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ABSTRACT

THEORY OF THE ELASTIC AND

VIBRATIONAL PROPERTIES OF

CENTRAL FORCE RANDOM NETWORKS

BY

Edward Joseph Garboczi

Central force random networks which are generated by

randomly removing bonds on a lattice are simple models with

which to study the rigidity transition where the elastic

moduli of a system go to zero as a function of decreasing

mean connectivity. A simple constraint counting argument

gives a prediction for the critical threshold at called the

rigidity threshold, and f(p), the fraction of zero frequency

modes, where p is the fraction of bonds present. Chapter 1

presents evidence from three different networks that shows

these predictions to be in excellent agreement with numer-

ical simulations. Also it is shown that the elastic moduli

for nearest neighbor central forces scale linearly with p,

in excellent agreement with a simple effective medium theory.

Chapter 2 demonstrates how this coherent potential approx-

imation based effective medium theory also gives a quite good

description of the entire vibrational density of states for



these same networks. Chapter 3 extends the ideas of Chap-

ter 1 to systems with first and second neighbor central

force bonds. Evidence is presented from both numerical

simulation and effective medium theory that a fixed point

exists--the ratio of Cu/C..always converges to a constant

along a given track in phase space independent of its start-

ing value before removing bonds. The dependence of this

critical value along the rigid-floppy boundary in phase

space is derived under effective medium theory. It is

demonstrated that f for this system depends only on the

total number of first and second neighbor bonds present

and not on the details of the phase space track. It is shown

how these results can be extended to systems with central

forces of arbitrary range.
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Chapter 1. Ri idity‘Percolation on Central Force

E astic Networks

Section 1.1. Introduction and Definition of Problem

It is widely believed that the structure of amorphous

solids whose bonding is primarily covalent is well described

by some form of covalent random network (Zallen 1983). A

good example is amorphous germanium (a-Ge). Crystalline

germanium (c-Ge) has the diamond structure, where each atom

is tetrahedrally connected to four nearest neighbors, with

the nearest neighbor bond lengths and angles between pairs

of nearest neighbors bonds having specified values. A-Ce

has short range order similar to that of c-Ge, in that all

atoms have four nearest neighbors in a roughly tetrahedral

arrangement. However, the nearest neighbor bond lengths

and angles in a-Ge take on values in a narrow distribution

centered on their crystalline values. This occurs in such

a way that there is no long range order present. Since

it takes energy to stretch bonds and change bond angles,

a-Ge has a higher energy than c-Ge. A-Ge cannot be'

continuously deformed into c-Ge, however, since the two

structures are topologically inequivalent. C-Ge only has

rings with an even number of members, while a-Ge has rings

with odd and even numbers of members. This implies that



an energy barrier exists between the two states, and there-

fore a-Ge is a metastable state of solid germanium.

The structure of two component amorphous solids may also

be modelled with a covalent random network. An example of

this type would be GexSel_x. A selenium atom naturally

forms covalent bonds with two other selenium atoms, which

results in pure Se being made up of isolated polymer chains

where each atom has two nearest neighbor bonds. We may"

then think of producing a compound like GexSe1_x by starting

with pure a-Ge and randomly replacing Ge-Ge bonds with

Ge-Se-Ge bonds until the desired atomic fractions of x and

l-x are achieved. A schematic picture of this process is

shown in Figure 1.

Q

d
  

 

Figure 1. A schematic view of the random substitution of

selenium atoms into amorphous germanium.



It is then entirely natural to ask what effect adding

Se atoms has on the elastic properties of the material.

It is known experimentally that nearest neighbor bond stretch-

ing forces (which tend to maintain constant bond lengths)

are roughly four to five times stronger than the bond bending

forces (which tend to preserve angles between pairs of near-

est neighbor bonds) in these kinds of covalent random net-

works (for a review of the experimental evidence see

Zallen 1983). In the substitution shown in Figure 1, we are

replacing a strong bond stretching force with a relatively

weaker bond bending force. Thus we would expect the elastic

moduli of GexSe1_x to soften as x decreases from 1, or

equivalently, as (r) , the mean coordination, decreases

from four. The theory of this is worked out in Thorpe (1983)

hereafter designated as MFT.

The key result from MFT is a prediction for rp, the

critical value of the mean coordination.<r) where the elastic

moduli of the network go to zero. The elastic moduli can

actually soften all the way to zero even when the network

is still well connected because with only nearest neighbor

bond bending and stretching forces specified there can be

units in the network which do not contribute to the elastic

strength of the material. An example would be a selenium

chain of length 9 6 (Thorpe 1983). This transition we call

rigidity percolation as opposed to ordinary connectivity

percolation, since the network will still be well connected

but have zero elastic moduli. This is a result of only



specifying nearest neighbor bond stretching and bending

forces. If we included a dihedral angle force (very tiny

in real glasses) all connections become rigid and the

problem would become a geometrical percolation type problem,

where the elastic moduli become zero only when the system

is actually geometrically disconnected.

To experimentally achieve the desired range of x so that

one can study solids with values of‘(r) both above and below

rP is possible but rather difficult. One must prepare

enough samples to be able to cover the relevant range of x

properly while maintaining tight chemical control of the

value of x. The Ge-Se system is perhaps the best choice for

this work. One could put sulfur into germanium but the

sulfur tends to form eight-fold rings which would not de-

crease (r) in a random enough way, since we want spatial

homogeneity. Experiments are currently being planned to

try to test the rigidity percolation ideas, but there is no

good experimental evidence as of yet. These are not easy

experiments to perform, mostly due to the difficulty of

sample preparation.

Lacking any experimental data, we wished to computer-

generate covalent random networks with various values of

(r) and compute their elastic moduli via numerical simulation.

In this way we could attempt to verify the mean field

prediction for the value of rp given in MFT.

In doing numerical simulations, one must choose one's

model carefully not only for its physical content but more



importantly for its numerical tractability. It is possible

to computer-generate covalent random networks of the

GexSe1_x type (He 1983) which have reasonable bond length and

angle distortions. One randomly inserts two-coordinated

sites into a previously generated four-coordinated covalent

random network, and then relaxes with bond stretching and

bending forces until a local minimum of the potential is

found producing a metastable state. However, since elastic

energies are small deviations from the local minimum of

the potential, in order to do accurate computations of

elastic moduli one must know the energy of this minimum

with great accuracy. It turns out to be very difficult

to impossible to obtain that sort of accuracy on these

networks (He 1983).

We are therefore led to try to find a simpler model which

exhibits the basic physics we wish to explore. What is

needed? An adequate model must have the following prop-

erties: l) unstrained potential energy should be known

exactly, 2) mean coordination must be able to be decreased

without interfering with l), 3) rigidity percolation must

be able to take place, and 4) the cost of numerical

simulations must not exceed the limits of our computer

budget!

The class of models whose elastic properties we chose

to explore are central force random networks whose randomness

is of a special type. We start with a Bravais lattice, the

triangular net in two dimensions, the face-centered cubic



and body-centered cubic in three dimensions, where the only

interatomic forces are Hooke's law springs between nearest

neighbors. We then simultaneously reduce the mean coord-

ination and introduce randomness by randomly removing bonds.

The initial elastic energy is always zero, as the lattices

have no initial strains in them. The elastic moduli are then

found numerically as a function of p= fraction of bonds

present, and 5; the bond fraction where the elastic moduli

appear to go to zero, is compared with the mean field

prediction obtained from constraint counting arguments.

To satisfy 3), there are units in the network which,

while fully connected, make no contribution to the restoring

force under an external strain. A simple example of one of

these units can be seen in Figure 2. More complicated

examples will be shown and discussed in Section 1.4.

Therefore we claim that results for these central force

models will have meaning for the covalent random networks

which after all are more physically reasonable models.

Condition 4) was also met--with a few cents to spare!



Figure 2. Network unit with no restoring force against

external strain



Section 1.2. Mean Field Constraint Counting and Fraction

of Zero Frequency Modes

As was stated in Section 1.1 one can construct an esti-

mate for rp, the value of the mean coordination where the

elastic moduli vanish for a covalent random network, using

a mean field constraint counting argument. This can also

be done for the central force models, which are essentially

”covalent" though without any bond bending forces. A change

of notation should be noted here. While (r) , the mean

coordination, is the natural variable to use for the covalent

random networks, for our central force models where bonds are

being randomly removed it is more natural to track the

changing coordination through p = the fraction of bonds

present. The relationship between p and (r) is simple:

(1:) = zp

r = z .p P

z = n.n. coordination

in the crystal

The constraint counting argument for a central force

network in d dimensions goes the following way, which I have

adapted from MFT. We define the following quantities for a

network with N particles:

Nc - the number of independent constraints

in the system Which must be satisfied

in order to have a zero frequency mode



Mo = the number of zero frequency vibrational

modes of the system

Nd = the total number of degrees of freedom

or modes

f a Mo / Nd = the fraction of vibrational modes

with zero frequency

To have a zero frequency mode, one must be able to make

some sort of collective motion of the N particles such that

all the bonds remain at their equilibrium length 10' because

the lattice potential is

V= 72 “ 2 (1X34); . (1)

(all Lands)

We then have that

M =Nd-Nc

O

(2)

f =,1 - Nc / Nd

One way of seeing the validity of equation (2) is to note

that Nc - the rank of the dynamical matrix D(R), so that the

nullspace of D(R) has just Nd - Nc elements. Perhaps the

easiest way to think of equation (2) is to consider the Nd

equations of motion for the network involving the variables

Q

ri . If we have Nc equations of constraint (each bond length



10

that must independently remain constant gives an equation

like ('?i - 33 )2 = 102 ), then we can define Nd - Nc

new variables?j , which are linearly independent and which

automatically satisfy the equations of constraint. We

therefore must have M0 = Nd I Nc zero energy modes involving

these variables.

For the central force case, with a lattice potential

like (1), Nc is just equal to the number of bonds which

independently must have their equilibrium length so that

all bonds will be unstretched and thus a zero frequency mode

made possible. Our mean field estimate will be that Nc is

just equal to the number of bonds actually present, szp,

so that f becomes

:=f<p)=1-zp/2d

.A graph of the mean field prediction for f(p) vs. p

is shown in Figure 3. When p = 0, meaning no bonds are

present, the system consists of N free particles so that all

modes have zero energy. As p increases past fit the mean field

prediction for f(p) would become negative. A negative value

for f is meaningless, however, since f counts numbers of

modes. This is evidence of the fact that our mean field

estimate of Nc is too high, that each bond does not give an

independent constraint. An obvious example in the triangular

net is the last bond needed to complete a hexagon. The

length of this bond, if all the other bond lengths are



11

 1 _!Guimaiomenmmhwamnnne—

   

theFigure 3. Constraint counting estimate for f(p)

fraction of zero frequency modes
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specified, is not an independent quantity. It is fixed by

the other bonds' lengths. So under our mean field theory,

f(p) remains zero for p.) p' . We call p. the rigidity thresh-

old, and use its value for our mean field estimate of where

the elastic moduli of a central force network will go to

zero.

It should be noted that in reality, the elastic moduli

will be non-zero when f is non-zero as well. In other words,

the rigidity transition will take place when f is actually

finite. A network can be macroscopically glqlg but still

have localized floppy islands. This is the idea of rigidity

percolation . In MFT a simple model is solved exactly

showing that at the critical threshold f is finite and the

third derivative of f is discontinous, implying a third order

phase transition. The dotted line in Figure 3 shows an

estimate of a more realistic f(p).

Table 1 gives the values of 6' for the three lattices

studied. It also gives the known connectivity percolation

threshold pc for each lattice. In all cases p. is much

larger than pc. In fact, a similar mean field estimate

for pc (Kirkpatrick 1973) gives pc = 2 / z = p./ d . So the

constraint counting theory predicts that the central force

networks will have zero elastic moduli while being still

very much connected.
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Table 1. Comparison of pc and p’

g a

Lattice as E

triangular 0.3473 0.6666

fcc 0.119 0.5000'

bcc 0.179 ' 0.7500

@ Values for pc taken from Zallen (1983)
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Section 1.3. lattice Potentials and Elasticity Theory

for Central Force Crystals

Before we can understand the elastic moduli of a central

force random network, we must understand and calculate the

elastic moduli of the crystal from which it is generated.

The most general way to do this is to set up the dynamical

matrix D(R), calculate the energies of the long wavelength

vibrational modes and pick off the values of the elastic

moduli. In the remainder of this section D(R) will be

derived for a central force potential, and then in the

following sections the triangular net and body-centered

cubic (BCC) and face-centered cubic (FCC) lattices will be

looked at in detail.

We start with the potential V from equation (1) and

rewrite it focussing on the sites rather than the bonds:

V: V‘I‘Z (la'i’l ”(9)1 (4)

(4’!)

where (13') means that J! and {limust be nearest neighbors,

and 1i is the total displacement of the atom whose '

equilibrium position is )3 . The factor of 1‘ includes a

factor of 8 for a spring potential and a factor of k to take

care of double counting. .

db "” ’ A ,

Writing 7'“ 4‘3; and '1')!" “1 , equation (4) is
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l

expanded to second order in the “1 (harmonic approximation).

We then have

v= is}: [(41.9 - (MW
(1!!) ’37!”

Making the double sum unrestricted and using a well known

transformation (Ashcroft and Mermin 1975), the potential

takes on the form

(5)

ad

where SAN is the alpha component of the unit vector from

I

J! to J! , and Rt is the vector from site 4 to one

of its 2 nearest neighbors. Fourier transforming, we then

obtain

d .... ”3;.“

may: :57, k.'(/-— e ")

(6)

m a mass of atoms on lattice

A

K. = unit vector from a site to one of its

nearest neighbors.
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1,, = nearest neighbor bond length = 1,

making k also dimensionless

D(R) is the dynamical matrix, whose eigenvalues and

eigenvectors are respectively the normal mode energies and

atomic displacement patterns for the phonon spectrum. Since

we are considering only Bravais lattices, D(R) is a d x d

matrix. We can now go on to diagonalize D(R) for k -+ 0

and extract the values of the elastic moduli for various

lattices of interest, thus giving the starting values of

the elastic moduli for our.bond removing computations.
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Section 1.4. Triangular Net--Numerical Simulation Results

Details of the Lattice

The triangular net was the first lattice on which we did

numerical simulations. It is a two dimensional Bravais

lattice with six nearest neighbors per site (2 = 6). One

can construct a rectangular unit cell for the triangular net,

a picture of which is shown in Figure 4. For the simulations,

one would like to pick a cell that is as square as possible,

so as not to have a preferred direction after cutting bonds.

All the elastic moduli simulations were performed on a 20 x 22

supercell, giving 440 sites. Taking the nearest neighbor

bond length to be one, this makes the linear dimensions of

the supercell 20 x 19, which deviates from a square by only

. \

5 %.

Elastic Moduli for the Crystal

The dynamical matrix D(R) for the triangular net when

k -* 0 is given by

an x’u ’/4 K: 3/9 4”! ‘9-

1

’/4 K): I} 3/t' It” J/‘t 4')

Solving the eigenvalue equation

- a."

[)(FDo a. - as an (7)
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we find the two solutions are

u": qd/IM kt

to,” 3‘/'P\ 4"

To identify the character of the sound waves associated with

these two frequencies, we plug 0.‘ and u: back into equation

(7). Inserting 00." the result is Tc x ii = 0 which implies

that vi = 9-!/ 8m (LONGITUDINAL). Inserting 0%: into

equation (7) we get 'R'UE = 0 which implies that

v2 = 3-‘/ 8m (TRANSVERSE). Since the direction of'i was

t

arbitrary, we therefore have proved that the triangular

net is isotropic; i.e., v1 and vt are the same in all

directions. This condition implies that there will only be

two independent elastic moduli, C» and 4., (see for example

Nye 1957). The value of these is obtained from the relations

vi a: G./€ V: = (”V/C I

(a = density of triangular net

which give the results

 

3“ at - 3 4
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Numerical Simulation Techniques

There are two general methods by which one can numer-

ically compute the elastic moduli for a system of mass points
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connected by various forces. One method emphasizes computing

the stress for a known strain, and thereby extracting the

values of the moduli. This method probably requires rigid

boundary conditions (Feng and Sen 1984). The other method

' depends on computing the elastic energy for a known strain,

which can be used with periodic boundary conditions. Periodic

boundary conditions almost always give better results for

a given system size compared to rigid boundary conditions.

The energy method with periodic conditions was used for all

computations of elastic moduli in this work. There is also

more than one way to handle periodic boundary conditions

computationally. The method used in this work was that

of having an extra boundary layer of "imaginary" sites surr-

ounding the 440 ”real" sites, where the imaginary.sites were

periodic images of real sites, thus maintaining the proper

environment for each real site. There is only a small cost

in extra computer memory involved in this technique, as

opposed to a somewhat larger savings in computational ease

and efficiency.

The general method of computing the elastic moduli via

the strain energy for a given bond fraction p is as follows:

one first initializes the coordinates of all the sites, then

bonds are removed randomly until a fraction p are left. Then,

depending on whether (a or Gm is being computed, the

coordinates of the sites are transformed corresponding to a

certain external strain.

To compute C; , one makes the transformation
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X" (If Ear)“

Y" (I- 6,»!

where 6; , 65'are not both non-zero at the same time.

For the triangular net, Cu was computed as an average over

the x and y directions by taking the following combinations

Of 6; and Er :

(x) 5x =- 10‘5 57 = o

_ I (a)
(y) €.=o €y=105

Averaging over the x and y directions helps to get rid

of finite size noise, because for an infinite triangular

network which starts out isotropic, randomly removing bonds

should not break that isotropy. Averaging over x and y

helps to restore this symmetry which can be broken for a

cell of finite size.

To compute (an, , the necessary coordinate transformation

3

x: X+€

x” (9)

ylzy+ €y.x

5
where 6x a 10- and 57 = 0. In two dimensions one need

not average over direction, as the requirement that the

system have a net torque of zero guarantees the same result

5
as when 6, = o, 57 - 10" (Kittel 1967).
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Whatever the applied strain is, one then proceeds to

allow each site to move to its equilibrium position under

the condition that its nearest neighbors' positions are fixed.

Of course, as a site's neighbors are themselves relaxed,

the original site will no longer be at the equilibrium

position, but as this process is repeated many times the

system as a whole will converge to its equilibrium config-

uration. It is important to note here that periodic

boundary conditions are maintained throughout this process

which reflect the new shape of the unit cell under the

given external strain. If the new shape of the unit cell

were not maintained via the periodic boundary conditions

the sites would just relax back out to their unstrained

positions. The relaxation process finds the equilibrium

configuration of the cell for the strained cell shape.

In other words we find the microcopic atomic configuration

which gives rise to the macroscopic elastic modulus.
 

By summing over all bonds we then obtain the final

relaxed elastic energy per unit volume U, from which the

values of G and Cw are extracted according to the

following relations:

1,6..6‘C
‘
.

II

or

U = 8 (Walgz

depending on which kind of external strain was used.
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By varying p one proceeds to map out (1 and ‘29 as

functions of p. When this process is done one then repeats

it by choosing the bonds to be removed with a different

set of random numbers. We used three sets of random numbers,

and averaged the elastic moduli over these three configur-

ations. This damps out finite size noise, giving a better

approximation to the thermodynamic limit.

There is one aspect of the numerical simulation technique

which must be mentioned in connection with rigidity percol-

ation. As was mentioned before, when the sites in the random

network are connected by only Hooke's law springs, certain

configurations of sites and bonds arise upon bond removal

which, while still quite thoroughly connected to the main

network, have no contribution to the final relaxed elastic

energy. The simplest example is the dangling bond which can

always stretch to its equilibrium length no matter where

the rest of the sites relax to. All dangling bonds can be

successively removed without affecting the final

relaxed strain energy.

A non-trivial unit of the type mentioned above is the

site with two bonds. By simple geometry one can see that

no matter where its two neighbors move to (for small strains),

such a site can always adjust its position so that its two

bonds have their equilibrium length. So all such sites,

along with their bonds, may be successively removed until none

remain without affecting the final relaxed elastic energy.
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This has a major effect, since such sites, as opposed to

dangling bond sites, play a real role in the connectivity

of the network. This process of iteratively removing all

one and two coordinated sites we call trimming. Figure 5

shows a network with 65% of its bonds present after random

cutting. Figure 6 shows the same network after trimming.

One can clearly see that many bondshave been removed, even

bonds belonging to sites which originally were 3,4,5 or 6

coordinated. This is an effect of the nonlocal aspect of

trimming, that one can only tell whether a certain bond will

be trimmed by looking at other bonds more than one or two bond

lengths away. One might wonder whether pairs of colinear

bonds which exist in the triangular net can always be trimmed

as well, because they can buckle uner compression but are

rigid under tension. This is an important point, and will

be discussed fully under Diode Effect.

There are higher order units which are functionally just

generalizations of the one and two coordinated sites. An

example of each is shown in Figure 7 a) and b). These also

will not contribute to the final relaxed elastic energy.

The unit shown in Figure 7 c) is somewhat different. Any

cluster of sites which is only connected to the rest of the

network by three bonds can also relax fully, since such a

cluster always has three degrees of freedom, two translational

and one rotational, so the three constraints represented

by maintaining the attached bonds'equilibrium lengths can

always be achieved. .All of the above configurations are
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Figure 7. Examples of three types of supertrimmable units
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removed by hand before relaxing the network by a process

we call supertrimming. The removal of such units sometimes

creates new one and two coordinated sites, which leads to

further trimming, which can lead to further supertrimming,

_ etc. These two processes are iterated sequentially until

no new units can be identified by these criteria. There are

certainly other units which could be removed as well, but we

have not been able to identify them. A complete set of rules

for all supertrimmable units which we have found is listed

in Appendix A. Figure 8 shows the same network as in Figure 5

but now supertrimmed as well as trimmed.

The effects of trimming and supertrimming are to greatly

accelerate the relaxation process and save computer time

by not wasting relaxation steps on sites which will not

contribute to the elastic energy anyway. One can also find.

a lower bOund for p. by finding the point at which the net-

works breaks up under the combined effects of trimming and

supertrimming. Figure 9 shows p. as a function of p, where

p. = the fraction of bonds left after trimming or trimming

plus supertrimming. This gives a lower bound for p'of

about 0.61. A more careful computation has been done, using

ten configurations of 60 x 72 triangular supercell. One

trims and supertrims until the network breaks up in all

directions. The value of p for which this occurs is the

lower bound for pt After averaging, one finds that

9.20.62.
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Diode Effect

As was mentioned previously, when one cuts bonds on the

triangular lattice, there can exist sites with two bonds

which are colinear. These kinds of sites introduce a non-

linearity into the system, since under compressive strain

this connection will buckle, providing no restoring force,

while under tension this connection does have a restoring

force and so is rigid. This point is illustrated in Figure

10. We call this problem the "diode effect." The difficulty

is summarized in the expression "You can't push things

with a rope!" A system with these kind of connections will

then have different elastic moduli depending on the sign of.

the strain, which is a violation of classical elasticity

theory. What must be done to remedy this situation is

perhaps best illustrated by considering a simple example.

Consider a two bond "system" as shown in Figure 11 with

a potential energy

v-.- $3 ~ (4.4.? + $80-$31
It!

We can now put a horizontal strain 5 on this system,

where 6) 0 means compression and 6 < 0 means tension.

The elastic "modulus" C which couples to this strain can be

calculated with a little algebra to give

Z-rp slate.

c= —~ , ,1
1.6! Co; {0. + 1%5115199)
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Figure 10. Illustration of the diode effect
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Figure 11. Two bond elastic "network"
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Now, to make this example illustrate the situation in

the triangular net, we need to take the two limits/5 —b 0

and 9. —» 180°. There are two orders in which to take these

limits of course.

lim lim emu!) = o (10)

9401' [#0

lim lim emu?) = «I, (11)
1’40 BEN?

Equation (11) illustrates the diode effect. C will

be finite under tension and zero under compression. Equation

(10) is then the proper order in which to take the two

limits. It is clear how we are to do the calculation on the

triangular net. Taking ,3 = 0 gives us our central force

potential. Then we perturb the triangular lattice so that

the angle between all pairs of straight bonds is less than

180°. This perturbation must be of the order 67", so as

to allow all straight pairs of bonds to fully relax under

both tension and compression. As the strain-+ 0, so will

the perturbation, and we will get back the proper result

.for the triangular net.

‘Computationally, we use 6 = 10"5 4‘ 1, and do the

simulation by simply trimming all two coordinated sites and

leaving the rest of the lattice unperturbed. For small

strains this is equivalent to the ideal limiting process.
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Numerical Simulation Results

The actual results for Cu and (w as a function of p

for the triangular net are presented in Figure 12. These

results are averaged over three configurations, where each

network was trimmed by a computer program then supertrimmed

by hand interactively. The straight line in the graphs is

the result of the effective medium theories described in

Sections 1.7 and 1.8. The agreement between theory and

"experiment" is clearly very good, much better than we usually

get for simple effective medium theories. The data is almost

exactly linear nearly all the way down to $1 The constraints

counting prediction for p‘ = 2 / 3 is very accurate. The small

tail past p‘ has contributions from finite size effects and

incomplete relaxation in this region. Near fifi each connected~

site in the network had to be relaxed many thousands of times

to even approach convergence. A confirmation of our result

has recently come from Tremblay (1984). He and his co-

workers used finite-size scaling to obtain a value of

0.649 for 83 with a critical exponent of 1.4 i 0.2, which

is consistent with our results.

Figure 13 presents the numerical result for f(p). f(p)

was computed for three configurations of a 12 x 14 triangular

network by setting up the full 336 x 336 dynamical matrix

and numerically diagonalizing it, then counting how many

modes had zero frequency. These networks were small because

of central memory limitations in the MSU CYBER 750, and

were untrimmed and unperturbed. The difference that a lattice
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perturbation like that described earlier makes in f(p) will

be shown explicitly in the FCC results.. The difference

is very small. The numerical result for f(p) matches the

mean field prediction very well indeed, as can be seen by

comparing Figures 3 and 14. The slight curvature around

3:; 0.65 is due partly to finite size effects and partly

to real critical effects, as we do not expect mean field

theory to be exact (see Thorpe 1983).
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Section 1.5. FCC Numerical Simulation Results

Details of the lattice

One of the two lattices in three dimensions upon which

we have tested the constraint counting theory is the face

centered cubic (FCC) Bravais lattice. Every site in this

lattice has twelve nearest neighbors (z = 12). One.can

think of the FCC lattice as being made up of four inter-

penetrating simple cubic sublattices, where each site's

twelve nearest neighbors are on a different sublattice from

itself. The nearest neighbor bond lengths are all a /423

where a is the edge length of the standard cubic unit cell.

For computational purposes it was convenient to take a =12:

so that the n.n. bond lengths all became equal to unity.

Elastic Moduli for Crystal

Using the dynamical matrix formalism for central forces

set up in Section 1.3, and letting k-¢ 0, we can write out

the elements of D(k) for the FCC lattice:

‘ a. z 1

[xur:'EE? {<k1f‘}v> Lay: if} 18:“?

D”: 3‘(k‘fxyv
Dre 3 E—ng’sz

t

D22: EEI/V’K) Dr" '55- 9’3



40

I will now take the mass m = l as this was what was done in

the numerical simulations. The FCC density then becomes

6’ = 4 / a3, since there are four sites per standard cubic

unit cell. D(k) is particularly easy to diagonalize in the

(100), (110), and (111) directions. We can find vi and vi,

the longitudinal and transverse sound velocities in these

three directions and then find C, ’, (n- , and (09 using

a result from Kittel (1967) relating the moduli and sound

velocities. For cubic symmetry there are only three inde-_

pendent elastic moduli which it is standard practice to take

to be C. , C. , and Cu, . For the FCC lattice we find that

C... ‘ Qd/A Cu: “/4 (lie: “/4

Letting Va =V-2- and“=II 1 to match up with the units used in the

numerical simulations, the final form of the elastic moduli

for the FCC crystal is

4315: (a: (99" Q's/2-

Q

The equality of a»: and G. comes from a Cauchy relation.

For a Cauchy relation to hold, all sites must have inversion

symmetry and the forces between sites must be purely central

(Love 1944).

Numerical:Simulation'Results

All the elastic moduli computations for the FCC networks
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were done on a cubic cell which was made up of 125 standard

cubic unit cells (5 x 5 x 5), giving 500 sites altogether,

with 3000 bonds present initially. Periodic boundary

conditions were maintained throughout the computation

in a manner similar to that used on the triangular net.

The values of the bond fraction p ranged from 1.0 to 0.46.

C). and as were averaged over the x,y, and 2 directions

for each configuration, and these results plus the bulk

modulus K were averaged over three configurations. (n. was

obtained by using the computed values of G, and K in the

relation

k:'3L{C.n+24a.) .

The diode effect is present in FCC as well as in the

triangular net. Here, however, one cannot escape dealing

with the problem directly as up to four bonds attached to one

site may all lie in the same plane, thus giving different

elastic response for in-plane tension or compression. This

difficulty is resolved by perturbing the FCC lattice through

moving each sublattice so that all bonds become-non-planar

5).by an amount proportional to €Y‘( 5 = applied strain = 10-

In effect, each site is "puckered" slightly out of each of

the three cubic faces of which it was formerly a member.

This is a small perturbation, and only appreciably affects the

elastic moduli very near the critical region.

Trimming and supertrimming are both possible for FCC.



fi
z
n
m
m

v

n
s
z
‘
O

'
0

8.6

8.4

8.6

8.4

8.2

Figure 14.

42

 

 

588 SITE FCC CaL-F'IVE CONFIGURRTIOP&

 

 
I I V r j I I

&2 sea me 3:: as ad' as

 

 

2848 SITE FCC CELL—FIVE COI‘F'IGLRRTIQ‘S

 

6.9

 

P’vs. p for 500 and 2048 site FCC networks

 

 



43

In three dimensions any site with three bonds or less will

not contribute to the final relaxed elastic energy so can

be removed. There are certainly higher order units which

do not contribute to the strain energy, as in two dimensions,

but these we have not identified because we cannot draw three

dimensional pictures. It fortunately turns out that super-

trimming appears to be of lesser importance in three dim-

ensions, as a 500 site network is broken up by trimming alone

on the average at about p = 0.43, which is already quite

close to {2' = 0.50. It would seem that ordinary trimming

is more effective in three dimensions than in two, if we

compare Figure 14 with Figure 9. Figure 14 shows the small

dependence of trimming on the size of the network. For

2048 sites, the trimming lower bound for p.is about 0.44.

Figures 15 and 16 present the results of the numerical

computations of (a. , G... , Co: , and K. For all cases, the

p dependence of the elastic moduli is very close to linear

all the way down to p‘ =0.50, with a small tail which is

partly a finite size'rounding of the transition and partly

a real critical effect. It is very difficult to completely

relax the network for values of p close to 65 so that

incomplete relaxation could also have made a contribution

to the tail. In fact, for pé 0.64, an extrapolation

scheme was used to extend the relaxation procedure. The

details of this scheme can be found in Appendix B. The

straight lines drawn in Figures 15 and 16 are the result

for C." (p) obtained from the effective medium theories
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described in Sections 1.7 and 1.8. The agreement of num-

erical simulation with theory is seen to be very good indeed,

and the agreement of the mean field estimate for p'with the

computational results is also quite good. It is interesting

to note that the near perfect linearity of GW'and Chvall the

way into the critical region implies that the Cauchy relation

64"“? is also obeyed with high accuracy over a wide range

of p. It is not known why this should be so, as inversion

symmetry at each site is lost as bonds are cut.

Figure 17 shows the numerical result for the fraction

of zero frequency modes f for both perturbed and unperturbed

networks. These curves were obtained by setting up the

full 3N x 3N real space dynamical matrix for the FCC network

at_various values of p, then diagonalizing it and counting

the actual number of zero frequency modes. The three Gold-

stone modes are subtracted out at the beginning. Because

of central memory limitations on the MSU CYBER 750 computer,

this computation was done for a 108 site cubic cell (3x3x3),

and averaged over three configurations. The constraint

counting prediction for f(p) agrees quite well with the

numerical simulations. There are only small differences at

the 2% level around p' due in part to finite size effects

and actual critical effects, since we do not expect mean

field theory to be perfectly accurate.

Figure 18 at the top shows a blow-up of the region

in which f(p) for the perturbed and unperturbed lattices

differs at all. The bottom graph shows fun(p) - fper(p).
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The maximum difference comes at about of The unperturbed

f is always larger than the perturbed f since for central

forces, out of the plane motion of a site with coplanar

bonds has zero frequency. This symmetry is broken for

the perturbed lattice giving this kind of motion a small

finite frequency.



M
O
Z
I
'
I
fl
I
'
I
‘
I
'
I
H
U

Figure 18.

8.2

8. 175

8.15

8.125

8.1

.875

0%

. 815

fand

49

W—FRRCTION 0F ZERO FREQUENCY NODES—FCC 188 SITES

    

  

. -- . . U

PERTURBED

  

o
o
‘

.5 .--..O.--.§“
.-\‘ .....

“‘ ‘.--“--  
 

I I V I I

8.4 8.45 8.5 8.55 8.6 8.65

W—FRQCTION OF ZERO FREQUEI‘CY ”DOES—FCC 188 SITE}.

  

8.7

 

 

A f vs. p for 108 site FCC networks

 



50

Section 1.6. BCC Numerical Simulation Results

Details of the Lattice

Numerical simulations to compute Cc, (p) were also

done on the body centered cubic (BCC) lattice. The BCC

lattice can be thought of as consisting of two inter-

penetrating simple cubic sublattices. A site on sublattice

A has all its eight nearest neighbors (z = 8) on sublattice '

B and vice versa. The nearest neighbor bond lengths are all

‘43'a / 2, where a = edge length of the standard cubic

unit cell. For computational purposes it was convenient to

take a = 2 /45'so that the nearest neighbor bond lengths

were normalized to one.

Elastic Moduli for the Crystal

Following the same procedure as was done for FCC, we

write out in the k - 0 limit 062):

z z.

Dxxgbflebaz: fk a

l

Dtv’bxr ’§' “'7‘

DI} EDIY: g-eriat

' 2

on ' D3! ’3" K7,!“

We diagonalize D(k) in the (100), (110), and (111) directions

and calculate the elastic moduli similarly as for FCC. This

gives the somewhat surprising result:
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CI,=C1= (”qr-3:1;-

When we let a = 2 /43 to rescale the nearest neighbor bond

lengths we obtain:

(II: ('1: (”Ve?‘

The equality of Ca. and GM is due to the existence

of a Cauchy relation (Love 1944). C. andCtbeing equal is

a consequence of the BCC lattice symmetry. A curious result

of this second degeneracy is that vt2’ the transverse sound

velocity in the (110) direction where the atomic displacements

are in the plane, is identically zero. In fact, one can

easily show by considering D(k) for.a general-k that one

of the three branches of ‘U‘(k) is identically zero in the

(110) direction. Thus even with all bonds present the BCC

lattice still has non-trivial zero frequency modes. The

number of these is insignificant in the thermodynamic limit,

but for the small systems used in the simulations their

fraction was large enough to make the determination of f(p)

meaningless. It was therefore pointless to compute f(p),

but the behavior of the elastic moduli was still of interest.

Numerical Simulation Results

The cell used for the BCC simulations contained 216

standard cubic cells (6 x 6 x 6) for a total of 432 sites.
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There were 1728 bonds present when p = 1.0. Periodic bound-

ary conditions were maintained, and the values of p invest-

igated ranged from 1.0 to 0.67. Regular trimming was done

in all cases, with effectiveness comparable to that in the

FCC networks. Regular trimming caused the breakup of the

elastic backbone on the average at about p = 0.64. The

effect cell size had on this number can be seen in Figure 19

where p. vs. p is graphed for both a 432 site and a 2000 site

cell. P' a the fraction of bonds left after trimming.

All other numerical techniques were the same as those used

for the FCC networks.

The diode effect is present in the BCC networks. There

are planes of four bonds attached to one site which will

have a different elastic response depending on whether the

in-plane local strain is tension or compression. Such bond

configurations can persist after trimming. We therefore

perturb the lattice by shifting the two sublattices with

respect to each other by an amount proportional to 3%,

where 6 - the applied strain - 10‘s. This breaks up all

the planes of bonds, assuring the same result for the elastic

moduli for i 6 . As in the case of FCC, this lattice

perturbation has its only significant effect near the critical

region.

Figures 20 and 21 present the results for CR , C4»,

Ch, , and K. The results are comparable in quality to those

for the triangular net. The straight line on the graphs

come from the effective medium theories described in Sections
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1.7 and 1.8. The agreement is quite good between theory

and experiment, though not quite as good as for FCC. The

constraint counting prediction for p'is 0.75. This prediction

agrees quite well with the data, although the size of the

critical tail for BCC is larger than that for FCC. As

noted before, the tail is no doubt due to finite size rounding

of the transition and relaxation difficulties in the critical

region.- The Cauchy relation Cm‘cn. and the G." (n. relation

are maintained with a high degree of accuracy all the way

into the critical region. The reason for the persistence of

this behavior over a large range of p when random bond

cutting should have long ago destroyed the summetries on

which these degeneracies depend is unclear at the present

' time.
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Section 1.7. Effective Medium Theory--Static Method

There are two ways that we know of to develop an effect-

ive medium theory that gives a functional form for the

elastic moduli as a function of p, and that gives a predic-

tion for of The method described in this section we call the

static method. It is based on an effective medium theory

(EMT) used by Kirkpatrick (1973) to describe the dependence

of the conductivity of a resistor network on the fraction of

resistors randomly present. This static method was developed

by S. Feng, and is described in Feng (1984), which has been

included in this thesis as Appendix C.

Let us start with a triangular net, with all interatomic

force constants equal to 9‘ . Now apply a uniform stress

to the system, which can be hydrostatic, uniaxial, etc.

For sake of definiteness let us consider a hydrostatic

stress, so that all bonds have the same relative displacement

uh. Now let us focus on two sites, labelled l and 2, where

the spring constant between 1 and 2 has been changed to Y'

with Y“< . (This last assumption is not needed. Y can

have any value. Note that in the numerical simulations,

Y' a 0.) After this substitution, the spring between 1 andiz

will compress by an additional amount <84 , since it is not

strong enough to resist the rest of the lattice and maintain

a relative displacement of only uh. This scenario is depicted

in Figure 22. Now if we were to apply an external force F

to move sites 1 and 2 back to their original positions, F
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Figure 22. "Wrong bond” substitution in triangular net
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would have to be such that

F+ Ythdu’I

or F=/¢’-T)“I.

The external force F "stiffens" the weak spring Y. . Now

suppose we were to apply the same F to sites 1 and 2 without

the uniform stress being applied to the system first. This

force would induce a relative displacement 48V between 1

and 2. By the principle of superposition,

or)»: (in.

The relation between F and J“ can be obtained in the

following manner. When all the spring constants are CL and

we apply F to sites 1 and 2, we can define an effective spring

constant between 1 and 2 by

“effiF/J“

We can write “eff as "eff 3 °(/ ace , where 0 l. acen 4 l,
n

since at eff will be greater than " because all the other

indirect connections between 1 and 2 will give a positive

contribution to 0‘eff. If we then remove the GI spring

between 1 and 2 and replace it with a r spring, :4
eff

becomes

oi =a 0‘ - at

eff / acen + r
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Equating the two expressions for F,

F = uh (.u - Y )

(12)

F= «eff (III

we have that

Juan

 

(d/acen-x+ I)

J“ can be thought of as the ”fluctuation" in the relative

displacement of sites 1 and 2 that resulted from changing the

spring constant from 0‘ to Y . The key idea of the eff-

ective medium theory enters the argument at this point. Let

us renormalize a< to 4%., and try to choose GA in such a way

so that a network where all bonds are d; has the same elastic

properties as the original network with I’ bonds substituted

in for some of the x bonds. The obvious way to choose do.

would be so that Jh is zero for every bond. This is clearly

not possible. However, we can try to choose fit so that

the average value (J44) of {a is zero. The average is

defined by the following formula:
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(Mn) ; (Pmmwx

where P(Y)= probability

distribution for

values of r‘.

This gives the usual kind of effective medium or mean field

result, with fluctuations treated in only an average sort of

way. Setting ‘(43) = 0 gives the following equation:

d"/‘tea' ‘4‘ I Y‘ (13)

where we note that 0‘ has been'replaced by 4':- . The

 

probability distribution of interest for percolative pro-

cesses is

P(I')= “Hr-4) + (I—,)J‘(r)

Evaluating (13) and simplifying gives the result

4.. = d (1’: “"1-
I’ ‘6!“

Since we know that all the elastic moduli scale with

 

at , this shows that they all will be linear in p, and go to

zero at p - acen‘ The value of acen can be calculated

exactly (see Appendix C) and turns out to agree with the
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constraints counting result:

2d / z0
) II ll

'
6

cen

So the final result for the elastic moduli is

CLvW6£)='C:9 (1) II-JP‘

I- r'
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Section 1.8. Effective Medium Theory--CPA Method

The coherent potential approximation (CPA) effective

medium theory gives the same result for C;i(p) and p’as does

the static method. The CPA gives more than this, however.

As will be seen below, the CPA method gives a self-consistent

equation for the effective medium density of states at all .

frequencies. This effective medium theory was worked out

by M.F. Thorpe. The presentation which follows is taken

from Feng (1984). This paper may be consulted in Appendix C

of this thesis ( see Elliot, Krumhansl, and Leath for a

general reference on the CPA).

One starts with the Hamiltonian

HBHo-I-V

where

H= 211: * {‘5’ [/Z'E'y8'i11

.: "" «’43)

and V a $(r-«) [fa-5113.];
O

Hois the Hamiltonian of the system with all bonds present, and

V contains the effect of changing the force constant on the

bond between sites 1 and 2 from V to Y . We define the

Green's function for HD by:

“Ii. 2: manna» __ 9010012“:
‘1 1‘ 0-0RTQO “Twn’h’o
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H

where {“03 is a complete set of energy eigenstates. G

ij

is defined similarly for the full Hamiltonian. It should

fill.

be noted here that i, j run over sites, and‘aij and Pij

are d x d matrices for each pair i, j. V can be rewritten

in matrix form as

H 4 4

Vij a (r“) r.‘f.‘ "xi

where

my ’ (Ju' J5 I a}; 6;,- - 4'3; If.) - J”- J,»

.0

It can be shown that .5, .13, and V satisfy the Dyson equation

which is of the form

..g on.”

6 -3 + pvc (14)

We are only considering a single defect, so that summing over

all repeated scatterings from this same bond we can rewrite

(14) as

a

G=P+PTP

where T is called the "t-matrix" (for obvious reasons) and

is given by

"' Y-x 4 A
Tij a: In?“ ”3‘

.. 0-9 7

1'2(F‘)8t(&‘n);n
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GI.On.

It should be noted that Tij has the same matrix form as Vij

I

but with a different overall multiplicative factor. The

heart of the coherent potential approximation now is

setting the average t-matrix equal to zero, allowing a< to

be renormalized-to 04.. , the effective medium value:

<: I-¢Mm( :>"- C)

1- 2(r—4...)¢..(‘r;-?;) 9.. (15)

 

The physical idea here is that we have somehow eliminated the

leading order corrections to our effective medium, defined

by (15). The average is again defined as in Section 1.7:

(Mn) -- [f(r) Amalr

where P") is the probability distribution for the values

of Y . Using the percolative distribution we obtain the

result

f(d-G’n) + (If) (“d-I) = 0

i-z/«-e.>-=..(‘r:-‘I.>i. 1 . 2... 4.12.3504. as)

We can use the equation of motion for P11, given by

«'4.

nut?“ = i + 2—1‘ gr; (PII'PID)?I$

J
(17)
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to simplify (16) . It should be noted that d-* w... in the

definition or‘ng as well as in the average t-matrix equa-

tion. Combining (l6) and (17) we obtain finally

a [P 2'5 ("“‘fi"’)]"’~ [1‘ zi’"“"~"’] ' 0 (18)

If we let tfit -¢ 0, one can readily see that (18) becomes

(m: d P-" 9‘ 21

l‘/* ) f ‘3

 

the~same result as obtained in Section 1.7. Equation (18)

serves as the starting point for the analysis of Chapter 2.
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Section 1.9. Conclusions
 

The original purpose of the work that has been described

in Chapter 1 was to attempt to verify the predictions of a

simple constraints counting argument for fit the point at

which the elastic moduli of a central force random network

vanish. The data presented in Sections 1.4, 1.5, and 1.6

show clearly that this simple argument works remarkably

well. An extra bonus in this work has been the excellent

agreement between the numerical results for the elastic

moduli and effective medium theory.

I should note at this point that numerical simulations

for the bulk and shear modulus of the triangular net and

FCC networks were first done by Feng and Sen (1984). Using

a potential that was strictly harmonic, they obtained the

result 5' a 0.58. Their value for p. is less than ours because

in their model pairs of straight bonds could contribute

to the elastic energy and so the network could hold together

elastically for lower values of p. They essentially did a

different problem than we did because their potential was

the harmonic approximation to ours. Our work was carried out

independently from Feng and Sen.

The application of the constraints counting argument

‘to more realistic models of glasses now seems hopeful. The

(central force models, while very simple and unrealistic.

have the essential physics of the glasses: decreasing

aVerage connectivity produces units in a random network that

‘3<> not contribute to the elastic energy under an applied
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external strain. Therefore rigidity percolation, of which

these are an example, is a different class of problem from

ordinary percolation. Just how different remains to be

seen as work progresses. A more realistic model of a

glass has been analyzed using numerical simulations, and

the results agree quite well with the constraints counting

ideas (He 1984). The central force models provide a base for

this and further work in this rapidly developing area.



Chapter 2. Effective Medium Theory Vibrational Density of

States for Central Forces

Section 2.1. Introduction
 

The success of effective medium theory in describing the

behavior of the elastic moduli in central force random networks

led us to see if other applications would be as successful.

The values of the elastic moduli essentially give us the small

I01 behavior of the vibrational density of states (see last

section of Appendix C). The CPA-based effective medium theory

described in Section 1.8 can give the density of states for

all out under this approximation. The so-called static method

of Section 1.7 can also be modified to give this information

(Feng 1984 and Appendix C) but it is simpler to use the already

existing CPA result. This method will be described in

Section 2.3.

The numerical "experimental data" for the vibrational

density of states 3(6):) with which the CPA theory is to be‘

compared has been obtained using the negative eigenvalue

method (Bell 1972, 1976', 1982; Dean 1972), modified for use

With large randomly sparse matrices. This method gives 3&6 )

V3. 40‘ in histogram form. The accuracy of the histogram

is llimited only by the size of the system and the amount of

comPuter time one wishes to invest. This method will be

69
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described in Section 2.2.

All the work in this chapter was done on the triangular

net rather than on the BCC or FCC networks. The reasons for

this choice were the following: 1) we can get effectively

larger unit cells in two dimensions thus reducing finite

size effects, 2) the size of the dynamical matrix is only

2N x 2N instead of 3N x 3N, where N= the number of sites,

3) the number of non-zero elements in the dynamical matrix

which actually have to be stored is proportional to the near-

est neighbor coordination, and 4) the integrals over the first

Brillouin zone which must be done in solving the CPA equation

are much cheaper to compute in two as opposed to three

dimensions.
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Section 2.2. Nggative Eigenvalue Method

The following brief description of the standard negative

eigenvalue method is drawn from Bell (1982).

We start from the usual eigenvalue equation for LU; ,

the phonon frequencies:

2".

D.szw u,

where‘Q is the real space dynamical matrix (sometimes called

the force constant matrix):

4:32; "’ Nil“?

4? 4 g A, . . .

Dfii' 5J5). .5). ”(.7

‘1

0 o‘HICrwI'se, (1)

$3.: unflvcho
r ("n A: h 7.

All masses are equal to unity. We can rewrite (l) as

(2)
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The eigenvalues of A will be equal to those of kaut shifted

downward by an amount -uf’. Since the eigenvalues of Q are

all non-negative, this implies that the only eigenvalues of

A which are negative will be those corresponding to eigen-

values of 2 less than wt . So the number of vibrational

modes with frequency less than co: ‘will just be equal to the

number of negative eigenvalues M(A) of A. To compute this

number without actually having to diagonalize A_is made poss-

ible by the negative eigenvalue theorem.

This theorem in its simplest form relates M(A) to M(AQ

and M(A;, where A,and A,are two smaller matrices related to a

partition of A. We partition A_(symmetric because 2 is symm-

etric) in the following way:

A. Q.
' (3)

g.’ 6;.

where A’is n x n, AJis m x m, §,is (n-m) x (n-m), and Q,is

n x (n-m). The result of the negative eigenvalue theorem

is that

M(4)= Nihmiz)
(4)

where
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We can continue this process with A‘,eventually giving the

result

1

no)»: WA.)

1"

where we have iterated the partitioning process 1 times.

It is most convenient to choose the next Agto be 1 x 1, so that

H(Ax)31 "f ,4120

f” (Ab): C? )2; ’41‘2‘9

Processing the matrix A_in this way, after n steps (if A

is n x n) we will have computed M(A). -

In realizing this process on the MSU CYBER 750 computer,

one quickly runs into the problem of limited central memory.

In symmetric storage mode, which requires N(N+l)/2 words of

storage for an N x N matrix, N must be at most about 400 or so.

For the triangular net this means one can only compute the

density of states for a system of 200 sites or less. By way

of contrast, the results for the elastic moduli were obtained

on a 440 site network, more than twice as large. A fairly

large number of sites is crucial for these density of states

computations in order to see the details of the spectrum.

It happily turns out that the matrix Q’is very sparse

because we have nearest neighbor forces only and therefore

so is A, Less happily,_this sparseness is not predictable in

any useful way. One must then store the non-zero elements in
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a one dimensional array, with an associated array giving

their position in A according to some numbering scheme. The

numbering arrangement used in this work is illustrated in

Figure 23 for a system with 3 sites (N=3) which gives a 6 x 6

dynamical matrix. There are two entries in A per neighbor

plus two self terms for each degree of freedom, which gives

14 entries per row and there are 2N rows. We only need to

store roughly half of the entries because A,is a symmetric

matrix. Therefore the initial storage requirement is approx-

imately 14N for an N site triangular net. This figure of

course decreases as we cut bonds. This storage requirement

only increases by about 50% at most during a typical computation

so that values of N up to 440 can easily be handled. The

storage requirement does not go up nearly as much as one might

expect, because although each Aghas some new non-zero elements

in it, the size of the his is decreasing as well. These

computations are quite long, however, and require a lot of

central processor time. But they 253 possible on the MSU

CYBER 750 system. In this method, one essentially trades

the "hard" limitation of central memory availability for

the ”soft" limitation of computing time (and cost).
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Figure 23. Sparse storage indexing scheme for the

negative eigenvalue method
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Section 2.3. -CPA Equation

The starting point for the calculation of the CPA

density of states, 9‘(u}), is equation (18) of Section 1.8,

which is reproduced here as equation (5):

P+ P' («Nu-I) " 4’6. [1 * RNA-1)] : 0

where p- fraction of bonds present

4.: effective force constant, which is

complex in general

I» a phonon frequency squared

P. =- complex Green's function for the

effective medium (all bonds present

with force constant 4. )

Equation (5) really consists of two equations, one for the

real and one for the imaginary part, since R. is complex

and IV... will acquire an imaginary part in general. P" is

complex according to the prescription

 

PI/w‘="‘?: "
N‘ I")! 60‘- 44:13)

P“R s ,6“, Kg PI,(NI'+X7)

‘pea

P“: 3 ’14,“. In Pu /60‘4.4’7}

‘40

(6)

I

9660"): 17!; ’1: [(01)

'chr the triangular net d=2 and z=6, so that equation (5) becomes
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1+ 31./61,.-.) - «.11 441.411 = .

What does equation (7) mean? Equation (7) is a pair of coupled

equations in the variables 9/...“ and V: . They are self-

consistent in the sense that we cannot explicitly solve for

or,“ and v.1 in terms of the parameters of the problem.

This is because I)»: and ..I depend on the real and imaginary

parts of V... in a very complicated way, involving sums over

the first Brillouin zone in k-space. Therefore we must solve

them by iteration at every p and. 69'. In the usual way with

the CPA method, on. becomes energy dependent.

The procedure for solving equation (7) is the following.

Starting with a trial solution for 4’: and «,3 , we calculate

Pu‘ and PHI . This is done by changing the k-space sum

of equation (6) into an integral then performing the integration

by Gaussian quadratures. The small imaginary part 7' of the

energy is taken to be zero, since for p # 1.0, at: ‘will be

non-zero so that no extra convergence factor is needed. The

imaginary part‘of a!“ will broaden the delta functions

in the integral in equation (6) into Lorentzians which can be

evaluated numerically. One then feeds the values of n‘ and

R}; into equations (7a) and (7b), and solves this pair of

linear equations simultaneously for the new values of 0’: and

41/,“I . Equations (7) are linear since PI.“ and 1)“: are

taken to be parameters of the equations. One then begins

again with these new values, iterating the entire process
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until of. and PI. are seen to converge reasonably well.

This typically took 5-12 iterations depending on the energy

and on the initial guess. The final calculation of 3.1/00.)

is saved, with the CPA density of states given by

it’d): .IL PHI‘w‘) '
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Section 2.4. Pure System

A few comments about the properties of the triangular

net with all bonds present are appropriate as background for

the p(l.0 results presented in the next section.

For the harmonic lattice potential given in Section 1.3,

we can solve for 67?) for the triangular net, with the result:

(3(4)): £[F i III-6.]

Fe3— (askxa- 2605 U44 coswlgk’a

(8)

c: («as an?» war. 3mm «art's:

One should recall that m-l and a.=1 for the pure net, while

a(.. replaces IV when 0”?) appears in the effective medium

Green's functions used in the CPA method. The maximum frequency

squared is equal to 6‘95 .

Given this dispersion relation (8), one can easily gen-

erate the density of states 350’) by randomly picking points

in k-space and counting how many fall into a given range of

a}. . If enough points are selected (typically about 100,000)

the result converges to the correct value. Figure 24 shows

the density of states for the triangular net which was gener-

ated by this procedure. The four discontinuities in slope

labelled on the graph refer to Figure 25, which shows the

dispersion relation (8) graphed along the first Brillouin

zone path EBA-B-r'defined in Figure 26. Features (1), (3),

z
and (4) clearly arise from local extrema in lat/F). At U =4.5

the lower branch (obtained by always taking the (-) sign
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Figure 24. Density of states for the triangular net
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Figure 25. Dispersion relation for the triangular net
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Figure 26. First Brillouin zone for the triangular net
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in (8)) has its maximum, not explicitly shown in Figure 25,

which gives rise to feature (2).

The fact that 3“?) -§ constant as W; -)0 is perhaps

a little disconcerting at first if one is used to looking at

a three dimensional density of states, but one can easily

prove that in d dimensions.

5/40") M 004'” M (ML-’0

so that 300‘) ~ constant as 4.9" -v0 for the triangular net.

Figure 24 then is our starting point. As we remove bonds

we will be able to see how 3/10‘) evolves from its pure

system form.
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Section 2.5. Results

Choice of values ofgp

Four values of p, the fraction of nearest neighbor bonds

present on the triangular network, have been selected at which

to compare the CPA density of states 5‘. (00‘) to the negative

eigenvalue method "exact experimental" results. These four

values of p are: 1) p=0.85, 2) p=0.70, 3) p=0.50, 4) p=0.20.

The first value was chosen to be well above the critical region

and close enough to the crystal so that the CPA should do well

there if it does well anywhere, and yet far enough from the

pure system so that some real differences from the crystal

might be seen. Point 2) was chosen to be just above pIto give

a stringent test of the accuracy of the CPA in the critical

region.’ Also, trimming and supertrimming have a fairly large

effect at p=0.70, so we desired to see how the density of

states divided itself between the rigid "backbone" and super-

trimmable pieces which together make up the network. The

third value of p investigated is interesting because when 50%

of the bonds are present, the triangular network is still

connected geometrically but is disconnected elastically.

It should be noted that p=0.50 is less than even Feng and Sen's

(1984) result for 550.58, so that there is no question about

the elastic moduli being zero or not. And finally, point 4)

is below p‘for regular connectivity percolation. The network

consists of isolated clusters only at p=0.20.
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1) p=0.85

Figure 27 shows the two results for the density of states

of the triangular network. The dashed line is the CPA result

while the histogram with area normalized to 1 is the negative

eigenvalue method (NEM) "experimental " result. It should be

noted here that all the NEM results are an average over three

configurations of a triangular network with 440 sites, in fact

the same three used in Section 1.4 for the elastic moduli

computations. The agreement between NEM and CPA in Figure 27

at the level of accuracy of the histogram is quite good. One

can see the memory of the crystal in the peaks which remain

at 45‘ - 2 and 5, while the effect of bond cutting shows in the

increase in the small frequency density of states, due to the

fact that

34.1) ~ {6.25 6.2% (p-r'f' a. at. o

All these features including the decrease of the right band

edge are reproduced well by the CPA. The integrated weight

under the CPA curve is equal to 1, as it should be.

2)¥p-0.70

The density of states results for p=0.70 are shown in

Figure 28. The agreement between CPA and NEM (untrimmed) is

similar to that in the previous figure. The CPA has a 3251

narrow peak that goes up off the graph to about 1.9 and then

comes back down to the correct Io‘ =0 EMT result. The bin

size used in the NEM was not small enough to check if this

behavior was real or an artifact of the CPA. To get higher
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accuracy with the NEM, one should go to smaller bin sizes

glgng’wigh larger networks so as to keep the noise level tol-

erable in each bin. The average number of modes pg; bin

is really what determines the noise in the histogram. In

Figure 28 one can clearly see the beginning of the divergence

of g(0) as the elastic moduli go to zero. The right band

edge continues to come in from the pure system value of 6.0

with the CPA tracking this behavior quite well.

Figure 29 gives the NEM results for the p=0.70 networks

as well as these same networks trimmed and supertrimmed. The

supertrimmed histogram is normalized to the fraction of gitgg

present in the remaining backbone (about 0.85) with all the

.zero frequency modes from the missing sites subtracted out.

The untrimmed histogram's integrated weight is normalized

to l. The solid lines are the contribution from the "rigid"

backbone while the dashed lines show the contribution from the

supertrimmed parts. The effect of supertrimming seems to be

to deplete 3(6)” by about the same amount across all frequencies

except for a larger amount at low frequency. This is perhaps

not so surprising when we recall that supertrimming can remove

sites with all possible connectivities (one to six) so that

the complicated pieces of the network removed could support

the whole range of allowable frequencies. As a final comment,

one should recall the statement made in Section 1.4 that the

supertrimming rules we formulated were not complete, but were

‘probably almost so. This was seen clearly to be true in compar-

ing the NEM data for the p=0.70 networks. After supertrimming,
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the networks still had a few (one or two) non-trivial zero

frequency modes left. Therefore supertrimming, as formulated,

does not identify all the possible floppy regions in the

network.

3)4p-0.50

At p=0.50, the network is connected geometrically but

disconnected elastically. Figure 30 presents the CPA and NEM

results for this value of p. Again, the overall shape of the

NEM density of states is reproduced by the CPA to the level

of accuracy of the histogram.' The one systematic deviation

is at the right band edge where the CPA cuts off before the

actual band edge. The CPA shows a gap opening up at small

frequencies, with the new band edge at about to" ==0.05.

The histogram does not have fine enough resolution to see this.

It is very difficult to solve the CPA equation for small ‘0‘ ,

since in this region, to get the band gap, the solution has

to jump from the Riemann sheet that was valid above the trans-

ition to a new solution sheet in the gap. It is easier to see

the small gap in the p=0.20 results. At p=0.50, the value of

f, the fraction of zero frequency modes, should be

{(P):1- P/P' '3 0.25—

TPherefore the weight in the band should be 0.75. The weight

llnder the CPA density of states comes out to this value, and

the NEM results agree. The contribution of the zero frequency
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modes to the density of states will be a delta function at the

origin with weight 0.25. This is not shown in Figure 30.

However the CPA does predict this delta function accurately,

as will be shown in the p = 0.20 results.

4) p = 0.20

At p = 0.20, the network consists of isolated clusters of

sites and bonds, with the most probable clusters containing

one or two bonds. This is reflected in the NEM results shown

in Figure 31. The large bins at u" = 2.0, 1.5, and 2.5

come from one and two bond clusters respectively. These are

isolated cluster modes, and obviously a simple effective med-

ium theory cannot be expected to get these right. However the

CPA does not do too badly in reproducing the other features

of the density of states. There is a band gap at about

“8' = 0.3 which the CPA puts at ‘0‘ = 0.5. The low density

of states in the first bin probably shows a Lifshitz(l964) tail,

which the real infinite system must have. This is an expo-

nential tail which comes from the band edge into zero. The

right band edge has moved in to about hf’ = 4.3 which the CPA

puts at 4.0. The overall shape of the density of states is

reproduced fairly well by the CPA. At p = 0.20 the weight at

zero frequency is 0.7, so that the weight in the band is 0.3.

The weight under the CPA and NEM curves is equal to this value

within computational error.

The CPA below 13‘ predicts a delta function at the origin

with weight 1 - p /‘ p' (see Section 1.2) . This comes about in

the following way. Assume ”WI-I" —t0 for p4p’. Then eq. (5) is
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or P“: (I- P/FI)-;!:

When we take the imaginary part of P" to get a, (49‘) , we

3.43%“ 3%: Im 13,: (1— ’71") “w"

get

which agrees with constraint counting. In Figure 32 the real

and imaginary parts of 'TL are graphed as functions of 09‘

for p=0.85 and 0.20. For p=0.20 it is clearly seen that 2222

91,: and "IE go to zero with w‘ , so that the CPA does predict

the right delta function at the origin for p¢pf The graph of

«n for p=0.85 shows the real part going to

0.55 : (Ll. /

fruit:

which is the correct result as was seen in Chapter 1. One

should also note on both the p=0.85 and p=0.20 graphs that

or: is zero outside the band. This is because the only

way a‘fw') can be non-zero is if "I is non-zero, and that

will occur only when 4;, has a finite imaginary part.

Other features of interest in Figure 32 are the cusp-like

behavior of d: (p=0.20) for small frequencies. This is an

indication of the change of solution sheets going from in the

band to below the band, as was mentioned previously. The

solution
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Figure 32. Real and imaginary parts of effective force

constant vs. energy
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or,“ /w‘=0) = Cr.

l‘f‘

remains a solution below pIas well as above, but below p‘

it is not the correct solution as it gives elastic behavior

at small frequencies. For p¢pt at small frequencies one must

carefully search numerically for the other solution which is

the correct one in this region. The less prominent cusp-like

feature in 91..“ and «.3 (p=0.20) at «2‘ =4.0 is probably at least

partially a numerical artifact as it was difficult to solve

the CPA equation at the right band edge for p.81



Section 2.6. Conclusions

It has been demonstrated that not only does a simple

effective medium theory give a good description of the zero

frequency elastic properties of nearest neighbor central

force random networks, but it also gives a quite good descrip-

tion of the finite frequency behavior as well. This is true

over a range of values of p where the network varies from

' being geometrically and elastically connected to being geo-

metrically connected and elastically disconnected and finally

becoming completely disconnected. Band edges and the zero

frequency delta functions are also reproduced by the CPA

as well as the overall shape of the density of states.

In the next chapter the results of Chapter 1 are extended

to longer range central forces with again a spectacular

success of effective medium theory. The finite frequency

behavior of these systems has not yet been investigated, but

it is interesting to speculate that the CPA equation, suitably

generalized, might be quite successful in that case as well.



Chapter 3. R1 idity Percolation on Elastic Networks with

Ist and 2nd Neighbor Central Forces

Section 3.1. Introduction

In Chapter 1 rigidity percolation was studied on various

random networks which had nearest neighbor central forces only.

Effective medium theory and constraint counting arguments

described the elastic moduli and rigidity threshold very well

indeed for these systems. It was of interest to us to see

if the same kind of results would be obtained for systems with

longer range central forces. Perhaps the success of our theory

was due only to the nearest neighbor character of the atomic

interactions in our model. Also, since more realistic models

of covalent glasses have angle forces, higher neighbor central

forces are interesting too because in the right context, a

second neighbor central force is not so much different from

a nearest neighbor angle force.

The second thrust of this work was to explore some ideas

that have appeared recently concerning the universal critical

behavior of the ratio of C"/(q., as p—wpI Bergman (1984) and

Schwartz (1984) have shown that in certain models, C"/Cw

approaches a limiting value as the critical threshold is

approached that does Egg depend on the initial value of the

ratio.

Section 3.2 presents the details of the model we studied,

98
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Section 3.3 describes the constraint counting arguments plus

numerical results for the fraction of zero frequency modes

as a function of p for this model, Section 3.4 derives the

effective medium theory we used, Section 3.5 presents the results

of numerical simulations for the elastic moduli and

ratio and compares these to the effective medium theory,

and Section 3.6 draws conclusions from this work.
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Section 3.2. Details of the Model

The model we studied was a square net with first and second

neighbor Hooke's law springs. The first neighbor force con-

stant was 01 and the second neighbor force constant was Y'.

Figure 33 shows a piece of this lattice with all bonds present.

The solid lines are first neighbor bonds and the dashed lines

are second neighbor bonds. The full potential for this

model is

V’éavzax)‘ + i gag—1r
(1)

where the sums over i and j respectively are over all first

and second neighbor bonds present. First neighbor bonds are

present with probability p.and second neighbor bonds with

probability pf It should be noted that p'and p‘are independent
 

probabilities. The phase space for this system is then the

rp‘plane, with ng,p;1.0. Figure 34 is a diagram of this

phase space. The lines labelled 1,2, and 3 are the three

phase space tracks actually used in the various simulations.

The three tracks are defined as follows:

Track 1: gfp'

Track 2: pf2.37prl.37 (2)

Track 3: pf2.37p.

The reasons for the choice of these three particular tracks

are given in Section 3.5.
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Figure 33. Diagram of square net with first and second

neighbor springs
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Using the methods described in Chapter 1 we can easily

show that the elastic moduli for the pure system are:

C” r N 4' Y

Cg”: (1;: r (3)

Since we still have only central forces, and each point is

a center of inversion, (“I and (a. are related by a Cauchy

relation (Love 1944) equating them.
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Section 3.3. Constraint Counting and Fraction of Zero

Frequency_Modes

As in Chapter 1 the fraction of zero frequency modes f

1c: Mo/dN .- dAl- xv,

4A!

is given by

 

 

j. _ afi-IA/g)

div

F 1-(fa+F‘) (4)

where g, z‘are the first and second neighbor coordinations

in the pure system and are both equal to four in this case,

and N,and N,are the number of first and second neighbor bonds

actually present. The critical line in the p.-p‘ phase plane

is given by f=Q or

f’."+&’=1

This result is shown as the solid line in Figure 34. Note that

equation (4) predicts that f depends only on the sum of p and

ptand not on their individual values. In fact, if we use

P'8(g+g), the actual fraction of all bonds present, we can

rewrite (3) as

FOO): I‘ZP

We have done numerical simulations to test the validity of (3).

Using the negative eigenvalue method as described in Section

2.2 we have selected values of g and p’along tracks 1 and 3

and computed f by counting the number of modes with frequencies
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less than some very small number x (x§0.0000l ). These

results were averaged over three configurations and graphed

vs. p. The result for f along tracks 1 and 3 is shown in

Figure 35. The straight line is the prediction from equation

(5). Note that the agreement between tracks 1 and 3 is almost

perfect except for some very small deviations in the critical

region around fi;0.50, and both separately agree quite well

with equation (5). As at least some of the curvature in the

critical region is due to finite size effects, we can conclude

that the fraction of zero frequency modes is dependent only

on the sum Effie with only very small fluctuations in the

critical region from individual variations in p and p‘.

One final note: the critical line being defined as in (4)

implies that fi'for each of the three tracks will be as given

in Table 2.

Table 2. Critical values of p? for tracks 1-3

' Track 2':

l 0.50

2 0.703

3 0.703
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Section 3.4. Effective Medium Theory

We use the static method described in Section 1.7 to

develop an effective medium theory for our model. Since we

have two independent effective force constants, d;,and Y;.,

we end up with two equations like equation (13) in 1.7:

VM‘ d {ff—4')

'. a| (63)

r..= r (w <6!»
l-a:

 

where a'and alare defined similarly as in Appendix C:

2.2 5 am :“W/fi) 6770]

N2, 4"? Ha)

a): 2n. 2’ 7,171-;‘25"U04”007)] (7b)

Nil. “1”

A

J; - lst neighbor unit vectors

3 - 2nd neighbor unit vectors

a - 1st neighbor distance = l

b a 2nd neighbor distance =V2'

51k) is the inverse of the dynamical matrix of our model but

with at and Y replaced by d. and {a . The dynamical

:matrix D(k) is easily shown to be

D" (if? 2“. (I‘lu’xa) J- 2 Y,“ (l-(uha 011;.)

017(t)‘: Dy:[[)‘ 2 C. 5".1‘14. {0.164,
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.Dy7 (F) ‘-‘ )4. (1' (0513.)). 2 Y,“ {/‘toer‘ c.4174)

The elastic moduli go to zero at QEaIand éEaz, and since the

following sum rule is easily proved from (7)

that implies that

fi‘i- ff: 1

which agrees with the constraint counting result of Section 3.3.

The existence of the sum rule (8) means that only a,need be

independently computed. The definition of a,in (7) involves

a lst Brillouin zone summation which can be changed to an

integral and evaluated numerically. This double integral

cannot be evaluated analytically but instead was computed with

a 22 x 22 point Gaussian quadrature. The explicit form of

the integral for a,is not important but it should be noted

that afa'( 5%..) only. ,

To solve equation (6) along a given track, we divide

(6b) by (6a) and solve for p, eliminating ptby the relation

(2) of interest and azvia the sum rule (8). This gives an

equation of the form

[9,: A “Va/J
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This is a ggnfself consistent equation for pr We can substitute

in values of 'P/n., starting with the initial value of {Ad

and continuing until the known critical value of ’3/2. is

reached. Each of these points give a value of g which can

then be substituted back into equations (6) along the

calculated value of a.to calculate “A and r; thus the

elastic moduli via (3). The value of iblk. at the critical

point is known, since on the critical line figaf Thus for a

given track p? is known and so

X" l = a" 0”)
01..

m1“: [nu

Figure 36 shows how the value of CK/am varies along the

critical line. The elastic modulus ratio is simply related

to YF/k. by

C"/(.,., =' l * (53')

All of the above theory can be easily generalized to

account for an arbitrary number of Hooke's law forces of arbi-

trary range. If there are zibonds from a given site to its

ith neighbors, each randomly present with probability p,

and if we have forces out to the nth neighbor, then equations

(6) will be generalized to

d1: dfl.(,"aa') 24:: 1,’\
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Figure 36. Elastic modulus ratio along critical line

(EMT)
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ay -' '35 Z Tr[(1-¢“‘?'33')/32°)' 0.747)]

Nix A53.

Sum rule (8) can be generalized to

I!

2' 2,4,: 20!

4°31

so that the critical surface becomes defined by

A e

2: {cf} : 24’

in

This also the result which would be obtained from constraint

counting in this general case.
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Section 3.5. Numerical Simulation Results

We present results for the elastic moduli computed along

tracks 1 and 2 in the p1 - p2 phase plane. The results are

displayed as a function of p = 15(p1 + p2), the total fraction

of bonds present. The rigidity threshold is then p*= 0.50

for both tracks. All the simulations were done on 40 x 40

square nets with periodic boundary conditions. Five inde-

pendent configurations were averaged over for each track.

Regular trimming of one and two bond sites was performed,

but supertrimming, though possible, was not attempted. The

regular trimming took care of the "diode effect" as it did

for the triangular net in Section 1.4. All other details

of the simulations were as described in Chapter 1.

Three different values of ‘Db were used for each track.

These are given in Table 3 along with the related initial

value and critical value of (”/(‘W .

Figures 37 and 38 present the results for 5N and Cu .

Within the scatter of the simulations they are equal over

the whole range of p. 'As in Chapter 1 this is a surprising

result, since inversion symmetry at each site is lost as bonds

are cut, so that the Cauchy relation equating. (w and Cu.

should become invalid. It is possible that Cauchy's thoerem

may be true under more general conditions than have been

previously assumed.

Figure 39 shows the simulation results for Cu and Cw

for each track and each value of ”Al. The lines shown are

from the effective medium theory (EMT) of Section 3.4.



Table 3. Y/x

Track

113

ratios used for numerical simulations

7/4

0.25

1.0

2.0

0.1

0.25

2.5

:‘m‘i‘fl

CL/th
 

11.0

5.0

1.4

0 fl.0.",

(h/QVV
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In all six graphs the agreement between EMT and simul-

ation is excellent, and perhaps even more impressively so

than in Chapter 1, as the shape of the curves is no longer

simply linear. As the rigidity threshold.pr= 0.5 is closely

approached, however, there are what appear to be very small

systematic deviations of the simulations from EMT, with the

experimental points being below the EMT curves. These

deviations mean that EMT is probably'ggg exact for this

model, but since they are very small, EMT describes this

sytem quite well indeed.

The EMT predicts that the ratio 6. law should go to a

fixed value at the critical point of any given track which

is independent of its initial value. The simulation results

for this ratio along tracks 1 and 2.are presented in Figures

40-41 and 42-43 respectively.

For track 1 the EMT predicts the critical value of (0/(Ly

to be 2.0 ( 'Aflt. - 1). Figure 40 shows the numerical

simulation result. Within the numerical scatter, the sim-

ulations appear to agree with the EMT result. Figure 41

shows the same result for the ratio but computed on three

configurations of a 20 x 20 square net. The finite size

effects encountered in using too small systems are clearly

seen. For track 1, the difference between Figures 40 and 41

are not that great but the larger system with more config-

urations clearly is an improvement. One should note that

even with the excellent agreement of the moduli with EMT,

small finite size errors in the moduli are'amplified in the
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ratios because we are dividing two very small numbers.

Finite size noise has a much greater effect for the

.track 2 results. Figure 42 shows that within numerical

scatter, the ratio Ch/hm seems to become asymptotically

equal to 5.0, in agreement with the EMT result for this track.

Figure 43 shows the smae ratios computed using the smaller

systems described above. Based on Figure 43 algge, we

would have said that there is large numerical disagreement

with the EMT result. Because we are computing critical

ratios, our results are quite sensitive to finite size

noise in the critical region, when the appropriate correl-

ation length becomes of the order of the size of the system.
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Section 3.6. Conclusions

We can conclude that EMT does as well or better for

first and second neighbor central forces as it did for

nearest neighbor bonds only. This agreement between

EMT and simulation is far better than in most other problems

where EMT has been applied. The reason for this may be

that since the EMT always gets the initial slope right for

ggy_problem. and in this case EMT also predicts the

critical threshold quite accurately, that with both ends

of the curve fixed there is little room for error in

between. This of course does not address the question of

why the EMT or constraint counting theory prediction for

p'is so accurate. 4

To properly understand the implications of our result for

the critical behavior of the G'ICW ratio, one should recall

that there are two different classes of problem whose

elastic properties are being studied currently. Class 1

includes those problems where the elastic moduli go to zero

only when the system becomes physically disconnected. This

includes all percolation problems where enough microscopic

forces have been specified so that geometrical connection

implies elastic connection. Class 2 is the class of all

rigidity percolation problems: that is, all problems in

which geometrical connection does not necessarily imply

elastic connection. As was stated in Chapter 1, all problems

studied in this thesis are Class 2.
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Our EMT predicts that CS/QmIgoes to a fixed point value

at the rigidity threshold which does not depend on the initial

value of the ratio but does depend on geometry, i.e., the

track followed in phase space and thus the critical value of

p1 (see Figure 36). The numerical simulations confirmed

this prediction quite well. This is the first and only such

finding so far for a class 2 problem, analytical or numerical.

Bergman and Kantor (1984) predicted, based on mean field

theory and an exactly solvable fractal model for percolation

backbones, that the critical value of “/6111 would go

to a universal value dependent only on dimension. Our result

clearly contradicts this; however, their prediction was

really only for class 1 problems. Bergman (1984) showed

for a honeycomb lattice class 1 problem that (0,00 did go

to a critical value independent of the starting value.

However he had no way of varying the geometry of his problem.

Schwartz (1984) found the same type of behavior for the

Born model, which gives a class 1 problem. Thorpe (1984)

showed, using an EMT, for the class 1 problem of randomly

punching elliptical holes in an elastic sheet, that the

critical value of 60/4“ depended on the ratio of the

lengths of the semimajor and semiminor axes of the hole.

This is the only indication thus far that Bergman and

Kantor's prediction might be incorrect for a class 1

problem. There are no numerical results as of yet for

different geometries of class 1 problems that would support

or contradict their prediction. Feng et a1. (1984) confirmed
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Bergman's (1984) result for the critical exponent of Cu by

doing simulations on a square net, but gave no results for

“/4... since they apparently did not compute (w . Finally,

the node-link picture developed by Kantor (1984) for class 1

problems assumes that the elastic properties of a lattice

will become isotropic (i.e.,C'Cu’ 2"“! ) as the critical

threshold is approached. There is no good numerical

or analytical work for class 1 problems to support or deny

this assertion thus far. For the class 2 problem studied in

this chapter, the square net does not become isotropic at

at §‘- 0.5 except perhaps at one isolated point along the

critical line. The EMT would predict this point to be

p1 - 0.6, p2 = 0.4, an isolated point of no apparent signif-

icance.

These questions of the universality of the ratios of

critical amplitudes and of isotropy may turn out to be

another area in which clear distinctions between ordinary

connectivity percolation (class 1) and rigidity percolation

(class 2) can be made.
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Trimming and Supertrimming_Rules for Central Force Networks

The distinction between trimming and supertrimming is

made clear by noting that trimming involves single sites

only. Every other kind of removable unit (denoted a floppy

unit) is classified under supertrimming.

The complete set of rules for determining whether a site

is trimmable or not are summarized in the following state-

ment :

A single site in a central force

network is trimmable if, in d dim-

ensions, it is connected to the rest

of the network by d or fewer bonds.

The justification is clear: any mass point has d degrees

of freedom, so it can always satisfy d or fewer constraints,

a bond being a single constraint in this case.

Units which are supertrimmable can be classified accord-

ing to the type and number of their connections to the rest

of the network. A connection by a single bond we call type

1, with the number of these given by r1. A connection by

a pin joint we call type 2, with the number of these given

by r2. Figure 44 shows an example of both types of connection

for the triangular net.
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Figure 44. Two types of connections between floppy

units and the rest of the network
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It is important to realize that type 1 connections

quench one degree of freedom of the attached floppy unit

while type 2 connections quench two floppy degrees of free-

dom. Therefore in two dimensions, which is really the only

case of interest as far as supertrimming goes, the rule to

determine whether a given unit can be supertrimmed or not is:

if r1 + 2:2 5 3 supertrim

if rl + 2r2 > 3 cannot

supertrim

Three is the number of degrees of freedom of any extended body

in two dimensions--two translational and one rotational.

Note that rl + 2r2 >23 for a given unit'dgeg_ngt necessarily

mean that the unit is rigid. There can be internal floppy

modes which still allow the unit to be removed. That is

why trimming and supertrimming as formulated are incomplete.

As these internal floppy modes can be extremely complicated,

we have been unable to rigorously identify higher order rules.
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Extrapolation Technique for Elastic Energy Relaxation

Empirically we found that as a network relaxed the elastic

(0|

modulus C near the final stages n of relaxation obeyed the

asymptotic form

C(11): C(‘fl'l' a b’h

where a > 0, b > 1, and b itself was slowly decreasing with n

but at‘a rate mush slower than that of C“: Each step in n

really represents 50-100 actual relaxations per site. Call

this a laggg relaxation step. If N of these large steps

were used at a given value of p, then by fitting the

'I’ -

exponential form above to C” , C“ u, and CM) , we can solve

for C”) to get

u) ((014) - (Cu-u) L
((3°) C:

(1‘ -1 ("CH‘2C(~)+C”U

C :-

 

C(") will only be an upper bound, however, since the

extrapolation technique assumes b constant while in fact the

slow decrease in the value of b will result in a final
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correctly relaxed value of the elastic modulus that is

somewhat smaller than C”’. In effect the extrapolation

technique is just a cheap way of getting several thousand more

small relaxation steps. Table 4 gives an example where the

extrapolated modulus can be compared with actual further

relaxation steps. This data is taken from a BCC computation

for the shear modulus, p=0.77.

Table 4. Extrapolation vs. relaxation

   

No. of small Value of modulus

relaxation steps before extrapolation Value after

800 0.0745 ' 0.0732

4800 0.0736 0.0702
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EFFECTIVE MEDIUM THEORY OF PERCOLATION

ON CENTRAL FORCE ELASTIC NETWORKS
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Abstract

We show that effective medium theory gives an excellent description of regular

lattices when nearest neighbor central force springs are present with probability p.

Efl’ective medium theory shows that all the elastic constants go to zero at p“; - 0 pc

where d is the dimension and pc is the effective medium estimate 0! the ordinary

percolation threshold.
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1. INTRODUCTION

There has been considerable interest in the elastic properties of random systems

recently‘“. While much of this attention has focused on the critical properties of the

random elastic network as it breaks up, it is of considerable interest to describe the

overall behavior. We focus our attension in this paper on the central force elastic

percolation model.I We show that the simplest efl'ective medium theories give

excellent agreement with numerical simulations for most values of p, the bond

occupation probability, except for a very small range of values of p near pm, on both

the triangular network and on the f.c.c. lattice.

Although it is unlikely that the present model will apply directly to any real physical

system, it is an important one as it is the simMest member of a general class of

models. These models are made up of units that can be connected but still transmit no

. elastic restoring forces. In the present case the units are bonds and a pair of two and

just two connected bonds form a 'free hinge“ as there are no angular forces. The

whole network has finite elasticity for high values of p because the high connectivity

'locks" all the free hinges. As bonds are removed from the pure system, the local

My regions are created which eventually prevent the rigid regions (i.e. the parts of

the network that have finite elasticity) from percolating and the system loses its

elasticity. Thus the breakup of the system is determined by rigiditv mention and not

ordinary anectivity ngcolatign.

The most important physical manifestation of this phenomenon is in the c_0__valent

rand__9_m networks’ where its local movement is not a free hinge but the dihedral

angle_—associated with three. connected bonds. The energy required to change the

dihedral angle is small compared to that needed to change the bond lengths and bond

angles, so it is reasonable to neglect it as a first approximation. This leads to a division

of covalent random networks into low co-ordinated Elvmeric g_la_s_s_es_ and high 00-

ordinated amgmhous glids.S

The other class of models for the elastic percolation phenomenonm'4 involve

specifying a suflcient number of microscopic forces so that all connected parts of the

lattice are rigid by themselves and the elastic percolation transition occurs at the

ordinary percolation threshold pc, albeit with difierent eitponents3~3~4

The system under consideration is made up of Hooke springs connecting nearest

neighbor sites i,j to give a potential .

V-a—zz [(E- ups-12pu (1)

2<li>

where the angular brackets denote a sum over nearest neighbor pairs which are

connected by springs with spring constant a and pi, is a random variable that is

associated with each bond and is 0, 1 with probability l-p, p. The Ti, are the

displacements from equilibrium and ii,- is a unit vector connecting nearest neighbor



133

pairs in equilibrium.

In the next section we show how a constraints counting argument can be used to give

an estimate of pa. at which the elastic constants of the syStem vanish. In section 3

and 4 we develop effective medium theories for the. elastic constants for p > pm

from two difierent viewpoints, both of which lead to the same result. The first one is

a direct generalization of the method developed in the study of electrical condution

near percolation threshold, and the second one applies the coherent potential

approximation to the present problem. ,

2. CONSTRAINTS METHOD

The simplest way to estimate where the transition takes place is to use a constraints

argument’. When p is small, the system consists of disconnected pieces and hence

has many zerg frgguencv modes whose number is given by the number of degrees of

freedom (0N) minus the number of constraints (é-sz). Thus, the efi'ective medium

estimate of the fraction f of zero frequency modes is given by

r- (at: - -§-sz)/¢1~1

_ .214‘1 (2)

so that f goes to zero at p,- - 2d/z.

Next consider comparison of this result in the numerical simulation. We have

computed f numerically for a‘ 168 atom triangular network (see inset in figure 1) and a

108 atom f.c.c lattice (see inset in figure 2). Both lattices had periodic boundary

conditions and f was obtained by directly diagonalizing the dynamical matrix formed

from (I) and counting the number of modes with eigenvalues of zero. It can be seen

that equation (2) describes the results well except near pm where the very small

deviations from (2) are due to a combination of finite size and critical efi‘ects.

A similar constraint counting argument for one, rather than 0, degrees of freedom per

site, which is the case for the electrical conduction problem, leads to the effective

medium estimate for the ordinary percolation (i.e. the connectivity problem)‘ of

p, - 2/2 and hence

pa. - d pg (3)

The transition described here takes place well before ordinary percolation occurs

because many connections in the network produce no elastic restoring force’. A

simple example is shown in figure 3. Configurations like this correspond to one

example of the Mg! regigns.’
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3. STATIC METHOD

For p >pm, it is of interest to develop a mean field theory for the elastic constants.

We have done this in two ways; both of which lead to the £935 result. The one that

is simpler conceptually is to adapt an argument used by Kirkpatrickz for the electrical

resistor network. Suppose a uniform stress (uniaxial, hydrostatic, etc.) is applied to a

lattice where all the springs are a, and that the atoms labeled 1, 2 in figure 4 have a

relative displacement, along in of 50,. Now substitute a single 'wrong bond' on as

shown in figure 4 and imagine an e_x_tgg external [1355 f applied to 1 and 2 as shown to

restore l and 2 to their positions before a was substituted for am. It is then easily

seen that f should be:

f- dunk, - a) (4)

From the superposition principle, the relative displacement 50 between 1 and 2

induced by f when the system is unstressed is the same as the e_x_tr;g displacement

between 1 and 2 when there is an applied uniform strain 80, but no f. Then an is the

'fluctuation' in relative displacement of 1,2 'due to the introduction of the wrong bond

or. The relation between f and 00 can be obtained in the following way. If the force f is

applied to 1, 2 when 311_ the springs are am, there will be an efiective spring constant

a“ - dfila‘ where 0 < a' < 1 takes account of all the connections between 1', 2

including the direct one in this uniform system. We will calculate a‘ later, but for now

treat it as a known constant. If the a, spring between 1 and 2 is removed, then the

new efi'ective spring constant a" between 1, 2 is

a", - anla‘ - an ' (5)

\

as shown in figure 4. If a is added in parallel to a" and the force f applied, then the

relative displacement Bu of 1 and 2 is given by

f- 511(0" + a) (6)

or

fill - 311,.(0III - e)/(au/a' - on + a) (7)

The effective medium result is obtained by choosing a, so that the average value

- <50) of 80 is zero to give '

< 0“-“ >-o (3) 
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For a distribution P(a) of spring constants, this leads to

P(a)da _ ' .

I l-ae(1_a/an) 1
(9)

 

For the present case of interest P(o') - p5(o - 0') + (1 - p) 8(0') gives

a l-a‘

which goes to zero when p“. - a'.

The quantity a‘ is obtained for the perfect lattice as follows. The force P, on the atom

i is given by

- ‘ 3V - ..

F3 " ‘ '7. " ’ D--'ll (11)an, 12 u i

where

l . . .

.5 -¢mrijrij jaii

" “n 2111111 5"
{ jii

(12)

These equations can be inverted by Fourier transformation to give

a, - - '5“(TE)~'I-‘., (13)

where 1505) is the dxd dygamical matrix for a Bravais lattice, and 15k and Ti,‘ are the

Fourier transforms of the F, and Ti, respectively.

566) - 215,.xpti‘io', -'r',>1

ii

- 0.211 -- exp(iaE-3)l§§ (14)

a

where 5 is a unit vector in the direction o_f_ one of the z nearest neighbors and a is the

nearest neighbor separation. Putting Fj - f i120" - 532), the negative of the
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externally applied force as shown in figure 4, we find that

a, -s, - if; 212 - exp(iaI-iu) - exp(-iaT-r,,)1'o“(T)-r,2 - (15)

k .

which defines

a‘ - 55 212 - await”) - .xp(-1.Ts,,)11,ffi"(Emu (16)

E

As all bonds are equivalent, we can replace in by any of the nearest neighbor bonds

8, sum over all nearest neighbor bonds and divide by z to give

a' - 3‘1?- z Tr[(1- .xptiaT-ii)(ié)-B“(Tn
N2 u

2- 20

N2 g Tr(1) z p... (17)

. Thus, the result (11) can be written’18 as

£2-22!— (13)

a l-pm

Since all the elastic constants C,,- of the network are linear functions of a“ only, we

conclude that they all go to zero linearly at pm, and any ratio of two elastic constants

is independent of p. In particular the ratio of the bulk modulus to the shear modulus

of the triangular network is alwag 2.

Next consider comparison of this result with numerical simulation. The straight lines

from eqation (18) are plotted in figures 1 and 2 for the triangular and the f.c.c. lattices

and show excellent agreement with simulations except for a very small critical region

near pg... Such close agreement between simulations and efi'ective medium theories

is rare although it does occur for the conductivity problem‘ in 2d. The deviations are

larger in 3d for the conductivity problem‘ than in the results for springs in figures 1

and 2. Indeed 2d/z appears to be a superior estimate for pm than 2/2 is for pc. This is

particularly apparent in comparing the results for the f.c.c. lattice in this paper and

those in ref. 6. In general we would expect efi'ective medium theories to do better in

higher dimensons.

The numerical simulations were done by removing bonds at random in a lattice with



137

periodic boundary conditions, imwsing an appropriate external small strain 5 (which

redefines the vectors that define the large periodic cell) and relaxing as fully as

possible by moving atoms towards positions where there is no force on them. The

elastic constants were obtained by computing the potential energy of the system via

equation (1) and using V - i—Cez. This procedure has some advantages over that

used previously’ in that all atoms are treated equivalently and there are no “surface

atoms“. Typical strains used were s - 10".

There are some subtle and important difi'erences in the numerical simulations done in

this work and those done previously‘. In figure 3, the two bonds can be removed as

they do not produce a restoring force. (Dangling bonds are also removed as in the

conductivity problem‘) However, when 0 - 180° in figure 3, there are two ways to

proceed. In ref. 1, it was assumed that there was a restoring force as given by the

potential (1), whereas in the present work we assume there is none and remove such

configurations. This has the effect of increasing P“. from 20.58 nearer to 2/3. We

remove such configurations because 'buckling' can occur in compression rendering

the connection in figure 3 inefi'ective even if 9 - 180°. This model can be visualized

as replacing all 180‘ bonds by 180‘ - A, evaluating the elastic properties for a small

strain ¢< <A, and letting A-O. Both models (i.e., ref. 1 and the present one) are

equally valid and of course the efi'ective medium theories cannot distinguish between

them. In the numerical simulations to calculate f, as described previously, it was found

that f was slightly larger for the A -' .0 case than for the small A one. However this

was only appreciable around pm and too small an efi‘ect to show on the scale of the

inserts in figures 1 and 2. ‘ ‘

4. COHERENT POTENTIAL APPROXIMATION

We now consider a multiple scattering approach in which all repeated scatterings from

the same bond are summed to give a coherent potential approximation (C.P.A.)°. We

find that same result (18) is obtained from this method. Writing the Hamiltonian for

the system as '

H - Ho + V (19)

where

312 “m

H -‘ -— + —- [(Ti, -Ti-)-i--]2 (20)
° ,2 2M 2 (1:5, I '1

and



in,

v - 3573216, - '52”:le (21)

represents a single “defect“ bond in an efi‘ective medium a, as shown in the left hand

part of figure 4. It is convenient to define Green‘s functions for the system described

by Ho as

<o|s,|n><n|r,uo> <ols,|n><n|s,|o>l

0’0'+Oo (0+(Iu'tuo

  15,, - 2 (22)

I

where 1.5,, is a d x d matrix. A similar quantity 5,,- is defined for the system described

by H. We rewrite (21) in matrix form with

vii - (a - C‘)I‘2f12mij
(23)

where mi,- - (8‘58" + 82,823 - 8,,82; - 82,8") arises from the translational invariance of

each bond. It is easy to show that the Dyson equation is satisfied, i.e.,

6-T+TVE ' (3)

where P, ‘6 and V are considered as matrices in'both site indices OJ) and in a 0

dimensional ‘vector space. Remembering that we are considering a single defect bond,

Eq.(25) can be rewritten as

G-P+FT$ am

where

Ti] , a .- a,ll
 

l " 2(0 "’ GQ)I12(P" ‘ P12)'I12 12 12 J

has the same form as Vi,- but with a renormalized coemcient. Setting <T> - 0, we

find

a " “m

1 " 2(c " amfiu’fin "' $12)?”

 

> - 0 (28)

which is analogous to (8) except that it applies at all frequencies (a and amen. Note

that all elements of the 1' matrix are set equal to zero by (28) as all the T matrices
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have the form of a scalar multiplying m,,-. The method of section 3 can also be easily

generalized to finite frequencies.

The pure syst_em Green functions Pu obey the equation of motion (noting that

P11 ' P22 and 1’12 "' P21) '

- 2 1““ . - - ‘

M0 P" - 1 ‘1’ TI12'(PH "’ P12)?” (29)

where P" is the magnitude of the isotropic site diagonal Green function. As 02-0,

equation (28) reduces to the previous result (8) with again a“ - Zd/z.

5. CONCLUSIONS

There is a slight difi'erence between these two versions of effective medium theory for

p> pm. In the first, the elastic constants Ci,- are calculated, and the various masses are

irrelevant. In the second, the sound velocities are calculated in the long wavelength

limit. This leads to the elastic constants if it is assumed that the efi‘ective mass is

independent of p. In reality, the effective mass will depend on p, but this dependence

is expected to be much weaker than the dependence on p of the elastic constants near

pm, analogous to the conductivity case. An account for such efiects is obviously

beyond the capabilities of efiective medium theories.

.To summarize, we have shown that simple efi'ective medium theories give a

remarkably good overall description of the dilute elastic systems with Hooke springs.

The detailed behavior around pa. is a subject still under study.
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also R. 1. Elliott, B. Halperin, B. Nickel and l... Schwartz for clarification on particular
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Figure Captions

Figure 1

The elastic constants C" and C“ averaged over three configurations for a 440

atom triangular network. For the pure system (p-l), C“ - Cu/B - 06/4.

The inset shows the fraction of zero frequency modes f for a 168 atom triangular

network averaged over three configurations. ‘The straight lines are from the

efi'ective medium theories described in the text.

figure 2

The elastic constants C", C“ and B- (Cu 1* 2Cu)/3 averaged over three

configurations for a $00 atom f.c.c. lattice. For the pure system (p-l).

C" - 2C1; - 2C“ - anfi/b where b is the nearest neighbor separation. The

inset shows the fraction of zero frequency modes f for a 108 atom f.c.c. lattice

averaged over three configurations. The straight lines are from the effective

medium theories described in the text.

Figure 3

Showing a two coordinated bridge connecting two regions. This bridge is

inefi'ective in transmitting any elastic restoring force and can be trimmed. . '

Figgre 4

Showing the notation for constructing the efi’ective medium theory. On the left a

single bond between sites 1 and 2 is modified by having a spring constant a rather

than a“. the strain existing before the modification can be reestablished by

applying a force f across the bond as shown. 00 the right, we show an equivalent

circuit for the bond joining l and 2 as described in the text. The springs or", and

a are connected in parallel.
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