-l. Here m :0. Thus
0

arguments, next m2 arguments, etc.

Define a Lehmann-generalized U-statistic generated by T0 and

T0 is symmetric in its first m1

(3') (j) (j) - .
Xl’X2""’ch’1:J-<—r as.

r c.n -l

Um 111.3.) “0061“. ,ng> , 5.5;”, ,x;r> )
j=1 j k k k k

1 ml 1 mr

where the summation is extended over all subscripts for which

_ ..j :c.n;1_<_j:r.

k1 k1'1r1. J

J

Here the cj's (_>__ 1) are integral valued and represent the proportion

of X(J)'s in the ”sample. "

U'(n)
The sequence of statistics may be approximated by the

sequence of U-statistic s



-1 .

U(n)— (‘1) 8(2. , ,z. ) (1.2.16)

‘P m 1<il<.,.<1 in 1l 1m

where

_ (1) (1) (r) (r)
Zi+1_(xc i+1'°"'Xc (1+1)....,XC i+1,...,XC (1+1))(1.2.17)

1 1 r r

for i=0,l,2,..., ,and

r c. -l O

_ l¢(zl,...,zm)-(m.j1:11—l—mj,) 2 2T (...) (1.2.18)

where the summation is over the ( m m m ) permutations of the
1, O O , r

subscripts of Z such that i . .< i for 0 :j E r-l and<.

mil m(j+1)

J

over all permuations of the X (J) within each Z .

Theorem 1. 2. 2 Let {U'(n)} be the sequence of statistics defined in
 

(l. 2. 15). If the sequence of U-Statistics, {Ufpm} , satisfies the condi-

tions of Theorem 1. 1 and if

m

v r J -

/.../[T0(x(11),...,X(1),...,xgr),...,x(r))] II II F.(dx1J))<oo

m1 mr j=1i=1 1

2

for some v>x , x>0, then

1/2 1/2

P[ '(n)>m0'x(-1—O—§—rl) :|~P[:U;n)>mcrx(1—O£-rl) :1.

1'1

Proof.

i=1 3' J

and may be written as

r c.n (n) r c n

Note that II (n1 )U' consists of Mn 2 II (r191 ) summands

=1 3'



summands of U'(n) not included in (Nn -Mn)U;n) . Thus U(n) may

be written as

.(n)_ (n) n (n)
U —U¢ +(Tn-m—U )

v

Condition (1.1.2) assures us that E|U(n)] < M < co for some

2 v Nn " 0 V
v>x +2 and condition(1.2.19)guarantees EITnl El—M—-l EIT I

N n
v

and EITO] < co . Since 1712- = O(%—) , Lemma 1.2.1 applies and the

n

theorem is proved.

The theorem remains true if the independence conditions are

replaced with the assumption that the Z's are independent (and condi-

r

tion(l. 2. l9)rep1aced by the obvious moment conditions) and if E c. is
.:1

r J

replaced by Z) Cj + o(l) .

i=1
The final theorem in this sect-ion deals with functions of

U-statistics. Let {Xn} denote a sequence of independently and iden-

tically distributed random variables and let U(1n), . . . , Ulin) be k

(1) (Z) (k)
U-statistics generated by X , . . . , Xn and the ke rnals (p ,(p , . . . , (p

1

respectively. For each U-statistic, assume that conditions (1. 1. 3) and

(l. l. 4) of Theorem 1. 1 hold and that all moments of (pg) exist and are

finite. Define aij = Etpg‘) (p113) ; 1_<_i :k, 1_<_j _<_k where (p?) is

defined as in (1. 1. 10a). If the determinant [01].] is positive then
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Theorem 7. 1 of [11] asserts that the asymptotic joint distribution of

the Mn UJlnhs is non-singular. Thus each nondegenerate linear com-

. . k (n)
b1nat1on .23 a.U.

J-1 J J

Theorem 1. 1. In View of Theorem 8 of [17] we have the following

is a U-statistic satisfying the conditions of

 

Theorem 1.2.3 Let f(xl, . . . ’Xk) be a function of k arguments

and

k < Hxll )
f(x1, . ..,xk) — f(0,...,0) + :31 bixi +0 10g 11X“

2 k 2 . . . .
where ”x“ = 23 xi . Then, for the above-ment1oned U-stat1st1cs, if

121

x>0, and O'b>0,

1/2 2

PE(U(1n), . . .,ULM) - 13(0, . . .,0) >xeb(1—9§fl) :l~(21rleog n)'1/‘Z fix )2

where

2 k k

0' = Z Z b.m.b.m.oz..

b :1 1:1 1 1 J J 1]

j

and mj is the number of arguments of (pg) 1 :j _<_ n .

Similar results are valid for 8(Fn) and for Lehmann-gene ralized

U-statistic s.



PROBABILITIES OF EXCESSIVE DEVIATIONS OF

THE KOLMOGOROV-SMIRNOV AND

KUIPER STATISTICS

2. 0 Introduction and Summary

Let X1, X2, . . . ’Xn be a sequence of one -dimensional, indepen-

dent identically distributed random variables each having the continuous

cumulative distribution function F .

The empirical cumulative distribution function, Fn’ associated

with the sequence X . , Xn is defined by the relation1,..

S
I
H

Z

n xigx

The Kolmogorov-Smirnov statistics are defined as

D: = sup (Fn(x)-F(x))
—oo<x<+oo

D’ = sup (F(x)—F (x)>

n -oo<x<+oo n

D = sup IF (x)-F(x)].

n -oo<x<co n

The Kuiper statistic is defined as

V = sup (F (x)-F(x)) - inf (F (x)-F(x))

n -oo<x<oo r1 —oo<x<oo n

= D++D'
n n

19
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The limit distributions of these statistics are well known. N. V.

Smirnov and A. N. Kolmogorov [10] have proved that, for any constant

c greater than 0 ,

2

lim P(D+ > cn-l/Z) : e-ZC

n—>oo n

2

lim P(D- > cn_1/2) = e"2C

n—>oo n

no .2 2

lim P(Dn>en‘1/2) = 2 z (.1)J'le"ZJ C ,

n—mo j=1

and Nicolass Kuiper [14, p. 43] has shown that

00 .2 2

lim P(Vr1 > cn-l/Z) : 2 (4j2c2 - 1) 8.2] C '

n->co j=1

Second order terms of these asymptotic expansions are also known.

[10, 14].

Following the terminology of Herman Rubin and Jayaram Sethuraman

-l/2
n[17], deviations of these statistics from zero of the form c for

constant c will be called ordinary deviations. Any deviation of the form

-1/2
n , for {Cu} a sequence unbounded above, will be called exces-

sive. If {Cu} is also an increasing sequence it is apparent that

1/2
limP(D+>c n“ ): 0.

n n

n—>oo

Of interest is the rate at which probabilities of excessive devia-

tions tend to zero as the sample size becomes large. Much work has

been done in this area.
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Herman Rubin and Jayaram Sethuraman [17] made use of a

theorem by N. V. Smirnov [10, p. 154] to obtain the following excessive

3n-l/2
deviation result. Let cn —> co and CH =- O(l) , then

2
-2c

P[D+>c n-1/2]~e n
n n

-2cZ

P[D >c n-1/2]~28 n

n n

In section 2. 3 it is shown that asymptotic expansions similar to

n-1/6
these remain valid if the condition Cn = 0(1) is replaced by

nl/Z).

In section 2. 4 similar results are obtained for the Kuiper statis-

c=o(

tic;e.g., for Cn>C\/logn and cnn-1/6=O(l), c>1/2

2
-2c

P[V >c n-1/2]~8cze n

n n n

However, for larger deviations the results are fundamentally

different, that is, they are not a "natural" extension of the ordinary

deviation results. A constant deviation will be called large. Jayaram

Sethuraman [18] proved that for any constant c between zero and one

1
Flog P[Dn > c] log(3(c)

C l-x-c

(1(a) = sup <x/(x+c))x+ ((1-x)/(1-x-c>>
O<x<1-c

In fact Sethuraman obtained results similar to this for k-dimen-

sional random variables and variables defined on separable complete

metric space s .
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In section 2. 5 it is shown that

+ n

P[Dn > C] ~oz(C) (W01) ;

where a(c) does not depend on n . Asymptotic expansions are also

given for D . and D- .
n n

Order results for large deviations of the Kuiper statistic have

also been worked out. Innis G. Abrahamson [1] has proved that

1

1'1

log P[Vn Z c] ~ log (3(c) ,

In section 2. 6 it is proved that P[Vn _>_ c] is asymptotically equal

to a1(c)n((1(c))n.

Section 2. 1 contains a brief review of some well known facts about

Fn, Dn and Vn and the relationship between the order statistics of uni-

form random variables and Poisson processes.

Section 2. 2 contains some theorems of a technical nature which

are used in the later sections.

2. l The Sample Distribution Function

In the following paragraphs some well known properties of the

sample distribution function are reviewed. No new results are presented

in this section.

2. 1. 1. Let X1, X2, . . . , Xr1 be n independent random variables with

common continuous cumulative distribution function F . The statistics

D+, D-, D and V are independent of F.
n n n n

For example, set Y1: F(Xi) then the Y.1 are independent

uniform random variables on the interval [0, 1]. Since
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+ _

the statistics D , D , D and V generated by X ,.. . ,X are,

n n n n l n

with probability one, the same as those generated by Y1, . . . , Yn . In

the following sections it will be assumed that the X.1 themselves are

uniform random variable S .

2.1.2 The equation Fn(x) - x = D: can only be valid if x is one of

the observed values of the (uniform) random variables X1, . . . , Xn

From continuity argmnents, it is evident that Fn(x) -x takes, with

probability one, its maximal value at a unique point, Xmax . The

random variable Xmax is uniform on the unit interval. In the following

sections it will be assumed that the maximum deviation of Fn(x) - x is

unique. (Similar remarks apply to the infimum of Fn(x—) —x . [13, 2]).

2. 1. 3 The probability distribution of the order statistics,

X(l) _<_ X(Z) E . . . _<_ X(n) , of n independent uniform random variables

on the interval (5, t) and that of the jump points, T _<_ T E . . . _<_ Tr1
l 2

of a Poisson process, X(v) , is the same given that X(s) = m and

X(t) = m+n [6 p. 400 and 12, p. 239]. By a Poisson process with

parameter A is meant a separable, real process X(t) with stationary

independent integral valued increments and
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2. 2 Some Asymptotic Expansions

The idea of obtaining asymptotic results for Kolmogorov-Smirnov

statistics by a consideration of n Fn(t) as a Poisson process, X(n t) ,

is not new (see D. A. Darling [20] and R. Pyke [16]).

This idea is employed here to obtain asymptotic expansions for

the conditional probabilities of the events

{F (t)-t<
m

n —n

-x for all t such that O<t<x}

and

-x for all t such that x<t< l}
m

{Fn(t) - t _<_ 3'

given that the mth order statistic occurs at x .

For the case x < t < 1 use is made of the following theorem

([12], p. 247-48).

Theorem 2. 2. 1
 

Let T , . . . , Tm be the order statistics based on m indepen-

l

dent uniform random variables on the interval [5, t] and let

1

F (Y)= Z -
n,n1 T <yr1°

1—

Then

P[ sup (F (y)-(y-s))<0]= P[T >5+s k=12 m]n’m __ k—n 1 9 9 9

sixfit

n1 .
—1-1‘IE—:—S—)_ 1f0<m<n(t-S)

: 0 if m>n(t-S),

In particular,
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m n-m

P[X<S:1I<) 1(Fn(t) - t): :1— - X]X(m) = X] ‘—' 1- m (2.2.1)

For the case 0 < t < x the following theorem, due to Lajos

Takaes ([19], p. 56). is used.

Theorem 2. 2. 2
 

If {X(t); O i t < co} is a separable stochastic process with

stationary independent increments for which almost all sample functions

are nondecreasing step functions vanishing at t: 0 then for x i O

p[ sup (t—X(t))_<_x]:1-e'wx,

0:1:(00

where

E[e‘zx(t)] = e't‘W) for t 3 o, Rez 3 0,

and w is the largest real root of the equation ¢(z) = z .

This theorem was proved for Poisson processes by R. Pyke [16].

If X(t) is Poisson with parameter A then

4(2) = M1 -e'z) (2.2.2)

and w = A - A]: provided X > 1, A]: < l and Xe- = X, e . Evidently

as X tends to one, w tends to zero.

Lemma 2. 2.1
 

If A =1+a ;a >0, a 20(1) and w is the largest real

n n n n n

root of the equation w = X (l -e-W) then w ~ 2a
n n n
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Proof.

Noting the remarks following Theorem 2. 2. 2 , w : )\ _ )3”

..)\ b _x’i‘
n n n

where )‘ne n = x2e n and since the function g()() : he is

continuous and for X > 0 has a unique maximum at X = 1 it is evident

d;

that )in 1 1 implies )‘n 1 l . An application of the mean value theorem

yields:

a a2 3

e- =l-a+T-O(a);a>0.

Thus

(1+a)e-EL : 1-a2/2+O(a3), a>0

(1 -b)eb :1-b2/2 - O(b3), b > o,

>:< ->\T1 >{: -)\:

Let A =1+a;)\ =1-b sothat 1e zxe ,thatis

-a n nb n n n n

n _ n . 2 3 _ 2 3
(1 +an)e — (1 - bn)e which means that bn + O(bn) — an - O(an)

. _ _ 2 _ z

and Since an—o(l), bn—o(1) we have bn(l+o(l)) — an(l-o(l)).

Thusb~a andwza +b-2a.
n n n n n n

In fact w 22a (1+O(a )) .
n n n

. t . . . .
G1ven that the m h order statist1c of n independent un1form

random variables on the unit interval occurs at x , the first m — 1

order statistics, X , . . . , X , have the same distribution as the

(1) (In-1)

order statistics of m - 1 independent uniform random variables on

the interval [0,x]. Also U. = n(x-X .); i=1,2,...,m-1 would

(1) (In-1)

be the order statistics of m -l uniform random variables on the inter-

val [0, n x]. Evidently
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111 _

P[0<51:1I<)x(Fn(t)- t)< n - xlxh“) —X]

k C — —

: p[_n - X(k)< 3- -x, k—1,2,...,m-1]X( )—x]

P[-(m-1)F1r1n_l(t) +t_<_1; O:t:nx]X(0) = o, X(nx) =m-1]

Ln(x,m) , say. (2.2.3)

Here Filn-l (t) is the sample distribution function based on the {U1}

and X(u) is a Poisson process with jump points {U1} on (O,nx) [See 2.1.3].

The next theorem shows that, asymptotically, the condition

X(nx) = m-l in (2. 2. 3) may be dropped for suitable choice of m and

A .

Theorem 2. 2. 3
 

Let {X(u) ,u: 0} be a Poisson process and, for each n>0 ,

 let {Xn(u) , u __>__ 0} be a Poisson process with parameter An = 1 +

where O < c < co , O < t < 1 and dn is a positive sequence such that

dn = 0(1) and ndrz1 > alogn for some a > 0. Let kr1 : [n(t+cdn)] .

Define

Ln(t,kn) = P[u-X(u):1;0<u<nt]X(nt) 2 kn- 1].

Then for any t0 and (:1 such that O < t0 < t < t1 < 1 and sequence

c Such that c > c and c d = 0(1),
11 n nn

Ln(t,kn) ~ PEu - Xn(u) _<_ l]

and

2cd

n

L  t, kn) = [1 + a(n,t,c)] (2.2.4)n(

where
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lim sup a(n,t,c) = 0 (2.2.5)

n—>co A

and the supremum is taken over all t and c such that 0 ~’ tO < t < t1 < 1

and l<c<c.

-' —n

Proof.

Suppose {X(u) ; u > 0} has parameter A. The probability of the

sample functions for which u - X(u) : 1 for all u > 0 is given in

Theorem 2. 2. 2. This probability may be expressed as a sum by con-

ditioning on the events {X(n t) : k - 1} for k 3 nt .

For reasons of notational simplicity, define

Q(X)=P[u-X(u):l;0<u<oo], (2.2.6)

Qn(1,k) = P[u—X(u):l;u>nt]X(nt):k-l] (2.2.7)

and

pn(>.,k) = P[X(nt) : k- 1] . (2. 2. 8)

Since X(-) has independent increments, O(X) may be written

as

QM) = Z L (t.k)P (MMQ (Mk). (2.2.9)
k>nt n n n

and since X(.) has stationary increments,

Qn()\, k) = P[u -X(u) :k-nt; uZO]X(O) = 0]

In View of Theorem 2. 2. 2,

QM) = 1-6 (2.2.10)

and
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'(k'nm’ if kznt. (2.2.11)Qn(>\.k) = 1 -e

Apparently Qn()\,k) and Ln(t,k) are nondecreasing functions of k and

we are led to the following inequalities:

Q()\) > ( Z P (k,j))L (t,k)Q (Mk) if k>nt (2.2.12)
— j>k n n n —

QM) < L (t,k)+( Z? P (NiHL (t,k')+ Z P (NJ)
- n jZk n n jzk' n

if k'>k>nt.(2.2.l3)

If k is large, if 2 P (x,j) is near one and if E P (A,j)

j>k n j>k' n

is near zero then L t,k) could be approximated by Q(>\) . Of coursen(

Ln(t, k) is independent of X so the problem reduces to that of selecting

)\ so as to make the bounds in (2. 2.12) and (2. 2.13) reasonably tight

when k = kn' An intuitively appealing idea is to "aim" the sample

functions of the process {X(u)} at the point (n t, kn)’ i. e. , to select

X so that EX(n t) '= kn

Proceeding with this idea, let

nth;1 = [n(t+cdn)] + [nan] (2.2.14)

-1

where {an} is a positive sequence such that 8n = O(dn) , (neg) : 0(1)

and me: = 0(1) . Now if {Xi} is a sequence of independently distributed

Poisson random variables with parameter 1 then

ntX'
n

I .. _

Pn[>.n,k] _ P[i_21 Xi_k—1].
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Cramér's theorem for probabilities of excessive deviations of

a sum of independent random variables from its mean [8, p. 517]

appl ie 5 so that

 

2 P [i',j]~—-——1—-— e 2.
. n n

J<kn VZnnci

Returning to (2.2. 12) with (2.2.10), (2.2. 11) and (2.2.15) itis

(2.2.15)

now evident that

2

1'18

1’1-1
-(k -nt)w -

t,kn):(1-e-W>(1-e n ) (1+—-—2—-——e 2 ) (2.2.16)

V2nns:

 

Ln(

for all n > Ne where Ne is a constant determined by {an} alone,

and not on c or t (since Xr'l > n(t0+dn) for all t and c satisfying the

restrictions after (2. 2. 5)).

Making use of Lemma 2. 2. 1 it is seen that

-w 2cdr1 8n

(1—e)<( +——)(1+acd)
— t to n n

 

for some constant a and that

ndZ

n
 

-(k -nt)w '1 t1 >

(i—e “ < (1+2e

for n sufficiently large. Thus

2cdn (

l

Ln(t, kn) < t 1+a (n,t, c)) (2.2.17)

 

where lim sup a'(n,t, c) = O .

n->00 A



31

In order to obtain a lower bound for Ln(t, kn) return to

. 1/2
11 _ _ 1 :

(2. 2.13)w1th nt Kn — [n(t+cdn)] [n en] and kr1 kn+ (n log n)

Then, using Lemma 2. 2. 1, line (2. 2. 17) and Crame’r's Theorem it is

s een that

 

 

 

t0 n

2
ns

_ n

2

2 10,103.11 3 e

j>k ,
— n

and

Z P (>\",j):(nlogn)"1/Z

j>k' n n

“ n

for n sufficiently large and some constant a . Thus

2cdn

Ln(t,kn) Z t (1+a (n,t,c)) (2.2.18)

where lim sup a"(n, t,c) = O . The Theorem is proved.

n—->00 A

The use of Cramér's theorem to obtain asymptotic expansions for

Z P (X' ,k ) and Z P M", R) was not essential. An alterna-
k>k n n n k>k' n n

.... n
— n

_

tive approach is to note that if p()\, k) = xke X/kl then repeated

integration by parts verifies [7, p. 163]

1 w -x n

2) p(>\, k) = 3—,] e x dx.

k=0 ' x
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Of course 111 can be evaluated using Stirling's formula and asymptotic

expansions for the above integral, an incomplete gamma function, have

been worked out by W. Fulks [9].

The following lemma presents an asymptotic expansion for

binomial probabilities [7, p. 169] .

Lemma 2. 2. 2
 

Let {dn} be a positive sequence such that dn : 0(1) and

ndf'l > aologn for some a > O. For each t 6 (0,1) let {cn(t)} be

a sequence such that cn(t) :1 , m : mn(c,t) = n(t+cn(t)dn) is integral

valued and for some 5 > 0 , cn(t)dn < l-t -e . Define

_ n m n-m

Pn(t,m) — (m)t (l—t) (2.2.19)

and

f (t,m) : (21rn(t+c (t)d )(1-t-c (t)d )-1/2

n n n n

cn(t)dn ‘m cn(t)dn “(mm

(1 + ———E-—-—) (I - ——1—-_-—t—-) (2.2.20)

Then

Pn(t,m) : fn(t,m) (I :1: O(-nl—t)) (2.2.21)

Proof.

A refined version of Stirlings formula [7, p. 52] states that

l l

.. Z ..l/2nn+1/2e n 12n+l . (Zn)1/Znn+1/ e ne12n

 

(217) m

[
A :
1

[
A

Thus



f (t ) _.1___ __1_ __.1___

n 'm 9"" 12n+1 ' 12m ‘ 12(n-m)

_<_ Pn(t, m)

1 1 1

3 fn(t’m)exp(12n ' 12m+l ' 12(n-m)+l)

 

and the result (2. 2. 21) follows after slight manipulation.

Lemma 2. 2. 3.
 

Let K have a binomial distribution with parameters n and t .

Let m=n(t+cn), 0<m<n O<t<l, Cn>0' Then

(l-t-c ) (t+c

c n c n]]

1’15ng 5111-1—31 (1+?)

Proof [3] .

For x > 1, K 2 O, xK is an increasing function so that

P[K > m] < min s“m(ts + 1—t)r1

S>l

where E SK 2 (ts + l-t)n Differentiate the right hand side with

respect to s to find the minimizing value is s = (£)(-1—-£) > 1 .
O n-m t



2.3. Probabilities of Excessive Deviations of the Kolmogorov-Smirnov

Statistics

Let X1,X2,...,X be a sequence of independent uniform random
n

variables on the unit interval and let Fn(x) denote the sample

distribution function. Let p(t, %.— t) denote the probability

"density" that the (unique) maximum of Fn(S)-S , for se[0,l] , is

attained at t and is equal to E;— t . Thus

n

l

n

‘jp z p(t, 9.- t)dt = 1 . (2.3.1)

m=l n

0

If pn m(t) denotes the probability density of the m-th order

statistic, X(m) , then

m _ = _ m _ . =
p(t, a. t) pn,m(t)P[Fn(s) s 5 E. t, 05s51|x(m) t] (2.3.2)

and we have the following.

Lemma72.3.l.
‘ fi—‘Vfi'i
 

For p(t, %.~ t) defined as above and lgmgn

- t) = a(g)tm‘1(i—t)n‘m(i— n-m )Ln(t,m) . (2.3.3)p(t, ETTZE)

:
I
a

Proof:

The probability density of X(m) is [12]

= m-l _ n-m

pn m(.t) m(§)t (1 t) (2.3.4)

In view of theorem 2.2.1 ,

34
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P[Fn(s)-s 5 g - t;t§s51lX(m)=t]=l - 53.12.15) (2.3.5)

Since Ln(t,m) is defined in (2.2.3) as

P[u—X(u)sl;0<u<nt[X(nt)=m-l] = P[Fn(s)-s 5 g.- t;0<s<th(m)=t]

(2.3.6)

and since the conditional probabilities in (2.3.5) and (2.3.6) are

of conditionally independent events, the lemma follows.

Evidently,

l

P[D+ > dn] = Zp(t,-m- - t)dt. (2.3.7)

n ‘ n.
0 m2n(t+dn)

An asymptotic expansion for the integral on the right (in 2.3.7) is

obtained (for suitable sequences {dn}) by first finding an asymptotic

expansion for p(t, %.— t) and then one for p(t,% - t) for

mzn(t +dn)

fixed t and finally carrying out the required integration using the

method of Laplace.

Let {dn} and {cn(t)} be sequences as defined (and restricted)

in Lemma 2.2.2 and m=mn(c,t)=n(t+cn(t)dn) . The following Lemma

presents an asympotic expansion for p(t, % — t)

Lemma 2.3.2
 

Let p(t, %.— t) be the "density" defined prior to (2.3.1).

Let m:mn(c,t) and c=cn(t).

Define

cdn t+cd Cd l-tcdn

2 __ n __ n

dn gn(c,t)— log(lfi-E—) (l l-t) (2.3.8)
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and

_ 2c2
-l/2

bn(c,t) — t(l_t)[21r(t+cdn)(l--t--cdn)] . (2.3.9)

Then for any t and t such that O < t < t < t < 1 and sequence

0 1 O 1

c such that c > c and c d = 0(1)

n n n n

2

m 2 nd g (C,t)

p(t, E - t) =/n dnbn(c,t)e “ “ (1+a(n,c,t))(2.3.10)

where lim supa(n,t,c)=0 and the supremum is over all t ;

n—m A

O < t0 < t < t1.< 1 and over all c ; l s c S cm.

Proof:

The proof is achieved by using expressions (2.2.4) and (2.2.19-

2.2.21) in expression (2.3.3).

Next on the agenda is the task of evaluating

Z p(t, %— t)

m3n(t+dn)

for fixed t and sequence {dn}

For each k=O,l,2,... define the sequence {c:(t)} so that

n(t+c:(t)dn) = [n(t+dn)]+k if [n(t+dn)]<n(t+dn)

= [n(t+dn)]+k-l if [n(t+dn)]=n(t+dn)_

Let

m*(k,t) = n(t+ck(t)d ). (2.3.11)
n n n

Then

2 m*(k,t)

p(t,-“i-t)= 2 p(t.—-‘-‘—-t).

m3n(t+dn) n kzl n

It is interesting to observe that, when ndi is large, the

dominant term of (2.3.10) is a decreasing function of c .
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In particular, if an is such that a>l and

n(t+andn) = [n(t+adn)] ,

the upper and lower Darboux sums of

2
a ndngn (C 3 t)

n

11an bn(C,t)€

c;(t)

obtained by breaking [c'(t),an] into intervals of width l/ndn are

dc

n(a -l)d —1

“ ndzg (c:(t>,t)
bn(ck(t),t)e n “ (2.3.13)

k=l m

and

n(an—l)dn

k ndign(c§(t),t>
b (c (t),t)e (2.3.14)

= n II

respectively.

This leads to

Lemma 2.3.3.

Let p(t, g.— t) be the ”density” defined prior to (2.3.1) and

{dn} be defined as in Lemma 2.2.2. then

2 ndzgn(l,t)

p(t, E:- t) = an(t)e n (l+a(n,t)) (2.3.15)

m3n(t+dn) n

where

1/2 —1/2

an(t) = 2(ndfi) (2nt(l-t)) , (2.3.16)

gn(l,t) is defined in (2.3.8)
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and

lim sup a(n,t) = O .

n+°° t0<t<tl

Proof.

For some a>l let kn=[(a-l)ndn] and write the left hand side

of (2.3.15) as

n m:(k,t) :E: mg(k,t)

:3: p(t, ------~- — t) +- p(t, -——————- - t) (2.3.17)

=1 “ kgkn+1 “

= Q1+Q2 say .

It will be shown that Ql is asymptotically equivalent to the right

hand side of 2.3.15 and that Q2 is asymptotically negligible when

”a" is a sufficiently large real number.

Making use of (2.3.10) and (2.3.12) through (2.3.14), Ql may

be expressed as

-l a ndzg (C,t)

(ndan bn(c,t)e “ “ dc)(1+a*(n,t)) (2.3.18)

1

A

S
)

Q
.

:
3
N

v D

[
_
J

I

2 o
ndngn(Cn(t).t)

+ 6n(bn(Cg(t),t)e

where

2 and lim sup a*(n,t) = O

n+w t0<t<t1

lenl I
A

For large n , each integral exhibited in (2.3.10) is determined by

its behavior near one since gn(c,t) is a decreasing function of

Cal . To see this, recall the definition of gn(c,t) in (2.3.8):
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cd cd

2 = _ __11 _ _ _-—4Edngn(c,t) ((t+cdn)1og(l+ t )+(1 t cdn)log(l 1-t))-(2°3'19)

Differentiate with respect to c to obtain

cdn cdn

—dn(log(l+'—E—)-1og(l-'I:E)) (2.3.20)
3 2

5F‘(dngn(c , t))

l t t+cdn

-d 1 _£;_. _—_—_. .

n( 0g t l-t-cgn

Clearly §2_.d§gn(c,t) < 0 since 1-t/t is a decreasing ftnction of

c

t .

Differentiate again with respect to c to obtain

 

2 -d2

3 dzgn(c,t) = n < o . (2.3.21)

3c2 n (t+cdn)(l—t-cdn)

The mean value theorem is used to write

ndign(c,t) = ndfign(1,t)+(c-1)ndil(§§_.gn(3,t))

for some 1 5 § 5 c .

Since for large n, bn(c,t) is an increasing function of c it

is now evident that for large n

2
ndngn(l,t)

a ndign(c,t) ndnbn(a,t)e nd§(a-l)gg(a,t)

nd bn(c,t)e dc 5 2

“ nd g'(l,t) eudu .
1 n n

 

0

(2.3.22)

and 2

ndn(a-1)8A(a.t)nd g (l,t)

a ndzg (C,t) ndnbn(l,t)e n n

fbn(c,t)e n n dc _>_ eu du . (2.3.23)

1

 

2 1
ndngn(a,t) O
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8
V _

(Here gn(a,t) --§E— gn(c,t))

In particular if we let a = 1+6 where 6 > O , 6 = 0(1)

n n n n

l =and 0(5n)

 

nd
n

then 2

nd g (l,t)

an ndign(c,t) bn(l,t)e n n

ndn bn(c,t)e dc== (l+o(l))_(2.3.24)

dnlgg(l,t)l

1

To verify (2.3.24) note that

ndzé g'(a t) < ndzé '(1 t)
nn n9 .. nng a

and

2 dn dn

' _ _ ——-_ _.___
ndndng (l,t) — ndn6n(log(l+ t ) log(l l-t)) (2.3.25)

2
-ndn6n

< ____.__

2t(1-t)

provided

d < . to(l-to) tl(l-tl)

n min —*——-7{-* , 2

The latter inequality is obtained by noting that

f(x) = logC£:£. — log E:£:§;_-__3L__

t t+x 2t(1-t)

is such that f(0) = O and f is increasing if x is small.

Since 1im ndfidn = m we conclude that the integrals on the right

hand side ofn(:.3.22) and (2.3.23) converge (uniformly for t0<t<tl)

to —l as n becomes large. Of course bn and gfi are continuous

and (2.3.24) follows.
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Using (2.3.22) and an inequality analogous to 2.3.26 we have

a 2 an

nd g (C,t) ndzg (ct)
n n n n ’

bn(c,t)e dc bn(c,t)e dc

a 1

n

2__ I
bn(a,t) ndn(a l 26fi)gn(an,t)

g —-'—-- e (2.3.26)

bn(l,t)

In view of(2.3.24),(2.3.25)and (2.3.26) ,

2

ndign(c,t) bn(l,t)e

ndn bn(c,t)e dc = [l+a(n,t)] (2.3.27)

1 dnlgg<1,t>|

 

for some a(n,t) such that

lim sup a(n,t) = O .

n+m t <t<tl

0

Note that

/E'd2bn(1,t)
n
 

Nonn(t)

dnlgg(l.t)l

To complete the proof we need to show that Q2 is small.

Returning to (2.3.3) it is seen that

p(t, 9:- t) : E"-(n)tm(1—t)“'m
n t m

and, using (2.3.8) (2.3.11), (2.3.17) and Lemma 2.2.3, that

:E: n ndign(a,t)

Q2 = p(t, —_ t) ('t‘e

m3n(t+adn)+l °

5
5
‘
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Then, by(2.3.20), (2.3.21), the remark following it and 2.3.25, we have

2
ndngn(l,t) l-t t+dn -(a-1)ndn

 

Q2 5 P‘ e (T 'I—T-Tr‘)
t n

-(a-1)nd2

n d2 (1 t) (2 3 28)
< P. (e 2t(1"t) )en ngn ’ O .

" t

Since nd: > a0 log n for some aO > 0 , the constant a in (2.3.27)

may be selected so large as to make Q2 asympotically negligible

compared to Q1 for all t0<t<tl (e.g. (a—l) 3 t(l—t)/a0)

The equivalences (2.3.17), (2.3.18), (2.3.27) and inequality

(2.3.28) verify (2.3.15).

Recalling that the point t at which Fn(s)—s ; se(0,l) attains

its maximum has a uniform distribution over the unit interval, line

(2.3.15) in Lemma 2.3.3 may be interpreted as an expression for the

conditional probability that

0322133)")?- dn

given that the supremum is attained at the point t , t0<t<tl . The

following lemma presents an expression for the unconditional probability

that

sup Fn(s)-s>: dn .

O<s<l

Lemma 2.3.4.
 

Let {dn} be a positive sequence as defined in Lemma 2.2.2, and

p(t, E;— t) be the "density" defined prior to (2.3.1) then

n



 



43

l :E: m ndign(l,t:)

p(t, ;-— t)dt"‘e (2.3.29)

0 m3n(t+dn)

where gn(l,t) is defined in (2.3.8) and t3 is such that

SUP g (l,t) = g (1.t*) (2.3.30)

O<t<l n n n

Proof.

The method of Laplace ([4], [20]) will be employed to show for

0<t0<l/2<tl<l , that

t1 2 2

ndngn(l,t) ndngn(l,t:)

dn(t)e dt/Ve (2.3.31)

to

and

m:n(t+dn)

to 1

:E: ndfign(l,t*)

+ p(t.-§-- t>dt = o(e n ) (2.3.32)

0 t1

To verify (2.3.31), gn(l,t) is twice differentiated with respect to

t 3

 

2 = 2 = ._£_ _ _ l-t
dnfn(t) dngn(l,t) (t+dn)log t+d +(1 c dn)log( )

 

 

 

n l—t-dn

(2.3.33)

d t+d

a 2 n l-t n
dzf' t = ———-d l,t =—————— - 1 -——— . 2.3.34n n( ) at ngn< ) t(1_t) og< t l-t-dn) < >

2 2 2r“ 1
dzf;(t) =-—§§ d gn(l,t) = —d 2 + 1 ;] < o

n at n n t (t+dn) (l-t)2(l-t—d

(2.3.35)
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By using Taylor expansions of the log—terms in the expression

2 d d d

_. = n _ _E. _ __E.
dnfn(t) t(1—t) log(l+ t )+ log(1 l-t)

 

it is seen that t: , the (unique) maximum of gn(l,t) is in the

interval (%(1—dn), 1/2) for all n sufficiently large. Using the

mean value theorem, gn(l,t) may be expressed as

(l t) = (l t*)+ -l—(t—t*)2f"(3 ) (2 3 36)
gm ’ gn , n 2 n n n a o

for some

6ne{[t:,tn] U [t,tgH

In evaluating the integral in (2.3.31) the following notation is

used:

_ —2 —l
hl(t) — t (t+dn) ,

_ —2 —1
h (t) — (l—t) (l—t-d ) ,

2 n

= *
tl,n tn + an ,

= v': —t0,n tn En ,

where

- —2 _ 2

En — 0(1) and En — o(ndn) ,

u = (nd:(hl(tl n)+h2(t0’n))l/2 ,

_ 2 1/2
v — (ndn(hl(t0,n)+h2(tl,n)) ,

and for some e>0 , t0<l/2—e and tl>l/2+e .

In view of (2.33) through (2.3.36)

2
ndnfn(t:) 7tl,n 2

nd f (t) on (t‘)e u (t -t*)':_x'

f a(t)e nn dtg n n n l,n ne2dx

t n u
0,n n

 

._ it
Un(t0,n tn)
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2

nd f (t*) V (t -t*)

ndzf (t) a (t')e n n n n 1,n n 2

a (t)e “ “ dt n n -X
n > '— dx

2
_ *

Vn(t0,n tn)

 

' H

for some tn 6 [t0,n’t1,n] and tn €[t0,n’tl,n]

Because tgrvl/Z it is seen that

I

dn(tn) an(tg) -1/2

___.__./v-—————-/~/(2n)

un vn

so that

tl,n 2 2

ndnfn(t) ndngn(l,t§)

an(t)e dt/Ve ‘ (2.3.37)

t

0,n

Also, referring to the definition of an(t) , (2.3.16), it is evident

that

t t

0’n ndfifp(t) 1/2 2 1/2 0,n “dzfn(t)‘ — n
an(t)e dt 5 2(2nt0(1—t0)) (ndn) dt.

t0 to

(2.3.38)

Here, fn(t) may be expanded as

. __ , l _
fn(t) — fn(t0’n) + fn(7)(t t0,n) for t0<t§'?§t0,n

Of course t—to n < 0 and f; is a decreasing function so that

9

fn(t) I
A

_ I

fn(t0,n) + (t to’n)fn(to’n)

I
A fn(t0,n) + 15 en(t-t0,n) (2.3.39)

for n sufficiently large.
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The latter inequality is obtained by expanding f$(t0,n) as a

Taylor series about t; with the assumption that dn = 0(1) and

tn = 0(1)

Since ndfi En tends to infinity for large n

t 0 .

0,n 2 -u fl 2 -l

‘jr’ 15ndn€n(t—t0,n) 1 ~[" e du (lSndnen).

e dt = ——-:;-—-

15nd e

n n 2

t0 15ndn€n(to_t0,n)

(2.3.40)

Finally fn(t0,n) < fn(t:) so that lines (2.3.38) through (2.3.40)

guarantee

t

0’n ndzfn(t) ndzf (t*)

an(t)e n dt = o(e n n n ) (2.3.41)

t0

2
provided ndien tends to infinity for large n .

A similar argument shows that

t t

1 ndifn(t) _1/2 1 ndfifn(t)
a (t)e dt < 2(2nt (l-t )) nd2 e dt ,
n — 1 1 n

t t

l,n l,n

and

fn(t) 5 ffl(tl,n) - 15€n(t-t0,n)

so that

an(t)e dt = o(e

1 2 2
nd f (t) nd f (t*)

f n n n n n )_ (2.3.42)
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the asymptotic expansion (2.3.37), (2.3.41) and (2.3.42) verify

(2.3.31). To verify (2.3.32) recall Lemma 2.2.3 and Lemma 2.3.1 to

see that

 

 

n-l m l n m

p(t, - t) < n(m—l)t (1 t)

for 0 5 m 5 n

2 P(t, €11 "' t)

m3n(t+dn)

n(l—t«d ) n(t+d ) n—l -n(l-t—d ) l
_ n n n __

<n< 1t) ( t> (4% (1--——1——) (l-t-dn-n)
1—t—dn t+dn n(l—t-dn) l—t

Note that (l — %)x < e—1 and (l - %)-X < (l — %)—le for x > 0

so that

2
-1 l—t—d nd f (t)

n 11

Z p(t, g- t) : n(l- 3}) <———-—)e “
mzn(t+dn) 1't

where fn(t) is defined in line(2.3.33).

Thus there is a constant c > 0 such that

tt

() :E: 0 nd2fn(t)

p(t, E-- t) 5 cu e n dt . (2.3.43)

m2n(t+d ) n
O n

0

As in (2.3.39), fn(t) may be bounded above by

fn(t) s fn(t0) + (t—t0)fg(t0)

for 0 < t 5 t Thus the right hand side of (2.3.43) is bounded0 .

above by
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2

cn ndnfn(t0)

2
(2.3.44)

Y

ndnfn(t0)

which is asymptotically negligible when compared to

2
*

ndnfn(tn)

This may be easily demonstrated by means of the following crude

inequalities. For t < t:

fgl<t> = (t—tgmgdn) : (21— - t)

and

_ t2 u

fn(t) — fn(2t)—tft'l(2t) + 2 End)

1
f 2t —-———s n( ) l6t

provided 2t < t3.

Thus the expression in(2.3.44)is less than

 

2
ndn 2

_ IBTb

ce endnfn(2t0)

’i_ 2 (203045)

\2 t0)dn

' *
prov1ded 2tO < tn .

. 2
Then Since fn(2t0) < fn(tfi) and ndn > aolog n selecting

tO < aO/l6 also will assure that expression (2.3.45) and hence

expression (2.3.43) is asympotically negligible compared to (2.3.37).

A similar argument is used to show

11

1

:E: ndfifn(t*)

p(t, E:— t)dt = o(e “ ) (2.3.46)

m3n(t+dn) '

t1
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Recalling Lemma 2.3.1 and Lemma 2.2.3 it is seen that

p(t, g — t) .<_ gcgnmcl—tfl‘m

2' n(t+dn) ndzf (t)
m ________ n n .

p(t, '5 - t) _<_ e 1f t < 1-c1r1
t

m3n(t+dn)

and

and is zero if t > l—dn

Thus

ndgfn(tl)

[:2 p(t, 3,? — t>dt 5 en 3

m>n(t+dn )

and (2.3.46) is verified.

The results of this section are summarized as:

Theorem2.3. l
 

If {Xn} is a sequence of independent, identically distributed

random variables with continuous distribution functions, F , and

+

Dn = sup Fn(x) — F(x) is the Kolmogorov-Smirnov statistic generated

x

by X1,...,Xn then for any real sequence {dn} such that d > 0 ,

n

(1n = 0(1) and ndi > a0 log n for some aO > 0

2
nd f (t*)

+ nun
P[Dn 3_dn]nve

where

dn c1n

~dr21fn(t)= (t+dn)log(l+ —)+(1-t-—dn)log(l— l—“__t

and t: is the unique value at which fn(t) attains its maximum for

O < t < l .
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Corollary_2.3.l
 

For the sequences {Km} and {dn} defined in the previous theorem

2
_ ndnfn(t;)

P[Dn > dn] Ne

ndif (til)

P[Dn > dn]r~/2e ‘1



2. 4. Probabilities of Excessive Deviations of the Kuiper Statistic

For a sequence of random variables, each with distribution

function F , the Kuiper statistic is defined in terms of the sample dis-

tribution function, Fn’ as

This statistic was originally suggested to test hypotheses about

distributions on a circle. It has the property that Vn is the same no

matter where on the circle the count to determine Fn(x) begins. To

make this statement more precise, define addition on the unit interval

by

s+t= s+t if s+t<1

s+t-l if s+t>1

and define the "interval” [s,s-i—t] by {x:sf_x:s+t} if s+t<l

and {x:sf_x:l or 0:x:s+t-1} if s+t>1.

Let X , X . , Xn be independent uniform random variables2,“

H

on the unit circle. Define XE“) as the number of Xi in the interval

S

(s, s+t] and nF:(t) = xnu). Then

V = sup (F (x) - x) - inf (F (x) - x)

n 05x51 n O:x_<_1 n

s . s
= sup (F (x) - x) - 1nf (F (x) - x)

05x51 n 05x51 n

Let Dn(v) : Fn(v) - v. If the infimum of Dn(v) occurs at s and the

maximum at s-i—t and the mth order statistic in the interval (s, 8-H)

51
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occurs at s-i—t then V = E- - t. Let p (t, E - t) be the joint
n n n n

"density" of the above event.

Then

1 l n-l m

23 p (t,— -t)ds dtzl.
m=1 n n

0 0

Using the notation developed in (2. 6. 3), pn(t, It? - t) may be written

as

L(t, n: m) F(t2 n) m) R(t, n: m).

Let A be the event that an order statistic occurs at s and the

th

m order statistic in the interval (5, s-i—l) occurs at s-i—t. The

joint density associated with this event is

n! m-l n-m-l

F(t'”'m) Z (m-l).'(n-m-l).' t (l't)
 

for 0<s<l,0<t<l,and 0<m<n. Then pn(t,-r§—-t) may

be written as

p (t, — - t) : L(t, n,m) P(t,n,m) R(t, n,m) .

Here, L(t,n, m) and R(t,n,m) are defined by

L(t, n,m) = P[Fn(s) - s 5 Fn(u) -u _<_Fn(s+t) - s+t; us (5, s—i—t) IA]

R(t,n,m) = P[F (s) -s < F (u) -uf_Fn(s-i-t) - s-i-t ; ue (s+t, s-i—1)|A]

The next three lemmas present asymptotic expansions for P(t, n,m),

L(t,n,m) and R(t,n, m). Since the proofs are similar to those of
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Section 2. 3, most of the details are omitted.

Lemma 2. 4. 1
 

Let {dn} be a sequence such that dn : 0(1) and ndrz1 > clogn

for some c > 0 . Then if m = [n(t+dnll

2

-1/2 3/2 ndn gn(t)
Fl (3 .P(t,n,m)~ [21rt(1-t)]

Here, gn(t) is defined by

d d
2 _ n

_dngn(t) _ (t+dn)log(l+—t—) + (l-t-dn)log(l-——).

The proof involves using Stirling’s formula in a manner similar

to that used in Lemma 2. 3. 2.

Lemma 2. 4. 2
 

If {dn} is a sequence of real numbers such that dn = 0(1)

and ndr21> clogn for some cZ :t/Z then for m = [n(t+dn)] ,

0 < t < 1

2d 2

L(t,n,m)~ <——3>.

Proof.

The proof consists of breaking L(t, n, m) into parts by con-

ditioning on Fug-2:1) . First note that P[X:(t/2) = le] follows the

binomial distribution with parameters 1/2 and m-l ;

P[X:(t/2) = le] = (mj‘1)(1/2)m“l for 0_<_j :m—l.
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Let

Ll(t,n,m,j) : P[Dn(s) 3 Dn(v) :Dn(s-i-t) ; v e [s, s+t/2]]X:(t/2) = j,A]

1.20:, n,m,j) = P[Dn(s) :an) :Dn(s-i-t) ; v e [s-i-t/Z, s+t]lx:(t/2) = j,A].

Then

m 1 m 1

( .- )L1(t,n,m,j) L2(t,n,m,j) .

0 J

m-l

M
I

L(t, n,m) : (1/2)

j

As in sections 2. 2 and 2. 3 the relationship between uniform order

statistics and a Poisson process, X(-) , can be exploited.

P[Dn(s) : Dn(v) ; ve [s, s+t/2]|X:(t/2) = j,A]

P[u—X(u) : l ; 0 < u < nt/ZlX(nt/2) : j]

Ln(t/Z,J+l).

If j = n/2(t+dn+o(dn)) then Theorem 2. 2. 3 yields

L (t/Z.j+1)~ Zd /t.
n n

Clearly,

L1(t,n,m,j) = P[D (s) < D (v); Vs [s, s+t/2]|x:(t/2) = j,A]

_ P[Dn(s) influx) and an') > Dn(s—i-t); for all V6 [5, s-i—t/Z]

and some v' e [s, s-i—t/ZHerlfi/Z) : j ,A].

It Will be shown that for j : n/Z(t+dn+o(dn)) that

P[Dn(v') > Dn(s-i—t) for some v' e[s, s-i—t]lXi(t/2) : j,A] = O(dn)

so that
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L1(t, n,m,J) ~ Zdn/t,

To evaluate P[Dn(v) > Dn(s-i—t) for some ve (s, s-i-t/Z) Ix:(t/2) =j,A]

observe that, conditionally, there are j - 1 order statistics in the

interval (8, s-i-t/Z) so the conditional probability density that the kth

order statistic occurs at s-i-v is the probability density that the kth

of j - 1 uniform order statistics on the interval (0,t/2) occurs at

V 3

.. '. _ _ .-l-k

(t/2> lkflklnfiyk 1W??? 05v5t/2.

The density with respect to u = (t/2)-1v is

k-l j-l-k
k<jlgl><u) (l-u) 05u51.

The conditional probability that Dn(x) does not exceed k/n - v to the

”right" of v is (see Theorem 2.2.1)

EFL-i<— lf 0 < j-k < n(t/Z-V)

‘Z—(l-u)

I

p
-
o

IP[Fn’j_k(x) - x30, 0 < x < t/Z] _

0 if j-k _>_n(t/Z-V) .

The conditional probability that Dn(x) does not exceed k/n - v to

the ”left" of v is

P[Fn(x)-x:k/n-v 0<x<le( =V]=L(v,k).
k) n

Thus the probability density with respect to u and k that the supremum

of Dn(x) for 0 < x < t/2 occurs at v and is equal to k/n -v, given

x:(t/2) 23' and A is





k(j) (u)k'1 (1 -u)j’k (1 - —l—'-l—‘—) Ln(v, k)

gin-u)

An asymptotic expansion for this density can be obtained by methods

similar to those used to obtain the expansion in Lemma (2. 3. 2). Let

s = o(d ) and j : n/2(t+d +2: ). We require k/n-v = d +t so that
n n n n n

k=n(v+cd) for c >1. Let

e n e—

(2ce —u)dr1 - usn

k = j u+

n (t+d +8) .
n n

Since knzju+c0jdn/t forsomee, 130:2;c31, we may

 

obtain, using Lemma 2. 3.4 that

P[Dn(v') > Dn(s-i-t) for some v' e [s, s-i-t]Ierl(t/Z) : j,A]

nnn

e

( 1(d2/t2)g (1.u:))
O

~2jdi/t2

o(e )

O(n-cZ/t)

Similarly, L2(t, n, m,j) ~ Zdn/t . This may be verified by observing

that

P[Dn(v) :Dn(s-l-t) ; v e [s-i-t/Z, s t]|x:(t/2) = j,A]

p[u_x(u) :1 0 < u < nt/2]X(nt/2) = m-j]

Ln(t/2,m-j+1)

and then proceding with the proof that L1(t, n, m, j) ~ 2 dn/t .
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Apparently

. . s 2. _

P[Dn(s) _<_Dn(v) :Dn(s+t)ve [s, s+t]|xn(t/2) LA] - 0

unless nt/2<j<n(-£+d). Inthiscase [a I<d . For
2 n n n

8 =9dn, l9|<l wehave

.Z(l+0)dn 2(1-9)dr1

L1(t,n,m,j) L2(t,n,m,j) : O[(—_——t—_—)( t )1

Recall that

l

n

Break this summation into three parts:

. n

(a) 1- §<t+dn+o(dn)>

. n
(b) J=Z(t+(l+0)dn) |e|<1

(c) other j

 

2d 2

For part (a) the sum is asymptotically ( tn) (1 -o(1)> and parts

(b) and (c) are negligible compared to this. I

Corollary 2. 4.1

I
I

0
A

.
.
.
—
a

V

If {dn} is a sequence of real numbers such that (1n

and rid:1 > clogn for some c > 0 then for m = [n(t+dn], 0 < t <1

d

L(t,n,m) = (DU-{1)}.

Lemma 2. 4. 3
 

l
l

0
A

P
—
i

v

If {dn} is a sequence of real numbers such that dn
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(l-t)

2

 and ndrz1 > clog n for some c2 3 then for m = [n(t+dn)] ,

0<t<1

d 2

R(t,n,m) ~ (T-n—t) .

The proof is similar to that of the previous lemma. Note that

P[Xs+t(l-—E) = j [A] follows a binomial distribution with parameters

11 2

1/2 and n-m-l;

. n-m-l

P[Xs+t(—1—g-E) : le] : (m'V'l) (l) , 0 :j _<_n-m-1.

Let

Rllt.n.m.j)

_ . , . . ._1__._£ ' __ _.
_ P[Dn(s):Dn(v) :Dn(s+t),ve [s+t,s+t+ 2 HA and xr1 ( 2 )_

R2(t,n.m.1)

_ P[Dn(s):Dn(v)_<_Dn(s+t),V€[S+t+ 2 ,s+1lA and Xr1 (T) —1

Then

It will now be shown that for j = %(1-t - an + o(dn))

dn

R1“. n, m. J) ~ (:7)

Note that
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R1(t,n.m.j)

= P[D (v) < D (s-i-t) ;ve [s-i—t, s+t+lillA and Xs+tlfll = .1]
n — n 2 2

.. P[D (v) < D (s-i—t) ‘ve [s-i-t s-i—t-i-liln _ n v 9 2

and

Dn(v') < Dn(s) for some v' e [s+t, s+t+—1_,:t]|A and Xs+t(——1£t) = j]

and for any Poisson process X(u) and j : %(l-t - dn+en)

1-1 - _
P[Dn(v) :Dn(s-i—t) ;ve [s-i-t, s-i—t-i- “‘Z—HA and xs+t(lZ—t) : j]

1’1

= P[X(u)-u:0 O<u< 2(1—t)lX(£Zl—(l-t)):j]

-_1_2' - 1_-t_n(l-t) for 0<J<n( 2)1

o if j>n(—1?:t) ‘

Also, using the notation of Theorem 2. 2. 1,

P[D (v') < Dn(s) for some v' e [s-i—t, s-i—t-i—l—g—t [A and Xs+t(l-£—E) = j]

dn+€n
Pi: sup (F . (u) -u>> ]

l-t n’3 2
O<u<—

 

where T1, T2, . . . , Tj are the order statistics based on j uniform

random variables on the interval [0,-Iii] . The "0 term" was

obtained in the same way as the corresponding term in Lemma 2.4. 2.
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Similarly,

. _ 2(n-m-j-l) ._ _n_

R2(t,n,m,3) — O(l - n(l-t) ) for J— 2 (l-t-dn-l-en)

and

dn
R2(t,n,m,J)~ -1-_-E- for en 2 o(dn)

and we can deduce

d 2
n

R(t, n,m) ~ (_l-t) '

These lemmas are used in the proof of the following Theorem

Theorem 2. 4. 1
 

If X,X1 2, . . . is a sequence of independent, identically dis-

tributed random variables with continuous distribution functions and

V is the Kuiper statistic (as defined in Section 2. 0) generated by

n

X1, . . . , Xn’ and if {dn} is a real sequence such that dn > 0 ,

dn = 0(1) and ndi>1/210gn then

2 ndrzign(t:)

P[V >d ]~ 8nd e
n n n

where ng (t) = (t+d )log -—t— + (l-t-d )log -—l—‘£— and ttz< is

n n n t+dn n l-t—dn n

the value at which g(t) attains its maximum 0 < t < 1 .

Proof.

The proof is similar to that of Lemma 2. 3.4.

By Lemma 2.4.1, 2. 4. 2, 2.4. 3 it is clear that for

m = n(t+cd)
C n
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m

2

c 4 3/2 ndngn(c,t)

pn(t9 n 't) ~ (217)

—1/2

(cdn) n e<t<1-t))‘5/2
,

here drz1 gn(c, t) is determined by replacing dn by cdn in the

definition of d: gn(t) and, repeating the reasoning of Lemma 2. 3. 3,

 

z; (t, m_____+k -t)

k=0 “

1-t

3;
_ _5 nd g (C,t)

~ 4nd I (2 ) 1/Z( (1 t) /Z( d )4 3/Ze dc

1

5/2
2

_1/2 ndn ) 2
~ (Z1T) 4<W endn gn(t)

l d“ d“ lndr1 log(l+T)- log(l- 1-——t_)

It remains to integrate this asymptotic density with respect to s and

t . Integration with respect to 3 leaves the expression unchanged.

Integration with respect to t is carried out using the method of

Laplace (see the proof of Lemma 2. 3. 4) to obtain

I/hpn(t, m-:l--l1--t)dsdt

 
 

  

2 5/2
nd

(Zul-1/2(—.:r—n—.?) 1/‘2 2 (t*)

,5 t (l-t) 2n e“ ngn n

d (d /(t")(1-t"‘)) nd . + I...
n n:[1;’Z(t+dn) (l-t')2(l-tq-dn)

2

2 n ngn(tn)



2. 5. Probabilities of Large Deviations of Kolmogorov-Smirnov

Statistics

Let X1, X2, . . . be a sequence of independent, identically

distributed, continuous random variables with common cumulative

distribution function F. Then Y = F(Xl)’1 :F(XZ), Isa.
Y2

sequence of independent, uniform random variables on the interval

(0,1). Define D+ = sup (F (t) - t) where F (t) is the empirical

n O<t<1 ‘1 n

distribution function of Y1, Y2, . . . , Yn . Of course D: is equivalent

to the usual one-sided Kolmogorov-Smirnov statistic,

sXp (Gn(X) — F(X)), where G ( ) is the empirical distribution

-oo< <co n

function of X ,X , ...,X

l 2 n

Of interest is the rate at which the probability that D: is

greater than a constant tends to zero as n becomes large.

Theorem 2. 5.1
 

Let D: be defined as above and let c be a real number,

O<c<l. Then

 

  

P[D:>c]~a(c)[8(c)]n, (2.5.1)

where

* t>l<+c * l_t*-c

p(e) = [1 f, ) (4%) 1, (2.5.2)

t +c l-t -c

and

ei-w‘ -1/2

a(c)- “Ball:1t‘C + *2 :1 (2.5.3)

2(31+c)Z (l-t ) (t'+c) ’

>:<

Also, t is a root of the equation

62
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  log(t .l't‘c) + C :0;0<t<1-c,

Proof.

Without loss of generality, it is assumed that {Xn} is a

sequence of independent, uniform random variables on the unit inter-

val. The structure of the proof is the same as for the excessive

deviation case. In particular, Lemma 2. 3. l is taken as the starting

point of the proof. The first task, then, is to obtain an asymptotic

expansion for p(t, 1;:— —t) as n becomes large for integer valued m,

m : n(t+c+0/n) (2.5.4)

where k E 0 < k+1, c is a fixed positive number, and t+c is bounded

awayfrom 0 and 1;0<x0<t+c<x1.

In evaluating Ln(t,m) the inequalities (2. 2. 12) and (2. 2.13)

are again employed. Let

i=(1+t3) (2.5.5)
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+ c+e +9/n

xn =(1+ 1: ) (2.5.6)

C-e +9/n

XI; = (1+ 2 ) (2.5.7)

where En > 0 and nerz1 = alogn if 31—252 < c2 and 0 elsewhere.

Let K be a Poisson random variable with parameter p . Then

-m K m m-

P[K :m] _<_ min S ES = (i) e H (2. 5. 8)

s>1

In particular, if H : nth;l and m is defined as above

 

 

 

  

[18

- - n
nt)\ m-ntk -

2 p (>.',j) < < “)9 “<ezlt+°+9/”) < n‘81 (2.5.9)
j>rn 1’1 1'1 — m —- —-

n8

_ n

+ . -
z Pn(>.n.3) 5 e 2<t+c+2€n+97n _<_ n 3 (2.5.10)

j>m+2n5

— n

and 3

1'18 n5

_ n + n

2 Pn(>.+,j) 5 minsmes‘K Eezu+c+em 3(t+c+9/n)2 _<_ n-‘a

j_<_m n 521

(2.5.11)

. . + . .

Let W+ denote the root assoc1ated With )‘n as defined in Theorem

2. 2. 2. Similarly let w_ denote the root associated with x; . Then,

returning to the inequality (2. 2. 12) it is seen that

-W

1. (t,m) 5 (1.63 J“)
n (HEN—a) (2.5.12)

for all n sufficiently large, and using inequality (2. 2. 13) it is seen
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that

-w

Ln(t.m) 3 (1- e (2.5.13)‘)<1-2n'a)

for all n suficiently large.

Since

X = xg'ze')‘ the

Finally, let w denote the root associated with k.

  

>1: >:< -

w = )1 - x where K < 1 is the solution to Xe

following inequalities obtain

2(e + e/n) 2(sn + e/n)

w<W <w+ “t ;w- t <w <w.(2.5.l4)

+ ’ (2.5.15)

Thus, selecting a > 1/2 , it is concluded that

Ln(t,m) = (1-e'w)(1+3(n’l/Z)) (2.5.16)

An asymptotic expansion for the expression

 

p (t,m) = m(n)tm’1(1-t)n‘m
n m

may be found in a mannersimilar to that used in Lemma (2. Z. 2). It

is found that

(t+c)n l/Z n 0 k2

Pn(t, m) 2 ( 2 ) (g(t, c)) (a(t, c)> (1+O(-——))

Z'rrt (l-t-c) n

(2.5.17)

 
 

 

where

_ t t+c l-t l-t-c

B<t,C) _ (t+c) (l-t-C)

and

t l-t-c

alt”) - (Tr: t+c)

Thus
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-W 1/2 0 n

P(t, {til-t) = (dd-1i) ))(2:((1tf:.)c)) (a(t,c)) (130m)) (1+an(t,k)>

(2.5.18)

— n—l/Z

and sup an(t, k) = o( ) for x < t+c < x and 0 i k 3 kn: o(nl/Z)
0 1

The probability density that the maximum deviation of D: from 0

occurs at t and is greater than or equal to n(t+c) is

 

 

k

qn<t.c) : z p(t, "a“ - t) (2.5.19)
k_>_0

k+0

where mk = n(t+c+ n) is integral valued and 0 gen < 1 . To

see that

m

p(t! _ -t)

qn(t’ C) l-a(t, c) (2. 5. 20)

write

k' Ink rnk

q(t,c)= Ep(t,————-t)+ Z) p(t,—~t).

n k=O “ k:k'+l “

The first sum on the right tends to the required limit for large k' ;

 

k' m m k'+1

1330 P“, 711: ‘ t) = 10“,“;0‘ _t)(1-la- a(t,(:)C)>(1+3(n_1/Z))

if k' = o(nl/Z).

The second sum on the right is bounded above by the sum of

the probability densities of the order statistics themselves. Thus,

employing Lemma 2. Z. 3.



.
.
l
i
n
l
l
l
3
'
l
.
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m

  

z p(t,—£4): >2 Mink‘lu-nmk
kzk'H “ t_>_k'+l

c+k' l-t—c-k' c+k' t+c+k' -n

:n[(1-1-.) (1+ .) ]

nk'
t l-t-k'-C' n

5- n(l-t ' c+t+k‘ ) (find)

 

-l

: o(f3(t,c))n for some k'=O((10rgln) )(2.5.Zl)

\

Thus qn(t, C) may be written as

9n

qn(t,c) = fn(t,c)(a(t,c)) (1+an) (2.5.22)

where Ian] : 0(1) independent of s and c for s bounded away from

zero and s+c bounded away from 1 .

The probability that D: is at least c is

l-c

f qn(s. c)ds (2.5.23)

0

and for fixed t such that n(t+c) is an integer

t t

f qn(s,c)ds f1 fn(s,c)[a(s,c)]e(1+o(l))ds

1
(1-3-) t-B-

t

(1 +o(1)) f fn(s, c) [a(s, c)]n(t‘5)ds.

1

“H (2.5.24)

The integral on the right may be expressed as





t-— O
n

l

l uc -u u

~_f (t: C) [em][a(tyc)] [a(t-_:C)] du

O

1

uc
~—fn(t,c) f e-——t(1_t)du

O

, C

_ t(l-t) 't(l-t)
_ cn fn(t,c)|:1—e ]‘ (2. 5.25) 

This may be seen by letting s = t - g; 0 i u < 1 then

t 1

f1fn(s,c)[e(s,c)]n(t“slds = if fn(t-%,c)[a(t-:1—1,c]udu

ot--

1'1

and observing that a(t-g, c) ~ a(t, c) and that

  

t-E n(t+c) 14+}: n(l-t-C) u

n n’ n ’ l-t t l-t-c

CU.

~fn(t.c)e “1‘” [a1(t.<:)]‘.u

This final relationship is used to define g (s, c) , a smooth approxima-

C .

s(l-s) . Define tion to qn(s, c). Define b(s,c) : log a(s,c) +

C

_ b(s,c) s(l—s) - s(l-s)
fn(s, C)[1_e-b(s, Cl] l:_c—:_ 1—e ](2. 5.26)gn(s.c) -  

if b(s,c);1é 0 and
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C

gn(s,c) : fn(s’c)(S(lC-S)
)(1'e s(l-s))

 

if b(s,c) = 0. Then (by 2.6.24, 2.6.25)

And from the above discussion it is evident that for t bounded away

from 0, and t+c bounded away from 1, that

t t

flqn(s,c)ds :(f1gn(s,c)ds)(l+on(t,c))

t-— t——
n 1’1

where [on(t,c)' < an and an is a sequence convergent to O inde-

pendent of t and c .

Thus for 0 < tO <t1< l-c

The left hand term is the probability that the maximum deviation of

Fn(s) - s is at least c and is obtained at some 5 , t0 < s < t1.

The right hand term may be integrated using the

Method of Laplace [4, 20]:
 

Let ¢(x) and h(x) be two real continuous functions defined

on (a,b) such that
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(i) <1>(x)en (X) is absolutely integrable for every positive

value of n >n .

0

(ii) h(x) has a single maximum in the interval, an interior

point of (a, b).

(iii) h"(x) is continuous, h'(y) = 0 and h"(y) < 0. Then

8.8 H96.)

b nh(x) ~21: ”2 nh( )
41X) e dX ~ ¢(Y) [m] e y

a

In our case

 

t+c l-t-c

t 1-t

h(s) : 10g(t+c) (l-t—c)

c

)_[ s+c Jl/Z(1—e‘w)[ b Jl: e- s('1_s)]

(MS — 2'rr(l-s-c 1-a 1_e‘b -

a = a(s, c), b = b(s,c) , w 2 Wk as defined above, and

 

g (S,c)ds : n (13(5) n (S)ds : ¢(y)( -”1T) en (y)

h (V)

to
to

Since

 

t+c l-t-c
t l—t

NS) = ”g(nz) (1-1-6)

    

11"(8)
 I

I I

O

N

[
_
_
_
l

U
}

3
T
H

+ O

+

T
: I

U
)

A
H

y
—
l

l

U
) I

O

l
_
_
_
l
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it is evident that h'(s) has at most one root in the interval [0, l-c]

and it must be in the interior of the interval since

1im h'(s) : co lim h'(s) z -oo

s—>0 s—>l-c

Jo
’\>:< :

Call this root t and select t0 and t1, so that to < t < t1.

Evidently conditions (i), (ii), (iii) of the method of Laplace are

  

satisfied.

Thus

t1 t1

q (s c)ds~f gn(s,c)ds

to to

~(1-e-W ) l-t*-c + 1 -l/Ze-nh(t*)

C >}< 2 >1: 2 z}: 2 >'

t (t +c) (l-t ) (t +c)

= a(C)lB(C)]n

(a(c) and (3(0) are defined in lines (2) and (3) of the Theorem),

To complete the proof it should be noted that

t t 1
0 l

P[D:>c] zf qn(t,c)dt+f qn(t,c)dt+f qn(t,c)dt

0 t0 t1

t 1
0

~a(c)[[3(c)]n+f qn(t,c)dt +f qn(t,c)dt.

0 t

It remains to be shown that the two integrals on the right are small

compared with a(c) [(3(c)]n .
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The integral

to

qn(t, c)dc

0

denotes the probability of the event that the maximum deviation of

Fn(s) - s is at least c and is obtained for some 5 in the interval

(0, t0) . The event described is realized only if at least nc of the

order statistics, Yk , are in the interval (0, t0) . The probability of

the latter event is P[K 2 nc] where K is a binomial random variable

with parameters n and t0. Thus

to

qn(t’ C)dt < P[K > nc] :min S-nc Es

 

+K

O — _ s>1

: min s-nc(ts +1 -t)n

s>1

= [660.0]n say

l-c

Clearly 6(t0,e) < 6(e) if 0 < t0 <1/2 and to < (l-c) C c[(3(c)]l/C.

For any such tO ,

to

f qn(t.c>dt = o(a(c)[6(c)l“)

o

A similar argument demonstrates that
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1

f qn(t,c)dt _<_ P[K > n(t1+c)] _<_[(3(t1,t1+c)]r1

t1

(here K is a binomial random variable with parameters n and t1) so

ti" < t <1-cfor any t1; 1

This concludes the proof.

The following two theorems are immediate.

Let X1, X2, . . . be a sequence of independent, identically

distributed random variables with common, continuous distribution

function F . Define the sample distribution function as

Define the Kolmogorov-Smirnov statistics:

D- = sup (F(x) - F (x))

n -w<x<m n

Dn = sup IFn(x) - F(x)].

-m<x<m

Define functions of c , 0 < c < l as follows:

ti" ; the root of the equation

   

s . l-s-c c _ .
(10g(s+c l-s )) +(s(l-s)) — 0, 0<s< l-c
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\‘I

W". ; the largest real root of the equation

  

 

 

(1+ 3*)(1—e‘w) —w z: o

t

>i< >.< * 1- ta: 1- >5

B ; B :: exp{(t +C)(10g * )+(1-t -C) “0ng : g;

t +c l-t -c l-t -c

>:< >1: >1: >§< _

w t [l-t -c t +c :] 1/2

a? 0‘ = T + —T
C t (l-t ) .

Theorem 2. 5. 2

Let D; be defined as above, then

n
P[D;>c]~a'(3 .

Theorem 2. 5. 3
 

Let Dn be defined as above, then

P[Dn>c]~ 26.67l

To verify theorem 2. 5. 2 assume, without loss of generality, that

X1,X2,...

define Uizl-X., i:l,2,3,... . Let

1

then

x - F:(x) .—. F:(l-x) - (l-x).

are uniform random variables on the unit interval and
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Thus P[D;l > c] = P[sup(F:'(u) - u)> c] and the probability on the right

u

is determined in Theorem 2. 5. 1.

Theorem 2. 5.3. follows from the observation that

P[D >c] = P[D+>c]+P[D‘>c]—P[D'>c,D+>c]
n n n n. n

and the probability on the right is small compared to the others.





2. 6. Probabilities of Large Deviations of the Kuiper Statistic.

Let X X be a sequence of independent, identically dis-1, 2’ . . .

tributed random variables with common continuous distribution function

F . As before, the sample distribution function generated by the first

n random variables is defined as

F(x): 2 ;i=l,Z,...,n
n

x.<x
1—

and the Kuiper Statistic is defined as

v = 13+ + D" = sup (F (x)-F(x)) _ inf (F (x)-F(x)).
n n n n n

-oo<X<co -a3<x<oo

I. G. Abrahamson [1] proved that the distributions of the Kuiper

statistic and the Kolmogorov-Smirnov statistic are of the same exponen-

tial order in the tails,

log P[Dn > c]

1im =l;0<c<l.

logP[Vn>c]

 

n—‘CD

The following theorem, together withTheorem 2. 4. 3 proves that the

probabilities of large deviations of Vr1 and Dn are not asymptotically

equivalent, in fact,

P[D > c]

lim n = 0; 0 < c <1.

n—>m p[Vn> C]

 

Theorem 2. 6.1
 

Let Vr1 be defined as above and let c be a real number,

O<c<l, then
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P[Vn > c] ~ 6171(c)n[(3(c)]n . (2.6.1)

The definitions of 8(c) , w;< and t).< are given in Theorem 2. 5. l and

  

2 1/2 2 -1/2

“1“) z “1-2.-t) 372 [7—1— + 21 1 “2'6““
(l-t) (t+c) t (t+c) (l-t) (l-t-c)

w=w*, t= t*,

Proof.

The method of proof is similar to that of Theorem 2. 5. 1.

Assume, without loss of generality, that X1, X2, . . . , Xn are n inde—

pendent uniform random variables on the unit interval. The notation

s 4— t is used to describe addition on the unit circle. That is, for-

0_<_s<l and 0:t<1 define

s+t if Ois+til

s+t =

ll-s-tl if l<s+t_<_2

and (s, s-i-t) denotes the interval (3, s+t) if 0 < s+t _<_l and the

 
union of intervals (3,1) and [0,1-s-tl) if l< s+t :2.

If the infimum of Fn(v) — v occurs at s and the maximum at

s—i—t and the mth order statistic on the interval (5, 5+1) occurs at

s-i-t then Vn : § - t . For large deviations, an asymptotic expres-

sion for the joint probability density of the above event for m : n(c+t)

is of interest.

To begin with, the probability density that an Xi occurs at s;

O<s<l is nds.
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The conditional probability density that the mth order statistic

in the interval (8, s-i-l) occurs at s-i-t, O < t < l , given that an Xi

occurs at s is the same as the probability density of the mth of n-l

order statistics of uniform random variables on the unit interval,

 

(n-l)! m-l n-m-l

(In-1): (n-m-l)! t (H) '

Thus the joint density of an order statistic at s and the mth order

statistic in the interval (s,s-i—l) at s+t is

P(t,n,m) e (m-1)1r(:1-m-1): tm-l(1_t)n-m-1
 

Finally, the joint probability density that the infimum of Fn(v) - v is

at s and the maximum is at 54-1 and that Vn = % - t may be

written as

L(t,n,m)P(t,n,m)R(t,n,m), (2.6.3)

L(t,n,m) = P[Fn(s)-s :Fn(u) -u E Fn(s-i—t) - s—i—t; u e (s, s-i-t)lA] ,

R(t,n,m) = P[Fn(s)—s _<_Fn(u)-u < Fn(s-i-t) - s-i—t; u e (s-i—t, s-i—l)|A],

A is the event which has probability density P(t, n, m) .

It will be shown that for m = n(t+c) and for large n

11

  
 

1/2 t+c l-t-c

p(t, n,m) ~((t+c)2(1-t-2<:)) n3/2[(t:c) (lit-EC) ] (2.6.4)

2m: (l-t) .

2

R(t,n,m) ~ (1%?)

2 t 2

and L(t,n,m) ~(l -e-W) : (TY—E)
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Thus the joint density is

pn(t, C) = L(t, n, m) P(t, n, m) R(t, n, m)

(wzczmlbe3n)l/23/2

(2141/2114) (t+c)

n

3f2 (P(t9cll .
 (2.6.5)

As was shown in Theorem 2. 5. l

(3%, c+ E) ~ ak(t, c)6n(t, c)

awe) = (1%.) (W121?)

The joint probability density that the infimum of Fn(v) - v is at s

and the maximum is at s-i-t and that Vr1 Z {:11 - t , m: n(t+c) , is

qn(t’ C) ~ its??? pn(t, C),

Apparently qn(t, C) is independent of s so that

1

,{ qn(t.C)ds = qn(t,C)

as in Theorem 2. 5.1 we have

t t

f qnllh C)du ~f gn(u, C)du

1
t-H t-

E
l
i
—
-

for

 

gnlu.C) = fn(u,C)[lbweb(u,C)c] ENCu:|l:1eeu(1C11)]
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fn(u, c) denotes the right hand side of (2. 6. 5)divided by l —a(t, c) , and

b(u, C) is defined as in(2. 5.26).

Finally the probability that Vn is greater than C is

t

l 1

P[Vr1 > c] = f qn(t,c)dt ~ I gn(t,C)dt

0 t
0

for any t0 and t1 such that 0 < tO < t* < t1< l-C . The last integral

may be integrated using the method of Laplace thus obtaining

P[Vn > c] ~ 021(c)n[(3(c)]r1 . It remains to verify the asymptotic expan-

sions listed under (2. 6.4).

The asymptotic expansion of P(t, n,m) is found by using

Sterling's approximation of k.‘ as described following line (2. 2.21).

Next, for any Poisson stochastic process {X(v), v30} , define

L'(a,b, k) : P[a:v-X(v) _<_ 1 ; 0 < v < th(0) = o, X(b) = k]. For

L(t, n,m) as defined in(2. 6. 3), identifying the m - 1 order statistics

in the interval (s, 8-1-1) with the corresponding order statistics of

m - 1 independent random variables on the interval (0, nt) and these,

in turn, with the m - 1 jump points of a Poisson process in the

interval (0,nt) we observe that

L(t,n,m) = L'(nt-m, nt,m-l)

-1 _

= ‘JE L'(nt-m. 9;- [in—71+»

- P[X<%5)=[1n—211—]+11X<nt)= n- 1]

- L'(nt-m E-t- m-l-lr—n-L-Ll-jl
’ 2 ’ 2
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The summation is over those integers j for which

0_<_[-I—n—£-l—]+jf_n-1.

95-)The conditional probability of X( 2 is binomial with parameters

1/2 and m-l . Using an excessive deviation result for binomial

random variables it is seen that, for m = n(c+t)’+k, k: 0(\/H) and

 

ljl 5 an, an increasing faster than V; ,

.2 P[X(9-2-t-) = [53-211]+jIX(nt).—. m-1]~ 1. (2.6.7)

l1 1 3a,,

For Ln(t,k) defined as in (2. 5.10), it is now apparent that

, _n_ m-l . ~ 1

L(nt-m’ ![ 2 ]+J) Ln(2:[

m-l

2 l+j) (2.6.8) 

because

P[nt-m < v - X(v); o < v < g—tlxmpo, X(F‘ZE): [3521—] + j] ~ 1(2.6. 9)

N

and, for m, k and j defined as above and kn = [Ln—ii] +j , relation

2.5.16 applies so that

t -w

L (2’kn)~l-e >0 (2.6.10)

and w is the largest real root of the equation w : (1 + E) (l -e-W) .

Applying (2. 6. 7) through (2. 6. 10) to (2. 6. 6) it is seen that

2

lL(t, n,m) ~ (1 - e‘W

The asymptotic expansion of R(t,n,m) is obtained in a similar

manner and we have
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1w. n. m) ~ (ff-,-

This completes the proof.
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