A STUDY OF THE INFLUENCE OF DIFFERENTIAL PRESSURES IN INTAKE-MANIFOLD BRANCHES UPON DEVELOPED ENGINE HORSEPOWER

Ву

William Earl Bishop

AN ABSTRACT

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Mechanical Engineering

Year 1955

Approved Jours d. C. Lo

THESIS

It is difficult to find any major engine component or assembly which can be as indeterminate in design as the induction system.

Although practices in induction system design have changed very little, much new information is still necessary.

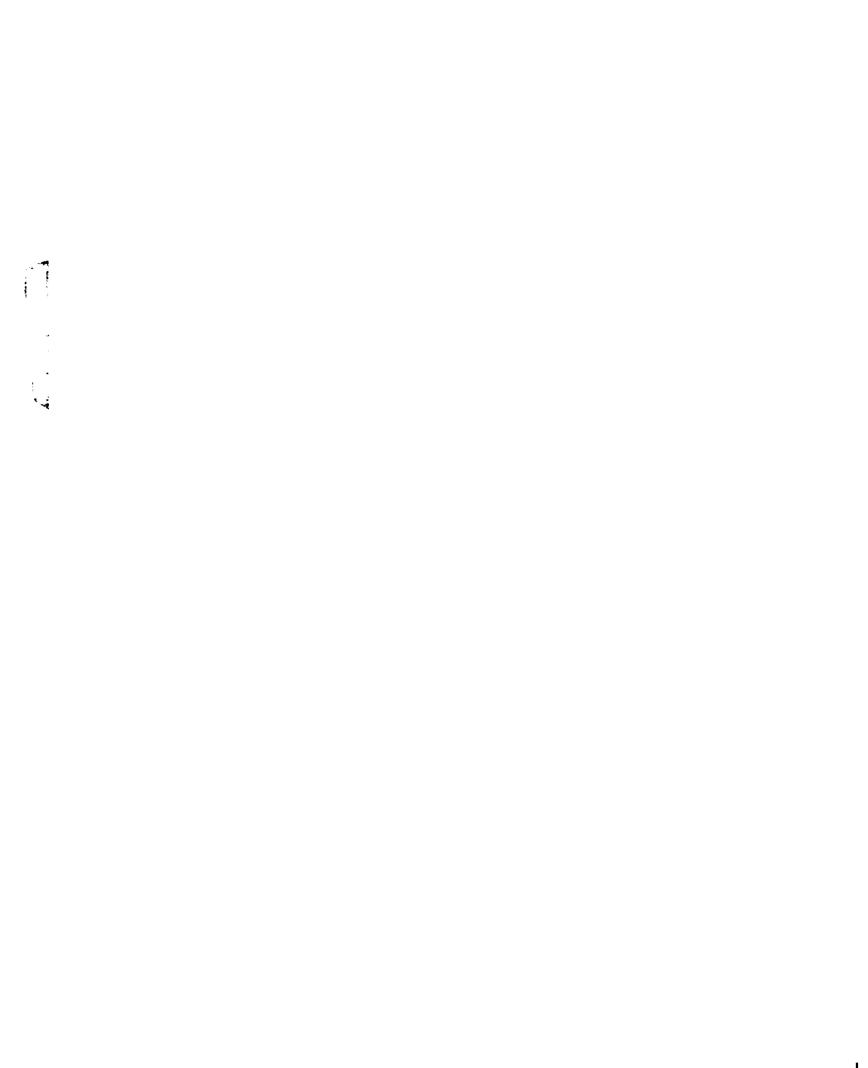
The main object in this experiment is a study of the relation between intake-manifold branch pressure differential and developed engine horsepower. Differential pressures are measured for each cylinder between the base of the carburetor and the intake port.

Indicated horsepower is recorded for the same operating conditions. Four different manifold systems were tested with the throttles at fixed positions and increments in r.p.m. were varied by a change in load. The performance characteristics of the engine for each intake manifold system may help to distinguish the most effective system with particular emphasis on output.

There is not a specific variation or a definite relationship between pressure differential and developed engine horsepower.

There are other variables present that affect the state of distribution. Load, r.p.m., and flow rate are the most important of these.

The developed horsepower will be more uniform when the load and r.p.m. are high. At low r.p.m. and high load, the


developed horsepower will be higher per cylinder, if the pressure differential is high with the low pressure end of the differential located at the intake port. This does not imply that the developed horsepower will only be a maximum under those conditions. The same high horsepower can be obtained with a low pressure differential with the valve having the higher pressure. This is most likely due to the liquid end of the fuel particles that enter the cylinder at that time.

The liquid fuel particles do not have a definite flow pattern.

Under assumed low volumetric efficiency conditions, the minimum velocity in the largest intake manifold branch is slightly less than 10 feet per second. The minimum carrying velocity for a liquid fuel of the specific gravity of gasoline is 2 feet per second.

At high flow rates, the pressure differential has little effect on the developed horsepower, and the ramming effect is almost always present. When the ramming effect is not present, the absolute pressure is high enough to obtain an adequate flow to the cylinder.

The load factor shifts the point where ram initiates. As the load is increased the r.p.m. where ram starts is reduced.

The performance curves for each induction system vary little for engine speeds below 3800 r.p.m. Further increases in r.p.m. exhibit a little more variation.

In brief summary, when ramming effect is present, the developed horsepower will be high per cylinder. When ramming effect is absent, the horsepower is usually lower. Under an absolute pressure analysis, if the absolute pressure is high at the intake port, the developed horsepower will be high.

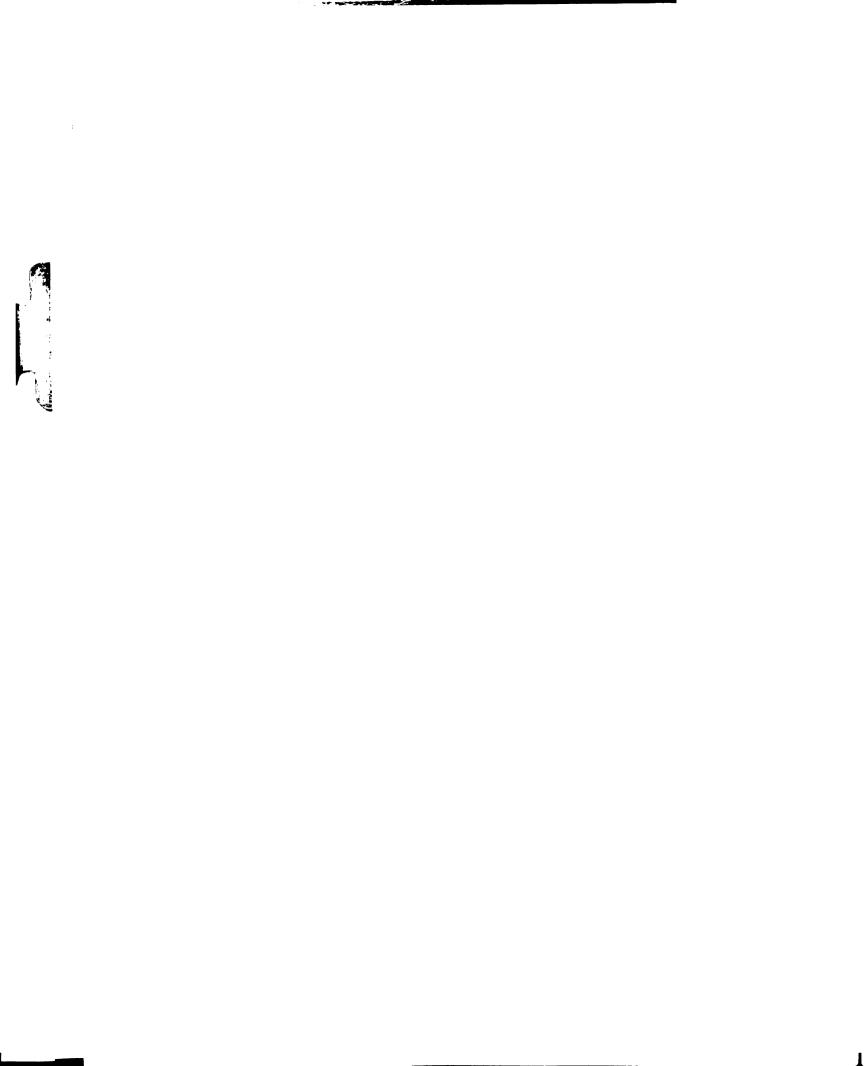
A STUDY OF THE INFLUENCE OF DIFFERENTIAL PRESSURES IN INTAKE-MANIFOLD BRANCHES UPON DEVELOPED ENGINE HORSEPOWER

Ву

WILLIAM EARL BISHOP

A THESIS

Submitted to the School of Graduate Studies of Michigan
State College of Agriculture and Applied Science
in partial fulfillment of the requirements
for the degree of


MASTER OF SCIENCE

Department of Mechanical Engineering

6.22.35

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Dr. L. L. Otto for his invaluable contributions to this investigation, and to the engineering staff for their assistance in many phases of the experimental work.

AUTOBIOGRAPHY

The author graduated from Romulus High School in 1944 and enrolled in Michigan State College for the summer session in 1944.

Eighteen months were then spent in the Navy as a M.M.R. (Machinist Mate Refrigeration).

Re-entering Michigan State College in the winter term of 1947, he attended college intermittently until he received his "B.S." degree in the spring of 1952, in the power option of Mechanical Engineering.

He entered the Graduate School in the winter term, 1953.

This thesis is in partial fulfillment of the requirements for the

"M.S." degree, to be granted in June, 1955.

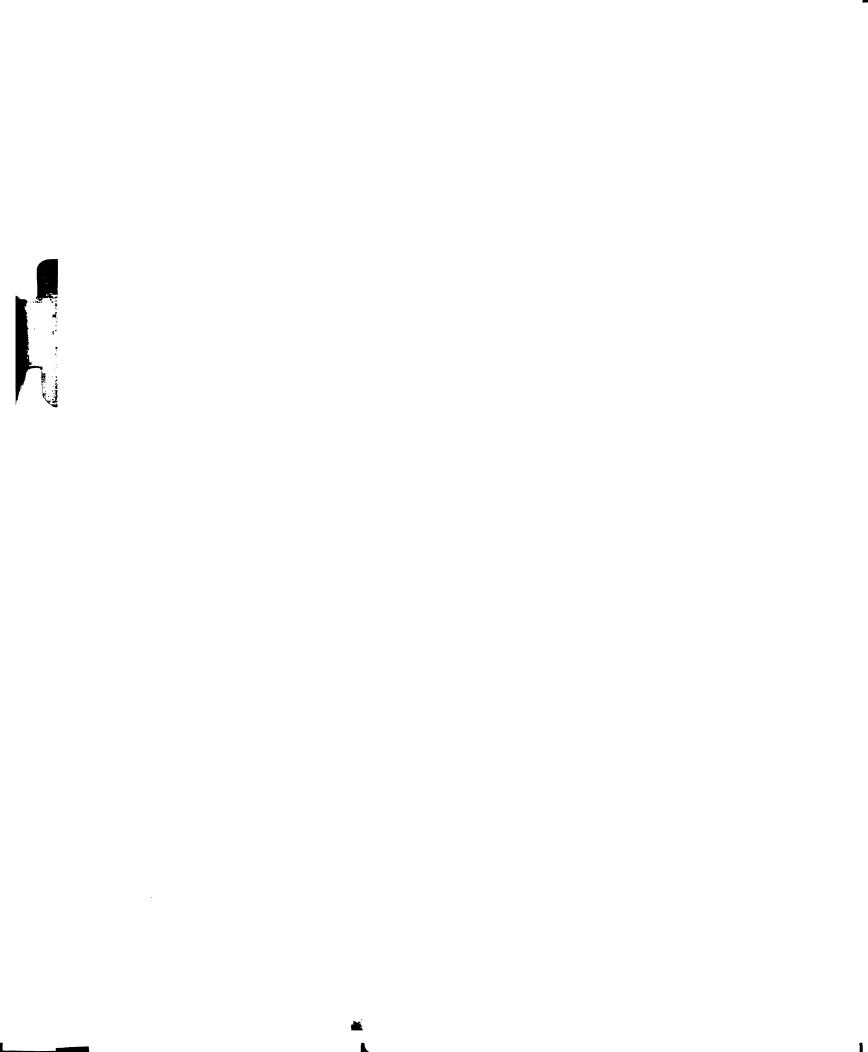


TABLE OF CONTENTS

	Page
INTRODUCTION	1
HISTORY	3
BRIEF STATEMENT OF THE PROBLEM	8
CONCLUSIONS	9
DISCUSSION OF PROBLEM	13
CHOICE OF OPERATING CONDITIONS	18
PROCEDURE	21
DESCRIPTION OF APPARATUS	2 6
DESCRIPTION OF TEST RESULTS	27
Discussion of Figures 1-22	27
Discussion of Figures 23-56	33
Discussion of Figures 57-100	39
APPENDIXES	152
Appendix A-1, Performance Data	153
Appendix A-2, Data for I.HP./Cyl. and Friction	163
Appendix B-1, The Determination of Engine Characteristics	171
Appendix B-2, The Determination of I.HP./Cyl.	181



	Page
Appendix C, Engine Dimensions and Tolerance Assumed Constants	189
Appendix D, Selected References	192
Appendix E, Pictures	194

LIST OF FIGURES

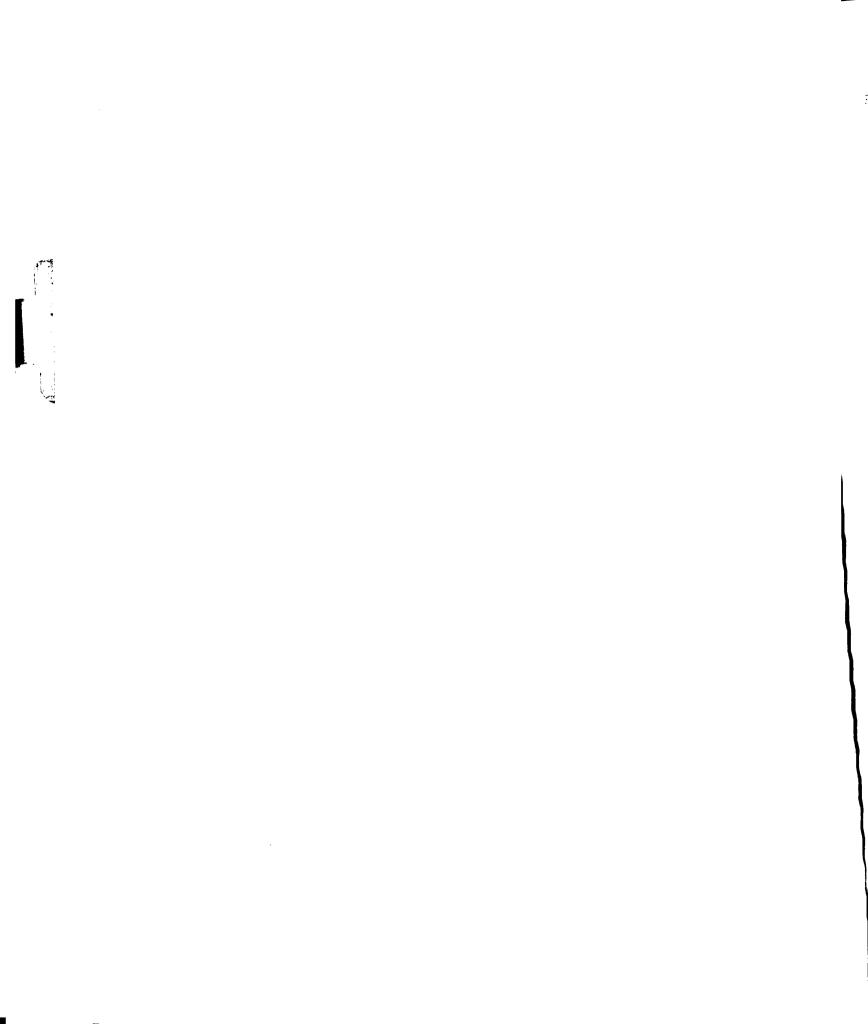

Figure		Page
	Performance CurvesB. HP., I. HP., F. HP., Torque	
1.	1/8 throttle - Standard Manifold	49
2.	1/4 throttle - Standard Manifold	50
3.	1/2 throttle - Standard Manifold	51
4.	3/4 throttle - Standard Manifold	52
5.	Full throttle - Standard Manifold	53
6.	1/16 throttle - Dual Carburetor Manifold	54
7.	1/8 throttle - Dual Carburetor Manifold	55
8.	1/4 throttle - Dual Carburetor Manifold	56
9.	1/2 throttle - Dual Carburetor Manifold	57
10.	Full throttle - Dual Carburetor Manifold	58
11.	1/8 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	59
12.	1/4 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	60
13.	1/2 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	61
14.	3/4 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	62
15.	Full throttle - Quad. ManifoldSecondary throttle	6 3

Figure		Page
16.	1/8 throttle - Quad. Carburetor Adapted to Standard Manifold	64
17.	1/4 throttle - Quad. Carburetor Adapted to Standard Manifold	65
18.	1/2 throttle - Quad. Carburetor Adapted to Standard Manifold	66
19.	Full throttle - Quad. Carburetor Adapted to Standard Manifold	67
20.	1/4 throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	68
21.	1/2 throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	69
22.	Full throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	70
Per	formance CurvesB.M.E.P., M.E., B.S.F.C., Mi./g	al.
23.	1/8 throttle - Standard Manifold	72
24.	1/4 throttle - Standard Manifold	73
25.	1/2 throttle - Standard Manifold	74
26.	3/4 throttle - Standard Manifold	75
27.	Full throttle - Standard Manifold	76
28.	1/16 throttle - Dual Carburetor Manifold	77
29.	1/8 throttle - Dual Carburetor Manifold	78
30.	1/4 throttle - Dual Carburetor Manifold	79
31.	1/2 throttle - Dual Carburetor Manifold	80

Figure		Page
32.	Full throttle - Dual Carburetor Manifold	81
33.	1/8 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	82
34.	1/4 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	83
35.	1/2 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	84
3 6.	3/4 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	85
37.	Full throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	86
38.	1/8 throttle - Quad. Carburetor Adapted to Standard Manifold	87
3 9.	1/4 throttle - Quad. Carburetor Adapted to Standard Manifold	88
40.	1/2 throttle - Quad. Carburetor Adapted to Standard Manifold	89
41.	Full throttle - Quad. Carburetor Adapted to Standard Manifold	90
	Comparison of Curves	
42.	Comparison of I.HP. Curves - Standard Manifold .	92
43.	Comparison of B. HP. Curves - Standard Manifold.	93
44.	Comparison of Torque Curves - Standard Manifold.	94
45.	Comparison of I.HP. Curves - Dual Carburetor Manifold	95

Figu re		Page
46.	Comparison of B. HP. Curves - Dual Carburetor Manifold	96
47.	Comparison of Torque Curves - Dual Carburetor Manifold	97
48.	Comparison of I.HP. Curves - Quad. Manifold Secondary throttle opens at 1/2 Primary	98
49.	Comparison of B.HP. Curves - Quad. Manifold Secondary throttle opens at 1/2 Primary	99
50.	Comparison of Torque Curves - Quad. Manifold Secondary throttle opens at 1/2 Primary	100
51.	Comparison of I.HP. Curves - Quad. Manifold Secondary throttle opens at 1/4 Primary	101
52.	Comparison of B.HP. Curves - Quad. Manifold Secondary throttle opens at 1/4 Primary	102
53.	Comparison of Torque Curves - Quad. Manifold Secondary throttle opens at 1/4 Primary	103
54.	Comparison of I.HP. Curves - Quad. Carburetor Adapted to Standard Manifold	104
55.	Comparison of B.HP. Curves - Quad. Carburetor Adapted to Standard Manifold	105
56.	Comparison of Torque Curves - Quad. Carburetor Adapted to Standard Manifold	106
	Differential Pressures and I.HP.	
57.	I.HP 1/8 throttle - Standard Manifold	108
58.	"HO - 1/8 throttle - Standard Manifold	109
59.	I.HP 1/4 throttle - Standard Manifold	110

Figure		Page
60.	"H ₂ O - 1/4 throttle - Standard Manifold	111
61.	I.HP 1/2 throttle - Standard Manifold	112
62.	"H2O - 1/2 throttle - Standard Manifold	113
63.	I.HP 3/4 throttle - Standard Manifold	114
64.	"H ₂ O - 3/4 throttle - Standard Manifold	115
65.	I.HP full throttle - Standard Manifold	116
66.	"H ₂ O - full throttle - Standard Manifold	117
67.	I.HP 1/16 throttle - Dual Carburetor Manifold .	118
68.	"HO - 1/16 throttle - Dual Carburetor Manifold .	119
69.	I.HP 1/8 throttle - Dual Carburetor Manifold	120
70.	"H ₂ O - 1/8 throttle - Dual Carburetor Manifold	121
71.	I.HP 1/4 throttle - Dual Carburetor Manifold	122
72.	"H ₂ O - 1/4 throttle - Dual Carburetor Manifold	123
73.	I.HP 1/2 throttle - Dual Carburetor Manifold	124
74.	"H ₂ O - 1/2 throttle - Dual Carburetor Manifold	125
75.	I.HP full throttle - Dual Carburetor Manifold	126
76.	"H ₂ O - full throttle - Dual Carburetor Manifold	127
77.	I. HP 1/8 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	128
78.	"HO - 1/8 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	129
79.	I.HP 1/4 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	130

Figure		Page
80.	throttle opens at 1/2 Primary	131
81.	I.HP 1/2 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	132
82.	"HO - 1/2 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	133
83.	I.HP 3/4 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	134
84.	"H ₂ O - 3/4 throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	135
85.	I.HP full throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	136
86.	"H ₂ O - full throttle - Quad. ManifoldSecondary throttle opens at 1/2 Primary	137
87.	I.HP 1/8 throttle - Quad. Carburetor Adapted to Standard Manifold	138
88.	"HO - 1/8 throttle - Quad. Carburetor Adapted to Standard Manifold	139
89.	I.HP 1/4 throttle - Quad. Carburetor Adapted to Standard Manifold	140
90.	"H ₂ O - 1/4 throttle - Quad. Carburetor Adapted to Standard Manifold	141
91.	I.HP 1/2 throttle - Quad. Carburetor Adapted to Standard Manifold	142
92.	"H ₂ O - 1/2 throttle - Quad. Carburetor Adapted to Standard Manifold	143
93.	I.HP full throttle - Quad. Carburetor Adapted to Standard Manifold	144

Figu re		Page
94.	''HO - full throttle - Quad. Carburetor Adapted to Standard Manifold	145
95.	I.HP 1/4 throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	146
96.	"H ₂ O - 1/4 throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	147
97.	I.HP 1/2 throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	148
98.	"H ₂ O - 1/2 throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	149
99.	I.HP full throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	150
100.	"H ₂ O - full throttle - Quad. ManifoldSecondary throttle opens at 1/4 Primary	151

INTRODUCTION

It is difficult to find any major engine component or assembly which can be as indeterminate in design as the induction system.

Although practices in induction system design have changed very little, much new information is still necessary. The design engineer cannot say, "These are the requirements we must meet, and the induction system will be designed in this way." One cannot predetermine with any exactness the configuration or size of an induction system. This unit is usually built by trial and error.

In design it is known that a carburetor directly connected to an intake port in a single cylinder engine will give higher horse-power per cubic inch than a multicylinder engine fitted in a like manner. This might be attributed to the elimination of an intake manifold, where an increase in charge resistance is encountered. This may not be the situation, but little material is presented on induction systems in the literature. The few articles that are presented are old with reference to updraft carburetion, where riser velocities have a minimum for good fuel entrainment. Charge rebound and accompanying precipitation of fuel within the manifold are important factors in charge resistance. Practically all modern

engines use downdraft induction systems and it is the opinion of this author that the requirements for updraft carburetion do not become requirements for downdraft carburetion.

HISTORY

The function of a carburetor is to proportion the fuel to the air stream and break up the fuel into small droplets so it can be carried by that air stream. The resulting combustible mixture should be homogeneous and suitable for positive and economical operation of the engine.

As the air velocity past the jets increases, the fuel particles discharged from the jets become smaller and the proportion of large particles decreases, giving better mixture conditions at the carburetor. The condition of the mixture at the cylinder depends upon the shape of the manifold, the velocity of flow, and the heat energy imparted to the mixture. The intake manifold should distribute the carburetor mixture to all cylinders in equal proportions or maintain the same mass flow to all cylinders. There is not a manifold designed which can accomplish this throughout the range of operating conditions.

The following are some of the conditions or restrictions placed on the design of an induction system.

Relative engine load is one of the most important factors affecting the performance of the intake manifold. Dilution of the

load. For example, at constant speed when operating at high load, there is more fuel-air mixture inducted per cycle into each cylinder than at low load. The degree of dilution in each cylinder varies from cycle to cycle as the exhaust pressure in each cylinder causing the dilution varies from cycle to cycle. Therefore, it is a lmost impossible to induct equal quantities of fuel and air into each cylinder.

The particular purpose for which the engine is designed has an effect. High-output engines require large flow areas and a fine dispersion of the fuel in the mixture or the so-called dry-mix.

Engines designed for good economy can use small flow areas with their resulting higher velocities which will support a wet-mix.

The requirement of a wet mix is that the quantity of fuel admitted to the air stream must be such that at the end of compression, all fuel is vaporized.

The firing order has a large effect on the process of induction. Too many cylinders drawing mixture from the same branch successively promote unequal distribution, particularly at part throttle and light load. Reversals of flow in branches cause dropout of fuel droplets from the mixture. By trial and error, it has

one branch without materially affecting the distribution of charge.

Manifolds are designed for a minimum of reversals.

The clearance gases flash back into the intake manifold upon opening of the intake valve, and cause a reversal of flow.

At the same time, if the exhaust manifold pressure is high, it will impede the flow of mixture. Valve overlap has an important relation in this respect. The higher the valve overlap, the more there is a chance for blow-back into the manifold. This flash-back or blow-back dilutes the incoming charge, or if it does not return to the same cylinder, it will cause a rich mixture there, and a lean mixture elsewhere. Once the cylinder pressure is reduced below that of the manifold the flow of mixture will start. Available time for charging of any cylinder is lessened by any factor which creates a resistance to the mixture flow. Therefore, less charge can enter that cylinder.

A circular sectional area will have the least flow resistance, but minimum surface area is not always a desirable feature. If the mixture is wet, heating of the mixture might be desirable so that the precipitated liquid fuel can be returned to the mix. Entrainment of the fuel is never complete, so some provision should

be made to aid the return of the precipitated particles to the mix-

The separation of the mixture in the manifold begins at the Because of the inertia of heavy particles, a puddle of fuel will form at the base of the tee, and this section should be level and perpendicular to the flow axis, so that the liquid fuel will not flow more into one branch than into the other, by gravity or inertia action. If this occurs, one branch will be rich and the other will be lean, indicating poor distribution. This perpendicular section is usually heated by the exhaust gas so that a limitation is imposed upon the amount of fuel than can collect. This also aids in making the mixture more homogeneous. The section below the tee may be a depression in the manifold so that the forward motion of the vehicle will not cause the liquid fuel to flow to the rear branch by inertia. This rear branch can be elevated slightly to limit the This applies to long straight branches of a manifold liquid flow. that are found in large in-line engines.

The throttle valve prohibits a uniform mixture in the riser section, especially at part-throttle operation. The fuel particles will be deflected from the throttle valve to one side of the riser and will tend to flow into the branch connected at that point.

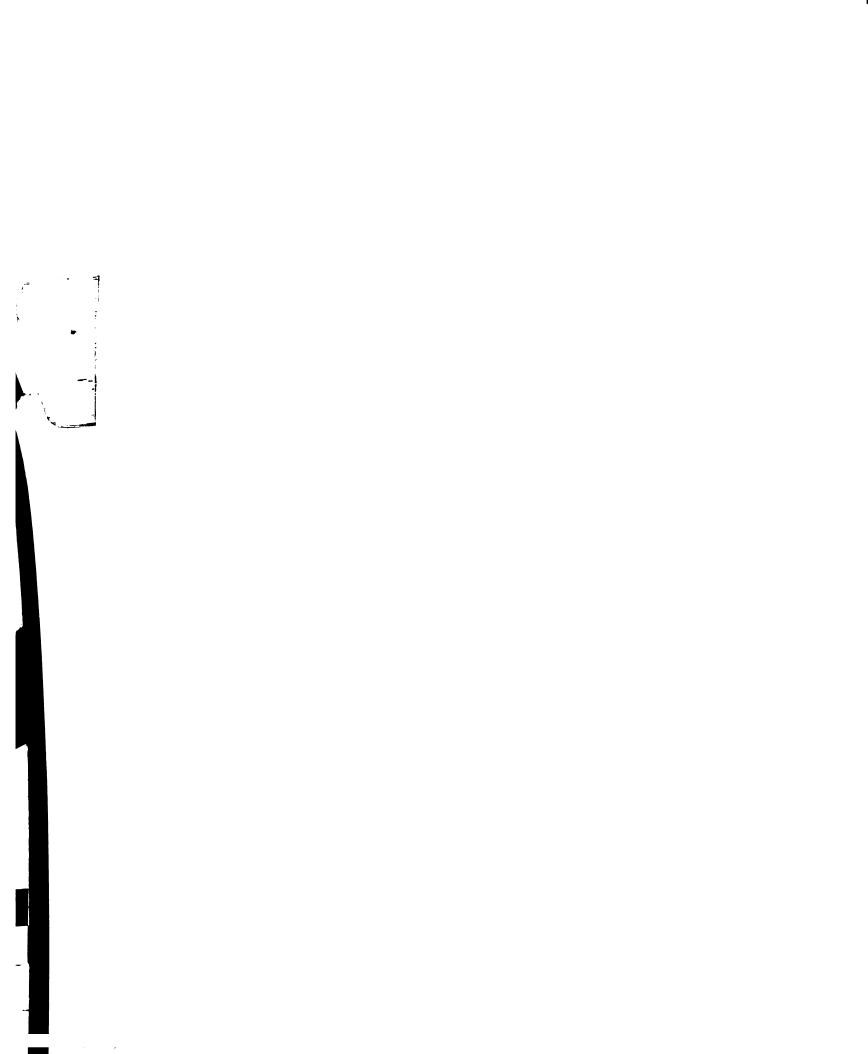
This enrichens the cylinders fed by this branch. When this occurs, the best condition of mixture distribution for economy is to have one rich cylinder and the rest receive a uniform mixture. The poorest condition for economy would be the inverse, where one cylinder is lean and the rest receive the same mixture. With one lean cylinder the mixture ratio must be enriched in order to fire the lean cylinder and the balance of the cylinders will receive excessive amounts of fuel.

Maximum power mixture ratios with gasoline as fuel are in the vicinity of 12.5:1, where maximum economy mixture ratios vary from 13:1 to 20:1. The combustible range in mixture ratio is about 7:1 to 20:1, dependent upon the particular engine characteristics. Some engines will run satisfactorily on a 16:1 or higher mixture ratio, while another of the same design will not fire the same mixture continuously without missing.

BRIEF STATEMENT OF THE PROBLEM

The main object in this experiment is a study of the relation between intake-manifold branch pressure differential and indicated horsepower. Differential pressures are measured for each cylinder between the base of the carburetor and the intake port. Indicated horsepower is recorded for the same operating conditions. In testing, the throttle was fixed and increments in r.p.m. were varied by a change in load. Four manifolds were tested so that the conclusions will not be judged by the operation of any one intake manifold. All data recorded in the Appendix are not the average data, but the values which were the most consistent.

Performance characteristics of the engine for each intake manifold installation may help to distinguish the most effective induction system with particular emphasis on output.


CONCLUSIONS

There is not a specific variation or a definite relationship
between pressure differential and developed engine horsepower.

There are other variables present that affect the state of distribution. Load, r.p.m., and flow rate are the most important of these.

The developed horsepower will be more uniform when the load and r.p.m. are high. At low r.p.m. and high load, the developed horsepower will be higher per cylinder, if the pressure differential is high with the low-pressure end of the differential located at the intake port. This does not imply that the developed horsepower will only be a maximum under these conditions. The same high horsepower can be obtained with a low-pressure differential with the valve having the higher pressure. This is most likely due to the liquid end of the fuel that enters that cylinder at that time. In other words, when ramming effect is present, the developed horsepower will be high. When ramming effect is absent, the horsepower is usually lower.

At high flow rates, the pressure differential has little effect on the developed horsepower. Under conditions of high flow rates, the ramming effect is almost always present. When it is not,

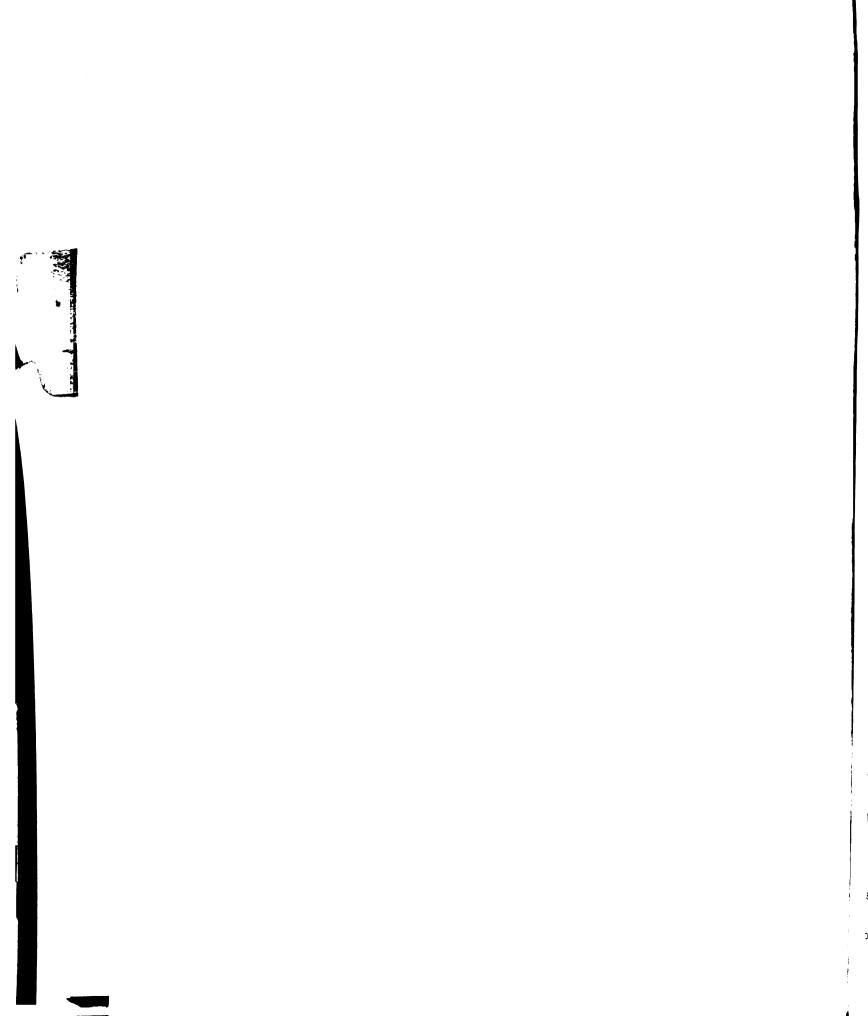
the absolute pressure is high enough to obtain an adequate flow to the cylinder.

The load factor shifts the point where ram initiates. As the load is increased, the point where ram starts is reduced. For an example, operating at 1/4 throttle opening and 2000 r.p.m., the point where ram starts might be 2500 r.p.m. Upon opening the throttle for higher load and holding the r.p.m. at 2000, the point where ram starts will be lower than 2500 r.p.m.

The liquid-fuel particles do not have a definite flow pattern. Under assumed low volumetric efficiency conditions, the minimum velocity in the largest intake manifold branch is slightly less than loft./sec. The minimum carrying velocity for a liquid fuel of the specific gravity of gasoline is 2 ft./sec. From this, drop-out of the liquid end will not occur except by an instantaneous zero velocity from reversals of flow or intermittent flow. The control of liquid fuel is of major importance in obtaining high brake mean effective pressure and volumetric efficiency curves.

Performance curves were drawn for all conditions of operation. The only curves that can be compared are the full throttle curves, as the load varied from one manifold to another at the same part-throttle opening. These curves can be adjusted for

comparative performance, but the pressure differential cannot be adjusted. The data for pressure differential must be taken under operating conditions.


The full-throttle brake horsepower curves for all induction systems fall within a 1 percent variation for engine speeds below 3800 r.p.m. Further increases in r.p.m. exhibit a little more variation. The brake specific fuel consumption varied between manifolds. The miles per gallon would not be a measuring device as each manifold has its own advantages, dependent upon the range of r.p.m. desired.

In comparing the friction horsepower curves of all manifolds at full throttle, the dual-carburetor manifold was expected to be the least. This is not true; the larger cross-sectional area manifold, the quad, was the lowest in frictional horsepower. One could assume from this that cross-sectional area and internal surface are more important to frictional resistance than the length of flow path, at least in the testing range of this experiment. This might not be true at higher r.p.m.

Performance is higher in the quad. manifold when operating at 3/4 throttle, than when operating at full throttle. Throttling of mixture must occur at the intake valve or the displacement is not high enough to cause higher flow rates.

The quad. carburetor adapted to the standard manifold had no apparent effect on the performance of the engine. The fuel consumption was a little higher, but the output compared to the rest of the manifolds. The frictional horsepower was the same as the standard manifold and carburetor.

In brief summary, under an absolute pressure analysis, if the absolute pressure is high near the valve, the developed horsepower will be high.

DISCUSSION OF PROBLEM

The particular problem in this experiment is the relationship between the differential pressure and the developed horsepower of each cylinder. The differential pressure is that change
in pressure that occurs between the base of the carburetor and the
intake port. This is completely within the limits of the induction
system.

This is not a discussion of the mixture ratio produced by the carburetor, except to assume the carburetor will meter the fuel uniformly, regardless of the actual mixture ratio. This is a discussion of the distribution of the mixture to each cylinder and the determination of the influence of pressure change on developed horsepower. The mixture ratio in each cylinder is not measured, but if the developed horsepower of each cylinder is equal to that of the other cylinders, one might assume their mixture ratios are similar. The pressure differential could reflect this condition.

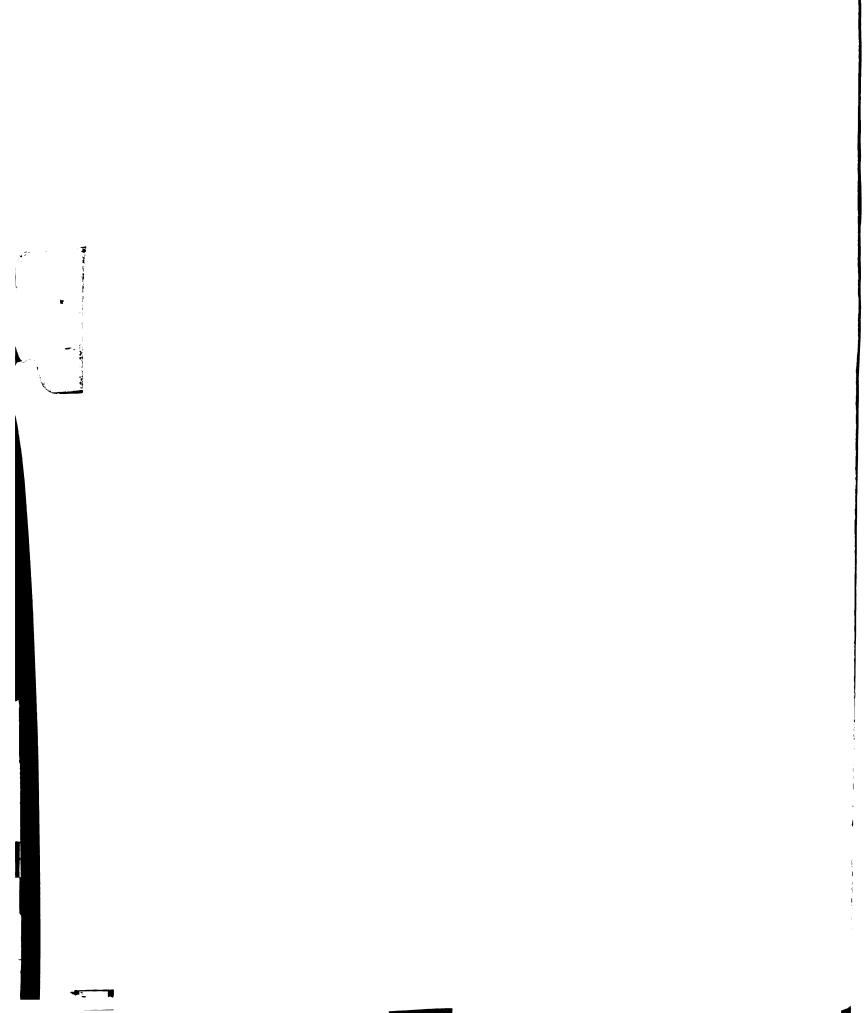
The optimum condition in the operation of an induction system will be when the maximum possible weight of mixture passes the intake valve. The mixture should be as close to

atmospheric pressure and temperature as possible. When any fluid flows through a closed channel, there is always some pressure loss caused by friction against the wall surface and a pressure loss by shear of adjacent layers of fluid which move at different velocities.

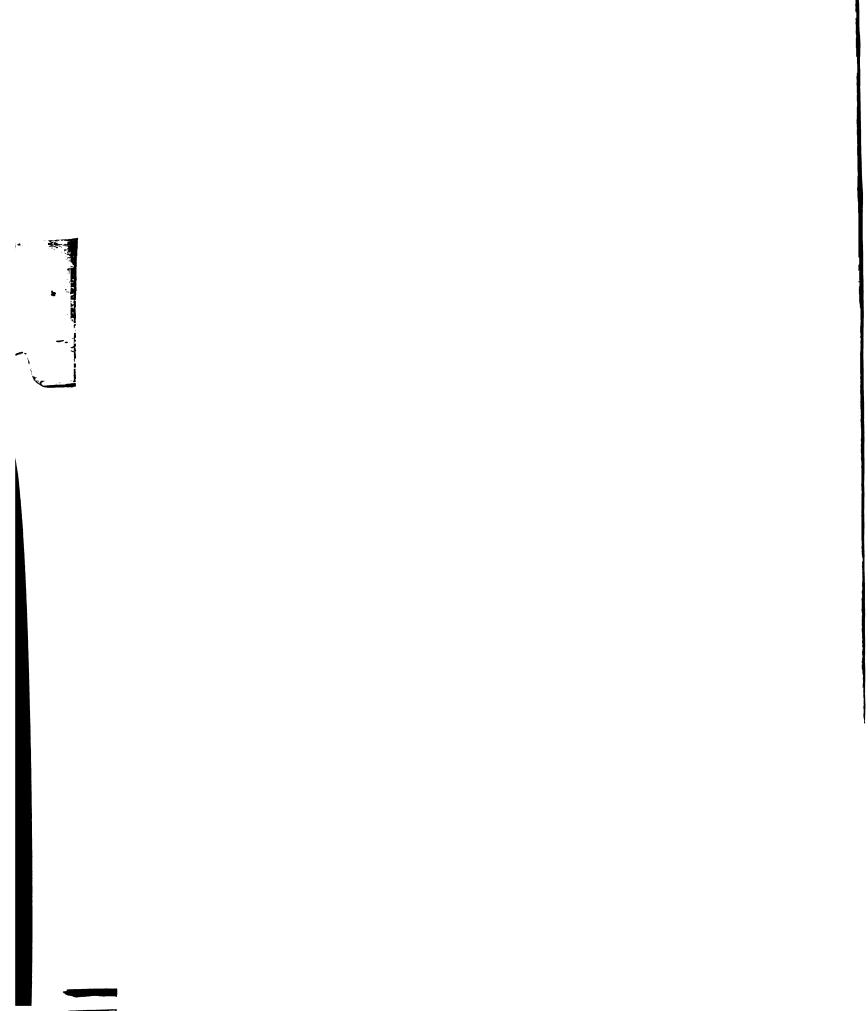
The Reynolds number is always sufficiently high so that streamline flow is almost an impossible situation. Operation is almost entirely in the turbulent range of the Reynolds number, but at very low r.p.m., the intermediate condition is sometimes obtained. When operation is within this region, the flow is pulsating so that all the variables present are not constant. Any unbalance will tend toward the turbulent condition which is the usual state. Therefore, a pressure loss from turbulence within the fluid caused by irregular, nonstreamline flow is a factor which will limit the weight of charge that can enter any cylinder.

The magnitude of the energy losses are dependent upon the type of fluid, the relative roughness of the flow path, the configuration and length of the flow path, the cross-sectional area of the path, and the rate of flow. There are too many variables present to be able to design a manifold for certain operational conditions. The

effect of wall roughness and configuration cannot be predetermined;
but for minimum pressure losses, keep all bends as streamlined
as possible and the channel walls smooth. Pressure losses due
to rate of flow, length of flow path, and the cross-sectional area
can be calculated as the pressure losses increase with the square
of the rate of flow.


Small cross-sectional area manifolds will have high velocity of flow throughout the range of r.p.m. Drop-out of entrained fuel will be less when pressures change by throttle control. Engine output at high r.p.m. is limited by the throttling effect of the small cross-sectional manifold.

In order for some of the past variables to enter into this problem, a dual carburetor manifold was chosen because of its different flow conditions, such as length of flow path and the rate of flow in that path. The cross-sectional areas are the same as in the standard production manifold, but the pressure losses should be one-fourth of those in the standard manifold. This is approximately correct because the rate of flow is reduced by the addition of another carburetor. If one can assume the rates of flow through each carburetor are equal, the pressure losses will be one-fourth of their original value with one carburetor. This in turn reduces



the mixture velocity and drop-out of liquid fuel will be higher at corresponding speeds. At very low speed, an over-carbureted condition may develop upon sudden opening of the throttle valves due to a large drop-out of liquid fuel by the sudden change in pressure in the intake manifold. At high r.p.m., there should be no loss of power by the throttling effect of the small manifold as the flow rates are about one-half of that in the standard manifold.

A manifold larger in cross-sectional area and a carburetor from a large displacement engine called a quad. carburetor and manifold was tested. This carburetor is designed so that one throttle, designated as the primary throttle, controls the rate of flow through the manifold until a particular opening of that throttle is reached. At this time, another throttle called the secondary throttle starts to open into the same branches fed by the primary. Both throttles reach the full open position simultaneously. manifold being larger in cross-sectional area should exhibit properties between the dual-carburetor manifold and the standard manifold. It should be superior to the dual-carburetor manifold at low speed due to the higher velocity of flow. It should com-Pare with the dual-carburetor manifold at high speeds if throttling in the manifold does not occur.

In order to determine the relative position or the more critical component in the induction system, an adapter was made to fit the large quad. carburetor to a standard manifold of smaller cross-sectional area than the carburetor. Even though the primary purpose of this investigation is to determine the effect of pressure differential on developed engine horsepower, the performance of the above manifold and carburetor should give valuable information, especially if the maximum horsepower compares with the rest of the intake manifolds.

CHOICE OF OPERATING CONDITIONS

The effect of differential pressures on the output of each cylinder is the prime objective. Therefore, the operating conditions should be such as to indicate a wide range in pressure differential. The brake mean effective pressure and the volumetric efficiency are affected at low speeds by low flow rates, and these can be aggravated by more blow-back in the intake manifold. A longer intake-valve opening duration, where the intake valves close later and open sooner, should exhibit more blow-back. At the same time, a longer overlap between intake and exhaust valves should give poor low-speed performance. These conditions should increase the limits of pressure differential.

The compression ratio was increased to insure complete Vaporization of the mixture upon compression by the corresponding increase in compression temperature and pressure.

Variable speed testing appeared to be more suitable with this

type of installation than constant speed. The throttle opening was

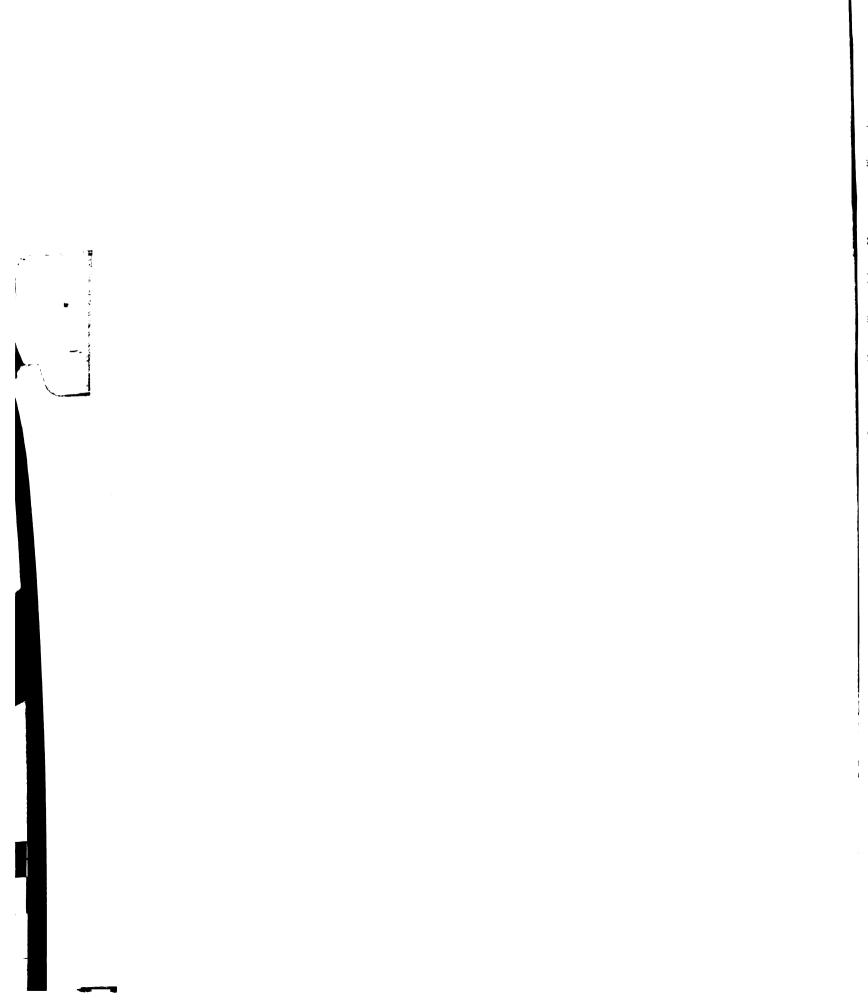
held to a predetermined value and the r.p.m. was controlled by a

Change in load.

An eddy-current dynamometer was used for absorbtion of torque and the indicated horsepower was determined by the short circuiting of one cylinder and then summed for the total. The indicated horsepower of one cylinder was determined by the difference in brake horsepower at the same speed when all cylinders were firing and when one cylinder was shorted. The result was the indicated horsepower of the shorted cylinder. The friction horsepower, determined by the difference between indicated and brake horsepowers, will be close to the actual value as engine operation more nearly approaches the firing conditions of all cylinders.

Four manifolds were tested with the following throttle opening:

Standard Manifold: 1/8, 1/4, 1/2, 3/4, and full throttle;


Dual-Carburetor Manifold: 1/16, 1/8, 1/4, 1/2, and full

throttle;

Quad. Manifold with the secondary throttle opening at 1/2Primary Throttle: 1/8, 1/4, 1/2, 3/4, and full throttle;

Quad. Carburetor adapted to a standard manifold with the Secondary throttle opening at 1/4 Primary Throttle: 1/8, 1/4, 1/2, and full throttle.

For additional information on the quad. manifold and carburetor, the secondary throttle was adjusted to open at 1/4 primary

and data taken for the following throttle openings: 1/8, 1/4, 1/2, and full throttle.

The throttles of the dual carburetors were synchronized so both would open simultaneously. The throttle positions started at 1/16 throttle opening in the hope of coming close to the same load as that obtained when the throttles of the other carburetors were open at 1/8 throttle.

Another test with the dual carburetors would be to operate the throttle of the first carburetor while the second is in idle position and then let the throttle of the second carburetor open to the same position as the first when speed of maximum torque is reached. This procedure should reduce the overcarbureted condition that occurs when both carburetor throttles are synchronized.

When the large quad. carburetor was installed on a small displacement engine, the velocity of flow through the carburetor would be lower and a lean mixture could result, especially at low r. p.m. Due to larger metering jets, the mixture may have been on the rich side.

Perhaps some of the above conditions or hypotheses could be proven from the pressure analysis and the performance characteristics.

PROCEDURE

In order to limit the number of variables that might enter into this project from the operation of the engine itself, the engine was completely rebuilt and the following components replaced or reconditioned.

Rebore to 0.080 inch oversize.

New pistons and chrome rings (4 ring piston).

New crankshaft and bearing inserts.

New wrist pins and pin bushings.

New timing gears and reground camshaft.

New valve springs and valve guides.

Valves reconditioned.

Valve seats reconditioned.

Connecting rods checked and aligned.

The clearance volume of each cylinder was checked so that the developed horsepower of each cylinder would be compared. By calculation, if 0.003 inch was removed from one cylinder head, the clearance volumes would be very close. For an increase in compression ratio, 0.045 inch was machined from one head and 0.042 inch from the other. The resulting clearance volumes were the

same for six cylinders and varied one ml. above and two ml. below for the other two cylinders. This little variation should not alter the compression ratio in each cylinder appreciably.

The error would be less than 0.5 percent if the measurements were close.

Before assembly of the engine, the intake ports were polished, then bored and tapped for tubing connections. These are the static pressure taps and were located as near to the intake valve as possible, but in such a position on the outside of a long radius bend that they were not near a stagnation point or an eddy-current center. These pressure taps were drilled for an 0.051-inch orifice to limit the flow and fluctuation of the liquid in the U tube manometers.

The engine was connected to the dynamometer and the dynamometer was corrected and adjusted for balance. The scale reading was twice the actual applied force.

The standard intake manifold was tapped for static pressure measurements in each branch of the riser section and as close to the base of the carburetor as possible. The change in the direction of the airstream by the throttle valve could cause a velocity pressure at the orifice of the pressure tap. Thus, the static pressure taps were located at the side of the throttle valve to

eliminate direct impingement of the airstream on the pressure tap. These pressure taps also were drilled for a 0.051-inch orifice, but later changed to a larger size to reduce the loss of measuring liquid in the manometers by sudden changes in static pressure from acceleration of the engine. All manifolds were equipped in the same manner, although orifice size varied in some.

In order to obtain data quickly and efficiently, the performance tests were run first where atmospheric conditions have a great influence on final results. All correction factors were according to S.A.E. specifications. The following data were recorded for the performance tests:

Throttle Opening

r.p.m.

Beam Load -- lbs.

Pressure Differential--"H2O (C and V refer to the point of lower pressure.)

7 2

Cylinder Number - 1

Oil Pressure -- #/"

Jacket Temp. -- °F

Intake Vac. -- ''Hg

S. P. Adv. -- BTDC

Exhaust Press., L.B. --''Hg
R.B. --''Hg

Weight of Fuel--oz.

Revolutions --

Time of Rev. -- Min.

Fuel Temp. -- °F

Dry Bulb Temp. -- °F

Wet Bulb Temp. -- °F

Bar. Press. -- "Hg

Some of the data were not used in this experiment, but might prove useful for someone who might have another approach to this problem or a similar project.

In this problem, atmospheric conditions do not have an effect on the determination of indicated horsepower per cylinder as a comparison or trend between the pressure differential and indicated horsepower per cylinder as a comparison or trend between the pressure differential and indicated horsepower is the object. It is not necessary to use a correction factor on the indicated horsepower per cylinder.

Further data were taken for the evaluation of friction horsepower and indicated horsepower per cylinder, and the classification follows:

Throttle Opening--same as performance tests.

r.p.m.--same as performance tests.

Beam Load--all cylinders firing---#

Beam Load--#l cylinder grounded---#

Beam Load--#2 cylinder grounded---#

Beam Load--#3 cylinder grounded---#

Beam Load--#4 cylinder grounded---#

Beam Load--#5 cylinder grounded---#

Beam Load--#6 cylinder grounded---#

Beam Load--#6 cylinder grounded---#

Beam Load--#8 cylinder grounded---#

Beam Load--all cylinders firing---#.

DESCRIPTION OF APPARATUS

The absorption unit was a Midwest Dynamatic Dynamometer of the eddy-current type. It had a water-cooled field with a heat exchanger and circulating pump. The horsepower rating was 175, and the operating constants were as follows:

$$HP = \frac{(Beam Load)(r, p, m.)}{8000}$$

Torque = (0.6565)(Beam Load) in ft. #

The torque arm is 15.756 inches. The electrical input to the dynamometer is supplied from either a D.C. line or the control panel where close regulation is possible.

The r.p.m. indicator, the revolution counter, and the clock are a synchronized assembly, operating from the dynamometer and an electrical source.

The jacket temperature of the engine was controlled by a heat exchanger where the flow of cooling water is manually operated.

An automobile radiator was submerged in a tank and the cooling water flowed around the core of the radiator.

The exhaust system had an external water jacket, but this was only a safety feature to guard against burning to anyone who might touch it.

DESCRIPTION OF TEST RESULTS

Discussion of Figures 1-22

This section is not intended to credit or discredit the performance of any particular induction system, but only to describe and perhaps clarify any inconsistencies that might appear in each system. Due to the radical change in valve timing, some of the results good or bad might be assessed to the induction system, when they are actually an internal effect. Each curve will not be discussed. Only those curves that have peculiar shapes will be discussed with a possible explanation to each. Some of the curves do not apply directly to this investigation, but are presented so that anyone who is interested in another phase of investigation may have the data to work from. A complete listing of the curves appears in the List of Figures. These figures are arranged in numerical order and appear at the end of this section. The range of r.p.m. was not sufficiently high to cause an intersection of some curves or a definite drop in performance.

In Figure 1, the no-load speed is approximately 1850 r.p.m., where an intersection of the friction horsepower and indicated

horsepower curves will occur and the torque and brake horsepower curves simultaneously go to zero. This is not shown in Figure 1, as the maximum r.p.m. reading is 1600.

In Figure 2, the indicated horsepower curve has a definite dip at 2000 r.p.m. This is due to a rotational inertia unbalance.

At the time of testing, a pronounced roughness at 1050 r.p.m. was exhibited and the same condition was noticeable at 2100 r.p.m., but the amplitude of vibration was not as high.

The indicated horsepower and torque curves have a dip in Figure 3, and this is reflected on the brake-horsepower curve as a flat spot, all in the range of 3000 to 3500 r.p.m. A roughness of operation was not apparent, but might have been dampened due to the large flywheel effect caused by the heavy stator in the dynamometer.

The torque curve of Figure 5 has a very definite dip at 1000 r.p.m. In Figures 3 and 4, this is not apparent as the initial reading was taken at 1000 r.p.m. where the dip should occur. If the initial reading was 500 r.p.m. as in Figure 5, more definite conclusions could be drawn at the 1000 r.p.m. reading. Inertia unbalance is the probable cause for the loss of horsepower and torque.

The torque and indicated horsepower curves exhibit a slight loss of performance in the range of r.p.m. from 1500 to 2000, Figure 6. This loss is reflected in Figure 7, but the r.p.m. range is a little higher.

All of the curves in Figures 8, 9, and 10 are smooth except the indicated horsepower curves in Figures 9 and 10 around 3600 r. p. ma. This was probably due to the high frictional horsepower at this speed. A small percentage of error in the calculations involving the indicated horsepower for each cylinder will account for a larger percentage of error in the corrected indicated horsepower Larger values are obtained at higher r, p, m., as the indicated horsepower varies directly with the r.p.m., at least within 10 Percent of maximum r.p.m. If these indicated horsepower dips were caused by harmonic vibrations, these vibrations were small in magnitude and the lower harmonics do not appear in the results where the amplitudes were necessarily much higher. The exhaust back pressure suddenly increased at this point (no longer a linear Variation with r.p.m.), but for that increase the output was not reduced to any great extent. This particular condition must have been a combination of factors, at least more evidence is necessary for a more definite explanation.

The performance curves for the quad. manifold covering

Figures 11 to 15 have few ranges that are not smooth. In Figure

12, the torque and indicated horsepower curves have sight dips at

2000 r.p.m. Figures 14 and 15, the dips occur on torque, indicated horsepower and brake horsepower curves at 3000 r.p.m.

The reason again was inertia unbalance where the higher harmonics gave rise to the loss of horsepower and torque.

Figures 16 to 19 refer to the special manifold where the quad. carburetor was adapted to a standard manifold. In Figure 17 at 2000 r.p.m., the indicated horsepower and torque curves show a decrease in performance and the same is true in Figure 18, but occurs at 3100 r.p.m. with the addition of the brake horsepower curve and its flat section. This was due to inertia unbalance.

Figures 20, 21, and 22 indicate the same conditions of operation as the previous figures except for the brake horsepower curve in Figure 22, where a flat spot covers a wider range in r.p.m., from 2300 to 4200.

At the time of testing there were several possible explanations for the configurations of the curves just discussed. Some merited further investigation, but most had some disadvantages.

Some of these theories follow.

Torsional vibration of the crankshaft could be the cause where the second harmonic is approximately 900 r.p.m., the fourth harmonic at 1800 r.p.m., and the sixth harmonic at 2700 r.p.m. If this were true, the vibration would occur at these r.p.m. readings regardless of throttle position and load. The resonant condition seemed to vary with load. When the load and r.p.m. readings were high with wider throttle openings, the lower r.p.m. ranges with the high load did not exhibit the same magnitude of vibration as the light load condition. If the vibration was present there must have been an unknown damping factor which limited the magnitude of vibration. At very light loads the point of resonance was at low r.p.m. and was not present at high r.p.m. The intermediate condition of load and throttle position may exhibit resonance at mid r.p.m. range and again in the high r.p.m. range. The low r.p.m. range seldom showed a resonant condition.

Another possible solution was column vibrations from periodic rebounds in the long exhaust system. This should give a sudden increase in exhaust back pressure by reinforcement of the sound waves. The data on exhaust pressure does not support this theory at all resonant conditions.

The intake manifold might have had column vibrations but they would have been very short in wave length. The time element

for the rebounds of the sound waves would be very short to travel from the intake valve to the carburetor and back again when the intake valve is in the exact opposite position in the succeeding cycle. Atmospheric conditions and variable charging pressures should vary the results from day to day. This is not apparent from the data. For the above condition any change of any variable would upset the timing of the sequence and the column vibrations would not annihilate each other. A reinforcement of these waves would cause a gain in horsepower from a psdueo-supercharger.

Due to blow-back in the manifold at low r.p.m., the mixture ratio might have been the variable giving low performance from improper mixture. The higher r.p.m. ranges might have been a transient condition in mixture ratio or poor carburetor characteristics. This cannot be true, as the various manifolds had flat spots or dips at the same r.p.m. changes. The products of combustion were analyzed by an engine analyzer and the mixture ratio was always within the combustible range.

After testing was completed, all rotating masses were balanced and this removed the roughness at all engine speeds except the 1000 r.p.m. condition. At this point, the magnitude is very small in comparison to the roughness at the time of

testing. Number seven piston was heavy. Holes were drilled in the skirt so that all pistons were of the same weight.

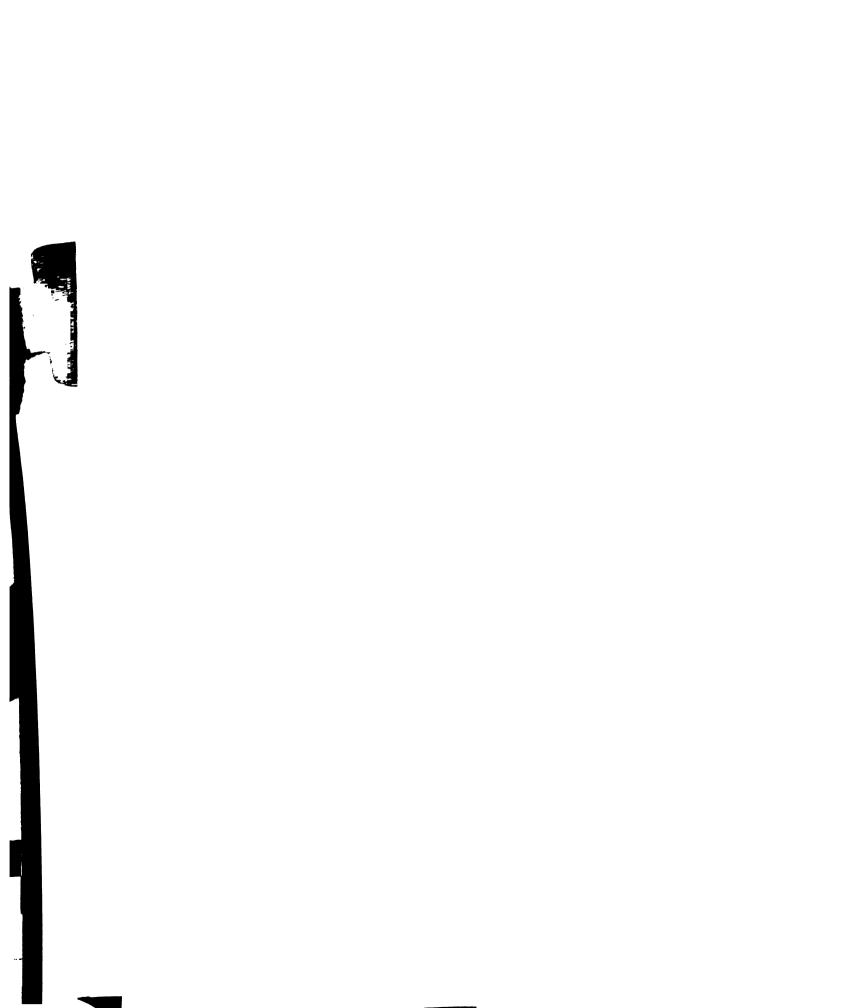
Discussion of Figures 23-56

A description or discussion of the curves in this section is impractical as one curve in itself will not support any conclusions that might be drawn from the trend of pressure differential. Instead, these curves have value as reflections of other curves that are not drawn.

The brake mean effective pressure curve indicates the general shape of the volumetric efficiency curve. These curves are almost an exact duplication of one another at low and medium speed. The breathing efficiency of an engine is a direct measure of the brake mean effective pressure if friction is not considered. The trend of mixture ratio is indicated by the brake mean effective pressure. If the mixture ratio is toward the lean, low output results or low brake mean effective pressure and high brake specific fuel consumption is obtained.

The weight of the charge is reduced as the engine speed increases because higher velocities are necessary to move more charge to the cylinder. The higher velocities are caused by a

greater pressure drop in the induction system, resulting in lower cylinder pressures and therefore less weight of charge. The brake mean effective pressure curves should relate these conditions.


The pumping losses are part of the total friction horsepower and the trend of the mechanical efficiency curves should indicate the comparisons in these losses.

Data for demand horsepower curves were not recorded but miles per gallon curves were drawn for constant throttle openings. Vehicles operate at variable throttle, so one must not draw conclusions concerning vehicle performance directly from the miles per gallon curves. Comparisons between manifolds at the same throttle opening must be tempered by the load factor, as the load varied between manifolds at the same throttle opening and r.p.m.

The curves in Figures 42 to 56 are intended for general information. The comparison of these curves shows the trends of each characteristic upon opening and closing of the throttle.

Discussion of Figures 57-100

Figures 57 to 100 are arranged face to face with all operating conditions the same so that comparisons or trends can be drawn. Each line graph is drawn according to individual

induction systems, and only refer to those cylinders fed by one riser. All intake manifolds have at least two separate branch systems. The dual-carburetor manifold has four risers, but two small connecting passages join the risers in pairs.

within the extremes of the branch systems. With higher velocities of flow, a greater differential in pressure must exist between the atmosphere and the cylinder to accomplish adequate mixture flow in the short time available for charging. This is not measured by the internal pressure differential in which this problem is concerned.

Standard Manifold

Figures 57 and 58, 1/8 throttle opening. Cylinder number six has a higher than average indicated horsepower value and the pressure differential is less than average. Cylinder number five has a low developed horsepower value and an average value of pressure differential. The points of higher pressure occur at the valve.

Figures 59 and 60, 1/4 throttle opening. Cylinder number six has a high indicated horsepower and a low pressure differential.

Cylinder number four has a high indicated horsepower and a high

pressure differential. Higher pressures are located at the valve but are lower than previous figures.

Figures 61 and 62, 1/2 throttle opening. There is not much fluctuation in the developed horsepower except cylinder numbers six and seven are slightly higher than the rest. The pressure differential does not exhibit a very wide range, but cylinders six and seven are a little lower than average. The point of higher pressure fluctuates from one end of the induction system to the other. The ramming effect is just starting.

Figures 63 and 64, 3/4 throttle opening. The graphs of developed horsepower exhibit little variance. Cylinder number seven is high at 4000 r.p.m. The pressure differential is high for Cylinder seven with the valve pressure the lower. Cylinder four has an almost constant pressure, but is higher than average throughout the range of r.p.m. Almost all pressure measurements show ram in good progress.

Figures 65 and 66, full throttle opening. The graphs are comparable to Figures 63 and 64, except the change in pressure is more gradual between r.p.m. increments. The developed

horsepower is higher and the pressure differential is higher. Ramis present at all conditions of operations.

Dual-Carburetor Manifold

Cylinder numbers 1, 6, 2, and 5 are fed by one carburetor, and 3, 8, 4, and 7 by the other carburetor. There are four risers and each feed two cylinders as follows: 1 and 6, 2 and 5, 3 and 8, 4, and 7. A small passage between risers connects the following cylinders in the branch systems: One system is 2 and 5, 3 and 8; the other system is 1 and 6, 4 and 7.

Figures 67 and 68, 1/16 throttle opening. A trend is not apparent in these figures. There is too much variation in pressure and developed horsepower.

Figures 69 and 70, 1/8 throttle opening. Cylinder number six has a comparatively low pressure differential and a low developed horsepower. Cylinder number seven has a low horsepower and the lowest pressure differential and shows ram at low r.p.m.

The point of higher pressure is the valve end of the induction system.

Figures 71 and 72, 1/4 throttle opening. There is little variation between these figures and the previous figures. The developed horsepower is higher and the valve pressure a little lower.

Figures 73 and 74, 1/2 throttle opening. The developed horsepower is practically a constant for all cylinders. One riser section of one carburetor shows high valve pressures and the other riser, low valve pressures. The other carburetor has the same conditions. This must be due to flow resistance.

Figures 75 and 76, full throttle opening. The operating conditions are the same as the 1/2 throttle position. Developed horsepower is slightly higher, but the variations are also higher. The increased flow rate shows greater losses in cylinders 1 and 6, 3 and 8, but the output of all cylinders is not different.

Quad. Manifold

In this manifold the secondary throttles feed the same cylinders as the primary throttles.

Figures 77 and 78, 1/8 throttle opening. Cylinder seven has a lower than average developed horsepower and the pressure

the pressure differential gradually decreases with increase in r.p.m. This cylinder has high differential at low r.p.m. with the valve end of the induction system being the greatest. The increase in r.p.m. is accompanied with a lower pressure differential until the pressure is the same at both ends of the induction system.

There is some fluctuation in the point of maximum pressure, but generally, the valve end is the higher.

Figures 79 and 80, 1/4 throttle opening. Cylinder number one has a low pressure differential and an average indicated horse-power. Cylinder number four has an average output and a high pressure differential. Cylinder number five has a low pressure differential and a high output. There is not definite point of maximum pressure, but varies between a range of 2'' H₂O differential around the 0'' H₂O differential point.

Figures 81 and 82, 1/2 throttle opening. (This is the position where the secondary throttles start to open.) One induction system has a high pressure differential with the valve end the higher for all values and the other system a low pressure differential with all values the lower at the valve end of the induction

system. The later condition exhibits a more uniform distribution of developed horsepower and the pressure variation is very small around the 0'' H₂O value of pressure differential.

Figures 83 and 84, 3/4 throttle opening. Most of the values of pressure differential are fairly uniform for all cylinders and the valve end of the induction system is the lower. The developed horsepower is almost constant for all cylinders.

Figures 85 and 86, full throttle opening. The pressure differential changed slightly from the 3/4 throttle opening. The developed horsepowers are lower at low r.p.m. and have identical valves at higher r.p.m. There is evidence of throttling in the induction system.

Quad. Carburetor Adapted to a Standard Manifold (the secondary throttle open at 1/4 primary throttle)

Figures 87 and 88, 1/8 throttle opening. Distribution of pressure differential is uniform and limited over a small range.

In all cases the valve end of the induction system is the higher pressure. Cylinders one and four have low values of pressure differential and the developed horsepower is higher than average.

Figures 89 and 90, 1/4 throttle opening. There is a distinct variation in developed horsepower but there is no apparent direction or trend in the pressure differential as there is extreme fluctuation. The average pressure differential is high with the valve end of the induction system the higher.

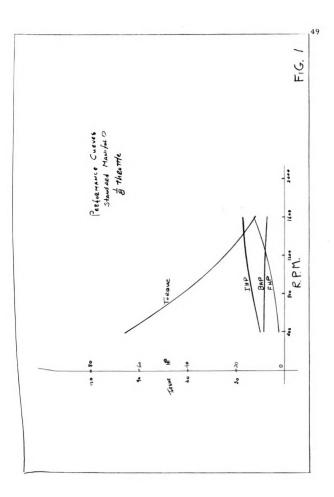
Figures 91 and 92, 1/2 throttle opening. There is a uniform pressure variation with all values of pressure differential lower at the valves. The developed horsepower is regular with very good distribution, although cylinders seven and two have the lowest pressures. Ramming effect is present.

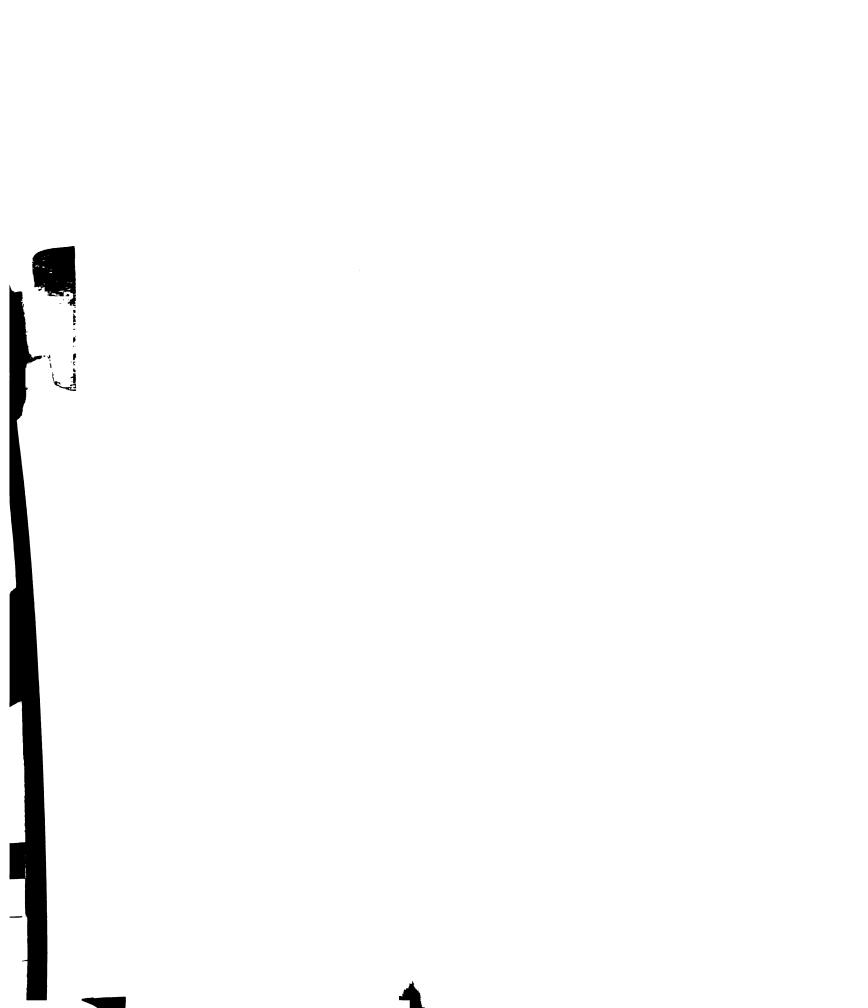
Figures 93 and 94, full throttle opening. The only differences between these figures and the past two figures are the extremes of variation. The output is higher and the range of pressure differential variation is greater, although the average numerical value is lower. Ramming effect is present.

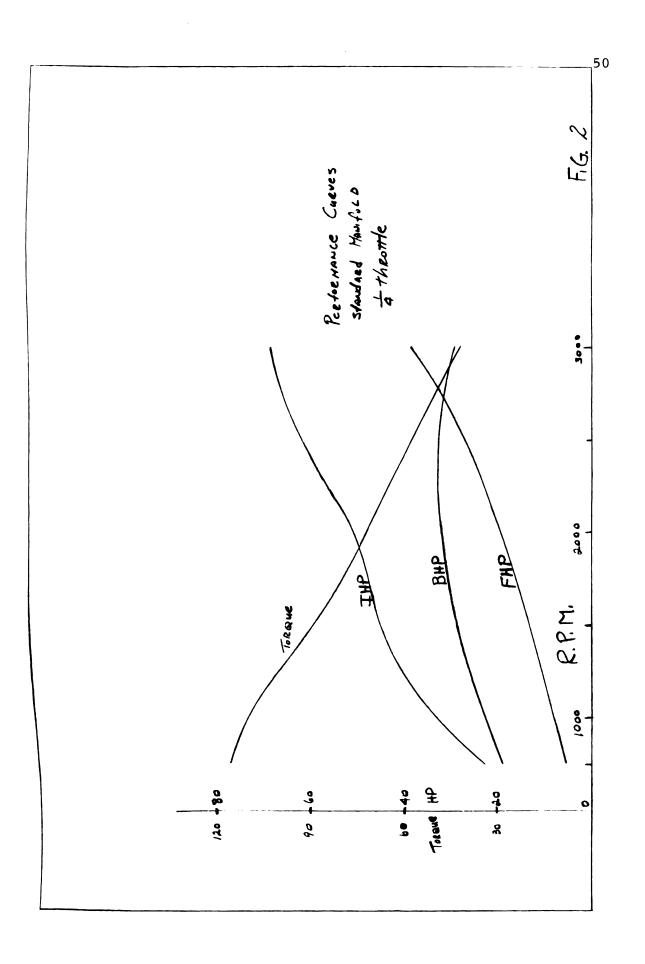
Quad. Manifold (secondary throttles open at 1/4 primary throttles)

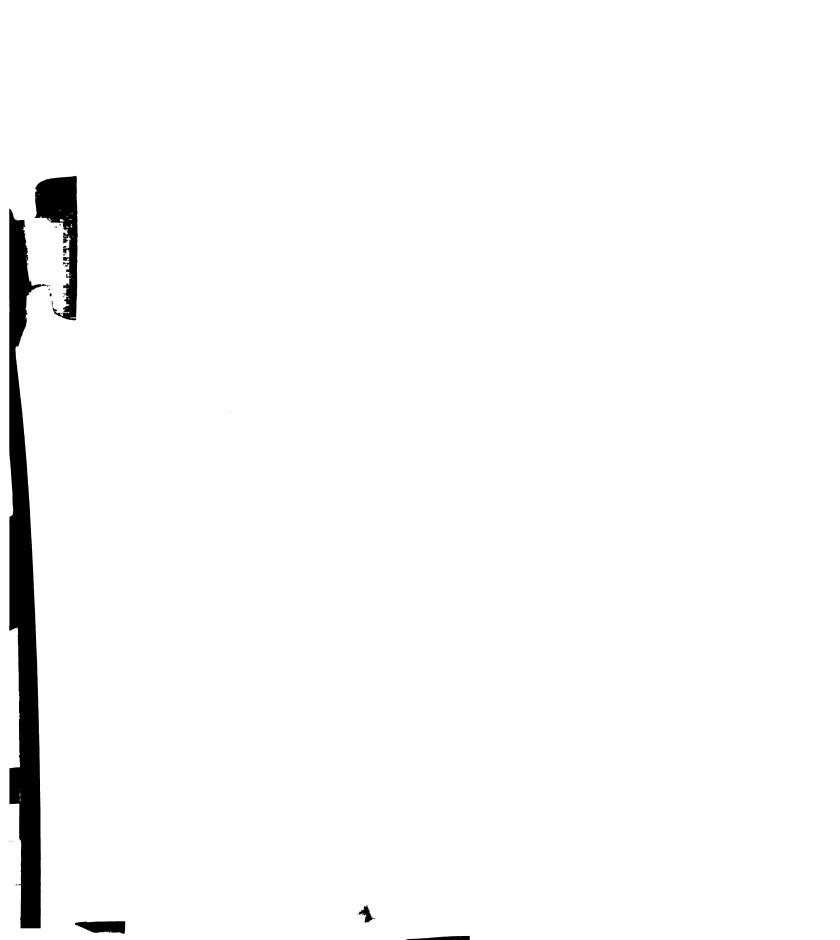
Figures 95 and 96, 1/4 throttle opening. The pressure differential is evenly distributed for all cylinders. The developed horsepower is higher than average, but cylinder number seven is

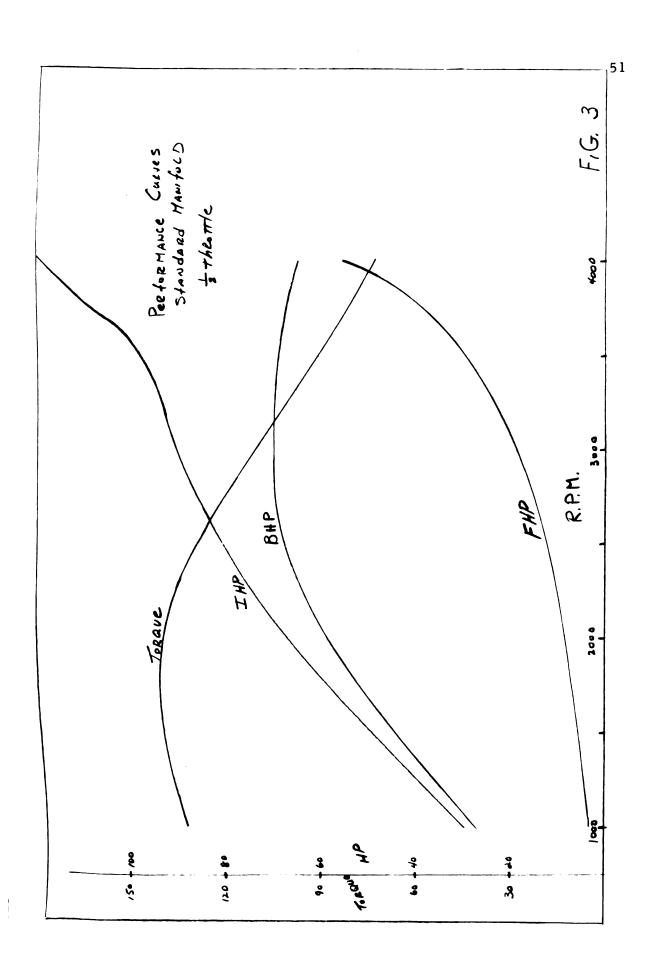
low with no pressure differential. Cylinder number four has a higher differential and an average output. Ram is present in some cylinders.

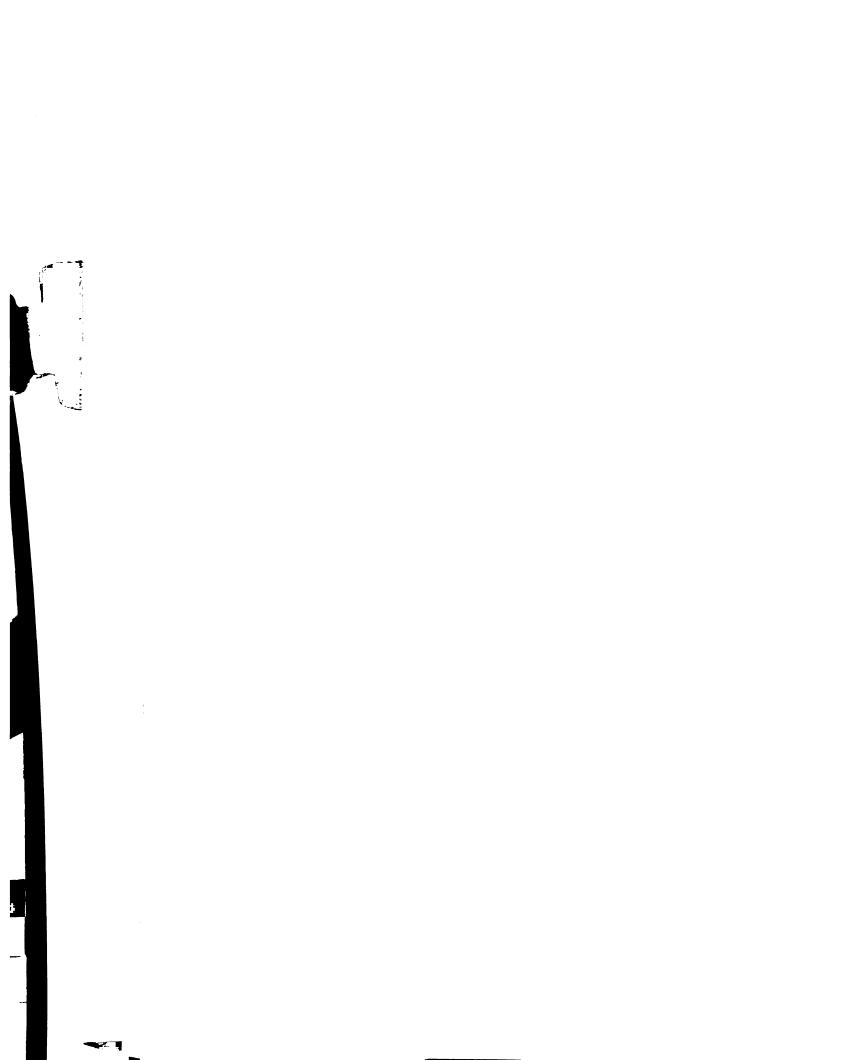

Figures 97 and 98, 1/2 throttle opening. One induction system feeding cylinders 2, 3, 5, and 8 has lower valves of pressure differential than the other induction system that feeds cylinders 1, 4, 6, and 7. The output of the former is higher than the Output of the latter.

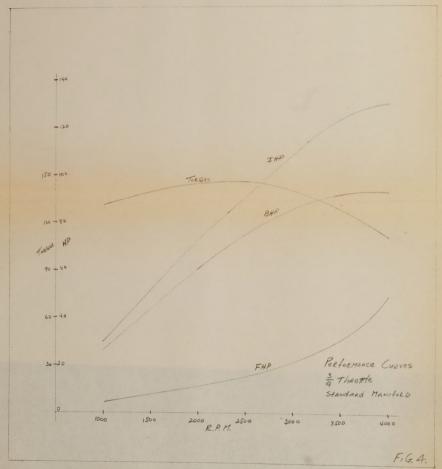

Figures 99 and 100, full throttle opening. The pressure differential is similar to that of the previous figures. The indicated horsepower is higher but regular from cylinder to cylinder.

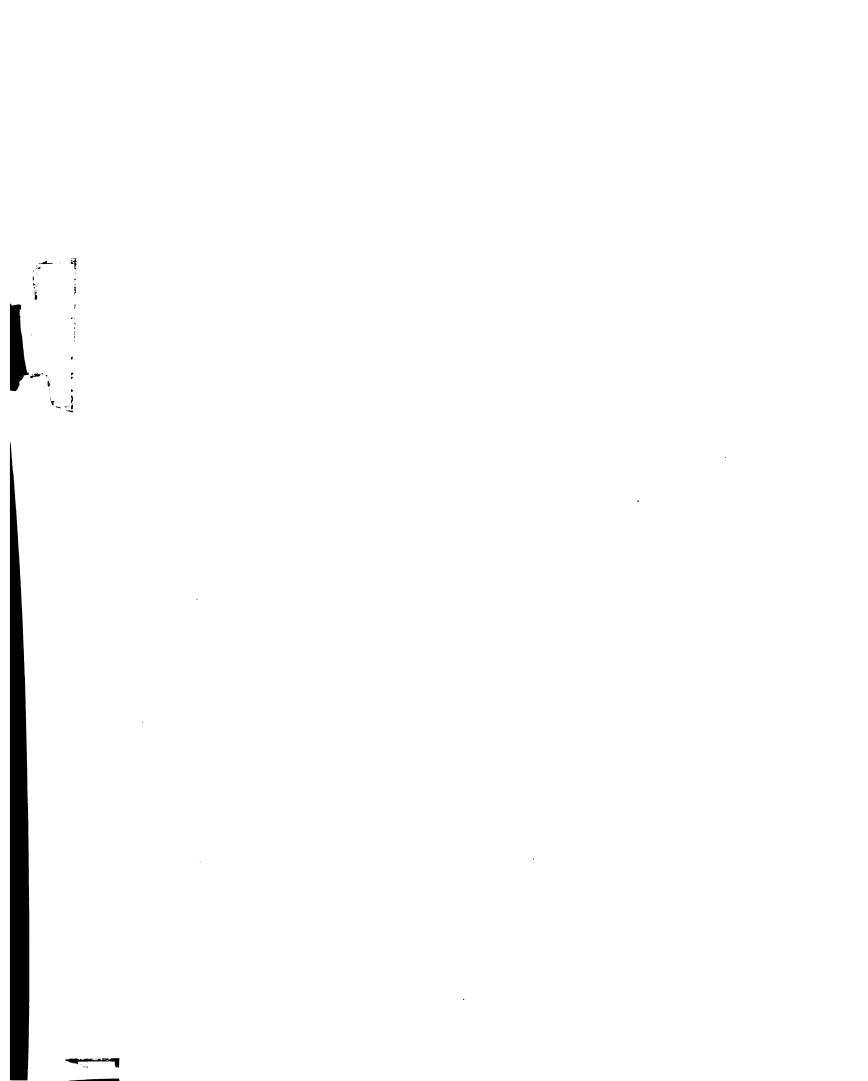

PERFORMANCE CURVES

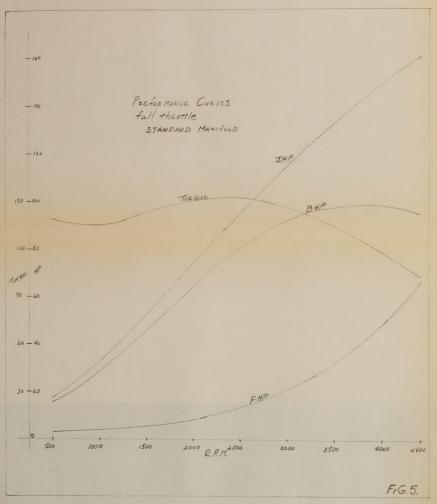

Figures 1-22

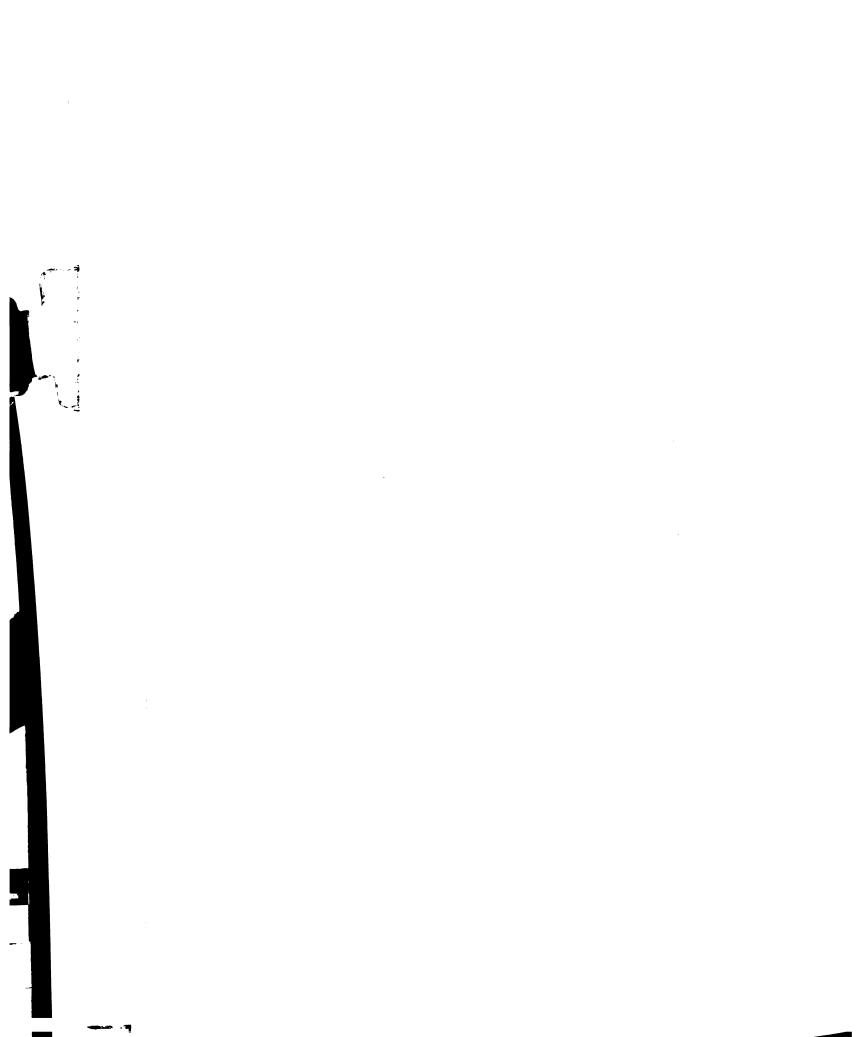

Indicated Horsepower
Brake Horsepower
Friction Horsepower
Torque

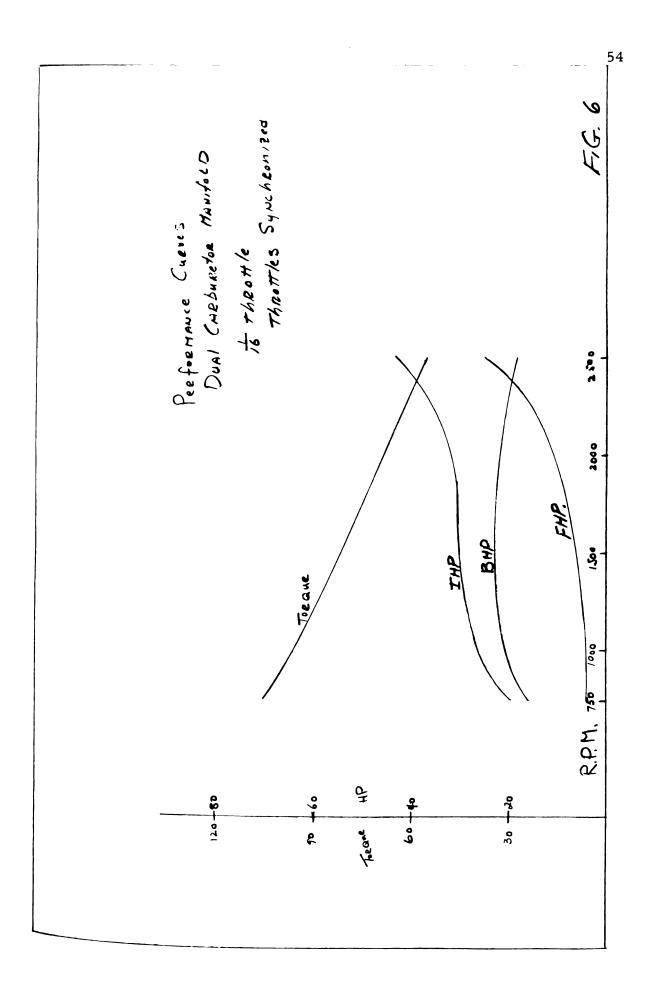


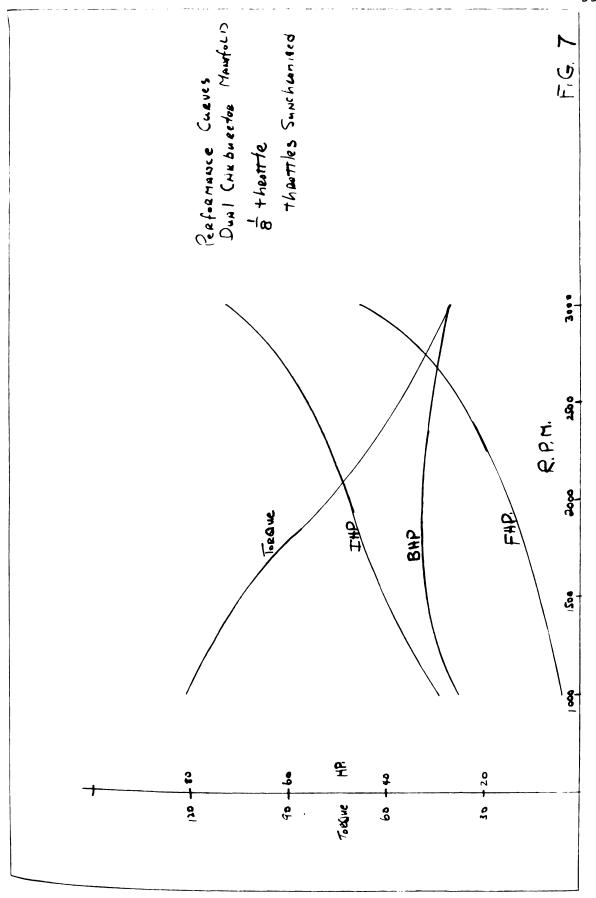


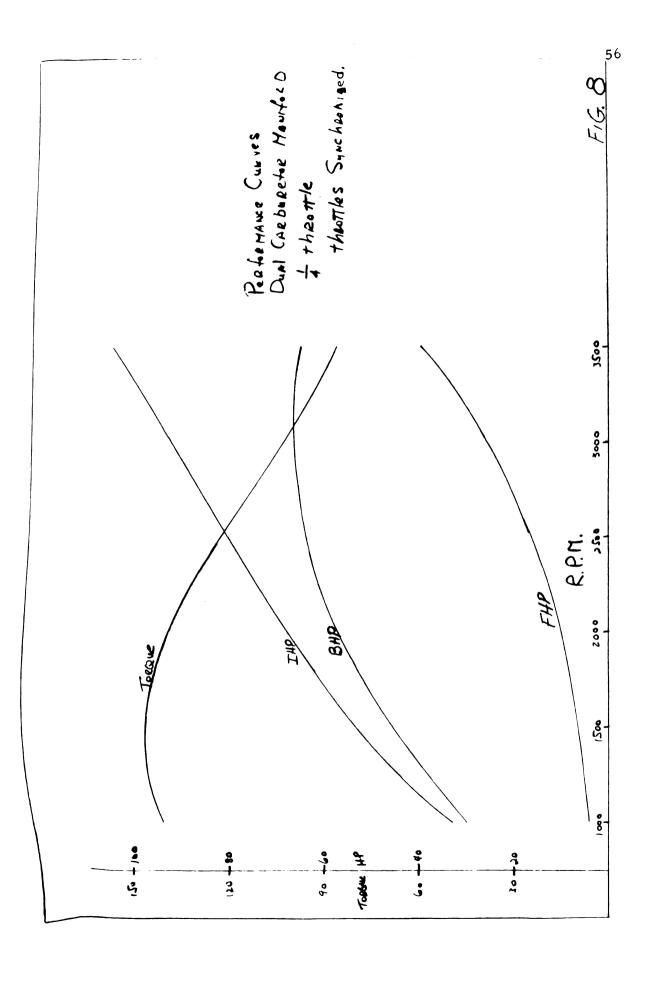


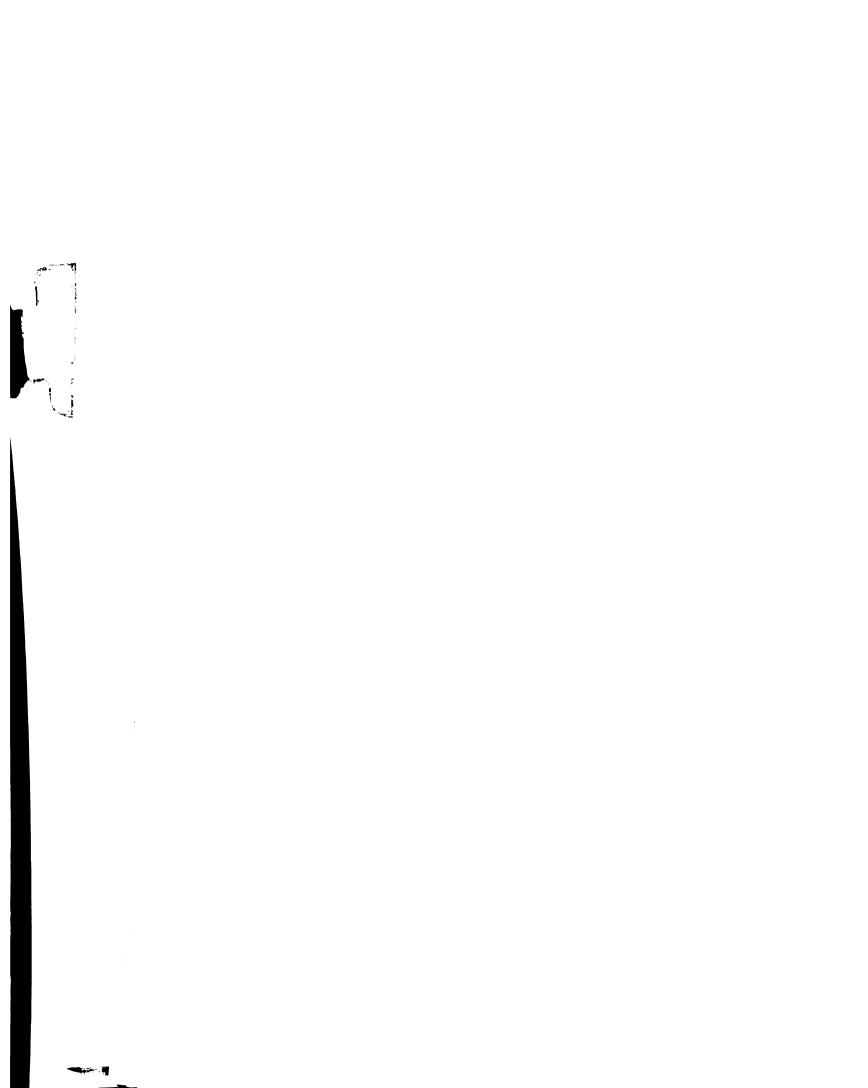


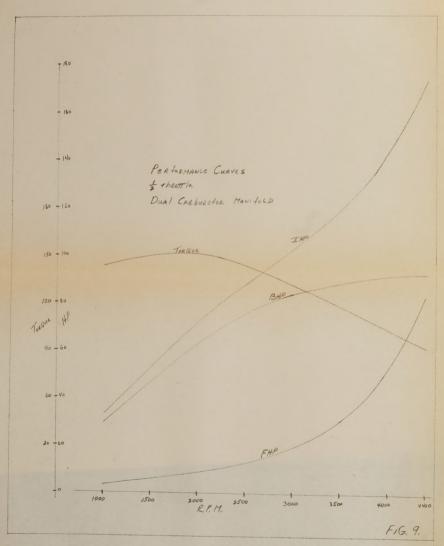


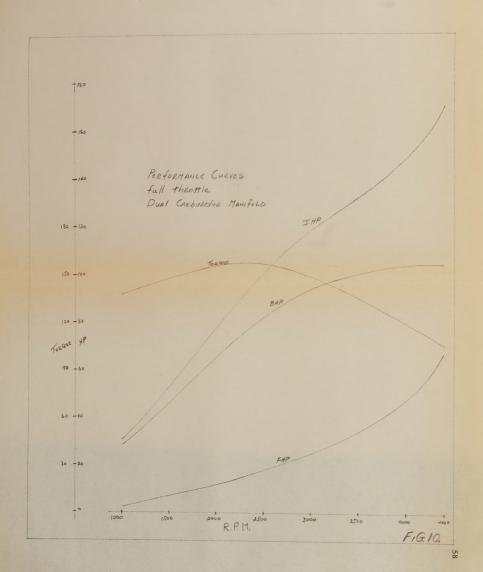


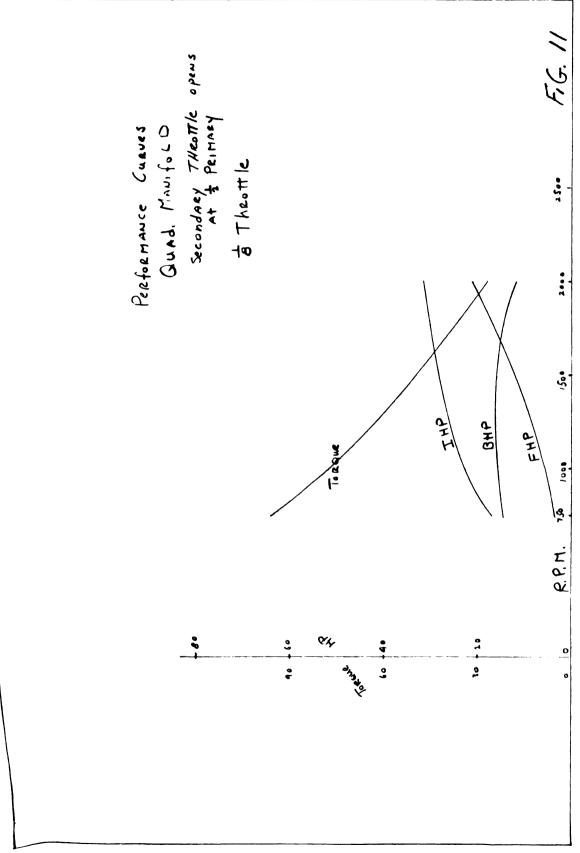


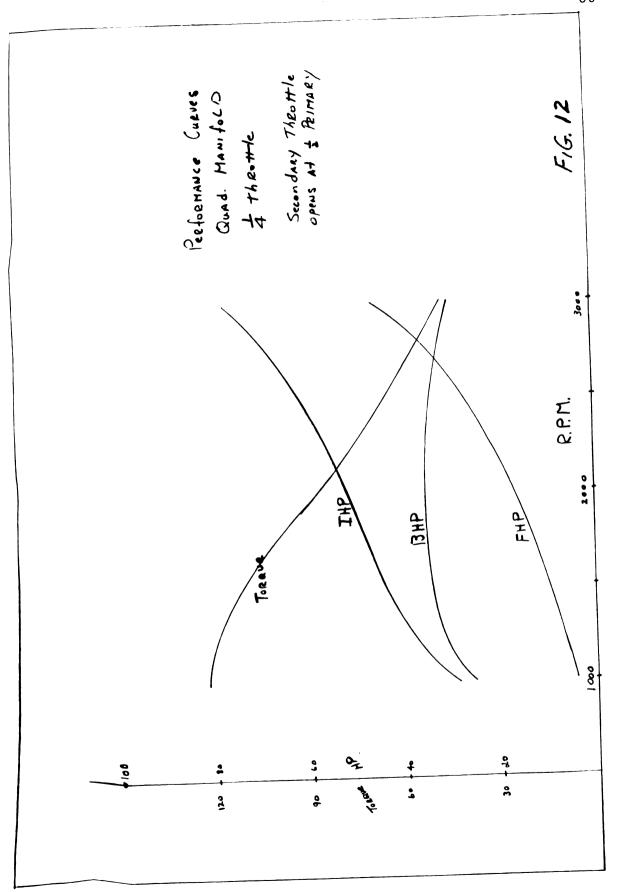


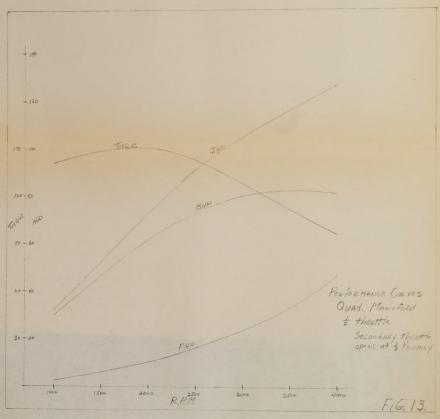


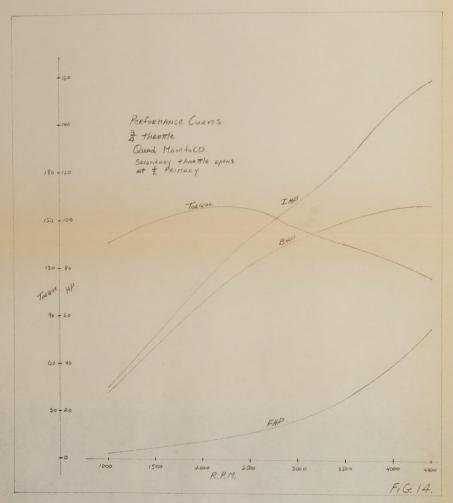


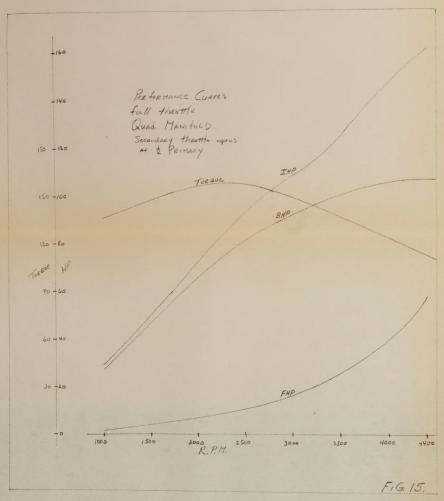


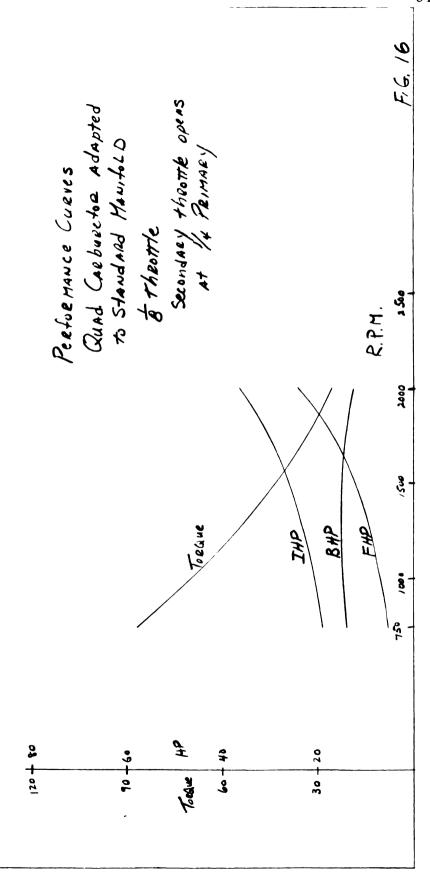


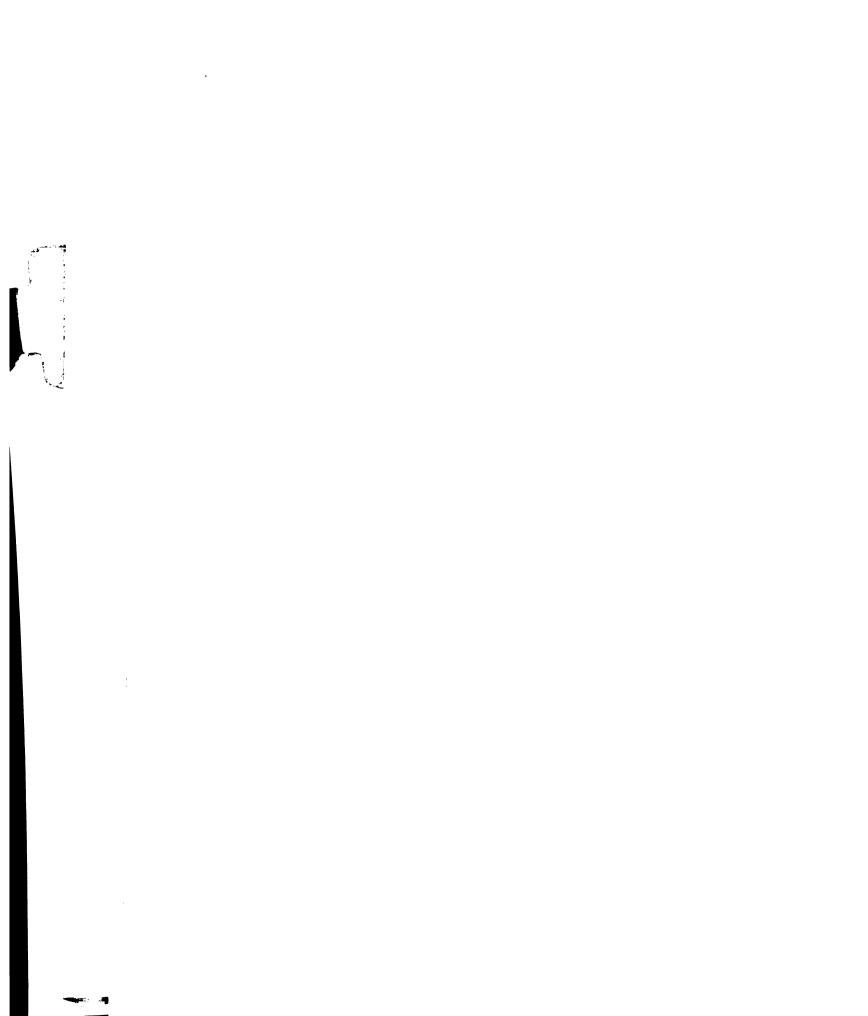


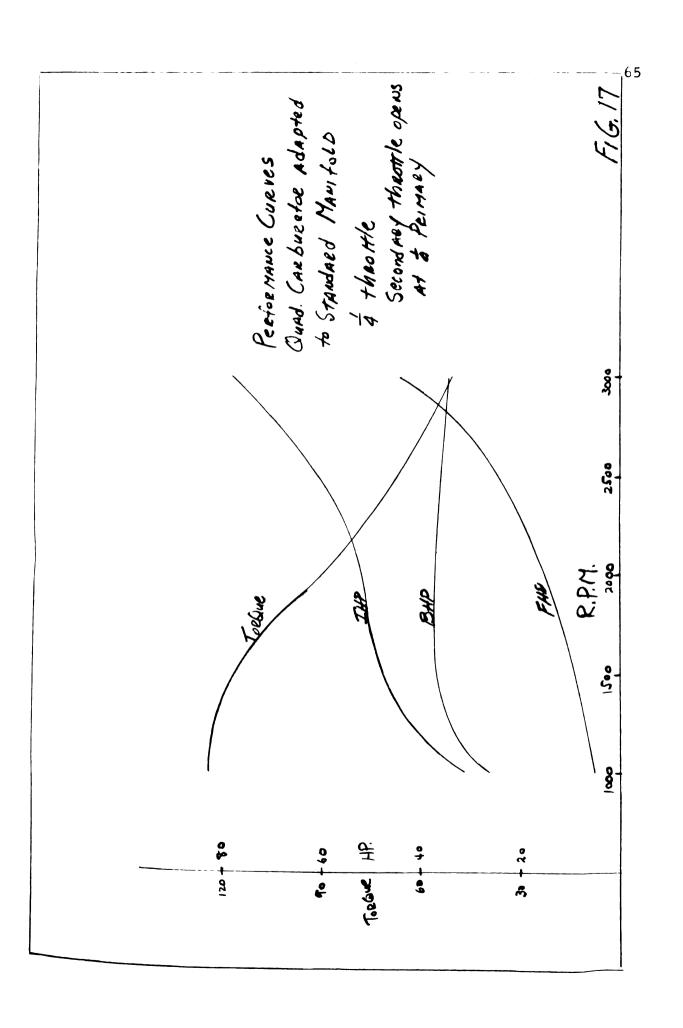


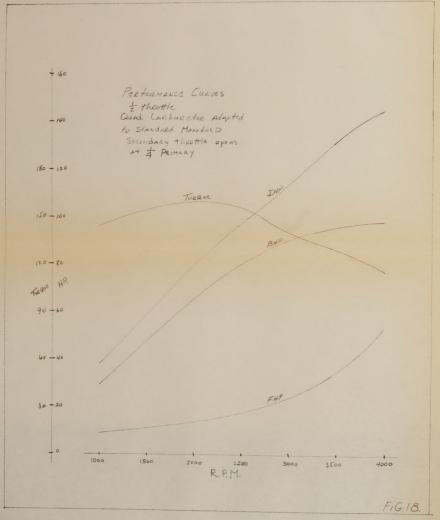


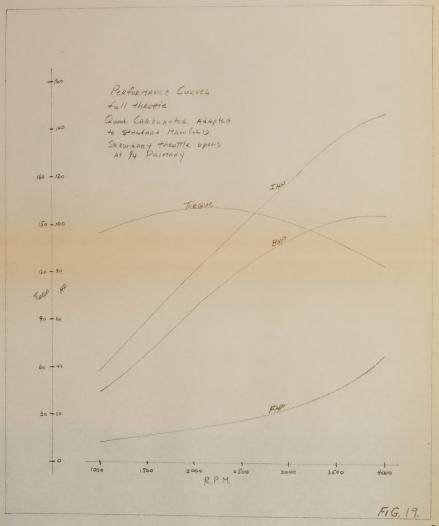


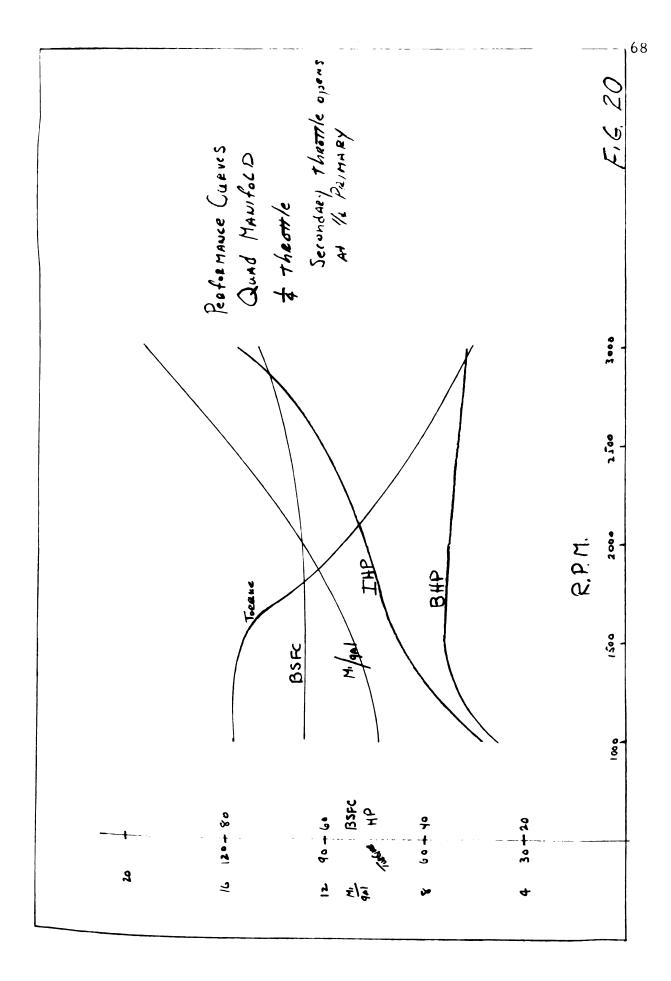




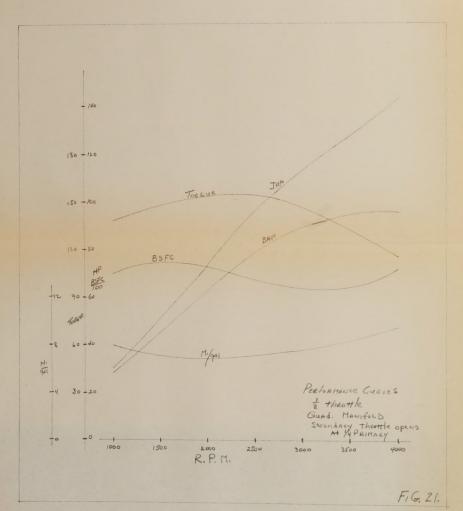


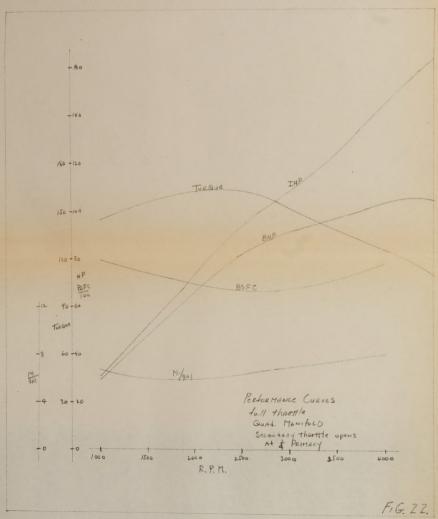


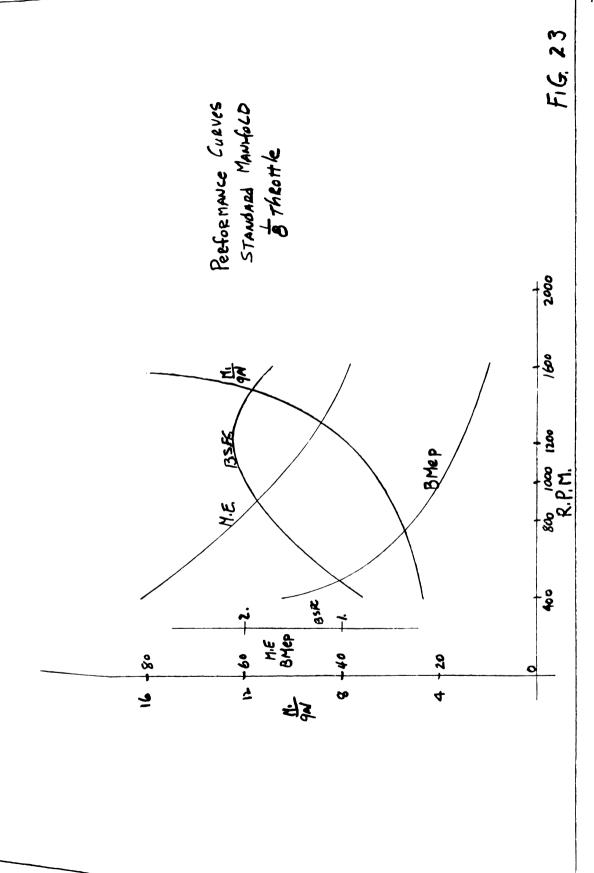


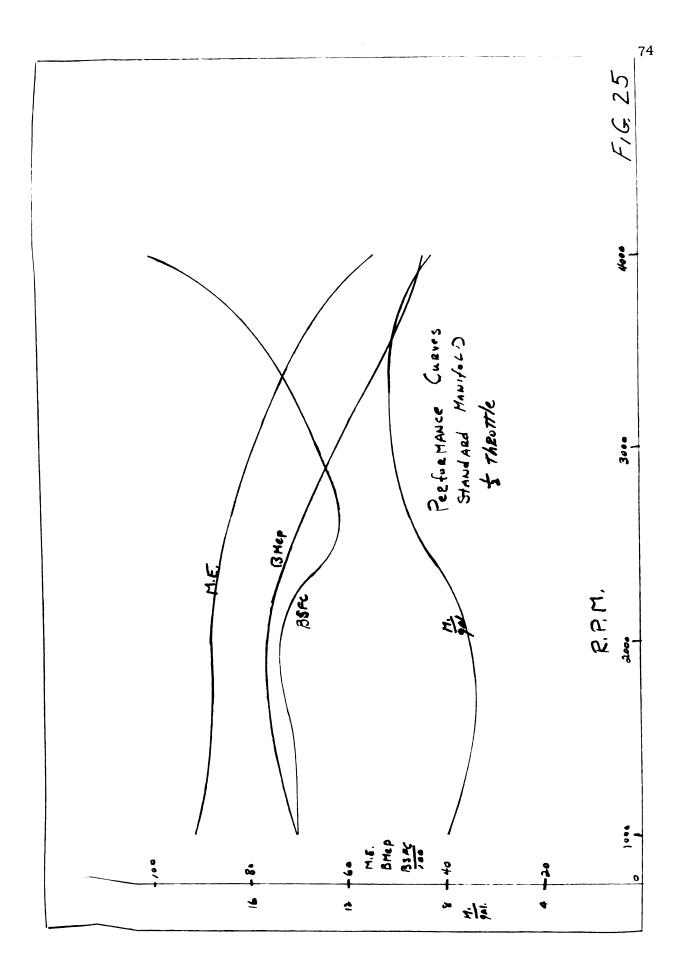






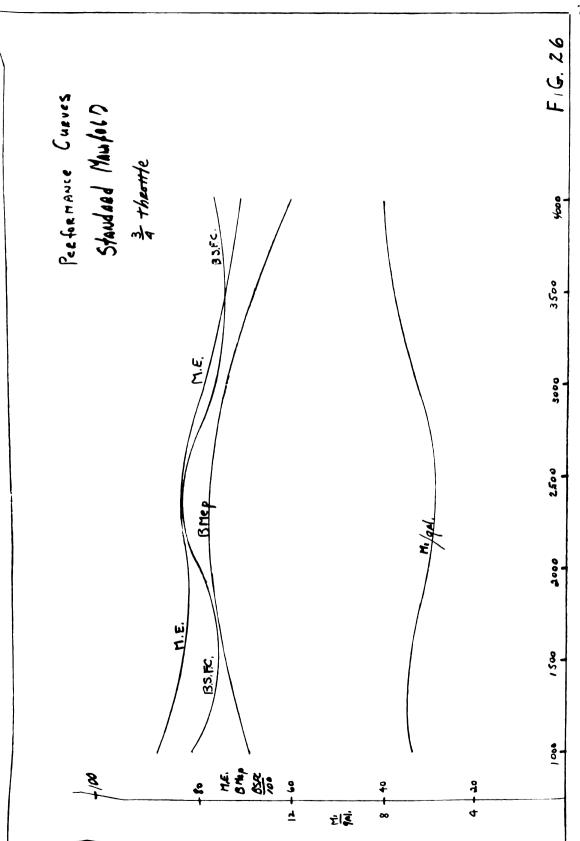


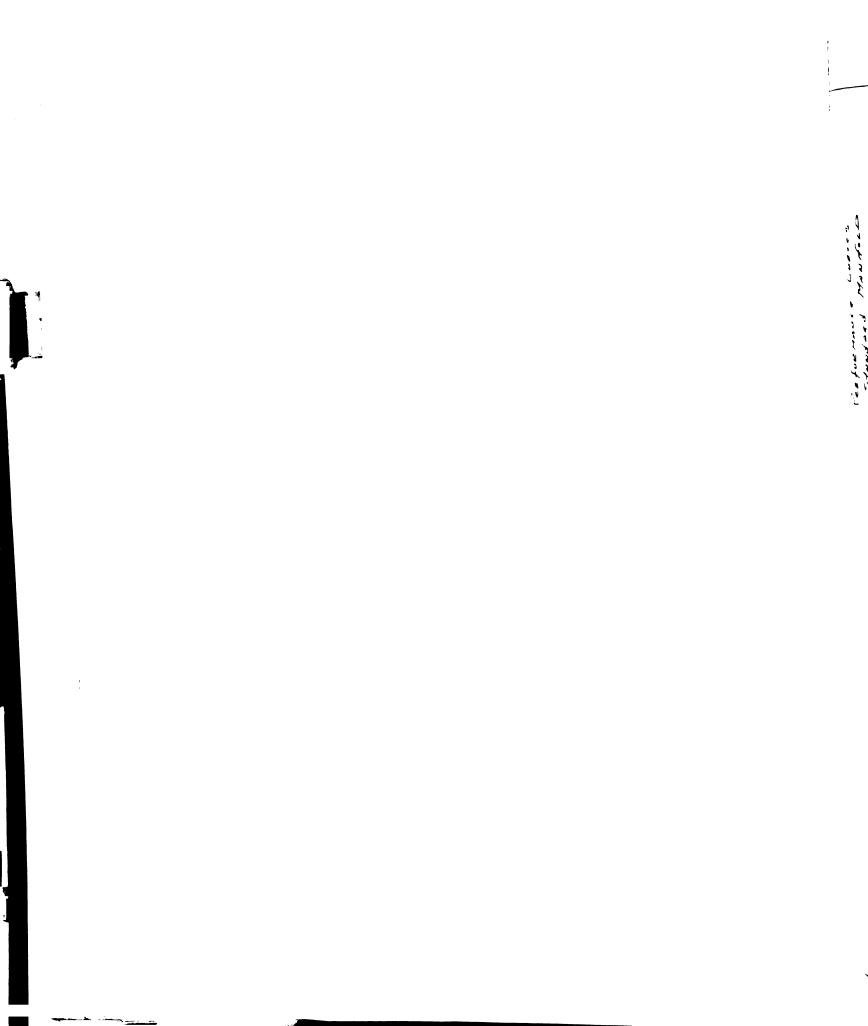


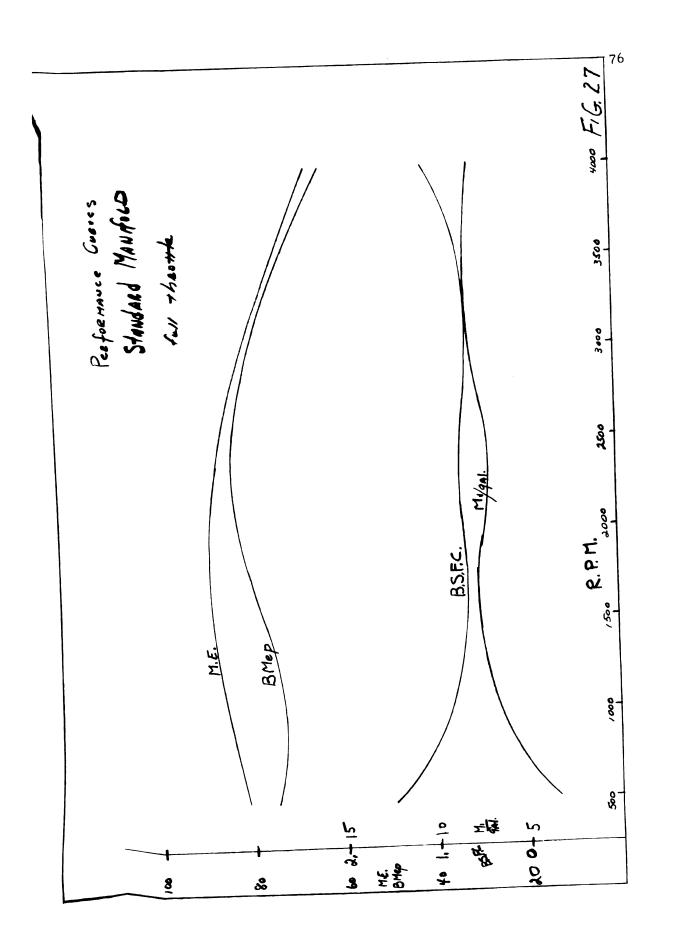

PERFORMANCE CURVES

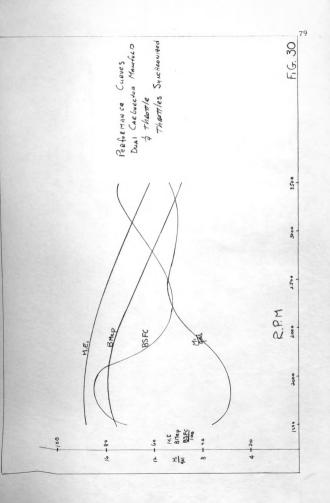
Figures 23-41

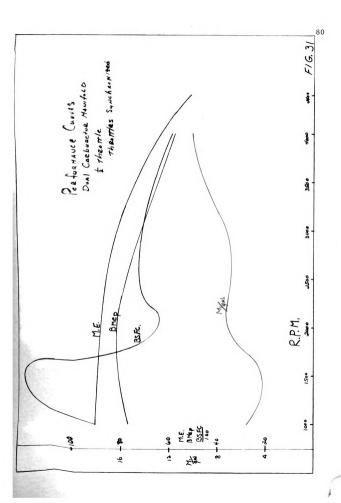
Brake Mean Effective Pressure
Brake Specific Fuel Consumption
Mechanical Efficiency
Miles per Gallon

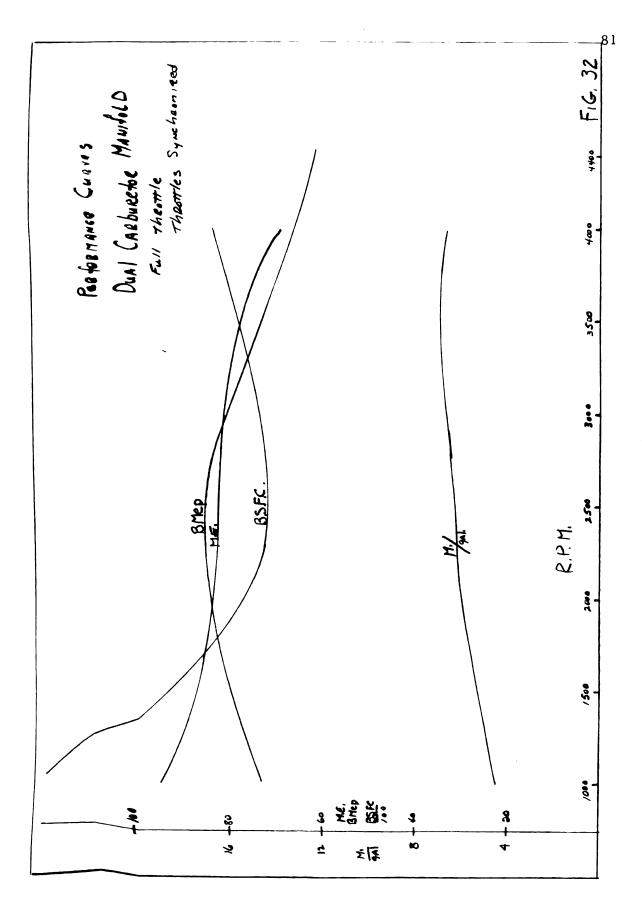


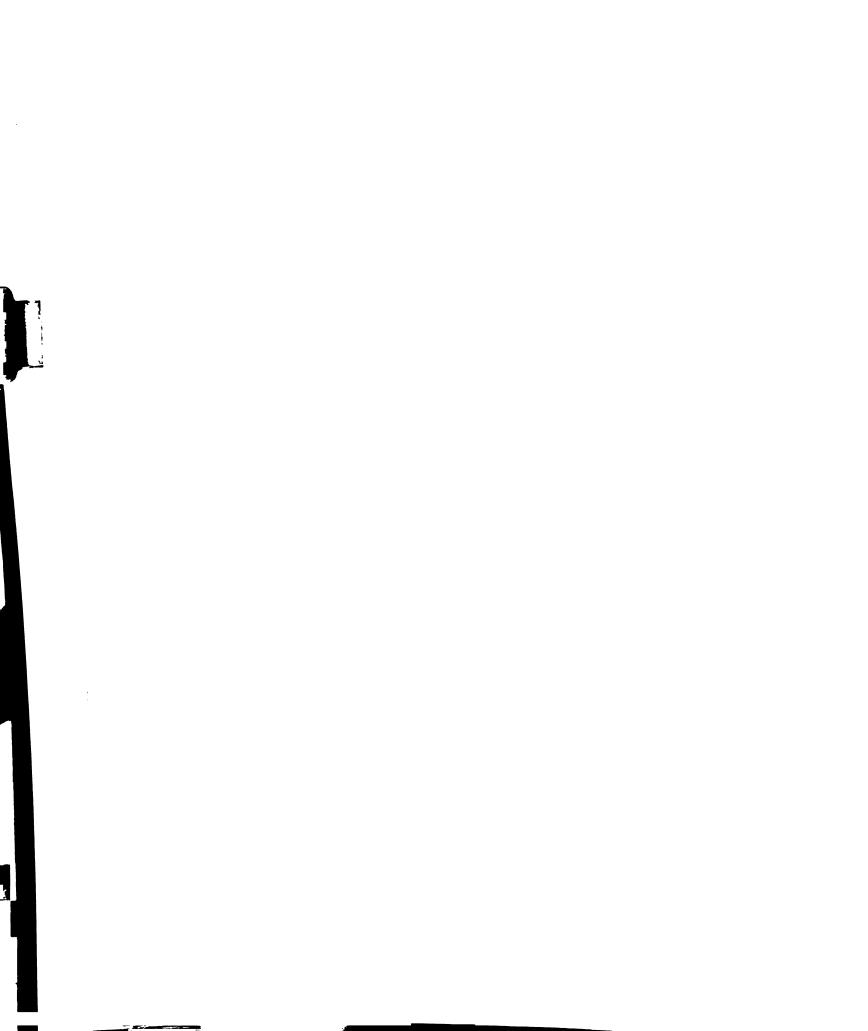


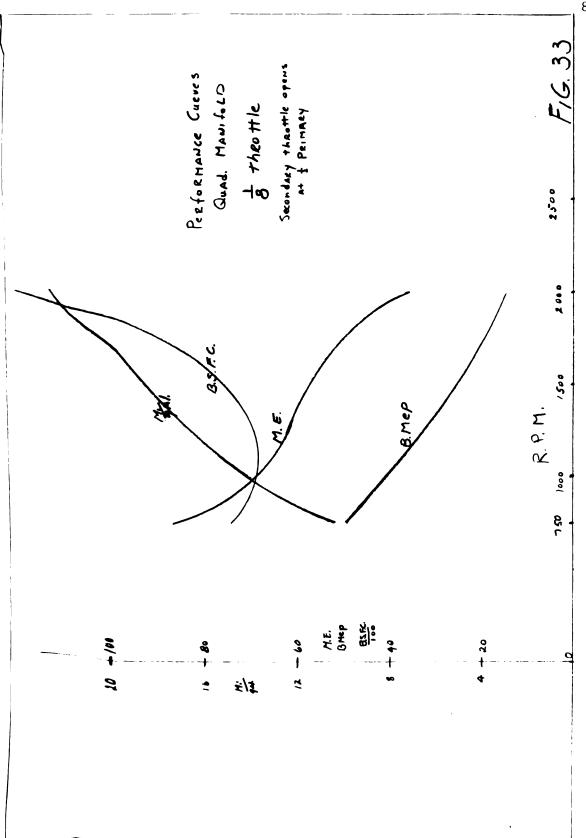


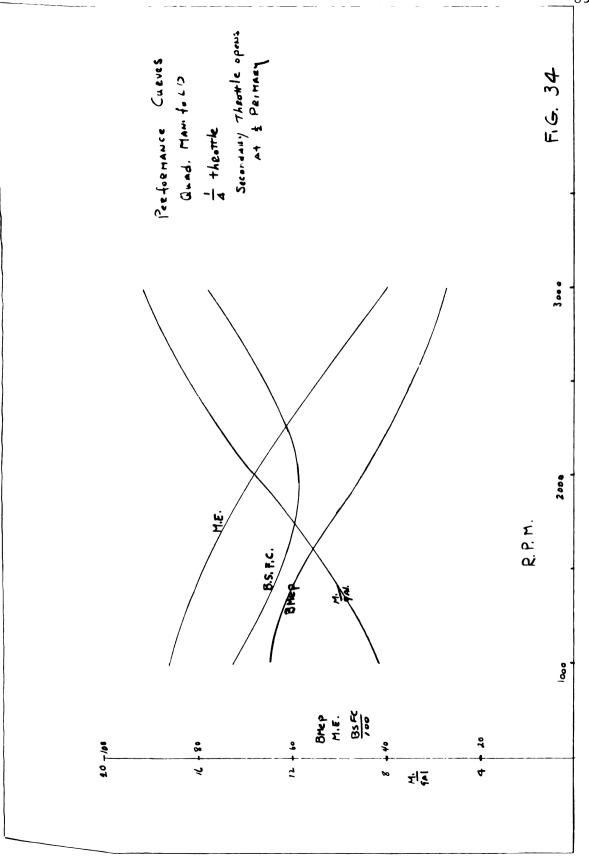

1°4

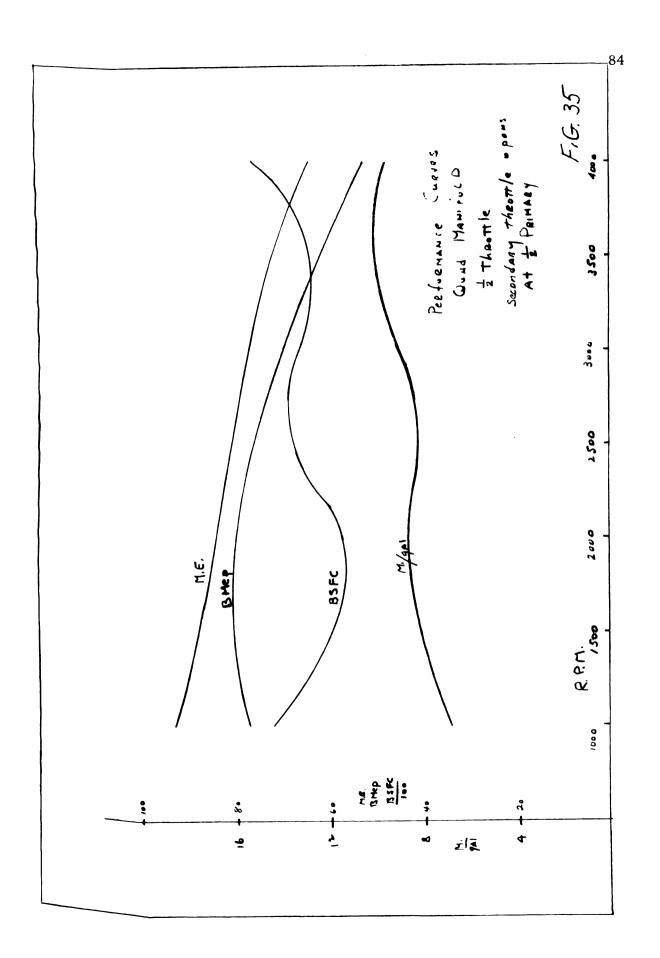

:

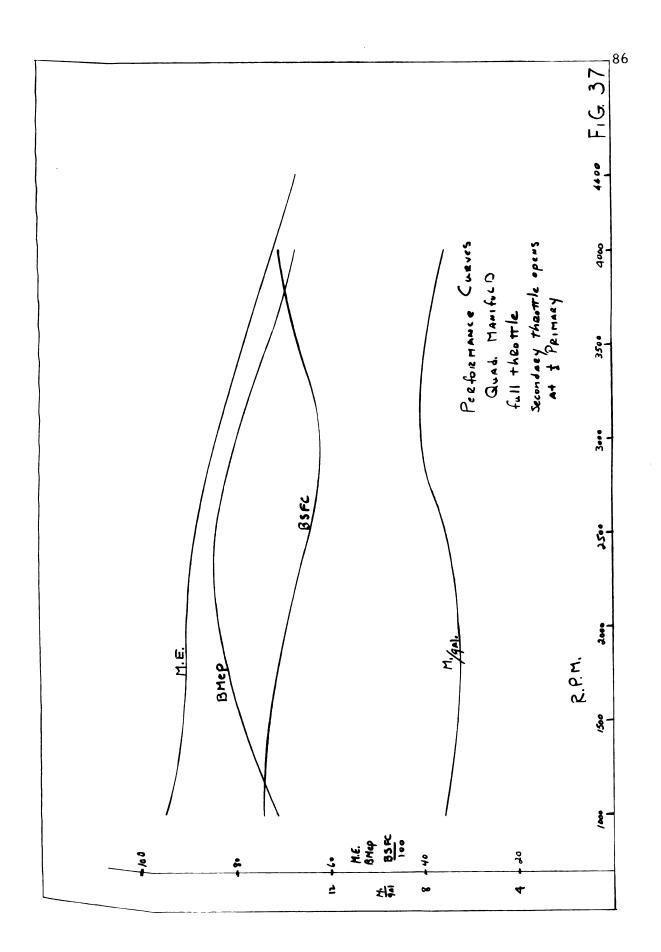


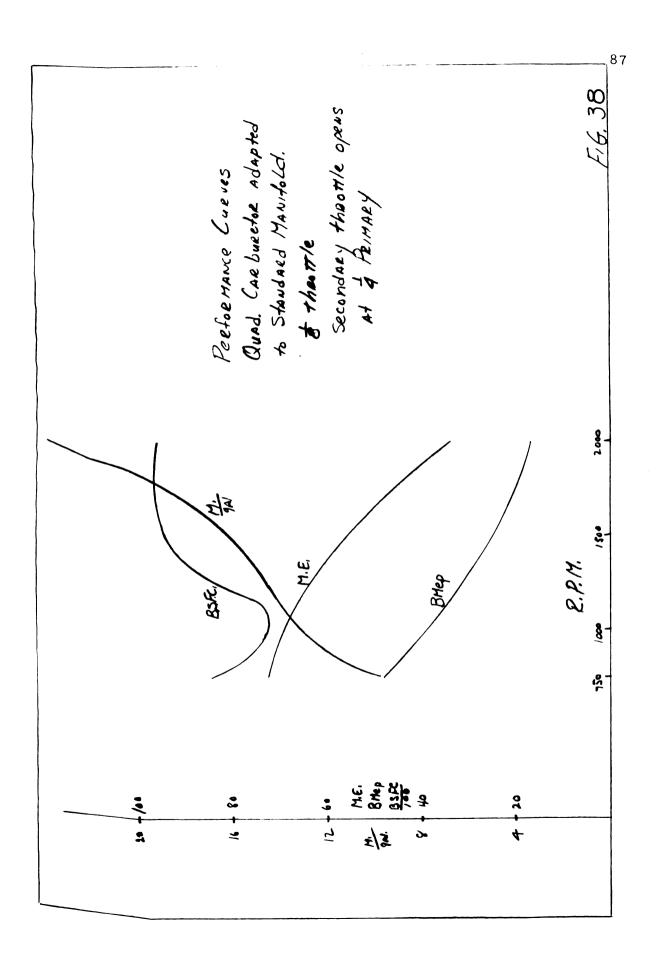

.

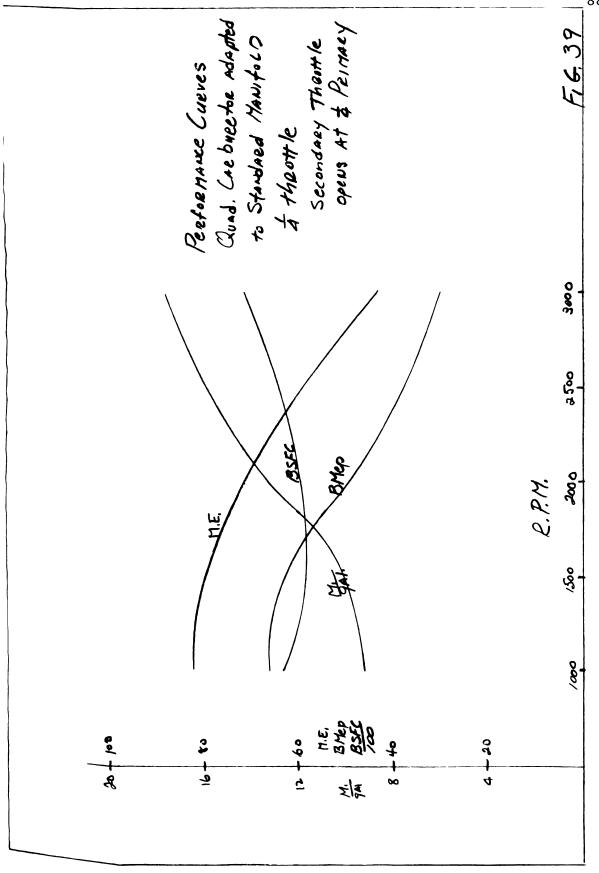


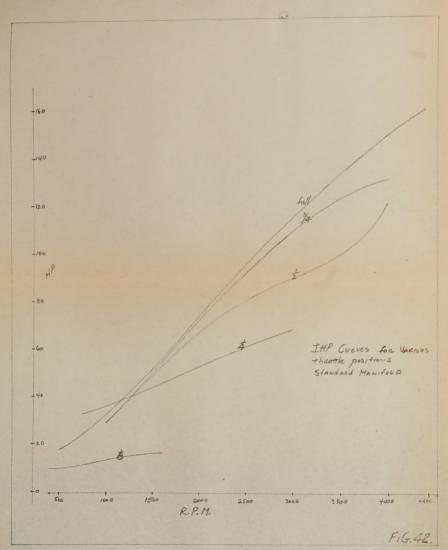


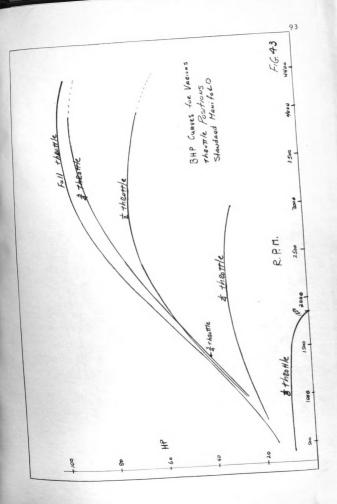



F.

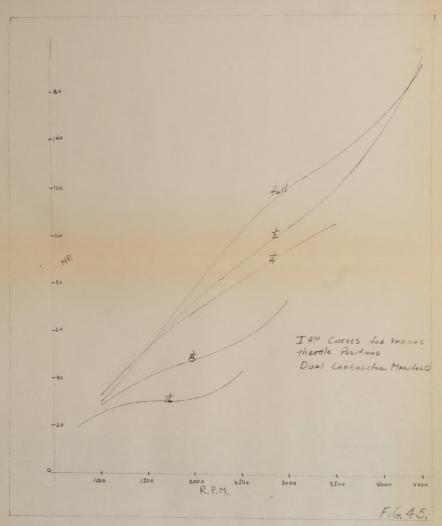


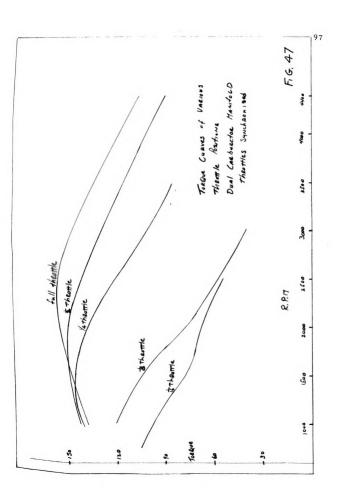


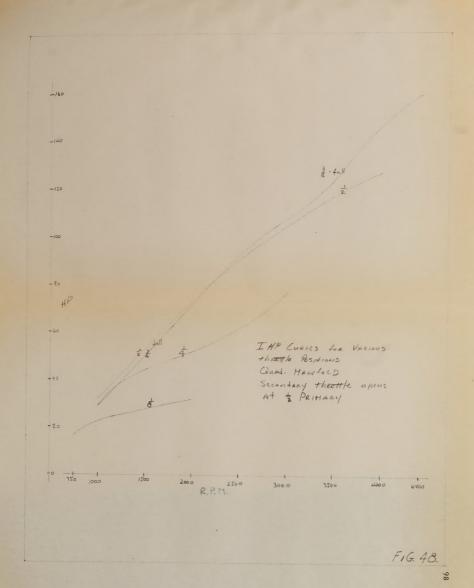


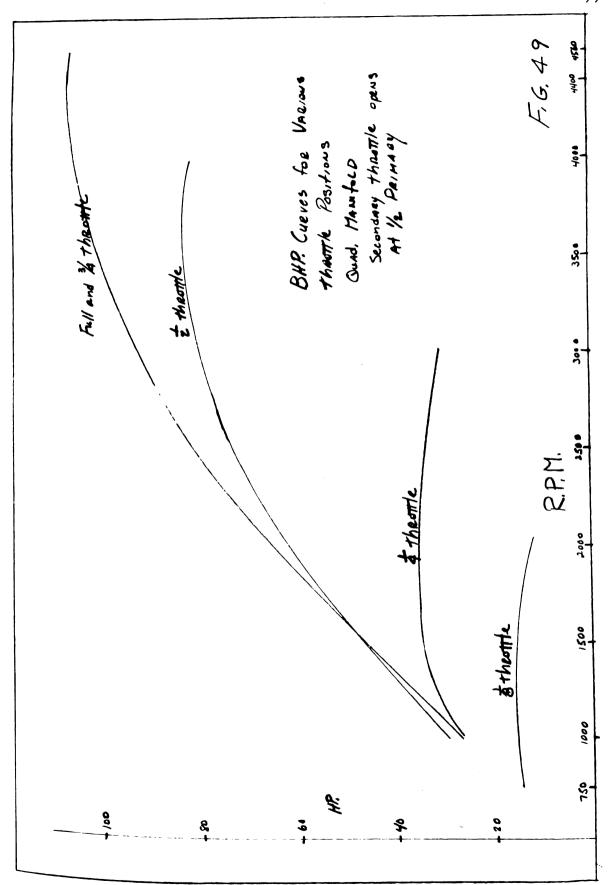


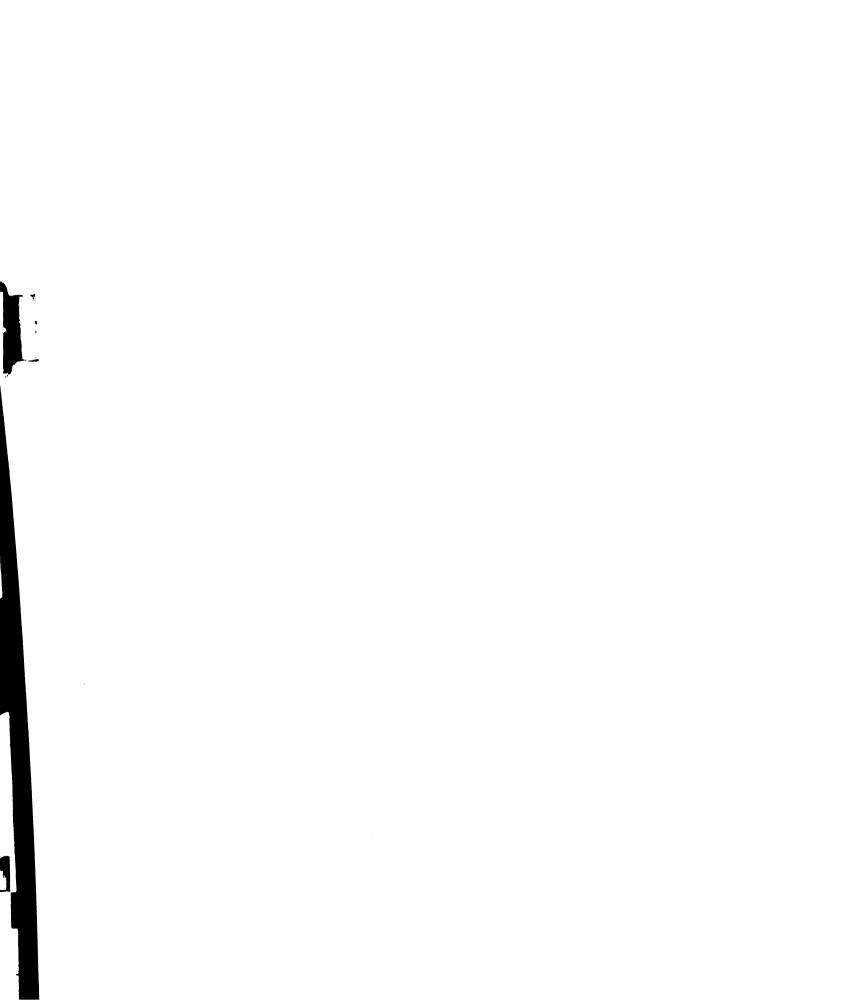
COMPARISON OF CURVES

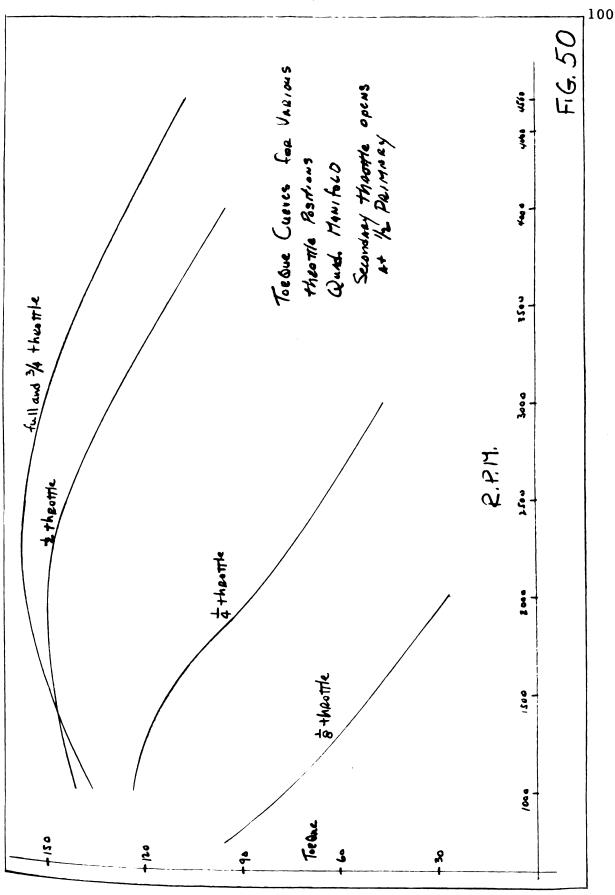

Figures 42-56

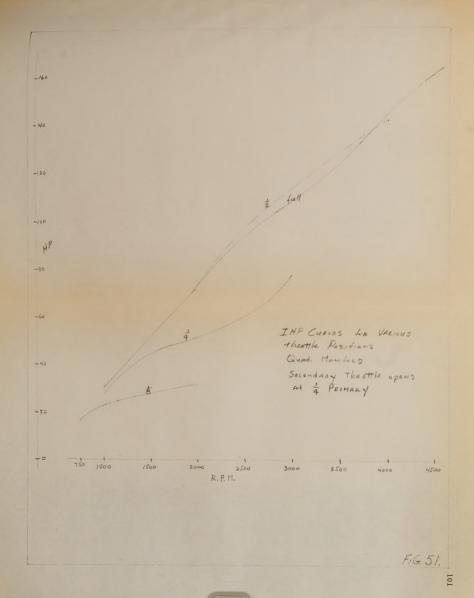

Indicated Horsepower Brake Horsepower Torque

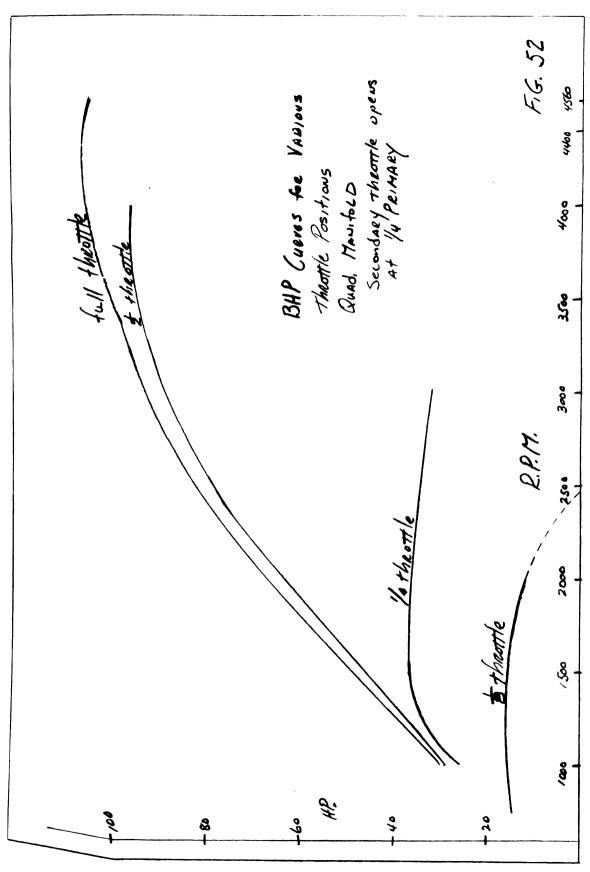


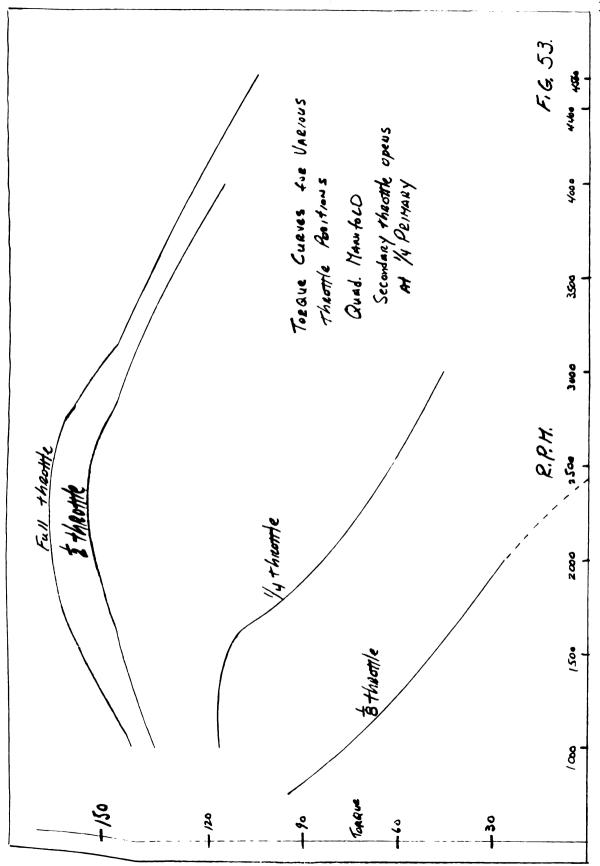


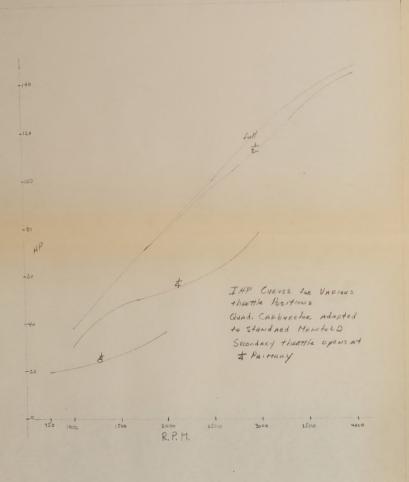

60+

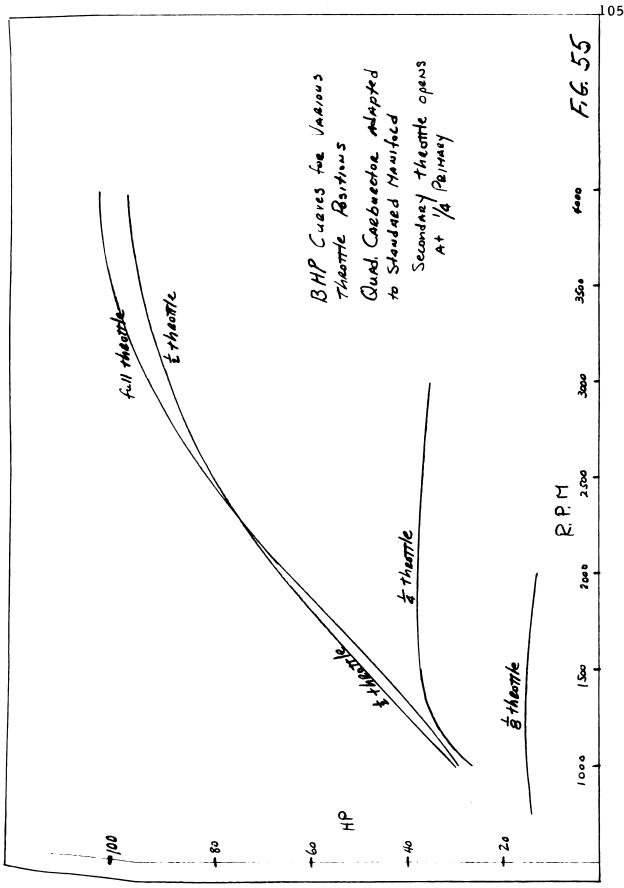


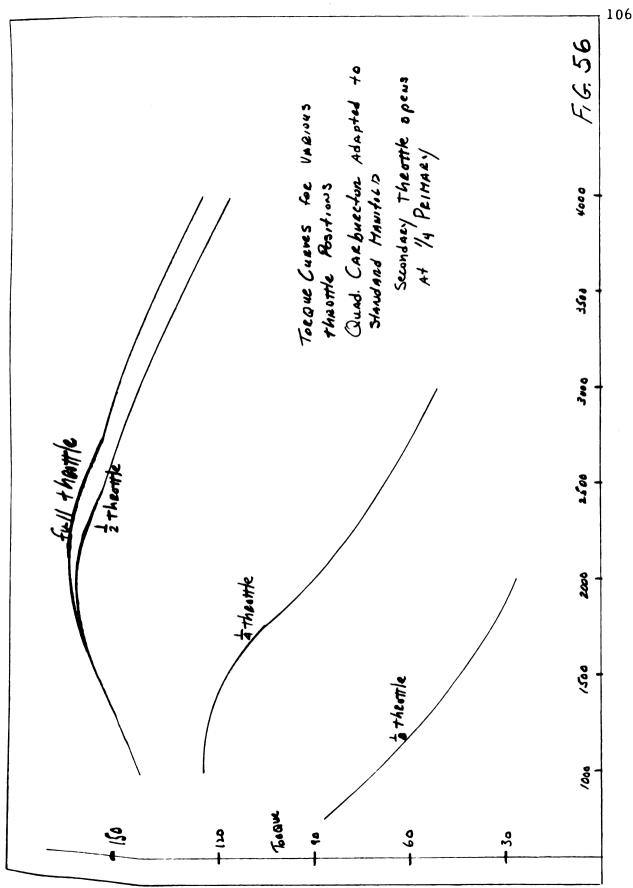




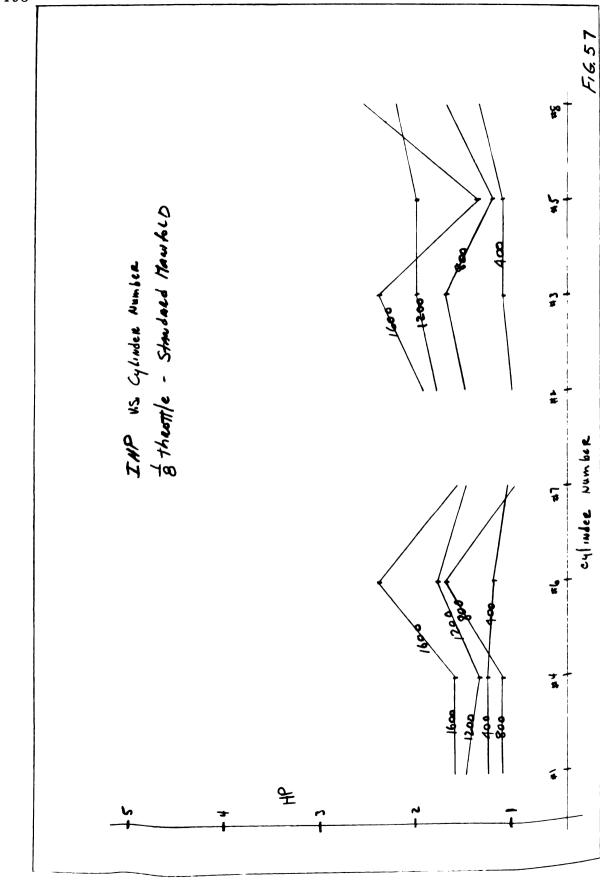


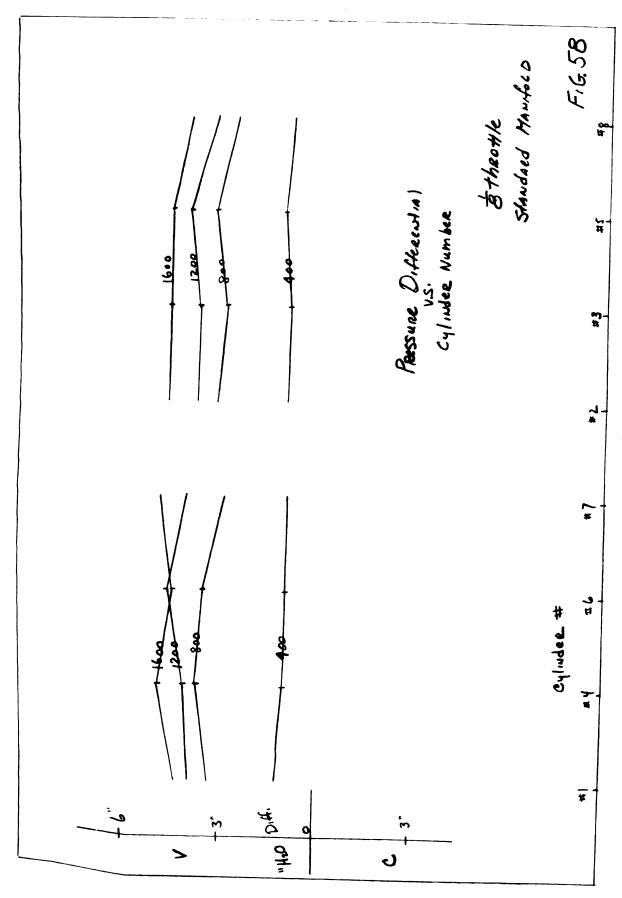


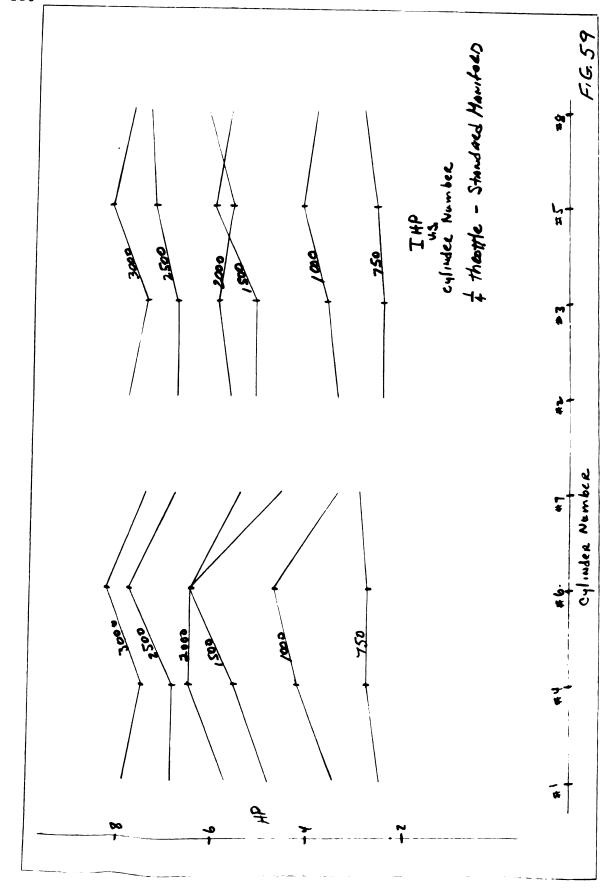


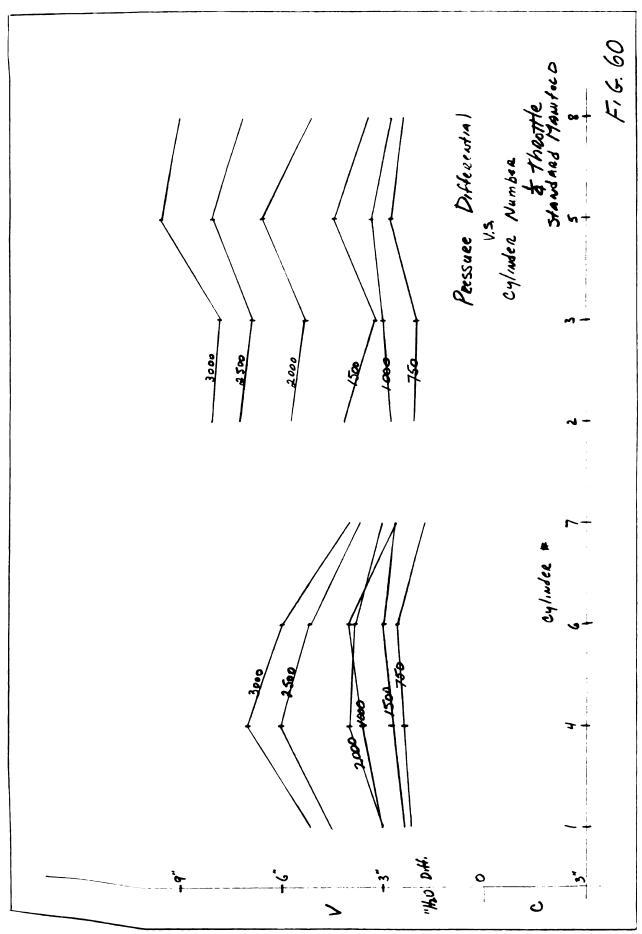

:

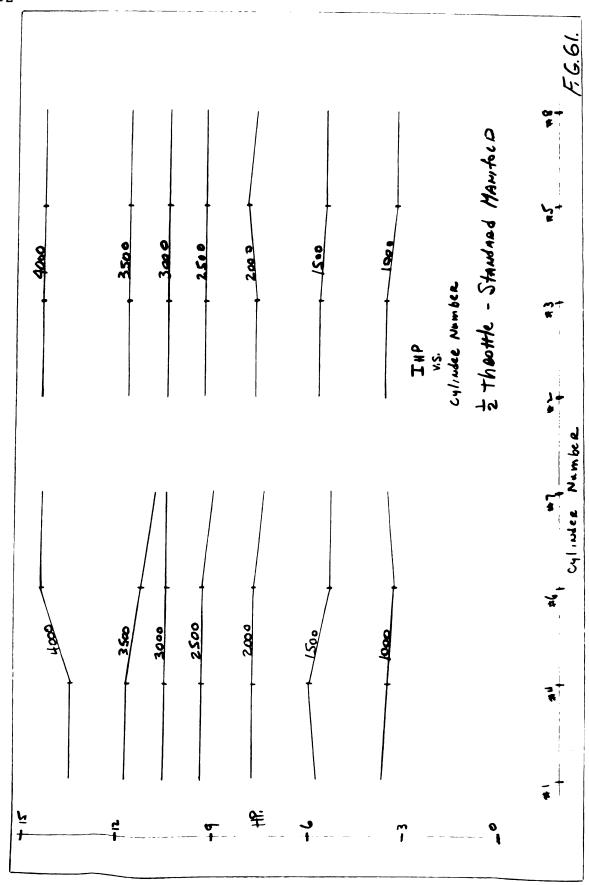
ا -

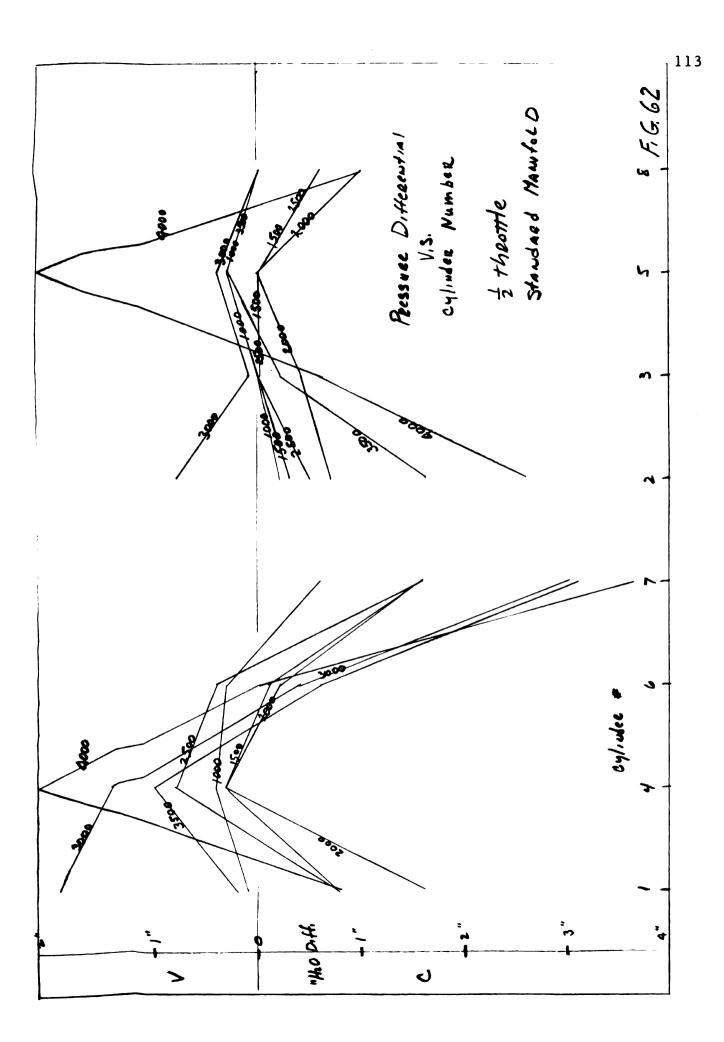


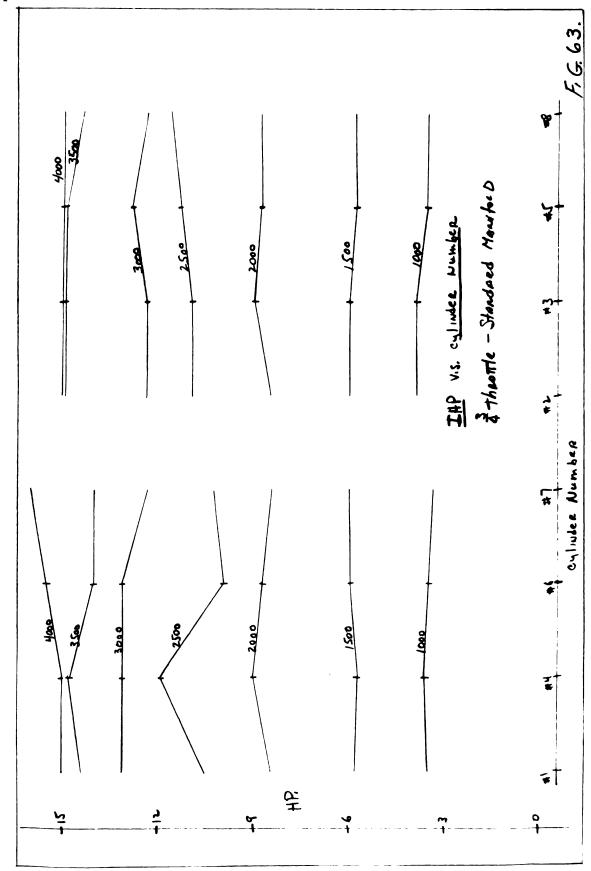


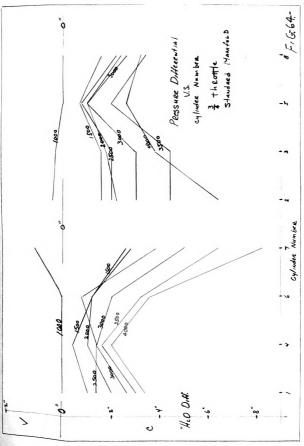


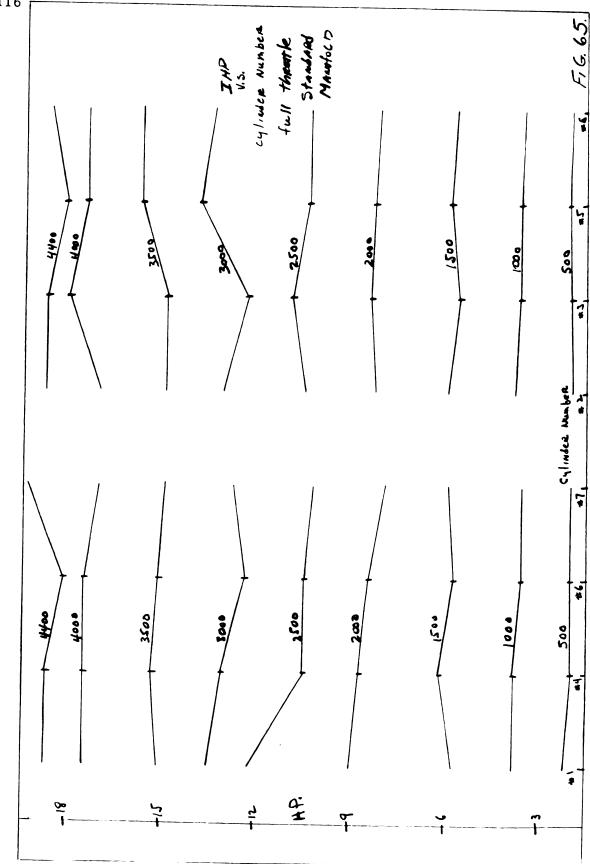

GRAPHS OF DIFFERENTIAL PRESSURES AND INDICATED HORSEPOWER PER CYLINDER

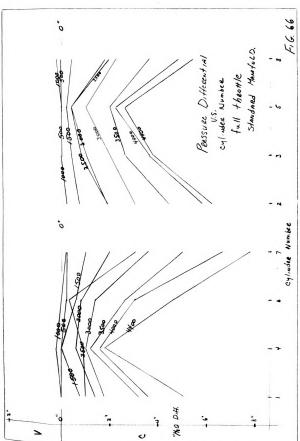

Figures 57-100

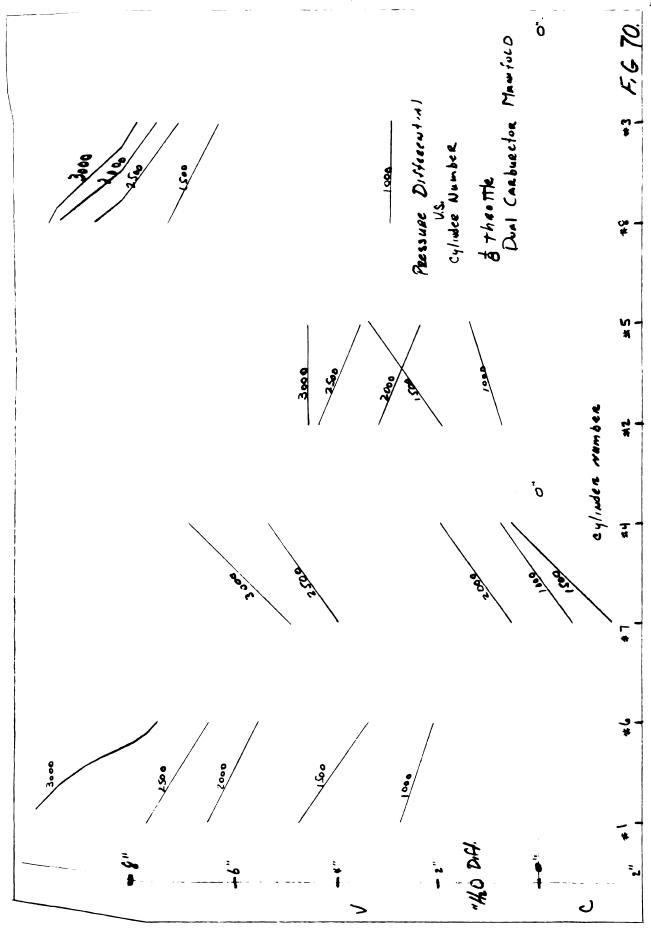


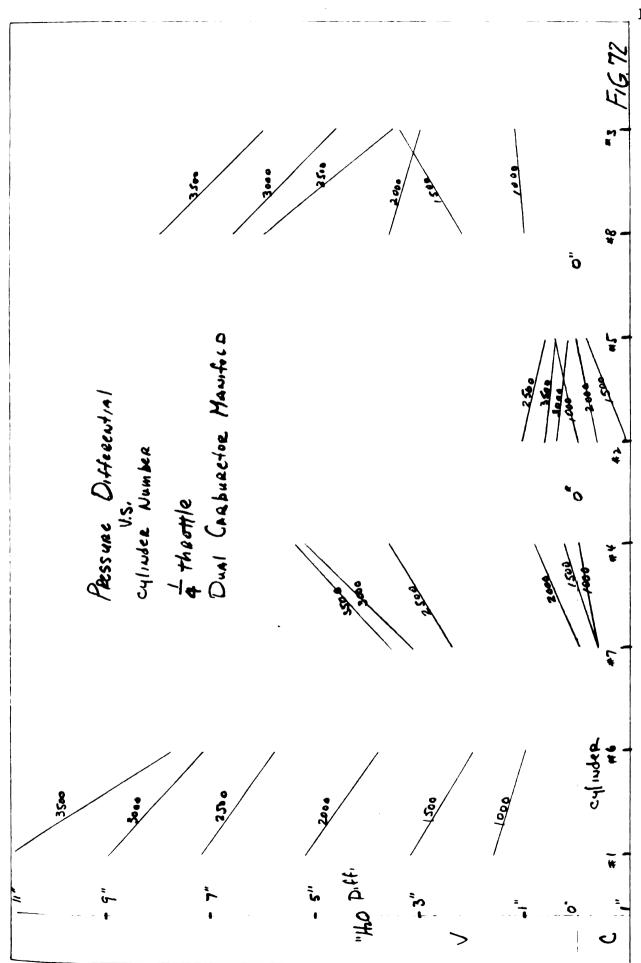




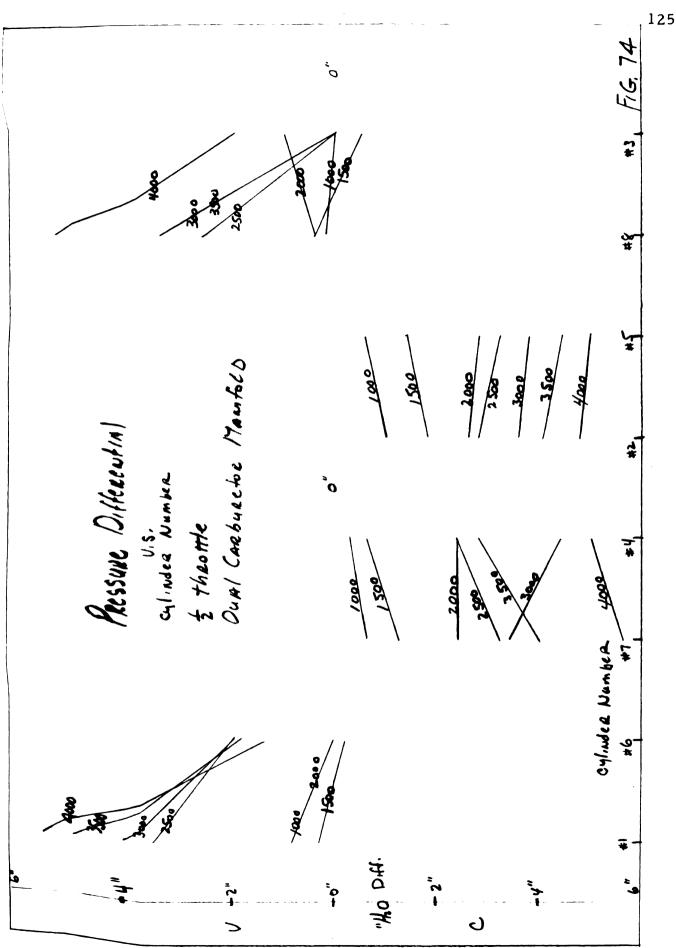


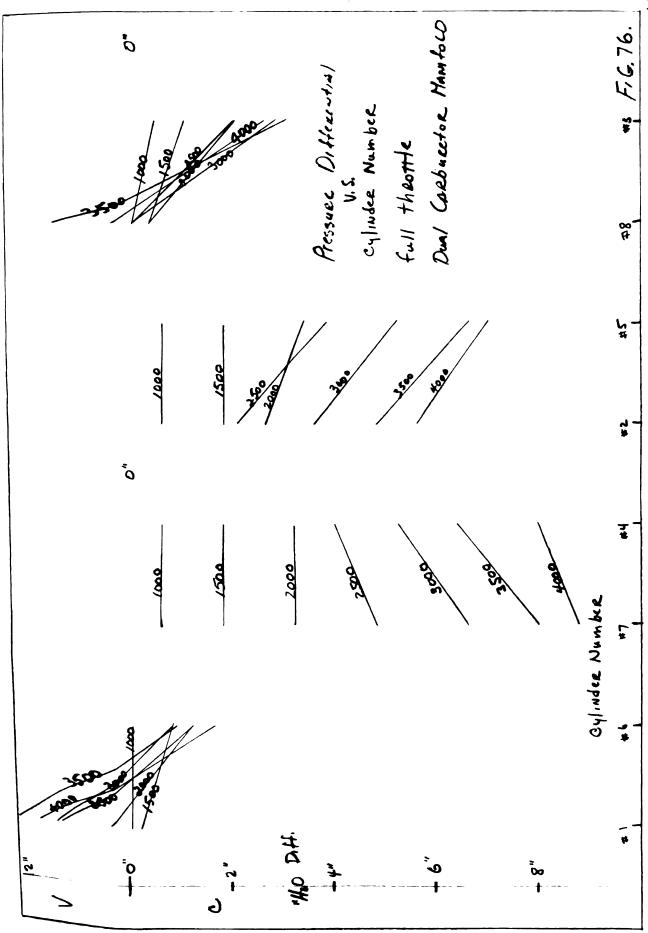


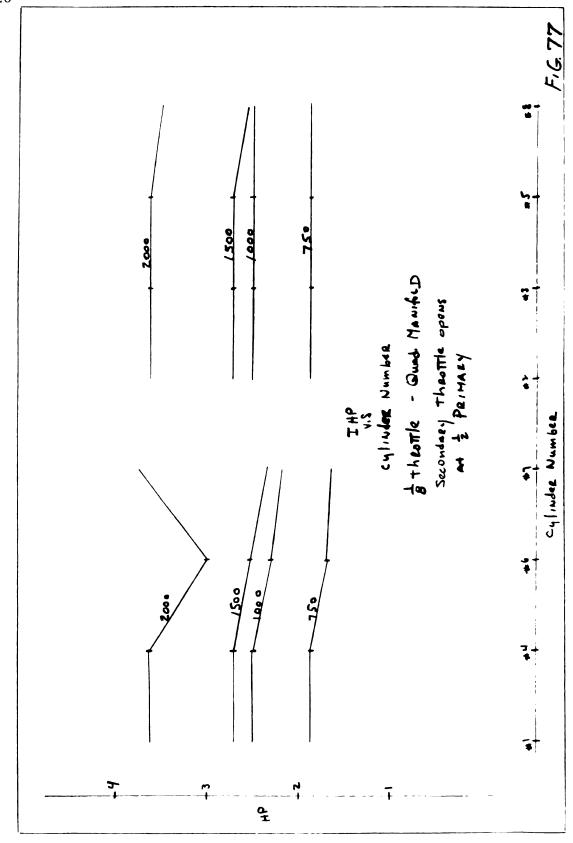


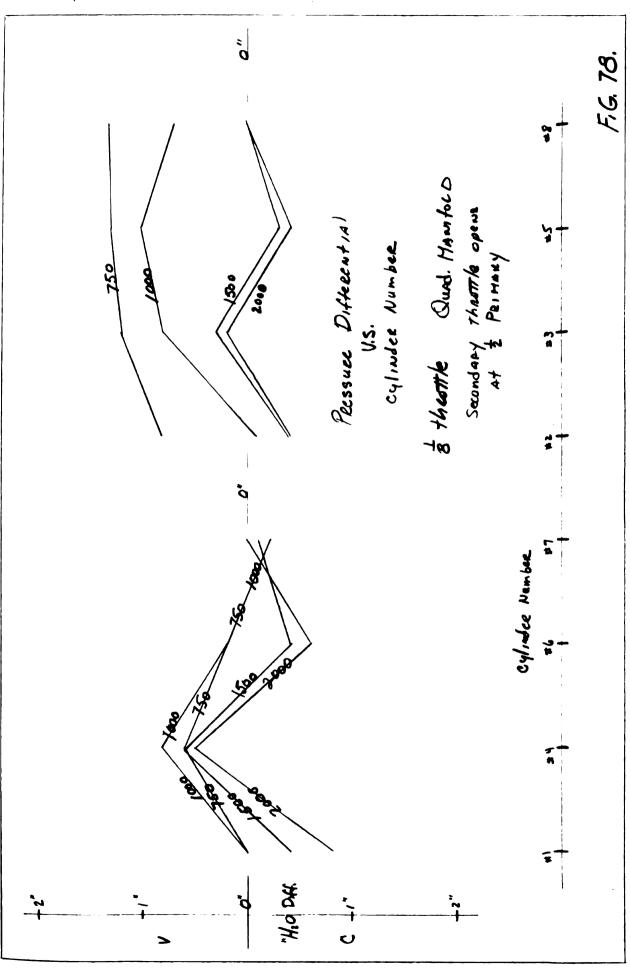

18					
	905-5	2002	600/	750 16 ThROTHE Dual Carbuactura Manifor 0	#8 #3 F.G. 67
	7500	2000	000/	82	24 43
	0032	1,500	- 900/	750 THP Ws. Culinder Number	27 Ry
	700	2000	1000	750	1 46
	h	7	m +	± ,	1

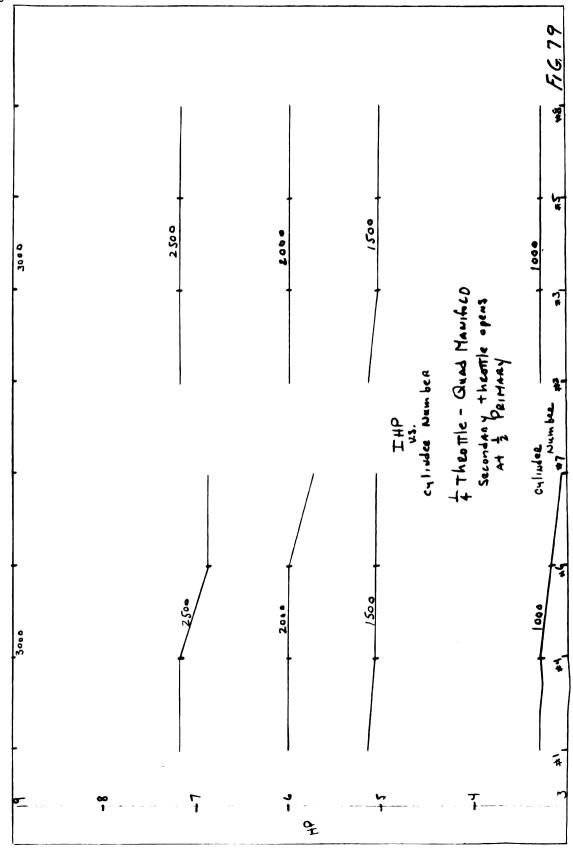
7500	700	750	Pressure Differential US. Cylinder Number Theottle Dual Caebiector Mavitold	# #3 F.G. 68
	2500	156 (page)	•	n n n n n s
·	1500	2007	150	#7 #4 mbs.R.
1500	, h-	Jest 12.	# 0 D# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9*

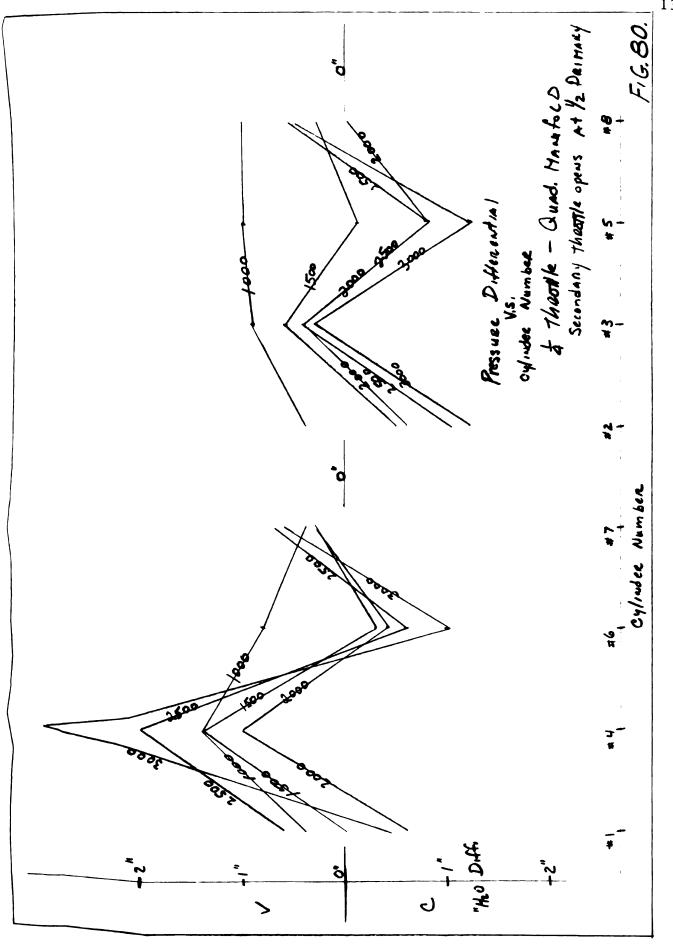

300	•	7500	7000	750	** ** FG69
3000	1.5. cylinder Number 4 theotile Bual Carbuccha Manfold	2500	7,000	9057	24 24 27 27 27 27 27 27 27 27 27 27 27 27 27
3000	1.5. cylinder Number 3 theottle Bunl Cakbuecka	250	70007	005/	#7 Au Newbee
3000		2500	2,68	1500	7*
•	, <u>'</u>		dt	v	+

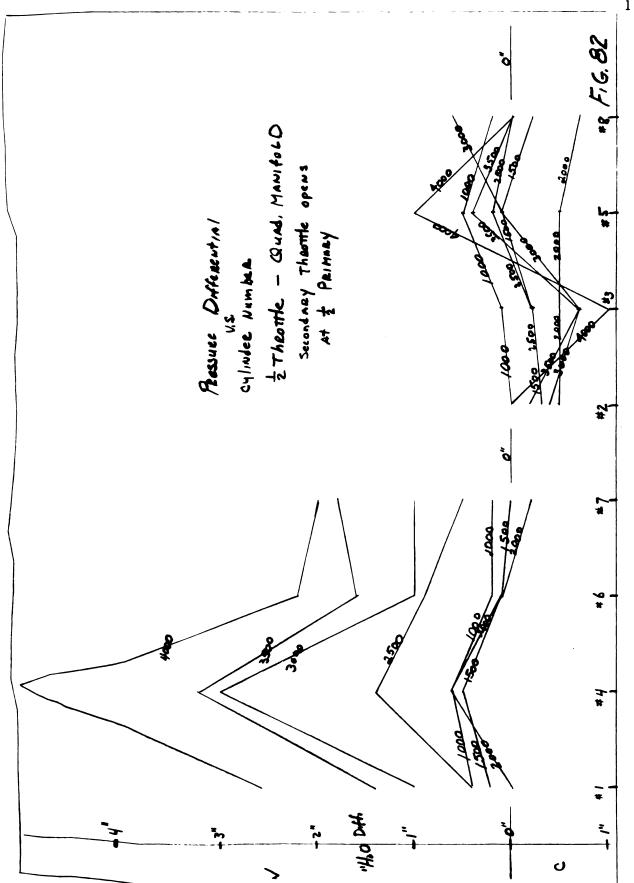

३००	3000	2500	200	HP. W.S. Cylmoder Number	Dual Caebuechae Hawfold	** ** F1G 71
3500	900	€052	882	1500	000/	22
3500	38,	2500	2 mg	(505)	7000	cylinden Number
3500	900 €	2500	88	9-	340	9 *

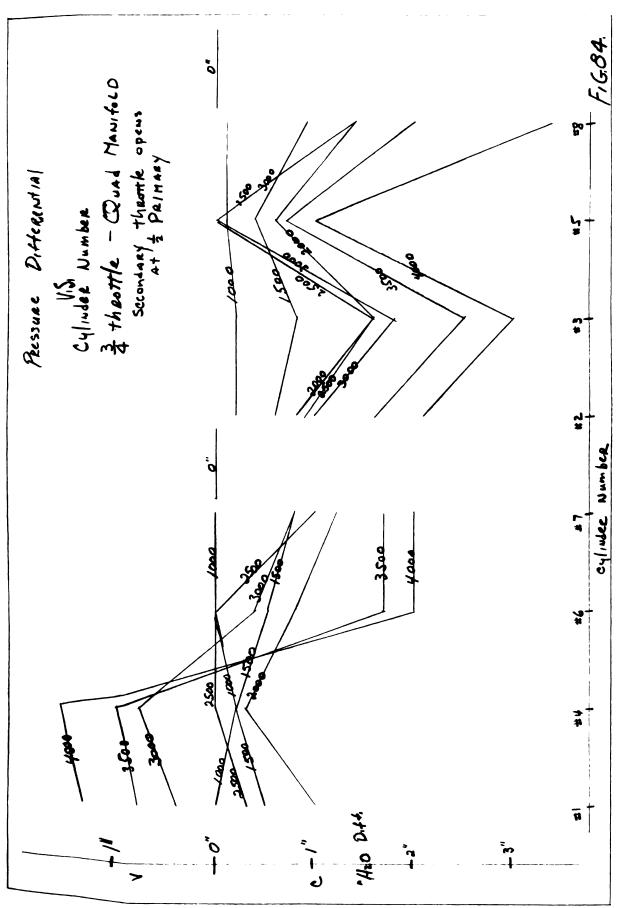

4400	4000	3,00	3000 U.S. U.S. WILLDER	1 Theatt/e Dual 2009 Caebveche Mambel	1300	46, 43, F.G.73
οολή	4000	3,500	3000	2009	760	Cylindes 1000
00/1/2	4000	3500	3000	2000	750	#1, ADD C4/1.
4400	\$(- 2)	3500	4P +12 3000	-6	9	3 *1



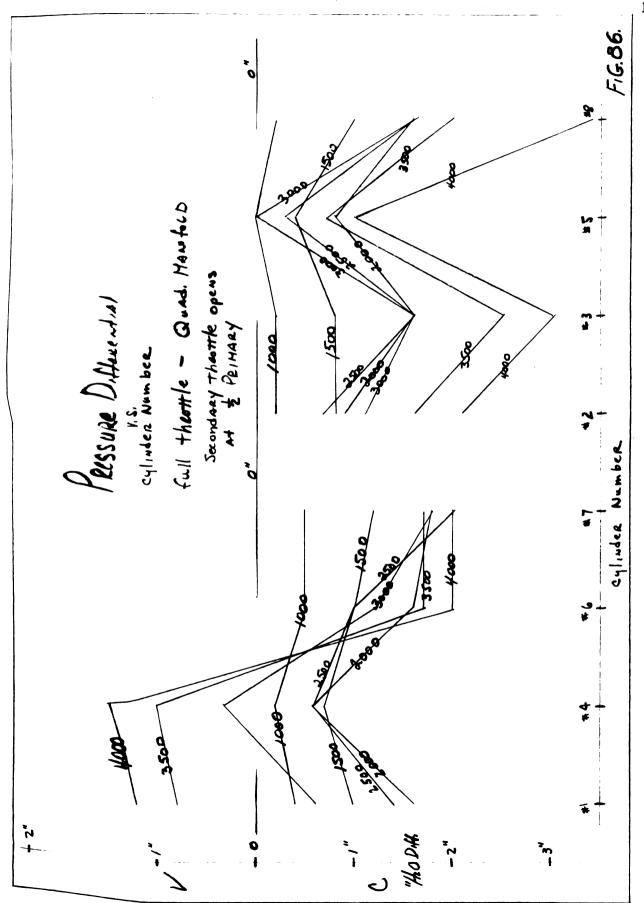

० कु	40077	3000 J HP	2500 Cylinder Number	Dual Dual Caebusobar Manifold	1500	1000 *\$ 7.6.75		
****	4000	3800	2,500	700.	·67	1889 ms		
7 460	0007	3504	2500	200 B	027	my cylindee Number		
7400	4004	3000	260	5000	7	1800		
¥								



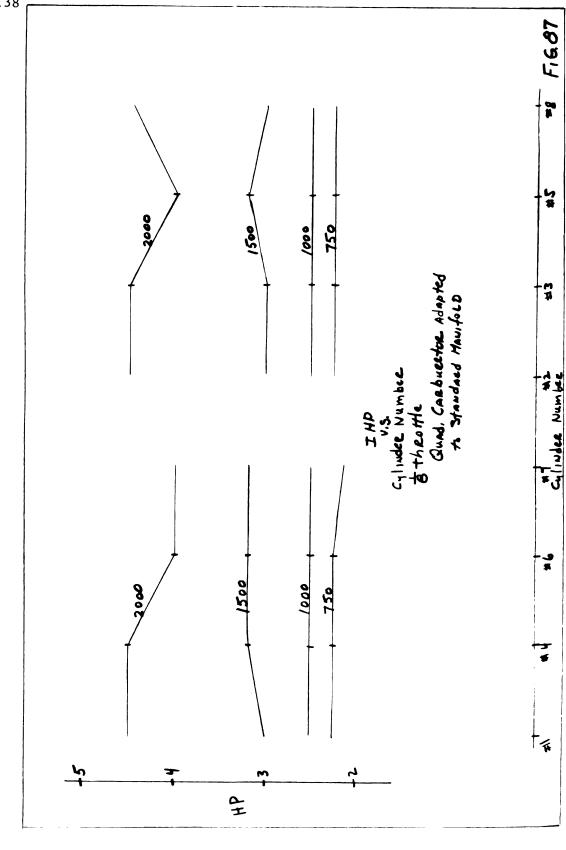


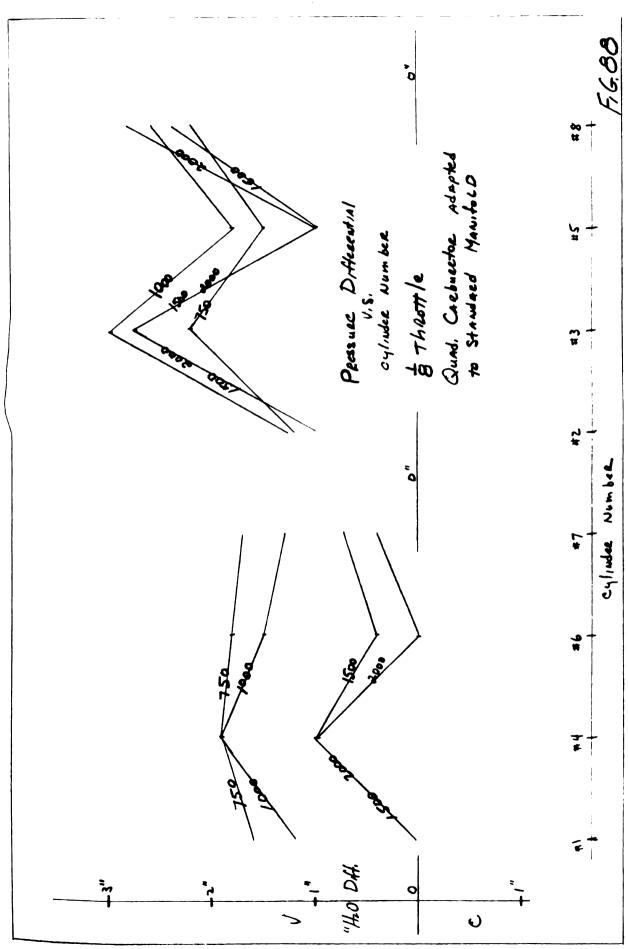


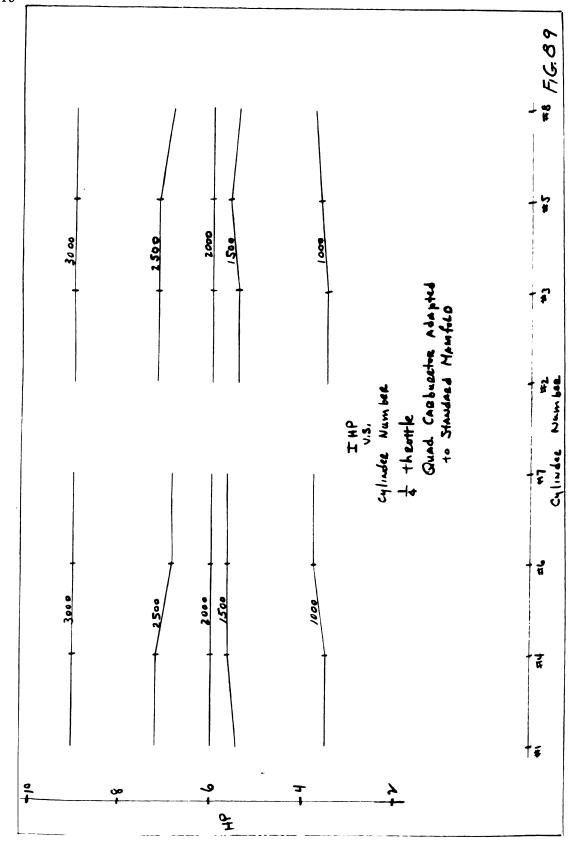
32						
			a H	Cylinder Number Theothe - Quad. Hawfow Secondary theothe opens At & Drinney		F. 6.81
0007	3590	300	2 50	7000	0057	- 100 O
			9			Cylinder Awn ben
**O/*	350	000 2	705 &	0000	0057	000/
+		2		호 全	r	, ,

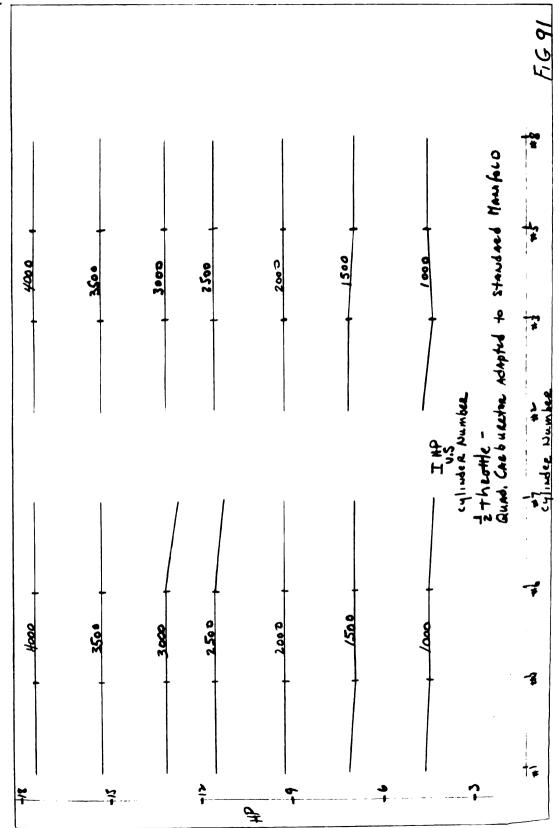

		H	Cylinder Number	Quad, Manfeld			-	#8 1.6.03
4400	4000	3500	3000	2 500	2000	1 200	000/	- S. R. L.
								Oylinder Number
00/11	0004	3500	3000	0054	5000	(500	a00/	7 # ##
	0	5/	<u>1</u>	dH.	-	9		**

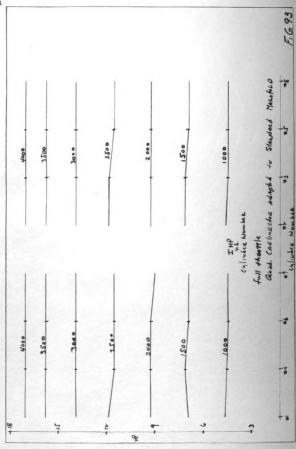


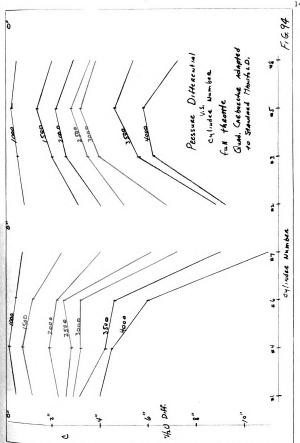


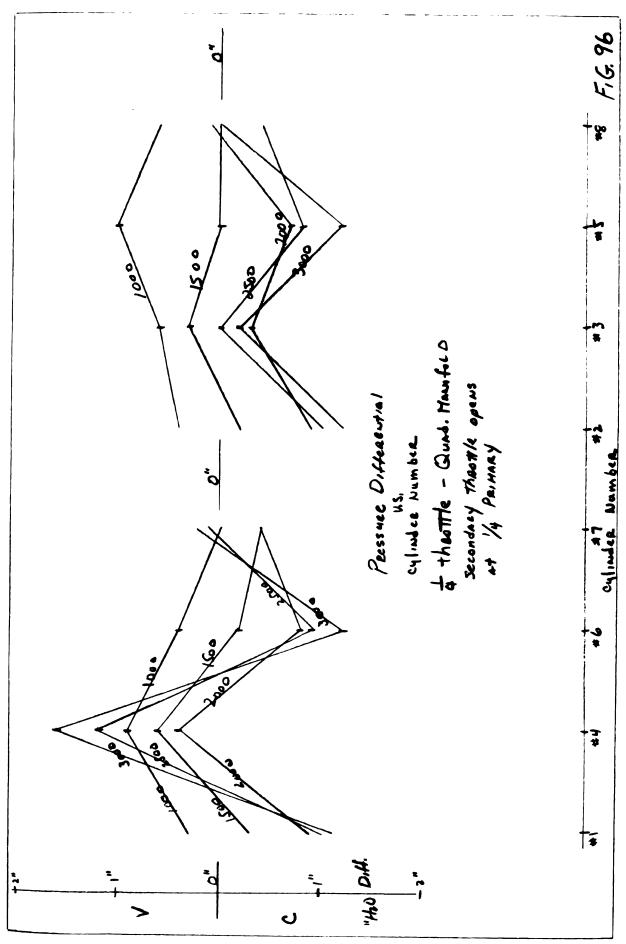

.

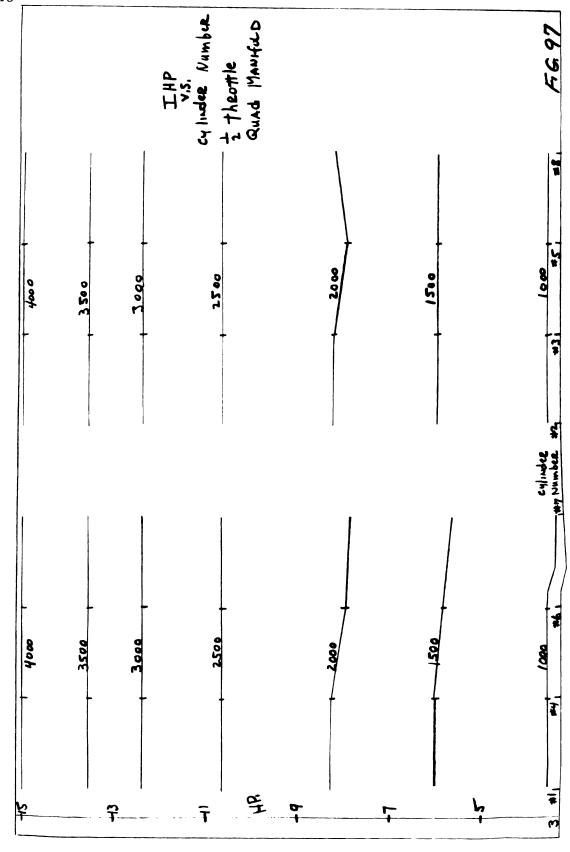

		JHI	Cylinder Number	Quad. Marifeld			
00/1	000h	3500	3000	2 500	2000	/500	000/
4400	000.7	3500	3000	2500	2000	603/	000/
	8	V .	<u> </u>	:	•	9	#

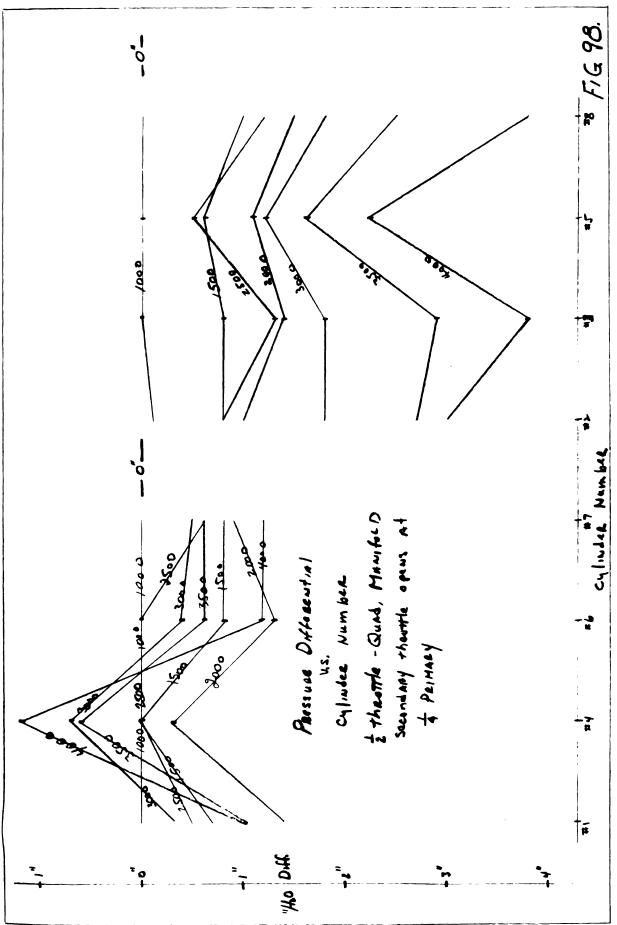


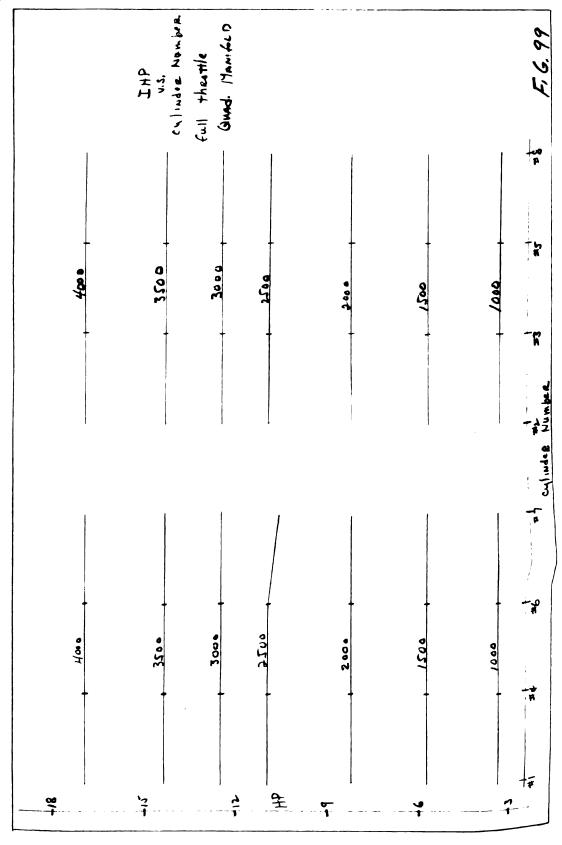






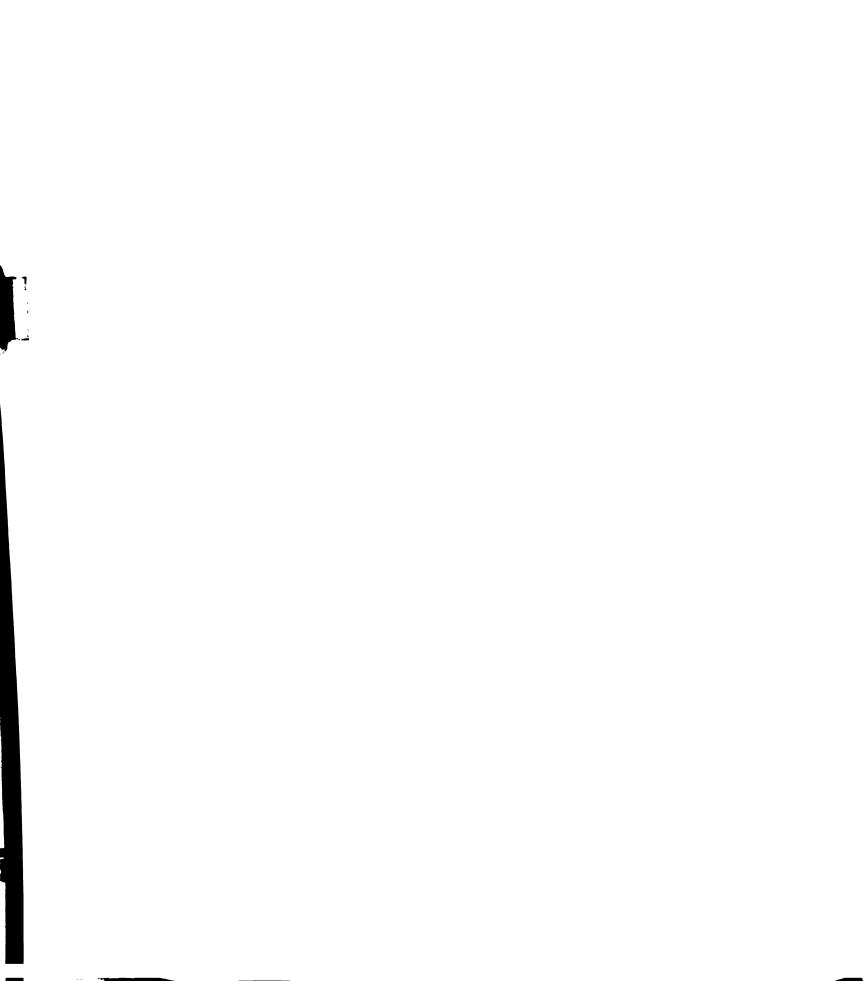



K


-

- 1

APPENDIXES


APPENDIX A-1

Performance Data

STANDARD MANIFOLD

PerforMANCE DATA

400 60 12 1 1 1 1 1 1 1 1	BAR PRESS.		Fuel Temp.	TIME (MIN.)	Re v.	with of Fuel (08)	Ex. Peess. R.	Ex. Pierss L.B.	SP. Adv.	IN. VAC. "HE	JACKET TEMP.	oil Press	ive A	Pess Va	(V)	it in he A	"H2 exen	+ 6	1/ 2000		Seam hong	8.6.4.
500 615 3.4 38 3.4 3. 3.2 3. 3.4 2.8 20 160 814 4 1/4 1/4 1 250 3 80 200 42 4. 4.2 47 42 3.8 4.2 4.2 3.4 20 160 14. 10 1/8 1/4 1 250 3 80 800 275 44 5. 4.6 5. 4.8 4.8 4.8 4.8 4.2 25 160 18. 21 1/6 1/4 1 428 333 80 4 Theatte 750 175 2.2 2.4 2.6 1.8 2.1 2. 2.8 2.4 15 15 2/4 4 1/6 1/4 1 428 333 80 4 Theatte 750 175 2.2 2.4 2.6 1.8 2.1 2. 2.8 2.4 15 15 2/4 4 1/6 1/4 1 428 333 80 4 Theatte 750 173 2.2 2.4 2.6 1.8 2.1 2. 2.8 2.4 15 15 2/4 4 1/6 1/4 1 428 333 80 4 Theatte 750 173 2.2 2.4 2.6 1.8 2.1 2. 2.8 2.4 15 15 2/4 4 1/6 1/4 1 1 1/0 1/2 1/4 1 1/2 1/4 1 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1	74	G		547	223		1/4	4.	Α.	.¥u	u n		,	1-	,	,	,					
1200 42 4 4 1 7 4 2 3.8 4 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2	74						-											-				
1600 275 44 5. 4.6 5. 4.8 4.8 4.8 4.8 4.2 25 160 18. 27 3/6 1/4 1 428 .333 20 4 Throattle 750 175 2.2 2.1 5. 5. 5. 5. 5. 2.4 5 25 160 187/2 27 3/2 1/4 1 428 .333 20 4 Throattle 750 175 2.2 2.1 2.6 1.8 2.1 2. 2.8 2.4 25 155 5/3 3/4 4 3/8 1/4 1 170 150 25 750 175 2.2 2.1 2.6 1.8 2.1 2. 2.8 3. 3.3 2.8 55 5 5/3 3/4 4 3/8 1/4 1 170 150 25 750 175 2.2 2.1 2.6 1.8 2.1 2. 2.8 3. 3.3 2.8 55 5 5/3 3/4 4 3/8 1/4 1 170 170 170 170 170 170 170 170 170 1	_					,			_			-							-	-		
## The partie 1.0 1.	74 2		2			1			-	-			-	-		-	_	-		-		_
750 15 22 24 26 18 21 2 28 24 25 25 24 4 4 48 44 1 10 10 130 25 1000 166 3. 3.6 4. 26 28 3. 3.3 28 25 15 3 4 4 48 14 1 17 17 17 1500 133 24 28 3. 2.6 41 3.0 44 3.4 25 100 17 10 17 10 17 10 17 2000 10 3. 4. 38 8. 5.7 5.3 5.5 1.5 160 17 22 1/2 1/2 1/2 1/2 1/2 1/2 2000 10 3. 4. 38 8. 5.7 5.3 5.5 1.5 160 17 22 1/2 1/2 1/2 1/2 1/2 1/2 2500 875 45 6 5.7 3.7 7.2 68 8. 7.1 15 160 15 1/2 27 1/4 1/2 1/2 1/2 1/2 2500 64 5.7 7. 6. 4. 8. 7.8 9.5 9.2 1/2 1/2 1/2 1/2 1/2 1/2 2500 11 1.4 3. 1.6 1.3 1.6 1.3 1.0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2500 11 1.4 3. 1.6 1.3 1.6 1.3 1.2 1/2 1	74					1											-			-		
750 175 2.2 2.4 2.6 18 2.1 2. 2.8 2.4 15 125 2/4 4 78 1/4 1 170 1250 2 5 1000 166 3. 3.6 4. 2.6 2.8 3. 3.3 2.8 25 125 3 74 4 78 1/4 1 171 1/1 1/1 2 2000 170 3. 4. 3.8 3. 2.6 4/1 3.3 44 3.4 25 1/2 1/2 1/2 2 1/2 1/2 1/2 1/2 1/2 1/2 1																			He	201	+61	4
1000 166 3. 3.6 4. 26 2.8 3. 3.3 2.8 35 15 3 4 4 8 1/4 1 171 1/14 25 1/500 133 2.4 2.8 3. 2.6 1/1 33 44 3.4 25 1/4 10 1/4 10 1/4 1/6 22 1/6 3/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1	75	85 .		,230	170	1	1/4	7/8	4	2/4	125	25	2.4	2.8	2.	2.1	1.8	2.6				
2000 10 3 4 3 8 5 5 7 5 3 6 5 1 25 160 11/8 22 1/2 1/8 2 6 9 9 0 6 100 2 50 3 3 5 1 5 1 5 160 11/8 2 1 1/8 1/8 2 1 6 9 9 0 6 10 10 10 10 10 10 10 10 10 10 10 10 10	75 3	85		172	177	1	1/4	1/8														
2000 10 3. 4. 3.8 8. 5.7 5.3 C.5 5.1 25 10 11/8 22 1/2 1/3 2 46		90	4			2	3/8	1/2	10	1/4	140	25	3.4	4.4	3.2	4.1	2,6	3.	2.8	2.4	/33	1500
250	80 0	100	700			2	1/8	1/2	22	11/8	160	25								3,	110	2000
9000 64 5.7 7. 6. 4. 8. 7. 88 9.5 9 25 160 154 27 34 1/2 2 181 11 10 100 1/2 The Tree 1/2 The Tree	80 7	100		,,59	646	2			27	13/2								5.7	6.	45	875	
1000 200 .1 .4 .3 .6 .2 0 .3 0 25 160 3/4 4 5 1/4 2 291 .513	80	60\		414,	างใ	2	1/2	3/4	27	15%	160	25	9									
100 200 1 4 3 6 2 0 3 0 25 160 3/4 4 5 1/4 2 251 151 52 1500 211 78 13 1 1/6 3 0 0 6 25 160 1/2 8 1/6 1/2 3 251 151 151 90 2000 213 1/6 13 2 1/6 7 7 0 1/2 25 160 2/4 17 1 1/8 3 151 151 90 2500 198 78 8 1 1/6 5 0 0 6 25 160 3/8 22 1/4 1/6 2 1/6 1/6 5 3000 1/6 1/8 13 1/4 3 8 1 1/4 0 25 170 5/8 27 1/4 1/8 2 1/4 1/6 1/6 1/6 3500 138 2 1 1/6 3 3 1/6 5 3 0 25 1/6 2/6 2/7 1/6 2 1/4 3 170 1/4 95 4000 1/0 8 2 0 5/6 6/6 1 1 1 3 1/6 2 2 1/4 3 170 1/4 95 4000 1/0 8 2 0 5/6 6/6 1 1 1 3 1/6 2 27 2/4 2 2 2 245 1.06 9.5 4000 1/0 8 2 0 5/6 6/6 1 1 1 3 1/6 2 27 2/4 2 2 2 245 1.06 9.5 4000 1/0 8 2 0 5/6 6/6 1 1 1 3 1/6 3 27 2/4 2 2 2 245 1.06 9.5 4000 1/0 8 2 0 5/6 6/6 1 1 1 3 1/6 3 27 2/4 2 2 2 2/4 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2 2 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4 2/4																		le	#/	(m	+	1/2
1500 212 18 13 1 16 18 0 0 16 25 60 1/2 8 1/4 1/6 3 249 1/55 90 2000 213 16 13 12 16 17 14 17 17 17 17 17 18 18 18	72	82		.393	397	2	1/4	5/6	4	3/4	160	25	0	٠,3	0		.6					N. W. Carlo
200 213 16 .3 .2 16 .7 .4 0 1. 25 160 274 17 1. 18 3 515 3.74 90 2500 198 8 8 .4 1 16 .5 0 0 .8 25 160 378 22 174 174 2 456 184 5 90 3000 166 1.8 1.3 .4 5 .8 .1 .4 0 25 170 5/8 27 174 178 2 458 184 5 90 3500 138 .> 1. 16 3. 16 .5 3. 0 25 180 6/3 27 2 174 3 770 3.19 95 4000 110 8 2. 0 56 26 6 2. 1. 3 0 180 7/8 27 2/4 2, 2 425 186 95	75	90		,355	249	3	1/2	11/16	8	1/2	160	25	16	0	0	.3	1.6	~	.3	.8		
2500 198 ' 8 . 8 . 4 16 . 5 0 0 . 6 25 60 3 82 2 17 16 2 456 64 59 6 3000 166 1.8 1.3 . 7 5 . 8 . 1 . 4 0 25 170 5 8 27 17 17 2 456 64 1 1 1 2 5 9 5 3 5 0 1 38 . 7 1 . 5 6 3 7 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1	75 3	90		.256	515	3	1/8	1.	17	27/1	160	25		D	.4	.7	1.6	.2	. 3	1		10 50
3000 138 . > 1. \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \)	75 =	90				2	1/2	174	22	3 1/8	160	25	.6						8.			
3500 138 . > 1. 1. 1. 3. 1.6 1. 3. 0 25 180 612 27 2 114 3 770 1.19 95 4000 110 . 8 2. 0 5.6 16 16 1. 1. 1. 30 180 718 27 214 2, 2 425 1.166 95	77 8	95	6	.162	491	2	15/8	174	27	51/8	170	25			.1			.4	1.3		1	
4000 110 .8 2. 0 3.6 2.6 .6 2, 1. 30 180 7/8 27 2/4 2, 2 425.106 95	77	95						2				_	0		12		3.		-	.2		
	77	95		. 106	425	2	2,	21/4				30		2,	.6			0	2.	.8	110	4000
																					80	4400

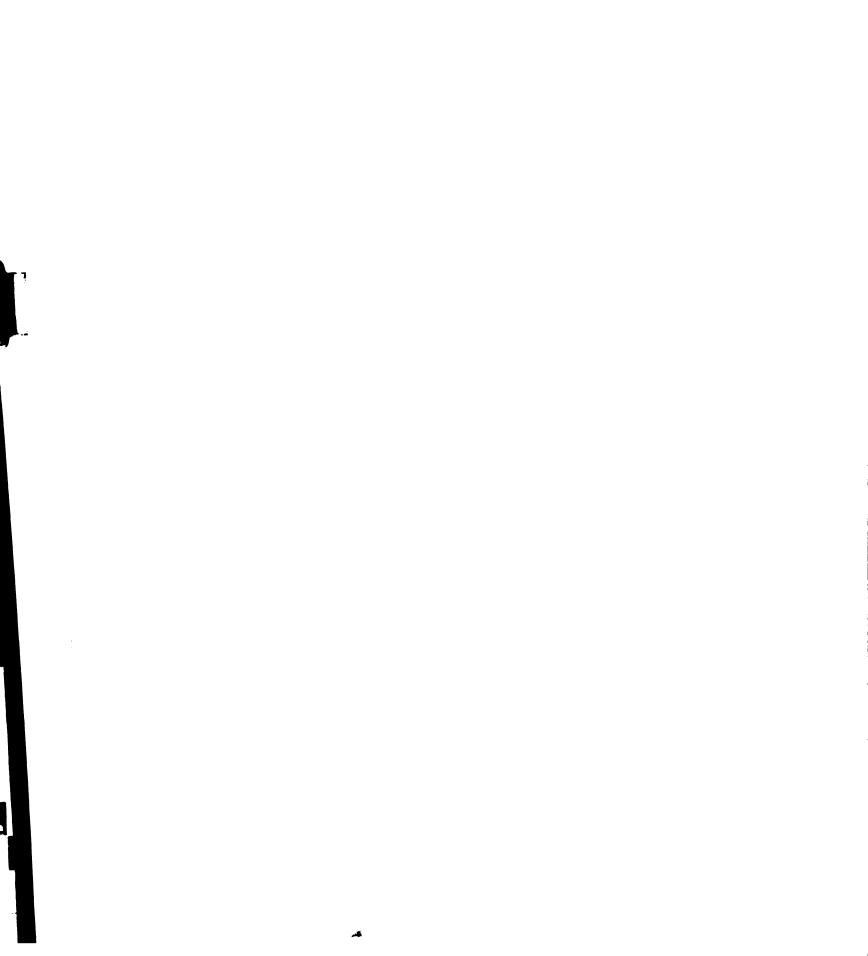
STANDARD MANIFOLD Performance Data.

					,	_			_		_	_	_	_								
ROW	Beam Load	0	4/,	ode.	2		be	. a. S#	On	oil Pass	JACKET FEMP.	. VAC "Ha	Adv.	Pecss L.B.		at, of Fuel of	Rev.	TIME MIN.	0	Dey Bulb	wet Bulb	
4	Ø	#	h	ħ	47	#	教	th	#	â	2	ś	a.	చ	ű	3	ď	F	14	ā	3	a
14	1 7	h	0.	#/	e			-	-			- 1/			21							-
1000	/99	0	0	0	. 8	.4	, 3	0	0	25	140	74	4	1/2	3/8	2	342	,340		80	_	
1500	211	1.	.4	1.2	2.6	1.6	1.6	.7	1.6	30	/40	1/2	4	17,6	18		342			80	_	77"
2000	2235	2.	1,	1/12	28	2.2	1.8	1.	2.4	30	160	/.	12	1 1/8	1/4	2	305	.152	ų	80		
2500	223,	1.4	1.4	.8	3,8	2.	2.	. 8	2, >	25	160	12	18	2,	1 1/4	3		.168	0	80		2917
5000	212	2.6	1.4	2.	5,	3,	3,	Y	2.6	25	160	2,	27	2/3	2 14	3	512	.17a	2	80	-	~
3/2 /000 /500 2000 2500 3000 3500	193	3,	1.6	3. 2	6.4	4.4	4.4	2.	3.4	30	160	2 1/2	27	3	2 1/4	3	567	.162		80	70	
4000	170	3.4	2,	3,6	8.2	6.4	3.8	2.6	8.2	30	170	3.	27	3/2	3 1/4	3	620	ککا ۔		80	70	
fu	11	11	20	#/	e																	
500	212	0	0	.2	٠, ٢	,2	0	0	0	10	160	0	4	3/8	1/4	4	3/0	.68		87	73	29.3
000	207	0	٠, ٢	0	. 2	,2	0	0	12	20	160	14	4	3/8	1/4	4	645	.651		87	73	193
1500	219	.8	0	.6	1,	.7	0,4	,2	, ¥	25	160	1/2	10	5/8	3/8		770			90	70	19.
2500	230	1.4	.6	. 8	2.	1.9	1.	5	18	20	180	3/4	13	3/4	1/2		725			Lon	75	19.1
2500	233	1.	.9	.3	3.	1.9	.8	.4	1.4	20	180	11/4	17	15/2	1%		1475		Y		75	
3000	221	1.8	1.	1.4	3.6	3.	2.	1.	1.9	20	200	2	22	2	134	8	ILSS	.550	10	95		_
3500	205	32	1.2	2.6	5	4.4	2.6	2	34	20	200	2%	27	2%	2 16	c	14.24	452	,		65	
4000	180	3.6	1.6	3,	6.6	s.K	3.6	2.2	48	20	200	2 1/2	27	3	, 1/4	e	1100	100			65	-
4400	153	5,	1.8	46	7.8	4.2	3.8	2.4	5,4	20	720	_	27	_	_	0	7600				70	
					-	J		-		-			-/							76	10	24.
100																						_
			-	_	_		_				-		-									_
		-					_		_	_			-	_	-			-				_
					_	_													-			_
						_						_							_			
			_							_		_	_	_				-		_		_

				Du	101	(CAR	264	Re	+01	4			fo.								
												76	607	7/6	: 5	5	4 20 0	6 8	on	12.	ed	
				F	RY	€ R	7 4	N C C	•	D.	44											
R.P.M.	eam hoad	C	"4 4/10d #6	20	Di.	Stee	en t	/ در		Ress	Jacket Town	13. VAC "#	Alu	Ex. Peess L.R.	Fr. Paess R.B.	int. at Feel 03.	Gev.	T. T.	1	Den R. 14	Wat 3 16	Rep Posse
/	3	#1	#6	#2	#5	#7	#4	#8	#3	0	~	5	30	Ň	8	3	0	1	10	0	3	G
76		the	10 TH	10							-											L
750	160	1.)	2,	/, 2	(, 2	0	.4	7.8	1,6	25	160	3%	4	1/4	716	1	272	.34		75	60	4
1500	1140	4.	3.4	1.5	6.5	1,4	.6	3.4	3,4	25	165	6/4	4	74	716		/60	.157	3	75	60	
2000	76	6.	5.2	21	1,2	1	1.1	10	6.8	25	780	104	22	1/2	3/-	2	468	.3/0	5	75		2960
2500	53	6.6	5.4	3.2	2.4	3.6	4.2	5.8	6.9	25	100	14	27	1/2	3/	2	875	,43			60	1
							,	5.0	3.0		/10	708	61	12	/8	-	1003	,40	_	75	60	
#	t	6R	071	le																		
000	184	2.8	z.1	.8	44	.6	.8	3	3	20	160	31/8	4	Ý/4	1/4	2	280	281		ce	64	
500	158	4.8	3.4	2.	3.4	1.4	.6	7.4	6.4	25	160	64	4	5/8	1/2	2	493	. 52.6		85		*
000	116	6.6	5,6	3, 2	2.4	.6	2,	9,2	7.6	25	/80	9/2	8	5/8	1/2		674			86		2
500	88	7.8	6.6	4.4	3.6	4,	5.4	8,6	7.2	25	180	11/8	22	3/4	1/2		715			86	64	7.2
000	62	9.4	7.6	4.6	4.6	5,	7,	9,	8,	25	180	13/8	27	3/4			550				64	2
L	-	,										-										
000	76	1 Ro	#1	2		7				_		121		2/	3/				_			_
500	222	22	2	V	,4 V	.4	0	1	1.2	20	160	716	4				366		_	/00		_
010	210	5.2	36	"	.2	,4	, Z	2.2	3.4	25	160	74	6	5/8			281			/00		14
500	100	22	,,e	1	1	2.4	21	3.6	3.	25	/60	2 18	0	1.	1.	2	471	.235		/0e		17
000	156	9	72	.4	. 2	2.4	C)	11	3.6	25	.0-	4.	- 2	1/8	18	2			ف	103		-
500	/31	11	7.0	.6	,u	3 /	CU	C	/	25	180	3/8	11	178	17/	7	760	254		110	75	4.9
	, 31	(I)	7.8	. •	- 7	3.6	214	6,	6,	25	180	6.	11	/ /8	1 18)	80/	. 230		110	70	
																						-

			D	UA	,	CA	R b	4 8	e +.	R				lu L 1 le		54	N c	hno	91	2ed	!	
			Fe	Rfo	RH	1 A #	uce		D	A+	A											
Kir.	Beam Load	Cy	lind	see a	(4			ВÇ	#3	oil Press	Jacket Temp.	10. VAC. "#	3P. Adv.	Ex. Press 1,8.	Ex. Press R.B.	wt. of Fuel on	Rev.	TIME MIN.	Fuel Temp	DAY BLIS	Wet Buib	BAR. Press
1/2		201	+16	2																		
1000	218	,8	0	1.	.6	.6	.3	. 4	0	25					3/8		290					
1500	227		,2	1.8	1.4	1.2	. 6	,۲		25	160	1/2	8	3/4	5/8	2		.139			73	_
2000				2.6	2. 8	2.4	2.4	, 4	1,	25	/6-	1/16	14	1/8	1	3			0		73	
2500	218		2.	2.8	3.2	3.2	2.4	2.6	ь	25	180	1 %	20		2	4	687	.217	5			
3000			2.	36	3.8	3.4	4.4	3.4			190	13/4	21	2/8	2	4	752	,244			78	
3500	178	4.6	1.8	4,"	4.4	4.	2.8		0	25		17/8					99				73	
4000	160	5,2	1,4	4.8	5,	5.6	5,"	5,	2.	25	200	2/8	27	274	21/4	4	1033	.257	-	90	73	29.11
4400	140																					
							_									_	-				-	
0			,		,												-				-	
	11			01/	le .6	, 6	.ĭ		,4		160	Đ	6	%	1/2	2	22.11	,229	-	80	73	29,0
1000	210	0	0	1.8	1.8	,6	1.8	.3	1,4	25		1/8		7/8	¥4	3	398			80	73	29.1
		12	1.2		1.0	20	3.2	, S	2,		160	1/4	4	15/8			_	.233		80	73	19,1
2000		.4	1.2	2.1	3.4	4.8	4,	.3	2,		180		6	2 1/2						-	75	29.1
3000	257	1.1	2	34	3.8	4.4	5.5	0	2.8		180	7/14		3,	3.	4	649	.2/5	20	95	75	29.1
3500		1.2	. 8	150	317	0	6.4	1,	3.	25		9/16	22	3//2				1200		95		29.A
4000	191	15	1.6	5.6	7.	6.0	8.	.4	2,6		180	3/4	17	42	41/2	4	682	.112		95	_	29.1
4400		,	-	-,,		4.6	٧.	-	,,,			-	-	_							75	
. 400																						
					-																	
BIR																						
RU C																						
																						-

Dual CAN	x bun e	elux	Main fol D	
Throttle	6 04	الرسر 2	CARbuector	opens At 2250 RPM.
Performance	Dati	4)		2230 200

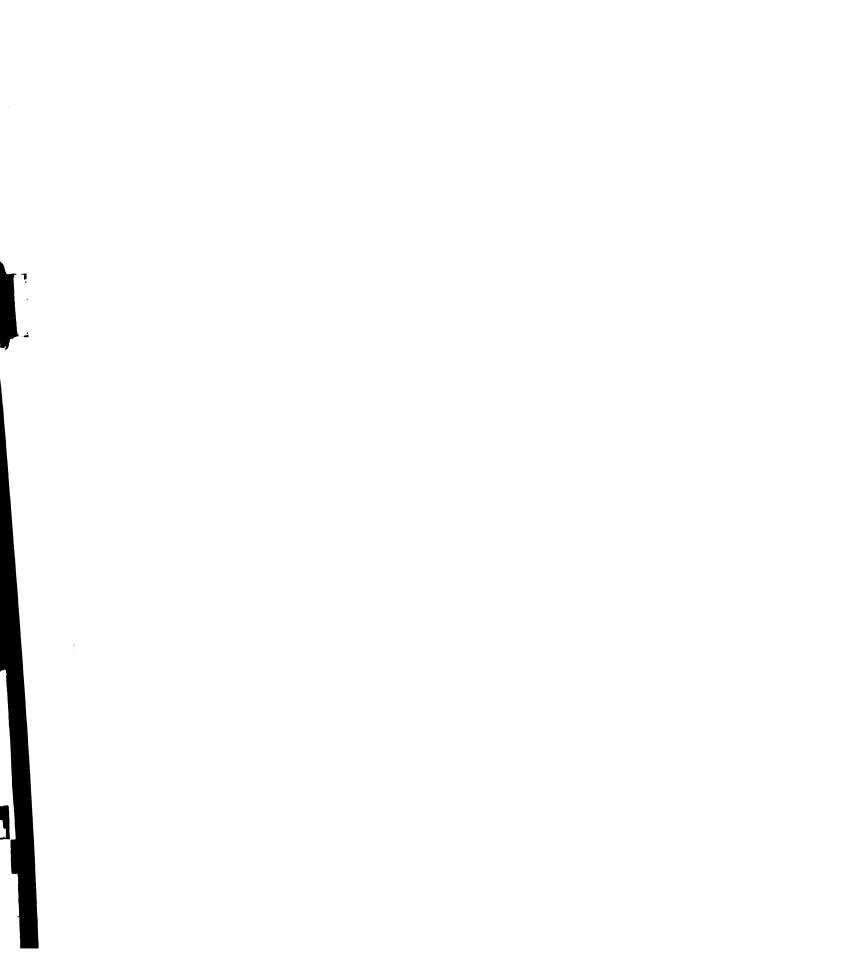

																<u> </u>						
ながら	Beam Lord	*1	c.	7/11	43 i	P 7	D, f f	= 6	~3	0.1 Pecss 10	JACKST PEW,	12 VAC. "45.	sp. 440	Ex. Press. 18	Ex Press R.B.	wt. of Fue! of	Rev.	TIME NIW.	FUEL TEMP	Dey Rulb	uet Bulb	Bre Press
16	+6	140	Me					į •		!		-			•	-				-		-
750			7		$\overline{}$				1							-				40	1	7
1000																						2430
1500	48	1,6	,2	2.	26	0	. 6	10.4	10,	25	160	16	27	1/8	<i>*</i>	1	231	.152	30	10	70	24.30
2000	7	2.8	1.	2.5	2.8	3.5	3,5	46	9.	25	16.	18/4	27	78	14	2	1497	.740		70	70	143
2500	53	64	5.4	3.2	2.4	3.6	4.2	5.8	3.8	25	180	16/2	17	/>	3/8	2	/00 3	.401	65	75	60	24.34
ŧ	+1	10	77/	2						<u> </u>							!					
1000	126	2,	1.4	ی.	نا	1.8	1.8	7.6	7.6	20	176	7%	12	1/4	1/4	2	689	.67	68	105	175	19.34
1500	86	1.8	0	2.	2.8	2.6	2.2	12.	12,	25	170	12/8	27	3/8	1/4	2	778	.530	48	105	75	29.39
2000	54	2.4	0	2.	2. \$	5.6	5,4	12,	12,	25	170	15%	127	3/8	1/4	>	600	.300	68	105	75	29.3
2500	88	7.8	6.6	4.4	3.6	ų,	5,4	8,6	7. >	25	B.	115/8	27	3/4	1/2	2	715	,330	45	86	64	24.34
3000	62	9.4	7.6	4.6	4,6	5,	7.	۲.	8	25	/80	138	27	3/4	ょ	>	570	.183	65	86	64	24.3
4	thi	LOT	t/e					<u> </u> 					•	,						ļ	1	
1000	190																					2455
1500	169	2,	. 8	2.8	4,	3.6	3,	8.8	8.8	25	160	4 1/8	17	1/2	1/8	2	600	.4.8	68	105	15	29.55
2000	136	3.4	0	3.4	5,2	7.2	6.4	12.4	12.4	25	160	7/4	25	1/2	1	,	734	.367	68	105	75	29.35
		2 M	4	CA	24	41	ں کر ع	NE_	S	119	ht	1 y	<u>ں</u>	pe	ပ –	- V<	P 4	e	21	4	1	
										:						Pe	e L	· Lt	104	A f	L	
										!											· · · · · ·	
			1																			
									<u></u>													
						-									· i					<u> </u>		-
												·										
									-											!		
																				į		

-	Т	Ī	П	on r								1 -	1	1	1 00					I	Т	
PPM	Beak Lad	41	4/11	dei #6	0,	#5	#8	#2	#3	oil Press	JACKET TEMP	10. Upc "H	38. 444.	Ex, Press 18	Ex. Press 2.8.	Wt. of Fue	Rev.	THE	Fue Temp.	DRY BUIL	wet Bulb	
8																						
750	1450	0	١.	,2	,2	1,3	1.3	.8	1.2	25	160	53/4	6	1/8	1/8	1	267	.350		75	60	*
1000	115	0	, 8		12	1,	.7	.1	.8	15	160	814	13	7/6	1/8	1	363	.35	4	75	60	
1500	77	,4	.6	.4	. ,	, 3	0	.4	. 3	25	160	144	27	1/4	1/8	1	477	.315	2	85	60	3.40
2000					0	. 4	0	. 4	,,	25	170	17/8	27	1/9	3/16	1	530	.273	_	75	60	N
2350	N	0 1		ď,	-	MA	×.	R . f	M	-					_					_		
1/2	+	6.		10													-		_			_
1000	1845	.4	1.4	.8	,4	1.	1.	.4	. 9	20	160	37/4	4	1/4	%	,	2/2	248		96	60	
1500	172	0	1.4	•3	,3	.1	.3	,5	.6	25	160	7	16	1/2	3/0	1	259	.173	ų	87	60	x
2000					, 3	.8	0	.6	, 4	25	160	10/8	21	9/16	7/16	2	712	363	0	82		
2500	100	16	2,	.6	. 3	.8	.6	1.	,4	25	160	12/4	27	7.	1/2	2	825	. 231	9	85		4.
3000	77	.4	2,6	1.	. 6	1.7	٠, ٢	1,2	, 3	25	160	14/8	27	Yu	1/2	2	934	.3/0		85		29
	,																					
	- 7											a,		2/	24			_				
1000	215	,4	.6	12	. >	.5	12	0	١.	25	160	7/6	4	3/8	78	2	3.17	345	_	105		_
1300	3 5 7	12	.5	•/	0	. !	12	. 5	12	25	160	1/8	7	74	18	2	411	.274		97		_
2000			_		12		,7	, 5	,5	25	165	2	/3	11/2	51	2	433	.217	L	97		ň
2500					1.		0	, 3	٠,>	>2	/60	29/	//	1 1/8	1/8	5	543	.219	3	83	68	J.
3000	195		٥,	1.	1,	, 1	, 6	, 4 V	,7 v	25	160	3/16	27	2	174	3	628	,212	10	73	68	29.40
4000								. >	.7	>2	/60	e 14	21	2/4	18	3	748	12/8				N
1000	141	2.6	4.8	2.2	2,	4	0	0	/.	25	700	1/2	21	21/4	24	3	714	1/80		90	68	_

	-		e 2						-	-		1.		1.		8				_	T	
F.2. M		Am Load	(4)	420 Nde	2 *	++01	200	lial		2 100	Ket Town	7		Proce LR	Ex Press R. B.	of fuel	,	Te Air	Fuel Tourn	Jou Bulk	4 3416	3AR. Press.
	,	2 4	1 #4	4 * (1 15	218	#12	21 3	7.0	4	2	9	ž.	à	3	B	F	r ₃	0	3	8A
1000			4/		0	.,				2.5	160	-	-	5/1	3/6	2	24.	200			70	-
1500	22	9 .	5 .2	15	. ♀	. 4	G	1.	C	2.5	140	1/1/1	-	3/	1/2	2	362	,33		97		-
2000	24	0 %	. 3	1.8	1,2	.6	1.4	18	1.6	25	160	1/10	-	11/2	1.	4	700	3.00		97	20	*
2500	24	٥.	0	0	1.	0	1.4	, ğ	1.6	25	160	5/8	-	2	1 1/4	4	218	191	Ų	92	70	=
3000	22	4	1 ,8	.4	.8	0	1.4	1.	1.0	25	180	13/4	-	25/	21.	u	201		4	97	70	30
3500	20	7 . 8	1.	1.7	1.7	.7	2,	1.6	2.5	25	180	15/	-	31/4	31/0	4	750				70	2
4000	186	1.2	14	2,	2.	1.	34	2.1	3,	25	190	1//16	-	4.	33/4	4	763	,141			70	
4400	-	-																			-	
4560	163		-		-				-			_										_
+	u1		16	167	t le																	
000	205	.4	, , ,	, š	11.	0	. 2	. 1	. 2	25	жа	+:	Δ	5/1.	1/4 1/2 1/1/6 1/1/4		236			0-	7-	_
500	274	1.	.7	1.	1,2	, ý	1.	, 8	, 8	25	160	3/4	4	1/16	1/2	2	3/3	224		97	70	_
2000	240	1.6	.6	1.6	18	.8	1.6	ğ	1.6	25	160	1/6	6	17/16	13/4	4	720	149		43	70	¥,
500	241	14	ĭ	,	2.	.3	1,6	.5	1,6	25	160	7/16	8	11/8	13/4	4	7/5	188	ų	93	70	-
000	212	. 6	, 3	1,2	1.8	0	1.6	1.1	16	25	160	%	8	2 1/8	2/4	4	840	277	*	93	20	9.30
3500	207	.8	1,	1.7	1.7	.5	ž.	1.6	25	25	180	1/6	10	31/4	31/8	4	194	225	0	93		~
1000	188	1.2	1,4	2,	2.	Ĭ.	3.4	2.1	3.	25	180	13/4	16	4	33/4	4	763	.191		93		
400	_																					
1560	163																					

						Q	UA) i f												
		7)	. 1									Th	RAT	He	01	Dew	5	A t	1/4	Pe	IM	AR 7
				2 10	RI	IA	300	: 1	م م	4+	١.	Τ.		-	-		- 1	.	-	_	-	_	
,	٦.	hood		"Hs	.0	D.,	tee	en+,	41		9	ALVAT TOUR	1	5 H	Pau.	P. C. D.	W. J. C. J. C.	6		-	4 0	0 -	Press
5.7.		1				R #					d,	*	1	10. VAC	A G	9	,	-	. ;	-		2 0	2 4
	,					. 7	2 4	8 3	#2	#3	0	4	, :	į	7 4	i u	3	4	1	u	3	2 3	13 AR.
Ē				71/		-	+					-	1	_	1								
751			0				-				2 21					8 1/8	_	26	7 .35	o	7	5 60	
1000		15		. 8	_	_	_		.]	18	25					6 1/8		36	3 .35	3 4	75	60	*
1500		7	. 4		_		13			1,3		_	_	4-	_	- 0		477	, 3/.	2 %	85	60	
2000		, ,	, 8	_	-	0	, 4	0	. 4	, >	25	170	17	8-	1/.	1 3/1	١ ،	55	127	3	75	- 60	28
				11/6		+	+	+		-		-	-	+	-	24	-	-		-	+	-	-
1500						0	-			. 3		160	_	_	_	1/16			_		_	68	_
2000						_		-	_			160				3/8							'Xi
2500							,,,		1.	/ /3	25					1/2						68	
3000						.,		-	1.5			160				9/16						68	
-				77/		17	1.3	0	",	17	27	160	14/	-	_/A	%6	1	981	. 32		107	68	
1000		10		0		o	0	0	.1	D	25	160	1/4	-	7/4	1/4	,	101	,191				\vdash
1500			.7		-	,8		ĭ.	ě	. 8		16 2		-	3/4	_	1		./07			68	
2000	2.	37	1.4	.3		, ğ	1.1	1.5			25		_	_	-	11/4	-	336				68	, m:
2500	2	7	.5	0	0	.6	5	1.5	,8	1,3	25	160	11/8	-	2		4		.305			68	1
3000	2	16	13	.7	,4	,5	1.2	1.3	1.8	18	25	180			21/8	2 1/8						68	3
3500			1.	.6		.6	1.6	2.5	2,7	2.9	25	180	2.	-	3		4					68	N
4000	n	6	ľ.	1,8	1.2	1,3	2,2	3.8	3,	3.8	25	180	2 1/4			3 1/2	4	916	, 128			68	
	u	11	1	he	011	le																	
1000	_	_	_	٥		13	0		12	.5	25	/6 o	1/8	-	1/2	5/6	1	166	,164		85	64	
1500				.6		1.4		1.2	1.1		25		1/4	-	t.	₹4		155				64	
2 0 40	_	7 /	_	_	1.2	1.6	.7	1.6			25	160	₹	-	11/4	14	2	320	.163			64	*
2500			6		U	1.4	0	1.6	1.		25	_	1/2		2		2	271	.107	6	93	64	=
3000	23		0		13	1,4	12	1,6							2 1/6	25/6	4	749	25)	\$	93	64	9.40
3500		5 ,			.1	1.3		2.	1.9		25					31/8					93	4	2
4000	1	_	8	_		2.	1,		2.1		25	190	13	-	4	33/4	4	763	191		93	64	
4400	16	3			Be	am	1	md.	at	4	560	RP	M	-/	63.								

		•		5	CCO	46	ARG	, .	16									MA	WI ,			
3,4	bood				#7				#3	Seal 710	Jacket Fund	N. VAC "HE		Ex. Press 48.	Ex Press R.B.	ut of Fuel os	Ger.	Time	Fuel Temp	6.	Wet 8416	SAR. Press.
	11	-/	1-	26	*/	-5	-78	*	203	0	2	4	n	w	n	3	á	-	4	0	3	23
8	1110	0//	10	-								. "/	-	11.	3/	,						
750										25	160	4/16 ~ Y.				1		.320		85	65	18/1
000												9 1/6		78	14 %	1		.348		82	65	34
500			-	_	.7		2.4					13%				1		. 248				00
000				_	. 4	1.	2.8	1.	2.8	25	/6 B	17,	-	1/2	1/8	1	597	.297		85	45	O.
4										-			-		3/		-		_		-	
000																		,234		-	65	
500								-					_					.500			65	2 de
000															9/16			.145	0/		65	84
500														3/4				.3/5			65	28.6
6000	77	/.	48	.4	1.6	2.1	4.4	1.	4.1	25	160	13.	-	17/16	1/16	2	915	.305	. 6	85	65	ν,
2	th	20	11/	e																		
000	220	0	0	О	.6	0	.2	,6	.2	25	160	1/4	-	1/16	7,6	2	410	.411		90	60	
500	236	1.2	.9	6	2,	.8	1.3	1.9	1.	25	160	1/16	-	1/16	%	2	36/	.237		90	60	
000	242	1.9	1.3	1.5	3,	1.4	2.1	2,7	1.8	25	160	13/16	-	11/4	1/6	2	376	.190	lı	90	60	2
500	237	1.5	2,	1.5	4.7	1.5	2.2	3.1	1.9	25	160	1%	-	2	134	4	765	,304	0	97	60	,
000	214	.8	1.5	2,2	5.4	1.8	2.2	4.6	2.3	25	170	11/4	-	2/2	2 1/16	4	828	.273	0	97	60	N
500	197	2.3	2.2	3.4	6.8	3,2	3.2	6.4	3.9	25	180	1%	-	3/4	2 1/8	4	869	. 247		97	6.	N
000	177	2,8	2.4	4.4	8.6	3.8	4.8	7.6	4.6	25	190	2/16	_	3%	3%	4	874	.218		97	60	
fu	11	+	he	#	le																	
000	220	-	2	5	8	.3	.5	9	-	25	110	3/16	_	3/8	48	2	328	220		90	60	
500	236	1.2	. 8	12	2.4	1.4	2.	3.7	2.	25	/60	3/4*	_		9/16			, 235			60	
000							2.9					1/16			14		324				69	14
500									3.5			7/6		2	174			.291	y		60	.20
000												-			2 %				N		60	29.
500	2/0	27	45	111	9							3/4		31/2		4		,212	9		67	,4,3
1000	120	4	1.5	1	1.									41/4			878					29.23
000	106	٧.	71-4	6.	11.	5.8	1.2	7.2	0.2	25	///0	/8		7/4	JM		. 18	.11/		"	61	



APPENDIX A-2

Data for I.HP./Cyl. and Friction

STANDARD MANIFOLD DATA FOR IND/cyl. and FRICTION

		T	2]		<u>.</u>			<u> </u>	T
		+ All	cylin	dees	Load	excep	+			
	!						1 I	47		
R.P.M.	All	#1	* 2	≠3	*4	* 5	* 6		≠ &	II A
t The	ottle		<u> </u>	1.						
400	150	127	130	128	127	128	126	129	123	150
800	65	54	50	48	55	53	48	55	48	66
1200	42	32	29	26	. 33	33	30	32	25	41
1600	23	15	14	/3	15	/3	//	15	12	24
(MAX.)	1850	1790	1800	1760	1750	1730	1750	1770	1740	1850
	ļ	<u>+</u>	·	<u> </u>	·	ļ				ļ
古てり	BOTT /	2	 	·		<u> </u>				<u> </u>
750	182	155	155	155	152	153	152	150	152	182
1000	176	148	148	146	142	142	/38	148	144	176
1500	148	122	/20	120	118	115.5	113.5	/23	. 117	148
2000	120	97	97	96	94	97	94	98	95	120
2500	90	68	68	68	68	66.5		68	66	90
3000	64	43	43	44	44	42	42	44	43	64
专门	2011	0	•			 			-	
1000	204	1	175	175	176	177	177	176	177	205
1500	2/2		181		180	182	183	183	182	2/3
2000	2/6		185	185	185		185	1	185	2/5
2500	200	170	170	170	170	170	170	/7/	170	201
3000	173	145	145	145	145	145	145	145	155	173
3500	147	120	120	120	0 لا ا	120	121	122	120	148
4000	117	90	88	88	90	88	ફક	88	88	117
	•				<u> </u>			<u> </u>	1	
	*	•		 	·	+		 		•
			:	· 		+		•		<u> </u>
		<u> </u>	<u> </u>	!		• • • • • • • • • • • • • • • • • • • •		·	+	
					1				L	

Standard Manifold

DATA for IND HP/LY and FRICTION

		-	<u> </u>	seam L	oads -	1	•			
		⊥ AΠ	cylina	lers F	RC E	xcept_	•	!		į
R.P.M.	AII	#1	#2	# 3		= 5	2 6	#7	48	All
3/4 t	4 ROTTI	le		4					_	•
1000	201	173	170	170	172	173	173	174	173	201
1500	207	176	175	175	176	176	175	175	176	208
2000	229	195	195	193	193	194	194	195	194	229
2500	226	192	191	191	188	193	194	193	192	226
3000	210	175	177	177	175	176	175	177	177	2/0
3500	197	164	16 3	163	163	163	165	165	164	197
9000	170	140	140	140	143	142	139	138	140	169
full	the	077/6	,							
500	2/2	177	180	179	179	177	179	179	178	2/2
1000	202	171	171	172	171	172	/73	173	/73	202
1500	222	191	190	191.5	189	190	191	190	191	223
2000	232.5	196,5	198	198.5	197.5	199	198,5	200,5	199.5	233
2500	234	195	198	199	200.5	2005		1	1	239
3000	222	186	187	189	187	185	189	188	186	222
3500	202	167.5	168	168	167	166	167.5	168	166	202
4000	180	145	146	144	145	145	145	146	145	180
4400	153	119	119	119	119	120	120	118	118	154
	+									
	-		! ! 						•	
			! 				<u>-</u>		· •	• • • • •
			· · · · · · · · · · · · · · · · · · ·	!		!	<u> </u>		 -	 -
	-							 		
		<u> </u>		<u> </u>		!	1			

DUAL	CARburetur	MANIFOLD	
		Theotiles	Synchronized
). 1		_	

DATA for Jud 49/41 and FRETION Beam hoads														
	-		T		dads	-	<u> </u>	I						
		AII	l	udees		Excep	· /		ļ					
R.P. M.	AII	#/	# 2	*3	* y	4 5	=6	#7	#8	AII				
t 1	haott	E												
750	160	135	135	135	135	135	134	136	135	160				
1000	148	124	124	124	124	124	125.5	125.5	125.5	148				
1500	114	95	95	95	95	95	95	95	95	114				
2000	76	61	61	61	61	61	61	61	61	76				
2500	53	36.5	36,5	36.5		36.5	37	36.5	36.5	5 3				
,	-			-	ļ									
B Th	eo#k			<u> </u>	ļ	ļ								
1000	184	157	1575	157	157.5	1575	128	157	157	184				
1500	158	132	132	132	132	132	132	134	133	157.				
2000	116	93.5	93.5	93.5	93.5	13.5	94	95	93	116				
2500	88	67.5	67.5	67.5	67.5	67.5	68	68	67	87				
3000	62	39	39	39	39	39	39	39	39	62				
\$ the	ottle													
1000	214	184	183	184	184	184	183	/83	183	214				
1500	222	190	19.	190	190	189	189	190	190	211				
200 •	210	176	177	177	176	179	181	181	180	210				
2500	185	155	155	135	155	155	155	155	155	185				
3000	156	127	127	127	127	126	128	129	127	156				
3500	/3/	1.3	103	103	103	103	103	104	103	131				
			I											
			Ŧ											

Dual CARBUREtor MANIFOLD TAROTTLES SYNCHRONIZED DATA for IHP/ Cyl and Friction														
D_{k}	11A fo	ا کہ عن	cyl	and	PEIC	7/82								
			Be	am L	a do -									
		- A/	c4 /12	deas	FIRE	Except		-						
P.P.M.	AII	#1	#y	#3	#4	#5	#6	キフ	#8	A11				
1 thro						1	i \$							
1000	2/8	186.5	187	187	187	187	157	190	188	2/8				
1500	227	194	194	194	19#	194	196	197	196	227				
2000	231	197	197	197	197	196.5	200	200	200	230				
2500	218	186	186	186	186	186	186	187	186	2/8				
3000	198.5	167.5	167.5	1625	167.5	1625	168	167.5	167.5	198.5				
3500	178	147	147	147	147	147	147,5	147	147	178				
4	160	127	127	127	127	127	127	/21	127	160				
4400	140	103.5	103.5	103.5	1035	103.5	103.5	103.5	103.5	140				
						1								
full	1400	71/e												
1000	2/0	181	181	181	181	181	184	184	181	2/0				
1500	224	191	192	193	191	190	193	192	191.5	225				
2000	238	200	200	202.5	200	201	203	203	> • •	238				
2500	239	202	202	202	202	200	202	102	202	239				
3	225	189	189	188	188	190	190	188	187	225				
3500	203	167.5	167.5	167.5	167.5	167.5	167	170	170	203				
4000	182	148	148	148	148	148	148	148	148	182				
4400	16.	124	124	124	124	124	124	120	124	160				
							İ							

Quad.	Mark	Las	,
CAMPO.	// PA LA	* U L	'_

Data	ton	Thp/cyl.	and	FRICTION
------	-----	----------	-----	----------

\$ 1 hrs 17 1.	AII	→ A11	1	dees #3		Cxce/	#6	27	#8	
\$ 1 hrest 1.	e	#1	ر 🖈	#3	₽¢	#7-	#/	#7	æ c	
750 /	1			7		1	•		σ	All
750 /	1									
		112	112	112	112	112	114	114.5	1/2	/33
1500 1	02.5	82,5	82.5	62.5	82.5	62.5	84	85	82.5	103
7000	6.5	5>	5>	52	52	5-	53	54	53	66.5
2000 3	32.	7.5	17.5	17.5	17.5	17-5	20	2)	/8	3>
1/4 1 h 100	#/e									
1000 1	77.5	151	151	151	151	151	152	153	151	177.5
1500	165	137.5	137.5	138	138	138	138	/38	138	165
2000	125	101	101	101	101	101	101	102	101	124
2500	96	73	73	73	73	73	74	74	73	97
3000	68	44	44	44	44	YU	44	44	44	68
1/2 + h n	.+-/	2				+				
1000	205	177	177	177	177	177	/77	178	177	205
1500	2/9	187	187	187	187	187	188	189	187	2/9
2000	223	190	190	190	190	191	191	191.5	190	223
2500 2	17	183	183	183	183	183	183	183	183	217
3000 /	95	162	162	162	162	162	162	162	162	195
3500 /	172	141	141	141	141	141	141	141	141	173
4000	148	118	118	1/8	118	118	118	118	118	148
		İ								
			-							

Quad Manifild													
Day	a foe	34	P/cy1, 0	and i	FRICE	., 							
			Be	am l	oads					-			
		A)	. 641.	udees	FIL	e ex	cept-	1	-				
2.P. M	AII	ابع	# >	A3	24	75	#6	#7	अह	All			
幸 化	witle		:		 İ		;						
1000	205	177.5	177.5	177.5	177.5	177.5	177.5	177.5	177.5	204			
1500		197	197	197	197	157	197	197	117	229			
2000	240	206	206	206	206	206	206	207	206	240			
2500	240	205	205	205	2مر	206	206	206	206	240			
3000	272	188.5	168.5	188.5	188.5	188.5	188.5	188.5	188.5	212			
3500	207	174	174	174	174	174	174	174	174	207			
4000	188	154	154	154	154	154	154	154	154	188			
4400	174	140	140	140	140	140	140	140	No	174			
		•	,	.				_					
							•			·			
full 7	1 Ro 11	12		l .	•		ļ 						
1000	205	178	178	178	178	178	178	178	178	205			
1500	274	193	193	193	193	193	193	193	143	225			
2000	240	207	207	207	207	207	207	207	207	240			
2500	241	206	206	206	>06	206	206	207	206	240			
3000	122	188.5	188.5	188.5	160.5	188.5	188.5	186.5	168.5	222			
3500	207	174	174	174	174	174	174	174	174	207			
4000	188	154	154	154	154	154	154	154	154	188			
4400	174	140	140	140	140	140	140	140	146	174			
					! 								
	1			- ·			ļ						
				 	·- -		:						
	-					ļ	!						
			- '				:						
							! 						

Data	FOR	Seco.	daey	Adapt through	He .	opens	and a e		RITAR	
	-	+	,	Beam			-	-	-	
		- A	11 04	Indea	s Fi	ee e	acept			-
R.P.M.	PII	*/	# 2	713	my	#5	#6	# 7	48	AII
\$ +h	eo +1/0	e								
750	/33	109	109	109	109	109	109	108	109	/33
1000	107	87	87	87	87	87	87	87	87	107
1500	69	53	53	53	52	52	52	52	53	69
2000	42	24	24	24	24	26	26	26	24	42.5
to +61		-			1			1		1.0
1000	188	160	160	160	160	159	158	158	158	187
1500	181	152	152	152	151	151	151	151	152	182
2000	134	110	110	110	110	110	110	110	110	/335
2500	103	80	80	80	80	80	81	81	81	103
3000	77	53	53	53	53	53	53	53	53	77
\$ +6	100+1						-			1
1000	220	183	183	185	184	184	184	185	184	220
1500	236	198	198	198	199	199	199	199	199	236
2000	242	205	205	205	205	205	205	205	205	242
2500	237	200	200	200	200	200	200	201	200	236
3000	214	179	179	179	179	179	179	180	179	214
3500	197	162	162	162	162	162	162	162	162	197
4000	177	142	142	142	142	142	142	142	142	177
full		otile		177	172	, 4.	. , ,	/ 4 -	111	11/
1000	220	183	183	184	184	184	185	185	184	220
1500	236	199	198	198	198	199	199			220
2000	242	205	205	205	205	205	205	199	199	236
2500	243	205	205	205	206	206	206	206	205	242
3000	230	193	193	193	193	193	193	193	193	2 122
3500	210	174	174	174	174					230
4000		154				174	124	174	174	2/0
7000	188	154	154	154	154	154	154	154	154	188

APPENDIX B-1

The Determination of Engine Characteristics

STANDARD MANIFOLD

Determination of Entine CHARACTER 13tics

		D	Ata	6e	CA	lcu1	atio	v S	TAI	ke a	foo	m			
								e F							
R.P.M	BHP	FHP	IHP	C.F.	core. I hp	COEP. BHP	Toeque	M.E.	FRI	Fue!	BYF.C.	M.P.W.	6.1 # 14. P. H	M/AI.	BLA.
	the	1	Į.												
	7.5		·		10.	8.2	98.3	82,	1.83	6.86	.837	9.76	59.5	8.7	53
800	6.75	4.4	11.15	~	12,	7.6	44.3	63.	3,33	12.5	.6.8	19.52	1/9	9.5	24.6
1	6.3		i	, -	,	ì	1	•	l.		1	1		,	ı
Ì	2.2	Ĭ.	ļ	1	ì	i	i .		1	í	l .	I .			1
	4 +	heo:	#1e					-							
750	16.4	4.7	21,1	1.08	22.8	18.1	115	75.3	4.35	14.3	.901	18.3	1115	787	6572
1000	20,8	9.5	30.3	1.08	32,7	23.2	109	71.0	5.82	21.8	,94	24.4	148.8	6.83	60.
1500	25.0	16.3	41.3	1.085	44.8	28.5	87.3	63.7	5:26	20.8	.73	36.6	2232	10,7	49,2
2000	27.4	18,0	45.4	1.095	49.7	31.7	72.1	63.7	6.67	25.0	,79	48.8	297.6	11.9	41
2500	27.3	28.8	56.1	1.095	61.4	32,6	57.3	53.0	7.72	29.0	.89	61,0	372.	12.85	33.8
3000	24.0	38.6	62.6	1,095	68.5	29.9	42.0	437	8.62	32.3	1.11	73.2	446.4	13,8	25,1
	1/2	+40	o 11	e											
1000	25	2.5	27.5	1.078	29.6	27.1	131,2	91.6	5.1	19.1	705,	24.4	148.8	7.8	70.2
/504	39.7	5,9	45.6	1.09	49.7	43.2	131	88.0	8.45	31.6	.72	36.6	223.2	7.07	75.8
2000	53.3	8.	61.3	1.09	66.8	8,82	1388	88.	11.7	43.8	.745	48.8	297.6	6.8	76.2
2500	61.8	12,17	73.57	1.09	80.7	68.5	129.2	28	10.9	40,7	,595	61.0	372.	9.15	71.0
3000	62.3	19.	81.3	1.093	89.0	70,	109,	78,7	/2.3	46.1	.657	73.2	446,4	9.7	60.4
3500	60,3	29.	89.3	1.093				70.4							
4000		55.5	110.5	1.043	121	_		54,2	18.85	70.7			595.2	8,4	
4400	44,					r, ?	23.4	–				109.4			33, ?
									-						
														· I	
	L	L													

			-	** *******	<u></u>	Γ- :- :	1	1	1	, -			i	_ i	
						147					Rom				
						exc					!		1		
64.	BHP	FHP	IHP	C.F.	CORR	BHP	Toesie	H.E.	Fiel (Pha)	Feel Hr.	B3F.C.	H.P.H.	MPH.	7%	Br
	3/4				1	+	+	·	- > :-						-
	24.9	ļ	1		30,1	26.83	131	81.2	5.86	22.	.82	24.4	148.5	4.77	4
	39.6			7		42,9	1	1		Ī	•	1			, -
-	\$28	T	1			60.55	ł		i			1		į.	t
	69.5		ł	. (,0	i	75.3		i		1					1
	79.5	7	1	,	i .	86.5	i	1		į		i		!	Ī
0	84.4	30.06	114.46	<u>.</u>	122.5	92.44	1265	75.2	18.5	69.5	, 752	855	530,8	7,5	68
000	85,	36.5	121.5	•	130,	935	111.5	72,	19.35	72.5	,777	97.6	595.2	8.>	6
	.		·	· - ·			1		· ·	i •	.	•	ļ. <u>.</u> .		
	 	<u> </u>	i +	-			• ·		<u>.</u>	} 		• • • • • •	-		
	ful	Y	theo	11/e		ļ 		; • -				İ			-
		ļ			-		ļ	•	•		: 				
	ļ	i .	i	i		14.46	1	1	1	I	-				1
		7	1	i	T	28,1		,	7					6.45	
		7		1		44.7					T		' -1	7,72	7
1	f	}	1	ļ	į	43.8		i		1	,	1			87
		j.	ī		7	80.7		1	Ι		T .				1
		1				92.1			T						I
			1	1		96.74			1						i
		i .	1	i		98,0	1		19.05	71.5	.730	77.6	512.02	8.33	6.
1400	84.2	65,4	149.6	1.070	160.0	94.6	100.	59,1							
		;													
								-			.				
·					-	-						ļ			
				, I									1		
 -														i	

DUAL CARBURCTOR MANIFOLD

TheoTiles Synchronized

Determination of Engine Characteristics

· — — —		,		,			r -	,	,		,	· · · · · · · · · · · · · · · · · · ·	r		_
	Pe	1			A /c u	1	1		i						
RP.M	1		1		CORE	1	1	1	1	1	BLF.C.	H.P.H	6.1 x	72. 941.	Bres
16	the		1												
	15	T	T	İ	19.72	16	105	81	2.88	10.8	.676	18.3	111.5	12.0	55
/06 o	18.5	5.10	23.6		24.83	!	1			1	I		1		
1500	185	7.08	28.48	,057	30,	1	1	ì	(1	1.06	l	t	i e	
200a	19	110	30.	1	31.6	1	I	1	1	1	l .	I	i	1	
	16.55														
Ė	th	Pa 711	e					·							
/000	23.	3.73	26.73		28,35	2462	121	87	7.12	26.7	1.08	24.4	148.8	5.6	63.7
1500	29.6	8.85	38.45		40,8	31.95	104	78.3	6.13	23.	172	36.6	2252	9.1	55,
2000	29.	15,65	4465	1.06%	47.5	31.85	76	67	597	22.4	.704	48.8	297.6	/3.3	41.3
	27.5	1	,		54.7										
3000	232	45.76	68,96		73.>	27.44	40.7	37.5	10.9	40,8	1.48	73,2	446.4	10,9	23.7
	4	the	71/0					-	-						_
/o.,	26.8	3.76	30.56	(.017	32.9	29.14	141	88.5	5.57	20,8	.715	244	146.8	7.15	75.5
	42	i		1	1	ł	1			Į.	1	1			
	52.5	l	1	1	!	1	1		i	1			i		
2500	57.8	17.1	74.88	1.018	80.6	65.5	122	79.0	9,17	344	.542	61,	372	10,8	65.
30.0	58.5	27.1	35.6	1.086	93.	65,9	102.5	71.0	11.8	44,3	.672	72.2	446.4	10.	57.
Suo	57.25	403	97.55	1.077	105,2	64.9	86	61.7	13,	48.7	. 75	85.5	520.8	10,7	48.
					•										
	-				• •	· 	·			-					
	<u> </u>				<u> </u>	-		· •							
		L	<u> </u>	l	l				i	!	Li			1	

Duni CARBURELOR MANIFOLD
THEOTILES SYNCHROWIZED
Deter MINIOTION of ENGINE CHARACTERISTICS

	Pe		DAM MAN	1		1		1		' '					
£'5'4,		k'H6	1	1		į		۳۶.		Fuel		MPH	48H.	智	Buce
	立.	thro	THE	_	•	!	!	 		1		 -			
1000	27,2	3.09	30,29	1.078	32.7	29.6	143	90.4	7.12	26.6	.900	24.4	148.8	5.6	71
1500	42.5	5.62	48.12	1.078	549	46.3	148.5	81.2	14.4	54.	1.17	36.6	2732	4.1	80
2000	57.8	8.23	66.03	1.082	71.4	63.>	ISIS	88.5	10.7	40,	.632	48.8	297.6	7.4	82.
1500	68.	12.3	80,3	1.08>	86.9	74.6	/43	86.0	14.4	54,	.724	61.	372.	6.9	77,4
3000	745	18.5	f3.	1.100	/02.2	83.7	130	81.8	16.4	61.5	. 735	73.2	4464	7.25	77,
3500	78.	30,2	108,2	1.082	117.>	87,	116,5	74.2	15.3	57.4	.66	15.5	574 8	9.1	64.5
4000	80.	52.	132,	1.082	143.	91,	105	63.7	15.5	58.>	.64	97.6	595.2	10,2	59
4400	78.	82.	160,	1.087	/73,	, 9 1.	12.	23.1	<u>.</u>	•		•			_
	fu	4//	thre	He	<u> </u>					· •					_
/000	26,24	2.	28.24	1,076	30.4	28.4	138	43.4	8.72	32.7	1.15	74.4	1488	4.55	73.6
1500	42.	6.54	45.34	1.076	sis	45.7	147	87.5	11.5	43.2	.147	36.6	2232	5.17	79,
2000	59.5	14.15	73.65	1.076	79.3	65.7	156	82.2	12.5	48.4	,742	48.8	257,6	6,15	84.3
2500	74.75	17.65	92.4	1.067	100.5	82.9	157,	62.	16.	60.	,725	41,	37>	6.20	82.
30-0	844	2505	109.45	1.47	119.	14.	1475	82.	18.6	695	.74	73.2	446.4	6.42	81.
35	87.5	33.65	121.15	1.087	132.	98.4	133.	75.	20	75	, 767	82.2	5748	6.94	72.
4000	91,	45.	136.	1.087	147.7	14.7	119.5	69.5	23.2	87	, 848	726	595,2	6.85	66.5
4400	88	66,	154.	1.10	169.5	103.5	105,	61.+		•					<u> </u>
			 			! !									
	-	 	!		.								† !		•
			· ·	 		•						L			•
			•	!									 		
		1		•	•		: •						·		•
		+	• !			,						-			
			• -									•) :	· .	• -
						: - !									

DUAL CARBURCTUR MANIFOLD

THEOTILE ON Second CARBURETOR OPENS AT 3250 R.P.M.

Determination of Engine CHARACTERISTICS

	•	e M	uce	Tes	1 s	excep	d fo	TAKE R F	HP	Fuel	1	:			
2,91	BHD	FHP	THP	CF.	THP	BAP	T. 840	M.E.	na na	HA	BSFC	M.P.#	L.I ×	四,	BHEF
			TTLE		1		·	.			i I		_		
750	9.56	31>	13.28	1,07	14.2	10.5	67	74.	2.42	10,9	1.04	18.3	111.5	10.2	36.3
1000	11.25	5.10	14.35	1.07	17.5	12.4	59	7/.	2.95	11.1	. 895	24.4	148.8	13.4	2/.
500	9.0	7.08	1608	1.07	17.2	10.1	3/.4	58.7	6.58	24.6	2.42	36.6	223.2	9.1	17.3
2000	1.75	11.0	12.75	1.07	13,62	2,6	4.6	19.0	2.70	10.1	3.9	48.8	247.6	29.5	33.6
250	16.55	24.64	41.19	1.057	43.3	18.46	34.7	42.2	5.0	18,7	/,0	61.	372	19.9	19.3
	B	thr	itte	·	L			İ	Ĺ						
/m =	1575	3.73	19.5	1.084	21.15	124	82.7	82.4	2.98	11.2	.643	24.4	141.8	13,3	45
	1 -	l	1	i	1		•	67.5	1	l .	1	1	I		
2000	13.5	15.65	29.15	1.084	31,6	15.9	35.3	50,3	6.67	25,	1.57	48.8	297.6	11.9	20,6
25.0	27.5	246	51.6	1.067	54.7	30.6	57.7	56.	6.05	>2.7	.74>	61.	377	16.4	31.6
3000	23.2	45.76	68.56	1.04	73.>	27.04	407	37.5	10.9	40.8	1.48	73.2	446.U	10,9	23.7
	t	the	011/0		ļ •				<u> </u>			i •			
/o po	2375	3.76	27.5	1.084	29.8	21.	1>4.	81.2	4.42	16.6	.64	24.4	148.8	9.	67.4
1500	31.7	8.85	38.04	1.014	41,2	349	111.	85,-	4.9	18.4	.527	36.4	2232	12.1	692
2000	34.	1565	44,75	1.084	787	327	89.	77.7	5.45	20,4	.54	48.8	297.6	14.6	48,
		e R	eatic	<u>. </u>	Per,	GRM	DAC	e -			. <u>-</u>				
		FIZ	•m	this	+	ROTT	le	Dos!	+101	a v	nd	Fu	r+h	u R	
	Ope							15 7							e N
			, ,		ı	,	1	we h	1	1					
					!			 							
								_				_			
					;										
												ļ		1	

QUAD. MANIFOLD

Secondary ThroThe opens At & Primary

Determination of Engine Characteristics.

	_ /	Data	fo	e C	Alcu	/At 10	W S	TAK	N f	Rom			!	!	
	Pert	ORM	ANCE	Tes	its	exce	4	fo æ	FH	P.	į	 - -			
5,9,14	BNP	FHP	IHP	C.F.	CORD. IHP	CORR	Topus	M.E.	Fixel UZ MIN	Fuel	BZFF.	M9,M	6.1 ×	<u>Mi</u> 9 A),	RMel
B	the	h tt/	e				!		!	<u> </u>			<u> </u>		
750	13.62	2.2	15.82	1.046	KS	. 14.38	95.6	87.	2.86	10.7	.745	18.3	111.5	10.4	49.6
/000	144	7.2	21.6	1.046	22.6	15.4	75.6	68.2	2.83	10.6	.688	24.4	3341	14.1	40,
1500	144	کد یار	2545	1.051	27.0	15.75	50.5	58.3	3.17	11.9	.756	366	227.3	18.8	27.3
2400	10.25	204	30,65	1.046	32.05	11.65	27.	36.4	3.66	13.7	1.17	468	257.6	2/.7	15.1
	# 1	heo	#/e		•	•	:		: : :	-	<u> </u>		!	-	
/000	23.3	341	27.21	1.057	28.8	24.9	123	86.5	 . 4.8	18.	.722	ل بهر	148.8	8.3	64.6
				1.057											
		l		1.052		l	1	!		1	i	1	i .	1	1
2500	31.25	26.84	58.4	1.05>	61.0	34.16	65.6	56.	6.04	22.6	.662	61,	312.	16.5	31.3
300 4	27.0	46.5	73.5	4057	77.>5	30,75	47.>	40,	6.45	24.2	.787	13,>	446.4	18.5	26.6
	1 1	hre	π /	2	-	•	•	† · · · · · · · · · · · · · · · · · · ·	• - •		-				·
/000	26.9	2.28	29,18	1.072	32,3	30.	141	93	5.8	21.7	,7,2	244	148.8	6.9	77,7
1500	42,>	6.45	48.75	1.070	51,2	45.7	148	87.6	1.3	27.4	1600	36.6	223.2	8.2	79.
<u>}000</u>	57.5	9.43	66.93	1.070	71.6	62.2	151	86.8	1.2	34.5	.554	48.8	247.6	8.6+	80.7
		1		A58		1	1			•	1	l .	1		i.
				1.065											
3504	74.7	33.7	108,4	1.070	116.	82.3	112	71.0	137	51.3	.624	85,5	5208	10.2	61,
4000	73.5	H.	119.5	/. Ob 2	1>7.>	81.>	. 96.3	64.	16.6	62.7	.77	97.6	585.2	9.55	52.6
	-					i :	•							<u>.</u>	<u> </u>
		Ī -				• ! •	•			• =				•	<u> </u>
		1	1					:	ļ	1	i	ł			

Quad. Manifold Secondary theorie opens at & Permany

Determination of Engine Characteristics

) NO PE 1		,				,				1		r
:		DA.	•	6 a	Calc	u /AT	10~	+ 4	Ke m	fa	m	! 			
· R			x e								İ	l :			
				1	l		'					ì	6.1 ×	l Mi	
2.P.M.	BHP	FHP	IHP	C.F.	INP	1347	1. sue	HIE	MM	HR	Bake.	H.P.H	H9h	101	BMep
		hasH		ı 4 = = -	-										
/00 6	25.9	1.92	>7.8>	108	34,	28,1	136	93.6	5.7	214	.762	24.4	148.8	6.45	72.5
1500	43.	5.0	48	1.072	51.5	46.5	15.	90,2	8.14	32.8	. 706	36.6	223,>	6.87	80,2
1000	60,	7.75	67.75	1.072	72.75	لا ،	157.5	89.2	11.35	42.6	.655	48.8	2976	7.	84.1
		T	86.3	7	Ī	I	7		I	1		•	•	1	
		1	100,4)	T .	4			k .	T .	1	1	1	l
		1	115.4	1		1	•		i			i			
		1	/36.	ľ			1		ļ	78.4	.755	97.6	595.2	7.60	67.3
4400	15.7	53.4	149,6	1.07	1605	106.6	114.2	67,5		•	•	:		: • ~	
4560	13	-	_	1.07 >		iost	107		!		:			•	-
-	0				1.									-	
	tu	//	+ h	Lo 77	12			-			1		_		
/000	25.4	1.44	27.04	1.072	29	22.54	। थ	95.	55	20.6	,747	24.4	148.8	7.2	715
1500	42	456	4.51	1.072	50.	2.24	147	91.	8.92	337	,737	36.6	223.2	6.72	78.5
2000	60,	6.	66.	1.07	70.8	64.8	157.5	91.5	11.8	44.2	,683	48.8	247.6	6.72	84
2500	15.3	/2,	87.3	1.07>	93,7	81.7	158	87.4	/3.9	52.2	.64	61.	372	7.1	84.7
3. ••	83.3	17.1	100.4	1.072	107,5	90.4	145.5	84	14.4	54.	. 597	73.2	446.4	8.3	78
			115,2												
4000		T - '	136	1 -		1	I .	71.4			i	į.	!	4	
4400	45.7	534	144.6	1,072	1605	106.6	114,2	67.5				i		<u>.</u>	
4560	43	_	-	1.072		105 !		i 	•	! ! =					
			i 						1	•	•			i 1	
-	· }									į			.		
										1					!
									-						
			-							-	ļ				
	l	1	<u></u>							ļ	: 1		<u> </u>	l	-

Quad. MANIFOLD

Secondary throttle opens At & PRIMARY

Deternination of Engine (Hanacteristics

		1				1 ,	Γ	Γ	ا	٠. ہ	[1		-
		2	PATA	FOR	(4)	cu/a	مدورا	s 7	Akei	$p \neq 1$	eom				
	Pek	GEM	ANCE	Te	5/5	B # C6	pt t	for	FAI	7				!	1
			1		1040.	COLE		!	Feel.	Fuel			414		İ
5.514	BHP	FHP	IHP	C,F,	INP	BAP	Today	H.E.	FILE	He.	B3.F4	M.P.K	MPH.	941.	BNep
,	+40							•	i L	!					I _
750	1364	2.2	15.82	1.046	16.58	14.38	95,6	87.	2.86	10.7	.745	18.3	111.5	10.4	49.6
/00 o	14.4	7.2	21.6	1.046	72.6	15.4	15.6	68.2	2.83	10.6	.688	24.4	148.8	14.1	40.
1500	14.4	11.25	25.65	105/	>7.0	15.75	50.5	51.3	3.17	11.9	.756	36.6	123.7	18.8	27.2
2000	10.25	20.4	30.65	1.046	32.05	11.65	27.	364	3.66	13,7	1.17	48.8	257.6	21.7	11.1
4	the	11/	!	ļ			; ↓	•	<u>.</u>		ļ		-	i !	<u> </u>
1000	12.2	3.91	26.11	1.071	28.	241	116.5	86	4	15	-622	244	148.8	9.95	62.5
1500	33.3	9.77	43.7	1.071	46.2	364	16.5	79.	654	245	.673	36.6	223,2	9.Z	62.8
2000	3/.5	16.5	48.	1.071	51.5	35.	82.6	68.	58	21.8	.623	48.8	297.6	13.7	45.2
2500	29.7	2684	56.54	1.077	646	33.8	62.2	55.8	6.25	23.3	.69	61.	372.	16.	32
3 000	26.35	4.5	72.75	1.672	78.	31.5	45.9	40,5	6.15	23.1	,732	73,2	4464	19,3	27.1
1	+40	ottle	.	ļ 									·	· 	
/600	26.25	2.28	18.53	1.07>	30,6	28.3	1375	92.4	5.23	19.6	.692	244	148.8	7.6	73.2
1500	42.4	6.55	48.95	1.071	52.5	45.9	148,	87.5	9.34	35.	.762	36,6	>>1,2	6.4	79.2
2000	R.3	9.43	67.73	1,071	72.6	63.2	155	87.2	12,	45.	.712	488	297.6	6.6	82.
موکد	74.2	17.3	915	1.06>	97.2	79.9	155	82.2	13.1	49,2	.6/7	61.	372,	7,55	82,1
3000	81.0	25.84	106.84	1.062	113.3	87.5	141.5	77.2	15,2	57.	.15	73.2	HUGH	7.8	75.5
3500	86.7	33.7	120.4	1.06>	122.7	94.	/30	738	16.3	61.2	.652	827	520,8	8.5	69.5
4000	88.0	46.0	134.0	1.067	142.2	96,2	115,5	67.6	17.5	65,7	.682	97.6	595,2	7.1	62.2
	<u>fu//</u>	+4	1041	<u>e</u>					-	• -	ļ -		•-	· †	
1000	27.7	1.44	29.№	1.055	30.5	29.4	145.	95,4	6.1	22.9	.777	74.4	148.8	6.5	76.2
1500	44.7	456	49.26	1.055	52,	47.5	156.	91.9	9.8	36.8	.777	36.6	128.2	6.1	82.
2000	61.8	6.0	67.8	1,061	72.	66.	142.	91.8	12.25	46.	.698	41.9	247.6	6.5	85.2
	1	Ţ	1					i	*	i	.851	l	•	1	1
34.0	84.	17.1	101.1	1.061	107.2	90.1	147	84.0	15.9	59.7	.664	73.2	U46,4	7.5	77.6
3500	81.7	>4·7	114.4	1.061	14.5	96.8	1345	75.7	18,7	70.2	,727	87:2	520.8	7.4	71.6
	+	•	, –	f .		T			20.9	78.5	.770	97.6	515,2	7.6	66.
440	95.2	53.9	149.1	1.061	158.4	104.5	113.5	66.0		1			,		i

Quad. Carburetor Adapted to Standard Manifold Secondary throttle opens at 1/4 Primary. Determination of Engine Characteristics

					1		i .	i	4 ب	Bum	Rea	FORM	ANC	•	
. 	.0			exce					ruel 08	Fuel	B3F.C		6./x	Mi_	
_				C1 F 1	IHP	BHP	TORAL	W.	MIN	FR	82"	M.P.N.	M.P.M	941.	BHep
ं	the	071	e	• -			!			1					_
750	12.5	5.4	17.9	+	19.3	13.9	87.2	72./	3.12	<i>(1.</i>)	,842	/8.3	111.5	9.5	48.2
	 	+	20.	, 35	21.5	14.9	70.2	69.2	2.88	8.01	.724	>4.4	148.8	13.8	38.6
1500	12,95	1181	2476	7'0,							. 946				
					37.1	13,1	27.6	35.3	3.37	12.6	,962	48.8	257.6	236	17.
#	+41	011	e .	i i 	!		į		•	i +	<u>.</u>				
1000	23,5	5.4	28.88	1,075	34/	257	123	82,8	4.27	16.	.622	>44	146.8	9.3	66.5
		•	į.			l	!			i	.602		1		I
2000	33,5	14.5	48,	1075	51.6	37,1	88.	72.	5.8	21.8	. 602	48.8	297.6	13.7	48.
2500	32,2	24.3	56.5	1.087	61.3	37,	67,5	60,2	6.35	23.8	,644	61,	372	15.7	38.4
3000	28.8	¥3, ≥	72,	1.08>	78.	34.8	50.5	44.6	6.56	24.6	.707	73.2	446.4	18,2	<i>3</i> o.
1 2	THE	11/	2												
1000	21.5	8.5	36.	1.062	34,15	29.75	144	77.7	4.87	18.3	.615	24.4	1 48.8	8.2	77.
15.0	44.2	11.86	52.06	1.062	59.6	47.7 4	155	80.2	8.43	31.6	.662	36.4	222,2	7.1	82.5
2000	60,5	13.50	74,	1.062	78.7	65.2	158	83.	10.5	39.4	.604	48.8	297.6	7.56	84.5
2 S00	74.	17.1	91.1	1.065	97.	79.9	155	82.	13.15	49.4	.618	61.	37~	7.52	82.8
3000	80.2	24.6	104.8	1.065	111.6	87.0	140	78.	14.65	55.	,632	73.>	446,4	8.12	75.
3500	86.2	36.2	122.4	1.065	130.5	94.3	129	72.2	16.2	60.7	,643	85.5	520.8	8.57	70-
4000	88.5	51.5	140,	1.045	149.2	97.7	116	65.4	18.3+	68.8	,704	17.6	SICE	8.67	63.3
fu	11 +	heot	He												
1000	27.5	8.5	36.	1.062	38.2	29.75	144	77.7	5.32	20.	. 673	2 4.4	148.8	7.45	77.
1500			i i					80,2							-
2000					i			i			.692	48.8	297.6	6.62	84.2
د و ر د											.430		372		84.8
3000					1		+	_	i		.64-		446.4	7.54	80.
3500			1 1			1		- 1	7	· - · · · · · · · · · · · · · · · · · ·	.668				74.5
4000	94.	42,	136		145.5	- 1	1				.67-				

APPENDIX B-2

The Determination of I.HP./Cyl. and Total Friction

STANDARD MON) j f	06	\triangle
--------------	-------	----	-------------

Determination	o f	IND HP/cyl	and	TOTAL FRICTION
---------------	-----	------------	-----	----------------

		†		•		·					
		-	THP	GR C	y/,wde	: L		•		Total	Îotal
6.54	BW	#1			, ¤d		i		* 8	IHP	FHP.
8	Theo	11/e	· ··		• nn -						
400		1	1.0	1.1	1.25	1.1	(, 2	1,05	1. 35	9.3	1.8
800	6.5	1,1	1.5	1.7	1,0	1,2	1,7	1.0	1.7	10,9	4.4
1200	6.3	1.5	1.95	2.4	1.35	1.35	1, 8	1.5	2.55	14.4	8.1
1600	4.6	1.6	1.8	2.0	, 1.6	2.0	2.4	1.6	2.2	15.2	10.6
1/0	+42		Ĺ	· •		•		: 		 	
	1			2.53	2.81	2,72	2.81	3.00	2,81	2/.74	4. 7
	1			1			4.75	1	1	1	9.5
1500	27.7	4.85	5.25	5.25	5.60	6.10	6.45	4.7	5.8	44.	16,3
2000	30,0	5.75	5.75	6.00	6.50	5.75	650	5,5	6.25	48.	18,0
2500	28.1	6.85	6.85	6.85	6.85	7.35	7.80	6.85	7.50	56.9	28.8
3000	24.0	7.87	7.87	7.5	7.5	8.25	8.25	7.5	7.87	62.6	38.6
		-	!		; 	-		 			
1/2	+4	BOTT	2					1			
1000	25.5	3.63	3.63	3,63	3.5	3.37	3.37	3.5	3,37	28.0	2.5
1500	39.7	5,82	5.82	5.82	6.0	5,63	5.44	5.44	5,63	45.6	5.9
2000	54	7.75	7.75	7.75	7.75	8.0	7,75	7.5	7.75	62.0	8,0
2500	62.4	9.36	9.36	9.36	9,36	9.36	936	9.05	9.36	74.57	12.17
3000	65.	10.5	10.5	10.5	10,5	10,5	10.5	10.5	10,5	84.0	19.0
3500	64.2	11.82	11.82	11.82	11.82	11.82	//.38	10,9	11.82	93.2	29.0
4000	58.5	13.5	14.5	14.5	13.5	14.5	14.5	14.5	14.5	114.	55.5
	-										
									:		
			1				i			l	

Standard Manifulo Determination of Ity and Feiction

								1	1		
			IHP.	br	Cylin	der			· -	Total	THAL
e.pm	BIMP	#1	# 2	#3	#4	#5	*6	*7	#8	INP	FHP
3/4	tha	otile								•	
	25.5		3.88	3.88	3.43	3.5	3.5	3.38	35	28.77	3.27
1500	38.8	5.82	6.0	6.0	5.8>	5.82	6.0	6,0	5.82	49.28	8.5
2000	57.3	8.5	81	9.0	9.0	8.75	8.75	8,5	8.75	69.75	12.45
2500	70.6	10.62	10.93	10.93	11.88	14.31	10.0	10.31	10.62	846	14.0
300 -	78.75	13.13	12.4	12.4	13.13	12.76	13.13	12,4	12.4	101.75	23.0
3500	86.3	14.42	14.88	14.88	1488	14.88	14.0	140	14.42	116,36	30.00
4000	85.	15.	15.	15.	15.	15	15.5	16,	12:	121.5	36,5
			1								
fu	11 +	heott	16								
500	13.25	2.18+	2,0	2.06	2.06	2.18+	2.06	2.06	2.12	16.72	3.5
1000	25.2	3.88	3,88	3.75	3.88	3.75	3.62+	3.62+	3.62	30.0	4.8
1500	41.7	5.82	6.0	5.72	6118	6.0	2.82	6.0	5,82	47.36	5.7
2000	58.13	9.0	8.33	8.5	8.75	8,38	8.5	8,0	8.25	67.71	9.6
2500	73,0	12.2	11.58	10.95	10,48	10.48	10.48	10,3	10.48	87,0	14.0
<u> 3000</u>	83.25	13.5	13.12		13.12	13.88	12.37	Ĭ	13.5	104.6	21.4
	88.4	15.1	14.88	14.88	15.32	15.75	15.1	14.88	15.75	121.66	33,26
4000	90,0	17.5	/7	18.	17.5	17.5	17.5	17.		139.5	
4400	84.2	18.7	18.7	18.7	18.7	18,15	18.15	19.25	19.25	149.6	65.4
		-									
								-			
	L		L	L			L	<u> </u>	L		L

Dual Carburetur Manifold
Theottles Synchronized
Determination of Ind. HD and Total FND.

		1				Ì	İ	1	!	r	
1			Md. HP.	loe (ty lind	ee	 		· · · · · · · · · · · · · · · · · · ·	-	
R.P.M.	RHP	* * 1	*2	*3	*4	⇔ 2	! ! æ 6	· * 7	***	Total IHP	FHP
古		He		-			1	•		, <u>+ "'</u>	
750	15.	2.3 €	2.14	2,34	2.34	2.34	2.44	: 2,24	2.34		3.72
1000	18.5	3. •	1	3.0	3.0	3.0		2.85			5.1
1500	21.4	3.56	3.56	 	+	†	•		1	28,48	
7000	19.	3.75	3.75			3,75					11.0
2500	16.55	5,17	8.17		Sil7				-	41.19	
		<u> </u>		!		; !	[1	
المح	theat	tle			•	i —	•			.	
		! 			 =	· 	:				-
1000	23.0	3.38	3.32	3.38	3,3>	3.32	3.25	3.38	3.38	26.73	3.73
1500	29.6	488	4.88	4.88	4.88	4.88	4.88	4.5	4.67	38.45	8.85
2000	29,	5,63	5.63	5.63	5.63	5.63	5.5	5.25	5.75	44.65	15.65
2500	27.5	6.4	6.4	6.4	6.4	6.4	6.25	6.25	6.6	51.6	24.1
3000	23.2	8.62	8.62	8.62	8.62	8.62	8.62	8.62	8.62	68.96	45.76
					•			<u>.</u>		· !	-
14	the	M12		(• :	: • •	: •		•	-	: 	
									! 	: •	
1000		3.76		3.76					_	30.56	'
1500	42.		6.0			6.17		•		48.34	
}									;		10,75
2500										74.88	
3000				10.9			i		i	85.6	
7300	57.25	12.23	13.>5	12.75	12.75	12.35	13.35	11.8	13.25	17.55	40,5
•					·						
	<u>.</u>		ļ			_				·	-
						- (·		-
L	ا ــــــــــــــــــــــــــــــــــــ		<u> </u>				!	1		I i	

Dual CARburetor Manifolis Throttles Synchronized

Determination of IHP/cul and FHP.

	eterm 	_					-		• —		
		 2	and. HI	o loe	C411	uder –	,		: 		
e.P.M.	внР	#1	47	#3	#4	#5	#6	* 7	#8	THP	FAF
1	the	Me	•		-	1	·	! 			
	27.2			3.87	3.87	3.87	3.62	720	3.75	30,29	3.09
1500	42,5	4.18	6.18	6./8	6.18	6.18	5.80	5.62	5.80	48,12	5,62
2000	57.8	8.5	8.5	8.5	8.5	8.63	7.8	7.8	7.8	66.03	8.23
-500	68. o	10.0	/0.0	/0,0	100	10.0	/0.0	10,3	10.0	fo, 3	12.3
3000	74.5	11.65	11.65	11.65	11.65	11.65	11.45	11.65	11.65	93.0	18.5
3260	78. o	1355	/3.55	13.55	1355	13.55	13.35	13.55	13.55	108.2	30,2
1000	80.0	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	132.	52,
4400	78.0	20.	20,	20.	20.	29	20.	20.	20.	160	82,
4	(ull	the	11/e	: † -	•	•		•			
1000	26.24	3.62	3.62	3.62	3.62	3.62	3,26	3.26	3.62	28,24	2.0
50 •	42,0	6.2	6.0	5.82	6.2	6.38	2.85	6.0	6./	48.54	6.54
2000	59.5	9.5	9.5	8.9	9.5	9.25	8.75	8.75	9.5	73.65	14.15
2500	7475	11.55	11.55	11.55	11.55	11.55	11.55	11.55	11.55	42,4	17.65
000	84.4	13.5	13.5	13.85	13.85	13.15	18.5	13.85	14.25	109.45	25.05
500	87.5	15,3	J 5.3	15.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12.3	15.75	14.45	14.45	121.15	33.6
000	91.0	17.	17.	17.	17,	ר/.	17.	/7.	17.	136.0	45,6
1400	88.0	19.25	18.25	19.25	19.25	19.25	19.25	19.25	19.25	154.0	66.6
			: •	; 			I	!		 	
	•		į				,		:	ļ .	
		•	:	<u> </u>			!			i i	
	····			!			<u>;</u> +		1 1	; !	
			-		•				1	:	_
								i			
		•		• =-	!	•			i		

Quad. Manifold

Secondary that pens At 1/2 Primary

Determination of IHP/cyl. and Total Friction HP.

										1	
		-	IHP	foe c	4 1 /n de	tr	-		>		
C.P.M.	BHP	#1	*1	*3	#4	45	# (*7	48	IH0	FHF
\$ +	heatt	le						<u> </u>			
750	12.38	1.875	1.875	1.875	1.875	1.875	1.69	1,64	1.875	14,58	2.2
1000	12.8	2.5	2.5	2.5	2.5	2,5	2.31	2.19	2.5	20,0	7.2
1200	9.75	2.72	2.72	2.72	2.7>	2.72	2.53	2,35	2.53	21.0	11.25
2000	8.0	3.63	3.63	3.63	3.63	3.63	3, 0	3.75	3.5	28.4	20.4
4	thro	He]	· · · · · · · · · · · · · · · · · · ·		<u> </u>		·	
1000	22.2	3.31	3.31	3.31	3,31	3,31	3,19	3.06	3.31	26,//	3,91
1500	30.95	5.15	5.15	5,07	5.07	5.07	5.07	Sio7	5.07	40.73	9.77
000	31.25	6.0	6.0	6.0	6.0	6.0	6.0	5.75	6.0	47.75	16.5
2500	30,0	7.18	7.18	7,18	7.18	7,18	6.88	6.88	7118	56.84	26. <u>8</u>
3 00 0	28.5	9.0	9.0	9.0	م، و	9.0	9.0	9.0	9,0	72.0	46.5
1 2	the	ottle							• •		
1000	25.6	3,5	3.5	3.5	3. [3.5	3,5	3.36	3.5	27.88	2.28
1500	40,9	6.0	6.0	6.0	6.0	6,0	2.8>	5.63	6.0	47.45	6.55
1000	55.7	8.25	8.35	8.25	8.72	8.0	8.0	7.88	8,25	65,13	9.4.
2500	67.9	10.65	10.65	10.65	10.65	1015	10.65	10.65	10.65	85.2	17.3
3000	73.>	12.38	12.38	12.38	12.38	12.38	12.38	12.38	12.38	99.04	25.8
3500	74.7		13.55	13.22	13.55	13.55	13.55	13.55	13.55	108.4	
4000	74.	15.	15.	15.	15.	12.	18.	15.	15.	120.	46.
			1								

		•
7 .		
1		

Quad. Maniful D
Secondary theothe opens At 1/2 PRIMARY
Determination of IHP/41. and Total FHP.

			IN. H	P f.	ا ا و دىر	linder		· •	-		
R.P.M.	ВНР	*1	**>	*3	अन	25	n C	# 7	<i>\$</i> /8	land ThP	FHF
3/4	thes	1110									
000	25.6	3.44	3.44	3.44	3,44	3.44	3.44	3,44	3,44	27.52	1.92
1500	43.	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	48.0	5.0
2000	60.	8.5	8.5	8.5	8.5	8.5	8.5	8.25	8.5	67.75	7.75
Xoo	75.	10.95	10.45	10.45	10.95	10,62	10,62	10.62	10,62	86.3	11.3
3000	83.3	12.55	12.55	12.55	13 22	12.55	12.55	13.72	12.55	100.4	17.1
002	90.5	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14,4	115.2	24.7
400 o	94.	17.	17.	17.	7.	17.	17,	17,	17.	136	42
4400	95.7	18.7	18.7	18.7	187	18.7	18.7	18.7	18.7	149.6	53,9
fu	11 +	hest	tle.								
loca	25.6	3.38	3,38	3.38	3.38	3.38	3.38	3.38	3.38	2704	1.40
15.0	42,	5.82	5.82	5.8>	5.82	5.82	582	5.82	5.82		4.56
2000	60,	8.25	8.25	1.25	8.25			8.25		66.0	6.0
2500	75.3	10.95		10.95		10,95	10.95			87.3	12.0
3 • • •	83.3		12.55								17.1
3500	90.5	14.4	14.4	14.4	14.4	14.4	14.4	14.4	144	115.2	24,7
4000	94.	17.	17.	17.	17.	17.	17.	17.	17,	136,	42
4400	95.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	149.6	53.9
		• •									
								■ soles			
		-									
		1					, ;				

QUAD. CARBURETOR Adapted to Standard Manifold Secondary + hrottle opens At 1/4 Primary

Determination of IHP/cyl, and Total FHP.

		IN	H. HP.	400	cylinde	e	ļ		· •		
2,9.14.	BHP	*1	 # 2	# 3	* 4	# 5	* 6	*7	 ≉8	Total IHP	FHP
8.	heart	He				-	• - !				
750	12.5	2,25	2.25	2.25	2.25	2.25	2.25	2.16	2.25	17.91	5.4
1000	13.4	2.5	2,5	2.5	2,5	2.5	2.5	2.5	2.5	۵υ,	6.6
1500	12.95	3	3.	3,	3,/9	3,/9	3.19	3,19	3,	24,76	11.81
2000	10.5	4.5	4.5	4.5	4.5	4,	4,	4,	4.5	34.5	24,
4 1	theort	le				! ! +					
/000	23.5	3.5	3.5	3.5	3.5	3,63	3.75	3.75	3,75	28.88	5.4
1500	34.	5.44	5.44	8.44	1.62	5.62	5.62	5.62	5.44	44.>4	10.24
2000	33.5	6.	6.	6.	٤.	6.	6.	6.	6.	48,	14.5
25	32.2	7,18	7.18	7.18	7.18	7.18	6.87	6,87	6.87	56.5	24.3
3 •••	28.8	9.	9,	9.	9,	9.	٢.	9.	9,	72,	4/3,2
1 2	theo 1	rle				ļ 					
1000	27.5	4.625	4.625	4.375	4.5	4.5	4.5	4.375	4,5	36.	8.5
1500	44.2	7.12	7.12	7.12	6.94	6,94	6.94	6.94	6.94	56.06	11.86
2000	60.5	9.25	9.25	9.25	9.25	9.25	9.25	9.35	9.25	74.	13.50
2500	74.	11.55	11.55	11.55	11.55	11.55	11.55	11.25	11:55	91.1	17.1
3000	80.2	13.15	13.15	13.15	13.15	13.15	1315	12,75	13.15	104.8	24.6
3500	86.2	15.3	15.3	15.3	15.3	12.3	15.3	12.3	15.3	122.4	36,2
4000	88.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	140	51.5
tu	11 +	haoti	12								
10.0	27.5	4.625	4.625	4.5	4.5	4.5	4.375	4.375	4.5	36,	8.5
1500	44.2	6.94	7.12	7.12	7.12	6.94	6.94	6.84	6.94	56.06	11.86
200 •	60.5	9.25	9.25	9.25	4.25	9.25	9.25	9.0	9.25	73.75	13.25
2500	76,	11.85	11.85	11.85	1455	11.55	11.12	11:12	11:22	93.30	17.3
30	86.	13.45	1385	13.65	13.85	13.85	13.85	13.65	13.85	110.8	24.8
•028	92.	15.75	15.75	15.75	15.75	15.75	1575	15.25	15,75	126,	34.
د و04	94.	17.	17.	17.	17.	17.	17.	17.	17.	136.	42.

APPENDIX C

Engine Dimensions and Tolerance
Assumed Constants

			•
1			
À.,			

APPENDIX C

Engine Dimensions and Tolerance Assumed Constants

 $\sum y_{\mu}$

C. R. 7. 15 - 1

Bore $3.2675 \text{ in.} \pm .0004 \text{ in.}$

Stroke 3.75 in.

Displacement 255 cu. in.

cl. vol. 41.5 cu. in.

Crankshaft Mains 2.499 in. (.001 in. -.002 in.)

Rods 2.139 in. (.0005 in. -.0015 in.)

Valve Clearances Intake . 009 in. Exhaust . 011 in.

Valve Spring Pressures 42-45# at 1.890 in.

52-55# at 1.790 in.

Valve Seat Angles 45°

Piston Skirt Clearances .001 in. ± .0005 in.

Area of Head Gasket 15.1 sq. in.

Thickness .0625 in. when compressed

Vol. .945 cu. in.

Clearances in Cylinder Head

	Cylinder Number							
	1	2	3	4	5	6	7	8
Above Piston	. 125''	. 125''	. 125''	. 125''	. 125''	. 125''	. 125''	. 125''
Above Ex. Valve	. 156''	.156''	. 156''	. 171''	. 1094''	. 1875''	. 1875''	. 141''
Above In. Valve	. 156''	. 156''	. 156''	. 156''	. 141''	. 171''	. 141''	. 1875''
Vol. in Ml.	85	85	85	85	85	83	86	85

Minimum clearance - Ex. Valve of cylinder 5 - .1094".

Standard Camshaft

New Camshaft

I.O.	0° T.D.C.	I.O.	20° B.T.D.C.
Ex. C.	6° A.T.D.C.	Ex. C.	18° A.T.D.C.
I. C.	44° A.B.D.C.	I. C.	64° A.B.D.C.
Ex. O.	48° B.B.D.C.	Ex. O.	66° B.B.D.C.
In. Dur.	224°	In. Dur.	264°
Ex. Dur.	234°	Ex. Dur.	264°
Overlap	6°	Overlap	38°

Constants for Calculations:

Mean tire rolling radius 14.5"
Rear axle ratio 3.54:1

APPENDIX D

Selected References

SELECTED REFERENCES

Multicylinder Engine Detonation and Mixture Distribution, Blackwood, Kass and Lewis.

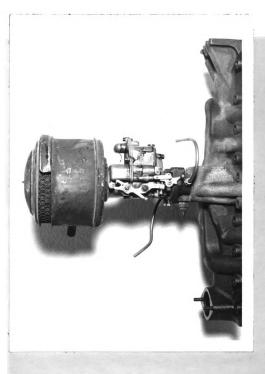
S.A.E. Journal, March, 1939.

Induction Manifolding, Louis Mantell, Automobile Engineer, July, 1940.

Internal Combustion Engines, Lichty, 6th Edition.

Internal Combustion Engines, Polson, 2nd Edition.

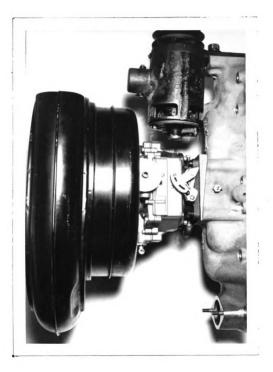
High Speed Combustion Engines, Heldt, 14th Edition.

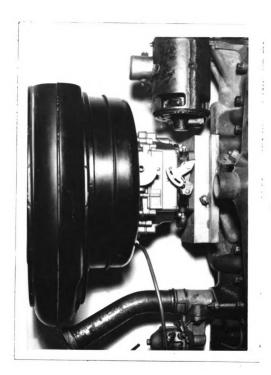

Heat Transfer and Fluid Flow, Brown and Marcs.

Elementary Mechanics of Fluids, Rouse.


APPENDIX E

Pictures

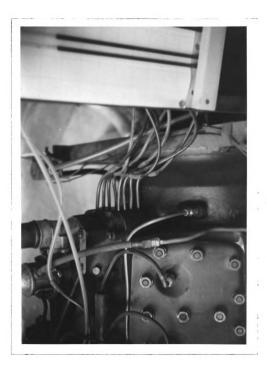

, e.,			
1			


Standard Intake Manifold

Dual Carburetor Intake Manifold

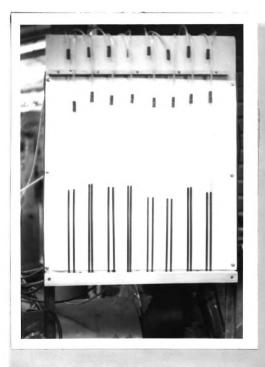
Quad. Carburetor Intake Manifold

Quad. Carburetor Adapted to a Standard Intake Manifold



Engine Installation and Testing Equipment (left side)

Engine Installation and Testing Equipment (right side)



Exit of Pressure Tubes from Intake Ports

Engine and Accessories




Manometer Panel

R.P.M. Indicator and Synchronous Clock with Revolution Counter

Engine Installation and Testing Equipment (left side)

