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ABSTRACT

RAMAN SCATTERING FROM TWO—PHONON EXCITATIONS

AND FROM NITROGEN ELECTRONIC IMPURITY

LEVELS IN CUBIC SILICON CARBIDE

By

Philip Allen Gaubis

The two—phonon Raman spectra and nitrogen donor

electronic Raman spectra of the 3C polytype (zinc—blende)

of 810 are presented. 30 SiC is a IV—IV semiconductor

having an indirect gap of 2.U eV with a conduction band

minimum at X. The nitrogen impurity concentrations of both

samples used in this study are found to be well below the

Mott transition.

The P component of the two—phonon spectra is the
l

dominant component. A number of spectral features are

identified and assigned to critical point overtones and

combinations, including overtones due to critical points

1 and TO(Z) at 737 cm_l, which had notTA(Z) at M76 cm-

previously been measured. No difference combination scat—

tering is observed, in accord with intensity estimates for

difference combination bands in 3C 810. All feature

assignments are consistent with theoretical selection

rules and previously measured phonon energies. The close
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agreement of branch energies at X with previous luminescence

measurements supports the assignment of the conduction band

minimum to X. Sample nitrogen concentration, surface damage

due to sample preparation, and exciting line wavelength are

found to have negligible effects on the second-order spectra.

The spectral feature assignments in conjunction with a lat-

tice dynamical calculation are used to perform a critical

point analysis, producing a set of critical point sector

numbers which satisfy the two- and three-dimensional Morse

relations.

The low temperature spectra of both samples show

the appearance of a line at 67.5 cm_1 of E symmetry. The

thermal behavior, symmetry, concentration dependence, and

theoretical intensity estimates strongly favor the identi-

fication of this line as a lS(Al)+lS(E) transition in the

valley-orbit split 18 nitrogen donor level. The thermal

behavior of this line is investigated from 7°K to 180°K

and indicates that the lS(Al) level is the true ground

state. No other transitions are found, in accord with

theoretical intensity estimates for the inter-manifold

transition intensities and with the assignment of the

conduction band minimum to X.
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CHAPTER I

INTRODUCTION

Silicon carbide is an indirect gap IV—IV

semiconductor which can grow in a variety of different

polytypes. The 30 or cubic polytype used in this inves—

tigation has a zinc—blende structure with two atoms per

primitive cell and space group T2 (FE3m). This structure

d

can be visualized as two interpenetrating face—centered

cubic lattices, one of silicon and one of carbon, which

are separated along one—quarter of a body diagonal. The

zinc—blende structure is nothing more than the diamond

structure with every other carbon replaced by a silicon.

From this point of View, cubic SiC may be considered as

a perturbed silicon lattice. $10 is of interest in that

it may be considered to exist "between" the purely covalent

IV-IV semiconductors (such as silicon and germanium) and the

more ionic III—V zinc-blende semiconductors.

This study is concerned with the first observation

and analysis of two—phonon Raman host crystal spectra and

Raman scattering from nitrogen donor electronic levels in

30 SiC. Since the topics of two-phonon spectra and donor

spectra are not closely related, this thesis is organized

 



into two nearly independent sections. The analysis of the

two-phonon spectra presented in Chapter II yields detailed

information concerning host crystal phonon dispersion

curves, including a set of dispersion curve critical points.

Nitrogen donor Raman spectra are reported in Chapter III

and discussed in terms of effective mass theory (EMT) as

it applies to weakly bound donor electrons. Relevant

background is included in each chapter. Group theory is

 

employed where possible, as it often gives clearer insight

than brute force calculation. Many of the experimental

and theoretical details of this study are deferred to the

Appendices. The remainder of this section includes a very

brief description of the Raman effect and its experimental

utility.

The Raman process may be more descriptively referred

to as inelastic light scattering, wherein the incident light

exchanges energy with a sample concurrent with a transition

between quantum levels in the sample. The energy of the

scattered light will be shifted by an amount equal to the

difference in energy of the quantum levels involved in the

transition. The scattered light will be shifted toward the

violet if it gains energy during the interaction, and toward

the red if it loses energy. The violet shifted light is

referred to as anti—Stokes scattering while the red shifted

light is called Stokes scattering. (All spectra throughout



this study are Stokes spectra, with energy scales

representing the energy shift between the incident

and scattered light.)

The scattered light intensity of a Raman process

is quite weak (typically lO_8 to 10"12 of the incident

intensity), and early experiments suffered from the lack

of suitably intense, narrow band sources. Lasers are ideal

sources for Raman spectroscopy, having highly monochromatic

 

outputs of several watts, and are directly responsible for

the widespread use of Raman techniques.

A great variety of phenomena in semiconductors have

been studied using Raman scattering, including one—phonon

processes (called first—order scattering), two—phonon

processes (called second—order scattering), donor and

acceptor impurity levels, magnons, plasmons, defect modes,

single-particle excitations, impurity—induced scattering,

resonant processes, LO—plasmon coupling, and others. This

list is by no means complete, and is intended only to show

the broad applicability of Raman techniques to semiconductor

studies.

Infrared absorption spectra and Raman spectra can be

complementary in the sense that selection rules are often

different. For example, in materials with inversion sym-

metry, where parity is a good quantum number, only odd-

parity transitions are infrared—active. Conversely, in





such systems only even—parity transitions are Raman—active,

so Raman and absorption spectra are strictly complementary.

In addition, Raman techniques can easily detect transitions

of energy as low as ~l meV, which lie in an experimentally

difficult region for absorption techniques.



CHAPTER II

TWO—PHONON RAMAN SPECTRA OF 3C 810

A. Background

This chapter presents the two-phonon (second—order)

Raman spectra of 3C SiC, an identification of spectral

 

features, and a critical point analysis of lattice disper—

sion curves. Several theoretical topics require development

before the observed spectra can be interpreted. In this

section, a preliminary overview of Raman scattering from

lattice vibrations is presented, followed by a description

of previous measurements of phonon energies in 30 SiC.

In one—phonon or first—order Stokes Raman scat—

tering, an incident photon of wavevector Ki creates a phonon

of wavevector Rp and is scattered with wavevector RS. Wave—

vector conservation requires that Ri—RS=E In a typicalp'

semiconductor, the wavevector of visible light is of order

5
10 cm“1 (depending on the dielectric constant of the cry—

stal) while the width of the Brillouin zone is of order

108 cm—l. Thus the only phonons which can participate in

first—order Raman scattering have a wavevector very near

the center of the Brillouin zone and are therefore

+

referred to as "zone—center" or "k=O" phonons.



This scattering process can be roughly visualized

in a semiclassical fashion. Given a crystal having polar-

izability tensor P and incident field E, an oscillating

dipole moment M = P-E is established in the crystal. This

moment reradiates the incident beam, producing elastic

Rayleigh scattering. However, as the nuclei move, the

electrons follow adiabatically, and the polarizability

changes. It is the change of electronic polarizability

with nuclear motion that gives rise to Raman scattering.

Thus, the moment M contains "sidebands" formed from the

product of the incident field and the phonon—modulated

polarizability tensor.

This qualitative description can be put in more

formal terms. Raman cross sections for first—order scat-

tering can be expressed using straightforward perturbation

theory. The process involves three steps: a photon—

electron interaction, an electron—lattice interaction, and

a scattered photon-electron interaction. The resulting

expressions1 involve double sums over (usualy unknown)

electronic states in the crystal. In order to obtain

useful expressions for the cross section, one resorts

to the "polarizability approximation"2 by making the

following assumptions:

a. Vibronic states are written as simple products

of electron and phonon states, with the nuclear

 



coordinates appearing as parameters in the electron

states (adiabatic approximation).

b. The incident and scattered light are of much higher

energy than the phonon states. In other words, the

crystal polarization is largely electronic in char—

acter. For visible light, this is typically a quite

good approximation.

With these assumptions, the intensity of Stokes

first—order scattering from a specific phonon becomes

I . ~ + 2

IStokes “ lei <OlPlvf>-esl (nf+l) (1)

where P is the polarizability tensor, |o> and Ivf> are the

ground and excited vibrational states, respectively, and

61 and Es are the polarization vectors of the incident and

scattered light. The term nf+l, where nf is the Bose popu-

lation factor, results from the thermal average over initial

states. A knowledge of the dependence of (l) on E1 and gs

for a given Ivf>, known as "selection rules," may be

obtained from group theoretical arguments. Selection

rules will be discussed in depth in a following section.

The traditional means of obtaining detailed infor—

mation on lattice dynamics is through neutron scattering.

This technique, while quite powerful, requires large

single-crystal samples (on the order of several cm).

 



To date, it has not been possible to grow single crystals

of 3C SiC this large, thus precluding neutron studies.

Raman scattering provides the most complete information

available concerning the lattice dynamics of crystals

that are inherently too small for neutron studies.

Phonon energies of 3C 310 at several high—symmetry

points in the Brillouin zone have been measured previously

with a variety of techniques, including polytype analysis,

luminescence measurements, and first—order Raman scattering.

These techniques are now described.

SiC can exist in a number of different polytypes

which are all very similar in structure, differing mainly

in the stacking sequence of hexagonal planes along the (111)

or C axis (group label A. Subsequent group labels, to be

defined later, follow Reference 7). As the number of planes

in the stacking sequence varies, so also does the size of

the unit cell along the C axis. As the unit cell size

increases, the Brillouin zone size decreases. For example,

if the unit cell is doubled in size, the Brillouin zone is

folded in half. Modes that were at the zone edge before

the folding now become zone-center modes and therefore Raman

active. It is then possible to obtain (approximately)

phonon energies along A in 3C SiC by examining the Raman

spectra of other polytypes. It is not obvious a-priori that

such a technique should work at all. Its success depends on

 



the extent to which one may consider variations in stacking

sequences as small perturbations on the structure of the 3C

polytype. This technique has been successfully applied to

810,3 and provides not only a fairly complete determination

of the 3C dispersion curves along A, but the phonon energies

at the point L as well.

Luminescence studies“ of 3C SiC have revealed an

indirect gap of 2.A eV as measured from the conduction band

minimum at X. The location of the conduction band minimum

is fortunate in that the indirect phonon—assisted transi—

tions observed in the luminescence spectra permit a

determination of the phonon energies at X point.

The zone-center optic phonons (at F) are strongly

Raman active and have been determined from first—order Raman

spectra.3 Two—phonon absorption bands, also observed in

3G SiC,5 were quite weak, allowing only very tentative

identification of a few spectral features.

The previous experimental measurements of phonon

energies at P, X, and L are listed in Table I. These

previous measurements at I, X, L, and along A have been

the only input to lattice dynamical calculations of 3C SiC.

A satisfactory assessment of model calculations cannot be

made without more extensive experimental input.
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Table 1. Experimental lattice energies (cm—1)

F X L

Branch (Ref. 3) (Ref. A) (Ref. 3)

TA -- 373 266

LA —— 6A0 610

TO 796 761 766

L0 975 829 838

 

B. Phonon Symmetries
 

The space group of 3C SiC is T§(Ffi3m). This group

is symmorphic, having an associated point group Td' There

are two atoms per primitive cell, giving rise to six normal

modes, three optic and three acoustic. The wavevector of

visible light is typically several orders of magnitude

smaller than the size of the Brillouin zone. Due to wave-

vector conservation, the phonons which can participate in

first—order scattering are very nearly at the zone center.

To the extent that these wavevectors can be considered as

zero (typically a very good approximation), the zone—center

modes must transform as representations of the full point

group Td'

For later purposes, the symmetry properties of modes

at several high-symmetry points in the Brillouin zone will

be needed. For any given k in the zone, there will be a set
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of symmetry operations from the space group T: which leave

that k vector unaltered. This set of operations will form

a subgroup of the original space group and is referred to

as the group of the wavevector.6 Each such group will have

associated representations and a character table which will

characterize the symmetry of modes with that wavevector.

Parmenter7 has conducted such an analysis for zinc—blende.

Figure 1 contains a sketch of the Brillouin zone adopted

by Parmenter, P character table, and wavevector groups of

specific points. Subsequent notation in this chapter

follows Figure I.

If the atomic displacement representation of the

zone—center modes are reduced into representation of F,

the result is 2F That is, the zone-center acoustic
15'

and optic modes are triply-degenerate, and belong to

representation F15. In ionic crystals, however, there

is a long—range electrostatic field associated with the

longitudinal optic modes (see Reference 1). This field

lifts the degeneracy of the optic branches, leaving a

singly—degenerate longitudinal optic (LO) mode higher in

energy than the doubly-degenerate transverse optic (TO)

mode. It is for this reason that two lines appear in the

first—order Raman spectrum of 3C 810 rather than one (as

in silicon).

 



 

 
 

  

T(Td) E 02 C3 qu JC2

r1 1 1 1 1 1 x2+y2+z2

r2 1 1 1 —1 —1

r12 2 2 —1 o 0 /§(x2—y2),322-r2

F15 3 -l O —l l xy,yz,zx;z,x,y

r25 3 —1 0 1 —1

POINT WAVEVECTOR GROUP

A 02V (2mm)

A,L 03V (3m)

2 CS (m)

K CS (m)

X D2d (A2m)

W SHUT)

Figure l. Brillouin zone of 3C SiC and wavevector groups.
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C. First—Order Polarization Selection Rules 

Experimentally, the apparatus used to perform

Raman spectroscopy can easily be arranged to analyze the

polarization selection rules of a spectral feature (see

Appendix A). In this section, the origin of selection

rules for first-order (zone-center) scattering are dis—

cussed as well as the extra considerations required for

zinc-blende crystals with LO—TO splitting.

Within the context of the polarizability

approximation, the Stokes intensity is given by (1).

As with any tensor, the individual elements of P must

transform as products of coordinates (XX, YY, etc.).

This implies that one can find linear combinations of

the elements of P which transform like representations

of I. These combinations are obtained directly from an

examination of the basis functions included with common

character tables. The (zone—center) normal modes of the

crystal will also belong to certain representations of the

point group of the crystal. Using a general group theoret-

ical result,6 the matrix element in (l), <olP|vf>, will

vanish unless P and |vf> have parts belonging to the same

representation of the point group (the ground state is taken

as totally symmetric). In other words, the only normal

modes which can participate in first—order scattering are



1A

ones belonging to a representation contained in the

decomposition of the polarizability tensor.

The polarizability tensor, which is modulated by

the normal modes, may be expanded in terms of normal mode

coordinates Q,

P=P +2 3% Q(I‘——(——7 )+... (2)

O FajaQ F3. 0 J

where 3 denotes the partners of a given representation F.

The first term gives rise to Rayleigh (elastic) scattering,

the second term to first-order Raman scattering. In order

that (2) be an equality, the second term must have the same

transformation properties under all group operations as P.

Therefore, the sum over f includes only those representa—

tions which are contained in the reduction of the polar—

izability tensor consistent with the general selection rules

above. (The zero order polarizability tensor PO must be

invariant under all point group operations of the crystal.)

One demands that the interaction energy, Ei-P-ES (E1 and Es

are incident and scattered electric fields), be invariant

under all group operations of the crystal. Since normal

coordinates belonging to different representations do not

mix under group operations, the invariance of Ei-P-Es

requires that for each F3,

8P E
E. __.__._.
1 3Q(I‘J.)O s
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transforms identically to Q(fj) (so that their product will

contain the totally symmetric representation). The tensors

313

3Q(Tj) o

are commonly referred to as Raman tensors, and may be

determined by inspection of the character table basis

functions. (A listing of Raman tensors for all crystal

classes appears in Reference 1.)

These concepts are now illustrated for zinc—blende.

The decomposition of the polarizability tensor for zinc—

blende and associated Raman tensors, obtained with the aid

of the Td point group character table of Figure l, are shown

in Table 2. The Raman tensors within a given representation

are determined up to an overall multiplicative constant.

Since the decomposition of P includes only representations

Fl, T12, and F15, only modes belonging to these representa-

tions can be Raman active. The phonon polarization direc-

tion associated with each F15 Raman tensor is indicated in

Table 2. This phonon polarization vector indicates the

relative displacement of the two sub—lattices of the

crystal at zero wavevector in zinc—blende.

The utility of these Raman matrices is that they

allow a determination of the symmetry of observed spectral

features. Denoting the Raman tensors as R(Fj), the
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Table 2. Decomposition of the polarizability tensor and

Raman tensors for point group Td

 

 

 

Polarizability

Representation Basis function components

Fl x2+y2+z2 Pxx+Pyy+Pzz

P12 /§(X2'y2)s /§(Pxx‘Pyy)’

2z2-x2—y2 2Pzz'Pxx—Pyy

F15 xy,yz,zx ny’PyZ’PZX

RAMAN TENSORS:

J? 0 OF —1 o o

_0 0 0 o 0 2

0 o 07 ’0 0 1

T ' c O O 1 ; c O O 0 '

15 ’ o 1 o__ 1 o 0

Note: x, y, z denote phonon polarization directions.

 
 

 





 

l7

intensity of a mode belonging to a particular representation

F is given by

1(r) « 3'31 - fi(rj) - Es|2, (3)

J

where 31 and gs are unit polarization vectors of the

incident and scattered light. A standard notation has

been adopted which completely describes the experimental

geometry of a given spectrum. This notation is

Ei(éi,ES)ES,

where R1 and Rs are wavevectors of incident and scattered

light, respectively. For example, the notation X(YZ)X

indicates incident light propagating in the direction -x

with Silly, and scattered light propagating in the direction

x with gsllz. (This geometry is called "back scattering"

for obvious reasons.) This notation is employed throughout.

A glance at Table 2 shows that only modes of F15 symmetry

will be observable in this geometry. Thus, experimental

geometries can be selected such that only modes having a

desired symmetry will appear.
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D. L0 and TO Phonon Selection Rules 

As mentioned previously, the triply—degenerate F15

zone—center optic modes of the zinc—blende lattice are split

by a long—range electrostatic field associated with the LO

mode. The resulting singly—degenerate LO mode is higher in

energy than the doubly—degenerate TO mode, yielding two

spectral lines in the Raman spectrum. The selection rules

of each individual line, first obtained by Poulet,8 require

an extension of the group theoretical treatment given above.

The assumption is made that the photon wavevectors R1 and is

are small but finite, so that the phonon wavevector Ephonon

equals ki—Rs is determined by the directions of the external

fields. Consider first the case where the phonon wavevector

is parallel to, say, x. Poulet asserts that the F15 Raman

tensor associated with phonons polarized along x describes

the LO phonon scattering, while those associated with y and

z describe the TO phonon scattering. (Recall that the LO

mode has phonon polarization parallel to its wavevector,

while the TO mode has phonon polarization perpendicular to

its wavevector.) For general phonon wavevectors, one

rotates all three F15 Raman tensors such that the phonon

polarization coordinate associated with any one of them

(under the same rotation) is parallel to the phonon wave—

vector. This "parallel" tensor then describes LO scattering,

while the remaining two describe TO scattering. This LO—TO



l9

scattering cannot be treated with conventional group theory

since the phonon R vector direction, and hence the LO-TO

selection rule, is determined by external fields and not by

crystal symmetry. This procedure, put forth as a hypothesis

by Poulet, accounts very well for observed LO-TO selection

rules in zinc—blende crystals.

E. Raman Intensity Matrices 

Relation (3) is valid for arbitrary orientations

of 31 and gs‘ It is not convenient to work directly with

Raman tensors since (3) must be evaluated for every exper-

imental geometry employed to obtain the expected intensity.

If one is willing to restrict the possible polarization

vectors to directions along principal axes x, y, or z, only

nine possible cases need be considered. These possibilities

can be conveniently tabulated by defining intensity matrices

(following Poulet) for each set of Raman tensors. The

intensity matrix is defined by

+ ~ + 2

FaB(P) m glea ~R(fj) ~eBI ,d,B =x, y,z, (A)

where F is P1, Fl2’ or F15 in zinc-blende. L0 and TO

intensity matrices are similarly defined. However, from

the discussion above it is clear that one must specify also

the photon wavevectors R1 and is in order that Poulet's

procedure may be carried out.
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Selection rules to this point have been discussed

under the assumption that the crystal axes and laboratory

axes coincide (i.e., Raman tensors and polarization vectors

all refer to a common set of axes). Experimentally, it is

sometimes more convenient to employ other crystal orien—

tations. For arbitrary crystal orientations, (3) and (A)

still apply provided all Raman tensors involved are rotated

to coincide with the laboratory system. All intensity

matrices and corresponding coordinates employed in this

study are listed in Table 3. The backscattering geometry

is employed throughout. The unprimed and primed axes both

represent laboratory coordinates, indicating different

crystal orientations.

Table 3. Zinc-blende intensity matrices

 

 

 

   

   

X=(lOO)=X’ ’000‘ 0 1‘

I(LO)= 0 0 1 I(TO)= 1 0 0

Y = (010) Y’ = (011) _0 1 0_ 1 0_

z = (001) Z‘ = (Oil) _0 0 0' 0 1 1T

I’(LO)= 0 1 0 I’(TO)= 1 0 0

p 0 1_ 1 0 0_

1 0 0 ‘1 0 07 0 1 1‘

I(Fl)= 0 1 0 1(r12)= 0 1 0 1(rl5)= 1 0 1

_0 0 1 _0 0 1_ 1 1 0_

[‘1 0 o 17: 0 0‘ 0 1 1‘“

I’(Pl)= 0 1 0 I’(r12)=E 0 1 3 I (r15)= 1 1 0

0 0 1 _0 3 1_ 1 0 1_
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Appendix B contains a more extensive computer-generated list

of zinc-blende intensity matrices for a variety of common

experimental geometries, including right—angle scattering.

The discussion of selection rules here is in the

context of scattering from crystal phonons. Many of the

concepts involved are actually more general, and may be

applied to atomic, molecular, and crystal electronic

scattering. Briefly, this generality has origin in the

fact that Raman processes can often be described by

second—order perturbation theory. The cross—section

for Raman scattering involves matrix elements of the form

<1|Ei 'rlm><ml; °gs|f>’ where i and f denote initial and

final quantum states, and m represents a complete set of

quantum states.6 Because the operator r|m><m|r transforms

in the same way as the polarizability tensor (like products

of coordinates), these two operators are similar from a

group theoretical point of view. Selection rules for Raman

scattering from electronic impurity levels are discussed in

more detail in Chapter III.

F. Critical Points

The topic of lattice critical points is intimately

related to the interpretation of two—phonon optical spectra.

This relationship will be established in a following section.

In this section the properties of critical points and their

connection with the energy density of states are discussed.
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For a crystal containing N primitive cells, there

are exactly N unique k—vectors in the Brillouin zone.

These k-vectors are, by definition, uniformly distributed

throughout the Brillouin zone. Assuming that the lattice

dispersion relations are known, the energy density of

states is given by

D<v> « —eJ§i——-, <5)

-é’|v6<fi>|

where S is the surface in k-space such that w=v. There are

certain points, known as "critical points," in the disper-

sion curves where le(R)I will either vanish or change sign

discontinuously. Van Hove9 first investigated "analytic"

critical points and showed that they produce discontinuities

in slope in the density of states, with accompanying charac—

teristic shapes. Phillipslo later extended this work to

include non-analytic or "fluted" critical points, and

explicitly treated lattice dispersion curve critical points.

Consider a general point wo(ko) on a non—degenerate

branch of the dispersion curves. In the immediate vicinity

of this point, the energy may be written to second order as

+ + —>

w<E> = w Vw 1 -g +-1 52:666 + . . . (6)
°'+ k 2 E

o . o

-> ++ +

where g = k-ko. A critical point is simply that k where the

second term of (6) vanishes. The third term, representing a



23

second-degree polynomial of the components of R, determines

the nature of the critical point. For critical points

where degeneracy exists, an expansion such as (6) cannot

be performed, since the energies are solutions of a secular

equation. Thus a distinction is made between analytic

critical points, associated with non-degenerate branches,

and non—analytic or "fluted" critical points associated

with degenerate branches.

Certain points in the Brillouin zone are required

by symmetry to be critical points. The set of solutions

|j>, j=l, ..., n at an n—fold degenerate point R0 will

transform according to some Pd, a representation in the

I These groups for zinc—"group of the wavevector" at Ro.l

blende are listed in Figure 1. The operator ka transforms

like a vector, and will generate a representation TB of the

group of R0 which, when reduced, will contain representa-

tions labeled by components of vectors. Phillips has shown

that K0 is a critical point if <i|ka|j> = 0, for 1,

j=l, ..., n. Equivalently, R0 will be a critical point

if the reduction of Ta x1"B xFa does not contain the totally

symmetric representation. For general points in the zone,

the group of the wavevector will consist of only the iden-

tity element. The product fa xfB XFa must then contain the

totally symmetric representation, so general points are not

symmetry—required critical points. General critical points

are called "accidental."
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This procedure allows a systematic test of all

high-symmetry points in the Brillouin zone to determine

if they are required by symmetry to be critical points.

Parmenter7 has conducted such an analysis for zinc-blende

and has found points T, X, L, and W to be symmetry required

critical points. There may be other accidental critical

points not required by symmetry, as determined by the

detailed lattice dynamics.

The shapes generated in the density of states by

various critical points depend on the behavior of the

dispersion relations in the immediate neighborhood of the

critical point. Phillips10 has presented a classification

scheme which allows a check of the topological consistency

of any supposed set of critical points. This scheme is

based on "sector numbers," obtained by constructing a small

sphere in k—space about the critical point Ro(wo) in ques—

tion. The surface of the sphere is divided into sectors

where w>w0 (positive sector) or w<w (negative sector).
0

The number of separate, unconnected sectors of each type

is counted. The totals are then denoted by (P,N). For

example, a sphere surrounding a simple maximum point will

have w<wO everywhere on its surface. The corresponding

sector number is (0,1). Similarly, a minimum will have

sector number (1,0). The only other sector numbers pos—

sible for analytic critical points are (2,1) and (1,2)

__‘ .._._.
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denoting two types of saddle points. For degenerate

critical points, it is also possible to have sector numbers

(4,1) and (1,4) denoting "fluted" critical points. No other

sector numbers are possible in three dimensions for singly-

or doubly—degenerate critical points (as is the case in this

study). The topological properties of a critical point and

its characteristic contribution to the density of states are

completely determined by the sector numbers of the point.

The shapes associated with each type of point are indicated

in Figure 2. Because (5) contains contributions from the

entire zone, the shapes of Figure 2 will generally appear

additively along with other structure in the density of

states. For example, two critical points of different type

at the same energy can together produce a shape in the den—

sity of states formed from a sum of two different shapes in

Figure 2. Such a situation can present difficulties in the

interpretation of experimentally obtained densities of

states, as discussed in a later section.

Critical point sector numbers may also be defined

in two dimensions. Consider a plane in the Brillouin zone

which contains a critical point. A small circle, contained

in the plane, is drawn around the critical point. The

circumference of the circle is divided into positive and

negative segments, analogous to the three-dimensional case.
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The resulting two-dimensional sector numbers will obviously

depend on the orientation of the plane with respect to the

three-dimensional critical point. These two—dimensional

critical points have no relation with the density of states.

Their utility is in determining the topological consistency

of critical point assignments.

In attempting to determine the type, number, and

location of critical points in the Brillouin zone, a tenta—

tive assignment is made consistent with experimental data

and the requirements of symmetry. This tentative set may

then be tested for topological consistency using a procedure

due to

arise,

closed

maxima

on the

closed

Phillips. To appreciate how topological constraints

consider a periodic function in one dimension or a

curve in a plane. In both cases, the number of

equals the number of minima. Analogous constraints

numbers and types of critical points occurring in a

or periodic three—dimensional manifold (such as

w=w(R)) were first obtained by Morse (see Reference 10).

Phillips associates an index j and weight q with each

sector number as listed in Table A. In three dimensions,

the Morse relations are

N 2 l

o

N -N 2 2

1 o

(7)

N2—N1+NO 2 1

2

L
L
)

I

2

[
\
D + 2

H
I 2

0

II

0
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Table A. Critical point topological index and weight

 

Critical point Index 3 Weight q

 

Three-Dimensional:

(1,0) 0 1

(1,2) l 1

(2,1) 2 1

(0,1) 3 1

(1,“) 1 3 j

Two-Dimensional: :

(1,0) 0 1

(2,2) l 1

(0,1) 2 1

(4,“) l 3

 

where Nj is the sum of the number of times a point of

index j appears times its weight q. These relations apply

to each branch separately. The two—dimensional Morse rela—

tions are

n0 2 1

nl-nO 2 l (8)

n2—nl+nO = 0

where nj is the sum of the number of times a two-dimensional

critical point of index 1 occurs in some specified plane

times its weight q. These relations also apply to each

branch of the dispersion curves. The set of symmetry—

required critical points does not necessarily satisfy either
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(7) or (8). However, Phillips was able to determine that

all critical points not in this symmetry set must have q=l.

In applying the two—dimensional Morse relations, one must

consider enough zones so that the chosen plane is periodic.

In zinc—blende, one must include the point R(llO) and its

equivalences in the analysis of the kZ=0 plane.

A set of critical points which is consistent with

all Morse relations, symmetry requirements, and experimental

data may not be the true set. It is possible to add "kinks"

to the dispersion curves, without disturbing any previous

critical point sector numbers. These kinks, due to long—

range forces, may or may not produce observable effects

depending on the nature and finesse of the experiment. The

Morse relations also do not give any information concerning

the location of critical points in the interior of the zone

(aside from whether the interior critical point is contained

in a symmetry line or plane). The exact wavevector of an

interior point must come from experiment or calculation.

G. Two-Phonon Scattering
 

To this point, the discussion has been limited to

scattering events involving one phonon. It is also possible

for several phonons to participate in infrared or Raman

processes. Two—phonon scattering is referred to as "second-

order" scattering. Third or higher order scattering has an
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intensity much weaker than second-order, and is seldom

observed. Events where one phonon is destroyed and a

second created are also expected to be weak in SiC due

to temperature dependence of this process (discussed

later). For these reasons, only Stokes processes involving

the creation of two phonons will be discussed. Two-phonon

Raman studies have been performed on many semiconductors,

including GaP,12 81,13’1”’15 ZnS,16 Ge,15’l7 and diamond.15

Two-phonon states may be constructed from pairs of

one-phonon states. If both members of the pair are from the

same branch, the two-phonon state is called an "overtone";

if from different branches, a "combination" State results.

As in the first—order case, the net wavevector of the two—

phonon state must be nearly zero in order that wavevector

conservation be satisfied. This fact simplifies the task of

constructing two—phonon states, since only zone—center, zero

wavevector combinations and overtones need be considered.

The pair of phonons must have equal magnitude, but opposite

wavevectors. The lattice dynamical equations are second-

order in the time derivative. Time-reversal symmetry

guarantees that for any point w(R) on the dispersion curves,

a second point will exist at w(—R). Thus any dispersion

curve point in the zone may be used to construct a two—

phonon zone-center overtone mode having twice the energy

of the original point. More generally, any pair of points
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in the zone from different branches may be combined,

provided they have the same wavevector, to form a combina—

tion state having an energy equal to the sum of the energies

of each point. Given a set of dispersion curves, one can

add together the energies of all possible pairs of curves

to form combinations, and double the energy of each curve

to form overtones. In zinc—blende, which has 6 branches,

this process results in 6 overtone branches and 15 combi—

nation branches. The two-phonon k=0 density of states

associated with these constructed dispersion curves will

contain, in the case of overtones, all the critical point

shapes of the one-phonon density of states but at double the

frequency. In addition, other critical points will appear

in the two-phonon density of states due to critical points

in the combination branches.

The symmetries and selection rules of two—phonon

states in zinc-blende have been investigated by Birman.18

Each member of a two-phonon pair of wavevector R will belong

to a representation of the group of the wavevector at R, say

Pa and PB. The two-phonon state, having zero wavevector,

must belong to zone-center representations. For combina-

tions, the direct product Fa.XFB is formed and reduced into

zone—center representations. For overtone states, which

will have a=8 the symmetrized Kronecker square is formed

and reduced into zone—center representations. Since general
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points in the zone have wavevector groups consisting of only

the identity element, overtone and combination states made

from general points will contain in their reduction all

zone-center representations. In addition, the symmetrized

Kronecker square always contains the unit representation,

so that all overtone states will have parts belonging to

the totally symmetric zone-center representation.

Once the zone—center representations of the two—

phonon states are known, the selection rules follow the

same procedure as in the one—phonon case. If the matrix

element <O|PlVf> vanishes, (where vf is now a two-phonon

state) then the transition is not Raman active. In other

words, the matrix element vanishes unless P and |vf> have

parts belonging to the same zone-center representation. In

zinc—blende, the polarizability tensor has zone-center rep—

resentation f P

1’ 12’

are of relevance in the reduction of zinc—blende two-phonon

and T15' Only these representations

states. The representations which occur (among these three)

in the reduction of two-phonon states from several high—

symmetry Brillouin zone points in zinc-blende have been

determined by Nilseh16 and are listed in Table 5. Only

actual dispersion curve representations are included.

Since all two-phonon combination states from general

points in the zone and all overtone states contain Pl, they

will be symmetry-allowed in the Raman process. The two—

phonon spectrum is therefore a continuous function of
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Table 5. Zone—center two-phonon representations for 30 SiC

 

 

 

Representation Reduction Representation Reduction

[X5]2 rl+2rl2+r15 [L3]2 r1+r12

[X112 r1+r12 [L112 rl+r15

[X312 I‘14'1‘12 L3XL1 F12+P15

XSXXI P15 L3xL3 P1+P12+2P15

X5xX3 r15 leLl rl+r15

X5xx5 r1+2r12+r15 [Wl]2 rl+r12

XBXXI P15 Wixwi F1+P12

[r15]2 rl+r12+r15 wlij r12,1 # J

 

frequency rather than a line spectrum. The two-phonon Raman

cross section may contain contributions from all symmetry-

allowed two-phonon pairs throughout the zone consistent with

overall energy and wavevector conservation. The second—

order spectrum can be roughly considered as being modulated

by the two-phonon density of states. There will certainly

be other energy dependence in the cross section. However,

the important point is that the structure in the two-phonon

density of states due to critical points will appear in the

two—phonon Raman spectrum. This is the essential link

between critical points and second—order Raman spectra.
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The connection has been traced from dispersion

curve critical points to their manifestations in second-

order spectra. Experimentally, the inverse problem must

be solved. That is, given measured spectra, one attempts

to determine the positions and types of critical points

in the Brillouin zone. This inverse problem is the more

difficult and permits only a partial solution at best.

Even with neutron scattering data (not available for SiC)

a critical point assignment can never be made with absolute

certainty. The inherent difficulties in applying the

preceding theory to experimental analysis will be

discussed in depth.

H. Experimental
 

It is quite difficult to grow large, single poly—

type crystals of 3C SiC. Fortunately, Raman scattering

requires samples only slightly larger than the focused

incident beam diameter. Using samples of dimensions of

~1 mm or smaller presents problems in X—ray orientation,

surface preparation, and general handling. The two samples

used in this study have dimensions on the order of 5-10 mm.

The crystal axes of both samples were determined

using X—ray Laue back-reflection. Growth faces of 3C SiC

tend to be [111] planes. In order to obtain a [100] face,

a special goniometer was constructed which allows trans—

ferring the sample from the X-ray apparatus to a diamond
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saw while preserving the sample orientation. The larger

of the two samples, sample A, was cut in this manner. The

sample orientation obtained in this manner is accurate to

within 1°, as judged from subsequent X—ray checks.

The arrangement of optical components is shown in

Figure 1“, Appendix A. The backscattered light is collected

over a finite solid angle determined by the lens diameter

and the distance between the lens and the sample. This

arrangement has two important experimental consequences.

First, the theoretical selection rules discussed previously

are based on definite, well—defined wavevectors for both the

incident and scattered light. The lens in effect integrates

all final wavevectors in its solid angle. However, refrac—

tion at the crystal surface tends to limit the effective

size of this solid angle, so that experimental selection

rules are better than might be supposed. Other limits on

selection rule measurements include the polarization purity

of the incident beam, the accuracy of the sample orientation,

and the quality of the analyser polaroid. The overall

validity of experimental selection rules may be gauged by

comparing the intensity of first-order spectral lines in

allowed and forbidden geometries. This ratio is 50:1 or

better for all spectra presented here.

A second consequence of the experimental geometry

is the need for a mirror-like sample surface. The
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spectrometer is not an ideal instrument, in that intense

light of any wavelength can appear as a continuous back-

ground in a spectrum (due to imperfections and multiple

reflections in the spectrometer). Intense monochromatic

light entering the spectrometer can produce false structure

in the spectrum, referred to as "grating ghosts." A rough

sample surface can Rayleigh scatter a portion of the inci-

dent laser beam into the spectrometer. A perfectly smooth

sample, properly aligned, will reflect the incident beam

directly back to the beam mirror, preventing its collection

by the lens. This geometry at the same time guarantees the

proper alignment of the sample. The [100] face of sample A

was polished after sawing, using successively finer abrasive

compounds, and finishing with quarter—micron diamond grit.

Spectra from surfaces prepared in this manner show no

grating ghosts and very low background levels. The

question of surface damage is addressed later.

After ultrasonic cleaning in ACS acetone, the

samples were mounted in an optical "cold finger" liquid

nitrogen dewar using thermally conductive grease. The

cold finger is made of OHFC copper to enhance its thermal

conductivity. The temperatures quoted in this study are

approximate, since there is some unavoidable sample heating

due to the incident laser beam.
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Spectra are recorded using a spectrometer equipped

with a stepper-motor wavelength drive, cooled phototube, and

photon counting electronics. This equipment is detailed in

Appendix A. The procedure is to count and record the photon

flux for a set period of time, move the spectrometer a set

wavelength increment, and begin another count. The spectral

plots presented here represent a set of discrete points

joined by straight line segments. Because the spectrometer

is calibrated in wavelength, the wavenumber shift must be

calculated for each point using

_ 8 l l

“"10 (if?) (9)

where Xi and is are the incident and scattered wavelengths

in Angstroms, and w is the spectral energy in cm-l. For

true Raman processes, spectral features will have a constant

w regardless of the wavelength of the incident light. Non-

Raman processes, such as flourescence, emit constant wave-

length light, and will appear at different wavenumber

positions in the Raman spectrum as the laser wavelength

is changed. This fact allows Raman and non-Raman spectral

features to be identified. Several laser lines are employed

in this study from both argon and krypton lasers for the

above reason and other reasons to be described.

The recorded spectra will have a wavelength

dependence (in addition to that of the sample) arising



 

38

from the measurement system itself. The system response

as a function of wavelength, or throughput, can be measured

using a standard lamp with a known spectral output. The

instrument throughput can then be removed from the spectra,

as is done for all spectra presented here. Spectral wave-

lengths are calibrated by superimposing discharge lines from

a neon lamp on the two—phonon spectrum. Wavelength errors

introduced by the spectrometer drive, which may be several

cm-l, can be corrected. Feature energies quoted here are

measured from the nearest identifiable neon line, and have

an estimated uncertainty of i2 cm_l. Descriptions of the

throughput and wavelength calibrations are included in

Appendix C.

Photon counting statistics have a Poisson

distribution. That is, successive counts for fixed time

intervals and constant input will have some average count

N, and the distribution will have variance /fi. The quality

of the signal may be roughly gauged as the ratio of the mean

to the variance. In other words, the quality of the signal

improves as /§. The time allowed for photon counting at

each spectral point may be made as long as needed to obtain

a suitable number of counts. The total recording time is

then also made longer. The two-phonon spectra presented

here require recording times of several hours each with a

laser power of 150 mw.
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The samples are both known to have nitrogen donor

impurities in an unknown concentration. The relative nitro-

gen concentration of the two samples is 2:1, as discussed in

Chapter III. The larger, sample A, is the purer and is used

to obtain most of the two-phonon spectra. Sample B is used

to judge the effects of the nitrogen donors on the two-

phonon spectra and as a consistency check.

I. Results

A brief study of the Poulet intensity matrices

of Table 3 indicates the possibility of arranging the

experimental geometry such that polarizability components

P12 and I15 may be isolated. The main results, all of

sample A, are shown in Figures 3 through 5. The geometry,

allowed polarizability components, and allowed first-order

scattering are indicated in each Spectra. Since the

polarizability tensor in zinc-blende has only three parts,

three spectra are sufficient to isolate the various compo-

nents. The fourth geometry, in Figure 6, provides a con-

sistency check. Experimentally, the f spectrum is found
1

to be much stronger than either the F12 or F15. For reasons

of clarity, the relative scales of these four spectra have

been multiplied by 1:5:5:l for Figures 3, A, 5, and 6,

respectively. These four spectra were recorded using

a 4579A (2.7 eV) argonion laser line and an instrument
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resolution of 7 cm-l. A number of critical points are

observed, many of which have been identified and noted

in Figures 3, A, and 5. The first-order TO (797 cm-1) and

L0 (975 cm-1) phonon peaks appear weakly in geometries where

they are forbidden, such as Figure 3, due to the approximate

nature of experimental selection rules. This is to be con—

trasted with Figure A, where the LO phonon is allowed and

dominates the two-phonon scattering.

The addition of impurities to a crystal has the

effect of disturbing the strict translational symmetry of

the lattice. Wavevector conservation, which originates

directly from crystal periodicity, may be somewhat relaxed

by the presence of impurities. A consequence for light

scattering is that previously forbidden lattice modes may

become optically active.19 Impurity-induced scattering

generates a continuous spectrum since modes from the entire

zone may contribute to the scattering. Sample B, having

roughly double the nitrogen concentration of sample A, is

used to judge the effects of the nitrogen donors on the

two—phonon spectra. The sample B spectrum appears in

Figure 7. The geometry, chosen to include all polarizabil-

ity components, is identical to the geometry of Figure 6.

The scale of Figure 7 has been adjusted to facilitate a

comparison of these two spectra, and they appear to be

nearly identical. Although not shown, no features appear
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below A00 cm-1 and no features appear which can be

interpreted as impurity-induced first-order scattering.

The strength of the peak at 1630 cm_1 does appear to scale

with nitrogen concentration. This feature cannot be a

first—order impurity-induced feature, as its energy is

well above any first-order modes. Electronic impurity

level energies are also too low to account for this feature

(see Chapter III). It may be an impurity-enhanced two-

phonon feature, but remains unresolved. The remaining

portions of these two spectra are identical (with the

exception of a small feature immediately preceding the TO

phonon, to be discussed later). For present purposes,

sample A may be regarded as pure.

When the energy of the incident light approaches

the band-gap energy in a semiconductor, it is possible for

some Raman processes to be resonance-enhanced (for example,

see Reference 12). Both samples A and B exhibit broad

luminescence in the energy range of the indirect gap (2.A eV)

which obscures the two-phonon Raman spectrum precluding

indirect gap resonance studies. The wavelength dependence

of the two—phonon spectrum can be gauged using a 6A71A

(1.9 eV) krypton-ion laser line, well below the indirect

gap energy. This spectrum appears in Figure 8, and is to

be compared with Figure 6, which has the same geometry.
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The peak at 768 cm_l, immediately preceding the TO phonon,

appears considerably stronger in Figure 8 than in Figure 6.

This peak is very close in energy to a 6H polytype phonon3

of 769 cm-1. Since the penetration depth of the 6A71A

laser line is greater than the A579A line, the spectrum

represents a deeper probe of the bulk. Trace amounts of

6H polytype in the bulk could account for the wavelength

dependence of this line. However, no other 6H phonons

appear. Also, the laser line energy is rather far from

the gap energy to assume a resonant process. This feature

remains unresolved. The remaining structures of these two

spectra agree quite well, which establishes them as due to

Raman processes.

However, the spectrum of Figure 8 (taken at room

temperature), appears relatively stronger at low energies

than the spectrum of Figure 6 (taken at 77° K). This

difference can be explained by the scattering temperature

dependence. The thermal average over initial states for

two-phonon scattering yields a temperature—dependent

intensity factor20 of

I<T> « (n(wl)+l)(n(w2)+l)

for Stokes scattering, where n(wl) and n(w2) are Bose

population factors for each phonon of the pair. For an

overtone mode of energy 2w, the thermal factor is (n(w)+l).2
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The thermal factors for two temperatures and a given feature

can be compared by forming the ratio I(Tl)/I(T2). Using

Td_=300° K and T2==77° K, these ratios for several overtones

in the 3C 810 spectrum are shown in Table 6. (Experimental

ratios from Figures 6 and 8 have been normalized to the

theory for 2TA(X).)

Table 6. Thermal intensity ratios of two—phonon Raman

spectra in 3C 810

 

 

1(300° K)/I(77° K)

 

 

Overtone Theory Experiment

2TA(L) 1.8 2.0

2TA(X) l.A l.A

2LA(L) 1.1 1.0

 

These ratios cannot be taken too seriously, since matrix

elements, background luminescence, crystal absorption,

and other factors will have temperature dependence also.

The important point is that the thermal intensity factors

account for the major portion of the relative intensity

differences between Figure 6 and Figure 8. The phonon

energies in SiC are such that quite high temperatures

would be required to significantly change the thermal

factors for the structure beyond lA00 cm—l. Broadband
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luminescence in these samples, which increases with

temperature, precludes high temperature two-phonon studies.

Difference processes, where one phonon is created

and another destroyed, have thermal intensity factor

I(T) « n(wl)(n(w2)+1)

where ”l and w2 are the destroyed and created phonon

energies, respectively. For Stokes processes, w2>wl.

The difference in thermal intensities of difference

processes versus overtone processes is used in some

materials to determine the nature of a two-phonon spec-

tral feature (for example, see Reference 16). Assuming

room temperature, a feature energy of 600 cm-1, and dif-

ference pair energies of 300 cm.1 and 900 cm-1, one obtains

I(overtone==l.7 while I(difference) =.3. Using the same

energies but T'=77K, one obtains I(overtone) = l and I(dif—

ference)~l—-3. The example energies, typical for SiC, were

actually chosen to favor I(difference). Higher feature

energies generally give an even greater difference in the

intensity factors. Assuming that matrix elements for dif-

ference processes are roughly comparable to combination

processes, the conclusion is that no difference processes

will be observed in the spectra of Figures 3 through 6

(all at T==77K).
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Preceding discussions explain the choice of the

A579A laser line for the main spectra of Figures 3 through

6. Because sample A is quite transparent to the 6A71A line,

the experimental selection rules are obscured by multiple

internal reflections from flaws in the crystal and from

the crystal faces. Since the luminescence near the band—gap

may be avoided with either line, and since identical spectra

result, the natural choice is the A579A line.

To investigate the effects of surface damage which

could result from surface polishing, a spectrum was recorded

from a [111] growth face of sample A. This spectrum appears

in Figure 9. While the geometry of this spectrum is dif—

ferent than that of Figure 6, the allowed polarizability

components are identical. There are no dramatic differences

between the two spectra, indicating that surface preparation

has not introduced new structure.

J. Analysis

The analysis of second—order spectra has several

purposes. Among these are an accounting for the optical

second—order spectra structure, extraction of phonon

energies at several high-symmetry points in the Brillouin

zone, and a determination of the general topology of dis—

persion curves in the Brillouin zone. A complete analysis

requires neutron scattering results, second—order infrared
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and Raman spectra, and possibly lattice dynamical

calculations. Neutron scattering and Raman scattering

are complementary in several respects. Neutron scattering

can give detailed energy and wavevector information from

general points in the zone. Energies derived from Raman

spectra are generally more accurate but are restricted to

critical points. Raman results are also more difficult to

interpret, since the spectra contain contributions from all

parts of the zone at once. Optical spectra can give infor-

mation, through selection rules and spectral shapes, on the

symmetry properties of critical point phonons. Any analysis

of second-order spectra without neutron data must neces—

sarily be somewhat incomplete. Since there is no neutron

data for 30 SiC, the approach here is to supplement the

optical spectra with a reasonable lattice dynamical

calculation.

Direct application of critical point and selection

rule theory, presented earlier, to the analysis of experi-

mental spectra involves some practical limitations. The

spectral shape of an overtone critical point from a non-

degenerate branch is determined by the nature of the

dispersion curve critical point, since adding a branch

to itself is equivalent to a simple doubling and preserves

the nature of the critical point. Consider next a combina-

tion arising from two non—degenerate branches, which will
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make a contribution to the two-phonon density of states

given by

 D (U) a] dS » (10)
2 +

S IV (wl+w2)l

where “l and w2 are the branch energies and S is such that

v=wl+w2. This relation, a natural extension of (5), shows

that the shape appearing in the second-order spectrum will

depend in detail on the relative curvatures of the two

critical points. A lattice dynamical calculation can give

the nature of critical points in the dispersion curves,

where only the signs of curvature in the immediate neighbor—

hood of the critical point are required. Determination of

(10) places a much greater demand on lattice dynamical cal-

culations, since the relative values of the curvature near

the two points are required. Dispersion curve calculations

are generally not reliable enough to permit an evaluation of

(10). The situation is further complicated when one or both

members of the two-phonon pair are from a degenerate criti-

cal point, where non—analytic or "fluted" behavior is

possible. A second complicating factor is that observed

critical point shapes are often obscured by other scattering,

sometimes to such an extent that even the discontinuity in

slope does not appear distinctly. Determining the energy of

such points from the measured spectra is of necessity

somewhat subjective.
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The limitations of experimental selection rules

have been discussed previously. Selection rules indicate

what components of the polarizability for a particular

two-phonon critical point are symmetry-allowed, but not

necessarily which of these components will be observed.

Since the P spectrum is much stronger than the F12 or F15
1

spectrum, strong I features may appear weakly in geometries

l

where they are not allowed due to the approximate nature of

experimental selection rules. As with critical points,

selection rules of weak features are often obscured by

other scattering. Since one does not strictly know what

the intensity ratios should be between various polarization

components of a given feature, experimental selection rules

must be considered as approximate only. Their utility is

mainly in approximately testing the consistency of supposed

feature symmetries.

A number of critical points appearing in the spectra

of Figures 3 through 5 have been identified and are listed

in Table 7. These assignments have also been indicated in

Figures 3 through 5. The considerations leading to these

assignments are detailed later. Features having an indis-

tinct energy or selection rule, as discussed above, have

been so noted. Energies of such features have uncertainties

perhaps as high as :5 cm_l. The labels of Figures 3 through

5 have been placed in the figure where the associated
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Table 7. Energies and feature assignments from the two-

phonon Raman spectrum of 3C SiC

—' Energy (cm‘l) Polarization

Branch ObservedIPreviousa ObservedIAllowed

2TA(L3) 53A 532 TI rl,r12

2TA(X5) 7A8 7A6 r1 rl,rl2,r15

LA(L1)+TA(L3) 883 876 -—b r12,rl5

2TA(2l or 22) 9A5 -- -—b r1,r12,rl5

TA(X5)+LA(X1 or X3) 1010 1013 -—b r15

TA(L3)+TO(L3) 1035 1032 -—b rl,rl2,r15

TO(X5)+TA(X5) 1133 113A r1 r1,rl2,r15

TA(X5)+LO(X1 or x3) 1201 1202 r15 r15

2LA(L1) 1212 1220 r1 r1,r15

2LA(xl or X3) 1275C 1280 r1 rl,r12

T0(x5)+LA(xl or x3) 1A00 1A01 r15 r15

L0(Xl)+LA(X3) or

1A60 1u69 r15 r15

LO(X3)+LA(X1)

2TO(Zl or £2) 1A73 -— Pl F1,Pl2,F15

2TO(X5) 1523 1522 r1 rl,rl2,r15

2TO(L3) 1530 1532 r1 rl,rl2

TO(X5)+LO(X1 or x3) 1588 1590 r15 r15

210(r15) 1593 1592 r1 rl,r12,r15

TO(L3)+L0(L1) 1610C 160A r12 r12,r15

2LO(P15) 1952c 1950 r1 r1,r12,r15

 

a 0 0

These energies derived from prev1ous experimental measurements.

bExperimental selection rules could not be obtained-—see text.

CIndistinct feature--see text.
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critical point energy appears most distinctly, and do

not imply a particular selection rule. The energies of

the second column are from these previous measurements.

The symmetry species of Table 7 follow Reference 16, as

determined from a reduction of the atomic displacement

representation into species of the point in question.

Some ambiguities in species assignment remain as

indicated in the first column of Table 7.

Lacking neutron data, the nature of dispersion

curve critical points must be obtained by calculation.

Several dispersion curve calculations have been performed

for 30 Sic.21’22’23’2“ These models have variable param—

eters which are adjusted to fit the available experimental

energies at F, X, L, and along A. However, these calcula-

tions are not reliable enough to extract energies for other

points in the Brillouin zone. The calculation of Reference

2A includes a determination of the two-phonon density of

states. The spectrum of Figure 6, which contains all com-

ponents of the polarizability, is compared with this calcu—

lation in Figure 10. The agreement below 1300 cm-1 is

fairly good, while above 1300 cm—1, where the structure

is due to the optic branches, the agreement is poor. Model

calculations in general have the most difficulty accounting

for the optic branches. The important point is that even

extensive density of states calculations are not
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sufficiently detailed to permit a critical point analysis.

A more complete analysis can be performed using the

dispersion curves directly.

A comparison of published dispersion curves for

the calculations noted shows that they share certain qual-

itatively similar aspects. Of concern here is the behavior

of the dispersion curves in the immediate vicinity of crit—

ical points. The topology near critical points in a few

cases does appear to depend on which calculation is used.

Some of the calculations show extra "kinks" which may or

may not be realistic. In an attempt to determine a set of

critical points and their sector numbers, the calculation of

Reference 21 was duplicated. Details of this calculation,

including dispersion curves, are presented in Appendix D.

This model is referred to as a second-neighbor ionic or SNI

model. In this study, sector numbers were obtained by

inspection of a small grid of solutions surrounding each

critical point. Sector numbers so obtained are peculiar

to the SNI model and can serve as only a rough guide. The

final set is determined by considering published dispersion

curves from more sophisticated models and observed spectral

shapes and energies. This process is not as arbitrary as

it might at first appear, since the observed spectral shapes,

observed energies, and sector numbers are all tightly inter-

woven by the Morse relations, (7) and (8). For example, the
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ordering of the energies of critical points in a given

branch will have a profound effect on the topology of that

branch, and hence also on the topology of the critical

points. The results of this two- and three-dimensional

critical point analysis are shown in Table 8. The planes

[100] and [110] are used for the two—dimensional analysis.

The number appearing next to each group label is the multi-

plicity of that point in its associated manifold (plane or

volume). The branches are labeled (in order of increasing

energy) as TA, LA, etc., even though the phonons have these

simple polarizations only in certain directions. As pointed

out by Phillips, such a set does not necessarily represent

the true set. It is always possible to add pairs of kinks

(and their symmetry equivalences) to a branch without spoil-

ing the topological consistency. However, the assignments

here are consistent with the observed energies and spectral

shapes, and satisfy the two- and three-dimensional Morse

relations.

As an example of the analysis process, including

sector numbers, consider the shoulder appearing at 53A cm-1

(Figure 3). Table 1 shows this energy to be very close to

twice the TA(L) energy, and no other combinations or over-

tones can be formed from Table 1 that agree as well as

2TA(L). Most assignments are performed by considering

the energy first. Figures 3 through 5 show this shoulder
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Table 8. Critical point analysis of 3c Sica

 

 

Branch T(l) X(2) R(l) W(A) 2(A)

 

Two-Dimensional; (100) Plane:
 

 

TA]. (1,0) (2,2) ([434) (031) ""

TA2 (1,0) (2,2) (1,0) (0,1) (2,2)

LA (1,0) (0,1 (0,1) (2,2) -—

T01 (0,1) (1,0) (A,A> (2,2) (1,0)

T02 (0,1) 1,0 (1,0) (2,2) --

LO (0,1) (2,2) (0,1) (1,0) (2,2)

Branch r(l) X(l) L(2) 2(2)

 

Two-Dimensional; (110) Plane:
 

 

 

 

TAl (1,0) (0,1) (2,2) —-

TA2 (1,0) (2,2) (2,2) (0,1)

LA (1,0) 0,1) (2,2 ——

T01 (0,1) (2.2) (2,2) (1,0)

T02 (0,1) 1,0) (2,2 ——

LO (0,1) 2,2) (2,2 (1,0)

Branch r(l) X(3) L(A) W(6) 2(12)

Three-Dimensional:

TAl (1,0) (A,l) (1,2) (0,1) --

TA2 (1.0) (1,2) (1.2) (0,1) (2,1)

LA (1.0) (0.1) (1,2) (2,1) --

T01 0,1) (l.A) (2,1) (1,2) (1,0)

T02 0,1 (1,0) (2,1 (1,2) ——

L0 , (2.1) (2, 1,0) (1,2)

 

aNumbers in parentheses following critical point labels

indicate point multiplicity. R is the point (110).

Branches are listed in order of increasing energy.

Point W has mixed phonon polarization.



62

appears only in the P1 geometry. Table 7 shows that 2TA(L)

is allowed in F and P12 geometries, consistent with the
1

observed polarization. Table 8 shows both members of the

degenerate TA branch at L have sector numbers (1,2). For

an overtone, the two-phonon density of states will have the

same shape as the one-phonon density of states. Figure 2

shows the shape of a (1,2) point to be identical to the

shape in Figure 3. The energy, polarization, and critical

point shape all agree with the assignment of this feature

as 2TA(L). While this spectral feature is exemplary, the

assignment procedure is well illustrated.

K. Discussion
 

Figures 3 through 5 show the F1 or totally symmetric

component as the dominant component. This is generally the

case for homopolar or slightly ionic materials. By compar—

ison, second-order Spectra of alkali halides may have other

components comparable in strength to the symmetric

component.25

The second neighbor ionic (SNI) calculation, used

in part to determine critical point sector numbers, was

chosen due to its computational simplicity and qualitatively

typical results. This calculation consists of first and

second neighbor forces and a long range Coulomb interaction.

The ionic charge, which appears as a parameter, is adjusted
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to 1.05 to obtain the best fit with experimental phonon

energies. It agrees well with the Szigeti effective charge

of .9A. The suitability of a rigid-ion model for a IV-IV

covalent compound may be debated. However, the SNI calcu-

lation qualitatively explains a number of observed spectral

features. None of the calculations can be assessed without

extensive neutron data, so that calculated energies at

points not eXperimentally measured cannot be taken as

strictly reliable. A portion of the spectral structure

is likely due to critical point W, but assignments are

not possible without a more accurate knowledge of branch

energies at W.

The energies of Table 7 agree quite well with

previous measurements. Phonon energies derived from

luminescence spectra actually are energies of phonons

having the same wavevector as the conduction band minimum.

The conduction band minimum in 3C 810 is believed to be at

X (see Reference A). Second-order Raman spectra measure

phonon energies at X directly. Assuming an uncertainty

in both sets of measurements of i 2 cm-l, and using the

SNI branch curvatures near X, it can be inferred that the

wavevector at the conduction band minimum is within 5% of

X point. This experimental limit lends support to the

assignment of the conduction band minimum to X point.
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The structure at 952 cm"1 (Figure 3) has been

assigned as 2TA(X) at E = .65 (1,1,0) (per SNI calculation).

This assignment is based on the fair agreement in energy of

the observed feature with calculated energies. The SNI

calculation shows this point to have sector number (2,1),

in agreement with the observed shape. The polarization

properties of this feature could not be obtained, as

they are obscured by the LO phonon in some geometries.

Phonon density of states calculations for 3C SiC

show a gap between the acoustic and optical branches. For

overtone modes, this gap should be replicated in the two-

phonon spectrum at double the energy. Some weak structure

does appear in this region (~1280+1A70 cm'l) which may be

due to combinations with critical points at W or three-

phonon modes. This structure remains unidentified.

1 marksThe strong scattering beginning at 1A7A cm-

the onset of overtone scattering from the TO branch. This

structure has an energy well below the energy of 2TO(X)

(1522 cm-1) or 2TO(L)(1532 cm-l), indicating that the

energy minimum of the TO branch is not located at X or L.

The SNI calculation exhibits such a minimum along 2 at

R 2 .7 (1,1,0). The feature has therefore been assigned

to 2TA(X) with sector number (1,0), in agreement with the

observed shape. Dispersion curves of other calculations do

not show this minimum, to the credit of the SNI calculation.
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The strong scattering beginning at ~1670 cm_1 is

mainly from L0 overtones. Unfortunately critical points

in the optic branches are closer together in energy than

the acoustic branches, making assignments more difficult.

Model calculations also have the most difficulty accounting

for the optic branches. If the impurity-dependent feature

at 1630 cm.1 (discussed previously) is disregarded, there

appears to be a gap between the TO and LO branches. The

SNI calculation shows only a very narrow gap between these

branches, especially along 2 (see Appendix D). Assignment

of structure from the optic branches must await more refined

calculations or possibly neutron scattering data from only

selected critical points. Knowledge of branch energies

at W, for example, would be a great aid in assessing the

validity of various model calculations and would allow

for a more complete accounting of the observed spectra.



CHAPTER III

RAMAN SCATTERING FROM NITROGEN ELECTRONIC

IMPURITY LEVELS IN 3C 810

A. Background
 

An important aspect of semiconductor applications

is the ability to modify host crystal electrical transport

properties with the inclusion of various impurities. The

thermal behavior of electrical transport properties in doped

semiconductors can be accounted for by the presence of

states existing just below the conduction band or just above

the valence band, referred to as donor and acceptor states,

respectively. This study and the following discussion are

limited to donor states of substitutional impurities.

If a group V impurity atom is substituted for an

atom of a IV-IV semiconductor, the extra electron does not

participate in the tetrahedral bonding. Instead, it is

weakly bound to the impurity by the extra unit of nuclear

charge. The ionization energy of the bound electron, as

measured from the minimum of the conduction band, can vary

from several meV to several hundred meV, depending on the

impurity and the host semiconductor. The donor electron

can be thermally liberated to the conduction band, where
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it can participate in electrical conduction. Because

semiconductor band gaps are usually considerably larger

than the donor binding energies, the electrical properties

of semiconductors are dominated by impurity electrons

(except at very high temperatures). In this simple

picture, the carrier concentration varies roughly as

exp(-EO/2kT), enabling early workers to extract the

ionization energy EO from transport measurements.26

Much of the early theoretical work on donor states

and application to real materials was performed by Kohn

and Luttinger,27 and the method is often called the Kohn-

Luttinger effective—mass theory (EMT). Qualitatively, in

the effective mass picture the extra unit nuclear charge

polarizes the host lattice and creates an impurity poten-

tial in the lattice. At large distances from the impurity

cell, this potential is

2
-e

III?) = E.— (11)

where e is the static dielectric constant of the host

crystal. For direct gap materials, effective mass theory

assumes the impurity electron as weakly bound and has an

orbit large enough that (11) applies. The resulting

impurity states have a hydrogen-like spectrum (measured

from the conduction band minimum) given by
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l m*

En —-;1_2IE2_Ry (12)

where Ry is the hydrogenic Rydberg, E is the host crystal

static dielectric constant, and m* is the isotropic effec—

tive mass of the impurity electron. Experimentally, it is

found that this simple picture can account fairly well for

the excited state energy levels of weakly bound donors but

is not satisfactory for ground state levels or for "deep"

(tightly bound) impurities in general. This failing arises

from the fact that IS ground states, or "deep" states in

general, have wavefunctions with an appreciable amplitude

in the impurity cell, where the potential cannot be

described by (11). Excited states, on the other hand,

have a much smaller amplitude at the impurity cell so that

(11) and (12) become more realistic. These simple consid-

erations provide the motivation for a more rigorous approach

(described later) which treats indirect gap materials.

Technological advances have made it possible to

produce silicon and germanium with very closely controlled

impurity concentrations, and most work concerning donor

levels has focused on these two materials. The most direct

method of studying impurity levels is with infrared absorp-

tion or Raman scattering. The energies and symmetries of

the donor levels can be obtained directly using optical

methods in conjunction with uniaxial stress and Zeeman
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effect studies.28 Raman scattering from donor levels was

first observed in 81,29 and subsequently in GaP,3° Ge,31

some polytypes of SiC,32 and CdS.33

In this chapter, the observation of Raman scattering

from nitrogen donors in 3C SiC is described. Much of the

experimental and theoretical discussion of Chapter II is

applicable. This study is limited to dilute nitrogen

concentration, so that impurity wavefunction overlap is

negligible.

B. Donor Levels
 

The original Kohn-Luttinger treatment of impurity

levels in semiconductors has undergone considerable refine-

ment since its introduction. The simple hydrogenic picture

of donor levels predicts the same energy levels for all

single donor impurities. For example, the donor level

energies of a IV-IV semiconductor having a group V impurity

are predicted by EMT to be independent of the actual

impurity. Experimental results do not indicate identical

energies for different group V donors, especially for ground

state energies. However, EMT does account well for the

excited states of "shallow" donors. The applicability of

this theory to a particular impurity can only be established

by comparison with subsequent experiment. In indirect-gap

materials the conduction band minimum and its symmetry
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equivalences give rise to n-fold degenerate levels in the

EMT, where n is the number of minima or "valleys." This

degeneracy is actually lifted by "intervalley mixing,"3“’3s

which gives rise to the experimentally observed "valley

orbit splitting."36

The EMT is obtained in the following manner.

The host crystal wavefunctions satisfy the one-electron

approximation

2 2

|(-h /2m)v +VO|T = E01 (13)

where V0 is some effective potential having the symmetry

properties of the host lattice. The solutions are Bloch

functions, labeled with band index n and wavevector R,

+

Tn(k,;) and EnO(R). The impurity wavefunctions satisfy

2 2

l(-h /2m)v +VO+U|¢ = so (1A)

where U is the perturbation potential due to the impurity

and E is measured from the conduction band minimum. In the

conventional EMT, the impurity wavefunction is expanded as

N

¢(r) = 331 oij(r)W(kj,r) (15)

where N is the number of equivalent minima or valleys in the

conduction band at wavevector Rj, and the OJ are numerical

coefficients. Fj(;) is called the envelope function, since
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it modulates the Bloch function T(RJ,P) and produces the

impurity electron binding. The Fj(¥) satisfy the effective

mass equation37

|BOJ(—iV)+U(F)|F3(?) EFj(?) (16)

where E0 is the energy of the host crystal at the jth

J

minimum with R replaced by -iV.

Several key assumptions are made in obtaining (16).

Note that in (15) there is no sum over bands. The EMT

assumes that the perturbation potential 0(2) is too weak

to couple to other bands. Typically, the energy between

the valence and conduction band at the minimum, that is

EC(Rj)-EV(RJ), is several eV, while the donor binding energy

is of order .1 eV. Similarly, the potential U(;) is assumed

to be slowly varying so that it has no strong high frequency

Fourier components. Finally, (16) is basically a one-

valley equation, neglecting the fact that the N valleys

are coupled. The correct many-valley equation is given

by38

oi exp|i(Ei-E )o?|[Boi(—iv)+U(?)-B|Fi(?) = 0. (17)
1 J

I
I
M
Z

i

The solutions of (16) are N-fold degenerate, while the

solutions of (17) provide for the observed level splitting.

The assumptions above were first investigated in a systematic,
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quantitative way by Pantelides and Sah.39 Their principal

result is that the assumptions concerning the impurity

potential are realistic provided that the impurity atom

has the same core structure as the replaced host atom.

Such impurities are referred to as "isocoric," and their

perturbation to the host crystal potential can be well

represented by (11). Any agreement of EMT with experiment

for non-isocoric impurities is strictly coincidental.

The many-valley equation (17), while correct, does

not yield much insight into the nature and symmetries of the

impurity levels. Instead, the one—valley equation (16) and

group theory can be used to obtain the level symmetries (but

not their energies). In the vicinity of a conduction band

minimum at, say, R1 = (1,0,0), and using (11), the one—

valley equation (16) becomes

2 2 2 2 2 2

[.Li._1_(.§_2.+_§_)-s_-a] F168 = 0 (18)
8Z2 8r

where EO(R) has been expanded to second order. The form of

EO(-iV) in (18), appropriate for 3C 810, is determined by

the symmetry of the zone and depends on which minimum is

being considered. (The factors l/ml and l/mt are conven-

tional effective masses along and transverse to the wave—

vector of the minimum, respectively.) Equation (18) is very

similar to the hydrogen equation, and the convention has
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been adopted of labeling the first few levels with

hydrogen—like labels. For m1 = mt (spherical valleys)

the solutions of (18) are exactly hydrogen-like (18, 2S,

2P, etc.). For ml ¢ mt, the hydrogenic P level splits into

a singlet and a doublet, which are labeled PO and Pi. This

labeling is somewhat misleading, since the solutions to (18)

have prolate spheroidal symmetry rather than spherical sym-

metry. Solutions of (18) have been obtained numerically for

various ml/mt ratios.“°

In the one-valley approximation, every term in the

sum (15) has the same energy by virtue of the N—fold degen-

eracy of (18). The degenerate set is referred to as the 18

manifold, 2PO manifold, etc. The wavefunctions ¢(;) are

solutions of (1A) (where the Hamiltonian has the symmetry

of the impurity site) and must belong to representations

of the impurity site symmetry group. For zinc-blende this

group is Td' The conduction band minima in 3C 810 are at

X point,"2 (yielding three equivalent minima), and Bloch

functions at X transform under the group of the wavevector

at X, D Solutions of (18) must belong to representations
2d°

of Doo Products of functions such as FJ(;)W(RJ,;) willh'

belong to representations of the group formed from the

operations common to both Dooh and D2d’ or D2d' The

Frobenius reciprocity theorem"1 may then be used to

determine the subduced representations in Td‘ This
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analysis for 3C SiC is indicated in Table 9. Group

representation labels follow Reference 8. The corre—

spondence of the representation labels here with those

of Chapter II for Td are A1(Fl),E(Fl2),Tl(T25),T2(P15).

Table 9. Donor level symmetries

 

 

 

Manifold I(Dmh) I(D2d) I(Td)

S 2+ A A +E
g l l

2+(P ) A A
u o 1 1+13

P

Hu(Pi) E T1+T2

 

The important result is that the threefold degenerate solu-

tions of (18) have been split by taking proper account of

the true symmetry of (1A). The states are commonly referred

to as lS(Al), lS(E), 2PO(A1), etc. The same result can be

obtained by realizing that the set of functions Fj(;)T(Rj,;)

will transform into one another under the operations of Td’

generating a representation which can be reduced in Td'

The coefficients 05 in (15) for each representation can be

found using projection operators, giving a set 0(2) having

the proper symmetry (i.e., that of (1A)). The set ¢(P) so

determined will have only approximate energies in that they

arise from the one-valley approximation (16), which neglects
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inter-valley mixing. These sets for the S manifold are

given by (15) with

. 1a301,) /_3_ (1,1,1)

o.(B) = 4L (1,-l,0),éL (l,0,—l)

J /2 /2

where j =l,2,3 denotes the minimum along kx, k and k2,y’

respectively.

Group theory does not give the ordering of the

levels. The assumption is made that the totally symmetric

lS(Al) level is the ground state since it has a non—vanishing

amplitude at the impurity center and will have a greater

overlap with the binding impurity potential. Higher mani-

folds are not expected to exhibit significant splitting,

since they have a smaller amplitude in the vicinity of the

impurity cell. The ordering of the first few levels in

3C SiC, determined by luminescence spectra in conjunction

with Zeeman studies,”2 is lS(Al), lS(E), 2P 2s, 2P
0’ i'

The splitting of manifolds above the 18 manifold is

experimentally found to be negligible, so that only the

splitting of the 18 manifold need be considered.

C. Raman Scattering
 

Having obtained the symmetries of the donor levels,

the Raman selection rules may be obtained by group theory.
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The scattering intensity for given initial and final states

li> and |f> is proportional to"3

 
 

+

+ + -+ + . —> -> + + .

Z (<flr°eilm><m|r°esll> <f|r°eslm><m|r'eill>> ' (19)

m Ei-Em-hw Ei-Em+hwi
 

+

where e ,ws s and Si,wi refer to the scattered and incident

photons. The dyadic Operator PIm><m|P will transform like

products Of coordinates6 in the same way as the polarizabil-

ity tensor discussed in Chapter II. The photon polarization

vectors will select certain components of the dyadic which

will belong to representations of the crystal point group,

say Id. The matrix elements of (19) will vanish unless

the direct product fofdxfi contains the totally symmetric

representation. If |i> is the totally symmetric Al ground

state, (19) will vanish unless Pf=Fd. Exactly as in Chap-

ter II, a set of Raman intensity matrices may be defined

corresponding to the irreducible components of the dyadic

Operator. Thus, the intensity matrices of Table 3 apply.

By adjusting polarization vectors 61 and SS and using the

zinc-blende intensity matrices, the symmetry of an excited

level may be experimentally determined (assuming a

transition from the ground state).

By making assumptions about the energies of the

intermediate states, (19) may be used to Obtain estimates
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of the relative Raman scattering intensities of transitions

between various impurity levels.““ Such calculations have

been performed for donors in 6H 810.32 A general result

Of Reference 32 is that transitions between manifolds (say

lS+2S) are of order Eg/(EC(RJ)-EV(RJ))2 less intense than

transitions within a split manifold (say lS(Al)+lS(E)),

where EB is the ground state ionization energy and EC and

EV denote conduction and valence band energies at R=Ej, the

conduction band minimum. This ratio for shallow donors

(such as nitrogen in 3C SiC) is typically of order 10_u.

Strong donor spectral lines are then expected to indicate

transitions within a given split manifold.

D. Experimental
 

Samples A and B of Chapter 11, used in this study,

have nitrogen donors in an unknown concentration. The

color of pure 3C SiC is pale yellow due to weak intrinsic

absorption in the blue. Nitrogen doping is known to shift

the color to yellow-green, due to free carrier intraband

absorption which absorbs preferentially in the red."5

Sample A visually appears pale yellow, with very little

green observable. Sample B appears dark green-yellow,

indicating a greater concentration of nitrogen donors than

Sample A. Sample donor concentrations will be discussed

further following the presentation of sample spectra.
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The experimental geometry employed here, as in

Chapter II, is back-scattering. The helium temperature

spectra are recorded using a commercial optical dewar

equipped with a temperature control system. Other exper-

imental aspects, such as sample preparation, mounting,

laser heating considerations, and experimental selection

rules have been discussed in Chapter II. The spectra of

this chapter are not corrected for throughput since they

are over a limited spectral range. The experimental

geometry and equipment are detailed in Appendix A.

E. Results

The room temperature first-order spectrum of sample

A is shown in Figure 11a, recorded using a A579A argon-ion

laser line and instrument resolution of 3.7 cm‘l. The

indicated geometry allows components Al and E, but not

the L0 or T0. The first-order phonons appear weakly due

to experimental limitations. The two small lines near

50 cm—1 are laser flourescence lines, designated F. The

background structure beyond A00 cm—1 is recognizable as

two—phonon scattering. This spectrum is repeated in

Figure 11b at 770 K, showing the appearance of a new line.

This spectral line was investigated using a different laser

line (A765A) in order both to avoid the small flourescence

lines and establish the line as due to a Raman process.
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These spectra, at 7° K, are shown in Figures 12a and 12b,

with instrument resolution of 3.7 cm-l. The strengths of

the line in these two geometries is in the ratio 3:1. The

Poulet intensity matrices of Table 3 Show that this line

has E symmetry, meaning it appears in geometries apprOpriate

to an A1+E transition. The symmetry of this line has been

investigated in a number of geometries, and is found to be

purely E within the limits of experimental selection rules

as discussed previously. A high-resolution search for other

structure was performed, especially in the region close to

the laser shoulder, without success. (The laser shoulder

limits this search to energies greater than ~5 cm—l.)

Sample B, which is thought to be more heavily doped with

nitrogen, exhibits the same line, but with roughly twice

the absolute intensity of sample A. The energy of this

line, measured from a nearby laser flourescence line,

is 67.5 1.5 cm-l.

The strength and deconvoluted width of this line

in sample A as a function of temperature is presented in

Figure 13. The linewidth in sample B is roughly 10% greater

than sample A at 77° K. As mentioned previously, the sam-

ples are unavoidably heated to some extent by the incident

laser power. The temperatures of Figure 13 are measured

by a thermocouple attached to the edge of the sample with

thermal grease. The thermocouple does not measure the true
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temperature of the sample at the point of the incident laser

focus. To assess the effect of laser heating, the linewidth

at 77° K was measured using incident laser powers of 50,

100, and 200 mw. The linewidths at 50 and 100 mw were

identical to within experimental error, while the linewidth

at 200 mw was roughly 5% greater. The linewidths of Figure

13 were therefore measured using 100 mw laser power to

minimize sample heating errors.

F. Discussion
 

The observed line is attributed to a lS(A1)+lS(E)

transition between nitrogen donor levels, referred to as

a valley-orbit transition line. The symmetry and impurity

concentration dependence of the line are the main reasons

for this assignment. The intensity temperature dependence

is also consistent with this assignment. Figure 13 shows

the line intensity approaches a constant as the temperature

is lowered, persisting to 7° K. If another impurity state

existed which was significantly lower in energy than the

two states involved in the Observed transition, the inten—

sity would fall at low temperature as the donor electron

returns to this hypothetical ground state. Thus to within

energy kT(~5 cm-1 for T=7° K), the observed transition is

from the true ground state. Preceding theoretical estimates

of the inter- versus intra—manifold transition intensity
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strongly favor the assignment lS(Al)+lS(E). With increasing

temperature the ground state is depopulated, accounting for

the intensity decrease with increasing temperature. The

linewidth is thought to be due mainly to perturbations of

the impurity site by acoustic phonons.1+6

The relative strength of the line in samples A

and B indicates that sample B has approximately twice the

nitrogen concentrations Of sample A. It is found in Si”7

and Ge"8 that the width Of valley-orbit lines is a sensitive

function Of impurity concentration when the concentration is

near the metal-nonmetal transition. Since the linewidths of

samples A and B vary by only 10% while their concentrations

differ by a factor of two, the concentrations must be far

from the metal-nonmetal transition.

If the conduction band minima in 30 SiC were not

at X, but instead along A (as in Si), there would be six

equivalent minima instead of three, so that the 18 manifold

would contain six levels. Taking prOper account of the true

impurity site symmetry, these six levels will split into

lS(Al), lS(E), and lS(T2) levels. Assuming a specific

two-band model, Colwell and Klein32 have calculated the

Raman cross section for transitions between levels of the

split 18 manifold. They find the cross section proportional

to
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(20)

 

where N is the number of equivalent minima, 31 and ES are

polarization vectors of the incident and scattered photons,

w and v are representation labels, and M3 is defined by

M a 326(12) ->

a8,j 8Ea§EB kj'

~

For the minima here, MJ is diagonal. If the transition

lS(A1)+lS(T2) is observed, then the conduction band minimum

cannot be at X. Using the a; appropriate to a sixfold min—

imum along A,39 it can be shown that (20) vanishes for the

lS(Al)+ls(T2) transition. Because Of the many EMT approx—

imations invOlved in (20), its vanishing implies only that

this transition is likely quite weak. This transition is

allowed by group theory, since the dyadic Operator in (19)

has parts belonging to T2. Thus failure to observe this

transition does not preclude the existence of a lS(T2)

level. Raman scattering in this case is not an effective

method of establishing the position of the conduction band

minima. However, the failure to observe the lS(A1)+lS(T2)

transition here is consistent with the assignment of the

conduction band minima to X.

Recent luminescence spectra of 3C SiC1+9 have

revealed several inter—manifold energies, and show no
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observable valley-orbit splitting of manifolds above the

IS manifold. These inter-manifold energies are listed in

Table 10, with level energies measured negatively from the

conduction band minima.

Table 10. 3C 810 nitrogen donor level spacing

 

 

 

Levels Energy difference (cm-l)

2P1_2Po -38

2P,—2s ~25

2Pi—3PO +25

2Pi-3Pi +A5

 

Several important 3C SiC parameters are Obtained in Refer-

ence A9. The effective mass mt is extracted from the Zeeman

splitting of the 2P,_r level giving mt==.2A. Since the EMT is

expected to apply quite well for excited levels, the inter-

manifold energies above in conjunction with the EMT calcu—

lations of Reference A0 give 6 =10, nu_=.67, and an EMT lS

manifold energy of A7.1 meV (380 cm-l). Energy difference

between donor-acceptor pair and free electron to bound

acceptor luminescence components gives an experimental

estimate of the lS(Al) binding energy of 5A meV (A36 cm-l).

Most importantly, observation of two-electron satellites of
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the 2Pi state directly yields the lS(Al) ground state energy

of 53.6 meV (A32 cm‘l) (see Reference A9 for details).

The transition energy observed in this study for

the lS(Al)+lS(E) transition is 67.5 cm-l. A rough estimate

of the lS(Al) binding energy can be Obtained by assuming the

IS manifold valley-orbit splitting approximately preserves

the "center of mass" (as in degenerate perturbation theory).

Making this assumption, and using the EMT lS manifold energy

1

of 380 cm— , the ground state lS(Al) energy becomes

1
380 cm"1 +(2/3) x67.5 cm’ = A25 cm‘l.

This value is consistent with the lS(Al) energy of A36 cm-1

from luminescence measurements.





CHAPTER IV

SUMMARY

A. Two—Phonon Spectra
 

The intensity of the second-order spectra of 3C SiC

is dominated by the P1 or totally symmetric component of the

polarizability, in agreement with spectra of other IV-IV

semiconductors. Feature energies and assignments are con-

sistent with previously measured phonon energies at F, X,

and L. Analysis of the spectra indicates that the minimum

of the TO branch is not at X but along 2, at an energy of

737 cm—1. Critical point TA(Z) (which appears in the dis-

persion curves Of all published calculations for BC SiC to

date) is found to have an energy of A76 cm'l. The Observed

spectra in conjunction with a model calculation are used to

arrive at a set of critical point sector numbers. This set

is consistent with the observed spectral shapes, energies,

and selection rules, and satisfies the two- and three-

dimensional Morse relations for all phonon branches. The

close agreement between Raman and luminescence measurements

of X point phonons supports the assignment of the conduction

band minimum to X point. Results from the two—phonon spec-

tra agree quite well with previous experimental results and
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may serve as additional input for more refined lattice

dynamical calculations.

At present, there is insufficient information

to make feature assignments to critical point W. These

assignments require either neutron scattering data or

reliable lattice calculations. It may be practical to

perform neutron scattering on the small 3C 810 samples

available at selected points in the Brillouin zone.

Knowledge of phonon energies at W, for example, would

greatly aid the interpretation of the second-order spectra.

The effect Of impurities on second-order spectra

could be better assessed if high-purity samples were avail-

able. Neutron—activation analysis in SiC is not practical

because of the long decay times of activated host atoms.

Transport measurements require samples large enough to be

cut into well-defined shapes, which has not been possible

with 30 SiC. Impurity concentration at present can only

be gauged in a very qualitative fashion. The variation Of

2:1 in nitrogen concentration in the samples here is found

to have a small effect on the second—order spectra, and a

negligible effect on the identified critical points. Purer

samples have less luminescence, which might allow higher

temperature second-order spectral recordings. Surface

damage due to sample preparation has no effect on the

second—order spectra.
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B. Nitrogen Donor Spectra
 

The low temperature spectra of nitrogen doped 3C SiC

show an additional Raman line at 67.5 1.5 cmTl. This line

is identified as a transition between donor impurity levels.

The thermal behavior, symmetry, theoretical estimates, and

concentration dependence of this line strongly favor its

assignment to the lS(A1)+lS(E) valley-orbit transition. No

other structure is Observed, consistent with the assignment

of the conduction band minimum to X point and with theoret-

ical estimates of cross sections of other transitions. The

thermal behavior indicates that the lS(Al) level is the

true ground state. The Observed valley;orbit lS manifold

splitting agrees with luminescence measurements and EMT.

The measured 18 manifold splitting may stimulate a cal—

culation of the isocoric donor levels in SiC:N along the

lines of Reference 39.

If more heavily doped samples of known concentra-

tions become available, the behavior of this line can be

studied as a function of donor concentration, up to and

through the Mott transition.“7"+8

Transitions to higher manifolds are expected to

be very weak, but might be observable using modulation

spectroscopy. The 2P: levels will be split by a magnetic

field. A modulated magnetic field in conjunction with a

synchronous detector might produce detectable signals.
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APPENDIX A

EXPERIMENTAL GEOMETRY AND EQUIPMENT

The geometry employed throughout is direct

backscattering. The arrangement of optical components

is shown in Figure 1A. The incident beam from the laser

is passed through a prism and iris to remove laser plasma

flourescence lines from the main beam. The laser beam is

highly linearly polarized in the plane of the drawing as it

emerges from the laser. The polarization rotator permits

the polarization of the incident beam to be adjusted per-

pendicular to the plane of the paper. The beam is focused

to a small spot on the sample by the small lens. A small

dielectric coated mirror diverts the incident beam onto the

sample surface. Experimentally it is found that this mirror

will produce a reflection of mixed polarization unless the

incident polarization is in or perpendicular to the plane

Of incidence. Only these configurations were employed in

order to maintain the polarization purity of the incident

beam. The sample is adjusted to reflect the main beam back

to the mirror so it is not collected by the lens. Although

not shown, the dewar windows are adjusted so that window

reflections are also blocked by the small mirror from

entering the collection lens. The remaining scattered
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light is collected by the lens, analyzed by the polaroid,

and passes through the polarization scrambler. The spec-

trometer response is polarization dependent, necessitating

the use Of a polarization scrambler to remove this depen-

dence. The lens focal length and diameter and relative

positions are adjusted such that the laser spot on the

sample is imaged on the spectrometer entrance slit, while

at the same time the first mirror of the spectrometer is

just filled by the incident light. All components are

centered on the spectrometer axis. The entrance slit

Opening lies in the plane of Figure 1A. The laboratory

coordinates employed in this study are indicated.

An important consideration in Raman spectroscopy

is the fluctuation Of the laser output during recording.

The Coherent Radiation Model CR-5 argon ion laser used

here is equipped with a light regulator which maintains

a constant output to within .5%. The CR-5 laser has a

polarization purity of 100:1 or better.

The remaining apparatus is listed in brief below

along with some key specifications.

0 Collection Lens-~Cannon 85 mm f:l.5 camera lens

0 Spectrometer—~Spex Industries Model 1A06 .85-meter

Czerny—Turner double monochromator equipped with

Compudrive (stepper—motor driven wavelength drive)

and 1200 grooves/mm, 5000 A blaze wavelength

gratings.
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Phototube—-RCA 3103AA with extended red response,

hand picked for low dark count (—2 counts/sec at

-200 C).

Phototube Housing--Products for Research model

TE-lOA—RF housing, RF shielded, and thermoelec-

trically cooled to -20° C.

Photon counting electronics--SSR Electronics model

1120 pre-amplifier/discriminator, model 1108 photon

counter with digital outputs.

Recorder--Kennedy model 1600 incremental digital

recorder, 7 track, 200 bpi.

Control electronics--Fabricated at MSU, coordinates

spectrometer drive with photon counter, writes data

digitally on the recorder in a form compatible with

MSU computers.

Software-~permanently resident on MSU disk drives,

provides data reduction, smoothing, correcting,

and plotting.

Power meter--Coherent Radiation model 210 multi-range

power meter.

Helium Dewar--Janis Research Model lODT helium

Optical cryostat equipped with Au +.07% Fe versus

Cu thermocouples, sample heater, and a temperature

control system.

Nitrogen Dewar--Fabricated at the MSU glassblowing

laboratory, equipped with Au +.07% Fe versus chromel

thermocouples, sample heater, and a temperature

control system.
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APPENDIX B

ZINC-BLENDE INTENSITY MATRICES

The Poulet intensity matrices8 for zinc-blende are

presented here. These are to be used with polarization

vectors expressed in and directed fully along the principal

laboratory axes defined in Figure 1A. For arbitrary polari—

zation orientations, the methods of Chapter II must be used.

The column labeled "orientation" indicates the direction of

vectors in the crystal system which are parallel to the

principal lab axes. These tables assume incident R along

-x and scattered R along x for backscattering, incident R

along -x and scattered R along y for right angle scattering.

The intensity matrices for F15(T2) can be obtained by adding

together the L0 and TO matrices. The F1(Al) intensity

matrix is the unit matrix in all geometries. The matrices

have been normalized such that entries are integers.

Table 12 is normalized by 3/2 relative to Table 11.
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Zinc-blende backscatter intensity matricesTable 11.  
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Table 12. Zinc-blende right-angle intensity matrices
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APPENDIX C

THROUGHPUT AND WAVELENGTH CALIBRATION

The spectral response of the apparatus is wavelength

dependent. Over a limited spectral range, the instrument

may be considered to have an approximately constant response.

The second-order spectra of Chapter III extend over a broad

spectral range, necessitating a correction for system

response variations. Given a true spectrum M(A), the

measured spectrum M'(A) is given by

M'(1) = T(A)M(l)

where T(A) characteristizes the instrument throughput with

wavelength. T(A) can be determined by measuring the spec-

trum of a source with a known spectral intensity. Referred

to as standard lamps, these sources have a true intensity

8(1). From the measured intensity, S'(A), the system

throughput can be determined as

T(1) = S'(A)/S(A).

Having T(A), the true spectrum M(l) is given by

M(l) = M'(l)/T(1).

98



99

The standard lamp used in this study, a General

Electric 6.6A/TAQ/lCL-2OOW quartz-iodine lamp, has an

output which has been characterized by the National Bureau

of Standardss° for use as a spectral standard.

In recording the standard lamp spectrum, it is

essential to duplicate as nearly as possible the conditions

under which the correctable spectrum M'(A) was recorded.

The technique used in this study to simulate the actual

experimental conditions is shown in Figure 15. The iris

simulates the laser spot of an actual experiment and is

placed in the same position as an actual sample. The MgO

slide, used to provide a diffuse reflecting surface, is

placed as closely as possible to the iris. The slide is

prepared by coating a glass slide with smoke from a burning

magnesium ribbon. The reflectance of slides prepared in

this manner has a variation with wavelength of less than

1% over the entire optical spectrum.51 A light shield

prevents the lamp output from entering the spectrometer

directly. The effective intensity may be adjusted by

varying the lamp to slide distance.

There are several important reasons for attempting

to simulate a point source (as is the case in an actual

experiment). First, the lens, polaroid, and scrambler must

be filled, meaning as much of their area as possible should

participate in the light transmission. In particular, the
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scrambler cannot produce complete polarization mixing unless

an appreciable part of its area intervenes. Incomplete

scrambling in conjunction with the polarization dependence

of the spectrometer can produce a net throughput not rep-

resentative of the true throughput. Also, the entire area

of the spectrometer gratings must be irradiated to obtain

a true response. Only a point source can satisfy these

requirements, leading to the point source simulation of

Figure 15. Experimentally, it is found that the throughputs

measured with the polarization analyser along y and z are

very nearly identical. The measured throughput as shown

in Figure 16 is used to correct all spectra presented in

Chapter II.

The mechanical drive of the spectrometer can

introduce wavelength variations in measured spectra. To

minimize such errors, the second—order spectrum was recorded

with neon discharge lines superimposed. The neon lamp is

placed near the sample in the plane of Figure 1A in order

that the relatively weak neon lines be observable. The

calibration spectrum is shown in Figure 17. Energies quoted

in Chapter II are measured from the nearest identifiable

neon line. The wavelengths Of some representative lines,

2 are compared withobtained from MIT wavelength tables,S

their measured wavelengths in Table 13. The random peak-

tO—peak wavelength error in the spectrometer drive is found
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Table 13. Neon calibration lines

 

Measured wavelength (A) Mit tables (A)

A61A.82 A61A.39

A656.82 A656.39

A7OA.8A A7OA.AO

A750.06 A7u9.58

A810.5A A810.06

A863.7A A863.08

A892.72 A892.10

A957.68 A957.03

5005.70 5005.16
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to be ~i.3A. A systematic mean offset of ~.5A is easily

corrected for. Random errors can only be minimized by

measuring spectral features from the nearest calibration

line.
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APPENDIX D

SECOND—NEIGHBOR IONIC (SNI) CALCULATION

The SNI calculation21 employs a simple rigid-ion

model with first and second neighbor force matrices and

a long-range Coulomb part. An advantage of the SNI cal-

culation is that force constants may be simply related to

experimental lattice energies at F, X, and L. For x, y,

and z directed along the C2 axes in zinc-blende, the most

general forms of the force matrices allowed by the symmetry

of the lattice are

(first neighbor), Fi==*
1
1
2

I
I
I

(second neighbor)

i

Q
U
D
U
O

V
0
7
0
7

 '
(
D
Q
'
O

 U
O
U
D
Q

  0
9
6
1
:

O
v
'
C
C

where i.=l or 2 for Si or C second neighbor interactions.

The SNI calculation assumes 6 =0, and u =v. The last

parameter of the calculation is an effective ionic charge Z.

The parameters which result in the best fit for 30 SiC are

given in Table 1A. The calculation is straightforward, and

further details may be found in Reference 21. The disper-

sion curves are shown in Figure 18 along the (100), (110),

and (111) directions. Sector numbers were determined by

solving the secular matrix in a grid around each critical
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Table 1A. SNI parameters for 3C SiC

 

 

 

Parameter Value (nt/m)

a 91.35

B 5A.81

“l 16.26

11 -26.57

112 A.25

A2 3.30

 

Note: Z =1.0A9.

point. The species assignments indicated in Figure 18

follow Reference 18. The SNI calculation has enough freedom

to duplicate exactly experimental phonon energies at F, X,

and TO(L). The remaining calculated L energies agree with

experiment to within 10%.
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