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ABSTRACT

ON FINITE COMMUTATIVE SEMIGROUPS
HAVING A GROUP-LIKE PROPERTY

by Richard L. Gantos

In the study of finite commutative groups, it is
a fact that every homomorphic image of a finite commuta-
tive group G can be imbedded in G. Moreover, if © (G)
is a homomorphic image of G, it itself has this same
property. This thesis investigates when a finite commu-
tative semigroup S will have these same imbedding prop-
erties, That is, we try to determine the structure of
S 8o that every homomorphic image of S can be imbedded
in S8 = from now on referred to as property P -- and all
homomorphic images of S also satisfy property P.

Chapter 1 deals with finite commutative one-idem-
potent (unipotent) semigroups S which belong to the
following class of semigroupss

£ 1is the collection of all finite commutative
unipotent semigroups such that

(1) if s & g, then S has property P and

(2) if S ¢ £ s then © (s) e £, where & 1is
a homomorphism on S.

Let S be a finite commutative unipotent semigroup,

e its idempotent, G its unique maximal subgroup, (S D G),
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and R = (S=G)ov e. The following necessary conditions
are determined in order that Se¢ £

(1) If Se g, then R is a nilpotent semigroup
of S of class g > 1 with gr = g for every ge€G and
reR,

(2) 1f se &, then |RY™| = m+1 and
|sT0 - | G| +my, where m =1, 2, seoy, @2 and @ is
the nilpotent class of R.

(3) If Se &, then the nilpotent class q of
R must satisfy the inequality 1< q< 4.

From (1), (2), and (3) we are led to the complete
structure of S¢& 3

Se { if and only if either S 1is a group, Se¢ & s,
Se s, or St Lo

The classews ;g, 53, 54 consist of finite
commutative semigroups S such that

(") S=GvYR, GAR ==¢e, where G is the maximal
group in S, e is tne idempotent in S, and R = (S-G)v e,

(2) gr = g for every geG and reR, and

(3) R 1is nilpotent of class @ = 2, 3 or 4,
respectively..
In the case of the classes s and ‘54, further condi-
tions are impcsed on the nilpotent subsemigroup R.

Chapter 2 deals with finite semilattices and finite
semilattices of groups.. In a finite semilattice E ( =&

finite commutative semigroup every element of which is
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idempotent) we have a partial ordering < defined by:

e<f 1if and only if ef = fe = e.

Let H be the collection of finite commutative
semigroups such that

(1) if sSse H#;, then S has property P and

(2) if Se ¥, then © (S)e %, where 6 is a
homomorphism on S..
Some of the theorems in Chapter 2 pertaining to this class
# are the followings

If Ee¢ 3 1is a finite semilattice which contains
elements a, by, ¢ such that a = bz, b>a, e¢>a then

(1) e<db or e<c for every eecE where the
dimension of e 1is less than or equal to the dimension of a,

(2) the number of incomparable elements eeg E, with
e 1incomparable to a and having dimension less than or
equal to a, 1is at most one.

A finite semilattice of groups is a finite commuta-
tive semigroup-nﬁ such that

(1) S=J:4 Gi9 where Gi is the maximal subgroup
cf S containing the idempotent ey,

(2) GinGj=¢ for 1 £ 3, and

(3) GiGj = Gy where ejey = ey.

Some theorems on finite semilattices of groups:

If St& # 1is a finite semilattice of groups, then
gé; = {g} for all geG, (where e ge for every idem-

potent e in S) arnd i =2, 3, coo, N.
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If Se % 1s a finite chain semilattice of groups,
then gigj = & for all g; € Gig gj eGj9 where ey < eJ,

i=1, 2, ooogn a.nd j:=29 39 @00y Noe
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Notaticn Used in Chapters 1 and 2

Square brackets are used for reference to the
bibliography.

Let A and B be sets.

ACB (or BDA) means A is properly contained in B,
ACB (or BDA) means ACB or A = B,
A-B means the set cf elements of A which are not in B.

IAI means the cardinal number of the set A,

g denotes the empty set.

If A and B &are subsets of a semigroup S, then
AB means {ablaeA, be B},

If p 1is an equivalence relation cn a set X,
and if (a,b) € p, then we write apb and say that
a and b are p-eouivalent, and that they belong to
the same p-class.

If p 1is a ccngruence relation cn a semigroup S,
then S/p denctes the factor semigroup of S modulo peo
S/I denctes the Rees factor semigroup of S modulo an
ideal T,

Z means "iscmorphic".

If 6 1is a homcmorphism on S and RCS, then

6|R shall mean 8 restricted to R.



Introduzticn

The aim of this dissertation is to study finite
commutative semigroups which have a property inherited
by finite commutative groups. It is evident that every
finite commutative group G Las the property, we shall
call it property P, that all its homomcrphic images can
be imbedded in G. That is, for each hcmomorphiz image
H of G there is a subgroup of G isomorphic with H.
Moreover H has property P. We shall investigate the
structure of finite commutative semigroups S feor which
(1) S has property P and (2) 6 (S) has property P,
where ©  1is & hcmomorphism of S,

As in group theory, every homomcrphiz image cf a
semigrcup S <can te realized (differing cnly by an iso-
morphism) as a factor semigroup. We therefore need to
introduce the concept of congruences. A relaticn p on

a semigroup S 1is said to te compatible if ap b (a,b in

S) implies acPp bec and capcb for every c¢ in S, By

a ccngruence ocn S we mean an eguivalence relation on S

which 1s compatible.
Denote by S/ the set of all equivalence classes
of S mod p. Let K, and K, be members of S/e .
Let 8y9 85E K1 and let b1,b2c K2. From a,pa, we
have a1b1p a2b1. From b1p b2 we have 32b1p azbgo
The transitivity cf p gives us that a1b1p 82b2°
2



Therefore the set product K1K2 of K, and K, 1s con-
taired in a unique equivalence class K3 mocd p . Becauss
of this property cne may define in a natural way an op-
eration in S/ . Since this operation does not coincide
with the cperation cf multiplication cf subsets, we shall
use the sign o for denoting the result of this operation.

Suppose that K19 K2, K3 are three equivalencs
classes mod p such that K,Ky)CKse In S,/p we pui

(1) K,0K, = K3.

Since, for any K, Ky, K5¢ S/p

(17(1 oK2) oKBD(K.!Kz)K3 = K KoK

K, o (K, 0Kg) DK, (K,K3) = K K;K4

the operation o is associative in S/

Definiticn., TFor a congruence p on the semigroup

S, the set S/p of all equivalence classes mod p, con-
sidered relative to (1), i3 a semigrcup, called the fa}tc;
gsemigroup of the semigroup S mcdulo p .

lass

[¢)

Ascsign to each element a&S the equivalence
K of s/ which contains it. We obiain a mapping of
S onto the factor semigroup S/p . This mapping is a

hcmemorphism; it is called the natural homomorphism of S

onto S/p « Therefore every factor semigroup of a semi-
group S 1s a homcmorphic image ¢f S. The following
theorem (Clifford and Preston [1]) shcws conversely that

every homomorphic image of S 1is iscmorphic with a factor



semigroup of S. Therefore, if we do rnot distinguish
between isomorphic semigroups, the study of homomorphic

images can be replaced by the study of congruences on S,

(Main Homomorpnism Theorem). Let 6 ©be a homo-

morphism of a semigroup S onto T. ILet apb (a,b in

S) 4if and only if 6 (a) = 6(b). Then p 1is a con-
gruence on S and if we denote the natural homcmorphism
of S onto S/p by p*, there is an iscmorphism B

of S/p onto T such that Bp* = 6 .

An important example which will be of constant
application throughout this dissertation is the following,

Let I be an ideal of a semigroup S. Define
apb (a,b in S) if and only if either a = b or else
both a and b belong to I. p 1is called the Rees

congruence modulo I. The equivalence classes of S

modulo p are the ideal I itself and all the one ele-
ment sets {x} with x in S~I. The ideal I, as an
equivalence class of S modulo p , is of course the
zero element of the semigroup S/p » One may represent
S/p as a semigrcup obtained from S by identifying
with one another all the elements of the ideal I. We
shall write S/I instead of S/p , and we call §/I

the Rees factor semigroup of S modulo I.

Now suppose S 1s a finite commutative semigroup.



It has an idempotent element e. (i.e. e = e)e In

fact some power of every element of a finite semigroup

is idempotent. This was first shown by Frobenius (ﬁber
endliche Gruppen, Sitzungsber. Preuss., Akad. Berlin, 1895),
Let E be the set of idempotents of S. For each e in
E, let S, Dbe the set of all x in S such that

X = e for some positive integer n. Then S g~ Sp = ﬁl
if e£f in E, and S = ekgse. Each S, 1is a sub-
semigroup of S containing : but no other idempotent
and S SfCSgr for all e, f in E. S 1is called a
maximal one-idempotent (or unipotent) subsemigroup of

S. All of the above facts can be found in either Clifford
and Preston [1] or Lyapin [2].

Because of this decomposition of a finite commuta-
tive semigroup we first studied finite unipotent commuta-
tive semigroups which have property P and whose homomorphic
images also have property P. We are able to completely
describe the products in such semigroups for this case.
That is, we are able to determine the fine structure of
finite unipotent commutative semigroups having property
P and whose homomorphic images have property P. This
result is stated in Theorem 1.16.

We next considered the case when the maximal uni-
potent semigroups S, have only the idempotent e as an

element., In this case, every element of S 1is idempotent.

Such semigroups are called bands., Finally we close with

!



the possibility that the maximal unipotent semigroups

are groups.



Chapter 1

Finite Commutative Unipotent Semigroups

In this chapter we shall characterize those finite
commutative unipotent semigroups S which have the prop-
erty that every homomorphic image of S can be imbedded
in S and moreover all its homomorphic images have the

same propertye.
1.1 Basic Properties of Unipotent Semigroups
We develop in this section some basic concepts
of finite unipotent commutative semigroups. Some of
these concepts can be found in either Clifford and Preston

(1] or Lyapin [ 2].

Definition. A two=-sided ideal M of a semigroup

S 1is said to be universally minimal in S 1if it is

contained in every ideal of S.

Lemma 1.1 . If a semigroup S possesses a two-
sided ideal G that is a group, then G 1is the univer-
sally minimal ideal of S,

Proof. Let L be an arbitrary left ideal of S,
Since G 1is a two-sided ideal of S we have GLCGS CG

7



and since L 1is a left ideal it follows GLCSLCL.
Moreover G(GL) = GZLQ;GL which implies GL is a left
ideal of G. However G 1is a group and a group has no
ideals other than itself so we must have GL = G, There-
fore G =GLCL and thus G is contained in every left
ideal of S. A similar argument shows G 1is contained

in every right ideal of S,

Lemma 1.2 « A semigroup S cannot have more
than one two-sided ideal that is a group.

Proof, Suppose G, and G, are two-sided ideals
of S which are also groups. By Lemma 1, G, and G,
are both universally minimal ideals of ©S. Hence we would

have G1§G2 and ngG1 so that G1 = Gooe

Theorem 1.3 . Let S be a finite unipotent com-

mutative semigroup, let e denote its unique idempotent
element and let
G = {acS|ea = a and xa = e for some xe S}

Then

1) G = eS = Se = eSe.

2) G 1is the unique maximal non-empty commutative
subgroup of S,

3) G is the two-sided ideal which is universally
‘minimal in S.

4) Sn = G for some positive integer n.



Proof. Since eeG then G is nonempty. Let
xe S. The cyclic subsemigroup <x> (i.e. the set of
all positive powers of x) is finite so there exists
positive integers m and r such that x™T = xT
and <x> = {X, X%, .eo, XB*T=1}, Moreover the set
Kx = {xr, xr+1, soey xm+r-1} is a cyclic subgroup of

S. Its identity element xk, r<k<{{r+m-1, 1is an idem-

potent element in S and hence xk= e, for S 1is

unipotent., Therefore for every xeS there exists a

positive integer k such that xk = €,

1) We show G = eS. First of all G = eG CeS.
Let xeeS. Therefore x = ey where yeS;, ex =X
and there exists a positive integer k such that xK = €.
If k>1, then e = £ = x¥='x 50 that xeG, If
k=1, then x = e and again xe¢ Go Therefore eSCG
and equality follows.,

Moreover G = eS = Se = eSe since S 1is com-
mutative,

2) We show first that G is a group. Let g4,
g € G Then there exist elements u, and u in S

2

with e = gu, = g.u g1e = g1 and g2e = g2. Therefore

171 27°2°
(g,8,)(wu)) = g (gyu v, = gieu, = (gie)uy = gu, = e,
(g,8,)e = g,(g,¢) = g8,

and we have g,8, e Go. The element e ¢G 1is the identity
element of G, Let ge G. There exists ueS such that

e=gu and g = ge., Now
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g(ue) = (ge)(ue) = g(eue)

e = e = (gu)e
and eue €eG since G = eSe., Therefore each element
€€ G has an inverse element g'1 = eue in G and it
follows G 1s a subgroup of S.

Moreover G 1s a maximal subgroup of S. Sup=-
pose H 1is a subgroup of S. Since S 1is unipotent
it follows that the identity element of H 1is the iden-
tity element e of G. Therefore

H = eHe C eSe = G,

3) Prom part (1) we have SG = S(eSe) = (Se)(Se)
CSe = G and thus GS&G. Therefore G 1is a two-sided
ideal of S. By Lemma 1.1, G 1is universally minimal
in S. The uniqueness of G follows from Lemma 1.2,

4) s" 1is a two-sided ideal of S for every pos-
itive integer m. Therefore, by part (3), we have s® o6

for every positive integer m and S QSZQ cee QSm Doeo G,

Since S 1s finite it follows S™ = s™t1 o= ... = s™*E_ ...

for some integer n and for all k. Now s® is a sub-
semigroup of S and e sSn since e = e"¢ Sn. Let
ue s? with u # e. Now ueS so there exists a positive

k k-1
u

es Therefore u = u=-¢e and
1

k> 1 such that uk

k-1 K-
u

€ Sn so that u is the inverse element of u in
S.n. We have ST a subgroup of S and from part (2) it

follows sng G. We have shown GC Sn, so G= 5"

Lemma 1.4 + If S 1is a finite unipotent abelian
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semigroup, then S/p is a finite unipotent abelian
semigroup for every congruence p on S,

Proof. Since S 1s finite, it partitions into
a finite number of equivalence classes mod p so that
S/p is finite. Since S 1is abelian it follows

K1K2 = K‘?K1 for any two arbitrary p -classes. Thus,

by definition of the operation © in S/p , it fol-

lows K,OK, =K,.OK and S/p 1is abelian.

1 2 2 1
Let K, = {x|xpe), where e is the idempotent

of So Let ueK, and veK,. Then upe and vpe

0 0

so that (uv) pe. Therefore uve K, and we have
KOKOQKO which implies KOOKO = KO; i.e. Ko is an
idempotent element in S/p . Suppose K is an equiva-
lence class mod p and KOK = K. This implies KKCK

and for xeK we have prx. Using the compatibility

of the congruence p sucessively on xzp X, we have
x%p x for all positive integers m. But there exists
a positive integer k such that x¥ = e, Hence epx
s0o that xe¢ Ko. Thus KQKO and since both are equiva-
lence classes mod p it follows that K = KO. There-

fore S/p has exactly one idempotent.

1.2 Semigroups of Class ¥

Throughout this section S will denote a finite

commutative unipotent semigroup, e 1its unique idempotent
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element, G 1its unique maximal subgroup which is the
ideal universally minimal in S (the existence of which
was determined in Theorem 1.3) and finally R will de-
note the set of elements of S not in G along with e3
i.es R = (S-G)v{e}. Then S = GvR where G~R = e,

We will first determine several necessary condi-
tions for S +to have the property that all its homomor-
phic images can be imbedded in S, By imposing on S
the added condition that all homomorphic images of S
also have this property we will be able to completely
determine the structure of S,

It is known that every finite commutative group
satisfies these properties. Therefore in the following
discussions we will take S = GvR, R G = e and

S OG (or equivalently, RD {e}.

Definition. A semigroup T is said to have

property P if and only if T/p can be imbedded in T

for every congruence p on T.

Definition. A semigroup T with zero element

O 1is said to be nilpotent if there exists a positive
integer n>1 such that T ={0}. It is said to have
class n, (n>1), if n 1is the least positive integer
such that T° = {0}, If the class of T is n =2 we

will call T a null semigroup.



13

Lemma 1.5 . Every finite unipotent commutative
semigroup T with zero element O 1is nilpotent.

ggggﬁ. To show T 1is nilpotent we need to show
™ - {0} for some positive integer m. Since T is a
finite unipotent commutative semigroup, then it follows
from Theorem 1.3 that it has a unique maximal subgroup
K which is an ideal universally minimal in T and more-
over T% = K for some positive integer n. But {0} is
an ideal of T contained in every ideal of T and since

K 1is universally minimal it follows K = {0}, Therefore
™ = {0}

Theorem 1.6 « If S has property P, then

1) R is a finite unipotent commutative subsemi-
group of S with e as its zero element,

2) gr = g for every ge¢ G and reR.

3) R is nilpotent of class q> 1,

Proof. 1) Since G 1is a proper ideal of S we
can form S/G the Rees factor semigroup of S modulo G,
By Lemma 1.4 we have S/G is a finite unipotent commuta-
tive semigroup. Its elements, the equivalence classes
modulo G, are every one-element set {a} where a e S-G
and G itself. The element G in S/G is a zero ele-
ment for S/G and |S/G| = |S|-]G|+1 = |R].

Now, by hypothesis, S/G can be imbedded in S

so there exists subsemigroup T of S with zero element
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z and |T| =]|S| -|G|+1. The element z is an idem=-
potent in S so it follows 2z = e, Also GA T = (e}
for e 1is the identity element of G and the zero
element of T. But TCS = GvR and GA~T = {e} implies
TC R. However |T| = |R| so that T = R.

Therefore we have shown part (1), namely, R is
a finite unipotent commutative subsemigroup of S with
e 1its zero element.

We have er = e for every reR since e 1is the
zero element of R. Let geG, g# e and let reR,
There exists a positive integer m such that g% = e
and therefore g 1s the unique inverse element of gm‘1o
On the other hand, greG for G 1is an ideal of S
and g8 '(gr) = g% = er = e, Hence gr is also an
inverse of gm'1 in G so we must have gr = go

By Lemma 1.5, since R 1is a finite unipotent
commutative semigroup with zero element, we have that

R 1is nilpotent of class q>1.

Lemma 1.7 « If S has property P, then

(1) s® = GUR" and GAR" = e for all positive
integers m.

(2) s"DO¢ for m = 19 25 osey (g=1) and s = G
for m>q, where q 1s the nilpotent class of R.

(3) S/Sm is a nilpotent semigroup of class m,

m = 29 39 ® 0 e-9 q.
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(4) [(s/s™)7] = |5%|-|s®|+1 where n and m
are positive integers such that 1<{n<{m¢q.

Proof. To verify s™ = GuR" we apply induction
on m. The decomposition of our finite unipotent commu-
tative semigroup S, namely S = GvR and GAR = e,
verifies S™ = GVR® for m = 1.

By Theorem 1,6, GR = G and consequently GR" = G
for all positive integers m. Assume s®™ = GvR®, Then

s%71 = s%5 = (6uR®)(GwR) = GvR®GuGRwRE
- Gva+1,
Also GAR®™ = e since e 1is the identity element of
G and zero element of R,

Also by Theorem 1.6, R 1is nilpotent. Let q
be its class. We have S® = GuR® for any positive in-
teger m so that GQSm for any positive integer m.
If G = S® for some natural number n, then it follows,
from GARP = e, that R? = e. Hence; n > q.

We now proceed to show that S/Sm is nilpotent
of class m>1, S/Sln is a finite unipotent commutative
semigroup with zero element; its zero element being the
ideal S™ itself, Lemma 1.5 gives us that S/s® 1is
nilpotent, Let S* = S/Sm. Denote its zero element by
O* and the remaining elements by x* = {x}, where
x ¢5-5® = B-R®.. Indeed (s*)" = 0* for (s-s®) Cs@.

We next assert that (S**)ln"I # 0*, Since ROR® D...

1

SR 'DOR® D... OR? = e we can select x e(Rm'1- ™,
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2
Then X = X,X,...X _, Wwhere X;eR-R (L1 =1, 2, 0oy, m=1),
However x*, xT, ceoy x;_1 are non-zero elements of S*
and x* = x§yO0x¥0.., Ox¥ ,. Consequently, x*e (S*)m'1
and x* £ O%,. But (S*)® = 0% and (S*)®1 £ o* imply
S* 1is nilpotent of class m.
n

It remains to show that |[(S/S™) | = |s™|-|s®]+1.
By part (3), this equation obviously holds for n = m,
Using an argument similar to the one above, one can
easily note that there is a one-to-one correspondence

- m\n

between the non-zero elements x* in (S/Sm) and the

n
elements x in S%- s®. Hence [(S/S™)"| = [sT]-|ST|+1.

It has been shown, thus far, that if S 1s to
have property P, it is necessary that R be a nilpotent
semigroup of class q>1., We now would like to determine
the order of the ideals Rm where m = 2, 3, ceey q-1.

To do this we need to introduce the following concept,

Definition. An element u 1in S 1s said to have

a factorization in ST, (m = 2, 3, ..., q) if and only if

u,eSm. Two factorizations of wu in Sm, U = X XpeeeXp
= ¥1¥peee¥ys are sald to be distinct if and only if the
sets  {xy, X5y coey xm} and {y1, ceey Yy} are unequal.
The number of distinct factorizations of u in s will
be denoted by B (u;m).
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Lemma 1.8 o If S has property P, then
(n) IRq—1 |=2 and (2) [Sq-1| = |G|+1 where q is
the nilpotent class of R, q> 2.

Proof. By Theorem 1.6, R 1is nilpotent of class
q@ so that r%~7 opd - {e} and consequently qu—1 I>2.
Suppose [Rq_1|> 2. We can find at least two distinct
elements in RY™' both different from the zero element
e in R. Choose uc€¢ (Rq-1-{e}) such that B (uj;q=1)
is maximal, Let v be any element in (Rq-1-{e}) with
u # v. Clearly f(usq-1) > p(vsg-1)>1.

Let us consider that partition of the semigroup
S determined by the disjoint subsets K, = sq = @,
K = {u,v} and all one element subsets K = {x} where
xe S-(S%v {u,v}). Let p Dbe the equivalence relation
induced by this partition., Moreover we can show that
(o is a congruence on S. Suppose apb, where a and
b are elements in S such that a # b, Then we must
have both a and b belong to Ko = 5% or both a and
b belong to K = {u,v}s. If the former occurs then,
since S% =G 1is an ideal of S, 1t follows =xap xb
for all xe S. If the latter occurs, we would have
a=u and b=v or a=v and b = u. However
{u,v}gﬁq-1 cs?' and hence xu and xv belong to s
for every xe¢ S. Therefore xupxv which implies
xgpXxXxb for every xeS., We have verified that the equiv-

alence relation p induced by the disjoint subsets K,, K
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and the one-element sets X, = {x} is indeed a congruence,
We form the factor semigroup S/p . Let us de-
note its elements (equivalence classes mod p ) by KO,
K and all K_-= {x} where xes-(s%v {u,v}). S/p 1is
a finite unipotent commutative semigroup and, since s4
is an ideal of S, the idempotent Ky of S/p is a
zero element of S/p .
We first show that Ke (S/p )% '. Now ueR% '-(e}

which implies u = uqujg...u where each wujy € R-Rz.

q-1
Indeed e s-(s%v{u,v)) so that each of the one—ele-
ment subsets Kui ={ug (£ =1, 2, eesy q=1) of 8
are non-zero elements of S/p different from the ele-
ment K. However

K-u1Ku2°°°K'uq_1 = {wqupeccug g }= {ulc{u,v}
which implies Ku1 OK,;2 Ouoo OKuq_1 = K . Hence
e (s/p )%,

Next we show that (S/p )¢

Koo This result
together with Ke (S/p )q-1 tells us that S/p is
nilpotent of class q. Let Ae (S/p )%. Then

A = A1 OAZ,O... OA where Aie S/p (i = 19 29 XEX) q)o

q
If any Ay = K we would have A = K5 80 we may assume

Ay #Ky for all 1 =1, 2, +ue, q. This implies that

each Ay, as a subset of S5, 1is either a one-element

set {x;}, where x;e¢ s-(s%v {u,v}) or the set f{u,v}

In any case, the set product A1A2,..Aq must be a subset
of s, Consequently, by the definition of the operation o
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in S/p, it follows A = AjoA,0.., OAq = Ky and
we have (S/p )%= Ky.

Since K¢ (S/pw)q-1, then K has a factoriza-
tion in (S/p )%~ ', TLet B(K;q-1) be the number of
distinct factorizations of K in (S/p )q-1. We now
claim that B (ujq-1)+B(vsae-1) < B(K;q-1). To show
this we first shall show that distinct factorizations
of both u and v 1in Rq-1 give rise to distinct
factorizations of K in (S/p )q-1° Suppose
u = x1xz...xq_1 = y1y2...yq_1 are two distinct factori-
zations of u in Rq-1; i.e. the set {xqy X5y ¢oo xq_1}
and the set {y;, Yoo eses yq_1} are unequal. Now
x, € (R-R?) and y ¢ (R-R®) for 1= 1, 2, «uu, a-1,

since ue Rq'1—{e}. Consequently each of the one-element

subsets of S, Kx1 = {x, }, KX2 = {x5}; o0y qu_1= {xq_1};
Ky1 = {y1}9 Ky2 = {y2}9 eeoy %q_1 = {Yq_1} is a non-
zero element of S/p . Moreover the sets {Kx s esey Ky }
1 q-1
and {K_ , eeey K } are unequal. But, from
y yq_1
Kx1xx2090Kx = {1112...xq_1} = {u}C {u,V}
q-1

and

Ky1Ky2000qu—1 = {y1y2ooqu_1} = {u} C{u,V}

it follows K = K_, OK_ 0,.,, 0K =K, o Osoe OK -
X1 X2 Xq-1 y1° 5 Yq-1

This implies K has two distinct factorizations in

(s/p )ya-1, Using the same argument, one can obtain dis-

tinct factorizations for K in (S/p\)q'1 from distinct

factorizations of v 1in Rq-1. On the other hand, since
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u £ v, a factorization of u in R?"! and a factori-
zation of v in RI™! will give rise to two distinct
factorizations of K in (S/p )31, This together with
the above clearly imply that B (ujq-1)+ a(v;q-1)s’3(K;q-1).

Up to this point we have shown that §/p is a
nilpotent semigroup of class q and moreover there exists
a non-zero element K of S/p which has g(K;q-1)
> B(u3q-1)+ B(v3q-1) factorizations in (S/p )q-1.

Since S has property P, then S/p can be
imbedded in S. Hence there exists a nilpotent subsemi-
group P of S of class q and in T there is an
element t which has p(K;q-1) factorizations in
191, But ThG=e for e is the zero element of
T and the identity element of G. Hence TCR and
t # e. Therefore t eRq-1-{e}. However t has at least
B (K;q-1) factorizations in RY"  and since B(K;q-1)
>B(usq=-1)+ F(vsq=1)>B(usq-1) we have a contradiction
with the choice of wu. Hence we must have qu-1 | = 2.
This proves part (1) of our lemma.

By Lemma 1.7, s _ gur?' anda ¢~rYT - {e}.
Therefore [Sq-1| = [G|+[Rq-1|-1 = |G|+1. This completes

the proof of the lemma,

The condition that S has property P has given
us the conclusion that the subsemigroup R 1is nilpotent

of class q >1 and moreover the ideal Rq"1 contains
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exactly one non-zero element. By further imposing on

S the condition that all homomorphic images of S also
have property P we shall show that [Rq_2| = 3, qu'a = 4,
ceey [R2[ = g-1. This result will be used repeatedly in
determining those semigroups S which have property P

and whose homomorphic images have property P,

Definition. Let { be the collection of finite

commutative unipotent semigroups such that
(1) if Se g, then S has property P and
(2) if Se &, then 6(S) e { for all homomor-

phisms © on S.

Lemma 1.9 . If Se C, then BRe { and Ge

where G 1is the unique maximal subgroup of S and R
is the nilpotent subsemigroup of S such that S = GvR
and G~R = {el.

Proof. Let S ¢ {5 and let G be its maximal
subgroup with identity element e. Then, by Theorem 1.6,
S=GvRy, GAR = € R‘ is the nilpoteﬁt subsemigroup of
class q>1 and gr =g for all geG and reR,

Since G 1is a finite commutative group it follows
G and 6(G), © a homomorphism of G, both have prop-
erty P. Hence G ¢ C‘.

Let ©6:S—>R be the transformation of S into

R defined by
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x 1if xeR
a(x) =
e if =xe G

® 1is indeed single-valued and onto R. Since gr = g
for every ge G and reR it follows 6 1is a homo-

morphism of S onto R. Since Se & we have RECo

Theorem 1,10 « If Se C sy then

D IRY] =m+1 for m=1, 2, voe, q-2 and

2) | si™® |=]Gl+m for m= 1, 2, «.., q=2, where
qQ 1s the nilpotent class of R.

Broof. We have [S¥"| = |¢ur¥™"| = |6]+|RYT]-1.
Hence to show (2) we need only show [Rg-ml = m+1, By

Lemma 1,9, Se ( implies Re (. Therefore it suffices
to prove this result for finite nilpotent unipotent com-
mutative semigroups RE:C o« Suppose the statement of the
theorem is false. Let Re C be a minimal counterex- |
ample. Let the nilpotent class of R be ¢q> 2. By
Lemma 1.8, qu—1[ = 2 since R has property P. There-
fore there exists a positive integer m, where 1< m< q-2,
such that [R®™| = n+1 for n= 1, 2, oes, m=1 but
188 £ me1. since RIPoRT(E-1)  iyen
|RE™Y > 'Rq-(m-1)| = m, Consequently, [Rq_nl = n+1 for
n=1, 2, soey m=1 but |[RI]> m+1,

Consider the Rees factor semigroup R/Rq-1. By
Lemma 1,7 we know that it is nilpotent of class q-1 and

moreover by (4) of this same lemma we have
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IR/RYY| = |R|-241 = [R|-1,
I(R/Rq-1)q-n[ = [Bq-n[-2+1 =n for n =2, ceey m=1
and [ (R/RY )Y = 1R =241 > m.

However R/Rq'1s C since it is a homomorphic
image of R. Therefore R/Rq'1 is also a counterex-
ample to our desired result which has order less than
the order of R. This contradicts the minimality of

R so our assumption is not valid.

Corollary 1.11 + If Se & and q is the nil-

potent class of the subsemigroup R of S, then

[s/s% " = 1B -1 ana|(s/s% N ] = m
where m = 1, 2, se0y Q=20

Proof. By Theorem 1,10 we have |S3~1 =|G|+1
and | 890 = |G/+m for m =2, 3, .esy q=2. Then
| s/s%N =] sl 8% +1 = (J6|+|R]-1)=(|G[+1)+1 = |R]-1.

Also by Lemma 1.7 we have
m
[(s/s@- 1T = sa2) - 1531 +1 = m,

where m = 1, 25 ecoy Q=20

Theorem 1,12 . If S ¢ ¢ and if q 1is the

nilpotent class of the subsemigroup R, then 1< q¢ 4.
Proof., Suppose q25. R being nilpotent of
class q> 5 gives the following chain of ideals

1

RORIP5RI25R%- 158 - (e},

By Theorem 1.10 it follows |RI™'| =2, |R%™% =3 and
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I'Rq_3[ = 4, Therefore we can choose non-zero distinct
elements v, u, and w from R-{e} such that
r%-1_R9 _ {v}, g3-2_ge-" - {u} and
r3-3_ga-2 _ {(w}.
That is, RY = {e}, R%"
g3~

R4 - {eyu,v, and

L1}
~
(¢]

0
<

~

-

= {e,wyu,v}

Ve 171(1_1-R(I implies v = FqTpeeol where

q-1
rieR-R‘? for 1 =1, 2, e0ey q-1. Consider the (q-1)
elements an =7j'ri where m = 1, 2 eeey q-1. First
of all, each an';ﬁ‘ is an element of Rq-z. Since v =1r a
and since veR¥'-RY it follows that a_ (m = 1, 2,
coey gq=1) 1is not an element of Rq-1; for otherwise
V=raét RR?"! = RY which cannot happen. Therefore
ameRq-2-Rq-1 for a1l m =1, 2, ...y q=1, Hence

m = U for m= 1, 2, eooy q-ld so that v = rou,

m= 1y, 2, seey q-1, and u ="[T'ri for each m = 1,2,440,

o
]

11

ri=r-|—rri_r-a (n # m)

l"n Itm 1-1 n n m
1‘{- n}

Clearly an,mERq 3 for all and m, with n £ m,

n= 1, 2, 000y q-1 and m = 1, 2, 000y q-1. Since

u=r.a and since uce Rq"'z-Rq-‘l it follows

8y e R3"2_RI"% for the above possible values of n and
9

m. Therefore 8ym =¥ for n£gm n=1, 2, ceoy q-1

and m = 1, 2, eeey Q-1. We have thus shown that
v-H ri-rmu,u-H ry = r,w and w-” Ty

=1 1=1,izm 1"', 1é{
where m = 1, 2y csey9 Q=1 and n =1, 2, 0., q=1, ~ok
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We show further that

q-1 q-1 q-1

vV = 1'1 = 1‘2 = e00 = rq_1

q-2 q-2 q-2

(12.1) u = ry = ro = ocee = q_1
q-3 q-3 Q-3

WET o T2 S eee = Tgot

First of all, u = rqw =r(J] ry) = r1 || ry. By finite
s 1=2

induction we can derive
q-k-1

(12.2) u = rk(-rTI' ) for k = 19 29 XXX} q-Bo

We have already shown the truth of (12.,2) for k = 2.
a-tl

a-k
Suppose u = k-TTT'ri. Now r TT'rie R4"3 and since
(rk‘1Tj—r )r = rk 1T1—r =

it follows r% rT‘[’rie Rq 3-Rq- . This implies
-k_ iza

w ?'1 ri and
1=2 1-k-1 1-k-1

u=rws=r, (rk 1-[T'r ) = rkT_r e

12

Formula (12 2) when k q=3 yields u = r%—3r2.
Therefore r?'3e r3-3_ga-2 which implies w = r?’3.
This in turn implies u = r.w = r?’z and v = rqu-= r%-1.

Since R is commutative then by a mere relabeling we
have certainly verified (12.1),

We next show that Ty =Tp = co0o =T Suppose

qQ-1°
two of the ry are distinct; say ry # Too Consider the
Rees factor semigroup S/Sq'1. It is a nilpotent semi-
group of class q-1, | S/Sq'1| = |R|-1 and moreover, by
Corollary 1.11 we have

| (s/53H7Y) < 1, 1(s/53 )] = 2 ana

| (s/s0-1)273) = 3,
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Since S/Sq-1 can be imbedded in S, there exists

a subsemigroup T of S such that

(12.3) T 1is nilpotent of class q-1,

(12.4) |T] = |R|-1, and

(12.5) 1797 = 1, 129°%| = 2 and 1977 = 3.
Actually T is a subsemigroup of Ry for e is the zero
element of T and hence T~ G = e, Condition (12.5)
implies we can choose two distinct elements 1 and t*
in T such that 1972-1%"1 _ (4} ana 13701972 o (gx},
Moreover tt = e for all te 7. Also te 142 gd~2

= {e, u, v}; hence we have either T=u or t=v

Since we are assuming r, # r, and since |T| = |R|-1
we have either r;eT or r,eT, Therefore either
r?-ze p9=2  op rg'ze 192, But u = rd2 - rg'z, 80

we will always have uce 192, However wt R which
implies wu#¢ 29~1, Hence we 1972_1%"1 ynien yields

u =%, On the other hand, since either r,eT or r,eT
we should have either e = rit = rqu or e = r,t = rou.
But we know v = rqu = rou and hence we have our con-

tradiction. Consequently we have ry = I, = oo = L1

so that

(12.6) v = r?-1 =ru, us= r?'z = IV,

- Q-3
W—r1 °

Our next step is to show that u = r?‘z is the

only faetorization of u in R3-2, fThat is, if

2
U = 818psee85_ 0y where s83e R-R , 1is a factorization
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of u 1in Rq-z, then we shall show that s, = s, = ..o
= 8y.p = Tqe Assume at least one of the above s, # T3
say s, £ Tye

2
We have u = 3182°°.8q;§' where siEIR-R s and

8, # rye The elements b = il Sy (m=1, 2, ceey q=2),

- fe¢m
are elements of RY 3. Moreover u = smbm, for

T it follows

m=1, 2, 0oy q=2, and since ueRq'z—Rq'
bms RI-3_rR4"? for m = 1, 25 o009y Q=2+ Therefore

w = bm for m =1, 2, eoey q=2. However
-2

s1w = s1b1 = 511-2'9i = s132...sq_2 = 1u
and
1-3 -3
u = S1W = S1i|.1| Si = 811;2" Bio

Using finite induction in the same manner as

employed in formula (12.2), we obtain

q-k-1

(.12.'7) u = 31 Sj_’ k: = 19 29 ce ey qf'3o
:2.

i
For k = q-3 1in (12.7), we find that u = s37’s,. Hence

s?“3 is an element of Rq-3-Rq'2 so -that w = s%-3.

This implies u = s,w = s%’z and v =rus= r1(s1w)

= 31(rTV) = 8,u = 82-1.

Again we consider the Rees factor semigroup
S/Sq'1. As before we have the existence of a subsemi-
groupp T of R which has the properties (12.3), (12.4)
and (12.5). Note that r, is not in T3 for otherwise

v = r%’1e 791 _ (e} which is impossible. Since 8, £ 1y,

r,4 T and |[T|= |R|-1, it follows s,e T. But this

is certainly impossible for
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v = s$-1€ Tq-1 = {e}.

Therefore s8; = 8, = o0 = 8q—2 = T which gives

u = r%'z is the only factorization of u in rI-2,
The above result gives us that w = r?-3 is

the only factorization of w in Rq-3; for suppose
W= 898y¢0e8,_ 35 where s, ¢ R-Rzo Then

2 1

and r1(s152°.°sq_3)e R3°-RY"', It follows from the

unique factorization of u 1in Rq-2 that 84 = 8,
= ees =8, 3 = Tqe Hence w = r?'3 is the only fac-
torization of w in RO,

Up to this point our arguments have shown that
if Se £ and q25, then we must have

v = r?-1 = rqu, where Rq-1-Rq = {v},

(12.8) u r%-z = r,w, where ra-2_ga-1_ {u} ,

I

w = r?_3, where RIP-RI2. {w},
r?-z is the only factorization of u in Rq-2 and

W = r?_3 is the only factorization of w in rRY3, we

u

will proceed to show that this situation cannot occur so
that our assumption that Se ¢ and q>5 1is false,

We again consider the Rees factor semigroup
S/Sq'1. As before, it is nilpotent of class q-1,
15/501] = [R|-1, 1(s/sT D)%% =2 ana [(s/5%1)%77) = s,
We therefore know that the sets

(5/59-1) 372 1(5/59-1) %" ana (5/59-1)%7 - (5750197
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are one—element sets. It will help us to know exactly
what these elements are and also the manner in which
they are factored in S/S%9~', The elements of §/s9~!
consist of the zero element KO = 821 and all one-
element sets Kr = {r} where re¢ R-R3~1, Therefore
K = {u}, K, = {w} and Kr1 = {rq} are all non-zero
and distinct elements of S/Sq-1. However u = r?"z

and w = r?_B imply

Ky = Ky, 0Ky 0.0, 0Ky = (Kp )% % (s/59°1) %7
and

Ky = KI‘1 OK1‘1 Oees?® K1'1 = (Kr1)q-'3 € (S/Sq-1)q-30
Moreover, from |($/59-1)8=2| = 2 and|(s/s3-1)3-3] = 3,
it follows

(s/sa-1)4%(s/sa-1)%" = (x,} and
(s/5a-1)372_(s/5a-1)072 _ g, 1.

Se& dimplies S/Sq-‘I can be imbedded in S so
there exists a subsemigroup T of R such that condi-
tions (12.3), (12.4) and (12.5) are satisfied., From
condition (12,5), we have the existence of two distinct
elements t and t* in T such that T372-19"1 = (4}
and T19°3_79-2 _ {t*}. But since t and t* are the
isomorphic images of' K, end K, in S/Sq'1 respec-
tively and since Ky = K%;Z and Ky = Kg:3, it follows
we have the further condition;

(12.9) there exists an element t,¢T such

that § = ¢35 t% = t377 and thus t = t,t*. Also
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tet = e for every teT,
Since te Tq-ZC;Rq-Q = {e, u, v} we have either
2=u or t=v. We show that neithef situation is
possible giving us our desired contradiction.
Case 1: Suppose %t = v. Now t*c¢ Tq'Bg;Rq"3

u or t* = w,

= {e, vV, u, w}s But t £ t* so that t*
{ -

]

If +* = u, then t1t* = t 1implies t1u
%)

Vve. But

-2 -
v=tus= t1r? = (t1r? ri. This gives

t,r30 e RY2_r1"" 50 that w = t,r370, But ¢

the only factorization of u in RY2 5o that ry = t,.

q-2 is

This would imply u = t* = t?-B = r$_3 = w which is

w. But w = r?‘3 1s the

only factorization of w in R%"? 50 that t, =TI

not possible., Hence t*

-2, p2=2 Byt yu e RI"2-gY"’

Hence rye T and thus u = r,
implies wu ¢ 7a-2_pa=1 _ {t}. This again is impossible
since % = v. |

Case 2: Suppose %t = u, Now 1 = t?_z so that
u = t?-ze R%2, However r?-z is the only factorization
of u in Rq_’2 so we must have +t, = r,., Therefore
rye T and then, by condition (12.9), it follows

V=rqus= r13 = e which again is impossible,

We shall now describe three classes of finite
unipotent commutative semigroups in which the structure
of these semigroﬁps can be completely determined. We

will show later that these three types of semigroups are



31

the only finite unipotent commutative semigroups in the
class 5; .
Let G be any finite commutative group and let

R2 be a finite unipotent commutative null semigroup
(i.e. nilpotent class 2)., Identify the identity element
of G with the zero element of R2; denote this idem-
potent by e. Define gr = g for every geG and
reR,. Let S, = GUR, where GAR, = {e}. Then S,
is a finite unipotent commutative semigroup. For a given
finite commutative group Gy, the structure of 82 is
completely determined. Let ¢ g be the collection of
those finite unipotent commutative semigroups of the
form 82.
Let R3 be a finite nilpotent unipotent commu-
tative semigroup of class 3 such that

14.1) [R5| =2 and

14,2) R; has a nilpotent subsemigroup N of

class 2 with |N| = IRi -1,

Identify the zero element of R3 with the iden-

tity of G. Let e denote this idempotent. Define
gr = g for every ge G and re R3. Let S3 = Gn:R3
where Gn R3 = e, Then S3
mutative semigroup. Again its structure is completely

is a finite unipotent com-

determined for a given finite commutative group G. Let
be the collection of those finite unipotent commutative

semigroups of form S We can actually give the

30

AR
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multiplication table for semigroups 83 3 ¢;°

Let

G = {e’ 819 eeo0y gn}, R3 = {e, r19 so0o0y rm9 V} and

R% ={e,v} :

Sz| e & « . 8 lry roe o rpe oy v
e e € ¢« 0 @ 6 o © e
Cayley Table |
€1 €1 &1 o 810 o &1 &1
o for [ o B . . °
° group G : ° ° ° . °
€n Lgn €ne ¢+ &ne - &y &p
- 31— -e. —8—1-.—0—.—8; ' e_ -e—.—’—_—O_._e— —e_
r2 e 810 e o gn: e € oo 0o _ e o © e
N I cl. . ) . .
[ L] L] ° I ° ° o L] L]
Trnl e &1e ¢ o Bul . _ o o _ o o _ e
L] ° L] [ J I [ ] L] L [ ] °
o R
rple g«e o o8 le €. o _ooe e
I
v e €1e o o gn| e € o 0o € o o © e
I
The elements to be placed in the blank spaces occurring
in the row and column of the element r_ are to be any

n

element of R2 = {e, v} such that associativity and

5 .
commutativity hold. The subsemigroup N of

N = RB—{rn}.

R3 is

Let R, be a finite nilpotent unipotent commuta-

tive semigroup of class 4 such that
15.1) [R5 |=3 and |R}|=2,

15.2) Let ue Ri—Rz and let v e Rz- Ry

4
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There exists exactly one element rie R4— Ri such that

v = r? and u = r?. Moreover u = r% is the only

factorization of u in Ri,

15.3) I"I'15RZ for every reR, with r £ Ty,

15.,4) there is exactly one element rg e R4- Ri

where rg # rqy V= r(z) and rr; 1is the zero element
of R for all reR-{rgy, ryl}.

15.5) M = Ry~ {rp, rq} 1is a null subsemigroup
Of R4o

Identify the zero element of R, with the iden-

4
tity element of Gg denote this idempotent by e. De-
fine gr = g for every geG and reR4. Let

S4 = GvR4 with G~ R4 = e, Then S is a finite

4
unipotent commutative semigroup and its structure, for
a given commutative group G, 1is also completely de-
termined, ILet § « be the collection of those finite
unipotent commutative semigroups of form S4. Again we
can actually give the Cayley multiplication table for
Sp€ Cae We do this below. Let G ={ e, 81y seey gn},
Ry={e, vy Uy gy Tqy ooy rm}, Ri ={e, v, ul,

3
Ry

{e, v} and Ri = {e}ks
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S4 € &qs o o gn: g Ty Tpe o T u Vv
e ie e e. .e e e
Cayley Tablel
& for |§1 &1 &0+ & & &
) group 6 | . . . 1 . .
€n | &y & &, ¢+ & &y &y
TR (T e T g T T T e T e T
Tyl &0 0 o By W _ ... _ V e
il R SR .
S O L U S
u le g0 . .8 le v e..e e e
v ole g0 . . &) :e e e..e e e

The elements to be placed in the blank spaces occurring
in the row and column for the elements T and r,
are to be any element of Rz = {e, v} such that the
associative and commutative laws hold,

We shall first show that the classes Zzg, ‘;,
and Z;., are subclasses of the class ﬁ. According to
the next lemma it suffices to show that R2, R3 and

R4 are members of 3;.

Lemma 1,13 . Let R be a finite unipotent nil-

potent commutative semigroup and let G be a finite

commutative group whose identity element is identified
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with the zero element of R where gr = g for every
ge G and reR. If Re [ then S=GvReC 0

Proof., Let A Dbe a homomorphism of S onto S¥*,
Then XA|R = R*¥ 1is a finite unipotent nilpotent commu-
tative semigroup; its zero element is e* = A(e) where
e 1is the zero element of R, Also A|G = G* is a finite
commutative group with identity element e* = A(e).
Since Re § and Ge [ it follows R¥e L and G*e (.
But S* = R*w G*, R*n G* ={e*} and g*r* = g* for every
g*e G* and r*e R¥ Hence S* 1is a finite unipotent
commutative semigroup. Since R* and G¥ can be
imbedded in R and G respectively we have S%* can
be imbedded iﬁ S. Hence S has property P.

Now R* and G* have property P so that one can
apply the same argument on S* as was applied on S +to
deduce that S* has property P. Therefore Sc¢ ;'o

Theorem 1,14 . ?ag ; and Fsg_;o

Proof. Let R, ¢ ¢a. A homomorphic image of a

finite unipotent nilpotent commutative semigroup of
class 2 is either a trivial semigroup or is one of the
same type. Hence Rze C. By Lemma 1.13, it follows
S, € ;. Hence ;'g;”

Let S3 = G~'R3e ;;. We need only show RBE Co
Now Rg = {e} and R%-{e} = {u}. Also ru=-e for every

re Rse. Let u = uqu,, where uieR3-{e} and 1 =1, 2.
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However |N| = |Rs| -1 implies there is exactly one
element ae?RB-N. u, and u, do not both belong to N;
for otherwise u = uu, = e which is not possible.
Therefore either u, =8 or u, =a. We have shown
that whenever u = WUy where uy € 33‘R§9 then u, = a
or u, = a.

Let p be a congruence on 33 and consider
R3/pw° We shall show R3/p belongs to the class C’o
Let K, = {xe R3[xp e}, Kqy Kyy eeey K be the equiv-
alence classes of R3 mod p . K, 1s the zero element
of R3/p .

Case 1, Suppose asKe. Then ape implies
w,apu,e and hence upe. Therefore ue Ke‘ Since a
does not belong to K, (L =15 2, eoey m) 1it follows
each class K, (L =1, 2, eoey m), considered as a sub-

set of R3, is actually a subset of the subsemigroup N.

1, eceg I

But N° = {e} so that KinC:NN = {e} for 1
and J = 15 ecey me Thus KiOKj = Ke for 1 =1, ceey m
and J = 1y eeey m¢ From each class Ki’ 1 =1, ceey my
choose an element by. ILet T = {ey byy 0oy bm}o Every
b, 1is an element of N so it follows bibj= e for
i=1) eeeym and J = 1, eoey m« Consequently T 1is
a subsemigroup of R3. Define the transformation
as R3/p-—> T as follows:

a(Ke) = e and a(Ki) =b; for i=1,2, ooy m.
a is an isomorphism of R3/p onto T so we have R3/p
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imbedded in R3. Hence R3/p has property P.

Now T 1is nilpotent of class 2 and therefore
R3/p is nilpotent of class 2. But we already know
such finite unipotent nilpotent commutative semigroups
have property P. Hence R3/p has property P. Since

R3 and R3/p~ have property P, it follows R3 € ;o

Case 2. Suppose a does not belong to Ke but

ue Ke‘ Let ac K1. Then each equivalence class Ki’

(1=2, 3, ooy m), considered as a subset of R is

3’
actually a subset of the subsemigroup N. Therefore

KiOKJ=Ke for 1 =2, 3, eeo, m and J=2, 3, see Mo

Moreover K1 OKi = Ke for 1 =1, 25 ¢sey m3y for let

r1r2 € K1Ki where r,' € K1 and r2 € Ki' Since

2 _
1'1r22R3 = {e, u} and since ueKe, it follows r1r2p €,

Therefore K, K, CK so that K, oK, = K , for
171 e 1 i e

i=12y eeey ms The elements of R3/p have the fol-
lowing productss

KeoK =Ke and K,0K =Ke for all i and j.

i i J
From each equivalence class Ki’ 1 =2, 3, c0ey my

choose an element 8. Let T = {e, u, Bys eees am}.

Now aiaj= e fori=2, ceeygm and J = 2, «e0oy m 8ince
they all are elements of N. Moreover ua, = e for all
i=2, ¢¢ey me¢ Therefore T 1is a subsemigroup of R3e
Define the transformation a: R3,6—-> T as follows:

G(Ke) = e, G(K1) = u and a(Ki) = 8 fori =2,

eeoey Do
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@ 1s an isomorphism of Rz/p onto T so that By
has property P.

Moreover R3/p has property P for it also is
nilpotent of class 2., Thus we have R3 € ?o

Case 3., Suppose both a and u are not elements
of Ke. If apu, then uapu,u which implies up e.
This cannot happen so that a and u belong to distinct
equivalence classes. Let agK1 and uce K2‘ Now each
Ki’ i =2, 3, ¢eey my are actually subsets of N,
Therefore KIOK;] = Ke for 1 =2, ¢0oym and j = 2,
esey M, Also K1oK2 = Ke for ueK2 and ru = e for
every rg R3. However either K1 on = Ke or K1 on= K2
for J # 2., This follows from the fact that either

ar = e or ar =u for reR3o The products in R3/p are

KoK, =K, for i =1, ceo, m, KiOKj‘:Ke for 2¢ 1i<m
K0k, = K, and either K, on = K, or
K) oKy = K, for £ 2.

From each class Kj’ jJ=3y 4y ¢coy my, choose one ele-
ment aye Let T = {e, a, u, 83y By eeey a.m}, Since
e <;R§ = {e, u}, 1t follows T is a subsemigroup of
Ry. Define @ tRz/p—> T as follows:

a(Ke) = e, a(K1) = a, a(K2) = u, a(Ki) = gy for

1 =73 4, ¢00y M.
One can check that a is an isomorphism of R3/p= onto
T. Hence R3 has property P,

By studying the multiplication in R3/p one can
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determine that R3/p will be either nilpotent of class
2 or will be a semigroup of the same type as R3° Hence
R3/p has property P.

These cases all yield the same result; namely

R3 € ; o By Lemma 1,13, it follows 83(;; and hence

;sg;.

Theorem 1,15 . ch ¢o

Proof. Let R,c¢ ;4 and let p Dbe a congruence
on R, and consider R4/p. Since R, e ;. it has prop-
erties (15.1) thru (15.5) introduced earlier. Let e, v,
u, ry and o be the elements of -R4 as defined in
properties (15.1) thru (15.5). The equivalence classes
mod p will be denoted by Ke, K1, K2, ecoy Km, where
Ke = {x eR4|xp e}. We again need to consider several
cases,

Case 1., Suppose r,e Ke' Then r‘12p e and
r?p e 80 that u and v both belong to Ke" Conse-
quently, the equivalence class Ke contains
2
4
and J = 1y eooy Mo That is, R4/p is nilpotent of

RS = {e, v, u}l. Hence K; 0Ky = K, foralli=1, .cop m

e
class 2. Now [Kel >4 80 that m¢ |R4|-4. But

M| = [R4[-2 where M = 114-{1'0,1-1 }. Hence for each
equivalence class Ki (1 = 1 e00y m) we can select

an element a where a, £ aj if 1 £ j, from the

i’
set M. Let T = {e, By ceos am}. Property 15.5 gives
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aiaJ = e for all 1 and Jj. Therefore T is a sub-
semigroup of R,. Define a :R4/b-—> T by a(Ke) = e
and a(Ki) =a; for 1=1, +e0y mc @ is an isomor-
phism of R4/p* onto T. Therefore R4 has property P.
Since R4/p is nilpotent of class 2, it follows
R4/p has property P. Thus R, ¢ Co
Case 2, Suppose r, does not belong to Ke but
ueKe. ueKe implies r,up r,e 8o that vpe. Hence
veIKe. Therefore the set Ke contains the ideal
Ri = {e, v, u}, and, as in the above case, we must have
KioKJ = Ke’ where 1 =1, ceeym and J = 1y ceoy Mo
But [K,|> 3 so that mg|R,|-3. Hence m< [M| and

consequently for each equivalence class Ki (1 =1, 2,

cesy m) we can select an element a;, with a, £ ay

when i £ j, from the set M., Let T = {e, 84y 8y ...,am}.

T 1is a subsemigroup of R4, by property (15.5). Define
as R4/p—> T by oK) =e and a(K;) = a; for
i=1, 2, eeey M a is an isomorphism of R4/p onto
T and we conclude that R4 has property P.

As in the previous case, R4/p is nilpotent of
class 2 so that R4/p has property P.

Case 3, Suppose r and u do not belong to

1
Ke but ve Ke' Suppose r,pu. Then r?pr1u which

1

implies up ve But this is impossible so that r, and

u belong to distinct equivalence classes. Let r, € K1

and uce K2. Since r? =u it follows K1 oK1 = K2.
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On the other hand K:I. on = Ke except when 1 = j = 1,
This follows from the fact that K,K,C R CK,. Again
m<|M| so for each equivalence class Kiy 1=3, e0uy m
we can select an element ay (a.i # a4 if 1 # j) from
the set M. Let T = {e, rp, V, 835 84y eeos apte T

is a subsemigroup., Define csz4/p—> T by a(Ke) = e,
a(K1) = Igs a(Kz) = v and a(Ki) = ay for 1 = 3,400, Mo
One can check to see that a 1is an isomorphism of R4/p
onto T. Therefore R4 has property P,

By studying the multiplication in R4/p, one can
determine that it is a nilpotent semigroup of class 3
and moreover of the same type as R3. That is, it sat-
isfies properties (14.1) and (14.2)., Hence R4/p has
property P.

Case 4, Suppose Ty U and v do not belong
to Ke’ Then we must have Ty U and v belong to
three distinet p-classes; say ry¢€ K1, uEK2 and
ve K3. Moreover o belongs to some p-class distinct
from K1, K2 and K3. For each equivalence class Ki’
where i =5, 6, 0oy m, we select an element a4y
(ay £ 8y if 1 # j) from the set (M-{u,v}). Let
T = {e, Tgs Tqs Wy Vs Bgy Bgy eeos am}o T is a sub-
semigroup of R, since ngRi CT. Define a sR4/p —> 7
as followss

o(K ) = e, &(Ky) =1y, &(Ky) =u, o(Kg) =,

G(K4) = ro and G(Ki) = a.i for i-= 5, 6, socog Io
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a can be checked to show it is an isomorphism of R4/p
onto T. Therefore R4 has property P.

The multiplication in T shows that R4/p is a
semigroup of the same type as R4. That is, it has
properties (15.1) thru (15.5). Hence R4/b has prop-
erty P.

In each of the above cases, we have shown that if

Sy € ¢ & then R4eZ;o Hence S5,  and we have

C'4€;<:.

We are now ready to prove the main result of this
section. That is, we shall now characterize those finite

unipotent commutative semigroups S where Sc¢ ¢ .

Theorem 1.16. Se & 1if and only if either

1) S 1is a finite commutative group,
2) se Ca,
3) Se Cs, or

4-) Se g‘«:
Proof, If S 1is a finite commutative group then

Se ¢ e Theorem 1.14 and Theorem 1.15 show that when S
is a member of the class Ca, C,;, or (;4., then
S e<:.
Suppose S ¢ (; and S 1is not a group. Let e
be its idempotent, let G be its maximal group and let
R = (S-G) v {e}s By Theorem 1.6, R 1is a finite unipotent
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nilpotent commutative subsemigroup of S of class q> 1
and gr = g for every ge¢ G and reR. Moreover, from
Theorem 1,12, it follows 1< q< 4. We now determine the
structure of S when q =2, q =3 and q = 4,

Case 1, If q =2, then R 1is nilpotent of
class 2 and clearly Sce ;:-

Case 2., Suppose q = 3., By Theorem 1.10, it fol-
lows [82| = |G|+1 and |R2l = 2, Consider the Rees
factor semigroup S/S2. It is nilpotent of class 2 and,
from Corollary 1.11, it follows IS/S2I = |R|-1. But
Se ¢ implies S/S2 can be imbedded in S. Hence there
exists a subsemigroup N of S such that N 1is nil-
potent of class 2, e 1is the zero element of N and
IN] = |R|-1. But N~ G =e so that NCR. Therefore
R 1is a nilpotent unipotent commutative semigroup of
class 3 such that |R2| = 2 and there is a nilpotent
subsemigroup N of class 2 with |N| = |R|-1. There-
fore R has the properties (14.1) and (14.2) so that
Se ¥ 3

Case 3. Suppose q = 4. By Theorem 1,10, it fol-
lows |R2| = 3 and |R3| = 2, We proceed to show that
R satisfies (15.2), (15.3), (15.4) and (15.5). Let
R%- R% = fu} and R3-R% = {v}; that is, R° = {e, v, u}
and R’ = {e, v}.

veE R3 implies v = 1'1r2r3 where riER—R2o Then

2_ 53
TyTos 1'11'3 and ra,r3 are non-zero elements of R"= R
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so it follows u = r,T, = r1r3 = r2r3o Consequently,

V=ru= r1r$ r?. Likewise v = rg = rg and we have
2 2

= and u = r1 = r2 rso

We now show that ry =r, = r3° Suppose two of

vVv=rxr,=7r

N W
ww N

these elements r, are distinct; say r, # r,. Con-
sider the Rees factor semigroup S/S3° It is nilpotent
of class 3 and by Corollary 1,11, |S/83| = |R|-1 and
|(s/s%)?] = 2. since Se { it follows that S/S°
can be imbedded in S, Thus there is a nilpotent sub-
semigroup T of class 3 in S with

(16.1) |T| = |R|=1,

(16.2) |T?] = 2,
Actually T is a subsemigroup of R. By (16.2), there
is an element t*e T with T°-T° = {t*}. From T° = {e}

2 it follows +t+t* = e for all +t¢ T, More-

over t*g T2§;R2 = {e, Vv, u} implies t* = u or t* = v.

and t*e T

We are assuming r, #r, so it follows, from |T| = |R[|-1,

that either rie T or r,e T. Hence either r?e T2 or

rge Tz. Since u = r? = rg then we must always have
uer, But ug 7> which gives us uce 721>, Hence
u = t*,

On the other hand, since either r,e T or Ty ¢ T
we have either e = r1t* =ru=v or e= rzt* = Iou = V.
This indeed is impossible so that our assumption is false,
Hence Iy =Ty =Ty which implies v = r? and u = r?.

Next we show that u = r? is the only factorization
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of u in R~. That is, if u = 848,59 where 8y € R-R",
is a factorization of u in Rz, then we show that
s, = 8, = r,. Assume that at least one of the s, # Ty

say s, # roe Now v = r.u = r,s,s, implies r,8,s TS,

and 8,8, are elements of R2-R3. Hence

_ _ _ _ _ _ 2
u=r,8, =r,s8,=8,8, and v = s,u = 81(r1s1 = r,;87.
But v = r1s$ implies s?e R2-R3 so that u = s? and
v = s3 Again we consider the Rees factor semigroup

1°
S/Sj. As before we have the existence of a semigroup

T of R which is nilpotent of class 3 and satisfies
properties (16.1) and (16.2). Note that r14 T; for
otherwise v = r?e P {e}. Therefore s;e T since
|T] = |R[-1 and s, # r,. But again we have a contra-

diction since v = s?e!r3 = {e}. Thus u = r? is the

only factorization of u 1in T2. We have just shown

that R has property (15.2).
Since rr, Au unless r = ry, it follows

> for every reR with r # ry. This

rer,e {e, v} =R
shows that R has property (15.3)
We proceed to show that R has property (15.4).
Again we consider S/S°. We know |(S/S3)2[ =2 80
that the set
(s/5%)°- (5/8%)°
is a one-element set. It will help us to know exactly

the element in this set and how it is factored in S/SB.

The elements of S/"S3 are the zero element Ko = S3
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and all one-element sets K. = {r} where re R-R°.,
Hence Ku = {u} and Kr1 = {r1} are elements of S/33°
2 32
Since wu = r| 1; follows K, = Kr1<>Kr1 e (s/s7) .
r, is the only factorization of K,
in (S/SB) since u = r? is the only factorization

Moreover Ku =K

of u 1in R2, Therefore
(s/8%)°- (5/8%)° = (x ).

Since S/S° can be imbedded in S, 1t follows
there exists a nilpotent subsemigroup T of class 3
in R which satisfies conditions (16.1) and (16.2).
Condition (16.2) gives the existence of an element t*¢ T
with 12-1° = {t*}. Moreover, since t* 1is the isomor-
phic image of Ku, it follows there exists to eT with

2 2

* = * =
t to. Also t to

t* in T2,

is the only factorization of

From t*e ng;Rz = {e, u, v}, it follows t* = u

or t* = v, If +t* = u, then to = ry for r? is the

only factorization of u in R2. Then v = r?e T3 = {e}

which clearly is not possible. Therefore t* = v so

that v = tg and this is the only factorization of v

in T2. But r1# T so that T = R—{r1}. Hence rty = e

for all re R-{to, r1}. We just have proven property
(15.4) holds in R by taking ry = t,.

Let M = R-{r1, ro}. Let a and b be elements

of M. The fact that r% is the only factorization of

w in B° shows that ab=e or ab=v. Since a # r,
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and b # Ty it follows both a and b belong to T,

But then v £ ab for is the only factorization of

%
v in T2. Hence ab = e for every a and b in M,
Therefore M 1is nilpotent of class 2 and we have shown
R has property (15.5).

Since R satisfies properties (15.1) thru (15.5)

it follows S ¢ C“

Theorem 1.16 completely characterizes those finite
unipotent commutative semigroups which have property P
and whose homomorphic images also have property P. In
our above results we did not need that all homomorphic
images of S also have property P, but only those homo-
morphic images of the form S/Sk have property P. It
is still an open question as to whether this condition

is also necessary.



Chapter 2
Finite Commutative Semigroups of Class ¥

The semigroups which will be discussed in this
chapter are finite commutative bands and finite commu-
tative semigroups which are unions of groups. For such
semigroups S we will again impose the property P
(recall that S has property P if and only if S/p
can be imbedded in S for all congruences p in S).
We will try to determine the fine structure for the
above mentioned semigroups S which have property P

and whose homomorphic images also have property P.
2.1 Certain Properties of Finite Semilattices

In this section we will define a semilattice
(introduced by Klein-Barmen [6]) and develop several

basic properties,

Let E be a finite commutative band. Recall
that a band is a semigroup every element of which is
idempotent. Consider the relation ¢ on the band E
defined by e f (e, f. in E) 4if and only if
ef = fe=e., If e{f we say that e 1is under f
and that f 1is over e. The relation  on E 1is a

48
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partial ordering of E., That is, < 1is a reflexive,
antisymmetric and transitive relation on E. To see
that < 1is a partial ordering on E, 1let e, f, g € E.
(1) €2 = e and hence e e. (2) If e¢ f and f¢ e,
then ef = fe = e and fe = ef = f, consequently e = f.
(3) If e<f and f< g, then ef = fe = e and
fg = gf = f, and hence

ge = eg = (ef)g = e(fg) = ef = e.
Therefore e< g. We shall call < the natural partial

ordering of E.
We define a meet-semilattice as follows, Let X

be a partially ordered set., An element b of X |is
called a lower bound of a subset Y of X 1if y> b
for every y in Y. A lower bound b of Y 1is a
greatest lower bound or meet of Y if b2 c¢ for every
lower bound ¢ of Y., If Y has a meet in X, it
is clearly unique. A partially ordered set X 1is called
a meet-semilattice if every two-element subset {a;b}
of X has a meet in X3 consequently every finite
subset of X has a meet., The meet of {a, b} 1is
denoted by an b.

A commutative band E 1is a meet-semilattice
with respect to the natural partial ordering of E. The
meet, a~ b, of two elements a and b of E is Jjust

2

their product ab. PFrom (ba)a = ba = ba and

(ab)b = abl = ab, we see that ab<a and ab{ b.
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Suppose cga and c¢b. Then (ab)c = a(bec) = ac = c,
and similarly c(ab) = ¢, whence c<ab. This shows
that the meet of {a, b} 1is precisely ab.

It is evident that the converse is true. That is,
every meet-semilattice is a commutative band with respect
to the meet operation. In this thesis, the term semi-
lattice will mean meet-semilattice and consequently we
will use the term semilattice as synonymous with commu-
tative band.

We know that every finite subset of a semilattice
has a meet. Therefore, if E 1is a finite semilattice
it follows E 1itself has a greatest lower bound or meet;
we denote it by 2z. Then 2z<e for every ece¢E 8o that
ze = ez = 2, Clearly 2z 1is unique and hence 2z 1is the

zero element of E.

Lemma 2,1 ., If E 1is a finite semilattice and
a, by, c and d are elements of E, then

(1) a>b and e¢>d imply ac>bd, and

(2) a2b implies xa 2xb for every x¢cE,

Proof: (1) a2b and c¢>d gives ab =ba=1D>
and cd = dec = d, respectively. Therefore
(ac)(bd) = (ab)(cd) = bd so that ac 2bd.

(2) (xa)(xb) = xz(ab) = xb so that xa>xb for

every x¢E,



51

In this section and the following one, E will
always denote a finite semilattice, 2z its zero element
and "»" the natural partial ordering of E. We now
define several concepts which are needed in the following

arguments,

Definition. ILet a and b be two arbitrary
elements of E., If a2b or a¢ b, a and b are
said to be comparable; in the opposite case, a and

b are said to be incomparable elements, which is ex-

pressed by a||b° Further symbols used are < and
>, signifying a<bd or b>a, if ab but a £ b,

Definition. If for a pair of elements a and
b of E; a<b holds and there is no element x in
E such that a<x<b, then it is said the element a
is covered by b (or b covers a)., This situation is
expressed by the symbol ac<<b (or b>>a). Accordingly,
agkb will symbolize that "b either covers or equals

a"; in short, "b at most covers a",

Definition. A subset T of E 1is said to be a
chain (or simply ordered set) if and only if for every
pair a, b in T, either a>b or b>a. By the
length of a chain T consisting of m+1 elements (that

is, being of the form x;< X;< ces¥ xm) we shall mean



52

the non-negative integer me A chain T from a to b
(g,  in T), of length m, is of the form a = Xg> X4
2 cee? X, = b. It is said to be a maximal chain from

a to b, if x; covers x5 4 (1 =0, 1, ¢ooy m=1),

(That is, being of the form a = xXP>...>>x) = b.)

Definition. An element a of E 1is said to have

dimension d (written d(a)), where d 1is the length of

the longest maximal chain from a to 2z (the zero ele-

ment of E). We will make the convention d(z) = O.

Lemma 2,2 . (1) For every a and b in E,
a>b, there exists a maximal chain from &a to b,

(2) If a>b, then, for the non-negative inte-
gers d(a) and d(b), d(a)> d(b).

Proof. If a»b, we then have a maximal chain
from a to b, If a does not cover b, then there
exists an element x in E such that a>x>b., Con-
sider the set T(a, b) of all comparable elements Yy
in E with a>y>b. T(a, b) is a non-empty and finite
chain. Choose x4¢ T(a, b) with x,;2y for all
ye T(a, b)e Then >>x,> b, If x, covers b, we
would have a maximal chain from a to b. If not, con-
sider the set T(x1, b) of all comparable elements y
in E with x,>y>b and choose X, in T(x1, b)
such that x,2y for all y e T(xq, b). We then have



53

a>>x9>>Xp> b.
By finite induction, we get a chain of elements
8y Xq5 Xoy eeey Xpy oo such that
a>>x1 >>12>>. . °>>xn>>. ce D> be
Since E 1is finite, it follows we get an element Xp
which covers b and hence a maximal chain
a>>x1>>...>>xm>>b from a to b.
(2) By part (1), there exists a maximal chain from
a to b, say a = ao>>a1>>..,>>am =bs If b =2 we
clearly have d(a)> d(b)s. For a>b and b #£ z, choose
a maximal chain from b to 2z having length d(b) = n;
say b = b0>>b1>>“’>>bn = 2z, Then
a = aO>>a1>>"°>>b>>b1>>°°°>>bn= z
is a chain from a to 2z having length m+n. Since
m>1, it follows d(a)> m+n>n = d(b). This completes

the proof of the lemma,

A homomorphic image of a finite semilattice
(commutative band) is clearly a finite semilattice
(commutative band). If © is a homomorphism of a finite
semilattice E onto E*; we shall use the same symbol
"<" to denote the natural partial ordering in the semi-
lattice E*, We end this section by developing some
inequalities involving the dimension function of ele-

ments a in E and o(a) in E*,
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Lemma 2,3 . Let E be a finite semilattice and
® a homomorphism of E. Then d(a)) d(6(a)) for every
ace E,

Proof. Let @ be a homomorphism of E onto E¥,
acE and a* = g(a) eE*, Let 2z* be the zero element
in E* (z* = 6(z)) and denote d(a*) =me If m= O,
then d(a)> d(a*) = 0 since d(a) is a non-negative
integer.

Suppose m>» O. Then we can find a maximal chain
in E* from a* +to z* having length m;

a¥* = a6>>a:>>...>>a; = 2% ,
Consider the following subsets of E:

9"1(aI) = {x¢eE|6(x) = aI}, where 1 = 0,171,440 m.
Since 6 1is a homomorphism of E onto E*;, it follows
6_1(a;) is a non-empty subsemigroup of E and
6-1(a;)n é-1(a*) =@ for i # j. Moreover

J

-1 -1 -1
* . * * i=0 1 R -1).
e (ai)e (ai+1)ge (ai+1) ( s ly y m-1)

Indeed if x¢ e'ka;) and y¢ &’ka;+1), then 6(x) = a;

and o(y) = a* _, respectively. But

i+1
=06 8 = gig¥* = g¥*
e(zw)1 (x)e(y) aya} . = a}
that B * °
so that xy e 6 (ai+1) 1
Now a¢g 6-1(36). Choose Vi€ e~ (a;). Then
8, = ay,¢ 6'1(a6)e'1(a:)g;e'1(a:). Consequently a> a,.
Choose y,¢ 6'1(9.*2*). Then a, = a,¥,¢ 6'1(a*2*) and
a>a,> ay. Continuing in this manner we obtain a chain

a>ay>a,> cee>8ay 4, Wwhere a e 6-1(9.;). Now zee‘1(ax;)
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and z = —12 Thus we have constructed a chain

8n
a>a1> 8.2) cee >am_1 >am = 2

from a to 2z of length m. Since d(a) is the length
of the longest maximal chain, it follows m( d(a) and we

have proven the lemma.

Definition. An element ae E 1is called an atom

if and only if a covers the zero element of E. (That

iS, a>>z.)
Note. An element aeE 1is an atom if and only
if d(a) = 1. Below we introduce some very important

subsets of E,

Definition. Let a be an arbitrary element of

E. We denote the set of all elements x in E satis-
fying the inequality x<a by (a] and the set of all
x in E satisfying x>a by [a).

Lemma 2.4 . Let a be an element of E. Then

(1) (a) is a subsemigroup of E and

(2) (a] is an ideal of E.

Proof. (1) Let x, ye [a)e Then x>a and
y>a so that xy> a’= a. Hence xy ¢ [a) which shows
[(a) 1is a subsemigroup of S.

(2) Let e¢E and xe(ale Then x<a and
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xe<x<a so it follows xee(ale Thus (a] is an

ideal of E.

Lemma 2.5 - Let A be the set of all atoms in
the semilattice E. Then B = Avz 1is an ideal of E.
Moreover if A 1is the natural homomorphism of E onto
E/B, then d(2A(a)) = d(a)-1 for every ace E-B,

Proof. Let peA. That is, let p be an atom
in E. Then (pl = {2z, p} and, by Lemma 2.4, it is
an ideal of E. However B = g\(p] so it is also an
ideal of E. Consequently we can consider the Rees
factor semigroup of E modulo B, The ideal B 1is
the zero element of E/3 which we will denote by K, .
The remaining elements of E/B are one-element sets
{x} where x¢tE-B. We denote these elements by
K, = {x}. Let A Dbe the natural homomorphism of E
onto E/B. Then

K = {a} if aeE-B

a

Kz if aeB .

Let ae€E-B. Then A(a)

Aa) =

K,¢ E/B. By Lemma

2.3, d(a(a))< d(a). Since a has d(a)> 1, then
there is a maximal chain from a +to 2z having length
d(a) = mg

a = a.o>>9.1 >>...>>am_2>>am_1 >>am = Ze
Now a, . is an atom of E so that a; 4 ¢B. But
aié B for i=0, 1, ¢esy, m=2, Hence Ka = {a},



57

Ka1 = {a1}y ceey Kam 5 = {ap_o} are non-zero elements
in E/B and moreover

Ka = Kao>>Ka1>>ooc>>K >Kz-

Indeed;, if there exists Keg E/Bamsich that KaiZ Kz_Kai+1
(1 =0, 1) 000y m=3), then K = {x} where x¢ E-B
and

Kai oK =K and Ko Kai+1 = Kai+1°
Consequently KaiK = {aixig;{x} and KKai+1 = {xaj,1}
<{8i4+1}s This implies ayx = x and xaj, 1= a4,
which yields 842 X2 84,10 Since ay>>ay,9 we must
have a4 = x or aj,q7 = X, Therefore K = Kai or
K=K so it follows Ky >>Kai 1 for 1 =0, 1, eoey

8141 i +
m-3., Therefore we have a chain from 2A(a) = Ka to
Az) =K, in E/B of length m-1 = d(a) -1. Hence
d(a(a)) 2d(a)-1 and more precisely d(a)-1g¢ d(a(a))
€ d(a) = m. '
Suppose d(A(a)) = d(a) = m. Then we have a

maximal chain in E/B from 2A(a) = K, to K,

(5:1) A(a) = Kg = Kg>>K;>>e e 22Ky 123K,
of length m. Since Ky #K, for 1 =10, 1, +o., m-1
it follows Ky = {ai} where aje E-B, 1 = 0, 1,000, m-1,
But (5.1) implies a = agp>>ay>>.eo>>ap 4. Now a; 44 B
and there exists an atom ajpe B such that ap 4> ap.
Hence we have

(5.2) a = ag>>a>>eeodday _q >8> 2

which is a chain in E from a to 2z having length m+1.
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But this is impossible since the longest maximal chain
from a to 2z has length d(a) = m. Therefore
d(a(a)) #m so that d(a(a)) = d(a)-1 and we have

proven our lemma,

Lemma 2.6 . Let M Dbe a subsemigroup of E
which contains the zero element 2z of E. Then the
number of atoms in M 1is less than or equal to the
number of atoms in E,

Proof. Since 2z eMCE, it follows =z 1is the
zero element of M. Thus if p is an atom of M, +then
p>>z2. Let n denote the number of atoms in M and let
81y 829006y 8, be the distinct atoms in M. For each
ay, form the set T(ay, z), of all comparable elements
eeE such that ay2 e>z. T(ay, z) is a non-empty
chain. From each chain T(ay, z) choose a minimal ele-
ment ej3 l.e. ejge for every ee:T(ai, z)s Then we
have g>eyy» z for 1 =1, 25..., n. However the ey
(1 = 150005 n) are all distinct; for if ey = ey then
aj2 ey and 332 ey Wwhich in turn implies
z = aiajz ej = ey, & contradiction.

Thus each atom a;y in M (1 = 1,..., n) gives
rise to an atom ey in E (i = 1,..., n) so that n
is less than or equal to the number of atoms in E. This

completes the proof of Lemma 2.6,



59

Note. It might help the reader, when reading
through a proof involving finite semilattices, to actually
represent the semilattice by a diagram. To obtain a dia-
gram of a semilattice E (Every non-void finite partly-
ordered set can be represented by a diagram, [ Birkoff (9],
Theorem 4]), represent each element a of E by a small

circle C in the plane of the drawing (denoted by the

a
letter a), such that if a< b (a, beE), the circle Cy
is above G now consider each pair of elements x, y in
E for which x<<y and connect circles Cg4, Cy repre-
senting such pairs of elements by segments. The resulting
figure is the diagram of the set E with respect to the

natural partial ordering on E. Below are four diagrams

representing all (non-isomorphic) semilattices of order 4.

2.2 Finite Semilattices in the Class ¥

We now begin to determine the structure of finite

semilattices E which have property P and whose homomorphic
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images also have property P.

Definition. ILet M be the collection of all
finite commutative semigroups S such that

(1) if Se X, then S has property P and

(2) if SeH, then 6(S) ¢ % for all homomor-

phisms 6 on S.

Suppose E 1is a finite chain semilattice; that
is, every pair of elements of E are comparable. Let
6 be a homomorphism of X onto the finite semilattice
E*, Recall that we use the same order relation used in
E to denote the natural partial ordering of E*, If
x<y, (x, yin E), then &x) = &xy) = o(x)e(y) so
that g(x)¢ 6(y). Therefore a homomorphism 6 on E
preserves the natural partial ordering in E. Hence,
if E is a chain of length my, it follows E* 1is a chain
of length at most m. Thus it follows finite chain semi-

lattices are members of the class 3f.

Definition., An element a of a semilattice E

is said to be reducible if there exists in E elements
8,y 85 such that

(1) a = a8, (a1, a2>'a).
If some a has no decomposition at all of the form (1),

it is said to be irreducible.
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If the semilattice E has at least two atoms
aqy and ap, then clearly its zero element 2z 1is re-
ducible. Every non-zero element of a finite chain semi-
lattice is irreducible. We now develop several neces-
sary conditions for a semilattice E, which contains
a reducible element a, to be in the class H. 1t a
is reducible in E,; then there exist elements a4, a,
in E such that a = a;ap, with a;>a and ap> a.
Since E 1is finite we can find elements b and ¢ in
E such that a2 P>a and ar2 c>>a. However
bc{aja, = a and bc> a-a =a so that bec = a. Conse-
quently we shall study finite semilattices E e # which

contain an element a with a = be (b>>a, cd>da).

Lemma 2.7 . Let E be a finite semilattice with
Ee 3. Let a, b, and c¢ be elements of E such that
a is an atom in E and a = be (b>>a, ¢>>a). Then
p< b or p<c for every atom p in E.
Proof. To show p<b or p<c for every atom
p in E we need to show pb =p or pc = p. Assume
the contrary. That is, suppose there exist four ele-
ments a, b, ¢, p in E € ¥ such that
a and p are atoms in E,
(7.1) Ja =be with b>>a and c¢>>a, but
pb # p and pe £ p o

Clearly these elements are mutually distinct. Consider
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the maximal chains
D>a>>z and c>>ad>>z
and the ideals
(a] = {2z, a}, (b] = {xeE|x<b} and
(e] = {xeE|x<c}.

The element p is not an element of either (b] or
(¢), since bp # p and cp # p. Moreover =z, a, b
belong to (b] and 2z, a, ¢ belong to (c]. We need
to study two separate cases.,

Case 1. Suppose (b] = {z, a, b} and
(c]= {2z, a; ¢} Then (b]Ja(c] = (a)e. Let q be the
number of atoms in E. Then 2< q< |E[-2, since a
and p are atoms in E but b and ¢ are not atoms
in E. Let us form the Rees factor semigroup E/(al.
We denote its zero element (namely the ideal (a]) by
K, and the remaining elements by K, = {x}, where
xeE-(a)]e The Rees factor semigroup E/(a] 1is a finite
semilattice with |

| E/(al] = |E]=1.

Since p, b and ¢ are distinct elements of E
not in (a), it follows Kp<= {p}s Ky ={b} and
K, = {c} are non-zero elements of E/(a]. We first
will verify that K, and K, are atoms in E/(a]; that
is, Ky covers Kz and Kc covers KZ. Suppose we

have K,>X> K, where KeE/(al. Then K 1s a non-zero
element of E/(a] so that K = {h}, where he E-(a]
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and moreover K, 0K = K and Kok, =K Consequently,

20
KK = {bh}c{h} which implies bh = h. Therefore
he (b] = {z, a, b} and since h# a and h # z (for
h 1is not in (a]) we must have h = b. Indeed Ky = K
which proves K, 1is an atom in E/(a]. The same type
of argument can be applied on K,.

Our next step is to show that each atom e in E
(e # a) gives rise to an atom K, in E/(a]. Now e
is not an element of (a] so that Kg = {e} 1is a non-
zero element of E/(a]. Suppose Ke> K> K;, where
Ke E/(a). Then K = {x} where xe E-(a), and
K, 0K = K, KOK, = K,. Consequently ex = x. Since
x £ 2z we have e>x>z. But e covers x so that
e = x. Therefore K, = K and we have K, is an atom
in E/(al.

Our above arguments show that to each atom e c¢E
(e # a)y, there corresponds an atom K, in E/(a].
Certainly, distinct atoms e in E correspond to dis-
tinct atoms Ke in E/(a]. Moreover, Kb and Kc are
also distinct atoms in E/(a] which are different from
the above atoms Ke' If we let q* denote the number
of atoms in E/(a], then our above remarks show that
q*> q+1, where q 1is the number of atoms in E.

Since E ¢, there is a subsemigroup N of E
isomorphic to E/(a). Therefore N is a finite sub-

semilattice of E, with zero element 2z, |N| = |E|=1
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and the number of atoms in N 1is greater than or equal
to gq+1. Indeed 2z = z; for we know 2z< z and if
z¢ N it follows a and p belong to N (for |N]
= |E|-1) so that 2z = apeN, a contradiction. There=~
fore N 1is a subsemigroup of E, having 2z as its
zero element, and the number of atoms of N 1is greater
than or equal to q+1. From Lemma 2.6, this situation
cannot occur and hence the situation in Case 1 is
impossible,
Case 2. We consider the remaining possibility;
namely (b]D{z, a, b} and (ec]l>{z, a, c}. Let
Q(b) = {xe E|b>>x and x £ a} and Q(c¢) = {xeE|
e>>x, x # a}e From pb #p and pec £ p it follows
p 1s not an element of either Q(b) or Q(c). Let
R(b) = *L(J%gx] and R(e) = ML{J@(x] °
Both R(b) and R(c) are unions of ideals so that
each is itself an ideal. Let W = R(b)v R(e). W is
precisely the ideal of elements of E which are under
the elemenfs b and ¢ with the exception of the ele-
ment a. That is, if y<b, or y<c and y # a,
then yeW., Also a, by, ¢ and p are not members of
We form the Rees factor semigroup E/W. As be-
fore, K, will denote its zero element ard Ky = {y},
where y€ E=W, its remaining elements. We have
Ky = {a}; Ky = {b}, K, = {c} end K, = {p} are non-

zero elements of E/W., Moreover

W,
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K>>K,;, K>>K, and K ;, K  are atoms in E/W,

p
Form the following ideals in E/W;

(Ky] = {Ke B/W|K<K} and (K,] = {KeE/W|KSK.].
Now (Kp]2D{K,, Kz, Ky} and (K,122{K;, K5, K }. Sup-
pose Ke (Kp] and K # K,. Then K,<K¢K, and K = {h}
with heE-W. But Ky 2K implies hb = h and z<h¢b,
But h¢W and h being under b gives either h = b
or h=a. In either case K = K; or K = K, so that
we have shown (Ky]=({K,, K5y Kp}. Therefore
(Kp] = {K;y Kgy Ky} and using the same type of argument
one can show (K,] = {K;, Kg, K.}

From Ee¢ H and E/W being a homomorphic image
of E, 1t follows E/WeH. Consequently, E/W 1is a
finite semilattice in the class * which has four ele-

ments Ka’ Kb, K Kp which satisfy the same prop-

09
erties as those in (7.1) and moreover has the condition
that (K,] = {K,, K,, K} and (K1 = {K,, Ky, K }3
that is, the same conditions that E satisfied under

Case 1, Hence we again have our desired contradiction.

This completes the proof of Lemma 2,7.

The previous lemma stated a necessary condition
for Ee¢ X% under the assumption that E contains an
atom which is reducible. By applying this result and
finite induction it is possible to obtain the same
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necessary condition for any reducible element in E.

This is accomplished in the following theorem.

Theorem 2,8 . Let E be a finite semilattice

with EeH. Let a, b, ¢ be elements of E such that
a = be, Dbyda and c¢>>a. Then e<b or e<c for
every element e e¢E such that 0¢d(e)< d(a).

Proof, This theorem is proved by induction on
the dimension of the reducible element a. Suppose
d(a) = 1« If d(e) = 0 we have e = z, the zero ele-
ment of E; and the theorem holds trivially for this
case, If d(e) = 1, then e is an atom in E. Also
a 1is an atom in E, since d(a) = 1. Consequently we
can apply Lemma 2,7 to obtain our desired conclusion for
the case d(a) = 1,

Assume the truth of the statement of the theorem
for all finite semilattices in # which contain elements
a, by, and ¢ such that a = be, b>>a, e>da, and
1< d(a) < n.

Let E be a finite semilattice in H and sup-
pose there exist elements a, b, ¢ and e in E such
that a = be (b>>a, c>>a), d(e)¢d(a) =n, eb £ e
and ec £ e,

We again need to consider two separate cases.

Case 1. Suppose d(e)> 1. Let A be the set
of all atoms in E, let B = Avuz and form the Rees
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factor semigroup E/B. (This is valid for, by Lemma 2.5,
B 1is an ideal of E.) Denote the zero element of E/B
by Kz and its remaining elements by Ky = {y} where

yeE-B. Kg, Kyy K and K, are non-zero elements of

c
E/B such that K, = Ky 0Ky, (Kp>>Kg, K >0K,),

K, 0Ky # Ko and K, 6Ke # Kgo Since a, e eE~-B, then,
by Lemma 2.5, it follows d(Ke) = d(e)-1 and

d(Ka) = d(a)-1. Therefore

a(Ky) = d(e)-1¢d(a)-1 = d(K,)

and
d(K,) = d(a)-1< d(a) = n .

From Ee¢ H# we have E/B ¢ . Moreover E/B has three
elements Ky, Ky, K, which satisfy precisely the condi-
tions of our induction hypothesis. Since d(Kz)< n and
d(Kg) < d(%,),1t follows from our induction hypothesis that
Ko 0Ky = K, and Ky, 0K, = Koo This contradicts what we
have above so that our assumption is false in the case
a(e) > 1.

Case 2, Suppose d(e) = 1, Consequently we must
have d(a)> 13 for otherwise we would contradict Lemma 2.7.
Let A Dbe the set of all atoms in E, B = Avz and
R = B-{e}s R 1is an ideal in E for

| rR= Ul .

‘Form the Rees factor semigroup E/R. Since a,
b, ¢ and e are not members of the ideal 'R, it fol-
lows K, = {a}; Ky = {v}, K, = {c} and K, = {e} are
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non-zero elements of E/R. Moreover K, = K, 0K,
Kp>>K,, K >>K;, K, 0K, £ K, and Ko, 0K, # K.

d(a)=1 = n-1,

We first assert that d(Kgy)

Recall we always have d(Kg)< d(a) = n. Since d(a) >1,

there exists a maximal chain from a +to =z

a = a0>>a1 > 00 228y _0>>8p_1 228, = 2Z
of length n. From be £ e it follows an_1 # €. But
8n.1 1s an atom in B; consequently a,_q1eR. On the
other hand, ay#t R for i =0, 1,..., n-2. Therefore
K, = {al, Kaq = {ah..o, Kay o = {an-2} are (n-1)
distincf non-zero eléments of E/R and horeover

Ka>>Ka1 > 00 >>Kan_:2 >Kzo
This implies we will have a maximal chain from Kg to
Kz in E/R of length at least (n-1). Hence d(Kg)> n-1.
Suppose d(Kg) = n. Then there is a maximal chain from
Ka to Kz in E/R,

Ka = Koy »Kgy> eee>>Ko, P Ke, = Kz
of length n. From Ke, £ Kz for 1 =0, 15000y D=1,
1t follows Ke; = {cgg (L =0y 15000y n=1) where
ci € E=R. The above chain induces a chain in E from a
to z, namely

& = C0>7C1224002> Cn=1 2 2o
However there exists an atom ye R such that cp-1> ¥y> 2z,
Consequently

& = COPPC12%e0eXCn-12Y> 2o

Thus we will have a maximal chain frem a to 2z of



69

length at least (n+1). This is not the case, for

d(a) = n. Thus our assumption is false and d(Ka) = n-1,
Now E/Re H and E/R has four elements Kg»

Kb’ Kc and Ke of the same nature as those in Case 1.

Moreover 1 = d(e)< d(Ka) = d(a)=1< n, Our induction

hypothesis applies and we obtain the same type of con-

tradiction that occurred in Case 1.

The arguments used in Case 1 and Case 2 complete

the proof of this theorem,

The previous theorem gives us a rather strong
necessary condition for a finite semilattice E, ad-
mitting a non-zero reducible element a; to be in the
class $ . ILet a be a reducible element of E. We
know that every element eeE, d(e)<d(a), is under
one of the covers of a. We shall show that the number
of incomparable elements e€¢E, with d(e)< d(a) and
e|l]a, can be at most one. Before doing this, we need

some further properties.

Lemma 2.9 « Let E € \9'/' be a finite semilattice
which has elements a, b, ¢ such that a 1is an atom
in E;, a=5be (b»a, ¢»a). Let A Dbe the set of
atoms of E,

1) If ec€A-a, and e<b, then for every x> e

we have either x>b or x<b.
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2) If ecA-a and e<c, then for every x>e
we have either x2c¢ or x<c.

Proof, OSuppose etcA-a, e<b, x>2e but x is
neither above b nor under b, First of all, x 1is not
under c¢; for otherwise we have e< x<c¢ which contra-
dicts that a 1is the atom in E wunder both b and ¢,
Also x 1is not above ¢. Suppose x2c. Then
x2xb2e-e=¢e and b2xb2e. But xb £ z, xb £ b,
end xb # x. Therefore b> bx2bc = a. Since bd>a,
it follows bx = a and consequently a = bx>e> z,

This is not possible since a is an atom. Moreover x
is neither above a nor under a. Indeed, suppose a<Xx.
We have a = ba{bx< b which implies a = bx> e = €.
This again is not possible.

Let J = {ye(x]]y<<x} and consider the ideal
L= U (j]. First note that' Lc(x] and b, ¢, a are
not );iiments of (x] (our above remarks verify this
statement) and hence not elements of L. Also x¢ L.

Form the Rees factor semigroup E/L. It has
K, = {x}, Ky = {v}, K, = {c} and K, = {a} as non-
zero elements., It is immediate that

KpyoK, = K K, oKy = K, Ky 0K, = K,

Kp>>Kgs K>>K; and K, 1is an atom in E/L.
Moreover Kx is an atom in E/L since all elements
under x Dbelong to L.

Since E/L € ¥ and since there exist elements
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K Kys K,e E/L with K, = KyoK,, Kp>>K , K2>>K,

a9
and K, an atom in E/L, it follows Lemma 2.7 applies;
namely every atom in E/L is under Ky or K, . However
K, 1is an atom of E/L which does not have this property.
We have therefore shown if e< b, e<x then

Xx>b or x<b. A similar argument can be applied to

show part (2) of this lemma,

Lemma 2,10 » Let Ee & be a finite semilattice
which has elements a, b, ¢ where a 1is an atom in E,
a =be (b>>a, c>>a),. Then a 1is the only atom in E
which admits such a decomposition,

Proof. Suppose a,e B 1is an atom different from
a which also has such a decomposition. That is, there
exist elements bTN c. in E with a, = b1c1 (b1»a
>>a1). We can apply Lemma 2.7 on both elements a

19

¢y

and a Consequently, either a,¢< b or a,§ ¢ and

10

either ag b1 or a<¢oc We have four separate cases

1.
to consider. (1)agb1 and a1g_b, (2) ag‘r.)1 and a,< C

(3) agec, and a1g_b, and (4) age, and 8,< Ce In

case (1) we have b> bb,>a-a =a and b ,>bb, >a.a.=a, .

1 1 1 171 1

But b>>a and b1>>a1 so in order that both the above

inequalities hold simultaneously we must have

bb, = b = b,

1 1
Using the same arguments for the remaining three

cases, one can show that these cases yield the results
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¢by = ¢ = Dby, bey =b-= c4 and ccy = C = Cy,
respectively.,
In any event, we must have the two sets {b, c}
and {b1, 01} have an element in common. It suffices to

assume that b = b1. We have the situation b>>a, c¢>>a,

b>>a19 c,>>a,;, a and a, atoms in E such that
a = bc and a, = bc1. By Lemma 2.9, since a, is an
¢, b = b, c atom, a,c¢ A-a, a1g b and
a, < Cys it follows 012 b or
a4 a c, < b. However both situations
are not possible since c, and
z b cover 8, (Of course, unless
¢, = b which in turn is not possible from c1b = a1).

This ends the proof of our lemma,

Lemma 2,11 . Let E e H be a finite semilattice
which has elements a, b, ¢ such that a 1is an atom in
E, a=Dbz (b>»a, g>>). Let A be the set of atoms

of E and N = A-a., Then either N is an empty set or

]

IN| = 1.
Proof. Suppose |[N|22., Note that from N £ ¢
we can apply Lemma 2.7 to conclude that b and ¢ are
the only elements of E which cover a. Also, by Lemma
2.7, we know that each element of N 1is under either b

or c¢. We therefore have two separate cases to consider,

Case 1. Suppcse there exist elements €19 €5 E N
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such that e;{ b and e, c. Form the Rees factor
semigroup E/(a]. It has
Ky, = {b}, K, = {c} as non-
zero elements., We first show

that there i1s a one-to=one

correspondence between the

atoms in N and the atoms of E/(a].

Suppose e 1is an atom of E with e eN., Then
Ke = {e} 1is a non-zero element of E/(al. Suppose
there is an element KeE/(a] for which Kez_ K> Kz'
Then K = {x} where xe E-(a] and K, oK = K. This
implies ex = x so that e>x>2z, Since e 1is an
atomy, 1t follows e = x which in turn implies K _ = K,

e

Thus Ke is an atom in E-(a]. Note that this implies

Kb and Kc are ncn-zero elements of E/(a] which are
not atoms.

Suppcse K, = {e} is an atom in E/(al], where
ec E-(a]e Let x Dbe an element of E such that
e>x>z, If x=a, then e>a>z, Consequently,
e>b or e>c since b and ¢ are the only elements
which cover a. Therefore e2>2 b2>2a or e>c2a and
this, in turn, implies Kez Ky, or KeZKc" We know
Kb and Kc are not atoms in E/(a] so we contradict
the fact that K, 1is an atom in E/(a]. Hence x £ a.
But x #a &and e>x>z implies x4 (a]. Therefore

K, = {x} is a non-zero element of E/(a] and K 2K >K .



Since K, 1is an atom, it follows e = x. Thus e |is
an atom of E,

In the above two paragraphs we have shown there
is a one-=-to-one correspondence between the atoms e of
E; eeN, and the atoms K, of E/(al]. Therefore the
number of atoms in E/(a] is |N|.

We next assert that E/(a] has no atom Ka* = {a*}
for which there exist elements Kb* = {b*}, Kc* = {c*}

such that K = K oKC

o - (Kb*»Ka*’ Kc*»Ka*); for

*
otherwise a* would be an atom in E, Db*>a%*, c*»MDag*
and a* = b*c*, rrom Lemma 2,10 we must have a = a*
and hence b = b*, ¢ = c*, However a = a* 1is impos-
sible, since a*4§¢ (a]o This proves our desired assertion.
From E e ff we must have E/(al can be imbedded
in E. Therefore there exists a sub-semilattice E1
of E which satisfies
(11.1) {8, ] = [E]-1,
(11.2) number of atoms in E, is | N|, and
(11.3) there exists no atom f eE, and elements
g€, h 1in E1 such that f = gh, h>»f
ard g>»f,
Suppose there is an atom peE and p¢E,. From
|E1| =|El-1, P #£p, ¢ #p, 1t follows b, ¢ €E.
But E; 1s a subsemigroup of E so that a = beceE,.
This cannot occur for we would contradict property (11.3).

Thus every atom of E 1is an element (and, hence, an atom)



in E,. However the number of atoms in E is [N|+1
(since N = A-a) which contradicts property (11.2).
This completes the proof for this case,

Case 2, Suppose all atoms ee N are under the
element ©b. Then the only atom in E wunder ¢ 1is the

b atom a and every atom of E
c

\\//P is under b,
a Form the Rees factor semigroup

‘ E/(al. Again kK = {v},

Kc = {c} are non-zero elements
of E/(a). It is necessary to show that KC is an atom
in E/(al. Suppose K>K>K, where K = {x} with
x€ E-(al. But KCZ K_ implies c2 x>z, Since ¢
covers a and rno other element (x £ a) it follows
¢ = Xo Therefore Kﬂ = KC and we have shown Kc is
an atom in E/(al.

Using arguments exactly like the one employed in
Case 1, one can sncw that there is a one-to-one corre-
spondence between the atoms in N and the atoms in
E/(al. (Clearly K, 1is not an atom in E/(al). Hence
the number of atoms of E/(al] is equal to |N|+1 which
is the number of atoms in E,
As in Case 1, we can apply Lemma 2.10 to assure us
that no atom K, , in E/(a] has a reducible decomposition.
Let K, be an atom in E/(a] such that K, # K,.

Then e is an atom of E, e £ a. Hence e<b which in



turn implies Keg_Kb. Hence every atom of E/(al, with
the exception cf K09 is under the element Kbo It is
clear that d(Kb) = d(p) > 2.

Since EeX%, then E/(a] can be imbedded in E,
Tnerefore there exists a sub=semilattice E1 of E such
that

(11.4) [E4| = |E]=1,

(11.5) number of atoms in E, 1s precisely the
number of atoms in E,

(11.6) there exists an atom ege E; and an
element e, tE,, where d(e1) = d(v),
such that every atom peE,, p # egs
satisfies p<e, but eo{e“ and

(11.7) there is no atom 1:>t»:E.i which admits a
de-zcrovosition of the form p = X, Xp
(x,>py X,5>p)e

Let p be an atom of E with p¢ Eq. Then,
since |E.| = IFl-1. b # p, ¢ # p, it follows b, ¢
are elements in E,;. Therefcre a = beceE; which is
not possible by prcperty (11.7). Hence every atom of E
is an atom of F,, and since they are equal in number it
folleows all the stoms of E- are precisely the atems of
E. From |N|>»2, there is an atom p€E (and thus in
E1) such that p# a and p #£ ece From (11.6), p< eqo
Also, by hypothesis, we have p<b., ILemma 2.9 applies to

give us e> b or elg . But d(e1) = d(b) and so
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b = €40 Hcwever b has the property that every atom of
E (and hence E1) is under b. This ccntradicts that
there is an atom ejcE; such that eoie1 = b, This

completes the proof of the lemma.

The previous lemma essentially states if we have
a finite semilattice E in the class $ which has a
reducivle atcm a, then E will have at most cne other
atom p, p # a. The next theorem will give a similiar
conclusion removing the hypothesis that a 1is an atom.
We will show that if a 1s reducible, then the number of
incomparable elements eeE with d(e)<d(a), ella, is

at mcst one,

Trhecrem 2,12 « Let E e # be a finite semilattice
which has elements a, b, ¢ such that a = bec, b>>a and
c>>a, Let M be the set of incomparable elements e €E
such that e|a and d(e)<d(a). Then either M 1is an
empty set or [M| = 1.

Prccf, We prove this theorem by induction on the
dimension of the reducible element a. Lemma 2,11 shows
that the theorem is true for d(a) = 1.

Assume the truth of the statement of the theorem
for all finite semilattices in # which contain elemerts
a, b, and ¢ having the above properties with d(a)< n.
Iet E be a finite semilattice in % s, let a;, b, ¢ be
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elements in E such that a = be (b>>a, ¢>>a, d(a) = n)
and let M be the set of incomparable elements ec¢E
(e|lay, d(e)<d(a) = n) such that |M|>2. Consequently,
M contains at least two elements e, and e, such that
e,» e,, & are mutually incomparable and d(e1) < d(a),
d(e2) <d(a).

We need tc consider three separate cases,

Case 1. Suppose d(eq)>1 and d(ep)> 1. Let
A be the set of atoms in E, let B = A v z and form
the Rees factor semigroup E/B. We apply exactly the same
arguments used in the proof of Theorem 2.8 (Case 1) to
show that this case is impossible.

Case 2. Suppose d(es) = 1 and d(e2) = 1., Then
d(a)> 13 for otherwise we would contradict Lemma 2,11,
Let A be the set of atcms in E;, B=Auvz and
R = B-{eq;, eo}. R is an ideal in E for

R = H‘(x] .

Again we can apply the same arguments that were used in
the proof of Theorem 2,8 (Case 2) to show that this
situation cannot occure.

Case 3. Suppose d(e;) = 1 and d(ey)> 1., Since
d(a)z_d(e2), it follows d(a)> 1. Let A be the set
of all atoms in E; B = Avz and R =B - e . We can
form the Rees factor semigroup E/R and apply arguments
similar to the one in Theorem 2,8 (Case 2) to show that

this case also is nct possible.
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In this section we have developed two rather
strong necessary conditions (namely, the statements
of Theorem 2.8 and Theorem 2.12) when a finite semi-
lattice E, having a reducible element, will be a mem-
ber cf the class H . However we have not been able to
completely classify the finite semilattices in the class
3. Below is a diagram of a semilattice which satisfies

our necessary conditions but does not belong to %.

9

|
| /&\{/ 0
o\\ J

2,3 Finite obew.iattices of Groups in H

This szctiun v21. deal briefiy with the study of

finite commutativz semigroups Se H whcse maximal uni-

<t

ent subsemigroups are groups. That is, if we let E

e}
)

note its set of idempotents (E is a finite semilat-

Q.
(U]

Is

tice), Ge the maximal unipotent subsemigroup cf S
containing the idempctent e e€eE but no cther, then
S =:}?g~;e, Ton Gy = £ if e £ f in E

Gerg;Gef for all e, £ in E,

and Ge is a group for all ec¢ E, For such semigroups S,
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we shall use the abbreviated expression, "S 1is a semi-
lattice of groups". For the case when E 1is a chain,

we will say that S 1is a chain semilattice of groups.

The purpose of this section is to determine nec-
essary conditions when a finite semigroup S, which is
a semilattice of groups, will be in the class gf.

Throughout this section we will use the following
notation: S will denote a finite semilattice of groups,
E = {e15 €rye0s; €y} its set of idempotents and Gp,

(m = 1y 25044y n), the group having identity element

o
|

Then S = iL/ Gig (21 GJ gGk for eiej = ek and

e =1

m.

GinGj =¢ °

Lemma 2.13 . Let S € % be a finite semilattice
cf groups, and e, tuine zero eiement of E. Then
gey = {g}
for all ge G, and 1 = 25 35606y No
Proof. First of all, for e;< ey we must have
GiGj = Gj. Let ey be the zero element of the finite
semilattice E = {eq; €r5e00, en}. From
" n "
615 = 61({dey) = soclfor = o,
it follows G4 1s an ideal of S. Therefore, we are
able to form the Rees factor semigroup S/G1. Denote
its zero element (the ideal G1) by Ke1 and its re-
maining elements by K; = {x} where xc¢ S=Gq. Note that

Kez = {82}9 K = {93}9 soey Ken = {en}

€3
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are idempotents in S/G1. Moreover, these and the idem-
potent Ke1 are precisely all the idempotents of S/G1.
Consequently;, the number of idempotents in S/G1 is
|E] = n. |

Since Se 3 it follows S/G, can be imbedded
in S. Hence there exists a subsemigroup T of S such
that (1) |T| = |S/64] = [S]-[G,[+1, (2) T has a zero
element and (3) T contains |E| = n idempotents.,

From (3), we must have ECT and in particular
e, ¢ Te OSince e, 1s the zero element of E and since
T has a zero element, it follows e, is the zero ele-
ment for T. However G1n T = e,3 for e, is the
identity element of G1. But TCS, Tr~G1 = e, and
G1r~Gj =@ for j = 25400y n, all imply that
T C(S-G,) ve,. On tne other hand, |T[ = [S[-]G }1
= I(S-G1)s:‘e1[, which implies T = (5-G;)v e,. That
is, T = 1L=)2Gi" €40

Since e, 1s the zero element of T we have
€18y = €4 for all g eGy, m= 2,040, 0. Let g, # ey
be an grbitrary element of G1, and g, an arbitrary
element of G (m = 254009 n). Then

818y = (g1e9)8y = g¢(eqgy) = 8181 = &;

This proves the lemma,

Theorem 2.14 « Let Se¢ N be a finite chain

semilattice of groups. Then
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for all g € Gi’ gjeG where ei<ej, i=1, 24600y n

and J = 2, 35e0e9 DN :
Proof. It suffices to show that ej8y = € for
all gj € G;j with ey < ej; for if this is true, then
g8y = (ge5)ey = g5(e 8y) = g5ey = gy.
Because S 1is a chain semilattice of groups, we have
E = {e1<<...<<en}.

1
gstj and e1<ej. Suppose eigj=ei for all ngGj,

From Lemma 2.13, we have e1gj = e for all

e1< ej where i= 19 29 39.009 m-1o- We show emgj = em

for all gj € GJ where e, < ejo
Define apb if and only if a =b or a, bg Gm.

P is an equivalence relation and moreover we claim it

is a congruence on S. Let apb, a £ b, and let

xeS. Then xeG,, for some integer k; (a) If e < €

then, from our assumption, we have eka = ek and

eb=-c¢e Therefore

k k*
xa = (xek)a = x(eka) = X6 =X .
Likewise xb = x. Consequently, xap xb. (b) If e 2 e s
then G, G CG so that xa and xb both belong to G .
k'm="m m
Thus xap xb.
Let ©S* = S/p. Its elements are the group Gm
itself and all one-element sets {x} where Xc¢ S-G, .
We shall denote the one-element sets {x} by x* and

the equivalence class Gm by e;l. Define
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{e 9 e ceoy e;} 9

-_-{x*ES*IxEG i #n},

i i?

G* = { e*} °
m m
E* is the set of idempotents of S%*, From

= {ei} for all 1 £ m, it follows eX<eX<,,.K<e*

1 2 m-1°
However e* oe¥% = e* for J>m since e,G CG ., This
m h| m Jm~m
gives e¥<eX<,,.{ e ,,,{<e* ,
1 2 m n
The map T 3 Gi—-> GI (1 # x) defined by
7(x) = x* 1is clearly an isomorphism of Gi onto G*i*.

Therefore G¥, (i =1, 2y00ey n), are the maximal

groups of S* containing the idempotents e*,

i
* = *) * * =
(ex {em} ) Also GinGj g (1 #3) since
Evidently the semigroup S* has the decomposi-
tion G¥* G* ~ G* = and G* oG*XCG*
’ lL;J i 3 g i TjTk
»* * — o¥
where ei (o] eJ ek.
Let g; £ GS and let eI be the identity element
of GI where e;( e;. For 1 =1, 2y¢eey m=-1, we have
= {e }; consequently, by our assumption, e; og; = eI.
Since c n’ it follows e*o g% = e* for all
m® m " m

g% eG* where e;(e?. The above shows that

3

e* O g% = e* for all * € G e* { g%
17857 % &7y 179
where 1 = 1, 2, ecoey I,
Since S € H we can imbed S* in S. Hence
there exists a subsemigroup H of S which itself is

a finite chain semilattice of groups satisfying,
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n

(14.1) H = 3 Hy, Hyn Hj =g (i #3), where

Hi is maximal group of H containing

3

the idempotent fi,
(14.2) f1<<fy<<eue<<f  where the f; are all
the idempotents of H ,
(14.3) |H,|
(14.4) fihj = f; for all hJe‘HJ, f,< fj ’

|64] for 1 #m and |G | = 1, and

1 =1, 25000y M
Now E = {eq, €syeee5 €n} and fye E for all {.

Therefore E = {fq, fo,..., fp}t. But (14.2) gives
fi = e for 1i=1;, 250009y n. Then eje Hjan Gy for
all 1, so it follows H;CGy. From (14.3), we have
Hy = 64 for 1 # mj of course Hj = ep. Then, using
(14.4), we conclude

ej84 = €4 for all gdst, ey < €45 1 =1, 25000y M.
This completes the proof of the theorem.
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