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ABSTRACT
THE PROBABILITIES OF MODERATE DEVIATIONS OF
U-STATISTICS AND EXCESSIVE DEVIATIONS
OF KOLMOGOROV-SMIRNOV AND
KUIPER STATISTICS
By

Gerald Marlowe Funk

Let Xl’ XZ’ ... be independently and identically distributed
random variables. The U-statistic, U(n) generated by a function

symmetric in its k arguments based on X , Xn was defined by

EEE
Hoeffding (Ann. Math. Statis (1948)). Under certain moment condi-
tions Rubin and Sethuraman (Sankhya Ser. A (1965)) obtained order

results for probabilities of moderate deviations of these statistics.

These results are extended to obtain expressions of the form

2

2

/ /Zn-l/?.c

P(U(n) - EU(n) > Cko-(logn/n)l 2)~ (ZTTC logn)’l

if ¢>0 and o > 0 is the standard deviation of the limiting distri-
bution of n (U(n) - EU(n)). Similar results are obtained for
Lehmann-generalized U-statistics, and for some functions of
U-statistics.

A related problem, that of obtaining asymptotic expansions of
probabilities of excessive deviations of the Kolmogorov-Smirnov and
Kuiper statistics is considered. Let F denote the c.d.f. of X.1 and

,...,X . Let

let Fn be the sample c.d.f. based on X1 n

D: = Sl)l(p (F(x) - Fn(x)) . Suppose F is continuous and let n )\i = 1)
and n )\tzl - ©,

Then






Gerald Marlowe Funk

2

+ -Zn)\n

P[D ' >\ ]~e
n n

This result was obtained by Rubin and Sethuraman (Sankhya' Ser. A
(1965)).

In this paper a different proof of this result is presented and
the problem is solved for larger deviations, i.e., when the condition

n)\i = 0(1l) is relaxed. Similar results are obtained for the two-sided

Kolmogorov-Smirnov statistic and the Kuiper statistic.
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PROBABILITIES OF MODERATE DEVIATIONS

OF U-STATISTICS

1.0 Introduction and Summary

The primary result of this chapter is the development of an
asymptotic expansion for probabilities of moderate deviations of U-
statistics.

Wassily Hoeffding [11] defined a U-statistic based on n indepen-
dent random variables, Xl’ XZ’ Cee s Xn’ and a real valued function of

m(in) arguments, Y, as

-1
! — 1 n
U‘y(xl""’xn)_[m'(m)] Z‘i’(Xi,...,Xi )
1 m

where the summation is extended over all permutations (il, ey im) of

m different integers, ij’ such that 1< ij

Without loss of generality, any U-statistic may be written as

-1
U(p(Xl,...,X):(n) Z P(X, ..., X, ) (1.0.1)

1I<i <...<i <n 1 m

<n.

where ¢ is a real valued function symmetric in its m arguments and

the summation is extended over all distinct sets of m integers

{il,...,im} such that lsijin and ij<ij+1 for 1<j<m-1.
. _ .
For example, U‘y(Xl,...,Xn)-U(P(Xl,...,Xn) if
(a,,a a ) = LZ\y(a a., )
<P l’ 2’ ’ m n! i ’ » i
1 m



where the summation is extended over all permutations of {1,2,...,m}.

Among other results, Hoeffding found that

lim P[U (Xpreen X)) > mox/Nnl = 1-d(x)
(/4 n
n—o
. ( )2
provided E(p(Xl,...,Xm) =0, E cp(Xl,...,Xm) < o and
2 2
o = E\Elp(X,....,X_)[X,]]” > 0. Here
X ——l-X2
d(x) = 1 [ e 2 ldxl.
N2Tm ‘o

Clearly there was no loss of generality in assuming the first moment of

¢ to be zero.

If all moments of ¢ up to order p exist for some p > x'2 + 2

then for fixed x>0

2
= X
- 2

logn 1/2
logP[U (X,,..., X )>m(rx(—g—)
K% 1 n n

logn

lim
n—wo

The latter result was obtained by Herman Rubin and Jayaram
Sethuraman [17]. They define deviations of the U-statistic from its
1/2
mean of the form c(l—O&?—) to be moderate deviations.

n

Our main result is that, with no additional assumptions,

. 1/2
P[U (Xp.nn X )>mcx(—‘£-‘l) ]
lim L ¢ n n L - (1.0.2)
n—o 1 - ¢(xTogn)

Since the sample mean is a U-statistic, this may be viewed as a

generalization of the following theorem due to Herman Rubin and Jayaram

Sethuraman [17].






Theorem 1.0 Let Xl’ XZ’ ... be independently and identically distrib-

uted real valued random variables such that EX. = 0, EXZ = 0-2 and

1
E|X|p<co for some p>x2+2 and x> 0. Then

1 2 logn 1/2
P[— > X, >ax(i) ]
l’li:l 1 n

lim =1 (1.0.3)
n—>o 1 - ¢ (x\Nlogn)
and
n 1/2
P[Il X.|>0‘x(m) ]
n.p i n
lim = 1.
n—-w 2(1 - d(xNlogn)

The theorem remains true if the constant x is replaced by

x +en where €, = O(lo;n) .

In section 1.1 the proof of (1.0.2) is presented. In section 1.2
some extensions of this result are discussed. However, the problem of
extending these results to deviations larger than moderate deviations
remains open. In Chapter 2 moderate and excessive deviation results

are presented for the Kolmogorov-Smirnov statistics. This problem

is formally introduced in section 2. 0.

1.1 U-Statistics

Let Xl’ XZ’ ... be a sequence of independently and identically
distributed random variables defined on some probability space
(2,8, P). Let ¢ be a Borel measurable, real valued function symmetric
in its m arguments. The U-statistic generated by ¢ and the first n

random variables is defined as in (1.0. 1):






-1
(n) _ _[n
U, “U¢(X1"“’xn)‘(m) L Z o(X, ,..., X, ) (1.1

Given this sequence of U-statistics, {U;n)} , we wish to study
the rate at which the corresponding sequence of probabilities of moder-
ate deviations from the mean, {P[U;n) - EU((pn)> c 10—‘—;11] } , tends to
zero as n becomes large. Our approach is to exhibit a sequence of
real numbers which is asymptotically equivalent to this sequence of
probabilities. (Two sequences of real numbers, {an} and {bn}, are
defined to be asymptotically equivalent if lim an/bn = 1 in which

n—->w

case we write a_~ b ).
n n

QOur main result is

Theorem 1.1

Let {U;n)} be the sequence of U-statistics defined in (1.1, 1)

and suppose that:

E|¢(Xl,...,Xm)|p<m for some p>x2+2 and x>0 . (1.1.2)
Ego(Xl,...,Xm) = 0. (1.1.3)
o’ = E (E [¢(X X _|x ])2> 0 (1. 1. 4)
e X 1%y . .1
Then
xZ
(n) logn 1/2 2 -1/2 72
P U(p > mex % ~ (2wx logn) N (1. 1.5)
and 2

X

1/2 X
p[lU;“)l > m«x(l—°ﬁﬂ) ]~ 2(2nx’logn) V2 1 2 (1.1.6)



Proof.

It will be shown that there is a real valued function (pl(-) such

that the U-statistics generated by N and Xl’ XZ’ ... have the

following properties:

1/2 € 2
P[U(n) > x0 (ﬁg_n) + —nT—Z_] -~ (21rx210gn)_1/2 ﬁ_x /2
?1 n (nlogn)
(1. 1.7)
1/2 € 2
P[IU(n)I > x0o logn + __n____] -~ 2(21rx210gr1)_1/2 n>* /2
® n 1/2
(nlogn)
(1. 1.8)
2
Xmoe -x /2
P[IU(n) ~mul®)| >“‘_ﬁr11‘2‘]: o(ﬂ-——-> (1.1.9)
¢ %1 (nlogn) NTogn
where {en} is a positive sequence such that €, = o(l) and Togn = o(en).

Now for any two real valued random variables Y1 and Y2 and

constants a and 6> 0

p[Y1 +Y,>al > P[Yl > a+é] - P[Y2 < -6]

2

and

P[Yl +Y, >a] < P[Yl >a-8]+ P[YZ >8] .

2

1/2
In particular if Y. +Y =U((on) , Yo =U -mU a:qu(@%)

1772 27 T Ty,
-1/2

then these inequalities together with

and & = (mxo‘en)(n logn)
(1.1.7) and (1.1.9) will verify (1. 1.5). Similarly, the inequalities
P[IY1+Y2| >al > P[|Y1| >a+8]- P[IYZI > 6]

and







P[IY1+Y2| >a] < P[]y, [ >a-6]+P[|Y,| >8]

together with (1. 1. 8) and (1. 1. 9) will verify (1. 1.6).

Define
— ! 1 1 | R
¢, (%) = E[q;(Xl,XZ, N | X} = xl]
:/gp(xl,xz,...,xm)F(dxz)...F(dxm) a.s.
where X'l, ey Xr'n are independently and identically distributed with

the common distribution F being that of the Xi's . Then (1.1.3) and
(1.1.4) insure the real valued random variables ¢1(X1),¢1(X2),
are independently and identically distributed with expectation
E:pl(Xl) = 0 and variance E(q;l(Xl) )2 = 02 > 0. Finally, (1.1.2)

and Jensen's inequality yield

Elg [P = E(|El|X,][P) < EE[|¢|P[x,]= E|¢|P < @ for some p > c’+2.

Thus the conditions of Theorem 1.1 are satisfied for the sequence

¢(Xl),¢(xz), o o0 Since

and since

2
lim (—1— e /2)/(1-¢<x>) =1

x—+o \xN2w

the asymptotic equivalences (1.1.7) and (1. 1. 8) have been verified.
To show that (1.1.9) is also true, U((pn) is decomposed into k

U-statistics as follows:







Define <pm(x . ,xm) = (p(xl, “e ,xm) and for 1 <r<m set

17"

— ! 1 | - H .
QL (xps..ux ) = E[(p(Xl,...,Xm)'Xi-xi for 1<i<r](l.1.10a)

and for 1 <r<m

Yr(xl’”"xr)
N A D R S
rl T l<i<T<i < TOLTETE 1)
-1 r-1-—
2 -1
+(-1) E oo L x )bk (D] z : ¢, (%) .
I<i. <, . .<i <r 1 r-2 I<i<r
=1 r-2— -
(1.1.10b)

m m
Then U;n) = Z (m)USyn) . In particular U(n) - mU(n) = (m)U(n)‘

r=1 ‘T r At %1 r=2\"/ ¥r

Note this is the same decomposition as that used in [17]. For

n)

(n) _
?1

m = 1, U¢ and (1.1.9) is trivial. Suppose m > 1. Evidently,

Xmoe
n

p[lU(n) Cmu™] s
@ ?1 (nlogn)l 2

m m (n) m X,
P 0y 1> 172
r=2 T Yr M=t (n logn)

IN

m-1_\ v/2 3 (m) Y)Y
(——-) (nlogn) = ( ) Elut™| (1.1.11)
mxoe =2 \T Y.

for 0<v<p.

The latter inequality was obtained using the Markov inequality
[15, p. 158].

It is interesting to note that Y. often has zero (marginal) expec-

tion. In fact, if 1 <i<r and the xj are distinct for 1< j<r then






/\yr(xl,...,xr)F(dxi) -0 . (1.1.12)
To verify this fact it suffices to prove
]\yr(xl,...,xr)F(dxl) = 0.

Referring to the definition of Y, (1. 1. 10b) it is evident that y, may

be written as

_ i.0
‘y (xls rxr) - J:O ('1) Tr-j (xly---)xr)
h To(x X ) = (x x ) (x x ) and for
where p1 o R T Py *r Pro1'F20
1<j<r-1
TO (x x ) = ( (x x )
A N PR PR L bt )
1 r-j—
—( . Z . qu-j-l x1 ’ ’Xi . »
Z_<_11<...<1r_j_1§r 1 r-j-1
To(x X ) = (x,)
1Y%1° ' RS R
Clearly
/(pl(xl)F(dxl): 0,
and
0 )
/Tr_j(xl,...,xr)F(dxl)—O for 0<j<r-1 (1.1.13)

since







[(p x y gor_.(xil,...,xir-j) if no xij is x;
r-jiy 1r_j)F(dxl)=
‘pr-j—l(xi"""xi' . ,) if one x. is x
r-j-1 i, 1
J
where {x.,,...,x,, }={x. ,...,x. } - {xl} . This verifies
"1 'roj-1 B! roj
(1.1.13) and hence (1. 1. 12).
Returning to line (1. 1.11), if v is an even integer then
EIU(")|V= (m)-
Y. T
n -1
:(r) EZJ---ZI‘yr(X.1 ,...,Xi )---\yr(Xi ,...,Xi )
11 1r vl vr
(1. 1. 14)

Of the (:) Y terms in this summation of products all those terms in
which a particular Xi occurs exactly once have zero expectation. Thus
a term with non-zero expectation can have no more than rTv distinct
X's.

To see that there is a common upper bound to these expectations,
observe that repeated applications of HBlder's inequality [15, p. 156]

yields

v
v
EI'H YX, X )| < EIYr(X',...,X;)I
j=1 jl jr
provided the moments on the right hand side exist. Referring back to
the definition of y,. in line (1. 1. 10)it is evident that these moments
exist provided E(p; <o for 1<j<r. Fortunately this is easily

shown since







Eo’ = EElXx,..., X )|x',..., X'V
¢ (Elg( m)l J])
v 1 1
< E(Elp (x'l,...,x;n)lx,...,xj])
= E¢"

v
[Elcplp] < o provided v is an even integer and v < p.

IA

Here the conditional variant of Jensen's inequality [15, p. 159, 348]

was used and assumption (1. 1.2) assures the finiteness of E|<p Ip. We

/
conclude that each term in (1. 1. 14) is bounded by 27 Y(E|¢ Ip)v P

Of course only those terms with Iz‘i or fewer distinct X's

have nonzero expectation. There are at most

rv
2

c(n) = Z c(n)
j=r I\

such terms where Cj is the number of ways j distinct X's may be

rv
arranged in the rv positions in a term. Apparently c(n) = O(n_z—) s0
that in (1. 1. 14)
v v
v n\ ™Y 2 2
E|lU_ |7 = Of(n = Ofn for 2<r<m,
Y. r - -
Finally, returning to (1.1.11) it is seen that
() gl ™% SV
P[IU -mU'| >———177,_-] = O(s (logn)“n )
¢ ?1 (nlogn) n .

Let v be an even integer such that c2 < v <p then (1.1.9) is verified

and the proof is finished.
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1.2 Extensions.

Let F denote a distribution function and ¥ a real valued function
m
I

i=1

integrable with respect to the product measure F.1 . Define a para-

meter O(F) as
0(F) = / --/\y(xl,xz,.. .,xm)F(dxl)F(dxz) ---F(dxm), (1.2.1)

Hoeffding [11] calls O(F) a regular functional of . Given n(>m)

independent random variables, Xl' XZ’ v X

estimating ©(F) 1is to replace F by the sample distribution function

n’ 2 reasonable method of

Fn. This leads to a statistic of the form:

1 n
O(F) = (5) = - Z VX, X .o, X ), (L2.2)
=

This statistic is closely related to the U-statistic discussed in
the previous section. (Note that ¥ does not depend on n.)

Define

cp(xl,...,x ) = T ¥(x., ,...,x. ) (1.2.3)

where the summation is extended over all permutations of {1,2,...,m}.

For 1<j<m define

\ym-j(xl""’xm—j) = Z ‘i’(xil,...,xi ) (1.2.4)

where the summation is over the distinguishable permutations in which

each x5 1<i<m-j, occurs at least once. Then

no(F ) = (;) ult) + (m’_‘l)U(n) T (‘;) vl 2s)
1
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Hoeffding showed that if E[e(Fn)]2 < o then the asymptotic distribu-
tion of N (8(F ) - 8(F)) is that of g (U;") - 8(F)) .

The following theorem shows, under additional moment condi-
tions, that a similar result is true for moderate deviations. (The
notation developed in (1.2.1) through (1.2.4) is used in the statement

of the theorem)

Theorem 1.2.1

Let {Xi} be a sequence of independently and identically dis-
tributed random variables with common distribution F and let
{G(Fn)} be the corresponding sequence of regular functionals of the

sample distribution function (1.2.2). If

[/ [q;(xl,...,xm)]pF(dxl) --'F(dxm)<m for some p>x2+2
(1.2.6)

and for 1<j<m-1,

f/ [‘f’j(xl,...,xj)]qF(dxl) ~--F(dxj) < o for some q > 1, q>x2
(1.2.7)

and 0'2 >0 where

.2 2/[/ . / (;11_,. POK X ) - G(F)) F(dx ) ...F(dxm_l)JzF(dxm)

(1.2.8)

then for x>0

1/2 2
P[e(Fn) - 0(F) > mxa(liﬁ-‘l) ] ~ (zwleogn)‘l/2 n* /2

(1.2.9)
and
1/2 2
P[le(Fn) - 8(F)| >mxo-(1_°§£) ] ~2(2ﬂx210gn)-1/2 n--x({.Zz. 10)
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Proof.
Using the expansion (1. 2.5) B(Fn) may be written as
m-1 . (n) m-1 m-j-1 -
O(F ) =( I (1-1;))U P> —Jl( (1--:-1-)>U(n)
i=1 ¢im. 521 n i=1 ¥Ym-j/(m-j)!

Since any weighted sum of finitely many U-statistics is itself a U-statis-
tic (provided the weights are constants independent of n), B(Fn) may be

written as

o(F ) = = —= g™ (1.2.11)

Clearly e = ¢/m! and the (pJ! are weighted sums of ¢ and the \yj .

Evidently,
| 1/2
P:P[B(Fn)-e(F)>mx0‘(-9%> :]
<plu™ _or) > 1—05_“)1/2 ‘n
SPTpy -0F) > mxa{ Ty 7z,
(nlogn)
m-1 (n) € nj—l/2
+ = P[Ur} > n (1.2.12)
=1 L9 (m-1)(1logn) !/
and

1/2 €
(n) logn n
P>P[U . —9(F)>mxo‘< ) + ]
- ?0 n (nlogn)l;z
j-1/2

m-1 -e_n
- = P[U(‘})< n 1/2] (1.2.13)
j=1 ®j  (m-1)(logn)

where € is the positive sequence defined after line (1.1.9). In view
of Theorem 1.1, (1.2.6) and (1. 2. 8) the first term on the right sides

of 1.2.12 and 1.2.13 are asymptotically equivalent to the right hand
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side of (1. 2.9). To see that the remaining terms are asymptotically
negligible Markov's inequality is used to obtain

) 1%
P‘ ]U(“,)j > 6 \ < 87 EIU(',1 | (1.2.14)
(pj nj — n q;j

and for v > 1 Minkowski's inequality is repeatedly used to show

1/v

'

1/v 1/v

IA
]
=
A
~

1/v
(E[U_,|") max {(Elo|") ,(Ely)
S j 1<i<m-1
(1.2.15)
Select v so that the moments on the right hand side of 1.2, 15 exist and

v>1 and v>x2. Set

rln+j-1/.2
6 = 7z
n (nlogn)l 2

Then the right hand side of (1.2. 14) is asymptotically negligible com-

2
V22 o 1<j<m-1. and (1.2.9) is verified.

pared to (logn)
A similar argument verifies (1.2.10).

The latter part of this proof is a special case of

Lemma 1.2.1

Let {Xn} and {Yn} be sequences of real random variables

such that

1/2
P[Xn > x(lo_%ﬂ) ]~ 1 -¢(x«/10gn) for x € (O,XO).
Then

Yn logn 1/2
P[Xn+—€>x< - ) ]‘**l-cb(xlogn)

n

if ¢>1/2 and, for some fixed M, EIYn|V§M<m for some

2

X
V>2—c—_-i' and all n .
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Proof.

Use inequalities analogous to(1.2.12)and(1.2.13)and apply
Markov's inequality.

We give one further example of how Theorem 1.1 may be
extended. Let {ng)} , 1<j<r, denote r independent sequences of

independently and identically distributed random variables and let Fj

denote the common distribution of the random variables in the jth

sequence. Let TO be a Borel measurable, real valued function of

r
m= X mj arguments. Let TO(---,x.,---,xk,—--):TO(--',xk,---,x.,--'

le 1 1

if mj<i<k§_m.

j+1 for some j, 0<j<r-1. Here m, =0. Thus

0

T0 is symmetric in its first m. arguments, next m., arguments, etc.

Define a Lehmann-generalized U-statistic generated by TO and

1 2

x(lj) X(Zj),...,XSJ.), 1<j<r as:
r /c.n\| -1
() H(J) T L I C R
._y\m, 1 1 T r
j=1° k, k k, k
m m
1 r
(1.2.15)

where the summation is extended over all subscripts for which

1<j, <...<] <cn; l<j<r.

Here the cj's (> 1) are integral valued and represent the proportion

of X(J)'s in the '"'sample. "

The sequence of statistics U'(n) may be approximated by the

sequence of U-statistics



-1
y(®) (n> o(Z. ,...,Z. ) (1.2.16)
¢ m 1<il<. <i_<n N 'm
where
(1) (1) (r) (r)
Zirn T Keivr o Xe ey o Xe e Xe_eny) (92410
for i=0,1,2 ; and
r c. \-1 0
- !
P(Z)...y2 )= (m. jI:II—J—mj.,) S ET(...) (1.2.18)

where the summation is over the ( m m m ) permutations of the
1’ r

subscripts of Z such that i <...<i for 0<j<r-1 and
m.+1 m,. - -
J(J) (jt1)

over all permuations of the X within each Z .

Theorem 1.2.2 Let {U’(n)} be the sequence of statistics defined in

(1.2.15). If the sequence of U-statistics, {U((pn)} , satisfies the condi-

tions of Theorem 1.1 and if

m.
vr ] :
/ / ((1 L B e O S I i B N PR
S| 1 ™M y=1i=1 !
(1.2.19)

2
for some v>x , x> 0, then

1/2 1/2
P[U'(n) >m<rx<l—o%rl) j]~P|:U;n) >rn(rx(1—oir—l-) ]

n

Proof.

8

r /c.n (n) r /c.n

Note that 1II ( J )U' consists of M = 1II ( ) summeands

. a\m, n . .
=1 =1V

and may be written as



r C.
M U™ - (“)(m: I ——J—,—) v™iMmoT
n j= . @ n n

where Tn represents the

summands of U'(n) not included in (Nn -Mn)Ug(on) . Thus U(n) may

be written as

N
(n) _ n) n 5(n)
U = U, (Tn - MnU )

v
Condition (1.1.2) assures us that E|U(n>[ <M< o for some

2 v Nn v 0o,"
v >x +2 and condition (1.2.19) guarantees EITnI < IM—I E|T|
N n
v
and EITOI < o . Since M_n = O(%) , Lemma 1.2.1 applies and the

n
theorem is proved.

The theorem remains true if the independence conditions are
replaced with the assumption that the Z's are independent (and condi-

Iy
tion(l.2.19)replaced by the obvious moment conditions) and if Z c, is
21
r J
replaced by Z cj +o(l) .
i=1
The final theorem in this section deals with functions of

U-statistics. Let {Xn} denote a sequence of independently and iden-
tically distributed random variables and let U(ln), cees Ulin) be k
U-statistics generated by Xl’ e, Xrl and the kernals <p(1),¢(2), C ey (p(k)
respectively. For each U-statistic, assume that conditions (1. 1.3) and
(1.1.4) of Theorem 1.1 hold and that all moments of q)(j) exist and are
finite. Define aij = E<p(1i) (p(lj) ; 1<i<k, 1<j<k where qo(lj) is

defined as in (1.1.10a). If the determinant laij, is positive then
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Theorem 7.1 of [11] asserts that the asymptotic joint distribution of

the Nn U§n)'s is non-singular. Thus each nondegenerate linear com-

k
bination j§1 aj U§n) is a U-statistic satisfying the conditions of

Theorem 1.1. In view of Theorem 8 of [17] we have the following

Theorem 1.2.3 Let f(xl, ce ,xk) be a function of k arguments
and

) k ( 1] )

(Xl, . .. ,Xk) = f(O,. o ,0) + 1221 blxl + fe) 10g HX”

2 k5 . o
where ||x|| =z X, . Then, for the above-mentioned U-statistics, if
x>0, and o-b>0,

1/2 2
PE(U‘I"’, L ul™) - 5o, ,0)>xab(“’—§—rl) ]~<2nx logn)™1/% ¥ /2
where
2 k k
T, = = meb.moz1
j=1 i=1 yoJn

and rnj is the number of arguments of ¢(J) 1<j<n.
Similar results are valid for B(Fn) and for Lehmann-generalized

U-statistics.



PROBABILITIES OF EXCESSIVE DEVIATIONS OF
THE KOLMOGOROV -SMIRNOV AND

KUIPER STATISTICS

2.0 Introduction and Summary

Let Xl’ X . ,Xn be a sequence of one-dimensional, indepen-

2"

dent identically distributed random variables each having the continuous
cumulative distribution function F .
The empirical cumulative distribution function, Fn, associated

with the sequence X . Xn is defined by the relation

10

F(x)= = L
n xigxn‘

The Kolmogorov-Smirnov statistics are defined as

+
D = sup (F_(x)-F(x))
n -0<x< to n
D = sup (F(x)-F (x))
n ~o<x< +two n
D, = sup [|F (x)-F(x)],

~o<x< o

The Kuiper statistic is defined as

vV = sup (F (x)-F(x)) - inf (F_(x)-F(x))
n ~o<x<w n -o<x< o n
- D +D-
n n

19
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The limit distributions of these statistics are well known. N. V,
Smirnov and A. N. Kolmogorov [10] have proved that, for any constant

c greater than 0,

2
lim P(D} > en”1/2) - g72c
n—>ao
2
lim P(D” > en” /%) = 72¢
n—+o n
© . 2 2
lim P(Dn>cn"1/2) -2 = (-1pledi e
n—o j=1
and Nicolass Kuiper [14, p. 43] has shown that
© 2 2
lim P(V_ > en M2 22w (4j2c2- 1ye?ic '

n—o j=1

Second order terms of these asymptotic expansions are also known.
[10, 14].

Following the terminology of Herman Rubin and Jayaram Sethuraman

-1/2
n

[17], deviations of these statistics from zero of the form ¢ for

constant c will be called ordinary deviations. Any deviation of the form

cnn-I/2 , for {cn} a sequence unbounded above, will be called exces-

sive. If {cn} is also an increasing sequence it is apparent that

lim P(D+>c n-l/2
n n
n—>w

) = 0.

Of interest is the rate at which probabilities of excessive devia-
tions tend to zero as the sample size becomes large. Much work has

been done in this area.
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Herman Rubin and Jayaram Sethuraman [17] made use of a

theorem by N. V. Smirnov [10, p. 154] to obtain the following excessive

deviation result. Let S and cin-l/z = O(1) , then
2
-2c
p[D+>C n-1/2]~e n
n n
-Zc2

-1/2) _ e

P[D >c n n
n n

In section 2.3 it is shown that asymptotic expansions similar to

-1/6

these remain valid if the condition c,n = O(1) is replaced by

) .

c_ = o(n
n

In section 2. 4 similar results are obtained for the Kuiper statis-

tic; e.g., for cn>c«/10gn and cnn-1/6=0(1), c>1/2
2
-2c
P[V_>c n /2] ~gcle @
n n n

However, for larger deviations the results are fundamentally
different, that is, they are not a ''matural'’ extension of the ordinary
deviation results. A constant deviation will be called large. Jayaram

Sethuraman [18] proved that for any constant ¢ between zero and one

1
;log P[Dn > c] logB(c)

Blc) = sup (x/(x+c))TC ((1-x)/(1-x-c))' 7*7C

0<x<l-¢
In fact Sethuraman obtained results similar to this for k-dimen-
sional random variables and variables defined on separable complete

metric spaces.
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In section 2. 5 it is shown that
+ n
P[D_ > cl~a(e)@(c)) ;

where a(c) does not depend on n. Asymptotic expansions are also
given for D_ and D_ .
n n
Order results for large deviations of the Kuiper statistic have
also been worked out. Innis G. Abrahamson [1] has proved that

1

n

log P[Vrl > c] ~ log B(c).

In section 2.6 it is proved that P[Vn > c] is asymptotically equal
to a(c)n(B(c))” .

Section 2.1 contains a brief review of some well known facts about
Fn’ Dn and Vn and the relationship between the order statistics of uni-
form random variables and Poisson processes.

Section 2. 2 contains some theorems of a technical nature which

are used in the later sections.

2.1 The Sample Distribution Function

In the following paragraphs some well known properties of the
sample distribution function are reviewed. No new results are presented

in this section.

2.1.1. Let Xl’ XZ’ e ey Xn be n independent random variables with
common continuous cumulative distribution function F . The statistics
D+, D, D and V_ are independent of F.
n n n n
For example, set Yi = F(Xi) then the Y.1 are independent

uniform random variables on the interval [0, 1]. Since
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+

the statistics D_, D , D and V_ generated by X.,...,X are,
n n n n 1 n

with probability one, the same as those generated by Y , Y . In

1’ n

the following sections it will be assumed that the Xi themselves are

uniform random variables.

2.1.2 The equation Fn(x) -x = D: can only be valid if x is one of

the observed values of the (uniform) random variables Xl’ e, Xn

From continuity arguments, it is evident that Fn(x) -x takes, with

probability one, its maximal value at a unique point, Xmax . The

random variable Xmax is uniform on the unit interval. In the following
sections it will be assumed that the maximum deviation of Fn(x) -x is

unique. (Similar remarks apply to the infimum of Fn(x—) -x. [13,2]).

2.1.3 The probability distribution of the order statistics,

X(l) < X(Z) <...<X , of n independent uniform random variables

(n)

on the interval (s,t) and that of the jump points, T, < T, <...< Tn

1 2
of a Poisson process, X(v), is the same given that X(s) =m and
X(t) =m+n [6 p. 400 and 12, p. 239]. By a Poisson process with

parameter A\ is meant a separable, real process X(t) with stationary

independent integral valued increments and

o (t - S)me -\(t - s)

m!

P[X(t) - X(s) = m] =

for \>0;t>s>0, X(0)=0, m=0,1,2...
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2.2 Some Asymptotic Expansions

The idea of obtaining asymptotic results for Kolmogorov-Smirnov
statistics by a consideration of n Fn(t) as a Poisson process, X(nt),
is not new (see D. A. Darling [20] and R. Pyke [16]).

This idea is employed here to obtain asymptotic expansions for

the conditional probabilities of the events
{Fn(t) -t< % - x for all t such that 0 <t < x}

and

m
{Fn(t) -t —

- x for all t suchthat x <t < 1}

given that the mth order statistic occurs at x .
For the case x <t< 1 use is made of the following theorem

([12], p. 247-48).

Theorem 2.2.1

Let T ,..., Tm be the order statistics based on m indepen-
1
dent uniform random variables on the interval [s,t] and let

1
F (y) = Z =
n, m T.<y'n .
<
Then
P[ sup (F‘ (y)-(y-s)><0]= plT, > X +s:k=1,2,...,m]
n, m — k =n
s<x<t
1 LL if 0<m <n(t-s)

" n(t-s)

0 if m > n(t-s),

In particular,
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m n-m
P[xfl“il(Fn‘” e B Xy X = - Ey @2

For the case 0 <t < x the following theorem, due to Lajos

Takacs ([19], p. 56). is used.

Theorem 2.2.2

If {X(t); 0<t<wo} isa separable stochastic process with
stationary independent increments for which almost all sample functions

are nondecreasing step functions vanishing at t=0 then for x>0

P[ sup (t-X(t))<x]=1-e "%,
05_t<o:>
where
E[e-zX(t) ] = e't ¢(z) for t>0, Rez >0,

and w is the largest real root of the equation ¢(z) = z .

This theorem was proved for Poisson processes by R. Pyke [16].

If X(t) is Poisson with parameter X\ then
o(z) = A(1-€7) (2.2.2)

and w =X\ -\ provided X > 1, N <1 and xe M=\'e . Evidently

as \ tends to one, w tends to zero.

Lemma 2.2.1

If \ =1+a_ ;a >0, a =o0(l) and w_ is the largest real
n n’ “n n n

root of the equation w = \_(1 -e'w) then w_~ 2a
n n n
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Proof.
Noting the remarks following Theorem 2.2.2 ,w_ = \_ - A ,
Y 5 -)\* n n n
where )‘ne n._ )\;e " and since the function g(\) = Xe-)\ is

continuous and for X\ >0 has a unique maximum at X\ = 1 it is evident

that )\n 1 1 implies )\; t+ 1 . An application of the mean value theorem
yields:
a aL2 3
e’ =1-a+T-O(a );a>0 .
Thus
(1+a)e™® = 1-a%/2+0(a°), a>0

(1-b)e? = 1-b%/2 -0(>), b>0.

3% -)\ b -)\:I:
Let \ =1+a ;X =1-b so that \ € N = n,thatis
a n n’ "'n n n n
(1+a)e ™= (1-b)e™ which means that bZ + O(b3) = a - O(a%)
n n n n n n
. _ _ 2 _ .2
and since an-o(l), bn-o(l) we have bn(1+o(l)) = an(l—o(l)).

Thus b ~ a and w =za +b ~ 2a
n n n n n n

In fact w_=2a (1+0O(a_)) .
n n n

. t . L . .
Given that the m h order statistic of n independent uniform
random variables on the unit interval occurs at x, the first m -1

order statistics, X e, X have the same distribution as the

(1)’ (m-1)°

order statistics of m -1 independent uniform random variables on

the interval [0,x]. Also U = n(x -X y; i=1,2,...,m-1 would

(1)

be the order statistics of m -1 uniform random variables on the inter-

(m-1)

val [0,nx]. Evidently
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m —_
P[0 jrgx(Fn(t) - t)i - - x]X(m) = x]

p[k . M xik=1,2,...,m-1|X,__ =x]
n n (m

) < )

Pl-(m-1)F () +t<1;0<t<nx|X(0)=0, X(nx)=m-1]

Ln(x, m) , say. (2.2.3)

Here F;ln-l (t) is the sample distribution function based on the {Ui}

and X(u) is a Poisson processwith jump points {Ui} on (0,nx) [See 2.1.3].
The next theorem shows that, asymptotically, the condition

X(nx) =m-1 1in (2.2.3) may be dropped for suitable choice of m and

\.

Theorem 2.2.3

Let {X(u) ,yu> 0} be a Poisson process and,for each n>0,

let {Xn(u) ,u> 0} be a Poisson process with parameter )‘n =1+
where 0<c<wow, 0<t<1l and drl is a positive sequence such that
dn = o(l) and ndrz1 > alogn for some a > 0. Let kn = [n(t+cdn)] .

Define
L (t,k ) = Plu-X(u)<1;0<u<nt|X(nt) = k- 1].

Then for any tO and ty such that 0 < tg<t< £ < 1 and sequence

<, such that c, >¢ and Cndn = o(1l),

Ln(t,kn) ~ Plu - Xn(u) <1
and
2cd

n

L (tk ) = [1 +a(n,t, c)] (2.2.4)

where
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lim sup a(n,t,c) = 0 (2.2.5)
n—-o A

and the supremum is taken over all t and ¢ such that 0 < ty < t<t, < 1

and l<c<ec.
- - n

Proof.

Suppose {X(u); u > 0} has parameter \A. The probability of the
sample functions for which u - X(u) <1 for all u>0 is given in
Theorem 2.2.2. This probability may be expressed as a sum by con-

ditioning on the events {X(nt) = k-1} for k>nt.

For reasons of notational simplicity, define

Q()\):P[u-X(u)Sl;0<u<oo], (2.2.6)
Q (N k) = Plu-X(u)<l;u>nt|X(nt) =k-1] (2.2.7)
and
P (A k) = P[X(nt) = k-1]. (2.2.8)
Since X(-) has independent increments, Q(\) may be written
as
Q(\) = X L (t, k) P_(\,k)Q (N, k). (2.2.9)
k>nt O n n

and since X(.) has stationary increments,
Q (A k) = Plu -X(u) <k-nt; u>0[X(0) = 0]

In view of Theorem 2.2.2,

- W

Q(\) =1 -€e (2.2.10)

and
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Q0K = O A S T 2.2.11)

Apparently Qn()\,k) and Ln(t,k) are nondecreasing functions of k and

we are led to the following inequalities:

QM) > (= P (ML (tKQ (N\k) if k>nt (2.2.12)
T 5k n n n =

and
QM\) < L (k) + (2 P ()L (LK) + 2 P (N])
n P>k n n ik n
if k'>k>nt.(2.2.13)
If k is large, if £ P _(\,j) is near one and if = P _()\,]j)
j>k B el TR
is near zero then Ln(t,k) could be approximated by Q(\) . Of course

Ln(t,k) is independent of X so the problem reduces to that of selecting
\ so as to make the bounds in (2.2.12) and (2.2.13) reasonably tight
when k = kn' An intuitively appealing idea is to '"aim'" the sample
functions of the process {X(u)} at the point (nt,kn), i.e., to select
X\ so that EX(nt) = kn.

Proceeding with this idea, let

ntA! = [n(t+cdn)] + [n:n] (2.2.14)

where (sn} is a positive sequence such that g, = o(dn), (neﬁ).1 = o(l)
and "E?, = o(l). Now if (Xi} is a sequence of independently distributed
Poisson random variables with parameter 1 then

nt)\r']

Pn[\l'q,k] = P[ fl Xi:k—l].
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Cramér's theorem for probabilities of excessive deviations of
a sum of independent random variables from its mean (8, p. 517]

applies so that

= P\,jl~—— e z (2.2.15)

. n n
J<kn \‘2-nm»:r21
Returning to (2. 2. 12) with (2. 2.‘10), (2.2.11) and (2.2.15) it is

now evident that

-1
-(k_-nt)w 1
L_(t,k )< (1 -e"“’> (1 e " ) (1+ % e 2 ) (2.2.16)

\JZTrner1

for all n > Ne where Ns is a constant determined by {en} alone,
and not on ¢ or t (since )\r'l > n(t0+dn) for all t and c satisfying the
restrictions after (2.2.5)).

Making use of Lemma 2.2.1 it is seen that

RN

2

nd

-1 "

-(k -nt)w t1
l1-e 1 < \1+2e

for n sufficiently large. Thus

2cd €
n

™) e (=

for some constant a and that

|5

2cdn (
Ln(t, kn) < : l1+a'(n,t, c)) (2.2.17)

where lim sup a'(n,t,c) =0.
n—»wo A
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In order to obtain a lower bound for L (t, kn) return to

n
. _ _ 1/2
(2.2.13) with nt\! = [n(t+cdn)] - [n en] and k! =k_+ (nlogn)

Then, using Lemma 2. 2. 1 line (2.2.17) and Cramér's Theorem it is

seen that
2cd € )
" — -
QA1) z( — * tl) (1 acd |,
/2
L(t,k')<i(cd +1£g-3) ,
n — t n
0
2
ne
__n
2
= P (\'j <€
i>k non ,
=n
and
Z P _(\',j < (nlogn)‘l/2
j > k! non
— n
for n sufficiently large and some constant a . Thus
2cdrl
"
Ln(t,kn) > (1+a (n,t,c)) (2.2.18)
where lim sup a'(n,t,c) = 0. The Theorem is proved.
n—o A

The use of Cramér's theorem to obtain asymptotic expansions for

Z P (\N,k ) and = (
k>kn n n n k> k! n
= 2 %n -
tive approach is to note that if p(\, k) = xke )\/kl then repeated

)\;1', k) was not essential. An alterna-

integration by parts verifies [7,p. 163]

1 @ X
= p(\ k) = F/ e *x"dx.
k=0 Y
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Of course n! can be evaluated using Stirling's formula and asymptotic
expansions for the above integral, an incomplete garhma function, have
been worked out by W. Fulks [9].

The following lemma presents an asymptotic expansion for

binomial probabilities [7, p. 169].

Lemma 2.2.2

Let {dn} be a positive sequence such that dn = o(l) and

ndtz1 > aologn for some a>0. For each te (0,1) let {cn(t)} be

a sequence such that cn(t) >1, m-= mn(c,t) = n(t+cn(t)dn) is integral

valued and for some ¢ > 0, cn(t)dr1 <1l-t-¢. Define
_ (n) ,m n-m
Pn(t,m) = (m)t (1-t) (2.2.19)
and
£ (t,m) = (2mn(t+c (£)d )(1-t-c (t)d ) 1/?
n’ - n n n n ’
c (0d_\™™ c (td_ -(n-m)
(1 + —t—) (l - —1—_—t—-) (2.2.20)
Then
_ 1
Pn(t,m) = fn(t,m)(l :hO(n—t) (2.2.21)
Proof.

A refined version of Stirlings formula [7, pP- 52] states that

1 1

- 2 -
e ne12n+l <n < (Zn)l/znn+l/ e neIZn

(Zw)l/Znn+1/2

Thus
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f (t,m)ex 1 R S 1
n'"’ P{T2n+1l ~ 12m ~ 12(n-m)

< Pn(t, m)

1 1 1
< fn(t,m)exp<12n T 12m+1 12(n-m)+l)

and the result (2. 2.21) follows after slight manipulation.

Lemma 2, 2. 3.

Let K have a binomial distribution with parameters n and t.

Let rn:n(t+cn), 0<m<n 0<t<1l, cn>0. Then

(1-t-c -n

A D U R AN B

Proof [3].

For x>1, K>0, xK is an increasing function so that

P[K > m] < min s "(ts + 1-t)"
s>1

where EsK = (ts + l-t:)n . Differentiate the right hand side with

respect to s to find the minimizing value is s, = (——I}-—l—) (1—-5) > 1.
0 n-m t



2.3. Probabilities of Excessive Deviations of the Kolmogorov-Smirnov

Statistics

Let XI’XZ""’Xn be a sequence of independent uniform random
variables on the unit interval and let Fn(x) denote the sample
distribution function. Let p(t, %.— t) denote the probability

'density" that the (unique) maximum of Fn(s)—s , for se[0,1] , is

attained at t and is equal to ® - t . Thus
n

1

n
gla T op(t, B - t)dt =1 . (2.3.1)
m=1 n
0

If P, m(t) denotes the probability density of the m-th order
’

statistic, X(m) , then

p(t, % - t) = Pn,m(t)P[Fn(S)‘S <

1k

- t; 05351[x(m)=t] (2.3.2)
and we have the following.

Lemma 2.3.1.

For p(t, %__ t) defined as above and 1l<m<n

p(t, ® - t) = m(M)t™ 1(1-t)* (-0 L_(e,m) . (2.3.3)

_nil-t)

=8

Proof:

The probability density of X(m) 1is [12]
= m~-1,,_.yn-m
pn,m(t) = m(;)t (1-t) (2.3.4)

In view of theorem 2.2.1 ,

34
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- E— . = = — n-m
P[F (s)-s < T t,tjsslIX(m) tl=l - 2% (2.3.5)
Since Ln(t,m) is defined in (2.2.3) as
P[u-X(u)sl;O<u<ntIX(nt)=m-l] = P[Fn(s)—s < % - t;0<s<t|X(m)=t]

(2.3.6)

and since the conditional probabilities in (2.3.5) and (2.3.6) are
of conditionally independent events, the lemma follows.

Evidently,

1
P[DY > d,] = Zp(t,% - t)dt. (2.3.7)
n .
0 mzn(t+dn)
An asymptotic expansion for the integral on the right (in 2.3.7) is
obtained (for suitable sequences {dn}) by first finding an asymptotic
expansion for p(t, %.— t) and then one for p(t,%-— t) for
m>n(t +dn)

fixed t and finally carrying out the required integration using the
method of Laplace.

Let {dn} and {cn(t)} be sequences as defined (and restricted)
in Lemma 2.2.2 and m=mn(c,t)=n(t+cn(t)dn) . The following Lemma

presents an asympotic expansion for p(t, %-— t)

Lemma 2.3.2

Let p(t, %.— t) be the "density" defined prior to (2.3.1).
Let m=mn(c,t) and c=cn(t).
Define

cdn t+cd cd l—tcdn

2 - n - n
d g (c,t)=-log(1+—) Q-7 (2.3.8)
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and

bn(c,t) = 2¢2 [2'rr(t:+c:dn)(l-t:-cdn)]__ll2 (2.3.9)

t(1-t)
Then for any t0 and t1 such that 0 < t

¢ such that ¢ >c¢ and c d = o(l)
n n nn

0 < tc< t1 < 1 and sequence

2
n ’ nd g (c,t)
p(t, - - t) =/n db (c,t)e nn (1+a(n,c,t)) (2.3.10)
where 1lim supa(n,t,c)=0 and the supremum is over all ¢t ;
n-o A
0 < to < t< t1 < 1 and over all ¢ ;1 <c < c .

Proof:
The proof is achieved by using expressions (2.2.4) and (2.2.19-
2.2.21) in expression (2.3.3).
Next on the agenda is the task of evaluating
z p(t, T - t)
mzn(t+dn)
for fixed t and sequence {d_} .

For each k=0,1,2,... define the sequence {cﬁ(t)} so that

n(t+ef(0)d)) = [n(erd) 4k if  [n(chd ) ]<n(e+d))
= [n(t+dn)]+k-l if [n(t+dn)]=n(t+dn)_
Let
m*(k,t) = n(t+ck(t)d ). (2.3.11)
n n n
Then
Z m* (k,t)
p(t, B-t) = ¢ p(t, B2—u—-1t)
mzn(t+dn) n k>1 n ’

It is interesting to observe that, when ndg is large, the

dominant term of (2.3.10) is a decreasing function of ¢ .
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In particular, if a, is such that a>1 and

n(t+a d ) = [n(t+ad,)] ,

the upper and lower Darboux sums of

2
a ndngn (C ’ t)

n
ndnf bn(C,t)e
c;(t)

obtained by breaking [c'(t),an] into intervals of width l/ndn are

dc

n(a -1)d_-1
: ndZg (cX(o),0)

bn(ck(t),t)e non (2.3.13)
k=1 m
and
n(an--l)dn
. nd%g (cX(t),¢)
b (c (t),t)e (2.3.14)
— n n
respectively.

This leads to

Lemma 2.3.3.
Let p(t, % - t) be the '"density' defined prior to (2.3.1) and
{dn} be defined as in Lemma 2.2.2. then
Z nd’g (1,t)
p(t, %-— t) = an(t)e (1+a(n,t)) (2.3.15)
mgn(t+dn)

where
1/2 -1/2
a_(t) = 2(nd§) (2nt (1-t)) , (2.3.16)

gn(l,t) is defined in (2.3.8)
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and
lim sup a(n,t) =0 .
n-> t0<t<tl
Proof.
For some a>1 let kn=[(a—l)ndn] and write the left hand side

of (2.3.15) as

v m* (k, t) Z m* (k, t)
:E: p(t, ——— - t) + p(t, ——— - t) (2.3.17)
k=1 " k>k +1 n
= Q1+Q2 say .

It will be shown that Ql is asymptotically equivalent to the right
hand side of 2.3.15 and that Q, 1is asymptotically negligible when
"a" is a sufficiently large real number.

Making use of (2.3.10) and (2.3.12) through (2.3.14), Ql may
be expressed as

-1 a ndzg (c,t)
(/ad?) q, = (ndn.f b (c,t)e ™" de)(l+a*(n,t)) (2.3.18)
1

2, (0
ndpg (Co(t),t)

+

en(bn(Cg(t),t)e

where

2 and 1lim sup a*(n,t) = 0
n->e t0<t<t1

e, |

In

For large n , each integral exhibited in (2.3.10) is determined by
its behavior near one since gn(c,t) is a decreasing function of

c>1l . To see this, recall the definition of gn(c,t) in (2.3.8):
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cd cd
2 - - By (1-t- -2
dngn(c,t) ((t+cdn)log(l+ " )+(1-t-cd)log(l l-t))'(2'3'19)

Differentiate with respect to c¢ to obtain

cdn cdn
—dn(log(1+'—g—)—log(l— I:E)) (2.3.20)

3 (42
S(d2g (c,t))

1t t+cdn
-d_(log —% « —— .
n(log t l—t-can

Clearly 53_.dign(c,t) < 0 since 1-t/t 1is a decreasing f wmction of
c

t .

Differentiate again with respect to ¢ to obtain

2

2 -d

d dzgn(c,t) = n <0. (2.3.21)
3c2 n (t+cdn)(l—t—cdn)

The mean value theorem is used to write
nd2g_(c,t) = nd2g_(1,t)+(c-1)nd2 (°_ g (%,t))
n-n*? n°n*? n 30 &n L2

for some 1 < ? <c .

Since for large n, bn(c,t) is an increasing function of c¢ it

is now evident that for large n

nd2g_(1,t)
2 n-n 2 '
a ndg _(c,t) nd b_(a,t)e nd“(a-1)g'(a,t)
n°n - nn n n
ndf b_(c,t)e de < f
n n -
1

ndzg'(l,t) eldu .
n®n 0

(2.3.22)

and

e¥ du . (2.3.23)

2 2 '
ndngn(l,t) dl.ndn(a—l)gn(a,t)

b _(c,t)e n de > 5
ndngé(a,t)

2
fa nd gn(c,t) nd, b, (1,t)e
1 0
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)
4 —
(Here g'(a,t) = Py g,(c,t))
In particular if we let a = 1+<Sn where dn >0, én = o(1)

1 _
and~——§ = o(én)

nd
n
then )
nd’ g (1,t)
an ndﬁgn(c,t) bn(l,t)e nn
ndn bn(c,t)e dc= (140(1)).(2.3.24)
dnlg&(l,t)l
1
To verify (2.3.24) note that
nd%s g'(a_,t) < nd%6_g'(1,t)
nn n’ - n ng ’
and
5 d, dn
t = )~ - —_—
ndnﬁng a,t) = ndnén(log(l+ . )-log (1 l—t)) (2.3.25)
2
-ndnén
<
2t (1-t)
provided
4o to(l-to) tl(l—tl)
q < min > , 5

The latter inequality is obtained by noting that
f£(x) = 1og(£:£) - log E:E:f_ - X
t t+x 2t (1-t)
is such that f(0) = 0 and f 1is increasing if x is small.
Since 1im ndgdn = o we conclude that the integrals on the right
hand side ofnzz.3.22) and (2.3.23) converge (uniformly for t0<t<t1)

to -1 as n becomes large. Of course bn and g, are continuous

and (2.3.24) follows.
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Using (2.3.22) and an inequality analogous to 2.3.26 we have

a ) a )
ndngn(c,t) ndngn(cﬁ)
bn(c,t)e de bn(c,t)e de

a 1
o

b_(a,t) nd2(a-1-28.)g'(a_,t)
n 0 LA (2.3.26)

A

bn(l,t)

In view of(2.3.24),(2.3.25)and (2.3.26) ,

2

nd’g (c,t) b (L,t)e
ndn bn(c,t)e dc = [l+a(n,t)] (2.3.27)
1 dplg!(1,0)]

for some a(n,t) such that

lim  sup a(n,t) = 0 .
n->o t0<t<tl

Note that

/o d%b_(1,¢)
n

r\/an(t)
dplel1,e)]

To complete the proof we need to show that Q, is small.

Returning to (2.3.3) it is seen that

m _ m 0y M O~
p(t, o t) < " (m)t (1-t)

and, using (2.3.8) (2.3.11), (2.3.17) and Lemma 2.2.3, that

2
nd’ g (a,t)
Q2= Z p(t’%—t)<%enn
mzn(t+adn)+l ‘
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Then, by (2.3.20), (2.3.21), the remark following it and 2.3.25, we have

2
n ndngn(l,t) l-t t+d -(a—l)ndn
Q<_e (—. n)
2 - t ‘T=t=d__
t n
-(a-l)ndi »
n —EEZI:E;—" ndngn(l,t) (2.3.28)
< " (e e

Since ndg > ag log n for some ag > 0 , the constant a in (2.3.27)
may be selected so large as to make Q2 asympotically negligible
compared to Q1 for all to<t<ty (e.g. (a-1) > t(l—t)/ao)

The equivalences (2.3.17), (2.3.18), (2.3.27) and inequality
(2.3.28) verify (2.3.15).

Recalling that the point t at which Fn(s)—s ; se(0,1) attains
its maximum has a uniform distribution over the unit interval, line
(2,3.15) in Lemma 2.3.3 may be interpreted as an expression for the
conditional probability that

Oizzl(Fn(s)—s)z dn
given that the supremum is attained at the point ¢t , t0<t<tl . The
following lemma presents an expression for the unconditional probability
that

sup Fn(s)-s)i dn .

O<s<1

Lemma 2.3.4.
Let {d.} be a positive sequence as defined in Lemma 2.2.2, and

n

p(t, %.— t) be the "density" defined prior to (2.3.1) then
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1 :E: o ndign(l,t:)
p(t, oo t)dt™—e (2.3.29)
0 mzn(t+dn)

where gn(l,t) is defined in (2.3.8) and t: is such that
sup g _(1,t) = g _(1,t*) (2.3.30)
O<t<l o n n
Proof.

The method of Laplace ([4], [20]) will be employed to show for

0<t0<l/2<tl<l , that

t1 2 2
ndngn(l,t) ndngn(l,tg)
an(t)e dt ~e (2.3.31)

t

and

t 1
° Z nd2g_(1,t%)
+ p(t, ‘;‘1‘-— t)dt = o(e ny (2.3.32)
0 tl

mzn(t+dn)

To verify (2.3.31), gn(l,t) is twice differentiated with respect to

t 3

2 = 42 - £ 4(-t- 1-t
dnfn(t) dngn(l,t) (t+dn)log t+dn+(1 t dn)log(lmt_d )

T (2.3.33)
d t+d

3 2 n 1-t n
d2ft(t) = 44 1,t) =——— - log(=—%t .—/— 2.3.34
Sf£(0) ot 8 (1t) t(-0) og( . l-t—dn) ( )

2, 1
a?en () = 2= d%g (1,t) = —d2|:—2——— +1 ;’ <0
n ots D oy ¢ (t+d ) (1-t)2(1-t-d

(2.3.35)
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By using Taylor expansions of the log-terms in the expression

d d d

n n __n
t(-t) - log (1+ N )+ log(1 1t

2 1 _
dnfn(t) =

it is seen that tg , the (unique) maximum of gn(l,t) is in the
interval C%(l—dn), 1/2) for all n sufficiently large. Using the

mean value theorem, g,(l,t) may be expressed as
= 1 2
8, (1,t) = g, (1, tf)+ S(e-t*) £1(3p) (2.3.36)

for some

Anelled,e 10 (e, tk]}

In evaluating the integral in (2.3.31) the following notation is

used:
hy(8) = t72(e+d )7,
hy() = (A~0)"2(1-t-d )71,
tl,n = tg +te s
tO,n = tg - €

where

e =o0() and e~2 = o(ndz) R
n n

_ 2 1/2
u_ = (ndn(hl(tl’n)ﬂlz(to,n)) ,

v_ = (ndrzl(hl(to’n)+h2(tl’n))l/2 ,

and for some €¢>0 , t0<l/2~e and tl>1/2+e .

In view of (2.33) through (2.3.36)

2
ndnfn(tg)

tl,n 2 2

nd f (t) o (t')e u (t, -t¥)-x"

f o (e T8 Tdr < ——F noln TS ax
t n u

O,n n

—t%k
un(tO,n tn)
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t.,n nd?f (t*) v _(t —-t*
1 ndzf (t) v n n' 1l,n n) 2
nn an(tn)e -
an(t)e dt 5 ‘§ dx
- v v (tn _—t¥*)
t n n' 0,n "n
O,n
1 4 "
for some tn € [tO,n’tl,n] and t; e[to’n,tl’n]
Because t;/V1/2 it is seen that
]
an(tn) an(t;) -1/2
_ A~—— ~/(27m)
u, v,
so that
"Lin 2 2
ndnfn(t) ndngn(l,t;)
an(t)e dt ~ve ) (2.3.37)
t
O,n

Also, referring to the definition of an(t) , (2.3.16), it is evident

that
t t
0
o ndifp(t) _1/2, .2.1/2 0,n ndzfn(t)
a_(t)e dt < 2(2mtg(1l-ty)) (nd?) e T dt,
t0 tO
(2.3.38)

Here, fn(t) may be expanded as

— t -
fn(t) = fn(tO,n) + fn(7)(t tO,n) for ty<ts ?5t0,n .

Of course t-t; . <0 and f; is a decreasing function so that
bl

fn(t)

IA

- '
fn(tO,n) + (t to,n)fn(to,n)

IA

En(to,n) + 15 e (t-ty 1) (2.3.39)

for n sufficiently large.
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The latter inequality is obtained by expanding f&(to,n) as a
Taylor series about t: with the assumption that d = o(l) and
t, = o(1l) .

Since ndﬁ €, tends to infinity for large n

0

to,n 2 -u 2 -1

s - ~

f 15nd%e, (t-tg ) 1 f e “du~(15nd"e )

e dt = ———
lSndne

2
to 15ndnen(t0—t0,n)
(2.3.40)
Finally fn(to n) < fn(tg) so that lines (2.3.38) through (2.3.40)
b ]

guarantee

t
0,n nd?s_(¢) nd%f (t*)
a (t)e n dt = o(e 1 Ty (2.3.41)

%o

provided ndieﬁ tends to infinity for large n .

A similar argument shows that

t

1 nd’f () 2 . nd?f_(t)
f an(t)e dt < 2(2ntl(l—tl)) ndn f e dt ,
tl’n tl,n
and
fn(t) < fn(tl,n) - 15€n(t—t0,n)
so that

1 2 2
nd f_(t) nd f (t*)
f a (e "7 dt=o(e " ), (2.3.42)
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the asymptotic expansion (2.3.37), (2.3.41) and (2.3.42) verify
(2.3.31). To verify (2.3.32) recall Lemma 2.2.3 and Lemma 2.3.1 to

see that

p(t, T- ) < @D Ao

m>n (t+d_)
n(l-t-d_) n(t+d ) n-1 -n(1l-t-d,)
< n(1mt ) a-L a-—i—) It m
1-t-d t+dn n(l-t-d.) 1-t

Note that (1 - %)X < e_l and (1 -=)""< 1 - —)-le for x>0

so that

I 2
zz . -1 1-t=d ndf (t)

p(t, = - t) <n(1- ) ( e
mzn(t+dn) n n 1-t

where fn(t) is defined in line (2.3.33).

Thus there is a constant ¢ > 0 such that

t
0 nd £_(t)
p(t, m_ t) < cn e dt (2.3.43)
m>n(t+d ) n

0

As in (2.3.39), fn(t) may be bounded above by

fn(e) < £ (e) + (e=tg) £ (tg)

for 0 <t < ty - Thus the right hand side of (2.3.43) is bounded

above by
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2
cn ndnfn(to)

5 (2.3.44)
]

ndnfn(to)

which is asymptotically negligible when compared to

2
*
ndnfn(tn)

This may be easily demonstrated by means of the following crude

inequalities. For t < tX

£L() = (e=t¥)E1(3,) > (— - t)

and

t 2"
£_(£) = £ (26)-t£! (2t) +.§ £1(3)

£_(2t) - 1

16t

In

provided 2t < tg'
Thus the expression in (2.3.44)is less than

2
ndn

T80 na’f (2t.)
ce e BN 0

)d2 (2.3.45)
n

1_
Gt

i *
provided 2t0 < tn .
. 2
Then since fn(ZtO) < fn(tg) and ndn > aolog n selecting
ty < a0/16 also will assure that expression (2.3.45) and hence
expression (2.3.43) is asympotically negligible compared to (2.3.37).

A similar argument is used to show

ndnfn(t*)
p(t, T - t)dt = o(e D) (2.3.46)
m>n(t+d ) :
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Recalling Lemma 2.3.1 and Lemma 2.2.3 it is seen that

p(t, 7= t) < FQPA-0)"

:E: n(t+d) nd’f_(t)
p(t, 2-t) < e if t < 1-dg

t
mzn(t+dn)

and

and is zero if t > l—dn

Thus

ndﬁfn(tl)
p(t, o - t)dt < cn e
m>n(t+d )

and (2.3.46) is verified.
The results of this section are summarized as:

Theorem 2.3.1

If {Xn} is a sequence of independent, identically distributed

random variables with continuous distribution functions, F , and

+

Dn = sup Fn(x) - F(x) 1is the Kolmogorov-Smirnov statistic generated
X
by Xj,...,X; then for any real sequence {d } such that dn >0,

dn = 0(l) and ndﬁ > ag log n for some ag >0

2
nd2f_(t*)
P[D* >d J~e D

n n

where

d, d
—d f () = (t+d, )log(l+'—-)+(l—t -d )10g(l l -t

and t: is the unique value at which fn(t) attains its maximum for

0<t«<1l.






50

Corollary 2.3.1

For the sequences {Xn} and {d;} defined in the previous theorem
i} nd2f, (£%)
P[Dn > dn] —~e

nd2f (t* )
P[Dn > d,] ~2e



2.4, Probabilities of Excessive Deviations of the Kuiper Statistic

For a sequence of random variables, each with distribution
function F, the Kuiper statistic is defined in terms of the sample dis-
tribution function, Fn’ as

Vn = sup(Fn(x) - F(x)) - inf(Fn(x) - F(x)).
X X

This statistic was originally suggested to test hypotheses about

distributions on a circle. It has the property that Vn is the same no

matter where on the circle the count to determine Fn(x) begins. To

make this statement more precise, define addition on the unit interval
by

s+t =985+t if s+t<1l

s+t-1 if s+t>1

and define the "interval' [s, s+t] by {x:s <x < s+t} if s+t<1

and {x:s<x<1 or 0<x<s+t-1} if s+t

\%

1.
Let Xl’ XZ’ e, Xn be independent uniform random variables
on the unit circle. Define X:(t) as the number of Xi in the interval

(s, s+t] and anl(t) = Xz(t). Then

V. = sup (F (x)-x)- inf (F_(x) - x)
Too<x<l " o<x<l ™
s . s
= sup (F (x) -x) - inf (F(x) - x)
0<x<1 o<x<l "

Let Dn(v) = Fn(v) - v. If the infimum of Dn(v) occurs at s and the

maximum at s+t and the mth order statistic in the interval (s, s+1)

51
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occurs at s+t then V = = _ t. Let p_ (t, o t) be the joint
n n n n

""density' of the above event.

1 1
n-1 m
f f 2 pn(t,?—t)ds dt=1.
m=1

0 0

Then

Using the notation developed in (2. 6. 3), pn(t, % - t) may be written

as

L(t, n, m) P(t, n, m) R(t,n, m).

Let A be the event that an order statistic occurs at s and the

mth order statistic in the interval (s, s+l) occurs at s+4t. The

joint density associated with this event is

‘ - - -
n! mll_t)nml

Plt,nm) = o raom-r &

for 0<s<1,0<t<1, and 0<m<n. Then pn(t,—r;—l—-t) may

be written as
m
pn(t, - - t) = L(t,n,m) P(t,n,m) R(t, n,m) .
Here, L(t,n,m) and R(t,n,m) are defined by

L(t,n, m) = P[Fn(s) -s <F_(u)-u<F (s+t)-stt;ue(s, stt) |A]
R(t,n,m) = P[Fn(s) -s <F (u)-u<F (s+t)-sit;ue(stt, s+1)|A]

The next three lemmas present asymptotic expansions for P(t,n, m),

L(t,n,m) and R(t,n,m). Since the proofs are similar to those of
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Section 2.3, most of the details are omitted.

Lemma 2.4.1

Let {dn} be a sequence such that dn = o(l) and ndrz1 > clogn

for some ¢ > 0. Thenif m = [n(t+dn)]

ndzg (t)
P(t,n,m) ~ [2nt(1-1)]" /2 2% ™0 .

Here, gn(t) is defined by

d d
2 _ n n
-dngn(t) = (t+dn)1°g(1+_t_) + (l-t-dn)log(l-T—_-E).

The proof involves using Stirling's formula in a manner similar

to that used in Lemma 2. 3. 2.

Lemma 2.4.2

If {dn} is a sequence of real numbers such that d_ = o(l)
and ndrz1 > clogn for some CZ >t/2 then for m = [n(t +dn)] ,
0<t<1

2d 2
L(t,nrm)~ (_2) .

Proof.

The proof consists of breaking L(t,n,m) into parts by con-
ditioning on Fn(E-z'_—t) . First note that P[erl(t/Z) = j|A] follows the

binomial distribution with parameters 1/2 and m-1;

m-1

PIX2(t/2) = j|A] = (mj'l)(l/Z) for 0<j<m-l.
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Let

L,(t,n, m,j) = P[D_(s) <D_(v) <D _(s+t); vels, s+t/2]|X>(t/2) = j, A]

L,(t,n,m,j) = P[D_(s) <D_(v) <D_(s+t); v e[s+t/2, s+t]|X(t/2) = j, Al.

Then

m-1

m-1 m-1

0 ( j ) Ll(t’ n)m’j) Lz(t) n!m’j) .

M

L(t,n,m) = (1/2)

J
As in sections 2.2 and 2. 3 the relationship between uniform order

statistics and a Poisson process, X(-), can be exploited.

P[D _(s) < D_(v); vels, s+t/2]lxz(t/2) =3, A]

Plu-X(u) < 1;0 <u<nt/2|X(nt/2) = j]

L (t/2,j+1),
I j-= n/2(t+dn+o(dn)) then Theorem 2. 2.3 yields
L (t/2,j+1) ~ Zdn/t.

Clearly,
L,(t,n,m,j) = P[D_(s) <D _(v); vels, s-i—t/Z]IXs(t/Z) = j, Al
- P[D_(s) <D (v) and D_(v') > D _(s+t); for all ve[s, s+t/2]

and some v'e|[s, s-i—t/Z]’X:(t/Z) =j,A],
It will be shown that for j = n/Z(t+dn+ O(dn)) that
P[Dn(v') > Dn(s-i-t) for some v'els, s-i-t]]th)(t/Z) = j,A] = o(dn)

so that
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Ll(t, n,m,j) ~ Zdn/t .

To evaluate P[D _(v) > D_(s4t) for some ve (s, s-Ft/Z)IXfl(t/Z):j,A]
observe that, conditionally, there are j-1 order statistics in the

interval (s, s+t/2) so the conditional probability density that the kth

order statistic occurs at s+v is the probability density that the kth
of j-1 uniform order statistics on the interval (0,t/2) occurs at

v

- - - v J-1-k
¢/2) eIt (5t (55 ocvet/z.

The density with respect to u = (t/Z)_lv is

k(O h @ Ha-w TR o <<,

The conditional probability that Dn(x) does not exceed k/n-v to the

"right" of v is (see Theorem 2.2.1)

1 - —dK  if 0 <ok < n(t/2-v)

) -x<0, 0<x<t/2] —
—2—(1-11)

P[Fn’j_k(x

0 if j-k zn(t/Z—v) .

The conditional probability that Dn(x) does not exceed k/n-v to

the "left" of v is

P[Fn(x)—xf_k/n—v 0 <x<v|X(k) =v] = L (v, k).

Thus the probability density with respect to u and k that the supremum

of D_(x) for 0<x<t/2 occurs at v and is equal to k/n-v, given

X:;(t/Z) =j and A is
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k(i) @t -udk (l - —-L—k—) L (v, k)

An asymptotic expansion for this density can be obtained by methods
similar to those used to obtain the expansion in Lemma (2.3.2). Let
e =o(d ) and j=n/2(t+d +e¢ ). We require k/n-v=d +t so that
n n n n n

k=n(v+c d ) for ¢ > 1. Let
e n e

(Zce —u)dn - ue
kn:JE1+ (t+d_+e ) ]
n n

Since kn:ju+c9jdn/t for some 6, 1<9<2;c>1, we may

obtain, using Lemma 2.3.4 that

P[D _(v') > D _(s+t) for some v'e[s, s-i-t]ersl(t/Z) =j, Al

. 42,2 *
_ O(eJ(dn/tn)gn(l,un))

-2j drzl/tz
ofe Y

} O(h -cz/t)

Similarly, Lz(t, n,m,j) ~ Zdn/t . This may be verified by observing

that

P[Dn(v) <D (s+t); v e [s+t/2,s t]Ierl(t/Z) = j, Al

Plu-X(u) <1 0<u<nt/2|X(nt/2) = m-j]

L _(t/2, m-j+l1)

and then proceding with the proof that Ll(t, n,m,j) ~ 2 dn/t .
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Apparently

P[D_(s) <D _(v) <D (s+t)vels, s-i-t]|erl(t/2)2j,A] =0

unless nt/2<j<n(-tz+d). In this case [e_| <d_. For
n n n

=6dn, || <1 we have

2(1+0)d \(2(1-8)d
Ll(t’ n,m,j) Lz(trn:mrj) = O[( t )( t )]

Recall that

e|
n

m-1 m-1 m-1
> = ( i )Ll(t,n,m,j)LZ(t,n,m,j).

L(t,n,m) = (—21-
j=0

Break this summation into three parts:

(@) j= F(t+d_+o(d))

2
. n
(b) j= > (t+(1+0)d ) o] <1
(c) other j
2d \2
For part (a) the sum is asymptotically (—t—n) (1 -o(l)> and parts

(b) and (c) are negligible compared to this. |

Corollary 2.4.1

If {dn} is a sequence of real numbers such that d_ = o(l)
and ndrz1 > clogn for some c¢c >0 then for m = [n(t+dn], 0<tx<ll

d
L(t,n,m) = O{ ().

Lemma 2.4.3

o(l)

If {dn} is a sequence of real numbers such that dn
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and ndr21 > clogn for some n::2 > (lit) then for m = [n(t+dn)] )

0<t<l

dn 2
R(t,n,m) ~ (ﬁ;—)

The proof is similar to that of the previous lemma. Note that

P[erl-'_t lz-‘—t) =j IA] follows a binomial distribution with parameters

1/2 and n-m-1;

. n-m-1
P[erl”(l—it) = j|A] = (m‘f"l> (l> , 0<j<n-m-1.

Let

Rl(t’ n, m,J)

_ Cn . Lo 1-t s+t 1-t .
= P[Dn(s) <D _(v) <D (s+t);ve [s+t, s+t+ > J|A and X" (50) = j]

R, (t,n, m,j)

s+t, 1-t ]

_ " Co Lt 1-t, _ .
= P[D (s) < D_(v) <D _(s+t);ve[siti—,s+1[A and X " () = ]

Then

n-m-1 n-m-1
=

R(t, n, m) = (“'r.n'l) (%) R (t,n,m,j) Ry)t,n,m, )

j=0 !

It will now be shown that for j = %(l-t - dn + o(dn))

dn
Rl(tv n,m, J) -~ (m)

Note that
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Rl(t, n, m, j)
- P[D_(v) < D (sét);ve [sét, sttiist]|A and x5TE (L) - j)
n — n ’ ’ 2 2

- P[D ) <D (s-i-t) iV E [s+t s+t+—]

and

Dn(v') < D_(s) for some v'e [s+t, sil—t—i—-l%t]’A and Xs+t(l—t) = j]

and for any Poisson process X(u) and j = %(l-t - dn+en)

1- s+t , 1-t .
il

P[Dn(v) SD (s+t);vel[s+t, sit+ ]A and X (—2—) =

P[X(w)-u<0 0<u< 3 (1-6)|X(5 (1-t)) = j]

L 2 Cnlst
= 1 a0 for O<J<n(2)

0 if j>n(l—£t)'

Also, using the notation of Theorem 2.2. 1,

1:’[Dn(v') <D _(s) for some v'e [s+t, s-'kt-i»l—it |A and s+t(l_t) .

dn+€n
Pl: sup (F . (u) -u)> ]
1-¢\ M) 2

O<u< -

. 2 2
i O(e—ZJ(dn+sn) /(1-t) )

where Tl’ TZ’ e, Tj are the order statistics based on j uniform
1-t

random variables on the interval [0,—2—] . The "O term'" was

obtained in the same way as the corresponding term in Lemma 2. 4. 2.
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Similarly,

G 2(n-m-j-1) L_n
Rz(t,n,m,J) = o(l - n(l-t) for j = > (1-t dn+en)

and

d
Rz(t,n,m,j)~-—— for € = o(d))

and we can deduce

d \2
R(tv n, m) -~ (T-Et-)

These lemmas are used in the proof of the following Theorem

Theorem 2.4.1

If X,,X

TR IERE is a sequence of independent, identically dis-

tributed random variables with continuous distribution functions and

V  is the Kuiper statistic (as defined in Section 2.0) generated by
n

Xyseoon X and if {dn} is a real sequence such that d >0,
d_=o(l) and nd® > 1/2logn then
2 ndi gn(t:;)
P[v >4 ]~ 8nd- e
n n n
where d%g (t) = (t+d )log[—te) + (1-t-d )log[-—=ft_) and t is
n °n n t+dn n l-t-dr1 n

the value at which g(t) attains its maximum 0<t< 1.

Proof.

The proof is similar to that of Lemma 2. 3. 4.

By Lemma 2.4.1, 2.4.2, 2.4.3 it is clear that for

m_ =n(t+cd )
c n
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2
nd g (c,t)

m
-1/2 (Cdn)4h3/ze

p_(t, —< -t) ~ (2m) ->/2

(t(1-t))

4

here drzlgn(c,t) is determined by replacing dn by <:dn in the

definition of d_i gn(t) and, repeating the reasoning of Lemma 2. 3. 3,

n-m
» (t, mtk -t)
k=0 n

1-t

dn ndzg (c, t)

- -5/2 ’
-~ 4ndn (2m) l/Z(t(l-t) / (cdn)4n3/ze non dc.
1
5/2
s172,( ™9 ) 2
(2) 4(m ndn gn(t)

—~

hog 1+ 3 =)
ndn 10g(1+T) - log(l - I—I)

It remains to integrate this asymptotic density with respect to s and
t. Integration with respect to s leaves the expression unchanged.
Integration with respect to t is carried out using the method of

Laplace (see the proof of Lemma 2. 3.4) to obtain

//Zp e, 20 g ae
h n n

2 5/2

_1/2 nd
(2m) /<>:< n*) 1/anz (t*)
- t (1-t ) 2 e n&n'*n
nd (d /(t*)(l-t*)) ndZ[ %2 1 + %2 1 «<
n\ n BT (t+d ) (1=t )(1-t -d )
2 ndrzl gn(tj;)

~8nd @
n



2.5. Probabilities of Large Deviations of Kolmogorov-Smirnov

Statistics

Let Xl’ XZ’ ... be a sequence of independent, identically
distributed, continuous random variables with common cumulative

distribution function ¥ . Then Yl = F(Xl), Y, = F(XZ)’ ... 1is a

2

sequence of independent, uniform random variables on the interval

(0,1). Define D' = sup (F (t)—t) where F_(t) is the empirical
n - op<e<i\ n n

distribution function of Yl’ YZ.’ ..

to the usual one-sided Kolmogorov-Smirnov statistic,

- Yn . Of course D: is equivalent

Sl})ip (G (X) - F(X)), where G _( ) 1is the empirical distribution
—o<X< oo\ B n
function of X,,X.,...,X
1’772 n
Of interest is the rate at which the probability that D: is

greater than a constant tends to zero as n becomes large.

Theorem 2.5.1

Let D: be defined as above and let ¢ be a real number,

0<c<1. Then

P[D! > c]~ a(c)[pe)]”, (2.5.1)
where
%\t +c %\ 1-t -c
B(c) = [:( i ) (—l}f—) :] (2.5.2)
t +c 1-t -c
and
-vv>:< * -1/2
a(c) = (1-? )[*;-t*-c . *12 J (2.5.3)
t “(t +c) (1-t )7 (t +c :

3

Also, t is a root of the equation

62
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t l1-t-c C AL
10g(t+c . l-t) +T(l—:t—5—-0,0<t<l-c,

and w is the largest real root of the equation

e 8)-e) -+

Proof.

Without loss of generality, it is assumed that {Xn} is a
sequence of independent, uniform random variables on the unit inter-
val. The structure of the proof is the same as for the excessive
deviation case. In particular, Lemma 2.3.1 is taken as the starting
point of the proof. The first task, then, is to obtain an asymptotic

expansion for p(t, ? -t) as n becomes large for integer valued m,
m = n(t+c+6/n) (2.5.4)

where k <0 <k+l, c is a fixed positive number, and t+c is bounded
away from 0 and 1;O<x0<t+c<x1.
In evaluating Ln(t,m) the inequalities (2.2.12) and (2. 2. 13)

are again employed. Let

A= (1 + =) (2.5.5)



c+e +6/n

)‘; = (1 + ‘; ) (2. 5. 6)
c-¢ +6/n

)\r; - (1 + ‘Z > (2.5.7)

where € >0 and nei = alogn if il—z—gﬂ < CZ and 0 elsewhere.

Let K be a Poisson random variable with parameter p. Then

-m K ™ m-
P[K>m] < min ST ES" = (h) e (2.5.8)
s>1

In particular, if p = nt)\l:1 and m is defined as above

ne
- - n
ntX m-nt\ -
> P (\D,j) < n e n<e2(t+c+e7n) < n—a (2.5.9)
n*n’d = \Tm — -
j>m
2
ne
_ n
+ . -
> P (\,j)<e 2ttetZe #0/n _ a5 5 )
j>m+2ne
- n
and 3
ne ne
_ n + n
£ P\ j) < mins™Es™® <e?(tetO/m) Taticio/n)® < 7P
j<m s>1
(2.5.11)

Let W denote the root associated with )\: as defined in Theorem

2.2.2. Similarly let w_ denote the root associated with )\;1 . Then,

returning to the inequality (2. 2. 12) it is seen that

-w

L (t,m) < (1-€ F)(1+2m?) (2.5.12)

for all N sufficiently large, and using inequality (2.2. 13) it is seen
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that
-w

L_(t,m) > (1- e 7)(1-2n") (2.5.13)

for all N suficiently large.

Finally, let w denote the root associated with \. Since

* % - *
w=A-\A where )\ <1 is the solutionto e A A

=x e | the
following inequalities obtain
2(e + 6/n) 2(s + 6/n)
w < W <w+—-r—1—E———;w-—n—E——<w <w. (2.5.14)
+ y (2.5.15)
Thus, selecting a > 1/2, it is concluded that
L_(t,m) = (1 -e'W>(1+8(n'l/2)> (2.5.16)

An asymptotic expansion for the expression

P (t,m) = m(rrrll>tm_l(l R

may be found in a mannersimilar to that used in Lemma (2.2.2). It

is found that

1/2 n ) 2
P (t,m) = (—‘—;‘ﬂ“—) (B(t,c)) (a(t,c)) (1+0(k—))
n 2mwt“(1-t-c) n

(2.5.17)

where

t t+c 1-t l1-t-c
P(t, c) = (t+c> <l-t-c)

and

t l1-t-c
aft, c) = (l-t ' t+c)

Thus
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-w 1/2 0 n
plt, = -t) = (C(tl('li) )>(2;‘((fff_)c)) (a(t,c)) (p(t,c)) (l+an(t,k)>

(2.5.18)

and sup an(t, k) = o( n'l/z) for X < t+c < Xy and 0 <k < kn= o(nl/z)

The probability density that the maximum deviation of D: from 0

occurs at t and is greater than or equal to n(t+c) is

m

k
q(t,c) = = p(t, — - t) (2.5.19)
k>0
k+0
where m, = n(t+c+ ——n—n) is integral valued and 0 Sen <1. To
see that
m
0
p(t, — -t)
q (t7 C) 1 -a(t, C) (2. 5. 20)
write
k! m, m,
q (t,c) = Z p(t, — -t) + z p(t, — -t) |
n k=0 n k>k'+1 "

The first sum on the right tends to the required limit for large k';

k! m

m k'+1
o T St = el 't)(l T a(t,(ct;C)> (1 +3(”_1/2))

if k'=o(n'’?).

The second sum on the right is bounded above by the sum of
the probability densities of the order statistics themselves. Thus,

employing Lemma 2. 2. 3.
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k-1

k n n-k
= p(t,—n—-t) b k(k)t (l-t)

k>k'+1 £>k'+1

1-t-c-k' t+c+k!
1 1
<nfi-5%) ()

1-t-k'-c' nk' n
= n(lt-t ' c:-t-f-k'C) (P’(t'c))

-1
= o(ﬁ(t,c))n for some k':O(( 105“) )_(2,5,21)

IA

-n

Thus qn(t, c) may be written as

en
q(t,c) = fn(t,c)(a(t,c)) (1+a) (2.5.22)

where |an| = o(1) independent of s and c¢ for s bounded away from

zero and s+c bounded away from 1.

+
The probability that Dn is at least c is

l1-c
f qn(s,c)ds (2.5.23)
0
and for fixed t such that n(t+c) is an integer

t t
f q_(s, c)ds f fn(s,c)[a(s,c)]e(l+o(l))ds

1 1
(t- =) t-—

t
(1+0(1)) f £_(s, c)[a(s, o) ]P(E-8) g
1

t-a (2.5.24)

The integral on the right may be expressed as
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¢ 1
fl fn(s,c)[a(s,c)]n(t's’ds - 'rlff £ (t-2),¢)(a(t-2, ¢)) du

t- — 0
n

1
~ 21 (tc) f letig a0 " late- 1, )] du
0

1
1 uc
~an(t,c) f e-’t(l—_t) du

0
L <
- %n_tl fn(t,c)[ -et“'t):l‘ (2.5.25)

This may be seen by letting s=t - :1—1 ; 0<u< 1 then

¢ 1
flfn(s,c)[a(s,c)]“(t“s)ds - -rl;f £ (-2, o) fa(e-2, c]% du
0

t-—
n

and observing that a(t-%,c) ~ a(t,c) and that

u  n(t+c)

- u n(l-t-c)
fn(t-%,c) ~ £ (t, c)( o )

(l-t+—)
n
1-t
cu

~f (t,c)e t1-8) Tage, o)] e

u
(t+c . 1-t )
t 1-t-c

This final relationship is used to define gn(s, c), a smooth approxima-

C
s(i-s) °

tion to qn(s, c). Define b(s,c) = loga(s,c) + Define

C
g (s, c) = fn(s,c)I:I _I:ffa?g,c)] [:S(t‘s) 1-e 5(1‘3)1(2.5.26)

if b(s,c) # 0 and
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C

i - o252 T

if b(s,c) = 0. Then (by 2.6.24, 2.6.25)

And from the above discussion it is evident that for t bounded away

from 0, and t+c bounded away from 1, that

t t
f qn(s,c)ds :(flgn(s,c)ds>(1+on(t,c)>
t-

1 b1
n

where ]on(t,c)l < a and a is a sequence convergent to 0 inde-
pendent of t and c.

Thus for 0 < tO < tl < l-c

The left hand term is the probability that the maximum deviation of
Fn(s) - s is atleast ¢ and is obtained at some s, tO <s< t1 .

The right hand term may be integrated using the

Method of Laplace [4, 20]:

Let ¢(x) and h(x) be two real continuous functions defined

on (a,b) such that
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nh(x) is absolutely integrable for every positive

(i) ¢(x)e
value of n > n,-
(ii) h(x) has a single maximum in the interval, an interior
point of (a,Db).
(iii) h'(x) 1is continuous, h'(y) = 0 and h'(y) < 0. Then

as n —»> o

° nh(x) 27 172 nh(y)
¢x)e dx ~ ¢(y) [m] e "V

a

In our case

t+c 1-t-c
t 1-t
h(s) = 1°g(t+c) <l-t-c)

1/2 -w < .
(5) _[ s+c J (1-e %) [ b ][ o s(l-s)]
®(s) = | 3a(1-s-c T-a e bdl T

a = a(s,c), b=>b(s,c), w= w)\ as defined above, and
s
R 1/2 R nh(s) -2 172 nh(y)
g, (s,c)ds = n d(s)e ds = MY)(F(Y)) e .
to to
Since

t+c l1-t-c
t 1-t
his) = 1°g(t+—c> (__—l-t—c>

h'(s) c

s l-s-c c
(1°g stc  1-c ) t (e - o2t gy = P

hn(s)

I}
1
(@]
o
[©]
oy
[
+
0

1 :l
+
(l-s)z(l-s-c)
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it is evident that h'(s) has at most one root in the interval [0, 1-¢]
and it must be in the interior of the interval since

lim h'(s) = o lim h'(s) = -o
s—>0 s—>1l-c

s %
Call this root t and select tO and l:l , so that to <t < t:l .

Evidently conditions (i), (ii), (iii) of the method of Laplace are

satisfied.
Thus
t t
qn(S,c)ds ~f gn(s,c)ds
tO to
* RS 2 PO
(1-e %) 1-t -c 1 T
-~ C *2 ok 2 + ENVAES e
t “(t +c) (1-t ) (t +c)
= a(c) [B(c)]”

(¢(c) and B(c) are defined in lines (2) and (3) of the Theorem),

To complete the proof it should be noted that

t t 1

0 1
P[D: > c] =f qn(t, c)dt +f qn(t, c)dt +f qn(t’ c)dt
0

t t

t 1

0
~a(c) [pe)]” +f q(t, c)dt +f q(t, c)dt.

0 tl

It remains to be shown that the two integrals on the right are small

compared with o(c) [B(c)]n .
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The integral

to
qn(t, c)dc

0

denotes the probability of the event that the maximum deviation of
Fn(s) -s 1is at least ¢ and is obtained for some s in the interval
(0, to) . The event described is realized only if at least nc of the

order statistics, Y are in the interval (O,t

K’ The probability of

0)’

the latter event is P[K > nc] where K is a binomial random variable

with parameters n and ty - Thus

to
q (t,c)dt < P[K > nc] <min s™"“Es

+K
0 s>1
= mins "C(ts+1-t)"
s>1
= [Bity, ©)]" say
l-c

]l/c

Clearly B(ty, c) < Blc) if 0<ty<1/2 and ty<(l-c) ¢ c[B(c)

0

For any such ty s

t

0
f q (t,c)dt = ofa(c) [p(c)]™) .
0

A similar argument demonstrates that
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1
f q,(t,c)dt < P[K > n(t +c)] < [B(t,, t;+e)]”

t

(here K is a binomial random variable with parameters n and tl) so

for any tl; t < tl <l-c

1
f q,(t, c)dt = ofa(c) [p(c)]™) |

3

This concludes the proof.

The following two theorems are immediate.

Let Xl’ XZ’ ... be a sequence of independent, identically
distributed random variables with common, continuous distribution
function F. Define the sample distribution function as

1
Fn(x) = =
X <x ‘

i—

Define the Kolmogorov-Smirnov statistics:

D = sup (F(x) -F (x))
n ~-o<x<® n
D, = sup |F_(x)-F(x)]|,

~o<x< m®

Define functions of ¢, 0<c <1 as follows:

%

t ; the root of the equation

s , l-s-c c AL
(10g(s+c I_s )) +(§(—l—-?)) = 0; 0<s<l-c
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e

w ; the largest real root of the equation

1+ )(1-€ ) -w=0
t

* A x* e
B B =exp{(t +c)(log f ) + (1-t" -c) (103—11‘:—)} B l_fk e*P 'C*SC~H*)
t +c 1-t -c 1-t -c t (1-t )

wit [[1-t -c tFre T 71/2
@i @ = —¢ 2t T w2
t (1-t) :

Theorem 2.5.2

Let Dr-l be defined as above, then

P[D;>c]~a -Bn.

Theorem 2.5.3

Let Dn be defined as above, then

P[D_>cl~ 2« - g"
To verify theorem 2.5.2 assume, without loss of generality, that

Xl’ X are uniform random variables on the unit interval and

2’
define Ui:l-Xi, i=1,2,3,... . Let
X 1 u 1
Fn(x) = z a0 and Fn(x) = z =
X.<x U.<xn
i— i
then

X - F’;(x) = F‘:(l-x) - (1-x).
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Thus P[Dr-1 >c] = P[sup(Fz(u) - u>> c] and the probability on the right
u
is determined in Theorem 2.5, 1.

Theorem 2.5.3. follows from the observation that

P[D >c] = P[D+>c]+P[D->c]-P[D->c,D+>c]
n n n n n

and the probability on the right is small compared to the others.






2.6. Probabilities of Large Deviations of the Kuiper Statistic.

Let Xl’ XZ,’ ... be a sequence of independent, identically dis-
tributed random variables with common continuous distribution function

F . As before, the sample distribution function generated by the first

n random variables 1s defined as

F (x) = = l;i:l,Z,...,n
n n

x.<Xx
1—

and the Kuiper Statistic is defined as

v o= D: +D” = sup (F_(x)-F(x))- inf (F_(x)-F(x)).

n ~o<x<o ~-o<x< o
I.G. Abrahamson [1] proved that the distributions of the Kuiper
statistic and the Kolmogorov-Smirnov statistic are of the same exponen-

tial order in the tails,

log P[D > c]
n l1; 0<c<l1l.

lim
n—w

log P[Vn > c] )

The following theorem, together withTheorem 2.4.3 proves that the
probabilities of large deviations of Vn and Dn are not asymptotically
equivalent, in fact,

P[Dn > c]

lim ————— = 0; 0<c< 1.
n—-o p[vn>c]

Theorem 2.6.1

Let Vn be defined as above and let ¢ be a real number,

0 <c<1l1, then
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P[Vn >c] ~ arl(c)n[ﬁ(c)]n . (2.6.1)

The definitions of B(c), w and t are given in Theorem 2. 5.1 and

o (c) = t2(1-c-t)1 /22 [ 1, 1 ]‘1/2 2.6.2)
1 (1-t)% (t+¢)> /% LtP(tee)  (1-6)%(1-t-c)
w = w* , t = I:>:< ,

Proof.

The method of proof is similar to that of Theorem 2. 5. 1.
Assume, without loss of generality, that Xl’ XZ’ ey Xn are n inde-
pendent uniform random variables on the unit interval. The notation
s +t is used to describe addition on the unit circle. That is, for
0<s<1l and 0<t< 1 define

s+t if 0<s+t<l
s+t =
|1-s-t| if 1<s+t<2
and (s, s+t) denotes the interval (s,s+t) if 0< s+t <1 and the
union of intervals (s, 1) and [0,[l-s-t|) if 1< s+t < 2.

If the infimum of Fn(v) - v occurs at s and the maximum at
s+t and the mth order statistic on the interval (s, s+1) occurs at
s+t then Vn = % - t. For large deviations, an asymptotic expres-
sion for the joint probability density of the above event for m > n(c+t)
is of interest.

To begin with, the probability density that an Xi occurs at s;

0<s< 1 1is nds.
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The conditional probability density that the mth order statistic
in the interval (s, s+l1) occurs at s+t, 0 <t <1, given that an Xi
occurs at s is the same as the probability density of the mth of n-1

order statistics of uniform random variables on the unit interval,

(n-1)! m-1 n-m-1
m-D a-m-17 ¢ (1Y) :
Thus the joint density of an order statistic at s and the mth order
statistic in the interval (s, s+1) at s+t 1is

' - - -
n m l(l_t)nm 1

P(t,n, m) = (m_l)j(;q-m-l)! t

Finally, the joint probability density that the infimum of Fn(v) -v is
at s and the maximum is at s+1 and that Vn = % -t may be

written as

L(t,n, m) P(t,n, m) R(t,n, m), (2.6.3)

L(t,n, m) = P[Fn(s)-s <F_(u)-u<F (st+t) - s+t;uec (s, s+t)|A],
R(t,n,m) = P[Fn(S)-s <F _(W)-u<F (s+t)-s+t;ue (stt, s+1)|A],

A 1is the event which has probability density P(t,n, m) .

It will be shown that for m = n(t+c) and for large n

1/2 t+c 1-t-c"
(t+c) (1-t-c) 3/2[( t 1-t
P(t, n)m) ~(—-2—1TtT(th)T) n [(t+c> <l-t—c> ]‘(2. 6.4)
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Thus the joint density is

p,(t ¢) = L(t, n, m) P(t, n, m) R(t, n, m)

1/2 3/2 o

_wiely (1ot S B (Bt )"

2m)17%(1-t)3 (t+c)

(2.6.5)

As was shown in Theorem 2. 5.1

B%(t, c+ 5) ~ aN(t, 0)p™(t, )

The joint probability density that the infimum of Fn(v) -v isat s

and the maximum is at s+t and that V > r_:_ -t, m=n(ttc), is

1
q,(t,c)~ T-a(t, o) p,(t c).

Apparently qn(t,c) is independent of s so that

1
,(/)‘ q,(t,c)ds = q (¢ c)

as in Theorem 2. 5.1 we have

t t
f lqn(U, c)du ~f g, (u, c)du

1
t-H t--[;-

for

o) = s o Lt (][ T
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fn(u, c) denotes the right hand side of 2. 6. 5)divided by 1 -a(t,c), and
b(u,c) 1is defined as in(2.5.26).

Finally the probability that Vrl is greater than c is

t
1 1
P[vn >c] = f qn(t,c)dt ~ f gn(t,c)dt
0 t
0

for any to and t such that 0 < to <t < t) < l1-c. The last integral
may be integrated using the method of Laplace thus obtaining
P[Vn >c]~ czl(c)n[ﬁ(c)]n . It remains to verify the asymptotic expan-

sions listed under (2.6.4).

The asymptotic expansion of P(t,n,m) is found by using
Sterling's approximation of k! as described following line (2. 2.21).
Next, for any Poisson stochastic process {X(v), v>0} , define
L'(a,b,k) = Pla<v-X(v)<1;0<v<b|X(0)=0, X(b) =k]. For
L(t,n,m) as defined in(2. 6. 3), identifying the m -1 order statistics
in the interval (s, s+1) with the corresponding order statistics of
m -1 independent random variables on the interval (o,nt) and these,

in turn, with the m -1 jump points of a Poisson process in the

interval (0,nt) we observe that

L(t,n,m) = L'(nt -m, nt, m -1)

= ? L'(nt - m, n?t , [—-—'-mél] +j)
- PIX(EH = [252] +j]X(nt) = n-1]
-L'(nt-m,gz-'-:—, m—l-[@-i—!-]-j]
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The summation is over those integers j for which

05[—nl2'—1—]+j5_n-1.

The conditional probability of X(n—;-) is binomial with parameters

1/2 and m-1. Using an excessive deviation result for binomial
random variables it is seen that, for m = n(c+t)+k, k=0(xn) and

[5] <a ., a increasing faster than «p ,

= P[X(%—t) = [m—él] +j|X(nt) = m-1] ~ 1. (2.6.7)
lil<a_

For Ln(t,k) defined as in (2. 5. 10), it is now apparent that

2R+ ~L5, (245 (2.6.8)

L'(nt-m, >

because

Plat-m < v - X(v); 0 <v < —r;—t-|X(o):O, X(E’zi):[m—il] +i] ~1(2.6.9)

and, for m, k and j defined as above and k= [-m—i-l-] +j , relation

2.5.16 applies so that

w

t -
Ln(z,kn)~ l1-e " >0 (2.6.10)

and w is the largest real root of the equation w = (1 + f—) (1 -e ).

Applying (2. 6. 7) through (2.6. 10) to (2. 6. 6) it is seen that
2
)

L(t,n,m) ~ (1- e'w

The asymptotic expansion of R(t,n,m) is obtained in a similar

manner and we have







82

lo

R(t,n, m) ~ (

Yt
!
(o

This completes the proof.
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