CONSTRUCTION OF EQUNALENT BNIFORM LOAD DIACRAR FOR HIGHWAY BRIDGES

WHESIS ROR MHE DBGRES OF B. S
P. A. Bell
M. Bogema
1933

SUPP L EMENARY MATERIAL

Construction of Equivalent Uniform Load Diapram for
 Highway Bridres

A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE

By

P.A.Bell
M. Bogema

Candidates for the Degree of Bachelor of Science

THESiS

$\therefore+$

ACKNOWLEDGMEN''

We take this opportunity to express our appreciacion for the very helpful suggestions offered by Mr. Neil Van k'enam of the Michigan State Hignway Department.

From the beginning of a oridge design, it is necessary for the engineer to decide upon the load for wricn the bridge is to be designed to carry. Very seldom is it possible for him to obtain the actual weignts of vehicles to be carried, and it therefore is necessary for him to develop types of loadings which will closely approach the actual ones. It has only been in recent years that a definite type of loading for highway bridge has been used. Previous to about 1924 a steam roller type was used as a bases of design -- that being the heaviest t_{j} pe of vehicle considered. At present we have various types of loadings, such as, the Cooper's E-loadings for railways, the r-loading for nignways, and tine elecuric railway loadings.

In general, these various loadings consist of a series of concentrated loads spaced at definite incervals so as to represent the wineel loads of the train or truck as passos over the bridge. In working up the design, the particular loading chosen is moved back and forih over the oridge span until the posicion which gives the maximum stress is determined. the unforiunace thing about using tnese loadings is inat there is no one particular posicion of the loading wnich will give ine maximum siress in all paris and members of the bridge scrucuure. Because of filis it decumes necessary vo decermine a new posiuion of the loading for practically every poine which is to be considered in the design. this process is very laborious and time consuming out is absolutely necessary if the design is to be of any value. It is need-
less co siate ine necessiij of knuwing unj capaciiy of une structure within reasonably close limits.

As in the case of most laborious jobs and processes, certain short cuts and aids have been developed. One of these is the moment diagram which finds its use in the determining of the stresses after the position of the concentrated load system has been determined. This diapram gives the axle loads and their spacing, and also the sum of the loads and of the distances from the head of the train or vehicle procession to each load, and the moment about each load of all the loads that precede it. The method of using it can be found in any textbook on structural design or particularly in "Structural Theory" by Sutherland and Bowman.

A second aid to the designer is in the form of equivalent loadings. These loadings may be of two trpes. The first one consists of a uniform load extending over the whole span along with a concentrated load so placed as to give the maximum stress. This type is illustrated in the Michigan State Highway Department Standard Road and Bridge Specifications which states in part,"A total load on each traffic lane composed of a uniform load of 450 pounds per linear foot and a single concentrated load of 21,000 pounds." This type it must be remembered is only an assumed equivalent, and therefore, in many cases the results may vary guite a bit from the results obtained from the regular loadinf.

From the second type of equivalent loading, known as an equivalent uniform load, more accurate results may be obtained
and if used properly the results are equivalent to those obtained by the regular loading. Work with this type has only been done, as for as we can ascertain, with the railway loadings. A great share of this work on equivalent loads was done by Dr. Steinman and presented in the paper "Locomotive Loadings for Railway Bridges", Transactions American Society of Civil Engineers, 1923. The data compiled by Dr. Steinman is presented in the form of diagrams resdily gives the equivalent load to use in any case after the influence diagram has been constructed. Its great value lies in the amount of time and labor it saves the designer.

An equivalent loading chart of this type would be welcome to the highway bridge designer, so we propose in this thesis to present such a diagram which is suitable for determining the equivalent uniform load which when apolied to the whole span will give the maximum stress developed by the regular H-15 loading.

Method used in development of chart:
I'he H-15 loading is a concentrated load system which represents a fifteen ton truck followed and preceded by a continuous procession of eleven and one-quarter ton trucks. The distance between axles of the same truck is taken as fourteen feet, and the distance from the rear axle of one truck to the front axle of the following truck is taken as thirty feet. The load of each truck is considered as having eight-tenths carried by the rear wheels and two-tenths by the front.

In compiling the data for the construction of the diagram, this H-l5 loading was first put in the form of a moment
diagram to facilitate its use in determining maximum stresses. The complete diagram as we used it consisted of not just one, but of a series of diagrams so arranged that when considering a situation there was a diagram which could be used without having any load passing off of the span. This helped greatly in that it alleviated the work of subtracting the effects of the loads which had passed off.

The first step in the actual computation of the equivalent uniform load is the determination of the positions of the concentrated loads which will give the desired maximum stress. This may be done in any of the ways described in the texts on structural desion, but because of the apparent uniformity of the loads this mipht more easily be done by direct application of the moment diagrams. It can easily be seen that with the H-type loadings the maximum moment will occur with the heaviest concentrated load at the peak of the influence line. In this case, the first step is eliminated leaving only the computation of the bending moment to be done in order to determine the stress.

As an example, consider finding the equivalent uniform load for the sixty foot point of a two hundred foot span.

Draw the influence line for the moment as shown in Fig.l. Next
 apply the moment diagram to determine the maximum moment, remembering to test for the condition where the loads are passing from the short semment to the
long as well as from the long sement to the short.
Long to short: (140-60) Select from the series the moment diagram which has its heaviest load at a distance of 60 feet or less. This is M.D. I which has its 24 kip load at a distance of 58 feet.

Mom. $=\frac{11226+(120.0 \times 8)}{200} 60-113^{\prime} 1=2519^{\prime}$
Short to long: (60-14e) Use diagram M.D. VI Mom. $=\frac{9711+(115.5 \times 16)}{200} 140-5556=2535^{\mathrm{kI}}$ tquivalent Load (q)

$$
\begin{aligned}
q & =\frac{\text { Moment }}{\text { Area of influence triangle }}=\frac{2535}{\frac{1}{2} \times 200 \times 42} \\
& =603.6 \text { lbs. per linear foot }
\end{aligned}
$$

this load of 603.6 lbs. per linear foot when applied to a 200 foot span will produce the same bending moment at the io foot point as would the $\mathrm{H}-15$ loading. the advantage of knowing this load when finding the bending moment is quive apparent afier working backwards through the last problem.

Given $q=603.6$ lbs. Find the maximum bending moment at the 60 foot point of a 200 foot span.

Soluiion: Draw ine influence line as in Fig.l. Substicuce in une formula B.M. $=\frac{1}{2} q_{1} l_{2}$ l_{1} and l_{2} are che segmenus of the span. B.M. $=\frac{1}{2} \times 603.6 \times 60 \times 140=2535.1$
this is unquestionably a much shorver process chan that used in first devermining ihe bending moment from che moment diagram. The only thing which now prevents the use of these
various uniform loadings is a source from which to obtain the proper " q " for the particular situation under consideration. For this purpose we offer the accompanying diagram along with an explaination of the method of its construction with illustrations to prove its validity.

The computation of the diagram consisted chiefly in computing a uniform loading for sufficiently large number of possible conditions. This of course could be extended indefinitely, so we set the limits at a 300 foot span. Most ordinary spans fall well within this limit.

The basis of the computation of moments is the influence line for moment, so in selecting the points to be computed, we assumed various conditions of this influence line. The first condition considered was with the short segment of the influence line held constant at 10 feet and the long segment varied from 10 to 300 feet by small intervals. Next the short segment was held at 15 feet. This was continued until the short segment had been increased to 300 feet by the same intervals as the long segment had been increased.

This data gives a concept of the range over which the uniform loads are spread as well as the points which have the same uniform load. This data may also be plotted upon the diagram in the form of lines through the points of equal uniform loads.To facilitate the selection of these points, and to reduce the errors of interpolation between the points, the computations are compiled in the form of graphs with the short span held constant using the long span as the abscissa
and the " q " as the ordinate. From these praphs the desired points were taken and plotted upon the diagram, and lines of equal load sketched in.

Upon inspecting the resulting diagram, it was found desirable to compute the "q" for a few additional points so as to more accurately locate the position of the load lines. These points were computed, graphed, and plotted as the others were, thus completing the diagram as here submitted. The actual results of the computations made may be found in the accompaning chart. The graphs for the major part of the work have also been shown.

Use of the diagram consists of finding the point at which the long and short spans intersect on the diagram, and selecting of the uniform load for this point. e.g. The uniform load for a short span of 80 and a long span of 110 is 602 lbs. per linear foot.

As to the validity of the results obtained from the diagram we offer the following examples as proof.

Example 1. Required the maximum bending moment at the quarter and half points of a 120 foot span.

For quarter point:

Using moment diarram M.D. I $M=\frac{3990}{120} \times 30-84=913.5^{k^{1}}$ Using uniform load diagram
$q=679$
$M=\frac{1}{2} \times 679 \times 30 \times 90=916.6$

For half point:

$$
\begin{aligned}
& \text { Using moment diagram M.D. I } \\
& M=\frac{4715}{120} \times 60-1137=1220.5 \\
& \text { Using uniform load diagram } \\
& q=678 \\
& M=\frac{1}{c} \times 678 \times 60 \times 60=1220.4
\end{aligned}
$$

Example 2. Required the maximum bending moment for the 40,80 and 120 of a 2.40 foot span.

At 40 foot point.
Using moment diagram
$\begin{aligned} M & =\frac{13839+124.5 \times 10}{/^{240}} \times 200-10239 \\ & =23.7\end{aligned}$

Using uniform load.
$q=581$
$M=\frac{1}{2} \times 581 \times 40 \times 200=2324$
At tres 80 foot point.

Using moment diagram
$M=\frac{14585}{240} \times 80-1137=3725$
Using uniform load
$q=584$

$M=\frac{1}{8} \times 521 \times 80 \times 180=3737.6$
At the 120 foot point
Using moment diagram
$M=\frac{14745}{240} \times 120-3180=4193$
Using uniform load
$q=583$
$\mathrm{M}=\frac{1}{2} \times 583 \times 120 \times 120=4198$
these results by the two methods vary less than 0.5 of one per cent either way, but are sufficiently close for any ordinary dosign. fne variauion is probably due to errors in ploiting and in interpolaing whe resulus.

In conclusion we wish to point out vhat wis diagram is nou limived to only whe $\mathrm{H}-15$ loaing, but may be applied to any of the i loadings by using a converdion factor. We selucied the H-15 loading as it is used in 50 per cent or more cases of highway bridge design.

Equivalent Load Chart

	10	15	20	25	30	35	40	45	50	55	60
300	608	598	589	579	571	565	557	557	561	562	562
280	614	604	594	584	576	570	564	560	564	566	565
200	621	608	599	588	579	572	566	562	566	568	568
240	632	623	607	596	585	578	572	667	572	573	573
220	639	627	612	600	588	581	574	569	574	575	575
200	655	640	626	612	598	590	583	577	582	584	584
180	667	667	634	618	605	595	585	580	586	587	588
160	690	670	652	634	618	608	598	591	596	598	597
150	101	678	659	641	626	613	602	594	600	602	602
140	711	689	666	646	631	617	605	597	603	605	604
130	122	697	674	652	634	620	608	599	606	601	606
120	746	718	693	669	648	634	620	611	617	619	617
110	768	739	709	672	662	645	630	619	625	627	625
100	787	753	722	693	676	651	636	624	630	620	629
95	797	761	728	698	676	654	636	625	632	629	631
90	805	766	732	700	576	655	636	625	632	628	632
85	826	783	749	712	685	663	644	626	638	640	638
80	850	805	767	729	700	676	657	636	650	651	649
75	880	830	787	747	712	688	670	646	660	601	659
70	906	848	804	761	729	702	680	657	670	670	668
60	932	878	825	777	747	717	689	670	678	672	674
60	963	895	842	792	762	729	699	678	682	700	678
55	987	916	856	802	747	739	707	683	688	701	
50	1016	937	872	813	780	743	708	675	689		
45	1038	952	878	814	776	739	700	678			
40	1116	1013	930	857	798	761	726				
35	1226	1104	1003	920	849	807					
30	1360	1210	1086	990	907						
25	1522	1332	1184	1066							
20	1720	1472	1290								
15	1952	1630									
10	2400										

Equivalent Load Chart

Equivalent Load Chart

	140	150	160	180	$\frac{200}{}$	$\frac{220}{540}$	$\frac{240}{541}$	$\frac{260}{539}$	$\frac{280}{538}$	$\frac{300}{537}$
300	$\frac{1447}{549}$	$\frac{549}{549}$	543	543	540	541	50	550	552	551
280	546	545	542	542	540	540				
260	550	553	552	546	546	543	543	541		
240	554	557	556	549	549	545	545			
220	554	557	556	649	549	545				
200	559	563	562	553	553					
180	561	565	564	554						
160	566	571	569							
150	569	574								
140	569									
130										

Moment Diagrams and Computation Graphs
 for
 H-15 Loading

Key to symbols used
M.D. Moment diagram

Mom. . Moment of all precoding loads about point
SD Distance in feet from first load
D Distance beiween loads in feet
L Concentraued load in kips
SL Sum of loads up to inat point in kips
q equivalent uniform load

M.D. I				
Mome	SD	D	I.	SIL
0	-	0	4.5	4 n
63	14	14	18	2.25
703	44	30	6.0	23.5
1137	53	11	24	50
2712	88	30	1.5	57.0
3510	102	14	18	75.0
5760	132	30	4.5	79.5
6873	146	14	18	97.5
9798	175	30	4.5	1020
11225	190	14	18	1:200
14826	220	30	4.5	124.5
16.564	234	14	18	14205
20844	264	30	4.5	147.0
22902	278	14	18	165.0
27352	308	30	4.5	16.3
30225	322	14	18	187.5
35250	3.52	30	4.5	132.0
37938	366	14	18	2100

Mom.	SD	D	I	SI
0	0	0	18	18.0
540	30	30	6	24.0
37%	44	14	24	48.0
1020	74	30	4.5	52.5
1755	88	14	18	70.5
3870	118	30	4.5	75.0
4920	132	14	18	93.0
7710	162	30	4.5	97.5
9075	176	14	18	11505
12540	206	30	4.5	120.0
14220	20	14	18	1480
18360	250	30	4.5	14205
20355	264	14	18	160.5
25170	294	30	4.5	165.0
27480	308	14	18	183.0
32970	338	30	4.5	187.5
35595	352	14	18	205.5
39760	382	30	4.5	2100

M.D.III				
Moma	SD	D	1	SL
	0	0	4.5	4.5
63	14	14	18	22.5
738	44	30	4.5	27.0
1116	58	14	18	45.0
2466	88	30	6	51.0
3180	102	14	24	75.0
5430	132	30	4.5	79.5
6543	146	24	18	97.5
9468	176	30	4.5	102.0
10896	190	14	18	120.0
14496	220	30	4.5	124.5
16239	234	14	18	142.5
20514	264	30	4.5	147.0
22572	278	14	18	165.0
27522	308	30	4.5	169.5
29895	322	14	18	187.5
35520	352	30	4.5	192.0
38208	366	14	18	210.0
44508	396	30	4.5	214.5
47511	410	14	18	232.5
54636	440	30	4.5	237.0
57954	454	14	18	255.0

M.D. IV				
Momer	SD	D	L	SL
	0	0	18	18.0
540	30	30	4.5	22.5
855	44	14	18	40.5
2070	74	30	6	46.5
2721	88	14	24	70.5
4836	118	30	4.5	75.0
5886	132	14	18	93.0
8676	162	30	4.5	97.5
10041	176	14	18	115.5
13506	206	30	4.5	120.0
15186	220	14	18	138.0
18326	250	30	4.5	142.5
21321	264	14	18	160.5
26136	294	30	4.5	165.0
28446	308	14	18	183.0
33936	338	30	4.5	187.5
36561	352	14	18	205.5
42726	382	30	4.5	210.0
45666	396	14	18	228.0
52506	426	30	4.5	232.5
55761	440	14	18	250.5
63276	470	30	4.5	255.0

M.D. VI				
Niom,	SD	D	L	SL
0	0	0	18	18.0
040	30	30	4.0	22. 3
855	44	14	18	$4 \cup .5$
2070	74	30	4.5	45.0
2700	88	14	18	63.0
4590	118	30	6	69.0
5556	132	14	24	93.0
8346	162	30	4.5	97.5
9711	176	14	18	115.5
13176	206	30	4.5	120.0
14866	$2: 20$	14	18	138.0
18996	250	30	4.5	142.5
20991	264	14	18	160.5
25806	294	30	4.5	165.0
28116	308	14	18	183.0
33606	338	30	4.5	187.5
36231	352	14	18	205.5
42396	382	30	4.5	210.0
45336	396	14	18	228.0
52176	426	30	4.5	232.5
55431	440	14	18	200.3

Mom.	SD	D	L	SL
0	0	0	18	18.0
540	30	30	4.5	22.5
855	44	14	18	40.5
2070	74	30	4.5	45.0
2700	88	14	18	63.0
4590	118	30	4.5	67.5
5535	132	14	18	85.5
8100	162	30	6	91.5
9381	176	14	24	115.5
12840	206	30	4.5	120.0
14526	220	14	18	138.0
18666	250	30	4.5	142.5
20661	264	14	18	160.5
25476	294	30	4.5	165.0
27786	308	14	18	18300
33276	338	30	4.5	187.5
35901	352	14	18	205.5
42066	382	30	4.5	210.0
45006	396	14	18	228.0
51846	426	30	4.5	232.5
55101	440	14	18	250.5
62616	470	30	4.5	255.0
66186	484	14	18	273.0

M.D. XI					M.D. XII				
l. O m.	SD	d	L	SL	Mom.	Si	D	L	SL
0	0	0	4.5	4.5	0	0	0	18	13.0
63	14	14	18	-22.5	540	30	30	4.5	22.0
					355	44	14	18	40.5
738	44	30	4.3	27.0					
1116	58	14	1	45.0	2070	74	30	4.5	45.0
					2700	88	14	18	$0 \cdot 0$
2466	88	30	4.5	49.5					
3159	102	14	18	U\%. 5	4590	118	30	4.5	07.5
					2535	132	14	18	80.5
6195	140	14	18	90.0	8100	102	30	4.5	ЭO. 0
					9360	178	14	18	108.0
10215	120	14	18	112.2	12600	206	30	4.5	112.5
13593	220	30	1 !		14175	220	14	18	120.6
15231	234	14	18	135.0	18090	250	30	6	136.5
					20001	204	14	24	160.5
19281	264	30	6	141.0					
21256	278	14	24	165.0	24816	294	30	4.5	165.0
					27126	308	14	18	183.0
26206	303	30	4.5	169.5					
28579	322	14	18	187.5	32616	338	30	4.5	187.5
					35241	352	14	18	205.5
34204	352	30	4.5	192.0					
36892	366	14	18	210.0	41406	382	30	4.5	210.0
					44346	396	14	18	228.0
43192	396	30	4.5	214.5					
46195	410	14	18	232.0					
					01186	440	$\frac{30}{14}$	$\begin{array}{r} 4.5 \\ 18 \\ \hline \end{array}$	$\frac{252.0}{200.5}$
53170	440	30	4.5	237.0					
0.3488	454	14	18	255.0	-1936	470	00	4.3	255.0
					$\therefore 5026$	484	14	18	273.0
64138	484	30	4.5	259.5					
67771	498	14	18	277.5	73716	514	30	4.5	277.5
					77601	528	14	18	295.3
76096	528	30	4.5	282.0					
80044	542	14	18	300.0	83436	558	30	4.5	300.0

Short Segment 10
B. \& B.

Short Segment 30

Short Segment 50

Short Segment 90

B. \& B.

Short Sefment 100

Short Segment 120

| 570 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

B.\& B.

Short Segment 180

Short Segment 200

ROOM USE ONE Y
Sep_{6} a

Pocket las l Dioguan

