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ABSTRACT

THE ANALYSIS OF GRAVITY DATA

OVER LAKE SUPERIOR TYPE IRON

FORMATIONS

by Richard Joseph Blackwell

The gravity anomalies associated with many of the iron

formations of the Lake Superior region are often masked or

distorted by regional gravity effects.

This study concerns itself with evaluating existing

methods which remove or reduce the regional anomaly. Exten-

sive use is made of digital computing and plotting equipment.

Four geologic cross-sections were selected and the

theoretical gravity profiles were computed. Two profiles of

observed gravity over areas containing iron formations were

also available for study.

Analysis of the gravity profiles indicate that the method

of smooth curves, combined with some geologic background yields

results comparable to that of least squares polynomial approxi-

mation. Empirical grids were found to be equal in quality of

results to that of the analytical grids. Both grid methods were

found to be too powerful in their resolving power to be of optimum

value. The method of downward continuation yielded consistently

good results on both the theoretical and the observed gravity

profile.
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INTRODUCTION

One of the most difficult problems in the analysis

of gravity data is the accurate resolution of geologically

interesting anomalies. These anomalies are often masked or

distorted by regional effects.

The anomalies associated with many of the iron forma-

tions of the Lake Superior region exhibit this effect. The

economically interesting anomaly is frequently superimposed

on a regional anomaly having such a steep gradient that it

is very difficult to isolate the anomaly associated with a

potential mineral deposit.

This survey has been undertaken specifically to deter-

mine how the regional effect can best be removed or isolated.

A large number of the gravity surveys undertaken to locate

mineral deposits are of a profile or line type. This is out

of necessity because these surveys generally are located in

areas of rugged topography or swamps. In addition, financial

support for blanket coverage of an area is difficult to obtain.

Since most of the iron formations of the Lake Superior region

occur as long, linear, dipping formations, the assumption that

the anomalies and their source are infinite in their strike

direction is, therefore, a reasonable one. It is apparent that

this assumption restricts this study to a two-dimensional form.
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In order to gain some insight into the problem, the

gravity profiles were computed theoretically for geologic

cross-sections containing iron formations. Four cross—

sections were selected from areas where the geology was

known and where iron formations were present in various

attitudes. The gravitational attraction over these sec—

tions was then computed, using the stratigraphic sequence

occurring in that section.

Two additional profiles using actual observed gravity

data were also available for study.

The six profiles, four theoretically computed and

two observed, were analyzed with the following methods for

isolation or removal of the regional anomaly: Smooth curving,

the 2nd derivative methods using empirical and analytical

grids, downward continuation, and least squares polynomial

approximation.

All computations were carried out on a Control Data

Corporation 160A computer utilizing Fortran computer language.

Many of the results were plotted graphically on a digital

incremental plotter connected to the computer.

The programming was carried out in such a manner that

the results of one program would be punched on computer cards.

These same cards were later used in programs written to analyze

the data.
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Without the aid of a digital computer, a study of this

kind would not have been feasible.

CRITERIA USED IN SELECTING CROSS-SECTIONS

The following conditions were given consideration

during the selection of the geologic cross-sections:

1. Geologic information.

a) structure.

b) lithology.

c) attitude.

d) previous study in the area.

e) availability of geologic information.

2. Geophysical parameters.

a) density determinations.

b) steep regional gradients.

c) method of computing the gravity.

d) profile length and station spacing.

CROSS-SECTIONS

Four cross-sections were selected as being representa-

tive of the problem and fulfilling, in part, the geologic

and geophysical requirements. The computed gravity profiles

are all different in shape and amplitude. The resulting

curves vary considerably in complexity and it is felt that
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each curve has tested the usefulness of the methods available

to remove or isolate the regional anomaly.

Description and Location

Case I. Amasa oval area. Plate I illustrates the cross-

section and the formations that make it up. Shown on the plate

are the individual anomalies associated with each formation and

the composite curve across the section.

The Fence River formation represents an ideal case of an

isolated, dipping unit enclosed by more massive formations.

The section cuts east-west through section 13 to section

17, T44N, R31W and is located just north of the east branch of

the Michigamme Reservoir.

From east to west, the Michigamme slate, the Fence River

formation, the Hemlock formation, the Randville dolomite and

the Margeson Creek gneiss all dip about 600 to the east away

from the center of the Amasa oval.

The Fence River formation in its upper half is a massive

garnet-grunerite schist, while its lower westward half contains

quartz, magnetite, hornblende, and epidote.

The cross-section is profile A-A' from Plate I of Gair's

(1956) report.
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Case II. Michigamme Mountain area. Plate II shows the

irregular—shaped Goodrich quartzite with the more massive

Randville dolomite and the Hemlock formation on each side.

The anomalies associated with each formation are shown as

is the composite gravity curve across the section.

The section lies about 3/4 mile north of the road junc-

tion known as Kiernan, Michigan and cuts east—west from the

NE % of the SW % of section 3 to the NW %Oof the SE % of

section 4, T43N, R31W in Iron County, Michigan.

The Goodrich quartzite is a magnetic cherty quartzite

with much clastic quartz. Jaspilite and oolitic iron forma-

tions occur in pebble size and the iron content is estimated

to be between 15% and 35% (Gair, 1956).

This section represents profile F—F', Plate III from

Gair's (1956) report.

Case III. Marquette district. Plate III shows the

cross-section of the geology found west of Ishpeming, Michigan

and includes the Negaunee iron formation.

The cross-section is located several miles west of Ishpeming,

and runs north—south through sections 30, 31, 6, 7, l8, and 19

of T47N, R27W.
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An alternating series of peridotite—serpentinite sills

and the Kitchi schist form a major portion of the cross—section

while the Ajibic quartzite, Siamo slate, Negaunee iron formation,

and the Michigamme slates make up the southern end of the cross-

section.

The section was computed with all formations vertical in

attitude. No accurate determination of attitude could be made

for all the formations present. The southern end of the cross-

section probably dips from 750 to 900 to the south.

Data for this section was taken from Van Hise' (1897)

report.

Case IV. Penokee-Gogebic area. Plate IV shows the forma-

tions which make up this section. The geology is relatively

simple, consisting of an iron formation made up of four separate

units. The computed gravity profiles combine to give an anomaly

that is indicative of the whole section.

This cross-section is located in the vicinity of Ironwood,

Michigan. The section extends north-west to south—east through

sections 6, 7, 18, 19, and 30 of T46N, R46W.

The Ironwood formation consists of: (1) Cherty iron—bearing

slates and carbonates, (2) Ferruginous slates, (3) Ferruginous
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cherts, and (4) Jaspilites and ore. This series is overlain

by the massive Tyler slates to the north, and stratigraphi-

cally below the Ironwood formation is a granite and granite

gneiss of large areal extent.

The Ironwood formation dips 600 to 650 to the northwest.

This section was taken from Van Hise (1897).

Depth, Lateral Extent, and Density

In the computation of the gravity values over these

profiles assumptions were made in regard to depth, lateral

extent, and density.

Depths were taken from the maps of those areas where

cross-sections were available, and in those areas where they

were not available, the literature was searched for aid in

making a judicious choice.

Lateral extent of the formations at each end of the

cross-section plays an important role in the amplitude and

gradient of the gravity anomaly. They are, in fact, the

predominant source of the regional effect in computed gravity

anomalies. End members were computed with widths of 200,000

feet, as shown in Figure 1 on page 8.



:.._ PROFILE LENGTH ——~:

I I I ’

1.4-— 200, 000 : r I 200,000——-‘T

\\\\\\\

Figure l

 

 

  
 

 

  
 

The selection of iron formation densities were made with

the aid of a graph (Hinze, 1960) showing percent soluble iron

(by weight) versus the density in grams per cubic centimeter

for hematite and quartz rock, magnetite and quartz rock, and

magnetite—quartz and garnet rock. In addition, Hinze (1963)

and Jakosky (1950) also served as sources of information for

the densities of the other rock formation.

Observed Gravity Profiles

In addition to the four cross-sections over which the

gravity was computed, two profiles of observed gravity over

known and located iron formations were available for study.

Both exhibit very steep gradients with a residual anomaly

superimposed in such a manner that accurate resolution is

difficult.



METHODS USED IN COMPUTING GRAVITY PROFILES

It has been shown by Heiland (1940) that the vertical

component of gravity for a two-dimensional body derives from

a logarithmic potential, that is, the gravitational attrac-

tion is proportional to the disturbing formations section in

a plane perpendicular to the strike of the body.

To determine the expression for a two—dimensional body,

the volume integral (representing Newtonian potential)

U=£6flf71c dxalyalz , <1)

is integrated from + (plus) to — (minus) infinity in the

y—direction and the surface integral representing logarithmic

potential is obtained,

U=2£5jJLoe‘fi—dx cl! , (2)

where U = gravitational potential,

k = gravitational constant,

= density,

r = distance from point of observation to the

center of the disturbing mass,

dxdz = cross-sectional element.

By differentiating U with respect to 2, equation (2)

becomes

50
:z z: (3)

where A? = gravity anomaly.
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If we wish to calculate the gravity anomaly at point P

due to the rectangular block illustrated in Figure 2,

 

  

 

 

 

  
 

x_4p
u—T 7‘ X, /
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2‘ R
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x~x, =T X=Z,TAN6,
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Z:+ X2:R X-T=ZlT/'IN6,

Z+(X—T)2—=R: x—T=z,TANe.

z;+(x—-T)’=R3,

Figure 2

Using the above values and by integration, equation (3)

A? If“;Z” “Mi—Ex) ’ (4)

.. Ifz +(x -—X)2A -jLOG L . oLX (5)

3 . ‘ zf +(x-—-x,)r ’

Z17—.. 22([x106\lngé+x+x: -—--(x T)LOG V2: +97”: (6)

Z‘ +(x—T)I

becomes,

 

 

 

 

 

 

+2? (AN'IX.2- —TAN2L1.)+Z (TANI-g; TANK-31)]
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Equation (6) reduces to:

Aj=Z£Ol )(I.05‘¢§-’3--%L + TL051%‘; 'I' Z; (O,'@.) ‘Z.(@,‘e,fl. (7)

Referring to Figure 3 which illustrates the notation

used for dipping bodies, the expression for computing the

gravity anomaly is given by equation (8),

 

 

  

 

 

Figure 3

A} = 211 6 {551114 +2, cosg Emu L061 11.1%: + cos.<(rc>. - 6.)

H9 ~591+T51N4Em4 L061}; +cosxce.-e;:]+z,ce.—e.)-z,(a,-e,) 28)

It is obvious that both equations (7) and (8) are long

and would become exceedingly tedious to calculate by non-

computer techniques if a great number of gravity values were

needed. However, both equations, when broken down into smaller

operations and the computations arranged in an orderly manner,

lend themselves readily to computer programming.
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It should be noted that the equations (7) and (8),

while very accurate and easy to put in Fortran language,

are in some respects limited in their use and adaptability.

It was found that it takes approximately 4.5 to 5.0 seconds

to evaluate one point using the Control Data 160A. Thus,

if it were desired to compute 100 points on a profile over

a single formation, it would take about 7.5 to 8.3 minutes.

As in the case of the Marquette profile which consisted of

12 separate formations, each of which required 88 points at

which the gravity was to be computed, the time required was

(12)x(88)x(5.0) = 5,280 seconds or about one hour and 28

minutes to compute.

It should also be noted that in all equations concerned

with gravity anomalies of bodies with high or low densities,

the difference between the density of a body with density'6:

and that of a surrounding formation of densifiy 6;, nmst be

substituted in place of the absolute density, therefore;

Kzé—KZ.

The manner in which the gravity profiles were constructed

from the geologic cross-sections is as follows: Given a forma-

tion of some dimensions and with a density of, let us say, 2.85,

we wish to compute the gravity anomaly at a series of points in
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a profile over this body that is enclosed on both sides by a

mass of density, 2.70. This is illustrated in Figure 4.

p

(
h

(
I
. b I
-

h I
-

I
-

I
.

b -

Figure 4

Proceeding with the computation, a series of points are

plotted along a profile over the disturbing mass. The profile

may look something like that shown in Figure 5.

o’ 0.15

Figure 5
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Next suppose we wish to compute the gravity anomaly of

another body adjacent to body A, but with higher density, let

us say, 3.20, and also surrounded by a mass of density 2.70,

therefore:

= 3.20 - 2.706

K 0.50 .

Suppose also that we wish to compute the anomaly of body B at

exactly the same positions at which we computed body A's anomaly

(Figure 6).

B

a a "

a.’, a: . . 1 . 4»

 

Figure 6

The second profile may look like that shown in Figure 7.
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By combining the values of the anomaly shown in Figure 5

and the values as shown in Figure 7, a composite profile over

the two masses is obtained. This is illustrated in Figure 8.

‘Z———- A+B

 

 

 

.5

WA

A 23

(=2.7O 2.85 3.20 0/: 2.70

Figure 8

In this manner a profile for each individual formation

was computed and then combined to give a total gravity anomaly

over a geologic section.

In addition to the method used by Heiland and others to

compute the gravitational effects of two—dimensional bodies,

it is possible to use a method in which the disturbing body is

represented by an N-sided polygon (Talwani, 1959). The method

is highly successful and very adaptable to a study of this type.
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The periphery of any two-dimensional body can be

approximated by a polygon by making the number of sides

sufficiently large. Analytical expressions can be obtained

for the vertical component of gravity due to this polygon at

any given point. The computation, while being lengthy and

time—consuming, is largely repetitious and can be programmed

for a digital computer.

Hubbert (1948) has shown that the vertical component of

gravitational attraction due to a two-dimensional body is, at

the origin of an xz coordinate system as shown in Figure 9,

equal to:

Ajzzfiifz ole , (9)

where z is defined to be positive downward (vertical) and 9

is measured from the positive x-axis to the positive z-axis.

P |-*--—0€a——-*'|Q

B; (X14: ) 21+!)

  
Figure 9
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If the line integral is taken along the periphery of

the body, the requirement will be to evaluate each side of

the N-sided polygon.

For example, if we wish first to compute the contri-

bution from side AB, referring to Figure 9, extend the side

AB to meet the x-axis at Q at an angle B. By letting P0 = ai,

Z ='- cx—ai) TAN (D , (10)

and for any arbitrary point R,

z = x TAN e , (11)

from equations (10) and (11) it can be shown that

a; T'AN G TANG;

z : TANm-TANe ’ (12)

 

or letting,4 Zi represent the gravity contributed by side AB

5.g.

,._ ._ _£11 T71fil€9_17\hl6u. . (13)

a.

By integrating equation (13) an expression is available for

 

computation of each side of the polygon, that is:

o T -TAN i)
Azi=ar sum.- (05¢2[6.--e.-..+TA~¢1106. ccosfiifca’LZi.,.1—A§¢J ,(14) 

 

where: 6... =ARCTAN % 2 (15)

oz... =ARCTAN %—f—:— 1 (16)

(a: =ARCTAN %:; :ff ,. (17)

a; =X1w+2m x‘" ~X4' : (18)
 

Z;- -Z.i.+a
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and the gravity anomaly at P due to the N-sided polygon will

be:

21322116 2 AZ; . (19)

Equation (14) reduces to a simpler expression if the

following conditions exist:

If X; = 0 .

AZ}. = ~045W¢1C0$¢£ [914-1 ‘¥+TAN¢;LUG‘ (COSQNCTANQ‘r TANflJJIZO)

If x54! :0 I

AZ; -‘—"- a; SIN ¢L C05¢£ E9...) ~21 +TAN¢£ LOG; (C053. (TANG; " TA N Aflml)

If 21 = 241+: :

AZ; =22. (91.4-1— 9:»). (22)

If Xi = Xifi I

A2; = Xx. 1.062% , (23)

And if

XL = Z". = O

X14: =22» = O.

6.3. :02...

AZ; = 0. (24)
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Since 9,, 9. , Z. and A. can all be expressed in terms of x

1 1+1 1 1

and z, and the expression which yields the gravity for a side

of the polygon is given in explicit terms of Bi, 9 Hi, and
i+1’

A1 or in trigonometric functions involving these terms the com-

putations become arithmetic.

To use the method it is only required that the body be

approximated with a polygon of N-sides, and that each side of

the polygon be defined by a set of coordinates (Xi’ zi) and

(Xi+1' zi+l) which locate the two end points of the side.

Once the computer program is written to use Talwani's

method, the only requirement is to put the coordinates of

each side of the polygon on computer cards and determine

where it is desired to start the profile and the number of

computation points desired.

This method also was programmed but utilized only to

check with the values determined with Heiland's method. Com-

putation time is approximately equal to 2.0 (N) seconds.

(N = number of sides.) While the method is not fast, the

restriction of having to have parallel sides is removed and

the gravity of any shaped body can be computed.

The method was tested in Case II, the Michigamme Mountain

section. Talwani's method was used with 15 sides to compute

the gravity over the irregular—shaped Goodrich quartzite mass.
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The correspondence with Heiland's results was not good.

Talwani's method was used again, but this time with 35

sides and the similarity with Heiland's method was within

: 0.01 mgal. These results and methods will be discussed

later under the evaluation of each profile.

In addition, considerable time was saved by using

Talwani's method. Heiland's formula for computing the

gravity over a dipping tabular body was used to approximate

the Goodrich quartzite. The cross-section of the body was

approximated by using 30 tabular bodies, each 30 feet wide.

Each of the 30 bodies required 70 points at which the gravity

was to be calculated. This means that 2,100 calculations

were required to arrive at a total gravity profile over the

mass. The time required was about two hours and 15 minutes.

Talwani's method, using a polygon with 35 sides to approxi-

mate the Goodrich quartzite required about 9 minutes.

ANOMALY RESOLVING TECHNIQUES

Five different methods were used to remove the regional

anomaly. They are as follows:

1. Smooth contours.

2. Empirical grids.

3. 2nd derivative methods.

4. Least squares polynomial analysis.

5. Downward continuation.
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Smooth Contours

The smooth contour method, while not used extensively

in this study, is a quick and simple way of estimating the

regional anomaly. The method consists of drawing a smooth

curve along the line of the estimated regional gradient as

shown in Figure le

  

  

  

— observed gravity

--- smooth curve

Figure 10

The smooth curve values are subtracted from the observed

(or calculated) gravity curve and the residual anomaly remains.

The method has its shortcomings if the residual is of low

magnitude or is superimposed on a steep gradient.

Empirical Grids

This method consists of using the mean of a number of

values located on a ring, square or some geometrical figure

as the regional, and subtracting this mean from the value of

the point located at the center of the geometrical figure.

That figure which remains after subtraction is to be considered
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the residual anomaly. Its value may be negative, zero, or

positive.

The method used in this study consisted of a center

point and four values located on a ring of radius r. A

graphical picture of the method appears in Figure 11 as

applied to a field of points.

 

Figure 11

Griffen (1949) gives the following definitions for

residual gravity expressions:

zfi?== residual gravity,

30

27

37%” 217?] 3099) do , (25)

gravity value at a point on a map, (profile),

jfl@)is the average value at the radial distance r from the

point where 5° is observed; thus,

A? :30 ~50") , (26)

Griffen further states that éfcd) represents a form of

3(479) which is not easily integrated. However, the function

may be approximated by:

5(4): 3,;(fl) ngLf‘):/z) . o . . . . gm (’1) J (27)
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where 3,..011 are the gravity values at a distance r from

the point being evaluated, and

A? = 3., - gnu . (28)

Griffen has found the size of the figure effects the

residual value more than the shape of the figure.

Referring to Figure 11, the residual gravity at 3a

would be:

= -_ 9! 4"93 7' 3 + 34 ,

A? 3.0 0 a 4 3" U (29)

A necessary requirement was to adapt the use of the empirical

grids to two-dimensional form. This adaption was made by con-

sidering the gravity values constant in the y-direction as

shown in Figure 12.

6, (a. 65 <3 6? 6%

/ /;'>/ / /

/ /\ / / /

7 7 / // 7 / 7

Figure 12

7'
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Therefore, if it were desired to determine the residual

of, say, point G in Figure 12, the function would now be:

A? 223— g1 I'M , (30)

4

 

where: A? = residual gravity.

If the circle is replaced with a square;

 

 

 

 
Ga 6! 65 at 6: Q. 6, 4% ‘5 é;

V

Figure 13

The equation becomes, as it is pictured in Figure 13,

..... (2'31)+(2'94)+(2‘3‘)+(2' 7) .

Station spacing was maintained at 100 foot intervals.

2nd Derivative Methods

The 2nd derivative method of interpreting gravity data

offers a simple routine method of locating some types of

geological anomalies of importance in mineral exploration.
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The method's importance arises from the fact that this

type of analysis tends to emphasize the smaller, shallower

geologic features at the expense of larger, regional features.

It is for this reason that the 2nd derivative interpretation

of a gravity anomaly often gives a clearer and better resolved

picture of the type of anomaly than does the original gravity

picture.

The analytical grid method of approximating the 2nd

vertical derivative of gravity is similar to the empirical

grid method. The empirical grids evolve from a simple sta—

tistical treatment, while the analytical grid methods are

derived by a rather rigorous mathematical treatment of the

theory of harmonic motion. The subject is well treated by

Evjen (1936); Peters (1949); Henderson and Zietz (1949);

Elkins (1951), and Rosenbach (1953).

Any function which has continuous 2nd derivatives at

H(0,0,0) which satisfy Laplace's equation,

1

3H SW 3%!

ax= 1' art + 32* 0 ’ (32’

may be an harmonic function. Since the theory is being

applied to gravitational attraction, which is assumed to

be an harmonic function, the following substitution shall

be made: H(0,0,0) E G(0,0,0)

294/ _ 3‘6 a'//_ 3'6 ’ aw __. at

a x“ axa a x‘“ ax 32“ az‘
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It is desired to determine the 2nd vertical derivative

I.

[3263. X = Y = z = 0' BY letting gravity represent the

harmonic function on the plane 2 = 0, and defining G(r, z)

to be

__ 227'

G (A.Z)=fi[5(/t,cose,lt 5/Ne,z)o(e ' (33)

and G(r, 2) at z = 0 is G(r), equation (33) becomes

2.7-

G(A):'2L77 G(ACOSG,/‘LS/N6, dole ' (34)

O

G(r), therefore, represents the average value of G(x, y, 2)

around a circle of radius r in the plane 2 = 0 with the origin

as the center of the circle. By its relationship to G(x, y, z),

G(r) may be expanded in a power series in r about r = 0 so that

5(a) = a.+ amz +a,n4+a,n‘.....,<34a)

where the odd powers of r are absent because integration of

equation (34) contains sin 6 and cos 9. Since these two terms

reach odd powers and have a period of 277', they become zero.

It is through the use of G(r) that the 2nd derivative of

G(x, y, 2) may be obtained. By transposing equation (32) we

obtain

3'6 ,_ 3’6 2'6

32‘“ (ax: I aY‘ ’ (35)
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and by letting x =Acose, y =51N6) , equation (35) becomes

3’6 a2 l l at

‘52—:=— Et‘ZgTL+/?SE 6 ’ (36’

If equation (36) is integrated with respect to 0 between the

limits of 0 and 2 27) and for ft7£7and at z = O we are able to

 

 

 

obtain zp'

3‘6 1 3‘6 JZCO

32“ :fif ( :23A5/NGIZ) ole ) (37)

3'6 2 l ...
33‘ =-—(—g:{ +Z—%Z) 6(4) 0 (37a)

Now by letting)! approach 0 and making use of the power series

describing G(r), (equation 34a), the following formula is obtained:

. I3 GBC§11YJZ
: -4az ' (38)

:’ x=Y=ZIO

If some point is picked in the plane 2 = 0 as a center and

a plot is made of the average value of G in a plane around a

circle of radius IL versus 213' , the slope of the plotted curve

is the derivative of G with respect t04m? .

The process of finding the value of a2 in equation (38)

requires the following assumptions:

1. Choose an IL small enough so G(r) has enough terms

(equation 34a) to represent it accurately.

2. The curve G(r) is replaced by a straight line.

3. The mean value of G(r) for circles of radii of

5(0),S’5VZ"5V3’ about a point gives four dis-

tinct points on a graph of G(r) versus JZz .
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These points are:

6T0), 5(5) , 5(SVZ') AND 5(5V3') . (39)

Since these four points lie on a curve which may not go through

the origin, a linear least squares fit is made and the slope of

this line replaces 36

3(IL2 [C :0

As a result of this approximation, equation (38) is replaced by:

I

-%?G;=-4a¢=gé-§r44é(aj+leé'cs) -125(5VZ')-486(5V3')] . (40)

The above derivation has been adapted from Elkins (1951).

Figure 14 shows Elkins' grid method applied to a field of points.

 
Figure 14
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The following formulas were used in this study where

2

(3252? == ‘%%é§1' ’ (41)

Baranov

4

622:3} sky-Laggg (S)+0.4§ L(5VZ7+O.005;§5£6V57:I : (42)

Henderson and Zietz
 

4 4

62222152 125,—4E51L5)‘ 1;;LCSV2—El ' (43)

Elkins (I)

GZZ=zfig1E4jP+47:’31(5)*3‘%31(5V7)~6i=éigi (SW2! » (44)

MILE». (11)

6:32:35? 2043P*12é’ZL(S)—47A;:ji(5H)+4é31(SV§EI : (45)

Rosenbach (I)

62217-22537 763p “IBéaz(S)-8é'jil.SI/Z) + éaJSI/Bil : (46)

McCollum (altered)

4 4 *-

GZZ=,-ZL§1[:6O;,, "" I5§31(5)+‘Z.’:31(5V2‘E] ’ (47)

McCollum gives last term as 61(25).

Haalck

_ l 4 . __ 4 _ (48)

622—237 '22, "" 2:412115) 1;)?‘(SV2-I 1
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It is interesting to note that the sum of all the

weighting coefficients must equal zero. In addition, all

the formulas involve a term of 1%51 Mmere s is the radius

of the inner circle. Nettleton (1954) attempts to explain

the -%; term as similar to an electric filter in which the

s or station spacing factor controls the components of the

potential field which the analytical grids were devised to

analyze. The ideal grid being that system which amplifies

or emphasizes those anomalies which indicate structure and

attenuates or suppresses those components which are super-

ficial or those too broad to be of interest.

All of the above analytical grid methods were converted

into computer programs and each method used on the theoretical

geologic cross-sections and the case histories. The results

of this analysis will be discussed later.

As in the case of the empirical grids, this method was

also reduced to a two-dimensional form for use in this study.

Station spacing was maintained at 200 foot intervals.

Least Squares Polynomial Approximation

The method of least squares has long been used to obtain

a linear best fit of a discreet set of data points. It has

been only recently that the method of least squares has been
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applied to gravity data using high degree polynomials.

In simple terms, the reason for its use in gravity data

analysis is to generate a polynomial which may be used to

approximate the regional anomaly in a gravity profile.

Let the profile of gravity values as shown in Figure 15

:5

 
4DA52W4/VCAE

Figure 15

represent functional values of x, that is, y = f7(x); also

let the station spacing become the independent variable x.

As shown in Figure 16, a gravity profile may then be repre-

sented as some function of x and y.

YAI

 
 

Figure 16
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It would be convenient in the analysis of gravity data

if the curve, fCX) , could be approximated by a polynomial

of some degree which closely, but not exactly, matched the

original f(X) values.

This is precisely what the least squares method as

applied to gravity data can do. In brief form, the theory

behind the method states that the aggregate sum of the squared

errors be a minimum or

R(X)‘=[flX)-B(X)] = a minimum (49)

where: ROG = error between 3‘00 and the least

squares polynomial,

BOQ== least squares polynomial,

;HX)= functional values of x (gravity).

By letting the least squares polynomial of various degrees

represent the regional gravity anomaly, that part of the gravity

curve which is in greatest error with the least squares poly-

nomial becomes the residual anomaly.

This method was applied to the four computed gravity pro-

files and the two observed gravity profiles. Polynomials whose

degree ranged from 1 to 10 were obtained and used to approximate

the profiles. It was not possible to obtain higher order fits
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because of the limited size and storage capacity of the

Control Data 160A computer. However, the 10th degree fit

was, in most cases, sufficient to approximate the regional.

The general procedure was to obtain all degrees, from

1 to 10, and then determine which degree met the require—

ments of the gravity profile.

There are some areas of least squares polynomials

derived by a digital computer which cause some difficulty,

particularly if the computer being used is small in terms

of core memory and word length. The method of least squares

consists primarily of a series of tabulations and the con-

struction and solution of a matrix consisting of the coeffi-

cients of a number of linear equations. While the problem is

clear cut and easily programmed, it must be remembered that

within the matrix of coefficients there are numbers whose values

increase up to as high as 1.0 x 1020 for a low degree equation.

Since the number range on the Control Data 160A is within the

bounds of 1.0 x 10-30 to 1.0 x 1031, it is possible to intro-

duce serious errors by exceeding this limit. There are several

methods of suppressing the problem so that a polynomial of

higher degree may be obtained. One simple and effective method

is to reduce the range of x values used within the program.
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Thus, if the input data consists of x values, from 1.0 to

90.0 numbered consecutively, it is possible to reduce their

range to 0.1 to 9.0. This permits the computer to Operate

on the various powers of x with greater efficiency and with

less roundoff error. For example, 905 = 5.9 x 109 while

9.05 = 5.3 x 105. While this is a simple case, it does

illustrate how to make more effective use of the computer.

The following list will serve to indicate the useful-

ness of the method. The list consists of the error R(x)2

for a set of data. The set of values range from 0.1 to 9.0.

2 . . . .

The smaller R(x) value 1nd1cates the better approx1mations

by the polynomial to the gravity data.

Penokee-Gogebic
 

Table 1

2

Degree Polynomial R(x) Value

11.784

10.068

3.537

2.634

1.553

1.103

1.174

1.093

1.113

0.945O
K
O
C
D
Q
G
N
U
'
I
b
w
m
l
-
J

H

3‘
.

I
—
‘

(
I
)

0.261

*computed on the Control Data 3600 computer.
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It should also be stated that the R(x)2 value will not

necessarily decrease in magnitude with increasing power of

the approximating polynomial. This is due to the fact that

in the least squares method, all the values of f(x) are

used, that is, during the tabulation of the x and ((x)

values the entire range of these values are taken into account.

This results in polynomials which may on a certain degree

approximate different parts of the original data curve better

than another degree polynomial. For example, a 6th degree fit

may give a good approximation of the end points of the curve

and yield an R(x)2 term which is lower than a 7th degree fit

which shows better approximation in the central part of the

curve and poor correspondence at the end thereby yielding a

2

high R(x) term.

Downward Continuation Methods

The theory behind the method of continuing a potential

field downward toward its source can be credited to Bullard

and Cooper (1948); Peters (1949), and Trejo (1954).

While the resolving power of the downward continuation

method is not as great as the derivative methods of isolating

anomalies, it does have the advantage of retaining the results
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in familiar units. In brief, the method greatly increases

the amplitude of near surface anomalies and increases only

slightly the amplitude of the anomaly over deep—seated or

regional features.

The two methods used in this study were the five-

point and nine-point downward continuation for the two—

dimensional case. The two methods were developed by the

Department of Geology, geophysics section, Michigan State

University. The two methods are derived by the theory of

finite differences and the relaxation methods as used by

Bullard and Cooper.

The formulas for the two methods are:

a) Five-point downward continuation:

D5 =3.6817(H) - 1.156115 (A +c1—o.1817(E+1=),

b) Nine-point downward continuation:

.Dq =3.6817(H)-1.15‘115(A+c) —o.0636
6(E+F)

-o. 3183(I+J’) —- 0.08621(1<+1_) .

R is the distance the field is continued downward, where A,

C, E, F, I, J, K, L,and H are gravity values located a distance

R from each other. Station spacing was at 100 foot intervals

and the field was continued down 100 feet.

K I: E A P1 C: E 3' E
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INTERPRETATION OF RESULTS

The interpretation of gravity anomalies has as its

objectives the determination of density, shape, and depth

of subsurface bodies. According to Skeels (1947), this is

an impossible task since there are an infinite number of

mass arrangements which may produce the same gravity anomaly.

However, in practice, the task becomes surmountable since

other factors such as application of other geophysical meth-

ods and the geological possibilities of the area may be

considered.

One established procedure in making a tentative inter-

pretation is to consult a family of theoretical gravity

curves for common geologic features. By consulting these

curves and considering the geologic possibilities, some

picture of the subsurface conditions may be obtained.

A more quantitative interpretation may be used to sup-

plement the qualitative procedures. Definite densities,

shape, attitude, and depths are assumed and their gravity

effects are calculated. These results are then compared

with data which has been gathered in the field. This trial

and error method is used until some satisfactory agreement

is reached.
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In utilizing the formulas and methods which permit a

quantitative approach, the restriction of long, tedious com-

putations must be considered. With the use of the digital

computer this restriction is removed and the method becomes

flexible and adaptable to many types of problems. The depth,

density, shape, and attitude may be altered at will and results

available within a matter of minutes, which formerly would have

required days to obtain.

Shown on Plates I, II, III, and IV are the four gravity

profiles calculated with the above mentioned quantitative

methods. Also shown on the plates are the geologic cross-

sections over which the gravity was computed. In addition,

the various 2nd derivative interpretations and an empirical

grid interpretation of the profile are drawn below the section.

In order to show the correlation of the 2nd derivative inter-

pretations with the gravity profile, the interpretive curves

are listed below the geologic cross-section.

The methods of smooth curves, downward continuation, and

least squares are shown in individual figures.

Amasa Oval

General Discussion. On Plate I the geologic cross-

section is shown with the individual gravity profile for

each formation drawn above it. Directly above this series
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of curves and appearing at the very top of the plate is the

total gravity profile across the section.

It is apparent that the two major influences of this

cross-section are the Hemlock formation and the Michigamme

slate. The effects of the Margeson Creek gneiss and Rand-

ville dolomite are of minor influence, causing only a slight

increase on the west end of the profile. Superimposed on

the total gravity curve is the residual anomaly caused by

the Fence River formation. The entire cross-section was

computed with a depth to the top of the formations of 100

feet. The total depth of the section is 3,000 feet. The

length of the profile is 9,300 feet with gravity values

computed at 100 foot intervals. All of the curves of Plate

I were plotted on the digital computer plotter and then

traced on to Plate I.

Interpretation of 2nd Derivative and Empirical Grid

Results. Shown on Profile A, Plate I, are the analytical

grid methods for determination of the 2nd derivative values.

On Profile A the methods of Henderson and Zietz, Rosenbach,

Haalck, Elkins II, and McCollum are drawn on the same axis

to show the very close correspondence each of these methods

has with the other. There is only slight variation in the
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amplitudes of each of the methods and all the curves cut

the zero axis of the profile at the same point.

On Profile A there are three anomalies shown. The

first anomaly at the west end, while not discernible on

the gravity profile across the section, is created by the

contact between the Margeson Creek gneiss and the Randville

dolomite. It is the first positive to negative change at

the west end of Profile A. It should be noted that this

slight anomaly is caused by the original computations used

to derive the total gravity profile. These computations

were carried out to an accuracy of 0.00001 mgal. As the

individual gravity curves were added up to produce the

total curve, there is noticeable increase and decrease in

the gravity values as the summation proceeds across this

contact between the Margeson Creek gneiss and the Randville

dolomite. This increase and decrease of values occurs at

the 3rd and 4th decimal place and is not visible when the

values are plotted on the scale used in plotting the gravity

profile.

The second anomaly occurs at the contact between the

Randville dolomite and the Hemlock formation. The 2nd deri-

vative curve crosses the zero line at exactly the same location

as the surface contact of the two formations.
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The third anomaly, that due to the anomaly over the

Fence River formation, is outstanding in appearance. The

peak of the anomaly centers on the middle of the Fence

River formation. The curve approaches its near maximum

negative value and then changes direction, reaches its peak

and reverses itself and plunges to its maximum negative value

again, finally becoming asymtotic to the zero line. The width

of the anomaly at the zero line is about 400 feet as compared

with the width of 200 feet of the Fence River formation at the

surface.

When observing Profile B, which shows the Elkins I method,

the first appearance is that there is a marked similarity be-

tween this curve and that of the total gravity curve. In

addition, there are no negative values on the profile. These

two features are caused by Elkins' choice of coefficients

within his analytical grid formula.

The curve clearly outlines the major anomalous areas of

the profile. Some assumption could possibly be made about the

attitude of the Fence River formation based on the asymmetri—

cal shape of the anomaly over that formation.

Profile C shows the results of the empirical grid method

and appears as a damped version of Profile A. For this type
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of study it appears that this rather simple method is as use-

ful as the more complex analytical grids, and requires fewer

computations.

An additional advantage is that the resulting residual

values are expressed in milligals and not the rather cumber-

some l.0 x 10-9 (mgal/cmz).

Smooth Curve and Least Squares Interpretation. On Figure

17 is shown the 8th degree approximation to the original gravi-

ty profile of the Amasa oval cross-section. The 8th degree fit

was selected because it gave a better overall fit to the data

than did the other orders. While the approximating curve does

not isolate the residual anomaly as do the 2nd derivative

methods, it does, however, eliminate much of the large anomaly

caused by the Hemlock formation. The smooth curve, also drawn

on this sheet includes much of the Hemlock formation anomaly,

which would result in a residual anomaly of entirely different

magnitude. This may be purely speculative since the matter of

personal choice and bias enter into the picture.

Downward Continuation Interpretation. The five-point

and nine-point downward continuation methods shown on Figure

18 both yielded an exceptionally fine isolation of the anomaly
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caused by the Fence River formation. The amplitude of the

two resultant curves differs by only 0.3 mgal. The method

leaves little doubt as to the location of the residual ano-

maly.

Michigamme Mountain

General Discussion. The cross-section of the Michigamme

Mountain area is shown on Plate II with the resulting gravity

profiles of the formations present. The total gravity curve

for the cross—section is the upper curve of the plate. Shown

also are the various 2nd derivative interpretations of the

gravity profile.

In this cross-section the Goodrich quartzite appears as

a wedge-shaped formation which pinches out downdip. This cross-

section, in the strictest sense, does not meet all of the

requirements set forth on page 3. However, some criteria had

to be used to test the validity of the methods used in calcula-

ting the gravity profiles. By comparing Heiland's and Talwani's

method on this type of structure, some judgment could be made

concerning the overall performance of both methods. Heiland's

method yields results comparable to Talwani's in accuracy.

Heiland's method works well and with moderate speed for simple

structures when programmed on the Control Data 160A computer.
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Talwani's N—sided polygon method is exceptionally fast for

simple and complex structures and gives results which have

a close correspondence to Heiland's.

A comparison of the results shows that both methods

gave the same results, with Talwani's method used on a 35-

sided polygon, and Heiland's method using 30 foot tabular—

shaped approximations.

Interpretation of 2nd Derivative and Empirical Grid

Results. All of the methods used to interpret the rather

simple anomaly shown on the plate, with the exception of

Elkins' I method, clearly isolate the anomaly. Elkins' I

is, in reality, a repetition of the original gravity curve,

with only the width of the original residual anomaly slightly

reduced.

There is some variation in the amplitude of the positive

and negative anomalies of Profile A between the various meth—

ods. This is due to the choice of coefficients used in each

method.

On Profile A and C the curves cross the zero line (from

- to + and from + to -) giving a width equal to the original

surface width of the Goodrich quartzite, which is 690 feet.
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Smooth Curve and Least Squares Approximation. The curves

on Figure 19 show the 9th degree approximation to the original

gravity profile and the smooth curve estimate of the regional

anomaly. Both curves are about the same in magnitude with the

smooth curve giving a residual of larger amplitude than the 9th

degree least squares curve.

The 9th degree fitting curve in this case crosses the ori—

ginal gravity curve at x = 3385 and x = 4075. This results in

a residual anomaly having a width at the base of 690 feet, exactly

that surface width of the Goodrich quartzite. It should be

pointed out that this is an exceptional case, and is certainly

not to be expected of the least squares method. In this parti-

cular example, with the gravity profile being simple in outline,

the 9th degree curve crossed the original curve at these two

;points more by chance than any inherent design of the interpretive

method.

Downward Continuation Interpretation. Figure 20 shows the

curves for the five-point and nine-point downward continuation

inethods as applied to the original gravity profile.

The methods both accentuate the isolated Goodrich quartzite

anomaly exceptionally well. There is about 0.06 mgal difference

in magnitude between the two methods at the peak of the anomaly.
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The width of the anomaly is reduced somewhat by both methods,

which results in a sharp, isolated outline of the anomaly.

Marquette District

General Discussion. The cross—section of the Marquette

area is shown on Plate III. This particular profile was sel—

ected because of the different variety of formations that were

available for a quantitative analysis.

The lateral extent of 200,000 feet at each end of the

profile does much to influence the outline of the gravity pro—

file. However, this is strongly modified by the repetition of

Kitchi schist and the peridotite masses at the north end of the

section.

On Plate III only the gravity profile of the Negaunee iron

formation is plotted along with the total gravity over the sec-

tion. It can be seen that there is considerable regional anomaly

by observing the separation between the peak of the Negaunee iron

formation anomaly and the peak over the same area on the total

gravity curve.

Interpretation of 2nd Derivative and Empirical Grid Methods.

Shown also on Plate III are two interpretations of the anomaly.

Profile A, using Rosenbach's method again clearly outlines the
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anomalous areas. In Profile B, using Elkins' I method, a

better resolved picture of the original gravity curve appears.

In Profile A the 2nd derivative curve crosses the zero

line at points roughly equal in width to the width of the dis-

turbing formation. In addition, the individual fluctuations

are more symmetrical in outline. This would seem natural

since the individual anomalies for each formation will give

a symmetrical gravity curve, and these curves, when added

together, will result in a profile roughly symmetrical in

outline.

The empirical grid method, the average of four points on

a circle, subtracted from the center point, was not utilized

on this case due to the fact that the profile it produced was

the same in appearance as those determined by the analytical

grids.

Smooth Curve and Least Squares Approximation. The curves

in Figure 21 represent the smooth curve estimate and the least

squares approximation of the regional anomaly of the Marquette

gravity profile.

It can be seen that the smooth curve estimate is a fairly

valid one, since it isolates the anomalous regions with about

the same accuracy as the 10th degree fit by least squares.
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The smooth curve, however, does include much that is

not considered regional by the 10th degree polynomial.

However, the smooth curve does give a better estimate of

the magnitude of the Negaunee iron formation anomaly.

Downward Continuation Interpretation. The nine—point

downward continuation method both accentuates and isolates

both the positive and negative anomalies of the profile.

The nine—point method is shown on Figure 22. The isolation

of the anomalous masses at the north and south end of the

profile is well seen and the negative anomaly in the center

of the section is well established.

Penokee-Gogebic

General Discussion. Plate IV illustrates the Penokee-

Gogebic cross-section and the gravity profiles associated

with it.

The individual gravity profiles in this section present

an interesting picture of how the component parts of a total

gravity profile combine to give a picture of residual anomalies

superimposed on a steep regional gradient.

The two component profiles associated with the formations,

having a density of 2.87 and 2.90, create the first residual
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and the component profile of the formation with a density of

3.10 yields the second residual.

The major influence of the cross-section is the anomaly

caused by the contact between the Tyler slate and the granite

and granite gneiss.

The fact that the Ironwood formation is dipping in the

same direction as the Tyler slate also helps mask the residual

anomaly. This is well illustrated by observing the different

profiles shown on Figure 28 and Figure 29 (pages 63 and 64).

Figure 28 shows the Penokee-Gogebic gravity profile computed

with all formations dipping 60° to the northwest. Figure 29

shows the same sequence of formations with all formations now

vertical. The residuals now are well defined and not too

difficult to isolate.

Figures 28 and 29 (page 63 and 64) point out two interesting

facts. In Figure 28 which is the gravity for the cross—section

dipping 60°, the magnitude of the gravity curve probably gives

less information than does the slope of the curve. Dipping

formations yield gravity profiles which are asymmetrical in

appearance, with one side having a much steeper gradient than

the other. In Figure 29, which is the gravity for the cross-

section now assumed to be vertical in attitude, the magnitude
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of the gravity profile gives a better clue to making an

interpretation of the cross—section. This is because the

gravity over a vertical formation gives a symmetrical out-

line with maximum amplitude whereas the same formation, if

dipping, will give reduced amplitude but a maximum gradient

on one side of the curve. It is apparent that attitude plays

an important role in how a residual may become distorted by

attitude as well as by regional gradient.

2nd Derivative and Empirical Grid Interpretations. The

three different methods shown on Profiles A, B, and C of Plate

IV all define and isolate the two anomalous areas of the gravity

profile. They also indicate which of the two anomalies is the

greatest in magnitude. Little information can be gained about

the attitude of the formations from the 2nd derivative curves.

The presence of the Palms quartz slate, the unit next to

the iron formation, might be assumed by the change of the 2nd

derivative curves' slope as it rises from its maximum negative

point and begins its asymtotic approach to the zero line, as

shown in Profile A and B. This is also barely visible on

Profile C, showing Elkins' I method. Formation widths deter—

mined from the 2nd derivative curve as it crosses the zero line
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yield widths of about 250 to 260 feet for the iron formation,

compared to an actual width of 200 feet.

Smooth Curve Interpretation. The smooth curve estima-

tion of the region appears in Figure 28. The residual anomaly

which remains, isolates a rather broad flattened anomaly much

the same as the least squares approximations using the higher

degree fits.

Least Squares Approximation. In order to show the suc-

cessive approximations by the least squares method, the curves

for approximating polynomials from the lst to the 10th degree

are shown in Figure 23 to 28. In addition to the 10th degree

approximations, the 18th degree is also shown. At the conclu-

sion of this study a new and much larger digital computer, the

Control Data 3600, was being installed at Michigan State

University. While the computer was still in the testing and

acceptance stages, one least squares program was accepted on

a trial basis and the partial results are included in this

paper to indicate that higher degree polynomials can be obtained

with larger digital equipment. The curve is shown in Figure 30.

With regard to the curves for the lst to the 10th degree

approximations, it should be noted that there is only slight
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visible difference between the 7th, 8th, 9th, and 10th degree

approximations; however, the Table 1, page 34, indicates there

is a change in the R(x)2 value.

Downward Continuation Interpretation. The curve in

Figure 34 is the nine-point downward continuation of the

Penokee—Gogebic gravity profile. Shown in Figure 29 are

the results of the method as applied to the Penokee—Gogebic

cross-section when it is assumed to be vertical. Figure 31

illustrates the downward continuation method applied to the

profile when it is assumed dipping. The nine—point downward

continuation was used to continue the curve down 100 feet.

OBSERVED GRAVITY PROFILES

The two observed gravity profiles used in this study

'were obtained from the Jones and Laughlin Steel Company.

The first profile is believed to cross the Magnetic Center

iron formation, and is located on the Marenisco range, Iron

County, Wisconsin. Beutner (1958) and Hinze (1960) describe

the area. An east-west linear-type iron formation with a

thickness of over 1,000 feet dips to the south at approximately
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650. The iron formation is bounded to the north and south

by chlorite schists. Overburden is estimated to be about

70 feet as determined by seismic refraction studies and

drilling. The profile used in this study is located about

9,600 feet west of the area just described. It is believed

that the profile does cross an iron formation.

The second gravity profile is located in Canada, approxi-

mately 100 miles east of Rainy Lake, Ontario. The profile

is over the Bending Lake iron formation. The iron formation,

occurring in a series of schists. consists of alternating bands

of quartz and magnetite. Quartz-biotite schist and garnet

schist are suggested from drilling and outcrops. Previous

study of the area (Hinze, 1960) suggests a southwest dipping

linear iron formation with a width of 1,000 feet. Hinze cal-

culated a theoretical gravity profile over the iron formation

and was able to obtain close correspondence with the observed

‘profile. A linear dipping formation was assumed having a depth

of 4,000 feet. The upper 1,000 feet is made up of an iron-rich

formation and quartz-biotite schist, in alternating bands. The

lower 3,000 feet are made up of material of lower density.
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Magnetic Center Interpretation

General Discussion. The gravity profile as shown in

Figure 32 along with the smooth curve estimate of the regional

reveals the Magnetic Center anomaly is complex and no really

clear outline of a residual is seen. Geologic information can

only be extrapolated from the known area to the east, the near-

est drill hole being about 5,000 feet away.

The profile is 16,400 feet long with a station spacing of

200 feet. Equal station spacing was obtained by interpolation

between values.

Smooth Curve Interpretation. Shown in Figure 32 is the

smooth curve estimate of the regional anomaly over Magnetic

Center. The resulting residual anomaly is located at the west

end of the profile. Actually two anomalies close together are

the result. Interpretation of the widths at which the smooth

curve approaches the gravity profile gives a width of one resi-

dual of about 800 feet, plus another narrower anomaly at the end

of the profile of about 700 feet.

Least Squares Approximation. Figure 32 also shows the

9th degree least squares approximation of the Magnetic Center

anomaly. However, this method produces a residual whose width
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at the base is approximately 1,000 feet wide, and eliminates

the second minor anomaly isolated by the smooth curve method.

The 9th degree fit also yields a rather predominant negative

residual to the north of the residual anomaly. This low was

also exposed by the smooth curve method.

2nd Derivative and Empirical Grid Interpretations. A

major difficulty in the use of 2nd derivative method when

applied to actual gravity data is the effect of random error

and small variations in gravity. The method, because of its

high resolving power, is very sensitive to these small varia—

tions in gravity data. When these variations are analyzed

with the 2nd derivative method, the resulting anomalies can

be mistaken for real anomalies associated with structure or

density changes. The resultant 2nd derivative curve, there-

fore, contains anomalies which appear natural but may be

completely irrelevant. Elkins (1952) has written a paper

dealing with the subject and derives statistical measures for

estimating the correlation between 2nd derivative values and

also the probable error associated with these values.

The profiles shown in Figures 33 and 34 are the resultant

curves from Rosenbach and Elkins' I method.
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Rosenbach's method results in a profile that is hard to

resolve. So much of the curve is reduced to plain "noise"

that it is difficult to isolate the true anomaly. However,

some valid information may be gained by looking at the points

where the curve crosses the zero line of the axis at the south

end of the profile. These have been numbered 1, 2, 3, 4, 5,

and 6. These points could be interpreted as points which repre—

sent physical limits on various widths of the alternating bands

of magnetite rich horizons within the iron formation. This

would yield from 1 to 2, a width of about 810 feet of iron—rich

material. From point 2 to 3 the curve cuts the zero line giving

a width of about 300 feet; this could be interpreted as being

material less rich in iron content. Points 3 to 4, 4 to 5, and

5 to 6 all measure roughly 150 feet apart and could represent

successive layers of iron—rich material. However, points 3,

4, 5, and 6 do not cross the zero line and become negative, so

some caution should be used with these points.

The empirical grid method, as shown in Figure 35, also

gives the same quality of data and could be interpreted in

the same manner. Elkins' method gives the same general

outline as the original gravity profile but with some reso-

lution and isolation of the anomalies.
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Downward Continuation. The nine-point downward contin-

uation interpretation as shown in Figure 36 leaves little doubt

as to the location of the major anomalous areas. The small nor—

therly residual which has been eliminated by the least squares

method is isolated, but is of low magnitude and appears to have

less significance than the major residual immediately to the

south. The center point of the negative anomaly is well placed

by this method also.

Bending Lake

General Discussion. The Bending Lake anomaly is much more

predominant, in regard to recognition, than that of the anomaly

over Magnetic Center. The profile has had some preliminary

smoothing of the original data to permit better utilization of

the analytical grids and empirical grids. Preliminary smoothing

is defined as the removal of the more obvious errors and "noise"

in observed gravity data. The estimated residual has a magnitude

of about 1.0 mgal. Also shown is a minor residual at the south-

west end of the profile. This could possibly be attributed to

a dike or some other type of intrusive body.

Smooth Curve Interpretation and Least Squares Approximation.

Shown in Figure 37 are the two different estimations of the
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regional anomaly. The smooth curve, perhaps guided somewhat

by experience with the profile of the Michigamme Mountain,

produces a residual anomaly whose width at the base is almost

1,000 feet. The least squares method produces a residual whose

width at the base is approximately 900 feet.

In this particular case, the smooth curve estimate appears

to give a better estimate of the regional than does the least

squares approximation. The least squares 7th degree fit tends

to weave in and out between the original gravity profile.

2nd Derivative and Empirical Grid Interpretations. The

two analytical grid methods used on this profile were Rosenbach's

and Elkins' I. The Figures 38 and 39 represent reproductions of

the 2nd derivative profiles as plotted by the digital incremental

plotter. Approximately two minutes were required to compute and

plot each of the curves, utilizing the computer.

Figure 38 represents the profile using Rosenbach's method.

The plot does contain four points which may correlate with the

two anomalous areas of the gravity profile. The first anomaly

gives a width at the zero line of 1,050 feet, (measured from

point 1 to point 2, Figure 38). This is a reasonable figure

since the original estimate of the iron formation from drill-

ing was 1,000 feet. The second anomaly at the southwest end
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of the profile produces a width of about 410 feet, (measured

from point 3 to point 4).

Elkins' I method as shown in Figure 39 gives much less

information about width of the formation causing the anomaly.

However, the method does outline and isolate the anomalies

quite well. The two major anomalies are labelled (A) and

(B).

The empirical grid method is shown in Figure 40. However,

analysis of the curve as it crosses the zero line yields the

same widths as Rosenbach's method, that of 1,050 feet for

anomaly (A) and 410 feet for anomaly (B).

Downward Continuation Interpretation. The nine—point

downward continuation method shown in Figure 41, as in other

profiles, clearly isolates the major anomalous areas on the

profile.

The method also isolates clearly the negative anomaly

immediately to the southwest of the major positive anomaly.

Using computer techniques, the method of downward con-

tinuation requires about two minutes to compute and plot on

the digital computer.
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CONCLUSIONS

The review of various methods of treating the regional

effects and of isolating local anomalies shows there is no

single direct answer to the problem. However, some definite

conclusions can be reached as to which of the methods used in

this study are most ameanable to the problem at hand.

It must be conceded that the effectiveness of these methods

in prospecting is limited by the inability of any one method to

make an exact interpretation of the data. The responsibility

for this can be placed upon the inherent ambiguity of potential

field interpretation.

The specific problem, that of separating a local anomalous

field from a regional background with an extremely high gradient,

makes the basic assumption that one knows what the residual is.

Another equally important assumption is that details are known

about the geology to the extent that it provides means of judg—

ing what the regional is. It is, therefore, apparent that one

of the most critical parts of interpretation of gravity data is

the assigning of separate causes to separate effects; and as

Nettleton (1954) states,

”The problem of regionals and residuals

arises in all geophysical methods which are

based on measurement of a potential field . .
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. . . Basically, the question is that of

separating a potential field into possible

component parts and of ascribing separate

geologic causes to these parts."

The one basic criterion that is needed is considerable

geologic background from which to draw.

Of the methods used in this study, smooth curving is

perhaps the one method in which personal judgment plays a

major role in the isolation of a residual anomaly. All

1

other methods systematize the process with some method of

mathematics or logic, and reduce personal judgment to a

minimum.

A critical review of the methods reveals certain pro-

perties inherent in each method. As mentioned above, the

method of smooth curves is a matter of personal judgment,

and where the smooth curve coincides, the regional is left

purely up to the individual. The individual's background,

experience, and intuitive feel for the data may or may not

yield the desired results.

The method of least squares is an excellent example of

how personal judgment is almost completely removed from the

individual determining the regional. The method of least

squares will consistantly give, at its worst, a rough esti-
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mate of the regional anomaly. The higher the degree fitting

polynomial will generally yield data which approaches the ori-

ginal gravity values. A basic estimate of the effectiveness

of the method is the value of the error term, R(x)2. Generally

speaking, a 10th degree polynomial will give a relatively good

approximation of the regional anomaly. It is not safe to make

any qualitative judgment on the magnitude of the resulting resi—

dual or to make width determinations based on the resulting

residual anomaly. It is possible to obtain polynomials of a

very high degree, but it does not give enough information to

warrant the cost of computer time.

The use of the empirical grid produced results consis-

tently equal in quality with that of the analytical grids. As

applied to theoretical data, the method gives a good estimate

of the width of the causitive body. In terms of ease of com-

putation, the method is superior to the analytical grids. While

only one method, the average of four points about a circle was

used, other figures may produce the same or better results. As

applied to observed gravity data, the method produced the same

width estimates as Resenbach's analytical grid.

In using analytical 2nd derivative grids, the use of seven

different methods resulted in actually only two interpretations.
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The methods of Rosenbach, Elkins II, McCollum, Haalck, and

Henderson and Zietz give equal width estimates, with the

only variations being that of amplitude of the produced 2nd

derivative anomaly. Elkins' I method gives very poor esti-

mates of widths, but does reproduce in general outline the

original gravity data with the anomalous areas well isolated.

The 2nd derivative method has such high resolution that

when the method is used with observed gravity data of average

precision and with normal variations in gravity, it produces

false anomalies which are frequently mistaken for actual resi-

dual anomalies.

The method of downward continuation produced consistently

good results, always isolating the residuals and only slightly

emphasizing the larger regional type structures. The difference

between the five—point and nine-point downward continuation is

very slight. The advantages gained by use of the nine-point do

not seem to call for its use in hand computation, whereas with

computer usage it makes little difference.

In summary, the method of downward continuation, empirical

and analytical 2nd derivative grids seem to give the best results’

for making interpretation of gravity data. The grid methods,

while being very powerful, are very sensitive to minor variations

in gravity data and may create superficial anomalies.
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The method of least squares, in general, gave results

that do not warrant its cost for computer implementation.

Smooth curves, coupled with good geologic information, could

be substituted at a fraction of the cost.

RECOMMENDATIONS

Geophysical field data invariably requires correction

and adjustment before any qualified judgment about geologic

causes can be offered. This is particularly true in the case

of gravity data.

The actual number of calculations for any given research

or exploration project is variable. Automatic digital computa-

tion proved to be very helpful when applied to this project.

It soon became apparent that the zest and intuitive feel for

data and results was retained at a higher level simply because

the results were obtained sooner with less tedious number mani-

pulation.

Since the culmination of this report, it soon became appar-

ent that computers are rapidly becoming an integral part of the

petroleum and mining industry. It is strongly recommended that

some method of digital computer programming be included in a

student's elective curriculum. This will not only provide him

with a powerful research tool, but will enhance his employment

potential.
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Specifically, in regard to this study, more research should

be undertaken in the areas of approximation of regional gradients.

The utilization of mathematical models and their application to

geologic conditions should prove fruitful.

Some possible areas of research could include the following:

1. Fourier analysis,

2. Correlation studies,

3. Correlation between density and 2nd derivative values,

4. Variable density studies,

5. Automatic digital map contouring,

6. Spectral analysis,

1 7. Determination of 2nd derivative values from the

derivative of the generating analytical function

and comparison with an approximation function,

8. Application of the above mentioned methods to

three-dimensional data,

9. More detailed investigation into upwards and down-

wards continuation systems,

10. Development of new resolving methods for the analysis

of potential field type geophysical data.

I Within any of these broad areas research might prove fruitful,

and would increase the state of the art considerably.
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