
 

 

ON FINITE COMMU?AT§VE SEMIGROUPS

HAVING A GROUP-LEKE PROPERTY

Thesis {or “no Down-c of pit. D.

MICHIGAN STATE UNIVERSITY

Richard L. Cantos

1965

 



—

THESIS

This is to certify that the

thesis entitled

"Cn Finite Commutative Semi-groups

having a group-like property"

presented by

Richard L. Cantos

has been accepted towards fulfillment

of the requirements for

Mdeqme inflathematics ‘

%Mwém
E. Deskins

Major professor

anew ‘

 

0-169

LIBRARY L"

Michigan State

University

   

 

   



 

 

MSU
LIBRARIES

”-

 
 

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

 

   
 



ABSTRACT

ON FINITE COMMUTATIVE SEMIGROUPS

HAVING A GROUP-LIKE PROPERTY

by Richard Lo Gantos

In the study of finite commutative groups, it is

a fact that every homomorphic image of a finite commuta=

tive group G can be imbedded in G, Moreover, if (3(G)

is a homomorphic image of G, it itself has this same

property. This thesis investigates when a finite commu-

tative semigroup S will have these same imbedding prOp-

erties. That is, we try to determine the structure of

S so that every homomorphic image of S can be imbedded

in S -- from now on referred to as property P —- and all

homomorphic images of S also satisfy preperty P.

Chapter 1 deals with finite commutative one—idem-

potent (unipotent) semigroups S which belong to the

following class of semigroupsg

£3 is the collection of all finite commutative

unipotent semigroups such that

(1) if S 8 £2 , then S has property P and

(2) if S 8 £3, then 9 (S) € E , where 8 is

a homomorphism on S.

Let S be a finite commutative unipotent semigroup,

e its idempotent, G its unique maximal subgroup, (S 23G),
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and R = (S~G)~;e. The following necessary conditions

are determined in order that SS ii:

(1) If 88 t2, then R is a nilpotent semigroup

of S‘ of class q > 1 with gr = g for every gtEG and

re:R.

(2) If 38 fig, then qu—ml = m+i and

[qum' = [G[+m, where m = 1, 2, ..., qm2 and q is

the nilpotent class of R.

(3) If Se :3, then the nilpotent class q of

R must satisfy the inequality 1< qg 4.

From (10, (2), and (3) we are led to the complete

structure of SE {:8

Se {Z if and only if either S is a group, 35 £2,

SE $3, or SE 640‘

The classes (:3, C3, 5. consist of finite

commutative semigroups S such that

(h) S = G~'R, GrsR = e, where G is the maximal

group in S, e is the idempotent in S, and R = (S-G)v e,

(2) gr: g for every gEG and reR, and

(3) R is nilpotent of class @ = 2, 3 or 4,

reapectively.

In the case of the classes=i23 and.‘¢¢, further condi-

tions are imposed on the nilpotent subsemigroup R,

Chapter 2 deals with finite semilattices and finite

semilattices of groups” In a finite semilattice E ( a

finite commutative semigroup every element of which is
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idempotent) we have a partial ordering 3 defined by:

egr if and only if ef .—.- f‘e = e. '

Let 5% be the collection of finite commutative

semigroups such that

(1) if Se 3+, then S has preperty P and

(2) if Se 3¥, then 9 (8)5 5¥, where 9 is a

homomorphism on Sr

Some of the theorems in Chapter 2 pertaining to this Class

3% are the followings

If’ E28 3+ is a finite semilattice which contains

elements a, b, e such that ai= be, h) a, cfl>a then

(1) e<‘b or e< c for every eezE where the

dimension of e is less than or equal to the dimension of a,

(2) the number of incomparable elements ee E, with

e incomparable to a< and having dimension less than or

equal to a, is at most one.

A finite semilattice of groups is a finite commuta-

tive semigroup n? such that

(1) S 29:4 G1, where Gi is the maximal subgroup

of S containing the idempotent e1,

(2) GinGj = o for 1 g j, and

(3) GiGj = Gk where eiej = eko

Some theorems on finite semilattices of groups:

If SE fiH’ is a finite semilattice of groups, then

gGi = {g}? for all g 2G1 (where e13 e for every idemw

potent e in S) and i = 2, 3, 0009 no
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If 88 3+ is a finite chain semilattice of groups,

then gig:l = gi, for all gie G1, 3;] 5G3, where ei< 93’

i =1, 29 0009 n and 3:: 29 39 0009 no



ON FINITE COMMUTATIVE SEMIGROUPS

HAVING A GROUPQLIKE PROPERTY

By

\“
'\

Richard L; Gantos

A THESIS

Submitted to

Michigan State Universit

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1965



ACKNOWLEDGEMENTS

The author is deeply indebted to his major profesa

sor, Professor W, Eugene Deskins, for suggesting this

thesis problem and for his helpful guidance during itSt

preparation, Appreciation is due him especially for

his kind consideration and encouragement, The author

also extends his appreciation to his parents,

Mr. and Mrs, Theodore E, Cantos, for providing for the

typing and printing of the manuscript,

ii



Dedicated to

Ted and Haseebie Gantos

iii



TABLE OF CONTENTS

Page

Notation Used in Chapters 1 and 2 ,..,,,.,.,.,,,,., 1

IntrOduCtionoooooooooooooocooooooooooooooooooooooo. 2

Chapter

1. Finite Commutative Unipotent Semigroups,,.,,,,. 7

1.1 Basic PrOperties of Unipotent Semigroups,. 7

1.2 Semigroups of Class § .,...,,,,,,,,.,... 11

2, Finite Commutative Semigroups of Class :N' .... 48

2.1 Certain Properties of Finite Semilattices. 48

2.2 Finite Semilattices in the Class 3+ ...., 59

2.3 Finite Semilattices of Groups in 3+ 79

Bibliography OOOOOOOOOOOOOOOOOOOOOO0000000000000... 85

iv



Notation Used in Chapters 1 and 2

Square brackets are used for reference to the

bibliography.

Let A and B be sets.

ACZB (or BZDA) means A is properly contained in B,

AQB (or BQA) means ACB or A = B,

A-B means the set of elements of A which are not in B.

IAI means the cardinal number of the set A.

C denotes the empty set,

If A and B are subsets of a semigroup S, then

AB means {abla€:A, be B},

If o is an equivalence relation on a set X,

and if (a,b) e p, then we write apib and say that

a and b are pbequivalent, and that they belong to

the same pmclass.

If p is a congruence relation on a semigroup S,

then S/o denotes the factor semigroup of S modulo p.

S/I denotes the Rees factor semigroup of S modulo an

ideal I.

3 means "isomorphic".

If 63 is a homomorphism on S and RCIS, then

s R shall mean a restricted to R,



Introduction

The aim of this dissertation is to study finite

commutative semigroups which have a property inherited

by finite commutative groups, It is evident that every

finite commutative group G has the preperty, we shall

call it prOperty P, that all its homomorphic images can

be imbedded in G, That is, for each homomorphic image

H of G there is a subgroup of G isomorphic with H.

Moreover H has prOperty P. We shall investigate the

structure of finite commutative semigroups S for which

(1) S has property P and (2) 8 (S) has prOperty P,

where 9 is a homomorphism of S.

As in group theory, every homomorphic image of a

semigroup: S can be realized (differing only by an iso-

morphism) as a factor semigroup. We therefore need to

introduce the concept of congruences, A relation 0 on

a semigroup S is said to be compatible if ap b (a,b in

S) implies acp be and cap ob for every 0 in S. By

a congruence on SI we mean an equivalence relation on S
 

which is compatible.

Denote by S/b the set of all equivalence classes

of S mod p . Let K1 and K2 be members of S/p .

Let a1, a25 K1 and let b1,b22 K2. From a1p a2 we

have a1b1p a2b1. From b1f)b2 we have 32b1;)82b2o

The transitivity of 9 gives us that 81b1p a2b2.

2



Therefore the set product K1K2 of K1 and K2 is con»

tained in a unique equivalence class K3 mod p , ZBecause

of this prOperty one may define in a natural way an op—

eration in 8%) . Since this Operation does not coincide

with the Operation of multiplication Of subsets, we shall

use the sign 0 for denoting the result Of this Operation.

Suppose that K1, K2, K3 are three equivalence

classes mod p such that K1K2CIK3, In Sfla we put

(1)1(10K2 = K3.

Since, for any K1, K2, K35 SA)

(K1<>K2)<3K3:D(K1K2)K3 = K1K2K3

K1 0(K2 OK3)ZDK1(K2K3) = K1K2K3

the Operation 0 is associative in s/b .

Definition, For a congruence p on the semigroup

S, the set S/b Of all equivalence classes mod p, con_

sidered relative to (1), is a semigroup, called the factor

semigroup Of the semigroup S modulo 9 .
 

Assign to each element aezs the equivalence class

K of S/p which contains it, We Obtain a mapping of

S onto the factor semigroup S/p», This mapping is a

homomorphism; it is called the natural homomorphism Of S

Onto S/p . Therefore every factor semigroup of a semi»

group S is a homomorphic image of S, The following

theorem (Clifford and Preston [1]) shows conversely that

every homomorphic image of S is isomorphic with a factor



semigroup of 8. Therefore, if we do not distinguish

between isomorphic semigroups, the study of homomorphic

images can be replaced by the study of congruences on S.

(Main Homomorphism Theorem). Let 6) be a-homo~

morphism Of a semigroup S onto T, Let ag>b (a,b in

S) if and only if 6 (a) = (3(b). Then p is a con-

gruence on S and if we denote the natural homomorphism

Of 8' onto S/p by p*, there is an isomorphimn 5

of s/o onto T such that Bp* = e .

An important example which will be Of constant

application throughout this dissertation is the following.

Let I be an ideal Of a semigroup S. Define

ap b (a,b in S) if and only if either a = b or else

both a and b belong to I. p is called the figgg

congruence modulo I. The equivalence classes Of S
 

modulo 9* are the ideal I itself and all the one ele»

ment sets {x)' with x in Sal. The ideal I, as an

equivalence class Of S modulo p , is of course the

zero element of the semigroup S/p , One may represent

S/p as a semigroup Obtained from S by identifying

with one another all the elements Of the ideal I. We

shall write S/I instead of S/p , and we call S/I

the Eggg factor semigroup of S modulo I.

Now suppose S is a finite commutative semigroup.



It has an idempotent element e. (i.e. e2 = e). In

fact some power of every element of a finite semigroup

is idempotent. This was first shown by Frobenius (fiber

endliche Gruppen, Sitzungsber. Preuss. Akad. Berlin, 1895).

Let E be the set of idempotents of S. For each e in

E, let Se be the set of all x in S such that

xn = e for some positive integer n. Then Se" Sf = 2‘

if e .4 f in E, and s = eLgse. Each 88 is a sub-

semigroup of S containing 2 but no other idempotent

and SeSf§;Sef for all e, f in E. Se is called a

maximal one-idempotent (or unipotent) subsemigroup of

S. All of the above facts can be found in either Clifford

and Preston [1] or Lyapin [2].

Because of this decomposition of a finite commuta-

tive semigroup we first studied finite unipotent commuta—

tive semigroups which have prOperty P and whose homomorphic

images also have prOperty P. We are able to completely

describe the products in such semigroups for this case.

That is, we are able to determine the fine structure of

finite unipotent commutative semigroups having prOperty

P and whose homomorphic images have prOperty P. This

result is stated in Theorem 1.16.

We next considered the case when the maximal uni~

potent semigroups 86 have only the idempotent e as an

element. In this case, every element of S is idempotent.

Such semigroups are called bands. Finally we close with

1
I

I



the possibility that the maximal unipotent semigroups

are groups.



Chapter 1

Finite Commutative Unipotent Semigroups

In this chapter we shall characterize those finite

commutative unipotent semigroups S which have the prop-

erty that every homomorphic image of S can be imbedded

in S and moreover all its homomorphic images have the

same prOperty.

1.1 Basic Properties of Unipotent Semigroups

We develop in this section some basic concepts

of finite unipotent commutative semigroups. Some of

these concepts can be found in either Clifford and Preston

[1 ] or Lyapin [2’].

Definition. A two~sided ideal M of a semigroup
 

S is said to be universally minimal in S if it is

contained in every ideal of .8.

Lemma 1.1 . If a semigroup S possesses a two-

sided ideal G that is a group9 then G is the univer-

sally minimal ideal of S.

M. Let L be an arbitrary left ideal of 8.

Since G is a two-sided ideal of S we have GL§;GS§;G

7



and since L is a left ideal it follows GLgSLgL.

Moreover G(GL) = GZLGQGL which implies GB is a left

ideal of G. However G is a group and a group has no

ideals other than itself so we must have GL = G. There-

fore G : GLSQL and thus G is contained in every left

ideal of S. A similar argument shows G is contained

in every right ideal of S.

Lemma 1.2 . A semigroup S cannot have more

than one two-sided ideal that is a group.

2522;. Suppose G1 and G2 are two—sided ideals

of S which are also groups. By Lemma 1, G1 and G2

are both universally minimal ideals of S. Hence we would

have G1§G2 and G2§G1 so that G1 = G20

Theorem 1.: . Let S be a finite unipotent coma

mutative semigroup9 let 6 denote its unique idempotent

element and let

G = {as Slea = a and xa = e for some xe S}.

Then

1) G = as = Se = eSe.

2) G is the unique maximal non-empty commutative

subgroup of S.

3) G is the twomsided ideal which is universally

.minimal in S.

4) Sn = G for some positive integer n.



M. Since eeG then G is nonempty. Let

xe:S. The cyclic subsemigroup (x) (i.e. the set of

all positive powers of x) is finite so there exists

positive integers m and r such that xm+r = xr

and (x) = {x, x2. ..., xm+r-1}. Moreover the set

xx = {xr’ xr+1, ..., xm+r-1} is a cyclic subgroup of

3.. Its identity element xk, r_<_ kgr+m-1, is an idem-

potent element in S and hence xk = e, for S is

unipotent. Therefore for every xezs there exists a

positive integer k such that xk = e.

1) We show G = eS. First of all G = eG§;eS.

Let x:eeS. Therefore x = ey where yeS9 ex = x

and there exists a positive integer k such that xk = e.

If k>1, then e=xk=xk'1x so that 2:36. If

k = 1, then x = e and again xe G. Therefore eS§;G

and equality follows.

Moreover G = eS = Se = eSe since S is com~

mutative.

2) We show first that G is a group. Let g19

gzeaG. Then there exist elements u1 and u2 in S

with e = g1u1 = g u g1e = g1 and g2e = g2. Therefore

2 2’

(g1g2)(u2u1) = g1(g2u2)u1 = g1eu1 = (g1e)u1 = g1‘11 = 8'

(g1g2)e = 81(g26) = 3182

and we have g g‘2 5G. The element e 2G is the identity1

element of G. Let gs G. There exists us S such that

e = gu and g = ge. Now
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lle = e2 = (gu)e e<ue) = (se)(ue) = e(eue)

and eue e G since G = eSe. Therefore each element

ge:G has an inverse element g'1 = eue in G and it

follows G is a subgroup of S.

Moreover G is a maximal subgroup of S. Sup-

pose H is a subgroup of S. Since S is unipotent

it follows that the identity element of H is the iden-

tity element e of G. Therefore

H= eHe geSe = G.

3) From part (1) we have SG = S(eSe) = (Se)(Se)

§;Se = G and thus GSEEG. Therefore G is a two-sided

ideal of S. By Lemma 1.1, G is universally minimal

in S. The uniqueness of G follows from Lemma 1.2.

4) Sm is a two-sided ideal of S for every pos-

itive integer m. Therefore, by part (3), we have Sm 2G

for every positive integer m and S 2822 ... 28m 2... 2G.

Since S is finite it follows Sn = Sn+1 = ... = Sn+k = ...

for some integer n and for all k. Now Sn is a sub-

semigroup of S and e eSn since e = ene:Sn. Let

us Sn with u p4 e. Now 11 s S so there exists a positive

k k-1
ue. Therefore u = u = e and

1

k) 1 such that uk

k-1 k-

u 8 Sn so that u is the inverse element of u in

SP. We have Sn a subgroup of S and from part (2) it

follows SnEQG. We have shown G§;Sn,~ so G = Sn.

Lemma 1.4 . If S is a finite unipotent abelian
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semigroup, then S/p is a finite unipotent abelian

semigroup for every congruence p on S.

‘Egggi. Since S is finite, it partitions into

a finite number of equivalence classes mod p so that

S/p is finite. Since 3 is abelian it follows

K K2 = K K1 for any two arbitrary p -classes. Thus,
1 2

by definition of the Operation 0 in S/p , it fol-

lows K 0K :1: 0K and S/p is abelian.
1 2 2 1

Let KO = {xlxpe}, where e is the idempotent

of 8'. Let ueK and veK. Then ups and voe
O 0

so that (uv) p 9. Therefore uv 2 K0 and we have

KOKO‘C'KO which implies KOOKO = KO; i.e. K0 is an

idempotent element in S/p . Suppose K is an equiva-

lence class mod p and KOKaK. This implies KKQK

and for 1: 8K we have xsz. Using the compatibility

of the congruence p sucessively on x2p x, we have

xmp x for all positive integers m. But there exists

a positive integer k such that xk = e. Hence e p 1

Thus KQK and since both are equiva-so that xe KO. 0

lence classes mod p it follows that K = KO. There-

fore S/p has exactly one idempotent.

1.2 Semigroups of Class (2

Throughout this section S will denote a finite

commutative unipotent semigroup, e its unique idempotent
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element, G its unique maximal subgroup which is the

ideal universally minimal in S (the existence of which

was determined in Theorem 1.3) and finally R will de-

note the set of elements of S not in G along with e;

i.e. R = (S-G)~v{e}. Then S = G~IR where GI~R = e.

we will first determine several necessary condi-

tions for S to have the preperty that all its homomor—

phic images can be imbedded in S. By imposing on S

the added condition that all homomorphic images of S

also have this property we will be able to completely

determine the structure of S.

It is known that every finite commutative group

satisfies these properties. Therefore in the following

discussions we will take S = G~:R, R"G = e and

S 3G (or equivalently, RD {e }).

Definition. A semigroup T is said to have

_prOperty P if and only if T/p can be imbedded in T

for every congruence s) on T.

Definition; A semigroup‘ T with zero element

0 is said to be nilpotent if there exists a positive

integer n>1 such that Tn = {o}. It is said to have

class n, (n:>1), if n is the least positive integer

such that Tn = {o}. If the class of T is n = 2 we

will call T a null semigroup.
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Lemma 1.5 . Every finite unipotent commutative

semigroup T with zero element 0 is nilpotent.

2523:. To show T is nilpotent we need to show

Tm = {O} for some positive integer m. Since T is a

finite unipotent commutative semigroup, then it follows

from Theorem 1.3 that it has a unique maximal subgroup

K which is an ideal universally minimal in T and more—

over Tn = K for some positive integer n. But {0} is

an ideal of T contained in every ideal of T and since

K is universally minimal it follows K = {0}. Therefore

Tn = {O }o

Theorem 1.6 . If S has property P, then

1) R is a finite unipotent commutative subsemi-

group of S with e as its zero element.

2) gr = g for every geG and rsR.

3) R is nilpotent of class q>'1.

2:33;. 1) Since G is a prOper ideal of S we

can form S/G the Rees factor semigroup of S modulo G.

By Lemma 1.4 we have S/G is a finite unipotent commuta-

tive semigroup. Its elements, the equivalence classes

modulo G, are every one-element set {a} where aeS—G

and G itself. The element G in S/G is a zero ele-

ment for s/G and IS/GI s lSl-lGl+1 = [R].

Now, by hypothesis, S/G can be imbedded in S

so there exists subsemigroup T of S with zero element
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z and [T] = [SI -[G|+1. The element 2 is an idem-

potent in S so it follows 2 = e. Also Gr\T = {e}

for e is the identity element of G and the zero

element of T. But TQS= GvR and GnT= {e} implies

T§;R. However [TI = [RI so that T = R.

Therefore we have shown part (1), namely, R is

a finite unipotent commutative subsemigroup of S with

e its zero element.

We have er = e for every reiR since e is the

zero element of B. Let ge G, gyée and let reR.

There exists a positive integer m such that gm = e

and therefore g is the unique inverse element of gm‘1.

On the other hand, gr'eG- fer Gt is an ideal of S

and gm'1(gr) = gmr = or = e. Hence gr is also an

inverse of gm"1 in G so we must have gr = g.

By Lemma 1.5, since R is a finite unipotent

commutative semigroup with zero element, we have that

R is nilpotent of class q) 1.

Lemma 1.7 . If S has property P, then

(1) 31m = Gva and Gan = e for all positive

integers m.

(2) SmZDG for m = 1, 2, ..., (q-1) and Sm = G

for qu‘, where q is the nilpotent class of R.

(3) S/Sm is a nilpotent semigroup of class m,

m = 29 39 090-9 q.
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(4) [(s/sm)n| = [snl-lsm|+1 where n and m

are positive integers such that 1gngmgq.

Iggggf. To verify Sm = G..Rm we apply induction

on m. The decomposition of our finite unipotent commu-

tative semigroup 8, namely S = G~JR and Gr~R = e,

verifies Sm = G~1Rm for m = 1.

By Theorem 1.6, GR = G and consequently GRm = G

for all positive integers m. Assume Sm = GsaRm. Then

Sm+1 = sms = (GuRm)(GuR) = GvaGuGRva+1

=GURmH°

Also Gr~Rm = e since e is the identity element of

G and zero element of R.

Hflso by Theorem 1.6, R is nilpotent. Let q

be its class. We have Sm = G..RT for any positive in—

teger m so that G§;Sm for any positive integer m.

If G = Sn for some natural number n, then it follows,

from Gan = e, that Rn = e. Hence, n_>_q.

We now proceed to show that S/Sm is nilpotent

m

of class ni>1. 8/8 is a finite unipotent commutative

semigroup with zero element; its zero element being the

ideal Sm itself. Lemma 1.5 gives us that s/sm is

nilpotent. Let 3* = S/Sm. Denote its zero element by

0* and the remaining elements by x* = {x}, where

x eS-Sm .-. R-Rm.. Indeed (S*)m = 0* for (s-sm)mgsm.

We next assert that (S*)m—1 £ 0*. Since RZDRZZD...

1

DRm' DRm 3... BBQ = e we can select x e (Rm-1—Rm).
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2

Then x = 11x2...xm_1 where xie‘R-R (i = 1, 2, ..., m-1).

However x*, xi, ..., x;_1 are non-zero elements of S*

and x* = 1:101:50 ... 01514.. Consequently, x* e (8*)!!!-1

and x*,£ 0*w But (8*)m = 0* and (3*)m-1 £ 0* imply

3* is nilpotent of class m.

n

It remains to show that [(S/Sm) I = ISn|—|8m|+1.

By part (3), this equation obviously holds for n = m.

Using an argument similar to the one above, one can

easily note that there is a one-to-one correspondence

. n

between the non-zero elements x* in (S/Sm) and the

n

elements x in Sn- Sm. Hence [(S/Sm) I = [Snl-ISm|+1.

It has been shown, thus far, that if S is to

have property P, it is necessary that R be a nilpotent

semigroup of class q1>1. We now would like to determine

the order of the ideals Rm where m = 2, 3, ..., q-1.

To do this we need to introduce the following concept.

Definition. An element u in S is said to have

a factorization in Sm, (m = 2, 3, ..., q) if and only if

u eSm. Two factorizations of u in Sm, u = x1x2...xm

= y1y2...ym, are said to be distinct if and only if the

sets {x1, x2, ..., xm} and {y1, ..., ym} are unequal.

The number of distinct factorizations of u in Sm will

be denoted by B(u;m).
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Lemma 1.8 . If S has prOperty P, then

(i) IRq"1 I: 2 and (2) [sq'1l = |G|+1 where q is

the nilpotent class of R, q) 2.

23292. By Theorem 1.6, R is nilpotent of class

q~ so that Rq-1 DRq = {e} and consequently [qu1 [22.

Suppose [Rq-1I>’2. We can find at least two distinct

elements in Rq-1 both different from the zero element

e in R. Choose us (Rq-1-{e}) such that B (u;q-1)

is maximal. Let v be any element in (Rq-1-{e}) with

u ,1. v. Clearly S(ugq-1) 2. B(v;q-1)21.

Let us consider that partition of the semigroup

S determined by the disjoint subsets KO = Sq = G,

K = {u,v} and all one element subsets Kx = {x} where

xe:S-(Sq~I{u,v}). Let p be the equivalence relation

induced by this partition. Moreover we can show that

p is a congruence on S. Suppose a;>b, where a and

b are elements in S such that a £ b. Then we must

have both a and b belong to K0 = Sq or both a and

b belong to K = {u,v}. If the former occurs then,

since Sq = G is an ideal of S, it follows xagaxb

for all xe.S. If the latter occurs, we would have

a = u and b = v or a = v and b = u. However

{u,v}§Rq"1§Sqm1 and hence xu and xv belong to Sq

for every xe S. Therefore xug>xv which implies

xaw>xb for every xe S. We have verified that the equiv-

alence relation p induced by the disjoint subsets KO, K
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and the one-element sets Kx = {x} is indeed a congruence.

We form the factor semigroup S/p . Let us de-

note its elements (equivalence classes mod p ) by K0,

K and all Kx = {x} where xeS-(qu {u,v}). S/p is

a finite unipotent commutative semigroup and, since Sq

is an ideal of S, the idempotent KO of S/p is a

zero element of S/p .

We first show that Ks (S/p )q-1. Now ueRq-1-{e}

which implies u = u1u2...u where each “i e R-R2.
q-1

Indeed uie S-(Sq~J{u,v]) so that each of the one-ele-

ment subsets Kfii = {hi} (i = 1, 2, ..., q-1) of s

are non-zero elements of S/p different from the ele-

ment K. However

Ku1Ku2°NKuq_1 = {u1u2...uq_1}= {u}C{u,v}

which implies Ku1‘3Ku2 o°°°<3KPq_1 = K . Hence

Ks (S/p )q’1.

Next we show that (8/9 )q KO. This result

together with Ke:(S/p )q-1 tells us that S/p is

nilpotent of class q. Let At:(S/p )q. Then

A = A10A20...0A Where A18 8/9 (1 =1, 2, 0009 Q).

q

If any A1 = KO we would have A = KO so we may assume

A1 s’xo for all i a 1, 2, ..., q. This implies that

each A1, as a subset of S, is either a one-element

set {x1}, where x1e: S-(qu {u,v}) or the set {u,v}.

In any case, the set product A1A2...Aq must be a subset

of Sqe Consequently, by the definition of the Operation 0
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in S/p~, it follows A = A1 0A2 o... 0Aq = KC and

we have (S/p )q= KO.

Since Ke:(S/p=)q_1, then K has a factoriza-

tion in (S/p )q-1. Let f3(K;q-1) be the number of

distinct factorizations of K in (S/p )q-1. We now

claim that B (u;q-1)+ B(v;q:—1)-<_ B(K;q-1). To show

this we first shall show that distinct factorizations

of both u and v in Rq-1 give rise to distinct

factorizations of K in (S/p )q-1° Suppose

u = x1x2...xq_1 = y1y2...yq_1 are two distinct factori-

zations of u in Rq-1; i.e. the set {x1, x2, ..., xq_1}

and the set {y1, y2, ..., yq_1)' are unequal. New

xie(R-R2) and yie (R-RZ) for i = 1, 2, ..., q-1,

since uezRq-1-{e}. Consequently each of the one-element

subsets of S, Kx1 = {x1}, sz = {x2}, ..., qu_1= {xq_1}3

Ky1 = {y1}, Ky2 = {y2}, ..., qu_1 = {yq_1} is a non-

zero element of 8/9 . Moreover the sets {Kx , ..., Kx }

1 q~1

and {K , ..., K } are unequal. But, from

Y1 yq_1

Kx Kx ...Kx = {x1x2...an1} = {u}<::{u,v}

1 2 q-1

and

Ky1Ky2'°0qu-1 = {y1y2ooqu_1}={u}C{u,v}

it follows K=K 0K 0...0K =K o 0...0K .

x1 x2 xq-1 Y1 Kyz Yq—1

This implies K has two distinct factorizations in

(S/p )q-1. Using the same argument, one can obtain dis-

tinct factorizations for K in (S/p~)q'1 from distinct

factorizations of v in Rq-1. 0n the other hand, since
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u £ v, a factorization of u in HQ”1 and a factori-

zation of v in Rq-1 will give rise to two distinct

factorizations of K in (s/. )q-1. This together with

the above clearly imply that E3(u;q-1)+ 5(vsq-1)S.B(K;q-1).

Up to this point we have shown that S/p is a

nilpotent semigroup of class q and moreover there exists

a non-zero element K of S/p which has a(K;q-1)

Z B(u;q-1)+ B(v;q-1) factorizations in (S/p )q-1'

Since S has prOperty P, then 3/, can be

imbedded in S. Hence there exists a nilpotent subsemi-

group: T of S of class q and in T there is an

element t which has B(K;q-1) factorizations in

Tq-1. But Tr~G = e for e is the zero element of

T and the identity element of G. Hence Tc:R and

t £ e. Therefore t eRq-1-{e}. However t has at least

B (K;q-1) factorizations in HQ"1 and since B(K;q-1)

ZB(u;q-1)+ S(v;q-—1)> B(u;q-1) we have a contradiction

with the choice of u. Hence we must have IRq-1 I: 2.

This proves part (1) of our lemma.

By Lemma 1.7, 3‘1""1 = Gvuq‘1 and en Rq‘"1 = {e}.

Therefore [Sq-1| = |G|+[Rq-1|-1 = [G[+1. This completes

the proof of the lemma.

The condition that S has prOperty P has given

us the conclusion that the subsemigroup R is nilpotent

of class q_>1 and moreover the ideal Rq"1 contains
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exactly one non-zero element. By further imposing on

S the condition that all homomorphic images of S also

have property P we shall show that [Rq-2| = 3, qu-fi = 4,

..., [R2[ = q-1. This result will be used repeatedly in

determining those semigroups S which have property P

and whose homomorphic images have prOperty P.

Definition. Let g: be the collection of finite

commutative unipotent semigroups such that

(1) if S a g, then S has prOperty P and

(2) if S e g, then 0(8) 8 2: for all homomor-

phisms 9 on S.

Lemma1.9. If sec, then R8 {Z and 922:

where G is the unique maximal subgroup of S and R

is the nilpotent subsemigroup of S such that S = G~JR

and Gr\R = {e}.

2339;. Let Se g and let G be its maximal

subgroup with identity element e. Then, by Theorem 1.6,

S = G~aR, Gr~R = e, R1 is the nilpotent subsemigroup of

class q>1 and gr=g for all geG and reR.

Since G is a finite commutative group it follows

G and 6(G), 6 a homomorphism of G, both have prop-

erty 1?. Hence Gags.

Let 6:S—>R be the transformation of S into

R defined by
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x if xe:R

6(X) =

e if xe G

e is indeed single-valued and onto R. Since gr = g

for every ge G and reiR it follows 8 is a homo-

morphism of S onto R. Since Se CZ we have Re(: .

Theorem 1.10 . If Sec , then

1) ,Rq-m, =m+1 for m: 1, 2, ..., q-2 and

2) I sq'ml= lG|+m for m = 1, 2, ..., q-2, where

q is the nilpotent class of R.

3:23;. We have [sq‘ml = [Gqu_m| = |G[+[Rq-m|-1.

Hence to show (2) we need only show [Rg-ml = m+1. By

Lemma 1.9, Se C implies Re C . Therefore it suffices

to prove this result for finite nilpotent unipotent com-

mutative semigroups Rezc . Suppose the statement of the

theorem is false. Let R e C be a minimal ecunterex- .

ample. Let the nilpotent class of R be q) 2. By

Lemma 1.8, [Rq-JI = 2 since R has property P. There-

fore there exists a positive integer m, where 1< m_<_ q—2,

such that [Rq—n, = n+1 for n = 1, 2, ..., m-t but

[Rq-ml £ n+1. Since Rq-mZDRq-(m-1), then

qu-m1> qu-(m-1)l = m. Consequently, 'Rq-n' = n+1 for

n = 1, 2, ..., m—1 but qu-mI> m+1.

Consider the Rees factor semigroup R/Rq-1. By

Lemma 1.7 we know that it is nilpotent of class q-1 and

moreover by (4) of this same lemma we have
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[R/Rq'1l = [RI-2+1 = [RI-1,

1(R/Rq-1)q-nl = [Rq-nl-2+1 = n for n = 2, ..., m—1

and r(R/Bq'1)q"m[ = [Rq-ml—2+1 > m.

However R/Rq"1e C since it is a homomorphic

image of R. Therefore R/Rq'1 is also a counterex-

ample to our desired result which has order less than

the order of R. This contradicts the minimality of

R so our assumption is not valid.

Corollary 1.11 . If Se $3 and q is the nil-

potent class of the subsemigroup R of S, then

[s/sq'1l = [RI-1 and [(s/sq‘1)q-m| = m

where m = 1, 2, ..., q—2.

2322;. By Theorem 1.10 we have lSq“1[ = |Gl+1

and I sq-q‘ = IGl+m for m = 2, 3, ..., q-2. Then

I s/sq‘41 = Isl-lsq‘1|+1 = ([G|+|R[-1)-(|G[+1)+1 = [RI-1.

Also by Lemma 1.7 we have

m

1(s/sq-‘>“P" l = [Sqml- lSq"1l+11 -- m.

where m = 1, 2, ..., qu2.

Theorem 1.12 . If s e C’ and if q is the

nilpotent class of the subsemigroup R, then 1< qu4.

23931;. Suppose qZ 5. R being nilpotent of

class qz 5 gives the following chain of ideals

1DRq = {e}.

2, IRq'2[ = 3 and

R DRq-3 BBQ-23 Rq’

By Theorem 1.10 it follows |Rq-1[
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[Rq-31 = 4. Therefore we can choose non-zero distinct

elements v, u, and w from R—{e} such that

1-Rq = {v}, unz-Rq-1 % {u} and

Rq‘3—Bq‘2 = {w}.

That is, Rq = {e}, Rq-1 = {e,v}, qu2 = {e,u,v}, and

RQ-3

Rq‘

= {e,w,u,v}.

Vg‘Rq_1-Rq: implies v = r1r2...r where
q-1

ritzR-R2 for i = 1, 2, ..., q-1. Consider the (q-l)

-94 _

elements am = II ri where m = 1, 2, ..., q-1. First

‘In

of all. each a;" is an element of Rq-z. Since v = r a

and since ve‘Rq-1-Rq it follows;that aIn (m = 1, 2,

..., q-1) is not an element of Rq-1; for otherwise

v = rmamezR°Rq-1 = Rq: which cannot happen. Therefore

ame:Rq"'2-Rq-1 for all m = 1, 2, ..., q-1. Hence

am = u for m = 1, 2, ..., q-1 so that v = rmu,

$4

m = 1, 2, .099 q-19 and u a ll r1 for eaCh m = 192,000,

i=1

q-l. However 1‘”

3-1 3-1

u =i.|1,|i.£i = rn an r1 = rn'an,m (n y! m)

Clearly an9meRq-3 for all“?! and m, with n ,4 m,

n = 19 29 .909 q*1 and m = 19 2, one, Q‘1o Since

u = rnan m and since us qu2-Rq'”1 it follows
9

an meRq"3—qu2 for the above possible values of n and

9

m. Therefore an9m = w for‘ n.£ m, n = 1, 2, ..., q-1

and m = 1, 2, ..., q-1. We have thus shown that

1-1 1 1 3-.

v=_]'T-ri = rmu , u='T[_ri = rnw and w=._[Tri

'1... 1:1, in. 1“: mm}

where m = 1, 2, ..., q~1 and n = 1, 2, ..., q-1.
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We show further that

q-1 q-1rq-1

V = r1 = r2 = .00 = rq~1

q-2 q-2 rq-2
(1201) u: r1 = r2 = 0.. = I‘q_1

w = ri"= .3-3 = -.-= .33:

First of all, u = r1w = r1CTT'ri) = r1 II r1. By finite

181 1'2.

induction we can derive

11.1.-

(12.2) u = rk(17:ri ) for k: 1, 2, ..., q-3.

We have already shown the truth of (12. 2) for k = 2.

— 1-141

Suppose u = rk-ITJ'ri. Now rk1'TJ'r181R:3 and since

(rk‘II:Iri )rq k = rk‘1II r1:

a-f'ki

it followsrk-ITT‘r e R‘1"3-R‘-1'2 . This implies

1:3

w = rk"1 r and

r1 i=1 114:4 1*‘1

u = r w = r1(rk"T1T-ri)=rkT17r .

1 1.2, 1 1:2. 1

Formula (12.2) when k: q-3 yields u = r? r2.

Therefore rg-3ezRq-3—Rq—2 which implies w = rg-j.

This in turn implies u = r1w = r%-2 and v = r1u = rg-1.

Since R is commutative then by a mere relabeling we

have certainly verified (12.1).

We next show that r1 = r2 = ... = r Suppose

q-1'

two of the ri are distinct; say r1 £ r2. Consider the

Rees factor semigroup S/Sqf1. It is a nilpotent semi-

group of class q-1, I S/Sq‘1l = [RI-1 and moreover, by

Corollary 1.11 we have

|(s/sq‘5q"1| = 1, |(s/sq‘1)q'2| = 2 and

I (s/sq'1)q-3l = 3.
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Since s/sq"1 can be imbedded in 8, there exists

a subsemigroup T of S such that

(12.3) T is nilpotent of class q-1,

(12.4) ITI = [RI-1, and

(12.5) [Tq-1I = 1, ITq-ZI = 2 and [Tq"3l = 3.

Actually T is a subsemigroup of R; for e is the zero

element of T and hence Tr~G = e. Condition (12.5)

implies we can choose two distinct elements '3 and t?

in T such that Tq'2.-.Tq"'1 = {t} and Tq"3-.Tq‘2 = {t*}.

Moreover t3 = e for all ts T.. Also .3: Tq-2C2Rq_2

= {e, u, v}; hence we have either .3 = u or .3 = v.

Since we are assuming r1 # r2 and since ITI = [RI-1

we have either r12 T or rzezT. Therefore either

r$-2e Tq"2 or rg-zequ_2.' But u = rqfl'2 = rg-Z, so

we will always have us Tq-2. However uI: Rq"1 which

implies ut Tq-1. Hence ue Tq"'2-Tq"'1 which yields

u =.E° 0n the other hand, since either r16 T or r28 T

we should have either e = rm; = r1u or e = r23 = r2u.

But we know v = r1u = r2u and hence we have our con-

tradiction. Consequently we have r1 = r2 = ... = rq_1

so that

(12.6) v = r1 = r u, 11"-

Our next step is to show that u = r%‘2 is the

only factorization of u in Rq'z. That is, if

2

u = S182...8q_2, where sis RuR , is a factorization
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of u in Rq-2’ then we shall show that 81 = 82 = ...

= s = r1. Assume at least one of the above si £ r1;
q-2

say 81 £ r1.

2
We have u — 8182...8q_2, where 81 ER-R , and

81 £ r1. The elements =II si, (m = 1, 2, ..., q-2),

3:1

are elements of Rq'3. Moreover u = s b for
m m’

1 it followsm = 1, 2, o o e 9 (1-2, and Since 11 8 Rq-2~Rq-

meRq'3-Rq'2 for m = 1, 2, ..., q-2. Therefore

w = bm for m = 1, 2, ..., q-2. However

51W = 81b = S 1:I::I18 = S182...8q_2 = u

and

1‘3

11 = 81W = 81 II 8 = S I I S o

11.1 11:2 1

Using finite induction in the same manner as

employed in formula (12.2), we obtain

14-1

(1297) u = 811' I 51, k =1; 29 one, (1'30

22—

For k = q-3 in (12.7), we find that u = s3‘3s2. Hence

s?"3 is an element of R‘1"3-Rq'2 so that w = s%'3.

This implies u s w = sq'2 and v s r1u = r1(s1w)
1 1

_ q-1
111—81 0

Again we consider the Rees factor semigroup

= 81(r1V) = s

S/Sq'1. As before we have the existence of a subsemi-

group; T of R which has the prOperties (12.3), (12.4)

and (12.5). Note that r1 is not in T; for otherwise

v = rg'1e Tq"1 = {e} which is impossible. Since 31 £ r1,

r1¢ T and I TI = IRI-1, it follows 818 T. But this

is certainly impossible for
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V 2 8511-18 Tq_1 = (61%»

Therefore s1 = 52 = ... = sq_2 = r1 which gives

u = r%-2 is the only factorization of u in Rq-Z.

The above result gives us that w = rq"3 is

the only factorization of w in Rq-B; for suppose

w = 8182...Sq_3, where sis R—Rz. Then

2 1
and r1(s1s2...sq_3)e:Rq- -Rq_ . It follows from the

unique factorization of u in Fig"2 that 81 = s2

= ... = sq_3 = r1. Hence w = rq”3 is the only fac-

torization of w in Rq_3.

Up to this point our arguments have shown that

if Se 2; and C125. then we must have

v = rg-I = r1u, where Rq-1-Rq = {v},

(12.8) u rg-2 = r1w, where Rq-2_Rq-1= {u} ,

w = r?'3, where Rq“3-Rq“2= {w},

u = rqm2 is the only factorization of u in HQ"2 and

w = r3-3 is the only factorization of w in Rq_3. We

will proceed to show that this situation cannot occur so

that our assumption that S e I; and q2 5 is false.

We again consider the Rees factor semigroup

s/sq‘1. As before, it is nilpotent of class q-1,‘

IS/sq“l = [RI-1. [(8/sq‘1)q’zl = 2 and [(s/sq“)q"3I = 3.

We therefore know that the sets

(s/s‘l")‘1'2-(8/8‘1"‘>q'1 and (s/sq‘1)q‘3- (s/sq‘1)q"2
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are one-element sets. It will help us to know exactly

what these elements are and also the manner in.which

they are factored in S/Sq'1. The elements of S/Sq"1

consist of the zero element KO = Sq”1 and all one-

element sets Kr = {r} where rezR-Rq‘1. Therefore

Ku = {u}, Kw = {w} and Kr1 = {r1} are all non-zero

and distinct elements of S/Sq-I. However u = rg-Z

and w = rg-B imply

-2
-2 -1 q

Ku=Kr10Kr1oooooKr1=(KI-1)q E(S/Sq )

and

<K.,>q-3 e<s/sq-1)q‘3.

2 andI(S/Sq'1)q'3l = 3,

KW = Kr1OKr1o 0000Kr1

Moreover, from I(S/Sq'1)q_2I

it follows

(s/sq-1)q'2.(s/’s<1-1)q"1 = {K11} and

(S/SC1-1)q'3-(s/s<l-1)‘1’2 = {Kw}o

S cg: implies S/Sq-1 can be imbedded in S so

there exists a subsemigroup T of R such that condi-

tions (12.3), (12.4) and (12.5) are satisfied. From

condition (12.5), we have the existence of two distinct

elements _t_ and t* in m such that Tq-Z-Tq-1={_t}

and Tq'B-Tq-2 = {t*}. But since .3 and t* are the.

isomorphic images of, Rh and Kw, in S/Sq'"1 reSpec-

tively and since Ku = K%:2 and KW = Kg:3, it follows

we have the further condition;

(12.9) there exists an element t1e.T such

that j = t??? t*'= tg-B and thus 3 = t1t*. Also
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t°_t_ = e for every teT.

Since teTq-ZgRq-Z = {e, u, v} we have either

.3 = u or t]: v. We show that neither situation is

possible giving us our desired contradiction.

Case 1: Suppose .2 = v. Now t* s Tq-3§;Rq’3

= (e, v, u, w}. But .3 i t* so that t* u or t* = w.

If t* = u, then t1t* =.£ implies t1u = v. But

v = t1u = t1rq“2 = (t1rg-3)r1. This gives

t1r(111"3ts‘que-Rq-1 so that u = t1rg-3. But r

the only factorization of u in Rq-2 so that r1 = t1.

q-2 is

This would imply u = t* = t%'3 = rq"3 = w which is

not possible. Hence t* = w. But w = r?"3 is the

only factorization of w in Rq-3 so that t1 = r1.

q-2E Tq-Z 1

Hence r12 T and thus u = r . But u e Rq-Z-Rq—

implies u e Tq-Z—an1 = {t}. This again is impossible

since ‘3 = v. ‘

Case 2: Suppose 5,: u. Now '3 = t?_2 so that

u = tg-Ze Rq_2. However r%"2 is the only factorization

of u in HQ”2 so we must have t1 = r1. Therefore

r18 T and then, by condition (12.9), it follows

v = r1u = r13 = e which again is impossible.

We shall now describe three classes of finite

unipotent commutative semigroups in which the structure

of these semigroups can be completely determined. We

will show later that these three types of semigroups are



31

the only finite unipotent commutative semigroups in the

class (I: .

Let G be any finite commutative group and let

R2 be a finite unipotent commutative null semigroup

(i.e. nilpotent class 2). Identify the identity element

of G with the zero element of R2; denote this idem-

potent by e. Define gr = g for every gtaG and

r2112. Let $2 = GvR2 where GAR2 = {e}. Then 82

is a finite unipotent commutative semigroup. For a given

finite commutative group G, the structure of 82 is

completely determined. Let g: a be the collection of

those finite unipotent commutative semigroups of the '

form S2.

Let R3 be a finite nilpotent unipotent commu-

tative semigroup of class 3 such that

14.1) [11.25]: 2 and

14.2) R3 has a nilpotent subsemigroup N of

class 2 with INI = IR; -1.

Identify the zero element of R3 with the iden-

tity of G. Let e denote this idempotent. Define

gr = g for every ge G and re R3. Let $3 = GvR3

where Gn‘R3 = e. Then S3

mutative semigroup. Again its structure is completely

is a finite unipotent com-

determined for a given finite commutative group G. Let C3

be the collection of those finite unipotent commutative

semigroups of form S We can actually give the30
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multiplication table for semigroups S3 2 C3. Let

G = {8, $1, .009 $11}, R3 = {8, r19 coo, rm, V} and

12% = {e,v} :

S3 e g1. . . gnI r1 r2. . rn. . rm v

3 e e o o e o o e e

Cayley TableI

g1 81 81° . 81o . g1 81

. for I . . . . .

0 group G :0 o o o o

8n 8n gn° ' gn' ' gn gn

""'I _______ |_ ___________
r1Ie 81. o o gnle e o o- o o e 9

r2 3 810 o o 811:3 e o- o_ o o e 3

I I Z Z I: Z 3 I I
O O C 0 I. C O O o

rn 9 $1. 9 o gnl_ _ o o __ o o- e

O 0 O O I. C O C 0

. I ... Z '2 I I I :
rm e gs. . . ghl e e . .._ o . e e

l

v 9 $10 0 o 811' e e o o e o o e e

I 
The elements to be placed in the blank spaces occurring

in the row and column of the element rn are to be any

element of Hg = {e, vfl} such that associativity and

commutativity hold. The subsemigroup N of R3 is

N: R3-{rn}o

Let R4. be a finite nilpotent unipotent commuta-

tive semigroup of class 4 such that

2

15.1) [124]: 3 and [R2]: 2 ,

15.2) Let 'ue Ri-RZ and. let v 8 RE- R1.
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There exists exactly one element r1ezR4— RE such that

v = r? and u = r?. Moreover u = r? is the only

factorization of u in RE,

15.5) r-r1gRZ for every reR4 with r 74 r1,

15.4) there is exactly one element rOE:R4- Bi

where r0 # r1, v = rs and rrO is the zero element

of R for all reR—{ro, r1}.

15.5) M = R4- {r0, r1} is a null subsemigroup

of R4.

Identify the zero element of R4 with the iden-

tity element of G; denote this idempotent by e. De-

fine gr = g for every geG and r 8R4. Let

S4 = G~;R4 with GAR4 = e. Then S4 is a finite

unipotent commutative semigroup and its structure, for

a given commutative group G, is also completely de-

termined. Let Z: 4. be the collection of those finite

unipotent commutative semigroups of form S4. Again we

can actually give the Cayley multiplication table for

S48 fig. We do this below. Let G ={ e, g1,-..., gm},

R4={ e, v, u, r0, r1, ..., rm}, Bi ={ e, v, u},

3
R4 {e, v} and R: = {e};
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Cayley Tablel

8 8 8 8 . . 8 8 8
.1 for 1-1 .1 01 01 .1 .1

. group G I : . . : Z :

8n I 8n 8n 8no ' 8n 8n gn

_._._ ——————— r— ————————————

r0 8 $10 a o gn[v _ e o o e e 9

r1 e 310 o o gnI_ u _ o o __ V e

lr2 e g1. . . gn e _, e . . e e e

r e e e . . e e e

 
The elements to be placed in the blank spaces occurring

in the row and column for the elements rO and r1

are to be any element of R2 = {e, v]' such that the

associative and commutative laws hold.

We shall first show that the classes C3, $3

and 2;. are subclasses of the class é. According to

the next lemma it suffices to show that R2, R3 and

R4 are members of 3;.

Lemma 1.13 . Let R be a finite unipotent nil-

potent commutative semigroup and let G be a finite

commutative group whose identity element is identified
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with the zero element of R where gr = g for every

ggG and mail. If Re If then S=GuRe§§ .

'Egggg. Let A be a homomorphism of S onto 8*.

Then xIR = R* is a finite unipotent nilpotent commu-

tative semigroup; its zero element is e* = k(e) where

e is the zero element of R. Also kIG = G* is a finite

commutative group with identity element e* = x(e).

Since R: t; and Ge}: it follows R*e Q and on. I:.

But 8* = R*u G*, R*n G* ={e*} and g*r* = g* for every

g*e G* and r*s R? Hence 3* is a finite unipotent

commutative semigroup. Since R* and G* can be

imbedded in R and G respectively we have 8* can

be imbedded in S. Hence S has property P.

Now R* and G* have property P so that one can

apply the same argument on S* as wasapplied on S to

deduce that 8* has prOperty 1’. Therefore 38 $2.

Theorem 1.14 . $1“; I: and ((3.93;

M. Let R2 6 $2. A homomorphic image of a

finite unipotent nilpotent commutative semigroup of

class 2 is either a trivial semigroup or is one of the

same type. Hence R2: 6. By Lemma 1.13, it follows

32 21;. Hence F°EI:"

Let S3 = GVR3€ $3. We need only show R38 C.

Now R; = {e} and Rg-{e} = {u}. Also ru = e for every

r8 113.. Let u=u1u2, where uieR3-{e} and i=1, 2.
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However INI = IR3I -1 implies there is exactly one

element aERB—N. 111 and 112 do not both belong to N;

for otherwise u = u1u2 = e which is not possible.

Therefore either u1 = a or u2 = a. We have shown

that whenever u = u1u2, where uie R3-Rg, then 111 = a

or u2 = a.

Let p be a congruence on B3 and consider

R3/p"- . We shall show R3/p belongs to the class C .

Let X8 = {xe R3pr>e}. K1, K2, ..., Km be the equiv-

alence classes of R3 mod 1). K8 is the zero element

of RB/p .

Case 1. Suppose aeKe. Then ap e implies

u1apu1e and hence upe. Therefore us: Ke. Since a

does not belong to Ki (1 = 1, 2, ..., m) it follows

each class Ki (1 = 1, 2, ..., m), considered as a sub-

set of R3, is actually a subset of the subsemigroup N.

But N2 = {s} so that KinC;NN a {e} for i = 1, ..., m

and j = 1, ..m, m. Thus KiOKJ = Ke for i = 1, ..., m

and j = 1, ..., m. From each class Ki’ 1 = 1, ..., m,

choose an element bi“ Let T = {9, b1, ..., bm}. Every

b is an element of N so it follows bibj= e for
i

i = 1, ..., m and j = 1, ..., m. Consequently T is

a subsemigroup of R3. Define the transformation

a : R3/p—-> T as follows:

a(Ke) = e and 0(Ki) = bi for i = 1, 2, ..., m.

c is an isomorphism of RB/p onto T so we have Ra/p
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imbedded in R3. Hence RB/p has prOperty P.

Now T is nilpotent of class 2 and therefore

R3/p is nilpotent of class 2. But we already know

such finite unipotent nilpotent commutative semigroups

have prOperty P. Hence 33/p has prOperty P. Since

R3 and RB/p have prOperty P, it follows R3 5 If.

Case 2. Suppose a does not belong to Ke but

uezKe. Let ae.K . Then each equivalence class K1

(i = 2, 3. ..., m), considered as a subset of R

19

3, is

actually a subset of the subsemigroup N. Therefore

KiOKJ = K6 for i = 29 3, 0099 m and J: 29 39 0.0 m.-

Moreover K1<>K1 = Ke for i = 1, 2, ..., m; for let

r1r2¢.;K1Ki where r1.c;K1 and r2eKi. Since

2 _
r1r22R3 — {e, u} and since ueKe, it follows r1r2p e.

Therefore K K QK so that K OK = K , for

1 i e 1 i e

i = 1, 2, ..., m. The elements of R3/p have the fol-

lowing products:

Ke 0Ki = K6 and KiOKj = Ke for all i and 3.

From each equivalence class K i = 2, 3, .... m,
19

choose an element a1. Let T = {e, u, a2, ..., am}.

Now a a = e for i = 2, ..., m and j = 2, ..., m since

i 3

they all are elements of N. Moreover uai = e for all

i = 2, ..., m. Therefore T is a subsemigroup of R3.

Define the transformation a : R3,6-—> T as follows:

a(Ke) = e, a(K1) = u and a(Ki) = a1 for i = 2,

00., mo
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a‘ is an isomorphism of R3/p onto T so that R3

has prOperty P.

Moreover R3/p has property P for it also is

nilpotent of class 2. Thus we have R3 3 ?.

Case 5. Suppose both a and u are not elements

of Ke’ If apu, then 11131311111 which implies up 6.

This cannot happen so that a and u belong to distinct

equivalence classes. Let agK1 and us K2. Now each

Ki’ 1 = 2, 3, ..., m, are actually subsets of N.

Therefore Ki‘DKj = Ke for i = 2, ..., m and j = 2,

..., m. A‘slso K1oK2 = Ke for u£K2 and m: e for

every rs R3. However either K1 oKj = Ke or K1on= K2

for 3 £ 2% This follows from the fact that either

ar = e or ar = u for rsRB. The products in R3/p are

KeoKi = Ke for i =1, ..., m, KiOKj 2 K6 for 2_<_ igm

e e

K2 for 3.42.

K10 K2 = K and either K1 oKj = K or

K1 oKJ =

From each class Kj’ j = 3, 4, ..., m, choose one ele-

.ment aj. Let T = {e, a, u, a3, a4, ..., am}. Since

T2913; = {e, u}, it follows T is a subsemigroup of

R3. Define meB/p*—) T as follows:

a(Ke) = e, a(K1) = a, a(K2) = u, c(Ki) = a1 for

i = 3. 4, ..., m.

One can check that a is an isomorphism of R3/pl onto

T. Hence R3 has property P.

By studying the multiplication in R3/p one can
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determine that R3/p will be either nilpotent of class

2 or will be a semigroup of the same type as R3. Hence

RB/p has property P.

These cases all yield the same result; namely

R3 51;. By Lemma 1.15, it follows 33g; and hence

(Saga:

Theorem 1.15 . C.; {2.

M. Let R42 (:4 and let p be a congruence

on R4 and consider R4/p. Since R4 6 (F. it has prOp-

erties (15.1) thru (15.5) introduced earlier. Let e, v,

u, r1 and r0 be the elements of R4 as defined in

properties (15.1) thru (15.5). The equivalence classes

mod p) will be denoted by Ke’ K1, K2, ..., Km, where

Ke = {x 8114pr e}. We again need to consider several

cases.

Case 1. Suppose r18 Ke' Then rip e and

r?¢>e so that u and v both belong to Ke. Conse-

quently, the equivalence class Ke contains

2
4 = {e, v, u}. Hence Kitin = Ke for all i = 1, ..., m

and j = 1, ..., m. That is, R4/p is nilpotent of

R

class 2. Now IKe|_>_4 so that mg |R4|-4. But

[MI = [R4I-2 where M = R4-{ro,r1}. Hence for each

equivalence class Ki (1 = 1, ...,m) we can select

an element a1,

set M. Let T = {e, a1, ..., am}. PrOperty 15.5 gives

where a1 £ aj if 1 £ 3, from the
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aiaj = e for all i and 3. Therefore T is a sub-

semigroup of R4. Define a :R4/p-9 T by a(Ke) = e

and 0(K1) = a1 for i = 1, ..., m. a is an isomor-

phism of H4/p= onto T. Therefore R4 has property P.

Since R4/p is nilpotent of class 2, it follows

R4/p has property P. Thus R4 s I:.

Case 2. Suppose r1 does not belong to Ke but

ueKe. ueKe implies r1upr1e so that vpe. Hence

vs Ke. Therefore the set Ke contains the ideal

R = {e, v, u}, and, as in the above case, we must have

K

“
#
N

0KJ = K3, where i = 1, ..., m and j = 1, ..., m.

But [KeI_>_5 so that m$IR4I-5. Hence m<|MI and

consequently for each equivalence class Ki (1 = 1, 2,

..., m) we can select an element a1, with ai # aJ

when 1 £ 3, from the set M. Let T = {e, a1, a2, ...,am}.

T is a subsemigroup of R4, by property (15.5). Define

a. : R4/p—) T by 0-(Ke) z: e and a(Ki) = a1 for

i = 1, 2, ..., m. a is an isomorphism of R4/p onto

T and we conclude that R4 has property P.

As in the previous case, R4/p is nilpotent of

class 2 so that R4/p has prOperty P.

and u do not belong to

Ke but veKe. Suppose r on. Then 1‘2

1 1

implies uf>v. But this is impossible so that r1 and

u' belong to distinct equivalence classes. Let r1ezK1

and ue:K2. Since r? = u it follows K10K1 = K2.

Case 5. Suppose r1

p r1u which
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On the other hand KioKj = Ke except when i = j = 1.

This follows from the fact that KiKJg;RZ§;Ke. Again

mgIMI so for each equivalence class K1, 1 = 5, ..., m,

we can select an element a1 (a1 £ aJ if 1 £ 3) from

the set M. Let T = {e, r0, v, a3, a4, ..., am}. T

is a subsemigroup. Define a : R4/p —> T by (1(Ke) = e,

0(K1) = r0, 0(K2) = v and C(Ki) e ai for i = 5,..., m.

One can check to see that a is an isomorphism of Rm/p

onto T. Therefore R4 has property P.

By studying the multiplication in R¢/p, one can

determine that it is a nilpotent semigroup of class 5

and moreover of the same type as R3. That is, it sat-

isfies properties (14.1) and (14.2). Hence R4/p .has

property P.

Case 4. Suppose r1, u and v do not belong

to Ke‘ Then we must have r1, u and v belong to

three distinct p—classes; say r18 K1, uEIK2 and

veKB. Moreover r0 belongs to some p-class distinct

from K1, K2 and K3. For each equivalence class Ki’

where i = 5, 6, ..., m, we select an element a1

(a1 £ 33 if 1 fi 3) from the set (M—{u,v}). Let

T = {e, r0, r1, u, v, a5, a6, ..., am]. T is a sub-

semigroup of R4 since T2gRi QT. Define a 2R4/p -->T

as follows:

cure)

(1(K4) = r0 and a(Ki) = a1 for i = 5, 6, ..., m.

e! “(K1) = r19 “(K2) = u9 0(K3) = V,
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a can be checked to show it is an isomorphism of R4/p

onto T. Therefore R4 has property P.

The multiplication in T shows that R4/p is a

semigroup of the same type as R4. That is, it has

properties (15.1) thru (15.5). Hence R4/p has prOp-

erty P.

In each of the above cases, we have shown that if

842;“ then 1245;. Hence S46 C and we have

CGQC.

We are now ready to prove the main result of this

section. That is, we shall now characterize those finite

unipotent commutative semigroups S where Se;¢ .

Theorem 1.16. S; C if and only if either

1) S is a finite commutative group,

2) Se:(fg,

3) SE $3, or

4) 88 (PM

Iggggg. If S is a finite commutative group then

SE C.. Theorem 1.14 and Theorem 1.15 show that when S

is amember of the class C2, C3, or ('24., then

S e(;.

Suppose S s(: and S is not a group. Let s

be its idempotent, let G be its maximal group and let

R = (S-G)~a{e}. By Theorem 1.6, R is a finite unipotent
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nilpotent commutative subsemigroup of S of class q) 1

and gr = g for every gs G and reR. Moreover, from

Theorem 1.12, it follows 1< qg 4. We now determine the

structure of S when q = 2, q = 5 and q = 4.

Case 1. If q = 2, then R is nilpotent of

class 2 and clearly S a $3.

Case 2. Suppose q = 5. By Theorem 1.10, it fol-

lows ISZI = IGI+1 and IR2I = 2. Consider the Rees

factor semigroup S/S2. It is nilpotent of class 2 and,

from Corollary 1.11, it follows IS/S2I = [3}1. But

S a g implies 8/82 can be imbedded in S. Hence there

exists a subsemigroup N of S such that N is nil-

potent of class 2, e is the zero element of N and

INI = [RI-1. But NrsG = e so that NC;R. Therefore

R is a nilpotent unipotent commutative semigroup of

class 5 such that |R2I = 2 and there is a nilpotent

subsemigroup N of class 2 with INI = [RI-1. There-

fore R has the preperties (14.1) and (14.2) so that

3.;CT..

Case 5. Suppose q = 4. By Theorem 1.10, it fol-

lows IRZI = 5 and IR3I = 2. We proceed to show that

R satisfies (15.2), (15.3). (15.4) and (15.5). Let

32- R3 = {u} and 33—34 {v}: that is, 32 = {e, v, u}

and R3 = {e, v}.

veR3 implies v = r1r2r3 where rieR—R2. Then

2 5
r r2, r1r3 and r2r3 are non-zero elements of R - R

1
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so it follows u = r1r2 = r1r3 = r2r3. Consequently,

v = r1u = r1r$ = r?. Likewise v = r3 = r; and we have

_ 3 _ 3 _ 5 _ 2 _ 2 _ 2

v — r1 _ r2 _ 3 and u _ r1 _ r2 — r3.

We now show that r1 = r2 = r3. Suppose two of

these elements r1 are distinct; say r1 # r2. Con—

sider the Rees factor semigroup S/SB. It is nilpotent

of class 3 and by Corollary 1.11, IS/S3I = [RI-1 and

|'(s/s3)2| = 2. Since 3. 2; it follows that 5/33

can be imbedded in S. Thus there is a nilpotent sub-

semigroup T of class 5 in S with

(16.1) ITI = [RI-1,

(16.2) IT2I = 2.

Actually T is a subsemigroup of R. By (16.2), there

is an element t*e T with T2-T3 = {t*}. From T3 = {e}

2 it follows tvt* = e for all ta T. More-

over t*s T2§;R2 = {e, v, u} implies t* = u or t* = v.

and t*s T

We are assuming r1 # r2 so it follows, from IT] = [RI-1,

that either r18 T or r28 T. Hence either rfie T2 or

2 2 2

r2: T . Since u = r1 = rg then we must always have

u 8T2. But 'u¢ T3 which gives us us T2-T3. Hence

u = t*.

On the other hand, since either r15 T or r25:T

we have either e = r1t* = r1u = v or e = r2t* = r2u = v.

This indeed is impossible so that our assumption is false.

Hence r1 = r2 = r3 which implies v = r? and u = r?.

Next we show that u = r2 is the only factorization1
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of u in R2. That is, if u = s1s2, where sis R-R2,

is a factorization of u in R2, then we show that

81 = 32 = r1. Assume that at least one of the 31 £ r1;

say 81 £ r1. Now v = r1u = r1s1s2 implies r1s1, r1s2

1s2 are elements of R2-R3. Hence

u=r1s1=r

and s

_ _ _ 2
1 and v _ s1u — s1(r1s1) — r181.

But v = r1s§ feRZ-R3 so that u = s?

v = 8?. Again we consider the Rees factor semigroup

8/83. As before we have the existence of a semigroup

82 = 8182

implies s and

T of R which is nilpotent of class 5 and satisfies

properties (16.1) and (16.2). Note that r14 T; for

otherwise v'= r?e T3: {e}. Therefore 815 T since

ITI = [RI-1 and s1 # r1. But again we have a contra-

diction since vI= s?e:T3 = {e}. Thus u = r? is the

only factorization of u in T2. We have just shown

that R has property (15.2).

Since rr1 £ u unless r = r1, it follows

3 for every rgR with r;ér1. Thisr~r1g {e, v} = R

shows that R has property (15.5)

We proceed to show that R has property (15.4).

Again we consider 8/8}. We know [(8/83)2I = 2 so

that the set

(8/83)2- (8/83)3

is a one-element set. It will help us to know exactly

the element in this set and how it is factored in 8/83.

The elements of 8/83 are the zero element Ko 2 S3
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and all one-element sets Kr =-{r} where re:R-R3.

Hence Kt = {u} and K1". = {r1} are elements of 8/83.

Since u — r2 it foll - K <>K (S/SB)2
- 1 ows Ku — r1 1W e .

2

r

in (S/S3) since u = r

Moreover Ku = K is the only factorization of Ku

2
1 is the only factorization

of u in R2. Therefore

<s/s3>2- <s/s3>3 = {Kn}.

Since s/s3 can be imbedded in s, it follows

there exists a nilpotent subsemigroup T of class 5

in R which satisfies conditions (16.1) and (16.2).

Condition (16.2) gives the existence of an element t*e

with T2-T3 = {t*}. Moreover, since t* is the isomor-

phic image of Ku’ it follows there exists tO.sT with

2 2
i = * =

t to. Also t tO

t* in T2.

is the only factorization of

From t*e T2g;R2 = {e, u, v}, it follows t* = u

or t* = v. If t* = u, then t0 = r1 for r? is the

3
only factorization of u in R2. Then v = r12 T3 = {e}

which clearly is not possible. Therefore t* = v so

that v = t8 and this is the only factorization of v

2
in T . But r14 T so that T = R-{r1}. Hence rtO = e

for all re:R-{t0, r1}. We just have proven property

(15.4) holds in R by taking r0 = to.

Let M = R-{r1, r0}. Let a and b be elements

of M. The fact that r? is the only factorization of

u in R2 shows that ab = e or ab = v. Since a # r1

T
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and b # r1, it follows both a and b belong to T.

But then v # ab for r3 is the only factorization of

v in T2. Hence ab = e for every a and b in M.

Therefore M is nilpotent of class 2 and we have shown

R has property (15.5).

Since R satisfies properties (15.1) thru (15.5)

it follows S a C4,.

Theorem 1.16 completely characterizes those finite

unipotent commutative semigroups which have prOperty P

and whose homomorphic images also have prOperty P. In

our above results we did not need that all homomorphic

images of S also have prOperty P, but only those homo-

morphic images of the form S/Sk have prOperty P. It

is still an Open question as to whether this condition

is also necessary.



Chapter 2

Finite Commutative Semigroups of Class 3V

The semigroups which.will be discussed in this

chapter are finite commutative bands and finite commu-

tative semigroups which are unions of groups. For such

semigroups S we will again impose the prOperty P

(recall that S has property P if and only if S/p

can be imbedded in S for all congruences p in S).

We will try to determine the fine structure for the

above mentioned semigroups S which have prOperty P

and whose homomorphic images also have prOperty P.

2.1 Certain Preperties of Finite Semilattices

In this section we will define a semilattice

(introduced by Klein-Barman [6]) and deve10p several

basic prOperties.

Let E be a finite commutative band. Recall

that a band is a semigroup every element of which is

idempotent. Consider the relation. g on the band E

defined by e$,f (e, f, in E) if and only if

ef = fe = e. If egf we say that e is under f

and that f is over e. The relation .3 on E is a

48
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partial ordering of E. That is, g is a reflexive,

antisymmetric and transitive relation on E. To see

that g is a partial ordering on E, let e, f, g e E.

(1) 62 = e and hence as e. (2) If eg f and fg e,

then of = fe = e and fa = ef = f, consequently e = f.

(5) If egf and fgg, then ef=fe==e and

fg = gf = f, and hence

ge = eg = (ef)g = e(fg) = of = e.

Therefore as g. We shall call < the natural partial

ordering of E.

We define a meetasemilattice as follows. Let X

be a partially ordered set. An element b of X is

called a lower bound of a subset Y of X if 3'2 b

for every y in Y. A lower bound b of Y is a

greatest lower bound or meet of Y if b2,c for every

lower bound 0 of Y. If Y has a meet in X, it

is clearly unique. A partially ordered set X is called

a meet-semilattice if every two-element subset {a,b}

of X has a meet in X; consequently every finite

subset of X has a meet. The meet of (a, b} is

denoted by ar~b.

A commutative band E is a meet-semilattice

with respect to the natural partial ordering of E. The

meet, a..b, of two elements a and b of E is just

their product ab. From (ba)a = ba2 = be and

(ab)b = ab2 = ab, we see that abfia and abgb.
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Suppose cga and cgb. Then (ab)c = a(bc) = ac = c,

and similarly e(ab) = c, whence cgab. This shows

that the meet of (a, b} is precisely ab.

It is evident that the converse is true. That is,

every meet-semilattice is a commutative band with respect

to the meet operation. In this thesis, the term.§gmi-

lattice will mean meet-semilattice and consequently we

will use the term semilattice as synonymous with commum

tative band.

We know that every finite subset of a semilattice

has a meet. Therefore, if E is a finite semilattice

it follows E itself has a greatest lower bound or meet;

we denote it by 2. Then 25 e for every 6 2E so that

ze = ez = 2. Clearly z is unique and hence z is the

zero element of E.

Lemma 2.1 . If E is a finite semilattice and

a, b, c and d are elements of E, then

(1) aZb and cad imply ac_>_bd, and

(2) azb implies xa be for every xs E.

M: (1?) azb and c_>_d gives ab = ba = b

and cd 2 do = d, reSpectively. Therefore

(ac)(bd) = (ab)(cd)

(2) (xa)(xb)

every x e E.

bd so that ac 2_bd.

x2(ab) = xb so that xa_>_xb for
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In this section and the following one, E will

always denote a finite semilattice, 2 its zero element

and "z" the natural partial ordering of E. We now

define several concepts which are needed in the following

arguments.

Definition. Let a and b be two arbitrary

elements of E. If azb or as b, a and b are

said to be comparable; in the opposite case, a and

b are said to be incomparable elements, which is exe
 

pressed by aIIb. Further symbols used are < and

>, signifying a<b or b>a, if agb but a£b.

Definition. If for a pair of elements a and

b of E, a<:b holds and there is no element x in

E such that a< x< b, then it is said the element a

is covered by b (or b covers a). This situation is

expressed by the symbol a<<b (or b>>a). Accordingly,

aggb will symbolize that "b either covers or equals

a"; in short, "b at most covers a".

Definition. A subset T of E is said to be a
 

chain (or simply ordered set) if and only if for every

pair a, b in T, either azb or b_>_a. By the

length of a chain T consisting of m+1 elements (that

is, being of the form x0< x1<:...< xm) we shall mean
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the non-negative integer m. A chain T from a to b

(a, b in T), of length m, is of the form a = x0) x1

> ...>'xm = b. It is said to be a maximal chain from

a to b, if x1 covers xi+1 (i = O, 1, ..., m—1).

(That is, being of the form a = x0>>...>>xm = b.)

Definition. An element a of E is said to have

dimension d (written d(a)), where d is the length of

the longest maximal chain from a to z (the zero ele-

ment of E). we Will make the convention d(z) = 0.

Lemma 2.2 . (1) For every a and b in E,

a>’b, there exists a maximal chain from a to b.

(2) If a>’b, then, for the non-negative inte-

gers d(a) and d(b). d(a)) d(b).

PM. If a» b, we then have a maximal chain

from a to b. If a does not cover b, then there

exists an element x in E such that a) x) b. Con-

sider the set T(a, b) of all comparable elements y

in E with a>»y>>b. T(a, b) is a non-empty and finite

chain. Choose x1e T(a, b) with x12 y for all

ye:T(a, b). Then a>>x1> b. If x1 covers b, we

would have a maximal chain from a to b. If not, cons

sider the set T(x1, b) of all comparable elements y

in E with x1) y>tb and choose x2 in T(x1, b)

such that x22 y for all y e T(x1, b). We then have
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a>>x1>>x2> b.

By finite induction, we get a chain of elements

a, x1, x2, ..., In, ... such that

a>>x1>>x2>>...>>xn>>...>‘b.

Since E is finite, it follows we get an element xm

which covers b and hence a maximal chain

a>>x1>>...>>xm>>b from a to b.

(2) By part (1), there exists a maximal chain from

a to b, say a = aO>>a1>>...>>am = b. If b = 2 we

clearly have d(a)) d(b). For a>ib and b £ 2, choose

a maximal chain from b to 2 having length d(b) = n;

say b = b0>>b1>>...>>bn = z. Then

a = a0>>a1>>...>>b>>b1>>...>>bn= z

is a chain from a to 2 having length m+n. Since

m21, it follows d(a)} m+n>n = d(b). This completes

the proof of the lemma.

A homomorphic image of a finite semilattice

(commutative band) is clearly a finite semilattice

(commutative band). If 9 is a homomorphism of a finite

semilattice E onto E*, we shall use the same symbol

"3" to denote the natural partial ordering in the semi-

lattice E*. We end this section by deve10ping some

inequalities involving the dimension function of ele-

ments a in E and 6(a) in E*.
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Lemma 2.5 . Let E be a finite semilattice and

6 a homomorphism of E. Then d(a); d(6(a)) for every

ae:E.

Iggggf. Let 6 be a homomorphism of E onto E*,

as E and a* = 6(a) sE*. Let 2* be the zero element

in E* (z* = 6(2)) and denote d(a*) = m. If m = 0,

then d(a)3 d(a*) = 0 since d(a) is a non-negative

integer.

Suppose m>'O. Then we can find a maximal chain

in E* from a* to z* having length m;

a* = a5>>a:>>...>>a; = z* .

Consider the following subsets of E:

6-1(a:) = {xe:E|6(x) = a:}, where i = O,1,...,m.

Since 6 is a homomorphism of E onto E*, it follows

9:(a*) is1a non-empty subsemigroup of E and

81(a*)n 61(a3) = H for i #1 j. Moreover

e1(a*)e (3*)c:e(a; 1) (i = o, 1, ..., m-1).

Indeed if 12 e “1(a;) and yea“: "1(a:+1), then e(x) =

and e(y)= reapectively. But

ai+ 1’

=*§=*
e(zy)= 6(1)6(y) aiai 1 a1+1

so that xyse 1(8115“).

Now age1(as). Choose y1ee-1(a*1*). Then

31

Choose yzs 6‘1(a§). Then a2 = a1y2 s 6'1(a§) and

= ay1e;671(85)e'1(a:)§;e'1(a:). Consequently a> a1.

a>ia1> a2. Continuing in this manner we obtain a chain

a>a1>a2>...>am_1, where 8189-1(a‘i’)- Now zse'1(a;)
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and z = am_1z. Thus we have constructed a chain

a>a1)82)ooo>am_1>am= Z

from a to z of length m. Since d(a) is the length

of the longest maximal chain, it follows m_<_ d(a) and we

have proven the lemma.

Definition. An element aeIE is called an atom

if and only if a covers the zero element of E. (That

is, a>>Zc)

Note. An element aezE is an atom if and only

if d(a) = 1. Below we introduce some very important

subsets of E.

Definition. Let a be an arbitrary element of

E. We denote the set of all elements x in E satis-

fying the inequality xga by (a] and the set of all

x in E satisfying xz,a by [a).

Lemma 2.4 . Let a be an element of E. Then

(1) [a) is a subsemigroup of E and

(2) (a] is an ideal of E.

2522;. (1) Let x, ya [a). Then x_>_a and

y_>_a so that xyz a2: a. Hence xye [a) which shows

[a) is a subsemigroup of S.

(2) Let eeE and xe(a]. Then x_<_a and
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xegxga so it follows xee(a]. Thus (a] isan

ideal of E.

Lemma 2.5 . Let A be the set of all atoms in

the semilattice E. Then B = A~Iz is an ideal of E.

Moreover if’ x is the natural homomorphism of E onto

E/B, then d().(a)) = d(a)—1 for every asE—B.

M. Let peA. That is, let p be an atom

in E. Then (p1 = (z, p} and, by Lemma 2.4, it is

an ideal of E. However B = H‘fp] so it is also an

ideal of E. Consequently we can consider the Rees

factor semigroup of E modulo B. The ideal B is

the zero element of E/B which we will denote by K2.

The remaining elements of E/B are one-element sets

{1:} where xEE-B. We denote these elements by

Kx = {x}. Let A be the natural homomorphism of E

onto E/B. Then

K
a

Kz if aiiB .

Let aeE—B. Then }.(a)

{a} if a s E-B

A(a) =

Kae E/B. By Lemma

2.5, d(x(a))g d(a). Since a has d(a)) 1, then

there is a maximal chain from a to 2 having length

d(a) = m;

a = aO>>a1>>...>>am_2>>am_1>>am = 2.

Now am_1 isanatom of E so that am_1sB. But

81¢ B for i = O, 1, ..., m=2. Hence Ka = {a},
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Ka1 = {afl3 ..., Ham 2 = {am_2} are non-zero elements

in E/B and moreover

Ka = Kao>>Ka1>>o oo>>K > Kzo

am—2

Indeed if there exists Ks E B such that K K

’ / 31-)- 2 Kai+1

(i = O, 1, coo, 111-3), then K = {X} Where X E EmB

and

KaiOK = K and KoK

8i+1 = Kai+1°

Consequently KaiK = {aix}g;fx} and KKai+1 = {xai+1}

§;{a1+1}. This implies aix = x and xai+1= a1+1

which yields aiz x2 ai+1. Since ai>>ai+1 we must

have a1 = x or ai+1 = x. Therefore K = Kai or

K = K so it follows Ka >>Ka for i = O, 1, ...,

ai+1 1 1+1

m-5. Therefore we have a chain from x(a) = Ka to

A(z) = KZ in E/B of length m-1 = d(a) —1. Hence

d(x(a)) zd(a)-1 and more precisely d(a)-1g d(x(a))

S d(a) = m. '

Suppose d(x(a)) = d(a) = m. Then we have a

maximal chain in E/B from 1(a) = Ka to K29

(5.1) Ma) = Ka = KO>>K1>>...>>Km_1>>Kz

of length m. Since Ki # Hz for i = O, 1, ..., m-1

it follows Ki = {a1} where aie E—B, i = O, 1,..., ma1.

But (5.1) implies a = a0>>a1>>...>>am_1. Now am_1¢ B

and there exists an atom ame B such that am_1> am.

Hence we have

(5.2) a = a0>>a1>>...>>am_1>a.m> z

which is a chain in E from a to z having length m+1.



58

But this is impossible since the longest maximal chain

from a to z has length d(a) = m. Therefore

d(x(a)) # m so that d(x(a)) = d(a)-1 and we have

proven our lemma.

Lemma 2.6 . Let M be a subsemigroup of E
 

which contains the zero element z of E. Then the

number of atoms in M is less than or equal to the

number of atoms in E.

2593;. Since zeMgE, it follows z is the

zero element of M. Thus if p is an atom of M, then

p>>z. Let n denote the number of atoms in M and let

a1, a2,..., an be the distinct atoms in M. For each

a1, form the set T(ai, z), of all comparable elements

esE such that a1}, a) z. T(ai, z) is a non-empty

chain. From each chain T(ai, 2) choose a minimal ele—

ment e1; i.e. eige for every eeT(ai, z). Then we

have alas”. z for i = 1, 2,..., 11. However the e1

(1 = 1,..., n) are all distinct; for if e1 = e3, then

aiz,ei and 832 e1 which in turn implies

z = aiajz of = e1, a contradiction.

Thus each atom a1 in M (i = 1,..., n) gives

rise to an atom e1 in E (i = 1,..., n) so that n

is less than or equal to the number of atoms in E. This

completes the proof of Lemma 2.6.
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‘Egig. It might help the reader, when reading

through a proof involving finite semilattices, to actually

represent the semilattice by a diagram. To obtain a dia-

gram of a semilattice E (Every non-void finite partly-

ordered set can be represented by a diagram, [Birkoff [9],

Theorem 4]), represent each element a of E by a small

circle C in the plane of the drawing (denoted by the
a

letter a), such that if a< b (a, beE), the circle Cb

is above Qfi now consider each pair of elements x, y in

E for which x<<y and connect circles Cx, Cy repre—

senting such pairs of elements by segments. The resulting

figure is the diagram of the set E with respect to the

natural partial ordering on E. Below are four diagrams

representing all (non-isomorphic) semilattices of order 4.

 

2.2 Finite Semilattices in the Class 3+

We now begin to determine the structure of finite

semilattices E which have property P and whose homomorphic
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images also have property P.

Definition. Let 3+ be the collection of all

finite commutative semigroups S such that

(1) if S a 5+, then S has property P and

(2) if S 551‘, then 9(8) 8 5+ for all homomor-

phisms e on S.

Suppose E is a finite chain semilattice; that

is, every pair of elements of E are comparable. Let

6 be a homomorphism of E onto the finite semilattice

E*. Recall that we use the same order relation used in

E to denote the natural partial ordering of E*. If

xg y, (x, y in E), then 6(x) = e(xy) = e(x)e(y) so

that 6(1)$ e(y). Therefore a homomorphism e on E

preserves the natural partial ordering in E. Hence,

if E is a chain of length m, it follows E* is a chain

of length at most m. Thus it follows finite chain semi-

lattices are members of the class 5*.

Definition. An element a of a semilattice E

is said to be reducible if there exists in E elements
 

a1, a2 such that

(1) a = a1a2 (a1, a2>a).

If some a has no decomposition at all of the form (1),

it is said to be irreducible.



61

If the semilattice E has at least two atoms

a1 and a2, then clearly its zero element 2 is re~

ducible. Every non-zero element of a finite chain semi-

lattice is irreducible. We now develop several neces-

sary conditions for a semilattice E, which contains

a reducible element a, to be in the class 3+. If a

is reducible in E, then there exist elements 81, a2

in E such that a = a1a2 with a1) a and a2) a.

Since E is finite we can find elements b and c in

E such that a1z,bX>a and 322 c>>a. However

bc$a1a2 = a and bcz a-a = a so that be = a. Conse-

quently we shall study finite semilattices E 83+ which

contain an element a with a = bc (b>>a, c>>a).

Lemma 2.7 . Let E be a finite semilattice with
 

EtiflW. Let a, b, and c be elements of E such that

a is an atom in E and a = bc (b>>a, c>>a). Then

p< b or p< c for every atom p in E.

M. To show p<b or p<c for every atom

p in E we need to show pb = p or pc = p. Assume

the contrary. That is, suppose there exist four ele—

ments a, b, c, p in E a 3; such that

a and p are atoms in E,

(7.1) a = bc with b>>a and c>>a, but

pb 14 p and 130 24 p .

Clearly these elements are mutually distinct. Consider
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the maximal chains

b>>a>>z and c>>a>>z

and the ideals

(a] = {2, a}, (b] = {xsEngb} and

(0] = {XEEIXS°}°

The element p is not an element of either (b] or

(0], since bp # p and cp # p. Moreover z, a, b

belong to (b] and z, a, c belong to (c]. We need

to study two separate cases.

Case 1. Suppose (b] = (z, a, b} and

(a] = (z, a, 0}. Then (b]r~(c] = (a]. Let q be the

number of atoms in E. Then ZSQSJEI-Zv since a

and p are atoms in E but b and c are not atoms

in E. Let us form the Rees factor semigroup E/(a].

We denote its zero element (namely the ideal (a]) by

K2 and the remaining elements by Kx = {x}, where

x eE-(a]. The Rees factor semigroup E/(a] is a finite

semilattice with I

I E/(aJI = IEIa1.

Since p, b and c are distinct elements of E

not in (a], it follows Kp_= {p}, Kb = {b} and

Ko = {c} are non-zero elements of E/(a]. We first

will verify that Kb and K0 are atoms in E/(a]; that

is, Kb covers K and Ko covers K Suppose we
2 2‘

have Kb?_K> Kz where K; E/(a]. Then K is a non-zero

element of E/(a] so that K = {h}, ‘where he E-(aJ



63

and moreover Kb<>K = K and KIJKZ = K Consequently,z°

KbK = {bh}c_:.{h} which implies bh = h. Therefore

he:(b] = {z, a, b} and since h i a and h f z (for

h is not in (a]) we must have h = b. Indeed Kb = K

which proves Kb is an atom in E/(aJ. The same type

of argument can be applied on Kc'

Our next step is to show that each atom e in E

(e # a) gives rise to an atom K8 in E/(aJ. Now e

is not an element of (a] so that Ke = {e} is a non-

zero element of E/(aJ. Suppose KeZK> K29 where

Kle E/(aj. Then K = {x} where xe E-(aJ, and

Ke OK = K, KOKZ = K Consequently ex = x. Since2'

xyéz we have e_>_x>z. But ecovers x so that

e = 1. Therefore Ke = K and we have Ké is an atom

in E/(a].

Our above arguments show that to each atom eeaE

(e £ a), there corresponds an atom K6 in E/(aJ.

Certainly, distinct atoms e in E correspond to dis-

tinct atoms K8 in E/(a]. Moreover, Kb and K0 are

also distinct atoms in E/(a] which are different from

the above atoms Ke. If we let q* denote the number

of atoms in E/(a], then our above remarks show that

q*2_q+1, where q is the number of atoms in E.

Since E 83%, there is a subsemigroup N of E

isomorphic to E/(a). Therefore N is a finite subs

semilattice of E, with zero element 'g, INI = IEI=1
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and the number of atoms in N is greater than or equal

to q+1. Indeed z = z; for we know zghg and if

zi N it follows a and p belong to N (for [NI

= IEI—1) so that z = apeaN, a contradiction. There-

fore N is a subsemigroup of E, having z as its

zero element, and the number of atoms of N is greater

than or equal to q+1. From Lemma 2.6, this situation

cannot occur and hence the situation in Case 1 is

impossible.

Case 2. We consider the remaining possibility;

namely (b]:D{z, a, b} and (c]:3{z, a, c}. Let

Q(b) = {x2 EIb>>x and x £ a} and Q(c) = {xe:E|

c>>x, x £ a}. From pb £ p and pc £ p it follows

p is not an element of either Q(b) or Q(c). Let

R(b) .9qung and R(c) -.= Uch] .

Both R(b) and R(c) are unions of ideals so that

each is itself an ideal. Let w = R(b)v R(c). w is

precisely the ideal of elements of E which are under

the elements b and c with the exception of the ele-

ment a. That is, if y<:b, or y< c and y % a,

then yiaw. Also a, b, c and p are not members of W.

We form the Rees factor semigroup E/W. As be—

fore, KZ will denote its zero element and Ky = {y},

where ye EaW, its remaining elements. We have

Ka = {a}, Kb = {b}, Kc = {c} and K = {p} are non-
p

zero elements of E/W. Moreover
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K >>Ka9 Kc>>Ka and Ka, K are atoms in E/W.
P

Form the following ideals in E/W;

(Kb] = {Ks E/wlxgxb} and (K01 = {KeE/WIKg KC}.

b

pose Ks (KM and K ,é Kz. Then Kz<KgKb and K = {h}

with h8E—W.. But KbZK implies hb = h and z<hgb.

But hI:W and h being under b gives either h = b

or h = a. In either case K = Ka or K = Kb so that

we have shown (Kb]g;{Kz, K8, Kb}. Therefore

(KbJ = {K2, Ka, Kb} and using the same type of argument

one can show (Kc) = {K2, K3, Kc}.

From E 2 fl and E/W being a homomorphic image

of E, it follows E/W 23+. Consequently, E/W is a

finite semilattice in the class .5? [which has four ele-

K Kments K Kp} which satisfy the same prOp-
a’ b9

erties as those in (7.1) and moreover has the condition

C9

that (KbJ = {K2, Ka, Kb} and (Kc) = {K2, K8, K0};

that is, the same conditions that E satisfied under

Case 1. Hence we again have our desired contradiction.

This completes the proof of Lemma 2.7.

The previous lemma stated a necessary condition

for E e 5” under the assumption that E contains an

atom which is reducible. By applying this result and

finite induction it is possible to obtain the same
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necessary condition for any reducible element in E.

This is accomplished in the following theorem.

Theorem 2.8 . Let E be a finite semilattice

with E234“. Let a, b, c be elements of E such that

a=bc, b>>a and c>>a. Then e<b or e<c for

every element e eE such that OS d(e)5 d(a).

2:22;. This theorem is proved by induction on

the dimension of the reducible element a. Suppose

d(a) = 1. If d(e) = O we have e = z, the zero ele-

ment of E, and the theorem holds trivially for this

case. If d(e) = 1, then e is an atom in E. Also

a is an atom in E, since d(a) = 1. Consequently we

can apply Lemma 2.7 to obtain our desired conclusion for

the case d(a) = 1.

Assume the truth of the statement of the theorem

for all finite semilattices in.}+ which contain elements

a, b, and 0 such that a = bc, b>>a, c>>a, and

1gd(a)<n.

Let E be a finite semilattice in.:y' and sup-

pose there exist elements a, b, c and e in E such

that a = bc (b>>a, c>>a), d(e)gd(a) = n, eb )4 e

and ec # e.

We again need to consider two separate cases.

Case 1. Suppose d(e))»1. Let A be the set

of all atoms in E, let B = A~.z and form the Rees
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factor semigroup E/B. (This is valid for, by Lemma 2.5,

B is an ideal of E.) Denote the zero element of E/B

by KZ and its remaining elements by Ky = {y} where

ytaE-B. Ka9 Kb, Kc and K6 are non-zero elements of

E/B such that Ka = KbOKc (Kb>>Ka9 Kc>>Ka)9

Kb 0Ke ;4 Ke and KO oKe ,4 Ke° Since a, e eEaB, then,

by Lemma 2.5, it follows d(Ke) = d(e)-1 and

d(Ka) = d(a)—1. Therefore

d(Ke) = d(e)-1gd(a)-1 = d(Ka)

and

d(Ka) d(a)—1< d(a) = n .

From E e 3.! we have E/B 55%. Moreover E/B has three

elements K Kb, Kc which satisfy precisely the condi-a9

tions of our induction hypothesis. Since d(Ka)< n and

d(Ke) gd(1g),it follows from our induction hypothesis that

Kec’Kb = K9 and KeoKC = Ke. This contradicts what we

have above so that our assumption is false in the case

d(e) > 1.

Case 2. Suppose d(e) = 1. Consequently we must

have d(a)) 1; for otherwise we would contradict Lemma 2.7.

Let A be the set of all atoms in E, B = Av z and

R = Bmfe}. R is an ideal in E for

l R = LJ(x] .

'Form the Rees factor semigroup E/R. Since a,

b, c and e are not members of the ideal (R, it fol-

lows Ka = {a}, Kb = {b}, Kc = {c} and K6 = {e} are
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non—zero elements of E/R. Moreover Ka = Kb<3KC,

Kb>>Ka, Kc>>Ka, Ke oxb .4 K6 and Ke oxc ,4 KB.

We first assert that d(Ka) d(a)-1 = n-1.

Recall we always have d(Ka)g d(a) n. Since d(a)>’1,

there exists a maximal chain from a to z

a = ao>>a1>>...>>an_2>>an__1>>an = z

of length n. From be £ at it follows an_1 # 6. But

an_1 is an atom in B; consequently an_1e:R. On the

other hand, 31¢ R for i = O, 1,..., n-2. Therefore

Ka = {a}, Ka1 = {a1}...., Kan_2 = {5111.2} are (rt-1)

distinct non-zero elements of E/R and moreover

Ka>>Ka1>>...>>Kan_2 >Kz.

This implies we will have a maximal chain from Ka to

K2 in E/R of length at least (n51). Hence d(Ka)2;n=1.

Suppose d(Ka) = n. Then there is a maximal chain from

K, to K2 in E/R.

Ka = KCO>>KC1>> ,.,>>Kcn_1>> Ken = Kg. ,

of length n. From Kci fi Kz for i = O, 1,..., n-1,

it follows KCi = {c1} (1 = o, 1,..., n-1) where

ciezEmR. The above chain induces a chain in E from a

to z, namely

a = co>>c1>>...>>cn,1 >z.

However there exists an atom ye:R such that cn_1> y) 2.

Consequently

a = co>>c1>>...>>cn_1> y) 2.

Thus we will have a maximal chain from a to z of
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length at least (n+1). This is not the case, for

d(a) = n. Thus our assumption is false and d(Ka) = n-1.

Now E/Rej‘I’ and E/R has four elements Ka,

Kb, Kc and K8 of the same nature as those in Case 1.

Moreover 1 = d(e)g_d(Ka) = d(a)—1< n. Our induction

hypothesis applies and we obtain the same type of con-

tradiction that occurred in Case 1.

The arguments used in Case 1 and Case 2 complete

the proof of this theorem.

The previous theorem gives us a rather strong

necessary condition for a finite semilattice E, ad-

mitting a non-zero reducible element a, to be in the

class 5%. Let a be a reducible element of E. We

know that every element e a E, d(e) gd(a), is under

one of the covers of a. We shall show that the number

of incomparable elements e 8E, with d(e) gd(a) and

eflIa, can be at most one. Before doing this,-we need

some further preperties.

Lemma 2.9 . Let E e.§( be a finite semilattice
 

which has elements a, b, 0 such that a is an atom

in E, a=bc (b>>a, c>>a). Let A be the set of

atoms of E.

1) If eeA-a, and e<_b, then for every x3e

we have either xzb or xgb.
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2) If esA-a and ego, then for every x2e

we have either x2e or xgc.

M. Suppose e eA—a, egb, x2e but x is

neither above b nor under b. First of all, x is not

under c; for otherwise we have e5 xgc which contra?-

dicts that a is the atom in E under both b and c.

Also x is not above c. Suppose x20. Then

xszzeoe = e and b2xb2e‘. But xb ;4 z, xb .4 b,

and xb )4 x. Therefore b>bx_>_bc = 3. Since b>>a,

it follows bx = a and consequently a = bxz e> z.

This is not possible since a is an atom. Moreover x

is neither above a nor under a. Indeed, suppose agx.

We have a = bagbx< b which implies a = bxz 92 = e.

This again is not possible.

Let J = {ye (x]Iy<<x} and consider the ideal

L = U (y]. First note that, L;(x] and b, c, a are

not gliments of (x] (our above remarks verify this

statement) and hence not elements of L. Also xiL.

Form the Rees factor semigroup E/L. It has

Kx = {x}, Kb = {b}, Kc = {c} and Ka = {a} as non-

zero elements. It is immediate that

Kb°Kc z Ka’ Kx OKb = Kz’ KXOKc = Kz’

Kb>>Ka9 Kc>>Ka and K8 is an atom in E/L.

Moreover K is an atom in E/L since all elements
I

under x belong to L.

Since E/L a 3+ and since there exist elements
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K Kb, KceE/L with Ka=Kbch, Kb>>Ka, Kc>>Kaa’

and Ka an atom in E/L, it follows Lemma 2.7 applies;

namely every atom in E/L is under Kb or Kc' However

Kx is an atom of E/L which does not have this prOperty.

We have therefore shown if eg b, e_<_ x then

x_>_ b or xg b. A similar argument can be applied to

show part (2) of this lemma.

Lemma 2.10 . Let E5 54' be a finite semilattice
 

which has elements a, b, c where a is an atom in E,

a = bc (b>>a, c>>a). Then a is the only atom in E

which admits such a decomposition.

Proof. Suppose a1e E is an atom different from

a which also has such a decomposition. That is, there

exist elements b1. 0. in E with a1 = b1c1 (bf»a

>>a1). We can apply Lemma 2.7 on both elements a

19

°1

and a1. Consequently, either a1g b or a1g c and

either as hi or afgc We have four separate cases1.

to consider. (1) agb1 and a1gb, (2) agb1 and a1gc,

(5) ago1 and a1gb, and (4)a.<_c1 and a1gc. In

case (1) we have b_>_ bb gaoaa- a and b 2bb1za1a = a .
1 1 1 1

But b>>a and b1>>a1 so in order that both the above

inequalities hold simultaneously we must have

Using the same arguments for the remaining three

cases, one can show that these cases yield the results
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cb1 = c = b1, bc1 = b = c1 and cc1 = c = 01,

respectively.

In any event, we must have the two sets (b, c}

and {b1, 01} have an element in common. It suffices to

assume that b = b1. We have the situation b>>a, c>>a,

b>>a1, c1>>a1, a and a1 atoms in E such that

a = be and a1 = bc.. By Lemma 2.9, since a1 is an

atom, a sA-a, a < b and

c 1 1"

a1gc1, it follows 0 2 b or1

013 b. However both situations

are not possible since 01 and

 

b cover a1. (Of course, unless

= b which in turn is not possible from cC b=a1)o1
1

This ends the proof of our lemma.

Lemma 2.11 . Let E EJW— be a finite semilattice
 

which has elements a, b, c such that a is an atom in

E, a = bc (b>>a, c>>a). Let A be the set of atoms

of E and N = Ama. Then either N is an empty set or

I!INI 1.

M. Suppose INI 2.2. Note that from N £ 9

we can apply Lemma 2.7 to conclude that b and c are

the only elements of E which cover a. Also, by Lemma

2.7, we know that each element of N is under either b

or c. We therefore have two separate cases to consider.

Case 1. Suppose there exist elements e1, e22 N
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such that 913 b and e23 0. Form the Rees factor

semigroup E/(a]. It has

Kb = {b}, Kc = {c} as non-

zero elements. We first show

that there is a one-tonone

 

correspondence between the

atoms in N and the atoms of E/(a].

Suppose e is an atom of E with eezN. Then

Ke = {e} is a nonmzero element of E/(a]. Suppose

there is an element Kc E/(a] for which Ke.>_ K> Kz.

Then K = {x} where x5 E-(a] and Ke<3K = K. This

implies ex = x so that e_>_x> z. Since e is an

atom, it follows e = x which in turn implies Ke = K.

Thus K is an atom in E~(a]. Note that this implies
e

Kb and K0 are nonmzero elements of E/(a] which are

not atoms.

Suppose Ke = {e} is an atom in E/(aJ, where

ea Em(a]. Let x be an element of E such that

e) x) z. If x = a, then e> ai’z. Consequently,

e > b or e3 c since b and c are the only elements

which cover a. Therefore e2,b2_a or ez,cz_a and

this, in turn, implies Keg Kb or KeZKc. We know

Kb and Kc are not atoms in E/(a] so we contradict

the fact that K8 is an atom in E/(a). Hence x ¥ a.

But xyé a and e_>_x>z implies x4 (a]. Therefore

Kx = {x} is a nonmzero element of E/(a] and KeaKx> Kz.



Since K8 is an atom, it follows e = x. Thus e is

an atom of E.

In the above two paragraphs we have shown there

is a one-touone correspondence between the atoms e of

E, ee N, and the atoms Ke of E/(a]. Therefore the

number of atoms in E/(a] is INI.

We next assert that E/(a] has no atom Ka* = {a*}

for which there exist elements Kb* = {b*}, Kc* = {c*}

such that Ka* = Kb*()Kc

otherwise a* would be an atom in E, b*>>a*, c*>>a*

* (Kb*»Ka*’ Kc*>>Ka*); for

and a* a b*c*. From Lemma 2.10 we must have a = a*

and hence b = b*, c = 0*. However a = a* is impos_

sible, since a*¢ (a]. This proves our desired assertion.

From E e 31" we must have E/(a] can be imbedded

in E. Therefore there exists a subusemilattice E1

of E which satisfies

(11.1) 119,! = IEI_1 .

(11.2) number of atoms in E1 is INI, and

(11.5) there exists no atom. f’eE1 and elements

g, h in B, such that f = gh, h>>f

and g>>f.

Suppose there is an atom peE and p4E1. From

IE1I = IEIa1, b g p, c £ p, it follows b, c 8E1.

But E1 is a subsemigroup of E so that a = bceIE1.

This cannot occur for we would contradict property (11.5).

Thus every atom of E is an element (and, hence, an atom)



in E1. However the number of atoms in E is INI+1

(since N = Ana) which contradicts prOperty (11.2).

This completes the proof for this case.

Case 2. Suppose all atoms es N are under the

element b. Then the only atom in E under c is the

b atom a and every atom of E

c

\\//f is under b.

a Form the Rees factor semigroup

I E/(al. Again Kb = {b},

Kc = {c} are non—zero elements

of E/(a). It is necessary to show that K0 is an atom

in E/(aJ. Suppose K011i; Kz, where xx: {x} with

xe:E~(a]. But KCZ K: implies c22x> 2. Since c

covers a and no other element (x:£ a) it follows

c = x. Therefore Ki = Kc and we have shown K0 is

an atom in E/(a].

Using arguments exactly like the one employed in

Case 1, one can show that there is a one—to-one corre-

spondence between the atoms in N and the atoms in

E/(a]. (Clearly Kb is not an atom in E/(aJ). Hence

the number of atcms of E/(a] is equal to INI+1 which

is the number of atoms in E.

As in Case 1, we can apply Lemma 2.10 to assure us

that no atom K3, in E/(a] .has a reducible decomposition.

Let Ke be an atom in) E/(a] such that Ke # Kc’

Then e is an atom of E, e £ a. Hence eg;b which in



turn implies Ke53Kb° Hence every atom of E/(aJ, with

the exception of K0, is under the element Kb° It is

clear that d(Kb) = d(b)3 2.

Since F}efl¥, then E/(a] can be imbedded in E.

Therefore there exists a submsemilattice E of E such1

that

(11.4) IE1I = IEIm1,

(11.5) number of atoms in E1 is precisely the

number of atoms in E,

(11.6) there exists an atom eOe E1 and an

element e1ezE., where d(e1) = d(b),

such that every atom ptaE1, p £ e0,

satisfies p<c, but cogs“ and

(11.7) there is no atom pe:E1 which admits a

dezccoosition of the form p = x1x2

(x.,>> p, x2>>p).

Let p be an atom of -E with p4 E1. Then,

since IE,I = IEIm1. b £ p, 1c £ p, it follows b, c

are elements in E1. Therefore a = bcsaE1 which is

not possible by property (11.7). Hence every atom of E

is an atom of E19 and since they are equal in number it

follows all the atoms of E, are precisely the atoms of

E. From INI32, there is an atom pEE (and thus in

E1) such that p ,1 a and p .4 so. From (11.6), pge1.

Also, by hypothesis, we have p:§b. Lemma 2.9 applies to

give us e13 b or elg b. But d(e1) = d(b) and so
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b = e1. However b has the property that every atom of

E (and hence E1) is under b. This contradicts that

there is an atom eoe E1 such that eOXe1 = b. This

completes the proof of the lemma.

The previous lemma essentially states if we have

a finite semilattice E in the class 5% which has a

reducible atom a, then E will have at most one other

atom p, p £ a. The next theorem will give a similar

conclusion removing the hypothesis that a is an atom.

We will show that if a is reducible, then the number of

incomparable elements eeE with d(e)gd(a), eIIa, is

at most one.

Theorem.2.32 . Let Fla 5¥ 'be a finite semilattice
 

which has elements a, b, c such that a = bc, b>>a and

c>>a. Let M be the set of incomparable elements etaE

such that e” a and d(e)g,d(a). Then either M is an

empty set or [MI 2 1.

2:32;. We prove this theorem by induction on the

dimension of the reducible element a. Lemma 2.11 shows

that the theorem is true for d(a) = 1.

Assume the truth of the statement of the theorem

for all finite semilattices in 39 which contain elements

a, b, and c having the above properties with d(a)< n.

Let E be a finite semilattice in 54 , let a, b, c be
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elements in E such that a = bc (b>>a, c>>a, d(a) = n)

and let M be the set of incomparable elements eeZE

(eIIa, d(e)_<_d(a) = n) such that IMIZZ. Consequently,

M contains at least two elements s1 and e2 such that

e1, e2, a are mutually incomparable and d(e1) sd(a),

d<e2> gas).

We need to consider three separate cases.

Case 1. Suppose d(e1)> 1 and d(e2)> 1. Let

A be the set of atoms in E, let B = A v z and form

the Rees factor semigroup E/B. We apply exactly the same

arguments used in the proof of Theorem 2.8 (Case 1) to

show that this case is impossible.

Case 2. Suppose d(e.) = 1 and d(e2) = 1. Then

d(a)) 1; for otherwise we would contradict Lemma 2.11.

Let A be the set of atoms in E, B=:At.z and

R = B~{e1, e2}. R is an ideal in E for

R = fight] .

Again we can apply the same arguments that were used in

the proof of Theorem 2.8 (Case 2) to show that this

situation cannot occur.

Case 5. Suppose d(e1) = 1 and d(ez)>’1. Since

d(a)2;d(62), it follows d(a)) 1. Let A be the set

of all atoms in E, B = A~az and R = B - e1. We can

form the Rees factor semigroup E/R and apply arguments

similar to the one in Theorem 2.8 (Case 2) to show that

this case also is not possible.



79

In this section we have deve10ped two rather

strong necessary conditions (namely, the statements

of Theorem 2.8 and Theorem 2.12) when a finite semi-

lattice E, having a reducible element, will be a mem-

ber of the class JW'. However we have not been able to

completely classify the finite semilattices in the class

3*. Below is a diagram of a semilattice which satisfies

our necessary conditions but does not belong to 3%.

1

I
a c/,\\\///

o\ a

\z

2.5 Finite semilattices of Groups in 3¥

This seaflon will deal briefly with the study of

finite commutatits semigroups Se:j¥ whose maximal unim

<
+

. ent subsemigroups are groups. That is, if we let E

T
}

C
)

etc its set of idempotents (E is a finite semilat-O (
D

:
3

tice), Ge the maximal unipotent subsemigroup of S

containing the idempotent eezE but no other, then

git, Seonrzfl if e75f in E,

Ger§;Gef for all e, f in E,

S:

and Ge is a group for all e5 E. For such semigroups S,
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we shall use the abbreviated expression, "S is a semi—

lattice of groups". For the case when E is a chain,

we will say that S is a chain semilattice of groups.
 

The purpose of this section is to determine nec»

essary conditions when a finite semigroup S, which is

a semilattice of groups, will be in the class gt.

Throughout this section we will use the following

notations S will denote a finite semilattice of groups,

E = {e1, e2,..., en} its set of idempotents and Gm,

(m = 1, 2,..., n), the group having identity element

. n

I

Then S = I5 G19 GIG3€;Gk for eiej = 9k and
e 1
m.

Lemma 2.15 . Let SEZJW’ be a finite semilattice
 

of groups, and e, the zero element of E. Then

gG, = {g}

for all geG1 and i = 2, 5,..., n.

Egggf. Flrst of all, for e1< e3 we must have

GiGj = G1. Let s, be the zero element of the finite

semilattice E = {e1, e2...., en}. From

. n n

G1S = G1(1L.J1Gi) =12). 919199“ = G19

it follows C, is an ideal of S. Therefore, we are

able to form the Rees factor semigroup S/G1. Denote

its zero element (the ideal G1) by K91 and its re_

maining elements by Kx = {x} ‘where xe:S-G1. Note that

K82 = {€2}9 K63 = {93% ..., Ken == {en}
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are idempotents in S/G1. Moreover, these and the idem-

potent Ke1 are precisely all the idempotents of S/G1.

Consequently, the number of idempotents in S/G, is

[E[ = n. -

Since 5 a 9% it follows s/G1 can be imbedded

in S. Hence there exists a subsemigroup T of S such

that (1) [T] = [S/G1l = [SI—[G1[+1, (2) T has a zero

element and (3) T contains [E[ = n idempotents.

From (3), we must have E§;T and in particular

e1ezT. Since e1 is the zero element of E and since

T has a zero element, it follows 61 is the zero ele-

ment for T. However G1r~T = e1; for e1 is the

identity element of G1. But T<;S, Tr\G1 = e1 and

G r\G

1 J .

T€;(S-G1)~Je1. On the other hand, ITI = lSI-lG k1

= fl for j = 2,..., n, all imply that

= I(S-G1)v e1l, which implies T = (S—G1)v e1. That

7‘

is, T: gait. e,.

Since 6, is the zero element of T we have

e1gm= e1 for all gmsGm, m: 2,..., 11. Let g1;v§e11

be an arbitrary element of G1, and gIn an arbitrary

element of Gm (m = 2,..., n). Then

g1sm = (g1e1)gm = g1(e1sm) = 8191 = $1 -

This proves the lemma.

Theorem 2.14 . Let Se 3%‘ be a finite chain

semilattice of groups. Then
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8183 = 81

for all gie G1, gje Gj where ei<'ej, i = 1, 2,..., n

and j = 2, 3gooog no

Proof. It suffices to show that for

91g; = 81

all gje:Gj with e, < 833 for if this is true, then

8183 = (Siei)gj = 81(9183) = giei = $10

Because S is a chain semilattice of groups, we have

E = {e1<<...<<en}.

From Lemma 2.13, we have e1gj = e1 for all

e G and e e . Su ose e = e for all G

ei< eJ where i = 1, 2. 3,..., m-1. We show emgJ = em

for all e G where e e .

5:1 a m< :1

Define apb if and only if a = b or a, be Gm.

p is an equivalence relation and moreover we claim it

is a congruence on S. Let a¢>b, a i b, and let

xeS. Then xeGk, for some integer k; (a) If ek<em,

then, from our assumption, we have eka = ek and

e b = e Therefore

k k.

xa (xek)a = x(eka) = xek = x .

Likewise xbzx. Consequently, xapxb. (b) If ekZem,

then GkG §;G so that xa and xb both belong to G .
m m m

Thus xa p xb.

Let S* = S/p. Its elements are the group GIn

itself and all one-element sets {x} where xe:S-Qm.

We shall denote the one-element sets {x} by x* and

the equivalence class Gm by eg. Define
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E* = {e7, e3, ..., e3? ,

GI={x*€S*Ix€G 174m},
19

G* = {9*} o

m m

E* is the set of idempotents of 8*. From

e: = {e1} for all 1 £ m, it follows e*<<e*<<...<<e*
1 2 m-1'

However e* 09* = e* for j) m since e G gG . This
m j m j m m

gives e*<<e*<<...<<e*<<...<<e* .

1 2 m n

The map 1‘: Gi—> G; (1 ,4 k) defined by

t(x) = x* is clearly an isomorphism of G1 onto G1.

Therefore GI, (i = 1, 2,..., n), are the maximal

groups of 8* containing the idempotents eI.

* = a» . l- i- =(Gm {em} ) Also Girth G (1 fi 3) since

Gin G3 =¢ (1£J)0

Evidently the semigroup S* has the decomposi-

n

tion, 8* = UGI, GfoG* == ¢ and G* oG*C_'_'_G*

h1 *
J 1 3 k

where e; 083 = e11.

Let g3 a G3 and let e: be the identity element

of G; where ei< e3. For i = 1, 2,..., m-1, we have

e: = {31}; consequently, by our assumption, ez<>g3 = e;.

Since G g §;G , it follows e*<>g* = e* for all

m j m m j m

g* eG* where eg< e15. The above shows that

J 3

e*0 * = e* for all *8 e*<e*

1 5:) 1 33 3’ 1 .1

Where 1 =1, 2, 00., mo

Since S 6.5% we can imbed S* in S. Hence

there exists a subsemigroup H of S which itself is

a finite chain semilattice of groups satisfying,
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n

(14.1) H e ,5 Hi, 31.33 = o (i g 3), where

Hi is maximal group of H containing

the idempotent f1,

(14.2) f1<<f2<<...<<fn where the fi are all

the idempotents of H ,

(14.4) fihj

[Gil for i #'m and [Gm] = 1, and

f for all h 8H

1 =1, 290009 file

13'

Now E = {e1, e2,..., en} and fie E for all 1.

Therefore E e {f,, f2,..., fn}. But (14.2) gives

f1 = ei for i = 1, 2,..., n. Then eie Hin G1 for

all i, so it follows H1§2G1. From (14.3), we have

Hi = G1 for i # m; of course Eh = em. Then, using

(14.4), we conclude 1

9183 = e1 for all gjeGj, ei< e3, 1 = 1, 2,..., m.

This completes the proof of the theorem.
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