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ABSTRACT

RAMAN SCATTERING FROM TWO-PHONON EXCITATIONS
AND FROM NITROGEN ELECTRONIC IMPURITY
LEVELS IN CUBIC SILICON CARBIDE
By

Philip Allen Gaubis

The two-phonon Raman spectra and nitrogen donor
electronic Raman spectra of the 3C polytype (zinc-blende)
of SiC are presented. 3C SiC is a IV-IV semiconductor
having an indirect gap of 2.4 eV with a conduction band
minimum at X. The nitrogen impurity concentrations of both
samples used in this study are found to be well below the
Mott transition.

The Fl component of the two-phonon spectra is the
dominant component. A number of spectral features are
identified and assigned to critical point overtones and
combinations, including overtones due to critical points

1 and To(2) at 737 cm'l, which had not

TA(Z) at 476 em”
previously been measured. No difference combination scat-
tering is observed, in accord with intensity estimates for
difference combination bands in 3C SiC. All feature

assignments are consistent with theoretical selection

rules and previously measured phonon energies. The close
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Philip Allen Guabis

agreement of branch energies at X with previous luminescence
measurements supports the assignment of the conduction band
minimum to X. Sample nitrogen concentration, surface damage
due to sample preparation, and exciting line wavelength are
found to have negligible effects on the second-order spectra.
The spectral feature assignments in conjunction with a lat-
tice dynamical calculation are used to perform a critical
point analysis, producing a set of critical point sector
numbers which satisfy the two- and three-dimensional Morse
relations.

The low temperature spectra of both samples show

1 of E symmetry. The

the appearance of a line at 67.5 cm
thermal behavior, symmetry, concentration dependence, and
theoretical intensity estimates strongly favor the identi-
fication of this 1line as a 1S(Al)+lS(E) transition in the
valley-orbit split 1S nitrogen donor level. The thermal
behavior of this line is investigated from 7°K to 180°K
and indicates that the IS(Al) level is the true ground
state. No other transitions are found, in accord with
theoretical intensity estimates for the inter-manifold

transition intensities and with the assignment of the

conduction band minimum to X.
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CHAPTER I

INTRODUCTION

Silicon carbide is an indirect gap IV-IV
semiconductor which can grow in a variety of different
polytypes. The 3C or cubic polytype used in this inves-
tigation has a zinc-blende structure with two atoms per
primitive cell and space group Tg (FE3m). This structure
can be visualized as two interpenetrating face-centered
cubic lattices, one of silicon and one of carbon, which
are separated along one-quarter of a body diagonal. The
zinc-blende structure is nothing more than the diamond
structure with every other carbon replaced by a silicon.
From this point of view, cubic SiC may be considered as
a perturbed silicon lattice. SiC is of interest in that
it may be considered to exist "between" the purely covalent
IV-IV semiconductors (such as silicon and germanium) and the
more ionic III-V zinc-blende semiconductors.

This study is concerned with the first observation
and analysis of two-phonon Raman host crystal spectra and
Raman scattering from nitrogen donor electronic levels in
3C SiC. Since the topics of two-phonon spectra and donor

spectra are not closely related, this thesis 1s organized




into two nearly independent sections. The analysis of the
two-phonon spectra presented in Chapter II yields detailed
information concerning host crystal phonon dispersion
curves, including a set of dispersion curve critical points.
Nitrogen donor Raman spectra are reported in Chapter III
and discussed in terms of effective mass theory (EMT) as
it applies to weakly bound donor electrons. Relevant
background is included in each chapter. Group theory is
employed where possible, as it often gives clearer insight
than brute force calculation. Many of the experimental
and theoretical details of this study are deferred to the
Appendices. The remainder of this section includes a very
brief description of the Raman effect and its experimental
utility.

The Raman process may be more descriptively referred
to as inelastic light scattering, wherein the incident light
exchanges energy with a sample concurrent with a transition
between quantum levels in the sample. The energy of the
scattered light will be shifted by an amount equal to the
difference in energy of the quantum levels involved in the
transition. The scattered light will be shifted toward the
violet if it gains energy during the interaction, and toward
the red if it loses energy. The violet shifted light is
referred to as anti-Stokes scattering while the red shifted

light is called Stokes scattering. (All spectra throughout




this study are Stokes spectra, with energy scales
representing the energy shift between the incident
and scattered light.)

The scattered light intensity of a Raman process

8 to0 10712 of the incident

is quite weak (typically 10~
intensity), and early experiments suffered from the lack
of suitably intense, narrow band sources. Lasers are ideal

sources for Raman spectroscopy, having highly monochromatic

outputs of several watts, and are directly responsible for
the widespread use of Raman techniques.

A great variety of phenomena in semiconductors have
been studied using Raman scattering, including one-phonon
processes (called first-order scattering), two-phonon
processes (called second-order scattering), donor and
acceptor impurity levels, magnons, plasmons, defect modes,
single-particle excitations, impurity-induced scattering,
resonant processes, LO-plasmon coupling, and others. This
list is by no means complete, and is intended only to show
the broad applicability of Raman techniques to semiconductor
studies.

Infrared absorption spectra and Raman spectra can be
complementary in the sense that selection rules are often
different. For example, in materials with inversion sym-
metry, where parity is a good quantum number, only odd-

parity transitions are infrared-active. Conversely, in






such systems only even-parity transitions are Raman-active,
so Raman and absorption spectra are strictly complementary.
In addition, Raman techniques can easily detect transitions
of energy as low as ~1 meV, which lie in an experimentally

difficult region for absorption techniques.



CHAPTER II

TWO-PHONON RAMAN SPECTRA OF 3C SiC

A. Background

This chapter presents the two-phonon (second-order)
Raman spectra of 3C SiC, an identification of spectral
features, and a critical point analysis of lattice disper-
sion curves. Several theoretical topics require development
before the observed spectra can be interpreted. In this
section, a preliminary overview of Raman scattering from
lattice vibrations is presented, followed by a description
of previous measurements of phonon energies in 3C SiC.

In one-phonon or first-order Stokes Raman scat-
tering, an incident photon of wavevector ﬁi creates a phonon
of wavevector ﬁp and 1s scattered with wavevector Es' Wave-
vector conservation requires that ii—ﬁs=§p. In a typical
semiconductor, the wavevector of visible light is of order

5

10 cm_l (depending on the dielectric constant of the cry-

stal) while the width of the Brillouin zone is of order
108 cm_l. Thus the only phonons which can participate in
first-order Raman scattering have a wavevector very near

the center of the Brillouin zone and are therefore

£
referred to as "zone-center" or "k=0" phonons.



This scattering process can be roughly visualized
in a semiclassical fashion. Given a crystal having polar-
izability tensor P and incident field ﬁ, an oscillating
dipole moment ﬁ = §'E is established in the crystal. This
moment reradiates the incident beam, producing elastic
Rayleigh scattering. However, as the nuclei move, the
electrons follow adiabatically, and the polarizability
changes. It is the change of electronic polarizability
with nuclear motion that gives rise to Raman scattering.
Thus, the moment M contains "sidebands" formed from the
product of the incident field and the phonon-modulated
polarizability tensor.

This qualitative description can be put in more
formal terms. Raman cross sections for first-order scat-
tering can be expressed using straightforward perturbation
theory. The process involves three steps: a photon-
electron interaction, an electron-lattice interaction, and
a scattered photon-electron interaction. The resulting
expressions! involve double sums over (usualy unknown)
electronic states in the crystal. 1In order to obtain
useful expressions for the cross section, one resorts
to the "polarizability approximation"? by making the
following assumptions:

a. Vibronic states are written as simple products

of electron and phonon states, with the nuclear




coordinates appearing as parameters in the electron
states (adiabatic approximation).

b. The incident and scattered light are of much higher
energy than the phonon states. In other words, the
crystal polarization is largely electronic in char-
acter. For visible light, this is typically a quite

good approximation.

With these assumptions, the intensity of Stokes

first-order scattering from a specific phonon becomes
2 B 2
Istokes © |ei'<°’P|Vf>'gs| (np+1) 1))

where P is the polarizability tensor, |o> and |vf> are the
ground and excited vibrational states, respectively, and

gi and gs are the polarization vectors of the incident and
scattered light. The term nf+1, where ne is the Bose popu-
lation factor, results from the thermal average over initial

states. A knowledge of the dependence of (1) on gi and ;s

for a given ]vf>, known as "selection rules,"

may be
obtained from group theoretical arguments. Selection
rules will be discussed in depth in a following section.
The traditional means of obtaining detailed infor-
mation on lattice dynamics is through neutron scattering.

This technique, while quite powerful, requires large

single-crystal samples (on the order of several cm).



To date, it has not been possible to grow single crystals
of 3C SiC this large, thus precluding neutron studies.
Raman scattering provides the most complete information
avallable concerning the lattice dynamics of crystals
that are inherently too small for neutron studies.

Phonon energies of 3C SiC at several high-symmetry
points in the Brillouin zone have been measured previously
with a variety of techniques, including polytype analysis,
luminescence measurements, and first-order Raman scattering.
These techniques are now described.

SiC can exist in a number of different polytypes
which are all very similar in structure, differing mainly
in the stacking sequence of hexagonal planes along the (111)
or C axis (group label A. Subsequent group labels, to be
defined later, follow Reference 7). As the number of planes
in the stacking sequence varies, so also does the size of
the unit cell along the C axis. As the unit cell size
increases, the Brillouin zone size decreases. For example,
if the unit cell is doubled in size, the Brillouin zone is
folded in half. Modes that were at the zone edge before
the folding now become zone-center modes and therefore Raman
active. It is then possible to obtain (approximately)
phonon energies along A in 3C SiC by examining the Raman
spectra of other polytypes. It 1s not obvious a-priori that

such a technique should work at all. Its success depends on




the extent to which one may consider variations in stacking
sequences as small perturbations on the structure of the 3C
polytype. This technique has been successfully applied to
SiC,? and provides not only a fairly complete determination
of the 3C dispersion curves along A, but the phonon energies
at the point L as well.

Luminescence studies“ of 3C SiC have revealed an
indirect gap of 2.4 eV as measured from the conduction band
minimum at X. The location of the conduction band minimum
is fortunate in that the indirect phonon-assisted transi-
tions observed in the luminescence spectra permit a
determination of the phonon energies at X point.

The zone-center optic phonons (at T) are strongly
Raman active and have been determined from first-order Raman
spectra.® Two-phonon absorption bands, also observed in
3C SiC,°® were quite weak, allowing only very tentative
identification of a few spectral features.

The previous experimental measurements of phonon
energies at T', X, and L are listed in Table 1. These
previous measurements at T', X, L, and along A have been
the only input to lattice dynamical calculations of 3C SiC.
A satisfactory assessment of model calculations cannot be

made without more extensive experimental input.
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Table 1. Experimental lattice energies (cm_l)
T X L
Branch (Ref. 3) (Ref. 4) (Ref. 3)
TA - 373 266
LA - 640 610
TO 796 761 766
LO 975 829 838

B. Phonon Symmetries

The space group of 3C SiC is Ts(FE3m). This group
is symmorphic, having an associated point group Td' There
are two atoms per primitive cell, giving rise to six normal
modes, three optic and three acoustic. The wavevector of
visible light 1s typically several orders of magnitude
smaller than the size of the Brillouin zone. Due to wave-
vector conservation, the phonons which can participate in
first-order scattering are very nearly at the zone center.
To the extent that these wavevectors can be considered as
zero (typically a very good approximation), the zone-center
modes must transform as representations of the full point
group Td‘

For later purposes, the symmetry properties of modes
at several high-symmetry points in the Brillouin zone will

be needed. For any given ﬁ in the zone, there will be a set

A






11

of symmetry operations from the space group Tg which leave
that k vector unaltered. This set of operations will form
a subgroup of the original space group and is referred to
as the group of the wavevector.® Each such group will have
associated representations and a character table which will
characterize the symmetry of modes with that wavevector.
Parmenter’ has conducted such an analysis for zinc-blende.
Figure 1 contains a sketch of the Brillouin zone adopted

by Parmenter, I' character table, and wavevector groups of
specific points. Subsequent notation in this chapter
follows Figure 1.

If the atomic displacement representation of the
zone-center modes are reduced into representation of T,
the result is 2F15. That 1s, the zone-center acoustic
and optic modes are triply-degenerate, and belong to
representation P15' In ionic crystals, however, there
is a long-range electrostatic field associated with the
longitudinal optic modes (see Reference 1). This field
1ifts the degeneracy of the optic branches, leaving a
singly-degenerate longitudinal optic (LO) mode higher in
energy than the doubly-degenerate transverse optic (TO)
mode. It is for this reason that two lines appear in the
first-order Raman spectrum of 3C SiC rather than one (as

in silicon).




>

E X R M

2

2
Ak x2+y2+z
-1
0 /3(x2-y?2),322-r2
1 XY Y2 ,2X3Z,X,¥
-1

WAVEVECTOR GROUP

Brillouin zone of 3C SiC and wavevector groups.
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C. First-Order Polarization Selection Rules

Experimentally, the apparatus used to perform
Raman spectroscopy can easily be arranged to analyze the
polarization selection rules of a spectral feature (see
Appendix A). In this section, the origin of selection
rules for first-order (zone-center) scattering are dis-
cussed as well as the extra considerations required for
zinc-blende crystals with LO-TO splitting. ﬁ

Within the context of the polarizability
approximation, the Stokes intensity is given by (1).
As with any tensor, the individual elements of P must
transform as products of coordinates (XX, YY, etc.).
This implies that one can find linear combinations of
the elements of P which transform like representations
of T. These combinations are obtained directly from an
examination of the basis functions included with common
character tables. The (zone-center) normal modes of the
crystal will also belong to certain representations of the
point group of the crystal. Using a general group theoret-
ical result,® the matrix element in (1), <o|F|ve>, will
vanish unless P and |vf> have parts belonging to the same
representation of the point group (the ground state is taken
as totally symmetric). In other words, the only normal

modes which can participate in first-order scattering are
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ones belonging to a representation contained in the
decomposition of the polarizabllity tensor.

The polarizability tensor, which is modulated by
the normal modes, may be expanded in terms of normal mode

coordinates Q,

?=§O+Z_Q(r—7§(rj)+... (2)
where j denotes the partners of a given representation T.
The first term glves rise to Rayleigh (elastic) scattering,
the second term to first-order Raman scattering. In order
that (2) be an equality, the second term must have the same
transformation properties under all group operations as B.
Therefore, the sum over I' includes only those representa-
tions which are contained in the reduction of the polar-
izability tensor consistent with the general selection rules
above. (The zero order polarizability tensor ﬁo must be
invariant under all point group operations of the crystal.)
One demands that the interaction energy, Ei'ﬁ'ﬁs (Ei and ﬁs
are incident and scattered electric fields), be invariant
under all group operations of the crystal. Since normal
coordinates belonging to different representations do not
mix under group operations, the invariance of E -?-ﬁs

i
requires that for each PJ,

3P >

BE,.. —ot |.
1" 30T,
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transforms identically to Q(Fj) (so that their product will
contain the totally symmetric representation). The tensors
3P
BQ(FJ) &

are commonly referred to as Raman tensors, and may be
determined by inspection of the character table basis
functions. (A listing of Raman tensors for all crystal
classes appears in Reference 1.)

These concepts are now illustrated for zinc-blende.
The decomposition of the polarizability tensor for zinc-
blende and associated Raman tensors, obtained with the aid
of the Td point group character table of Figure 1, are shown
in Table 2. The Raman tensors within a given representation
are determined up to an overall multiplicative constant.
Since the decomposition of P includes only representations
Fl, r12’ and rlS’ only modes belonging to these representa-
tions can be Raman active. The phonon polarization direc-
tion associated with each rlS Raman tensor 1s indicated in
Table 2. This phonon polarization vector indicates the
relative displacement of the two sub-lattices of the
crystal at zero wavevector in zinc-blende.

The utility of these Raman matrices is that they
allow a determination of the symmetry of observed spectral

features. Denoting the Raman tensors as ﬁ(FJ), the




Table 2. Decomposition of the polarizability tensor and

Raman tensors for point group ’I‘d

Polarizability
Representation Basis function components
ry L L
"1 73(ByxPyy) s
2PZZ_PXX_Pyy i
T1s Pyy PyzoPux

RAMAN TENSORS:

—
-

o
oo
or o

V3 0
T123 b[g‘g
0o o
T155 clig 2

ocoo oro

ik 0 4 0
0 s el vl 0 0
0 0 0 0
y Z

Note: x, y, z denote phonon polarization directions.
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intensity of a mode belonging to a particular representation

T is given by

i) « 313, - &y - 317, (3
J

where gi and gs are unit polarization vectors of the
incident and scattered light. A standard notation has
been adopted which completely describes the experimental

geometry of a given spectrum. This notation is

where Ki and ES are wavevectors of incident and scattered
light, respectively. For example, the notation X(YZ)X
indicates incident light propagating in the direction -x
with gilly, and scattered light propagating in the direction
x with gs||z. (This geometry is called "back scattering"
for obvious reasons.) This notation is employed throughout.
A glance at Table 2 shows that only modes of F15 symmetry
will be observable in this geometry. Thus, experimental
geometries can be selected such that only modes having a

desired symmetry will appear.
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D. LO and TO Phonon Selection Rules

As mentioned previously, the triply-degenerate I‘l5
zone-center optic modes of the zinc-blende lattice are split
by a long-range electrostatic fileld associated with the LO
mode. The resulting singly-degenerate LO mode 1is higher in
energy than the doubly-degenerate TO mode, yielding two
spectral lines in the Raman spectrum. The selection rules
of each individual line, first obtained by Poulet,® require
an extension of the group theoretical treatment given above.
The assumption is made that the photon wavevectors ﬁi and ;s
are small but finite, so that the phonon wavevector iphonon
equals ;i"is is determined by the directions of the external
fields. Consider first the case where the phonon wavevector
1s parallel to, say, x. Poulet asserts that the F15 Raman
tensor associated with phonons polarized along x describes
the LO phonon scattering, while those associated with y and
z describe the TO phonon scattering. (Recall that the LO
mode has phonon polarization parallel to its wavevector,
while the TO mode has phonon polarization perpendicular to
its wavevector.) For general phonon wavevectors, one
rotates all three T15 Raman tensors such that the phonon
polarization coordinate associated with any one of them
(under the same rotation) is parallel to the phonon wave-
vector. This "parallel" tensor then describes LO scattering,

while the remaining two describe TO scattering. This LO-TO
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scattering cannot be treated with conventional group theory
since the phonon % vector direction, and hence the LO-TO
selection rule, is determined by external fields and not by
crystal symmetry. This procedure, put forth as a hypothesis
by Poulet, accounts very well for observed LO-TO selection

rules in zinc-blende crystals.

E. Raman Intensity Matrices

Relation (3) is valid for arbitrary orientations
of gi and 35' It is not convenient to work directly with
Raman tensors since (3) must be evaluated for every exper-
imental geometry employed to obtain the expected intensity.
If one is willing to restrict the possible polarization
vectors to directions along principal axes x, y, or z, only
nine possible cases need be considered. These possibilities
can be conveniently tabulated by defining intensity matrices
(following Poulet) for each set of Raman tensors. The

intensity matrix is defined by

5in Lo 65
I‘as(l‘) « ;:Iea -R(I‘J.) -es| 50y Bi= X LYK 25 ()

where T 1is Fl, r12’ or I‘l5 in zinc-blende. LO and TO
intensity matrices are similarly defined. However, from
the discussion above it 1is clear that one must specify also
the photon wavevectors Ei and ;s in order that Poulet's

procedure may be carried out.
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Selection rules to thils point have been discussed
under the assumption that the crystal axes and laboratory
axes coincide (i.e., Raman tensors and polarization vectors
all refer to a common set of axes). Experimentally, it is
sometimes more convenient to employ other crystal orien-
tations. For arbitrary crystal orientations, (3) and (4)
sti1ll apply provided all Raman tensors involved are rotated
to coincide with the laboratory system. All intensity i
matrices and corresponding coordinates employed in this
study are listed in Table 3. The backscattering geometry
is employed throughout. The unprimed and primed axes both
represent laboratory coordinates, indicating different

crystal orientations.

Table 3. Zinc-blende intensity matrices

X = (100) = X~ 0 0 0] 0 1 1]
I(L0)={0 0 1 1(T0)={1 0 0

Y = (010) Y* = (011) 10 1 0] 10 0]
z = (001) Z- = (0I1) 0 0 O] 0 1 I
I1°(L0)=[0 10 I1°(T0)={1 0 0

00 1] 10 0]

100 10 0] ¢ )o 1]
I(ry)=|0 10 (. 3=10 10 I(r,e)=l101
oo 127 1o 0 1] 157711 1 o]
100 l'lnoo~ : )011‘
I°(rq)=/010 I°(rq,)=+/01 3 I-(F =110
oo 12700 3 1 15711 0 1
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Appendix B contains a more extensive computer-generated list
of zinc-blende intensity matrices for a variety of common
experimental geometries, including right-angle scattering.
The discussion of selection rules here is in the
context of scattering from crystal phonons. Many of the
concepts involved are actually more general, and may be
applied to atomic, molecular, and crystal electronic
scattering. Briefly, this generality has origin in the
fact that Raman processes can often be described by
second-order perturbation theory. The cross-section
for Raman scattering involves matrix elements of the form
<i|gi -;Im><m[; -gs|f>, where 1 and f denote initial and
final quantum states, and m represents a complete set of
quantum states.® Because the operator »|m><m|T transforms
in the same way as the polarizability tensor (like products
of coordinates), these two operators are similar from a
group theoretical point of view. Selection rules for Raman
scattering from electronic impurity levels are discussed in

more detail in Chapter III.

F. Critical Points

The topic of lattice critical points is intimately
related to the interpretation of two-phonon optical spectra.
This relationship will be established in a following section.
In this section the properties of critical points and their

connection with the energy density of states are discussed.
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For a crystal containing N primitive cells, there
are exactly N unique k-vectors in the Brillouln 2zone.
These k-vectors are, by definition, uniformly distributed
throughout the Brillouln zone. Assuming that the lattice
dispersion relations are known, the energy density of
states 1s gilven by

D(v) « f L, (5)
s | Vw(k) |

where S 1s the surface 1n k-space such that w=v. There are
certain points, known as "critical points," in the disper-
sion curves where ]$w(ﬁ)| will either vanish or change sign
discontinuously. Van Hove® first investigated "analytic"
critical points and showed that they produce discontinuities
in slope in the density of states, wilth accompanying charac-
teristic shapes. Phillips!® later extended this work to
include non-analytic or "fluted" critical points, and
explicitly treated lattice dispersion curve critical points.

Consider a general point wo(ko) on a non-degenerate
branch of the dispersion curves. In the immediate vicinity

of this point, the energy may be written to second order as

> > >> >
w() = wy ,Vol, cE+ 3 EE:W|, + . . . (6)
ks Ko

where E = K'ﬁo‘ A critical point 1s simply that ﬁ where the

second term of (6) vanishes. The third term, representing a
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second-degree polynomial of the components of E, determines
the nature of the critical point. For critical points
where degeneracy exists, an expansion such as (6) cannot

be performed, since the energies are solutions of a secular
equation. Thus a distinction is made between analytic
critical points, assoclated with non-degenerate branches,
and non-analytic or "fluted" critical points associated
with degenerate branches.

Certain points in the Brillouin zone are required
by symmetry to be critical points. The set of solutions
|3>, =1, ..., n at an n-fold degenerate point Ko will
transform according to some Ta, a representation in the

! These groups for zinc-

"group of the wavevector" at Eo.l
blende are listed in Figure 1. The operator gkm transforms
like a vector, and will generate a representation Fs of the
group of ;O which, when reduced, will contain representa-
tions labeled by components of vectors. Phillips has shown
that io is a critical point if <i|$km|j> =0y Por i

j=1, ..., n. Equivalently, Eo will be a critical point

if the reduction of Fq xFB xTu does not contain the totally
symmetric representation. For general points in the zone,
the group of the wavevector will consist of only the iden-
tity element. The product Fa xFB xru must then contain the
totally symmetric representation, so general points are not
symmetry-required critical points. General critical points

are called "accidental."
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This procedure allows a systematic test of all
high-symmetry points in the Brillouln zone to determine
if they are required by symmetry to be critical points.
Parmenter’ has conducted such an analysis for zinc-blende
and has found points T, X, L, and W to be symmetry required
critical points. There may be other accidental critical
points not required by symmetry, as determined by the
detailed lattice dynamics.

The shapes generated in the density of states by
various critical points depend on the behavior of the
dispersion relations in the immediate neighborhood of the
critical point. Phillips!® has presented a classification
scheme which allows a check of the topological consistency
of any supposed set of critical points. This scheme is
based on "sector numbers," obtained by constructing a small
sphere in k-space about the critical point Eo(wo) in ques-
tion. The surface of the sphere is divided into sectors

where w>w (positive sector) or w<w,. (negative sector).

o)
The number of separate, unconnected sectors of each type
is counted. The totals are then denoted by (P,N). For
example, a sphere surrounding a simple maximum point will
have w<w everywhere on its surface. The corresponding
sector number is (0,1). Similarly, a minimum will have

sector number (1,0). The only other sector numbers pos-

sible for analytic critical points are (2,1) and (1,2)
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denoting two types of saddle points. For degenerate
critical points, it 1s also possible to have sector numbers
(4,1) and (1,4) denoting "fluted" critical points. No other
sector numbers are possible in three dimensions for singly-
or doubly-degenerate critical points (as is the case in this
study). The topological properties of a critical point and
its characteristic contribution to the density of states are
completely determined by the sector numbers of the point.
The shapes associated with each type of point are indicated
in Figure 2. Because (5) contains contributions from the
entlre zone, the shapes of Figure 2 will generally appear
additively along with other structure in the density of
states. For example, two critical points of different type
at the same energy can together produce a shape in the den-
sity of states formed from a sum of two different shapes in
Figure 2. Such a situation can present difficulties in the
interpretation of experimentally obtalined densities of
states, as discussed in a later section.

Critical point sector numbers may also be defined
in two dimensions. Consider a plane in the Brillouin zone
which contalns a critical point. A small circle, contained
in the plane, is drawn around the critical point. The
circumference of the circle 1s divided into positive and

negative segments, analogous to the three-dimensional case.
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The resulting two-dimensional sector numbers will obviously
depend on the orientation of the plane with respect to the
three-dimensional critical point. These two-dimensional
critical points have no relation with the density of states.
Thelr utility is in determining the topological consistency
of critical point assignments.

In attempting to determine the type, number, and
location of critical points in the Brillouiln zone, a tenta-
tive asslgnment 1s made consistent with experimental data
and the requirements of symmetry. This tentative set may
then be tested for topological consistency using a procedure
due to Phillips. To appreciate how topological constraints
arise, consider a periodic functlon in one dimension or a
closed curve in a plane. In both cases, the number of
maxima equals the number of minima. Analogous constraints
on the numbers and types of critical points occurring in a
closed or periodic three-dimensional manifold (such as
w=w(§)) were first obtained by Morse (see Reference 10).
Phillips associates an index j and welght g with each
sector number as listed in Table 4. 1In three dimensions,

the Morse relations are

N =1
e}
N,-N_ > 2
1l o
(7)
N2-N1+NO > 1
N3—N2+N1—NO = 0
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Table 4. Critical point topological index and weight

Critical point Index Jj Weight q

Three-Dimensional:

(1,0) 0 L
(1,2) i %
(241 2 1
(0,1) 3 1
(4,1) 2 g
(1,4) 1 3
Two-Dimensional:
(1,0) 0 i
(2,2) il 1
(0,1) 2 1
(4,4) 1 3

where Nj is the sum of the number of times a point of
index j appears times its weight gq. These relations apply
to each branch separately. The two-dimensional Morse rela-

tions are

n, 2 1
ny-ng > 1 (8)
n2—nl+nO =0

where nj is the sum of the number of times a two-dimensional
critical point of index j occurs in some specified plane
times 1its weight q. These relations also apply to each
branch of the dispersion curves. The set of symmetry-

required critical points does not necessarily satisfy either
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(7) or (8). However, Phillips was able to determine that
all critical points not 1n this symmetry set must have g=1.
In applying the two-dimensional Morse relations, one must
consider enough zones so that the chosen plane 1s periodic.
In zinc-blende, one must include the point R(110) and its
equivalences in the analysis of the kz=0 plane.

A set of critical points which 1s consistent with
all Morse relations, symmetry requirements, and experimental
data may not be the true set. It is possible to add "kinks"
to the dispersion curves, without disturbing any previous
critical point sector numbers. These kinks, due to long-
range forces, may or may not produce observable effects
depending on the nature and finesse of the experiment. The
Morse relations also do not gilve any information concerning
the location of critical points in the interior of the zone
(aside from whether the interior critical point is contained
in a symmetry line or plane). The exact wavevector of an

interior point must come from experiment or calculation.

G. Two-Phonon Scattering

To this polnt, the discussion has been limited to
scattering events involving one phonon. It is also possible
for several phonons to participate in infrared or Raman
processes. Two-phonon scattering is referred to as "second-

order" scattering. Third or higher order scattering has an



30

intensity much weaker than second-order, and is seldom
obsérved. Events where one phonon is destroyed and a
second created are also expected to be weak in SiC due
to temperature dependence of this process (discussed
later). For these reasons, only Stokes processes involving
the creation of two phonons will be discussed. Two-phonon
Raman studlies have been performed on many semiconductors,
including GaP,?? Si,'¥»1 515 7ns 18 @ge,'® 27 and diamond.!®
Two-phonon states may be constructed from pairs of
one-phonon states. If both members of the pair are from the
same branch, the two-phonon state is called an "overtone";
if from different branches, a "combination" state results.
As in the first-order case, the net wavevector of the two-
phonon state must be nearly zero in order that wavevector
conservation be satisfied. This fact simplifies the task of
constructing two-phonon states, since only zone-center, zero
wavevector combinations and overtones need be considered.
The pair of phonons must have equal magnitude, but opposite
wavevectors. The lattice dynamical equations are second-
order in the time derivative. Time-reversal symmetry
guarantees that for any point w(i) on the dispersion curves,
a second point will exist at w(—ﬁ). Thus any dlspersion
curve point in the zone may be used to construct a two-
phonon zone-center overton<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>