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ABSTRACT
MIXED NORM GENERALIZATIONS
OF WEIGHTED BERGMAN SPACES
IN THE UNIT BALL OF CN
By

Steven Charles Gadbois

Let f be an analytic function in the unit ball B of CN for which the "mixed

norm"
(j01 (“;B |f(r‘t)|P do’(t))q/Pw(r)rZN-‘l dr)1/q

is finite. Here 0 <p < 0,0 < q <9, w is a suitable radial weight function, and o
is normalized Lebesgue measure on dB. Note that when p = q, because of the
"polar coordinates” formula, the space of all such functions is just the Bergman
space with weight . General mixed norm spaces were studied extensively by
Benedek and Panzone.

We begin by generalizing a collection of results gotten by Luecking for the
Bergman spaces or the Hardy spaces. Boundedness of certain Bergman
projections is proven first, using vector-valued integration and some facts due to
Forelli and Rudin. Representation of the dual space of our mixed norm spaces
follows from this. Then a representation of functions in our mixed norm spaces is
obtained (by using duality) and several equivalent norms are produced (by
refining arguments of Luecking).

We also state a general "Carleson measure theorem" for our mixed norm

spaces whose proof depends largely on geometry and the connection between
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the nonisotropic metric and the invariant Poisson kernel. Several consequences
are noted, including a theorem originally due to Cima and Wogen. Other related
methods and results are given, among them a Carleson measure theorem for

mixed norm spaces in the polydisc, a generalization of a result of Hastings.
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INTRODUCTION

Let f be an analytic function in the unit ball B of CN for which the "mixed

norm"
(I 01 (Jaa [f(rt)[P dc(t))q/p(o(r)er-1 dr)‘ /q

is finite. Here 0 <p <0, 0 < q < 9, wis a suitable radial weight function (e.g.,
o(r) = (1 - r3)* for a > -1), and o is normalized Lebesgue measure on 9B. The
space of all such functions is denoted by Aﬂ‘}. Note that when p = q, because of
the "polar coordinates” formula, this is just the weighted Bergman space AEJ.
General mixed norm spaces were studied extensively by Benedek and Panzone
in [2].

The preliminaries are taken care of in Chapter 1. All notation and
definitions are given, several metrics to be used later are discussed, and AF(’E is
shown to be a Banach space for certain w.

Chapter 2 generalizes results gotten by Luecking in [11] for the Bergman
spaces Afoor the Hardy spaces HP. Boundedness of certain Bergman
projections is proven first, using vector-valued integration and some facts due to
Forelli and Rudin in [7]. Representation of the dual space of A‘fj for certain p, q,
and o follows from this. Then by refining arguments of Luecking a representation
of functions in A'ZE is obtained (duality is also used) and several equivalent

norms are produced.



In Chapter 3 we state a general "Carleson measure theorem" for our
mixed norm spaces whose proof depends largely on geometry and the
connection between the nonisotropic metric and the invariant Poisson kernel.
Several consequences are noted, including a theorem originally due to Cima
and Wogen in [4]. Other related methods and results are given, among them a
Carleson measure theorem for mixed norm spaces in the polydisc which

generalizes a result of Hastings in [8].



CHAPTER 1

In section one of this chapter, a mixed norm generalization of the
weighted Bergman space in the unit ball of CN is defined, and notation is set
forth. Basic properties of our spaces of functions are given in section two, and the

various metrics we will find useful are described in section three.
1N ion and Definition

The classical Bergman space AP on the unit ball B =B, in CN (0 <p < 0)

is the set of functions f e H(B,,) satisfying
(I, @) dm(@)) e < oo.

Here N is a positive integer, CN is equipped with the usual inner product defined
forz=(z,...,2y) andw=(w,,...,wy) inCNby(z, w) = I'iz,"vﬁ'l and with the
associated norm |z| = (z, z)!2, H(By) is the set of holomorphic functions on By, and
m is Lebesgue measure on By normalized so that m(By) = 1. Using "polar

cooordinates" (see [15], 1.4.3), this integral may be written as
(2N J, (Js 1trm)lP domy) 1231 dr) 1

where I =[0, 1), S =Sy =0By = {z e CN |z = 1}, and o =0y is the rotation
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invariant positive Borel measure on Sy with o(Sy) = 1.
We shall study the following weighted "mixed norm" generalizations of the
Bergman spaces. If 0 < p, q<©° and if w is a nonnegative weight function on

[0, 1) satisfying j, w(r)r2N-1 dr < oo, define
AP ={te HB)| |fl,q0= (J, Us 1trn)lP do)) #Pa(r)i2N dr) 1a < 00},

Note that when © = 1 and q = p, this is precisely the Bergman space. Also note

that

"f"pqm j"f" Lrsy(r) (nr2N-1 gr) a,

where, for 0 < r < 1, f is the function defined on S by f (1) = f(rt). Using this

notation, we also define
A = {te HB) | [f]lw g0 = (Ul L=y @(Nr2N1 dr) a < oo},
Ae= = HP = {f e H(B) | [fll, 0= 5Up Il ips) < o0},

and A== = H* = {f € H(B) | [{]l o000 = SUP [l o) < 2}
The spaces HP and H*™ are the classical Hardy spaces. In the special case that
o(r) = (1 - )% with a > -1 [or @ = 1], we write A [or AP4] instead of APY, and
| logolor I llq)insteadof || [, We also write dmy(z) = (1 - 1zi2)* dm(z).
The set of (equivalence classes of) measurable functions satisfying the

integrability condition defining A°Y is denoted by LP3. It is easy to check that



lf+als . <IflE .+ lalls,

where s = min{p, q, 1}; thus (Aﬂ‘j I ;,q,(o) and (LF(’:‘, I ;,q,w) are metric
spaces, and are normed linear spaces if 1 < p, q < 2. The basic reference for
mixed norm spaces (including, but not limited to, our spaces ij) is Benedek
and Panzone, [2].

We will follow the usual practice of writing ¢ and C for positive constants
("small" and "large” respectively) that may vary from line to line. Dependence on
some parameter(s), for example p and N, may be emphasized by writing
C =C(p, N). Iftwo positive quantities A(x) and B(x) have ratio bounded above
and below as x ranges over some index set X, we say A(x) and B(x) are
equivalent, and we write A(x) ~ B(x) for every x e X. For example, (1-r3) ~(1-1)
for every 0 < r < 1; this particular fact will be used repeatedly without mention.

Note that by two applications of Holder's inequality, L‘;g?1 C Lﬂfzqz

if either

p, <p,andqg, <q, and (o, + 1)/q, < (o, + 1)/a,
or

p,<pyandqg,=q; and o, <0,.

In either case, the containment is proper (unless p; = p,, Gy = Q,, and &, = o),
since then there is some s satisfying N/p, + (&, + 1)/q, <s < N/p, + (o, + 1)/q,,
and f(z) = (1 - (z, £))S (with { € S fixed) defines a function in AE(quz notin

A“’x'?ﬁ

119 = (g 11 - <2, o dotm)oe(t - R)er2Nt dr

pIQIO(



~ 1 (@1 - vse)am(q - 2Nt gr

by Proposition 1.4.10 of [15], and this integral is finite if and only if
s<N/p + (o + 1)/q.

For 1 < p <9, p'is the conjugate of p defined by 1/p + 1/p' = 1. The dual
space of a Banach space X is denoted by X". We will use z and w for typical
elements of By, and we may write z=rtand w = pn, wherer,pe landt,n e S
When N =1, B, and S, will also be written as D and T respectively, and T

will often be identified with [0, 2x) without warning.

§2 Basic Properties of Aﬁj

The completeness of Aﬂf‘ is a consequence of the following growth

condition. Our statements and proofs here will resemble those in [16].

Proposition 1.2.1: If fe A’ (0 <p,q<9°,-1 < a), then

lf(z)| < C||f 12))" (NP + (2+1)/a) for every z € B

p.q,m(1 B

for some C independent of f.

Proof : First suppose 0 < p < ©2. Since [f|[Pis subharmonic, forO<r<p <1 and

7 e S we have

lf(ro)|P < .[s If(pn)IP P((r/p)z. m) do(n) < 2N(p-r)Nig |f(pn)IP do(n),



(2.1) lf(r)l(p- NP < C[lf, [l ps)-
Here P denotes the invariant Poisson kernel defined forz e Band { e S by
Pz ) = ((1- 1231 - 2 QPN

For basic facts concerning the invariant Poisson kernel, see [15], section 3.3. If

g = ©°, the result follows from (2.1) immediately. If 0 < q < ©°, we then have

f(r)ie J,1 (o - HNOR(1 - p)ep?N T dp < G

Letting x = (p - r)/(1 - ), for 1/2 < r <1 it follows that

2 [f(re)a (1 - 1)V + @+ 1¥aa [T Mo (1 -39 [(1 - x4 21 e

~ |f(n)|q (1 - l')(N/p + (a+1)q)q '[01 xNa/p (1 -x)“ dx

cll

p.q.a

so the result follows. If 0 <r < 1/2, the result follows from the maximum modulus
theorem.
Now suppose p = ©°. Then [f(rt)] < ||fp o) foro<r<p<1,andthe

result for 0 < q < ©° is proven by the same procedures. q
This growth estimate will also be a consequence of Theorem 3.3.1.

Corollary 1.2.2 : APl is a closed subspace of L3 (0 <p,q<9°,-1 <a),and is

hence complete. So AF;? is a Banach space if 1 <p, q<oo,



Proof : Suppose f, — fin L°3 with f e AP3. By Proposition 1.2.1 f is uniformly
Cauchy on compact subsets of B, so f_ is uniformly convergent on compact
subsets of B to some g since LE’:‘ is complete (see [2], p. 304). But g is analytic
= p i
([15],1.1.4)andf=gae.,soge A’landf — gin A7. q

Proposition 1.2.3 : Iff& A%3 (0<p, q <o), then lim [f-4], ., =0.

This follows immediately from the dominated convergence theorem. (For

details, see [16], Proposition 3.3.) So the functions analytic in a neighborhood of

B form a dense subset of AF(’j.

There are several notions of "distance” in By (or E';q or Sy) and each has
its own advantages. We will have occasion to use three.

The isotropic metric will refer to the usual metric in CN, and B(z, r) will
denote a corresponding ball, i.e., Bz, r) ={we CN|jz-w <r}.

The nonisotropic metric d is defined on B—N by d(z, w) =1 -(z, w2, It
satisfies the triangle inequality on 5; and is a metric on Sy; see [15], 5.1.2.
Define @(O, 8)=Sy,andford>0,pe (0,1),andn e Sy, define
B(pn, 8) = {re Sy | (d(r,m))2 < 8(1 - p)}. Note that 6B(pn, 8) ~ N(1 - p)N; see
[15], 5.1.4.

The pseudohyperbolic “metric” p is defined on By by p(z, w) = |®,,(2)|

where @, is the automorphism of By, given for w # 0 by

D,(2) = (w-(z, wIW/Aw, w) - (1 - wi2)12(z - (z, wiw/(w, w)))/ (1-(z,w))



and for w = 0 by ®,(z) = -z. The corresponding "balls" are
E(w, 8) = @, (8By) = {z € By p(z, W) < 8} forw e Byand 0 < 5 < 1. Note that
mE(w, 8) ~ 82N(1 - w))N+1; see [15), 2.2.7.

We will have need of the following.
Lemma 1.3.1: Fix0O<r<1and0 < dsmall. Then
(r-8)/(1-18) <121 < (r+d)/(1 +rd) for every z € E(r, d).
(Here E(r, 8) means E(w, 8), withw =(r,0,...,0) e By.)
Proof : Write z = (24, 2, . . . , 2y) = (24, 2') and suppose z € E(r, 3). Then

821 -rz,2>r-z,2+ (1-r3)2'7?,

i.e., 2r(1 - 8)Re z; > (- &) + (1 - 8r2)z,2 + (1 - r?)i2).
Now, 4rRe z, +r32'? < r? + 4rjz,| - rz,> < 4r < 4, sO

(r2-82) + (1 -82r2)z)2
= ((r2 -8%) + (1-8%2)1z,2 + (1 - r2)12'|2) +r2(1 - 8%)z'1R
< 2r(1 - 8%)(Re z, + nz'?/2) < 2r(1 - 82)(|z1 2+ nz?Re z, + r"‘-’|z'|“'/4)”2

<2r(1 - 8)(1z,2 + 12'2)12 = 2r(1 - $?)z..

Hence (i}, 0') € E(r, 8), and (r - 8)/(1 - r8) < 1z < (r + 8)/(1 + r3).
8]



CHAPTER 2

Most of the results of this chapter are generalizations of work of
Luecking in [11]. Section one deals with boundedness of the Bergman
projection, and this result is used to identify the dual space of our mixed norm
spaces in section two. Sections three and four are concerned with

representations of the mixed norms and of functions in the mixed norm spaces.

§1 Boundedness of the Bergman Projection on L3
Suppose s > -1. The Bergman kernel K, is defined by
K (z, W) = (1 - W2)S/(1 - (z, wy)N+1+s

forz, w e By. Note that:
(a) forfixedwe B, K (-,w)e Aff)‘
and (b) forfixedz e B, K((z, -) e LPY if I, (1 - r2)s9(r)r2N-1 dr < o0, e.q., if
o(r) ~ (1 - 2)* with sq > -(oe + 1). (But K,(z, -) is not conjugate holomorphic
unless s =0.)
Both observations follow because the respective denominators are bounded
above and below in B.

The Bergman projection T is defined by

10



11
THz) = (N : S) [ K. (2, wyt(w) dm(w)

for z e By and f for which the integrands are in L'(dm). In general, the binomial
coefficient (N ltls) S T(N + s+ 1)/T(N + 1)I(s + 1). Itis clear that, for fixed s, T.f is
holomorphic when defined.

In this section, a condition on s, p, q, and o will be found which ensures
that T is bounded on LP3; there will be no dependence on p other thanp > 1. In
[7], Forelli and Rudin showed that T is bounded on LP(dm) (1 < p < ©0) if and only
if (s + 1)p > 1. Then Békollé ([1]) showed that T is bounded on LP(dm )
(1<p<oo,-1<a)ifandonlyif (s + 1)p> a + 1. (He actually showed this for
more general weights satisfying a "Bp condition”, a condition analogous to
Muckenhoupt's A, condition introduced in [13].) Animportant tool will be the

following pair of facts due to Forelli and Rudin in [7], Proposition 2.7:

(1.1a) IB IKg(2, wW)|(1 - wi2)€ dm(w) S C(1 - |z12)Cforevery ze Bif 0<c<s+1;
(1.1b) IB IK(z, W)I(1 - 1z/)¢ dm(z) < C(1 - wi>)Cforeveryw e BifO<c+s<s+1.

Theorem2.1.1: T maps L7F (1 <p<©0,1<q<°9,-1<a) boundedly into

APl if (s + 1)g > o+ 1. Furthermore, T f =fand T.f=1(0) for every f ¢ A7Y.

Proof : As noted in [15], Proposition 7.1.2, T f = f and Ts'f's '(—6) is true for
fe H>(B), hence for f e AP3 by density of H*(B) in A’3, once continuity is
verified.

If 1 < p < 0, vector-valued integration and Holder's inequality yield that

[T, ey = Sl s Kotr - omitym) dotn)p2™ dpl e,
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< CJ| Iljs Ky(r-, pn)fp(n) do(n)| Lp(s)pZNq dp
=C I, (-[s ”s Ks(rt, pn)f,(n) do(n)|P d(;(t))1/pPZN-1 dp
<C J‘l Us (Js IKs(rz, pn)lIfo(m)IP do(n))
X(Js |K¢(r, pm)| do(n))p/p' do(t)]1/pp2N-1 dp.

But Jg |K (rt, pn)| do(n) is independent of 1, so by Fubini's theorem, the

expression above is less than

ol [Usikytre, pmit aotm)oe 1 ([ 1, P dotm) ] ep2v-t op
= cf JsiKyter, ol dom) I, lpigyp? .

This estimate can also be verified in a similar way if p = 1 or ©o.

Using this estimate and Holder's inequality, we have

1T o= Ch 1T, 8oy (1 - 121 i

<l [l Js Ik (e, o)t dom) 15, neeyp? " dpJa(1 - 2jor2t
<}, (Jg 1K (re. pr)I(1 - 023 dim(pm))9e
([ K (re, p)I(1 - p2)%f |8 (s) dm(pm)) (1 - 2)erN-" dr,
where & will be chosen later. But
5 1K (re. om)(1 - 928 dm(pm) < C(1 - 2)3

by (1.1a), aslong as 0 < 8q' < s + 1. Using this and Fubini's theorem, we have

I3, o
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< CI 1 - r2)-5Q’)q/q'(IB|Ks(r1, pTl)I(1 - pz)aq"fp " EP(S) dm(pﬂ))(1 - rz)arZN_1 dr
= Cj ”f "LF’(s) )5qj| Js |Ks(rt, pn)| do(n) (1 - r2)a-8q,-2N-1 dr p2N-1 dp.

But

i ] 1. (re, o)l dotn) (1 - rRjo-Bar2N-1 g
= [k (e, pm)l(1 - 12)02+8) dm(ro)
< C(1 - p?)-te+da) = C(1 - p2)>-da

by (1.1b),aslongas0<-a+d8g+s<s+1. So

IT 12, o <l 11,1 % (1 - pR1%p2N 1 dp = C ]

p.q,& p,q,”

To choose suitable s, note that there exists § satisfying
0<dq'<s+1and0<-a+08q+sS<s+1
if and only if

(s+1)g>a+1. 0

As in [7], p. 594, we immediately get the following.

Corollary 2.1.2 : For1<p<©o0,1<q<o9,and-1<q,

Il q0 < CIRe f]l o, for every f e H(B) with f(0) =
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Proof : Chooses> (a+1)/q-1. Letu=RefandfixO<r,p<1. Then
f, = To(f) = To(f, +£,) = 2T(u,), so

-[s [fo(r)[P do(t) = ZPIS [Tsug(re)IP do(z).
Thus

1913, = i Us 1y (P do(@) (1 - et or
=29, (J IToU,(ro)lP do(n))¥P(1 - r2)er2N-1 dr
~ 2,10, <2y, 3, .

and the result follows upon letting p — 1. a

The "inner norm" LP(S) was not critical in Theorem 2.1.1. If N = 1, the
Bergman kernel satisfies K (re®, pei®) = K (rel®- 9, p) and a change of variables
is possible, so LP(S,) may be replaced by any Banach space X on S, satisfying
IFsllx <Cl

write Fg for the function defined on S, by Fy(e'¢) = F(e®-#)). No confusion with f,

F|lx for all @ € [0, 2r) and for all F e X. (Here, and only here, we
should result.) The beginning of the proof is then

Mn Ki(re", pe®)f () do|ly = IIJH K(r, pei®-)f () de
= 1z Kutr, pet,) ofe") doll < € I, Ix S 1K, pei®)l

and the rest of the proof goes through.
If N > 1, this can be imitated to some extent. Write e, =(1,0,...,0) e Sy.
Forte S, let i be a unitary transformation on S (i.e., (un,, KN, = Ny, N for

every ng, M, € S) with e, =1. So
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Js Ks(re, py)fo(y) do(y) = js Ks(re 'z, pug )T, (y) do(y)
=Jg K(rey, pn)f,(un) do(n)

where n = p "1y, If X is a Banach space on Sy satisfying

(1.2) IFn)lly < C|F()|y for everyne Sy and every F € X,

then | s Ky(r- pY)f,(v) do(mlx < C [If,lIx s K (rey. pm)l dotn). The
inequality (1.2) is trivial when X = C(Sy) for any N. When N = 2, we may take

T
H = —
T Y

A computation then shows that |1, - 15| = Iuﬁn KN | for every 1y, 1,,n € S,, s0O
that (1.2) holds when X = Lip,S,, 0 < < 1. (Recall that
Lip,S, = {fe C(S,) | 1f(z,) - f(t?_)l/ Ty - T,|* < K(f) <o forallt,, 1,€ S, with 1, ¢‘E?_}.)

§2 Representation of the Dual Space of AP

Representation of the dual space of Aﬂ? will follow from boundedness of
the Bergman projection (Theorem 2.1.1). The case N = 1, o = 0 was handled by
Shapiro in [16], Corollary 3.6. In [11], Theorem 2.1, Luecking identified the dual
space of A? using the boundedness of the Bergman projection on AP and

P
Ao(“_p,).

- Py’ i i i Pq
Giveng e Ao<[1-q’r define the linear functional L, on A Y by

Lf=(f0) = jB fg dm for f e AP3. By two applications of Holder's inequality,

’,
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Kf: g)l s "f" p,q,a”g"p',q',a(‘l-q')‘

Theorem 2.2.1 : Suppose that-1 <o, 1 <p <0, and max{1, a + 1} <q < oo,
Then the map taking g to L is a linear homeomorphism of Ag('gjq,)onto the

Pq
dual space of A" '

Proof : As noted above, any g e Af:('gfq,)defines a bounded linear functional
L, on A%S, with [[Ly[l < {lgll a1y

Now take any L € (AP%)". Extendto L e (LP%)" by the Hahn-Banach
theorem. Write w(r) = (1 - r2)%, and note that j e LP3if and only if jw'd e LP3. So
define A e (LP9)" by Aj = L(j/@'9); then there exists some k e LP9 such that
Aj= IB jk dm. (See [2], Theorem 3.1 for the generalized representation theorem.)
Leth=ko'™. We have he LOY , andLf=(f, h)forallfe L?3. Since
Ko(z, w) = Ky(w, z), Fubini's theorem implies that

2.1) (Tofy, fy = (fy, Tefpd for fy € L3 M L2and f, e LAY A L2

(To justify the application of Fubini's theorem, note that T,f, and T,f, are in L2 since
f, and f, are, either by Theorem 2.1.1 or by Békollé's result.) Now, q>a+ 1and

q' > a(1 - @) + 1, so by Theorem 2.1.1, Ty is bounded on LP3 and Lf:(‘}fq,I By

continuity of T, and density of the respective spaces ([2], p. 308), (2.1) is also true

forfye Lf3andf e LT . Letg=Toh. Soge A%, andforfe A

we have Lf =(f, h) = (Tf, hy=(f, Toh) = (f, @), i.e.,,L= Lg.
Ifge Ag(lgfq,)deﬁnes the zero functional, then since Ky(z, -) e A% for
any fixed ze B, we have 0 =(K (2, ), 9) =T, 9(2) = g(_z) i.e.,g=0. Sothe map

taking g to L is a one-to-one, continuous, linear transformation of A&’qu,)onto
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(AFO’?)'. By the open mapping theorem, the map is actually a linear

homeomorphism. 0

One can use other (i.e., weighted) duality pairings (and other kernels) to

get other representations of (Aﬁf)‘.

§3 Two Norm-Representation Theorems
In [11], Theorem 5.1, Luecking shows that
Illp ~ (sgp :51 lf(@)IP(1 - r N) P for all f & HP
where0<ry<r, <...—1and{a_,} satisfies
(1) 1@l =r,foreachm=0,1,2,. . .andeachk=1,2,...,kg,

(2) r,Sy € LkJE(a
and (3) E(a

mk» 0) for each m for some & = §(p) sufficiently small,

-k €) N E(ay, €) =0 for each m and each k=k' for some 0 <e<3.
Such a set {a,,} will be called an €-5 lattice; notice that this differs slightly from

Luecking's use of the term, for he requires the condition By = UUE(a,, 8)

instead of (2).

A close analysis of Luecking's proof yields the following.

Theorem2.3.1: FixO<p<©,0<q<oo,and-1<a. Letr =1-2"for
m=0,1,2,...andsuppose {a.,} is an &-6 lattice for & = (p, q, ) sufficiently

small. Then
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00 Km

#1500 ~ (m§, (2, [f(a) P2 ™N)¥P2-me+ D) 1a for every fe APS.
Prootf : Write E = E(ap, €), A, = UE(@ny, &), e = (fy + €)/(1 + 1€) and
o=l -ey(1-r_g), (r, +€)/(1 +r_g)). Then by subharmonicity of [f°, the
separation property (3), and Lemma 1.3.1,

T [f(@am)P2™ < 27N(s cle.. 1P dm /m(E,,0)
< C2mNgmN+ 1) Je.. 1P dm = cam/, 1P dm
=c2mf__(Js P dow)r2N1 dr
< C2™(Ji e 121 ) el P ) < Cllymel P oy

Since we may assume that € < 1/3 (at the cost of increasing the constant C), we

haver  <(r,+1)2=r_ ¢, andthus

m+1?

% (% If(a k)lpz-mN)q/pg-m(an) < CZ || frmet "EP(S)Q-m(an)

- 2N-1+4p q
<l I8t - ne@idr =2 .

In the other direction, Luecking uses a change of variables, Fubini's theorem, and

the "denseness" property (2) and actually shows that
cltrmllPr(s) < C8llfrmell Pp sy + & (@ P2™
SO

Sl g o S 5 (COlfrmanlifocs) + F litamlP2™)Fp2mio)
SKE (COMfrmynlIfoce) + (F If@moP2m™N)#p)2miast
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where K=1ifq<pand K=2%1ifp<q. Thus

cllf| g,q,tx < Csa% It "EF' (S)z-m(a+1) + C% (% |f(amk)|p2-mN)q/p2-m(a+1)
<Caf[3  , +CE (T If(ay P2 ™N)op2miosh)

and the result follows for & sufficiently small. 0

We wish to note here that the same proof works if (1-r)* is replaced by any
radial weight o satisfying w(2r - 1) < Cw(r) for every re [1/2, 1).

The fact that [|f], ., dominates the weighted sum will also be a

P.Q.C
consequence of Theorem 3.3.1.

As a consequence of this theorem, no such &-9 lattice can be a subset of
the zero set of an Afxq function not identically zero.

The second theorem of this section concerns subsets G of B that are
"large enough” so that ||f], . , and |[fxg[l, , » are comparabie for every
fe A'z;‘. (The constant of comparability may depend on G, as well as p, g, and .)

We make the following assumptions:

(1) O=ryg<ry<... 1,

(2) {an} is an e-3 lattice for some € and & sufficiently small (8 = 3(p, q, K)
where K is as in (6) below),

@) (rp+1)2<r, yforeachm=0,1,2,...for some integer M,

(4) [(ry-r2)(1-rr)|>3yforeach m=m'forsome 0 <y<e,

(5) w(r) <Cuw(ry,,q) foreach m and foreach re (r,, 1,41,
(6) (Np1) Tyt = Tem) S KO oM (T 1em = Fmann) fOr €ach m,

and (7) (o(r_,)(r.,-r))PA<Ca(r)1-r

m+1) for each m and for each r
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satisfying |(rm+1 -n)/(1- rm+1r)| <y for some p and q.
If p = q, these conditions are satisfied by r,, =1-2" and w(r) = (1 - r2)® with > -1.
Conditions (3) and (4) say that r,, — 1 "not too slowly", while condition (6) says

that r., — 1 "not too quickly", at least for weights w with suitably controlled growth.

Theorem 2.3.2 : Suppose 0 < p £ q < 9, conditions (1) - (7) hold, and

UUE(a,, 8) € G € B. Then Il .0 ~ 11261 .q.0 for every fe ATS.

P.Q.0
Proof : Since we may assume that y < 1/3, condition (3) yields
TaMS 2 = 1S (r - WA -1 ) < + QA+, W) S(rp + 121 0
Then, as noted in the proof of Theorem 2.3.1, Luecking actually shows that
c[frmll P sy S CEltrmomll P sy + T 1f@mIP(T - 1N
so

c L TN (AR T A T (S )
< C39% Iememall Boe O 2N (1 - Trcq)

+ 2 (T famdlP(1 - ) ¥Par )i 2NN (r - 1 )
< KCB [ty | B gy @) 2Ny = Frny)

+ Z (T @ P(1 - 1) HPar )2V (1 - 1)

by condition (6). Thus for & small,
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2 el By O mI 2™ i = P
<C% (g I, )P - r N)¥Pw(r )r 2N - ).

(The reverse inequality is also true but is not needed here.)

Write | _ )+ Em = E(@mio 1), Ap = UE(@, ), and

—[ m* m+1 mk? Y

my_ [(r W -row, (r, + /(1 + rm'y)) Then using condition (5) and the above

estimate,

0
19130 = 2 Jim 1502 o
< Cmg:o "frm+1 "LF"(S)(“O(rmM)rm+12N-1 (fmet = M)

<CZ (Z I@amdP(1 - rp)N)¥Pa(r )r 2N, -1, ).

By subharmonicity of |f|P, disjointness of the E_,'s, and condition (7), the above

sum is less than

cE (g( -r )NIEmk IflP dm /m(E,,))¥Pax(r )r 2NT(r -1 )
<cz((1-r )1JAm IflP dm)¥Pa(r )r 2N(r_ -1 )
<C% J JS If(r) [P X o (rF) do(t) @(r)r2N-1 dir) 9P,

Finally, using Jensen's inequality (since g/p = 1) and disjointness of the Imys

(condition (4)), this is dominated by

cE [ s 110 (1) dosn))¥P(neN o
<C% ,my(fs [f(rt)|P x(rt) do(x))¥Pa(r)r2N-1 dr
<c] | (fs If(rt)|P % (rt) do(t)) ¥Pe(r)r2N-1 dr

=Gl g
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Luecking shows in [10] that [f[|,, ~ [Ifxg, , for every f e A? if and

only if
(3.1) m (D nB)~m_/G n B) for every isotropic ball B centered on T

when N =1,p =g, and o(r) = (1 - A)*with a > -1. (He also gives a more general
result of the same nature in [11].) In this case we can also show directly that
conditions (1) - (7) along with LmJLkJ E(a, 8) € Gimply (3.1). The key is the

geometric estimate

ky2c(r2-8)/(1-r2) (m=0)
where ¢ = ¢(3, ry).
§4 Representation of A’ Functions

The duality result (Theorem 2.2.1) and the equivalence of norms result
(Theorem 2.3.1) can be used to obtain a representation of A‘;(q functions as
sums of kernel functions. This generalizes Luecking's Corollary 4.4 in [11].

If v is a weight function on {0, 1, 2, . . .}, we write ¢ = {c, } ., € 277 if

Sl iy Y1/
(m;o (&, emd) pl)m) 9= e pav < %>
Theorem 2.4.1: Supposethat1 <p<©0,1<q<o,and-1<a. Letr =1-2™m
and v, = (1-r,)! +NaP+el-a) 2N1form=0,1,2,...,and suppose {a,,} is an

€-0 lattice for & = 8(p, q, w) sufficiently small. Then every fe Af'xq is of the form
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=

L)

)= S

. -N-1
2o & CkPm( 12, )

forsome c e D.E)q, and any f of this form is in Af;q.
Note that no claim of uniqueness of c € llﬂf‘ is being made.

Proof : As in the proof of Theorem 2.3.1,

"g"p',q"a“-q') ( % |g k)lp q/p 1 -T )1 +Nqg'/p' + a(1 Q)r 2N- 1)1/q

ie., ||g||p.'q'.a(1ﬂ-) ~ "g(amk) " p.qv

Thus the map R: A”Y , — 17'%" defined by (Rg) = 9(a,) is a linear

®(1-g’)
isomorphism. Hence :% is one-to-one with closed range, and R P8 — APl is
onto. (Since max{1, a(1 - q) + 1} < q' < ©°, we have ( AE((“} q )) ~ A%3 by
Theorem 2.2.1, where the duality pairing does not involve a weight, and we have
(47.9)" ~ 4P3 by Theorem 3.1 of [2], where the duality pairing does involve
the weight v.)

To identify R, take ge Ao((1 )
only finitely many nonzero terms. Then

and c e 071, supposing first that ¢ has

J B (R'c)g dm = (R'c: g)=(c, Rg) =2 (g cmkg(amk))nrn
= £ £ CriOmls 92)(1 - @i )N dm(2)

=I5 (£ T coon(l - @ 2mdy™1)3@) dm(2)

soRc(z) = 2 & CryVp(1 =42, an) N1 To get the result for general ¢ e 175,

use finite approximations to ¢ (for which the result was just verified), the continuity
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of R*, and the fact that convergence in A‘:f implies pointwise convergence. 0



CHAPTER 3

This chapter is concerned with "Carleson measure theorems". Some of
the classical results are described in the first section, some estimates (mostly
geometric) are derived in the second section, and the third section is devoted to
the statement and proof of the main theorem. Corollaries and related methods

and results are given in sections four and five.
1 Some Hi

In the course of proving the corona theorem in [3], Carleson characterized
those finite positive measures p on B, such that (J g, IfIP di) P < C||f|| 4o for every
fe HP (0 < p <©9). He showed that this holds if and only if uS < C'(1 - p) for every
setSoftheformS =S4 = {reie |lpsr<tiandfy-n(1-p)<6<06,+mn(l- p)}; such
a measure p is now often called a Carleson measure, and such sets S are called
Carleson sets. The necessity of this geometric condition is easily shown by the
proper choice of a function f € HP which is suitably large on S; this procedure will be
demonstrated in the proof of our Theorem 3.3.1. Carleson's proof of the sufficiency
of the geometric condition used a complicated covering argument. Hormander ([9])
derived a version for more general regions in CN using a maximal function,
Marcinkiewicz interpolation, and a simpler covering argument. Using some of

Hormander's ideas, Duren ([5]) generalized the theorem to the following:

25
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(JB [f|P2 du)”pz < C||f||Hp1 forevery fe H?' (0 <p, <p, <)
if and only if
uS < C'(1 - p)P2/Pi for every Carleson set S = Speo-

The results mentioned so far have concerned the Hardy spaces;i.e.,
measures on B are compared to "measures on S". Other results have been
gotten concerning the (weighted) Bergman spaces; i.e., measures on B are
compared to measures on B. For example, there is a theorem due to Hastings

([8]) for the polydisc DN (the product of N copies of D = B,):

(,[Du |f|P2 du)"Pz < C(jﬂ)ulflpl dm)"Pl for every analytic function f on DN

(0<py<py<™®)
if and only if

uS<C(1-py)-(1-py)J2P2P forevery set Sof the form S =5 5 - - XS g0
The result of Luecking in [11], already discussed at the end of Section 3 of
Chapter 2, can be viewed as a Carleson measure theorem for the measures
xgdm,induced by "large enough" sets G in B,. Cima and Wogen proved a
Carleson measure theorem for weighted Bergman spaces in By, ([4]); the
Cima-Wogen theorem is a consequence of Luecking's general technique in [12],

and also of the proof of the main result here (see Theorem 3.4.3). The main
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result here, Theorem 3.3.1, is for weighted mixed norm generalizations of

Bergman spaces in CN, and is thus of the second type mentioned.

§2 Some Estimates

Recall from section 3 of Chapter 1 that forp € (0,1),n e Sy, and >0 we
defined B(pn, 8) = {r € Sy | (d(z, n))2 < 5(1 - p)}, where d is the nonisotropic
metric on Sy given by d(t, n) = |1 - (x, n)|"’2; we also defined B(0, 8) = Sy Also
recall that o@(pn, ) ~ (1 - p)N. (Now the constants of comparability involve 8.)

Our first lemma is the construction of a "nice” covering of S by sets B.

Lemma 3.2.1 : Suppose pe (0, 1) and & > 0 are fixed. Then
@(pm, 9),..., @(pnkp, d) can be chosen inductively so that
(1) § € UB(pny, 8),
(2) B(pny, 972), ..., B(pnkp, 0/2) are pairwise disjoint,
and (3) no point of S is in more than L of the sets @(pnk, d), where L = L(N, 8) < o0

is independent of p.

Proof : In the induction scheme, if there exists somen e S\ LkJé(pnk, d), then
add B(pn, 8) to the collection; condition (2) will continue to hold because d is a
metric. The scheme will terminate in finitely many steps because

cé(pnk, 8/2) > c(1 - p)N, 6S = 1, and (2) holds. To demonstrate condition (3),
take any pointn € S; then @(pn, 20) contains all of the sets @(pnk, 8) which
contain n because d is a metric; but (2) holds, o@(pnk, 8/2)2 c(1 - p)N, and
C(1-pN26B(pn, 28). 1
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The geometric facts above do not depend strongly on the particular metric
being used. However, the nonisotropic metric is being used here because of its
close connection with (the denominator of) the invariant Poisson kernel
P(z,{) = ((1 - 122)/|1 - (z, t;)|2)N. In particular, it allows the following argument.

Fix f e H(By) and rye (0, 1). Choose a positive integer M so large that
8<1-2MandthenletR=1-(1-ry))2M Notethat0<r,<R<1,sothereisno

problem with the existence of fg on S. Define u on RB = {Rz |ze B} by
urr) = s M (QP(R2 - VIR - (e, DN do(),

ie., u(r) = fs If=(QPP(("R)z, §) do(g) = P[ifzP] ((7R)z). Then [f|° <u on RB (see
the proof of Theorem 5.6.2 in [15]) and Jg u, do = u(0) = -[s fglPdofor0<r<R
(use the definition of u, Fubini's theorem, and the fact that j s P((r/R)z, §) do(r) = 1).

Most importantly, we have the following.

Lemma 3.2.2 : With the setup above, if z; = ryn, z' = ryt, and z = rt, where

re [ty (fo + 1)/2] and T e B(z,, 8), then u(z,) ~ u(z') ~ u(2).

Proof : Writery'=ri/Randr' =r/R. Fix{e S. Then by the triangle inequality,

the fact that t e @(zo, d), and the choice of M, we have

11 -4ro' )|
<1 -(rgs D2+ 1= o, )2+ 1 -, g2+ |1 - (rg'n, O]
< (1-19)1"2 4+ 812(1 - 1)12 4 (1 - 1) 12 + |1 - (rym, O]'2

<(1-10)"2 4 (1-2MP2(1 - 1) 2+ (1 - 1) 2 + |1 - (rg'm, |12
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< 4|1 -(ry'm, DI,
and |1 -(rym, {2 < 4|1 - (ry't, )12 similarly, so P(ryn, §) ~ P(ry't, ), and
u(z, ) ~ u(z') follows by integrating over S with respect to do(£). To show that
u(z') ~ u(z), first note that
1-r2<1-ry2<2(@M-1)/@2M1-1))(1-r)<C(1 - r?).

Secondly, for{ € S,

11 -¢re, Q12 <1 - (re rg' o) 2 + |1 - (rg'n, O
<C(1- )2 + |1 - (rg't, OI"2 < C|1 - {ry'n, {2,

Finally, for{ e S,

[1-(rg's, OI2 = (1 - rg'ilT, O + 2ry'(i(z, &)1 - Re(z, £))
<((@M- 1)/2M1 - 1))2(1 - r'(, ) + 2r' (T, &) - Re(x, )
<C|1 -{rt, )|2

So u(z') ~ u(z) follows as before by integrating.
The claims made above also hold if ry = 0; some of the estimates become

simpler. 0

We will also need the following.
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Lemma3.2.3: Fixa, b,ce Rsatisfyingc>-1,b<-1-c,anda<-1-b-c. Then
for0O<p<t, L°° ((1-p)x + p)@xP (x - 1) dx is finite and bounded above by a

constant C = C(a, b, ¢) independent of p.

Proof : Use the fact that 1 < (1-p)x + p < x, consider the casesa<0anda >0

separately, and write ,[ = J 2+ ,[2°°. 0
A Carleson Measure Theorem

With the preliminaries disposed of, we proceed to the statement and the
proof of a Carleson measure theorem for mixed norm generalizations of Bergman

spaces in the unit ball of CN.

Theorem 3.1 : Suppose 0<p<©0,0<Qqy;<Q,<®,-1<a,and0<d<1, and
suppose p and v are finite positive measures on S and [0, 1) respectively. Then

the following are equivalent:

(3.1) (f, (JS It (x)IP di(t))92P dv(r)) ez < C| | pa,a for every f e AP,

3.2) (u(Bipn, 8)))"(v([p, 1)) 12 < C'(1 - p)NP + @+1Vai for every n e S and
every pe [0, 1).

Proof : To show that (3.1) implies (3.2), fixne S and p e [1/2,1). (For p near 0,
(8.2) is true with large enough constant C' since p and v are finite measures.) Let

w = pn and define f(z) = (1 - (z, w)) where s > N/p + (a+1)/q,. Take z = rt where
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p<r<iandzte @(w, d) and let Z' = pt. Then
11 -z, W|2<|1-(z, )2 +|1-(2, w)|12
<11 -z, 2"+ (|1 - (. Bl + [, v - pn, po)]) 12
<(1-1p)"2 + (8(1-p) + (1-p?) 2 <C(1 - p)'2,

i.e., |f(z)] > ¢(1 - p)s for such z. So the left-hand side of (3.1) is greater than

(jp1 (Ié(pn. 5 C(1-p)*P du(t))qz/p dv(r))1/q2
= (1 - py=(n(B(pn, 8))) "0 (v(lp, 1)) ez.

On the other hand,

1] pana = (L (js |1 - (rz, w)|sP do(t))q1/p(1 - r2)or2N-1 dr)1/q]
~ (Jl ((1 . rp)N-sp)m/p“ - rjor2N-1 dr)”‘h

by Proposition 1.4.10 of [15], and under the change of variables

x = (1/r- p)/(1 - p), this becomes
c(1- p)N/p + (a+1)/q - s(Loo ((1-p)X + p)-(2N +1+a+Nqgy/p-sqy) yNa/p - sq (x-1)® dx)”“I,

which is bounded above by C(1 - p)NP + (@+1)/ai s with C independent of p, by

Lemma 3.2.3. Combining these two estimates, (3.1) yields

(1(B(pn, 8))1®(v(Ip, 1)) Va2
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<C(1-p)3(1 - p)NP+(+1)/ay -5 = C(1 - p)Nip + (a+1)/ay

which is (3.2).
The hard part of the theorem is showing that (3.2) implies (3.1). Fix
fe AT Asin the previous section, choose a positive integer M so large that
§<1-2Metr =1-2™ R_=1-2™M andu_ =P[fg,PPlonR B for
m=0,1,2,...;andby Lemma3.2.1 form=1,2, 3,...we can choose
@(rmm, d), ..., @(rmnkm, d) so that
(1) Sc L“Jé(rmnk, 5),
(2) B(rgny, 82), ..., B(r,nkm» &/2) are pairwise disjoint,
and (3) no point of S is in more than L of the sets @(rmnk, 8), where L is
independent of m.
For convenience, write | =[r,, I, 1)) Zi = rmnk, mk = B(rmnk, d), and

A A

BOk = BO = SN' Then

Ji Us oo aum)eee avin < 5 1 (5 Jame umtro) dio) oz aver

< C [ un(2mid (1B ) (V) o2 )P oz

by condition (1) and since u,,(rt) < Cu_(z.,) for re | andzte @mk (Lemma

3.2.2). By assumption (3.2) and because q, < q,, this is less than

<c{z [g U, k) o- m(N/p+<a+1)/q,))p]q,/p}q2/q1
< C{Z Im g ijk U r't) do'( ))q1/9(1 - r)(lr2N-1 df}qzlql

where we have used the facts that _[ i (1 - 122N dr ~ 2'm(@+1) 6B~ 2N, and
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Un(Zmi) < Cup(rr) forre | andte @mk (Lemma 3.2.2). Since condition (3) says

the sets @mk have "controlled overlap”, we have

E J@mk Up,(rt) do(t) < CJ’S u,,(rt) do(t)
= Cup(0) = Cfs lTrn(®)P dota) < Cl It (P doto)

wherer' = (r+2M-1)2'M, since R_ < r'forre I_. (Note that this is the only place
where analyticity of f is used, and the full strength of analyticity is not needed.)

Inserting this estimate and using a change of variables, we have

Ji Us ity o))z aver
< C{% [, (s It 0P dotr))are(t - per2n- dr}qz/ql
< c{f | (I s E(R)IP do(r))avP(1 - ryor2N-1 dr}qz’q1
< c{f | (f s IfA(D)P do(r))are(1 - F)er2N-1 dr'}qz/ql =Clfl .. g

The same proof actually yields the following.

Theorem 3.3.1': Suppose0<p<,0<q,<q,<,-1<a,and0<d<1,
suppose v is a finite positive measure on [0, 1), and suppose foreachre [0, 1),
i, is a finite positive measure on S satisfying u,(@(pn, 3)) ~ up(é(pn, 3)) for

re [p, (p+1)2),pe[0,1), andn e S. Then the following are equivalent:

(3.1 (J | (js If (T)|P dyt,(1))92/° dv(r)) Va2 < Clflpq.« forevery fe AP,

(3.2') (1, (Bipn, 8))"(v([p, (p + 1)/2))) 2z < C'(1 - p)Np + 1)1 for every
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ne Sandeverype [0, 1).

For example, du,(t) could be g(r, t) du(t) for a suitable nonnegative
function g on [0, 1) x S

In light of the classical theorems (e.g., Duren's and Hastings'), it is natural
to wonder whether Theorem 3.3.1 is true if p is replaced by p, on the left and by
p, on the right, with 0 < p, <p, < ©. Our method of proof sheds no light on this

question.
4 Som rollarie

Condition (3.2) is easily verified for certain choices of p and v, and thus

we get the following corollaries.

rollary 3.4.1 1 AR C ATZI2if0<p, <Py <©0,0<0, Gy <0, -1 <ay,
-1 <o, and (o4 + 1)/q; < (0, + 1)/0,.
Proof : Take p = o and dv(r) = (1 - r)®2 dr, so that ||f]|

< Cllfllp,qu bY

P1,G2,02 PGy
Theorem 3.3.1, hence AF"x‘?1 C AE;ZZ. The slightly more general statement
given then follows from Holder's inequality as noted in Section 1 of Chapter 1.

(However, Holder's inequality alone is not enough to give this result.) 0

Corollary 3.4.2 : (_[l If(rtg) 92(1 - r)22(N/p + (o+1)/a)) - | dr)VQz < C"f”p,ql,a

(0<p<©,0<q <q,<%,-1<0)foreveryfe A°¥ and every 1 € S.
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Proof : Take u = 810 (= point mass at t,) and dv(r) = (1 - r)a2(N/p + (@+1)/a)) - 1 gr, 0

Theorem 3.3.1 also yields Proposition 1.2.1, which was the growth
condition used to show that AP is a Banach space: fix z € B, take
p=(1-1z)N5,,, and v = (1 - Z)*15,,.

We can also get the easier direction of Theorem 2.3.1, namely that

o0 Km
(£ (£ lay)PzmN)apzmesn)a<clf], ., for every fe A%

P.a.
(where {a_,,} is an e-3 lattice): forre [1-2M, 1 -2™7) take u, = :i:,aamkﬂamkl
and dv(r) = 2-m(NaP +a) dr; Theorem 3.3.1' applies since
6B, ~ 2™ ~ o{t € Sy | p(a,, 1a1%) < 8} (recall that p is the pseudohyperbolic
metric) so B, = number ofa_,'sin (1 -2™mB_, ~C.

One final consequence of Theorem 3.3.1 is actually a corollary of its proof.
First, we need some terminology. Forne Sand0<t<1, let
AN, 1) = {z e B||1-(z,m)"2< t"z}. It is easy to check that the sets A are
comparable to our Carleson sets (which were also defined in terms of the

nonisotropic metric) in the following sense:
(4.1) {rreB|(1-t4)<r<1andte B((1 - V4), 5)}
C A, Y)

c{rte B|(1-4Y/8%) <r<1andte B((1- 452, 5)}.

Also observe that
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(4.2) my(AM, 1) ~ e+t ~m (B((1 - ctin, 8)).
Now, we offer another proof of this result of Cima and Wogen ([4)]):

Theorem 3.4.3 (Cima-Wogen) : ,[B |f|2 dA < CJB If> dm,, for every f e H(B,,) if and
only if A(A(n, 1)) < C'm_(A(n, 1)) foreveryn e Syand 0 <t<1.

Proof : Take p = q, =, = 2 in the proof of Theorem 3.3.1. Then having a
"product measure" was not important there. The necessity of the condition

MA(n, 1)) < C'm (A(n, 1)) follows from the second containment in (4.1), condition
(3.2), and (4.2). lIts sufficiency follows from the first containment in (4.1), (4.2), and

condition (3.1). 0
Related Meth nd Resul

For8>0,pe (0,1),andn e Sy, define B(pn, 8 = {t e Sy | It-nl<8(1 - p)}.

Note that o(B(pn, 8)) ~ 8N-1(1 - p)2N-1. Consider the two conditions
6.1) (J, Us 1t )P du@)eep av(n) ez < Cltll, q,q for every f e AP%,

(65.2) (u(B(pn, 8)))"(v([p, 1)) a2 < C'(1 - p)@N-1/P + (@+1Vai for every n e S
and every p € [0, 1).

As usual, we suppose 0 <p<0,0<q;<q,<,-1<a,0<d<1,andpandv

are finite positive measures on S and [0, 1) respectively. Then (5.2) implies (5.1)
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(but any attempt at a proof of (5.2) seems to require the exponent involving N, not
2N-1). Since sets B(pny, 8), . . . ,B(pny,, 8) can be chosen to cover S with
"controlled overlap” as in Lemma 3.2.1, the key to the proof of this implication is to
show that u(z) ~ u(z,) for z near z, where u is some suitable majorant of [f|[° on
some large enough ball in By,. This can be done by a purely geometric argument
which we describe here.

Fix ye (1, 2) and choose a positive integer M so large that Y1 > 1/(2 - y).
Form=0,1,2,...letr,=1-y™andR_=1-vy™M and letu_ be the least
harmonic majorant of |[fPon R B. Fixz, =r,nandz=rtwithr <r<r_ ,and

T€ @(zm, 3). Note that
lz-2z | <|re-r T+ |rm -l < (1 +8)y™-y™! - §y2m,

Leta, =yM-y™2andb, =a_ - |z-z,| RecallthatB(z, r)is an isotropic ball; i.e.,

B(z,r)={we CN||z-w <r}. Then, since we may assume § < (y- 1)/y2, we have

1>b /a2 (y-1-82+82™M/(R-1)> (y-1-82)/(¥-1) >0,

so m(B(z, b)) ~ m(B(z,,, ,,)), independently of m, and

un(@ = (2, bm) Um dm)/m(B(z, byy)
< (m(B(z,,, a.))/m(B(z, b)) (jB(zm, am) Um dM )/im(B(z,,, a.)) <Cu_(z,)

by the ordinary mean value property (which is not true for M-harmonic functions,

e.g., those gotten by integrating with the invariant Poisson kernel as in the proof of
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Theorem 3.3.1). To get the other direction, letc, =y™' - y™Mandd_ = Cm-lz-2,l
Then, since Y1 > 1/(2 - y) and since we may assume & < (Y12 - y) - 1)/, we

have

1> 0 /Gy 2 (211 - M- 1- BM 4 S/ (M - 1)
>(M12-y)-1-3M/I(WM1-1)>0,

so m(B(z,,, d,)) ~ m(B(z, c,)) and u(z,,) < Cu,,(z) as above.

We remark thatif 1 <p<ocandi1<q, <q, <, "fe A'z(q‘" could be
replaced by "f positive subharmonic in By" in the argument above.

This method doesn't seem to work with nonisotropic balls B because the
nonisotropic metric fails to give adequate control in all directions. This manifests
itself in the argument above in "radii" b, and d, that may fail to be positive.

We close with a generalization of Hastings' result in [8] for the polydisc.

Theorem 3.5.1: Suppose 0 <p<©0,0<qq <, <, and-1<aqay,..., 0,
suppose H,, . . . , Wy are finite positive measures on T = S, and suppose
vy, . . ., vy are finite positive measures on [0, 1). Then the following two

conditions are equivalent: |

(5.3) (f,- : -f, (LT- : -L, If(r, €1, . . ., rye®N)[P dju,(8,)- - iy () %2P
dvy(r)) - dvy(ry)) 2

< C(Jy : -L (-[n : 'In If( r,ei®1, . . ., rye®N)P de,- - -dBy)arP
(1- )% ry dry - (1 - r)ON Ty drN)”ql

for every function f analytic on DN, |
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(5.4) (u, (891 - ®B4, 8¢ + 1t81)))‘/p X - X (p.N([GON - Wy, O + 11:8‘,\1)))“p
x (vy([1 - 8, 1)) 192 x- - x (wy([1 - 8y, 1)) Va2
< 081(1/p + (o4+1)/aQ) x. . .x 5N(1/p + (op+1)/ay)

for every 0,,,...,06,y € Tandevery 3,,...,6y€ (0, 1].

Proof : First fix 85y, ...,80y€ Tand3,,...,8ye (0, 1]. Letw;=(1-§)e;for
j=1,...,Nanddefine

f(zy,....z4)=(1- z,v—v:)'s- —(1- ZNVT,;)-S

where s > 1/p + (a+1)/q, for each j. Then [f(zy, ..., 2y)| > ¢, S - -8 Sif z;= red)
satisfies 6, € [6; - 73, 6, + ng)andre [1-3, 1) foreach . (See [6], p. 157.) So
(5.3) implies (5.4) as before.

For the proof that (5.4) implies (5.3), fix ye (1, 2), choose M so large that
M1 > 1/(2 - ), write rpy = 1-y™and Ry = 1-yMMiforj=1,..., N, and write
m=(m,,...,my) e {0,1,2,...}N. Foreach N-tuple m, let u_ be the least
n-harmonic (i.e., harmonic in each variable separately) majorant of |f|P on
RmqD x- - x Ry\D (see [14], p. 52). I 6; € [6; - m(1 - rpyy), 8g; + ni(1 - 1))

and rj e [y fm;,q) for each j, then
Uy (r€1, . .., 1 @®N) ~ U (rm €01, . . ., rne™oN)
by applying the geometric argument with isotropic balls given at the beginning of

this section. (The argument is applied N times, one time on each "slice".) One

other needed observation (see [14], p. 52) is that
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un(0) = ,[“- : 'Jw f(Rm1€®1, . . ., Ry €ON)IP 06, - -d8y,.
Then the proof is completed in the manner of the proof of Theorem 3.3.1. 0

When 1 <p<ooand1<q, £q, <0 the theorem is also true with

"f analytic on DN" replaced by "f positive N-subharmonic in DN",
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