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ABSTRACT

A UNIFIED ENVIRONMENT FOR DISTRIBUTED COMPUTING

By

Thomas Bernard Gendrcau

A distributed system is a combination of a distributed architecture and distri-

buted control algorithms. The potential advantages of distributed architectures

include increased reliability, resource sharing, and computation speed-up. The

distributed control algorithms are software which manages the distributed

architecture in order to achieve the advantages listed above. The overall goal of

the distributed control algorithms is to provide a unified service environment.

The unified service environment provides a number of views or interfaces to the

distributed system. These views may range from a simple menu driven interface

in which the distributed nature of the system is completely hidden from the

user to complex distributed programming environment.

Three problems that occur in the context of the development of a unified

service environment include the development of an appropriate interprocess

communication system, scheduling of user requests, and development of distri-

buted applications. A universal set of interprocess communication primitives is

proposed. This set of primitives includes the concept of a dynamic group which

allows processes of a distributed algorithm to bind together for communication

purposes. Two scheduling algorithms, bidding and drafting, are compared in an

Ethernet based client/server environment of five workstations. The comparison

is based on an emulation of these algorithms and our results indicate that the

simpler bidding algorithm outperforms the drafting algorithm in this type of

environment. An environment for investigating distributed algorithms called

distributed game playing is proposed. Its relationship to problems in distributed

computing is shown through a number of illustrative problems.
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CHAPTER 1

INTRODUCTION TO DISTRIBUTED COMPUTING

Distributed systems have been rapidly gaining importance in the world of

computing, especially with recent significant reductions in the cost of processors

and memory, and with the wider availability of improved communication net-

works [Stan84, LuSw85]. Resource sharing, computation speedup, and reliabil-

ity enhancement are major motivations in designing a distributed system.

Major advantages of distributed systems include high system reliability, availa-

bility, extendibility, flexibility, and productivity.

The term distributed system has been applied to a wide range of system

configurations. A distributed system is a combination of a distributed architec-

ture and distributed control algorithms. A distributed architecture is a set of

interconnected peer processors, where each processor has a fair degree of auton-

omy in managing its own system resources. Inter-processor communication is

provided by a high speed and reliable communication medium. However, the

inter-processor transmission time is non-negligible. Both local area networks

and loosely coupled multiprocessors can be considered as distributed architec-

tures [MeBo76].

Distributed control algorithms are software which manage the distributed

architecture. The purpose of the distributed control algorithms is to realize the

potential advantages of the distributed architecture. The distributed architec-

ture presents the possibility of resource sharing, computation speedup and

increased reliability, but without appropriate control software these advantages

can not be achieved.

In the following sections we will discuss some basic issues associated with

distributed systems. First, we present a general overview of distributed systems



design. Following that we will look at three issues associated with distributed

systems design: communications, system management, and distributed applica-

tions. The last three sections of this chapter discuss the problems that are

addressed in this dissertation, summarize the research contributions of this

dissertation and present an outline of the dissertation.

1.1 Distributed Systems Design Model

The design of a distributed system is often structured as a series of layers.

Each layer in the design provides a set of services to the higher layers. The

most popular layered design is the International Standards Organization’s Open

System Interconnection (081) model (also known as the Seven Layer Reference

model). Figure 1.1 shows the difierent layers of the 081 model. The physical

layer defines the physical characteristics of the transmission of bits. The data

link layer defines a set of services that allow two adjacent processors to com-

municate. A standard protocol to use in the data link layer is a sliding window

protocol. The network layer provides services that allow any two processors in

the network to communicate. In standard LANs, in which all processors are

adjacent, there is usually not an explicit network layer. In point-to-point net-

work the network layer will have to consider how to find a path or route from

the source processor to the destination processor. The transport layer provides

a first level of interprocess communication. It provides services that allow any

two processes in the network to communicate. The session layer provides a

higher level set of interprocess communication services. These services should be

more flexible and reliable than those provided by the transport layer. The ses-

sion layer should also provide a set of services that allow connections to be

maintained over a long period of time (a session, hence the name). These ser-

vices should be able to transparently handle problems like a broken connection.

The presentation layer provides translation services to handle problems



associated with communication between heterogeneous machines and security

features such as encryption. The services provided by the application layer are

open-ended. All layers below the application layer are basically providing a set

of communication services. The application layer is intended to provide a set of

services that take advantage of the distributed nature of the system. This is the

layer in which the primary algorithms that make the distributed architecture a

distributed system will be implemented. Some general classes of services that

could be provided at this layer include a unified service environment, a distri-

buted operating system, and a distributed database.

The 081 model was designed from a communications point of view and the

appropriateness of the OSI layers is still a hotly debated issue. For the purposes

of our discussion we will use a slightly simpler model called the distributed sys-

tem design model. The layers of the model are shown in Figure 1.2. We use this

model because it provides a set of layers that are more appropriate for the dis-

cussion of a distributed system built using a LAN as its distributed architec-

ture. The interprocessor communication layer corresponds to the lower three

layers of the 081 model. The interprocess communication layer corresponds to

the transport and session layers and the distributed application layer

corresponds to the presentation and applications layers. This model provides a

coarser division of services than the OSI model. This division of services is

appropriate for a distributed system that will be used for both system develop-

ment and distributed algorithm development.

Figure 1.3 shows a simplified view of a distributed architecture. The archi-

tecture consists of a number of processors attached to a communications

medium. If the processors are all the same, then the system is referred to as

homogeneous; otherwise, it is called a heterogeneous system. Attached to each

processor may be a variety of other resources. These resources can include hard
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disks, tape drives, printers, and plotters. Two important design issues are the

scheduling of processes in the system and how the file system will be con-

structed in the system. The scheduling of processes will greatly afiect the per-

formance of the system. A scheduling algorithm in a distributed system consists

of a number of processes each of which manages a processor. The processes

cooperate in the scheduling of processes in order to satisfy some criteria.

Another important design consideration is how the disks drives will be used to

provide a file system. If increased reliability and graceful degradation are to be

achieved, then the file system will have to be constructed so that multiple

copies of the files are stored on multiple disks. This is called replicating the

files. If this is done, then files stored on a disk attached to a failed processor

may still be accessible. Of course, appropriate distributed control algorithms

must be developed to manage the replicated files. The management of other

resources is a little easier since they can only be used by one user at a time and

they are not critical to the performance of the system.

1.2 Communications Subsystem

The foundation of any distributed system is the underlying communication

system. The general features of the communication system can be classified in

two areas: interprocessor communication and interprocess communication. The

interprocessor communication system determines how information is transferred

between processors. The interprocess communication system determines how

information is transferred between processes.

In a local area network environment the interprocessor communication will

usually be based on one of three topologies: token ring, token bus, or conten-

tion bus. Each of these topologies allows for both one-to-one and broadcast

interprocessor communication. One—to-one interprocessor communication means
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that one processor sends a message to another processor in the network. The

destination of the message is indicated by a processor address in the message. A

broadcast communication means that a message is sent from one processor to

all other processors in the system. In each of the three LAN topologies, a

broadcast message can be sent with one physical transmission of the message.

The address in a broadcast message is a special address that indicates that it is

a broadcast message. In a token ring protocol the message will travel around

the ring and each processor will recognize the broadcast address and save the

message. In the token bus and contention bus all stations can hear the message

that is sent on the shared bus. When the stations hear the broadcast address,

they will receive the message. In each of these topologies each processor is logi-

cally adjacent to all other processors so no routing algorithms are required.

Listed below is a simplified set of interprocessor communication primitives

for local area networks. The send_packet primitive allows the processor to send

acpacket to another processor. The receive_packet primitive allows the proces-

sor to receive the next available packet. The broadcast_paclcet allows the pro-

cessor to broadcast a packet to all other processors.

send_packet(source_id,destination_id,packet)

receive_packet(source_id,destination_id,packet)

broadcast_packet(source_id,packet)

In a loosely coupled multiprocessor the topology will usually be point-to-

point. Some standard point-to-point topologies for loosely coupled multiproces-

sors are 2D mesh, 3D mesh, and hypercube. In a 2D mesh each processor is

directly connected to its four neighbors. A 3D mesh is formed by stacking

many 2D meshes and each processor is directly connected to its 6 neighbors. A

hypercube is always given a size N = 2“ . The address of each processor is a

bit string of n bits long. The neighbors of a processor are all processors with an

address that difi'ers by exactly one bit. Therefore each processor is connected to



a: s: :    

CPU-1 CPU-2 CPU-3 CPU-4

            

     
 

      

CPU-5 CPU-6 CPU-7

         

Figure 1.3. Distributed Architecture



n other processors. The point-to-point topologies require routing algorithms if a

processor wants to communicate with a processor which is not adjacent to it.

Also broadcasting of messages will require multiple transmissions of the mes-

sage.

The quality of service provided by the inter-processor communication layer

will greatly vary. The types of service that the inter-processor communication

layer might provide can be put into three categories. Guaranteed delivery ser-

vice guarantees that a packet will be delivered if the destination processor is

accessible. If the destination processor is not available, the sender will be

notified. Acknowledged unreliable service implies that packets may be lost in

transmission but that the sender will always be correctly notified about the

failure or success of the communication. The final class of service is unreliable

service. With this type of service, packets may be lost in transmission and the

sender will not always be notified (correctly) about the results of the transmis-

sion.

In a system in which multiple processes will be sharing each processor,

interprocessor communication will not be sufficient. The sharing of processors

will always be the case in LANs and may be the case in loosely coupled mul-

tiprocessors. The source and destination of each message will be a process and

an interprocess communication system must be developed in order to facilitate

this communication. This system will form the foundation of a distributed pro-

gramming environment. The primitives defined in such a system determine the

ease of communication in the system and provide the basic communication

operations that will be used by application processes.

The general function of an interprocess communication system (IPC) is to

create a set of mechanisms that allow location-independent exchange of infor-

mation between any processes in the distributed system. In the 7-layer reference
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model it is the responsibility of the transport and session layers to provide IPC.

The transport layer builds a rudimentary IPC system on top of the (often

unreliable) service provided by the network layer. The session layer implements

a more easily used and flexible set of inter-process commands using the rudi-

mentary IPC provided by the transport layer. The IPC commands provided by

the session layer will be used by processes running at the presentation and

application layers. In our distributed system design model, we will directly

build a set of flexible and reliable IPC primitives on top of the inter-processor

communication layer. The higher quality inter-processor communication service

that can be provided in a LAN environment makes this feasible and the poten-

tial for developing a more eflicient system makes this desirable.

1.3 Unified Service Environment

An ideal distributed system should provide an integrated view of the sys-

tem and the services provided by the system. We call such a system a unified

service environment. A unified service environment [NiGe85] provides a number

of views or interfaces to the distributed system. These views may range from a

simple menu driven interface in which the distribution of the system is hidden

from the user to a complex set of distributed program development tools in

which the user is provided with the means to take advantage of the distributed

nature of the system. The goal of a unified service environment is not to hide

the distributed nature of the system from all users. Rather, the goal of a unified

service environment is to provide a set of system interfaces which are appropri-

ate to a variety of users needs and to provide the distributed control algorithms

to manage the system resources so that the various services can be provided in

a fair, reliable, and eflicient manner. In the following two sections we outline

some areas of investigation in the development of a unified service environment.
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1.3.1 System Management

Given a suitable IPC system we must now consider some of the higher

level system management functions required for a unified service environment.

These management functions are primarily concerned with the matching of

resources and requests for resources. This matching must be done in a reliable,

secure, efficient, and fair manner. The basic problems can be broken into three

categories: scheduling, protection and reliability.

Scheduling algorithms try to match requests for service with the resources

that can provide that service. The central scheduling problem is the scheduling

of processes on processors. All request for service will eventually require some

processor resources. A general scheduling algorithm will try to schedule a pro-

cess on the appropriate processor taking into consideration issues such as pro-

cessor load, fairness, other resource utilization (such as disks), and any other

special information known about the process and processor characteristics.

Protection issues are concerned with verifying that a user is allowed to

have access to the resources that have been requested and protecting the infor-

mation that is transferred across the network. The protection of resources is

usually done with capabilities. A capability to an object in the system

represents a set of rights that a process has to an object. Capabilities have been

used in uniprocessor systems for sometime but using them efliciently in a distri-

buted system is still a research issue. Protection of information transferred

across the network is achieved primarily through encryption. The encryption

facilities may be provided by either the IPC layer of the distributed application

layer. The protection of information that uses public networks is an important

research issue.

A primary motivation for distributed system is the potential for increased

reliability. The potential exist primarily because of the duplication of physical
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resources. Appropriate distributed control algorithms which take advantage of

the duplication of physical resource to replicate logical resources must be

developed. These algorithms must enable the system to remain functionally

complete in spite of failures by some resources. While the system might respond

more slowly it should continue to provide the same set of services to users of

the system. Earlier we described the concept of replicating files. This is an

example of using the duplication of physical resource to provide a more reliable

system.

1.3.2 Distributed Applications

Given a unified service environment we may want to consider the develop-

ment distributed applications. A distributed application is an application in

which the application designer or programmer takes advantage of the distri-

buted nature of the system. There are three basic reasons why an application

designer may want to implement an algorithm on a distributed system. The

first reason is that the data required by the algorithm may already be distri-

buted and thus it may be cheaper to do most of the processing where the data

is generated. The second reason is to take advantage of the potential parallel-

ism in an algorithm. Since a distributed system has many processors a great

potential exist for computation speed-up through the use of parallel algorithms.

The advantage of using a distributed system for parallel algorithm development

will depend on characteristics of the distributed architecture and the charac-

teristics of the parallel algorithm. For example, some application will be practi-

cal on a loosely coupled multiprocessor but not on a LAN. The third reason to

use a distributed system for a distributed application is to provide a more reli-

able application. If the application has high reliability constraints a distributed

system may be one way of satisfying these constraints. The amount of effort

required by the application designer will depend on the support that is provided
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by the distributed system.

1.4 Problem Statements

There are many problems that can be addressed in the area of distributed

systems. In this dissertation we will address three problems: 1) the development

of an interprocess communication system that can take advantage of the broad-

cast nature of many LANs and provides a good foundation for the development

of distributed applications, 2) a comparison of two dynamic load balancing

algorithms, bidding and drafting, in an Ethernet based LAN environment, and

3) the development of an environment for investigating distributed applications.

The quality of the interprocess communication system will be a primary

element in determining the ease of developing both a unified service environ-

ment and distributed applications in a distributed system. The interprocess

communication system must provide a flexible system that gives the users a

choice in the cost and quality of service that is desired. The IPC system should

also provide tools that allow processes of a distributed algorithm to indicate

that they are related.

In general, application programs expect the inter-process communication to

be highly reliable [ChMa84]. If an application process sends a message to

another application process, it expects that the message will be delivered if the

destination process exists. It has also been recognized that not all processes

need the same level of reliability [SaRC84]. The degree of reliability influences

the efliciency of communication. Therefore, it is useful to give an application

program the ability to specify the reliability requirements of a particular com-

munication transaction. Another issue related to reliability is “once-only-

reception” [LiSc83, Shat84]. Once-only-reception implies that an inter-process

communication system guarantees that a message will be delivered to the desti—
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nation at most once. Providing this type of service generally decreases the

efficiency of communication, but it does free the application program from some

message management. A flexible inter-process communication system should

provide the application program with the ability to specify once-only-reception.

A great deal of work has been done in the area of one-to-one inter-process

communication. Representative work in this area includes [Hoar78, Rash80,

BiNe84]. Hoare’s CSP [Hoar78] provides basic synchronous send and receive.

Messages are not bufl'ered and the sender and receiver are blocked until the

transaction is completed. Rashid’s work [Rash80] allows processes to communi-

cate through an object called a port. In essence a port is a buffer in which mes-

sages can be inserted (sent) and removed (received). Processes never send mes-

sages directly to a process. Multiple processes may have access to the same

port. For example, for standard one-to-one communication between a process A

and a process B, process A would have send access to port Y and receive access

to port Z while process B would have receive access to port Y and send access

to port Z. Associated with each port is a unique port id. Remote procedure call

(RPC) [BiNe84] is another method by which processes may communicate infor-

mation. Syntactically, a RPC looks like a standard procedure call. However, a

RPC invokes a procedure running on a remote processor. The called procedure

must be willing to accept a RPC. Values can be passed to the called procedure

and results can be passed back to the calling procedure. RPC behaves like a

synchronous send in which a reply can be returned. Other representative work

includes [LeC084, PoPr83, Spec82].

The area of scheduling in distributed systems has attracted a great deal of

attention [Farb73, Stan84, NiXG85]. In order to build a unified service environ-

ment appropriate scheduling algorithms must be developed. These scheduling

algorithms must address a number of issues. These issues include load
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balancing, algorithm architecture matching, general resource utilization, and

parallel algorithm scheduling. In this work we develop the important issues

associated with distributed scheduling, and compare the performance of two

load balancing algorithms through an emulation of these algorithms in an Eth-

ernet based LAN.

Given a distributed system built on top of an LAN or a loosely coupled

multiprocessor we would like to use that system to develop distributed applica-

tions. In order to investigate problems associated with distributed applications

we would like to create an environment that can be used to create artificial

problems to test the distributed system and to test and illustrate concepts in

distributed computing. Very little work has been done in the investigation of

distributed applications and the creation of an appropriate environment for

investigating them should accelerate this investigation.

1.5 Summary of Research Contributions

In order to provide a flexible and reliable foundation for the development

of a unified service environment we have designed an interprocess communica-

tion system for broadcast type networks. This system includes a wide set of

primitives and arguments that should fit the needs of any distributed algo-

rithm. A central feature of this IPC system is the concept of a dynamic group

of processes. The dynamic group mechanisms allows processes participating in a

distributed algorithm to bind together as a unit. It also allows processes to take

advantages of the broadcast communication that is available in standard LANs.

A description of the IPC operations is provided along with some implementa-

tion considerations.

Much of research in dynamic distributed scheduling is based on simulation

results. In order to get some experimental results based on a real system we
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have done an emulation of two load balancing algorithms on an Ethernet based

distributed system of workstations. The first algorithm, called drafting

[NiXG85], is a relatively new algorithm. The second algorithm, called bidding

[Farb73], is an older algorithm that has been the basis for a great deal of work

in distributed scheduling. The purpose of this work is to get experimental

results for the drafting algorithm and to compare the performance of the draft-

ing and bidding algorithms under a real system environment. The formal

description of these algorithms will be given along with a description of the

emulation design. Graphs describing the performance of these algorithms will

also be presented.

In order to investigate distributed applications an environment for investi-

gating distributed algorithm, call distributed game playing (DGP) is developed.

The DGP environment allows us to investigate the basic features of distributed

algorithms. These features include negotiation, remote state maintenance, and

reliability. A major obstacle in investigating distributed algorithms has been

the lack of an environment which is suitably rich to encompass the important

aspects of distributed algorithms and sufliciently refined so that it can be used

to highlight the distributed features of algorithms. Distributed Game Playing is

such an environment. The DGP environment allows researchers the flexibility

to highlight different features of distributed algorithms.

1.6 Dissertation Outline

The remainder of this dissertation is organized in the following manner.

Chapter 2 describes the design of an interprocess communication system for

broadcast networks. This chapter includes a classification of IPC operations, a

description of a set of flexible IPC primitives that can be used as a foundation

for distributed programming, and some implementation issues that must be
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considered. Chapter 3 discusses the important issues in distributed scheduling.

These issues include process migration, load balancing, and scheduling in

heterogeneous systems. Chapter 4 discusses the emulation of two load balancing

algorithms, bidding and drafting, in a LAN network environment. The major

issues of implementing these algorithms in a LAN are discussed and comparis-

ons of their performance under different characteristics are shown. Chapter 5

describes some characteristics associated with distributed algorithms. These

characteristics include negotiation, remote state maintenance, and reliability.

Chapter 6 describes an environment for investigating distributed algorithms

called distributed game playing. The relationship between problems in distri-

buted algorithms and the distributed game playing environment is shown and

some illustrative problems are used to show how to use the distributed game

playing environment. Finally, in chapter 7 we present concluding remarks and

discuss issues for future work.



CHAPTER 2

AN INTERPROCESS COMMUNICATION SYSTEM

The foundation of a distributed computing environment is a set of flexible

and reliable inter-process communication (IPC) primitives. The general function

of IPC is to create a set of mechanisms that allow location-independent

exchange of information between any two processes in the distributed system.

In the 7—layer reference model, it is the responsibility of the transport and ses-

sion layers to provide IPC. The session layer protocols provide a more easily

used and flexible set of inter—process communication commands built on top of

the rudimentary [PC provided by the transport layer. The transport layer

builds a rudimentary IPC system on top of the (often unreliable) service pro-

vided by the network layer. The IPC commands provided by the session layer

will be used by processes running at the presentation and application layers. In

other words, the IPC primitives allow the application algorithm to express a

requirement to send and receive information. In the distributed systems design

model we have only one IPC layer that is responsible for interprocess communi-

cation. In the following discussion we are designing a system on top of an inter-

processor communication layer.

VVith the increasing interest in distributed systems, distributed program-

ming has attracted much attention in the past [Brin78, iLisk79, GoCK79,

Feld79, Cook80, MaYe80, MaLe80, LiSc83, AnSc83, Geha84]. An important

issue in designing a distributed programming language is to provide a flexible

set of communication mechanisms. Many difl'erent distributed programming

concepts or languages have been proposed or constructed. As usual, it is

diflicult to claim which language is better than the others. Details of the com-

18
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parison of various distributed programming languages and their communication

mechanisms are out of the scope of this chapter. Interested readers may find

excellent surveys on this subject in [Silb80, Shat84].

Rather than addressing language requirements for distributed computing,

this chapter concentrates on the construction of a flexible and powerful IPC

system, the relationship of IPC to network protocols, and the implementation

considerations of IPC. A flexible set of IPC primitives forms a basis for the

construction of various communication mechanisms in distributed programming

languages. The IPC primitives can be also implemented as system calls so that

programmers can directly invoke these system calls in a conventional program-

ming environment.

This chapter is organized as follows. A classification of IPC mechanisms is

introduced in Section 1 which discusses the functions necessary to exploit

inherent concurrency and to provide process synchronization. A universal IPC

system which is able to support a unified service environment in a network-

based distributed system is proposed in Section 2. This IPC system allows a

flexible and convenient environment for the development of distributed applica-

tion algorithms and distributed programming languages. In Section 3, we dis-

cuss concept of dynamic groups and primitives for group manipulation. In Sec-

tion 4, we describe some general IPC layer services. More details about an

implementation on top of the communication primitives provided in a Unix 4.2

environment can be found in [LGKN86].

2.1. Classification of IPC Primitives

An IPC mechanism consists of various types of send and receive opera-

tions. Processes communicate by sending and receiving messages. Various send

and receive Operations should be provided so that the programmer may exploit
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potential concurrency in an algorithm and synchronize the communicating

processes when it is necessary. In the following discussions, we try to classify

various communication characteristics of IPC primitives.

2.1.1 One-to—One Versus One-to-Many Send

Most of the existing distributed programming languages or known IPC

mechanisms support one-to-one inter-process communication. A comprehensive

survey on one-to-one IPC in higher level languages can be found in [Shat84]. In

a one-to-one send operation a process, called the source, sends a message to

another process, called the destination. Only the source and destination

processes know about the communication. However, in many distributed appli-

cations a group of processes are coordinated to solve a single task. These coor-

dinated processes form a dynamic group and may reside in various physical pro-

cessors. A process in a dynamic group may frequently wish to broadcast a mes-

sage to those processes in the same group. Thus, a one-to-many send primitive

is necessary to allow the message to be sent to a group of processes rather than

a specific process.

The concept of cooperating processes forming a logical group can be very

useful in the construction of a distributed system. A distributed system has

various resources shared by all users. The users should be presented with a log-

ically integrated view of the system, without needing to be aware of the physi-

cal distribution of the system. An automatic resource management scheme is

needed to determine the best matching between requestors and resources. In

such a unified service environment, the user only has to specify the desired ser-

vice rather than a specific destination process. The processes (servers) that are

able to provide a certain service can be formed into a dynamic group called a

server group. Server groups can be used to provide a uniform encapsulation
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mechanism for client/server applications. The encapsulation of a set of servers

into a server group provides a means to hide issues such as scheduling of client

requests and reliability concerns to be hidden form the client process.

Certainly, a one-to-many send operation can be achieved by performing

many one-to-one send operations. However, this method does not take advan-

tage of broadcast nature of many LANs. In a standard LAN environment, the

network topologies are the bus and the ring [Sta184]. With either one of these

topologies, each processor has a logically direct connection with every other

processor. The broadcast nature of the network allows the protocols certain

liberties with the way they handle messages, which is inherently different from

store-and-forward networks. A one-to-many send operation can be designed to

take advantage of this difference to make its implementation easier and its

operation eflicient.

In a send operation, we have to identify the source (sender) and the desti-

nation (recipient(s)). The sender is a process and thus is identified by a

network-wide globally unique process id (PID). Since a process may be engaged

in more than one communication, we have to identify the destination

process(es). In a one-to—one communication, the recipient is another PID. In a

one-to-many communication, the set of recipients is identified by a network-

wide unique group id (GID). Note that because processes in a distributed sys-

tem may move from one processor to another [NiXG85], the PID or GID may

not be useful in locating the physical location of a process. It is the responsibil-

ity of the IPC layer to map a PID or a GID to the corresponding physical

address(es) of the destination process(es).

2.1.2 Synchronous Versus Asynchronous Send

A synchronous send operation will block the sender until a response is
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received from the recipient(s). In the case of a one-to-one synchronous send,

the sending process waits for a response for the destination processes. In the

case of a one-to-many send, the sending process waits for a response from one

or more of the destination processes. Synchronous send is mainly used to allow

processes to synchronize themselves at various points in an algorithm or when

an immediate response from the destination process is required.

In an asynchronous send operation, there is no requirement for the sending

process to wait for a response from the recipient. The sending process will con-

tinue processing in parallel with the actual transmission of the message over the

communication channel. Thus, an asynchronous send allows an algorithm to

exploit the concurrent nature of distributed systems.

In one sense, asynchronous send and synchronous send are equivalent in

that one can be implemented in terms of the other in conjunction with the

receive primitives. It is easier to implement synchronous send using a combina-

tion of asynchronous send and a blocking receive (to be described later). How-

ever, an asynchronous send may require a sizable intermediate message bufl'er in

the recipient’s side. For a synchronous send and a blocking receive pair, at most

one message is outstanding at the recipient’s side. Thus, exclusive use of the

synchronous send can reduce the space requirements of an IPC system, at the

cost of reducing the concurrency of the distributed algorithm.

2.1.3 Blocking Versus Non-blocking Receive

A recipient process indicates when it is ready to receive a message and

accepts messages that are transmitted to it. If a message is available, it is

stored into a location indicated in the receive command. In the case of a block-

ing receive, if a message is not available, the recipient process is blocked until a

message arrives. If a message is not available when a non-blocking receive com-
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mand is issued, the recipient process will continue. If it needs the message at a-

later time, it will have to issue another receive command.

A common structure used to allow processes to synchronize themselves is

to have the sending process issue a synchronous send and the receiving

process(es) issues a blocking receive. A non-blocking receive is commonly used

when the recipient process expects messages to arrive from a variety of

processes and those messages can arrive in any order. Other combinations of

asynchronous or synchronous send and blocking or non-blocking receive are also

possible. The appropriateness of a particular pairing depends on the behavior of

each algorithm.

2.1.4 Oneto-one Versus Many-to-one Reply

For a synchronous send operation, the recipient(s) has to explicitly reply to

a message so that the sender process may continue. A reply message to a syn-

chronous send process may carry information such as an acknowledgement, a

result, or a go ahead indication. The reply can be considered as a special case of

an asynchronous send operation. However, the implementation of the reply

mechanism must be reliable so that the sender process won’t be blocked for-

ever.

A one-to-one reply is associated with a synchronous one-to-one send and a

many-to-one reply is associated with a synchronous one-to-many send. A reply

mechanism is a one-to-one communication which explicitly indicates the desti-

nation process (the process who issued the synchronous send). In the case of a

one-to-one synchronous send there is only one reply which must be delivered

and the implementation issues are similar to those of one-to-one send. However,

in case of a synchronous one-to-many send, the sending process may need

replies from a subset of the recipient processes. An important design issue is
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how to make the delivery of multiple replies eflicient and reliable.

2.1.5 Selective Versus Non-selective Receive

For a receive operation, the recipient may or may not know the identity of

the sender in advance. If the sender is known, it is a selective receive; other-

wise, it is a non-selective receive [Shat84]. A server process is likely to execute

a blocking non—selective receive operation in which it is waiting for an unknown

process to make a service request. The sender is identified after a message is

received.

2.2. A Universal Set of IPC Primitives

Based on the various communication requirements, we classified the send

and receive operations into different operating characteristics. Various IPC

primitives may be constructed by taking some combination of these characteris-

tics. In this section, we shall introduce a set of universal IPC primitives for

design of distributed programming languages and distributed applications. We

summarize the information presented in this section in three tables. Figure 2.1

shows the IPC commands that we define. Table 2.2 shows the arguments that

these commands can use and Table 2.3a and 2.3b show how each command

may use each of the arguments.

2.2.1 Asynchronous One-to-one Send

The send command is an asynchronous one-to-one send primitive. This

command does not cause the process to be blocked. Since the process is not

blocked, the status (the value of status indicates the result of the operation)

argument does not contain any detailed information. The values that the status

argument can get are local_accept and local_reject. A status value of
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IPC Primitive Type IPC Command
 

asynchronous one-to-one send Send
 

synchronous one-to-one send Sendgand=Wait
 

 

 

 

 

 

 

   

asynchronous one-to-many send Multicast

synchronous one-to-many send Multicast_and_Wait

blocking selective receive Receive

blocking non-selective receive Receive_A.ny

non-blocking selective receive Cond_Receive

non-blocking non=selective receive Cond=ReceiILdAny

non-blocking reply Reply

blocking reply Reply_ancLWait  
 

Figure 2.1 Interprocess Communication Primitives
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Arguments Explanation

rpid Source proca id

(pit Destination proeeu id

gid Process group id

message tag A message type identifier used by the application layer to distinguish between difierent kinds of

messages.

message A string of bytes that holds the contents of the message.

length The size of message. The number of bytes that are being sent or should be received. In a re-

ceive command, if the message has a record form, the length must be long enough to receive the

next message.

form The structure of the message. If the form is record then the message is treated as a separate en-

tity. If the form is stress: then the boundary between messages (sent by the same process with

the same tag and to the same destination) is not important.

tramaction_time Used only by send type commode which indicates the time (absolute clock time) by which a

message should be sent (put on the transmission medium).

priority Used only by send type commands in which a static priorty alignment to the message by the

application layer.

bmertime If the argument is used by the send command , it indicates the maximum time that the mes-

sage may be bufiered at the destination. If it is used by a receive command, it indicates that

the message that is received should not have been bufiered longer that bufiertime time units.

flash Used with a receive command in conjunction with the bufiertime argument. All messages that

have been bufiered more than bufiertime time units should be discarded.

timeout This argument is used by commands that cause the issuing process to block. It indicates that

the proceas should become unblocked after timeout units if the message transaction has not

" been completed.

receive_diocipline Used only by receive type commands to indicate how the message to be received should be

selected. Some possible receive disciplines are first in first out, last in first out, priority, and

random.

minimmlelioerieo Used only by one-to-many type commands. It indicates that the message should be delivered to

at least minimum_deliveriea number of processes.

misimaereptiea Used only by the synchronous one-to-many type commands. The issuing procem should be

blocked until minimumJepliee number of replies are received.

match Used only by reply type commands. It indicates that this reply is a reply to the last message

that was received.

oecurity Indicates the security level of a message that is being sent.

otatuo After a message transaction is completed, the status argument contains information about the results of the transaction

 

Figure 2.2. A list of arguments associated with IPC commands
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[PC Argument Options

send send_and.wait multicast multicast_and_wait reply reply.wait

spid x x x x

dpid . - x x

gid x - -

message tag

message

length

transaction_time

bufiertime

fiush

timeout

receive_discipline

minimum_deliveries

minimumJ-eplies

priority

security

status

match

required arguments

optional arguments

argument may not be used

optionial arguments that may be used if and only if the message argument

18 use

Figure 2.3a. Argument requirements and options for IPC commands
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lPC Argument Options

 

receive receive_any send_receive cond_receive_sny

 

spid X X X

 

dpid X X X

 

gid O O

 

message tag

 

message

 

length

 

transaction_time

 

bufiertime

 

fiush

 

timeouto

 

receive_discipline

 

minimum.deliveries

 

minimumJeplies

 

priority

 

security

 

status

  match     
 

required arguments

optional arguments

argument may not be used

Optional arguments that may be used if and only if the message argument

is used

Optional argument that can only be used if the bufi'ertime argument was

used

Figure 2.3b. Argument requirements and options for IPC commands
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local_aecept indicates that the IPC layer accepts the request while a status

value of local_reject indicates that the IPC layer rejects the request. The IPC

layer may reject the request because it is overloaded or because there are prob-

lems in lower layers of the communication system. The sender does not know if

the send was successful unless an explicit acknowledgement is returned from

the destination process. The status argument is optional.

The send command may optionally use the the arguments message, form,

transaction_time, priority, bufl'ertime, and security. Each message is a combina-

tion of a message tag and a message. The message tag forms the static part of

the message and can be used to indicate the type of the message. In some cases

sending only the static part of a message is sufiicient. In other cases the mes-

sage will have a static part and a variable part. The variable part is found in

the message argument. In a send type command the message argument is a

pointer to a string a bytes that form the variable part of the message. If the

nfessage argument is used, then the length argument must be used so the IPC

system knows how many bytes of information are in the variable part of the

message. The way in which the combination of message tag and message will

be used will vary greatly from programmer to programmer. For example in the

drafting algorithm [NiXG85] (see Chapter 4), the scheduling processes exchange

messages about the current load of their processors. One way of expressing the

passing of this information is to define a message having a static part such as

”new load information” and a variable part that indicates whether the load is

light, normal, or heavy. On the other hand the programmer could define three

difl'erent static messages, ”light load”, ”normal load”, and ”heavy load”. Each

of these types of message would not need a variable part because the static part

communicates sufficient information. Allowing a process to send messages with

different tags to the same process is similar to allowing a process to communi-
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cate with another process over many logical channels and can save the applica

tion layer processes from some message management. Message tags are most

useful in cases where a process may receive a variety of messages but at at a

particular time is only willing to receive certain messages.

If the form argument is used, it will have the value of either record or

stream. If the form argument is not used, the message is assumed to be a record

message. Each record message is treated as a single entity and will be delivered

as a single entity. A stream message is treated as part of a larger message. The

boundaries between consecutive stream messages (with the same tag and same

destination) are not important. The sender may send 100 bytes at a time while

the receiver may receive 50 bytes at a time. In both stream and record mes-

sages the order of the messages is maintained.

The transaction_time argument is used by send type commands in real-

time applications. The argument indicates that the message should be put on

the transmission medium no later than the absolute clock time indicated in the

transaction_time argument. The transaction_time argument is associated with

the message until the message is sent. The receiving end does not know that a

transaction_time was associated with the message. Reliable implementation of

the transaction_time argument requires a data link layer that provides priority

handling. The priority that would be associated with a message that used a

transaction_time argument would be a dynamic priority. As the deadline for

sending a message approaches, the priority associated with the message should

increase.

The priority argument is used to indicate the relative importance of the

message that is being sent. The priority assigned to a message is static. Unlike

the transaction_time argument, the priority argument is associated with the

message until it is received. The priority of a message may affect when it is
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received (see the discussion of receive discipline below).

When the buflertime argument is used with a send type command, it indi-

cates how long the message may be buffered at the destination. This gives the

sender some control over the length of the messages existence. Note that since

the sender cannot control how long it takes the message to arrive at the desti-

nation, the bufl'ertime argument only provides a very coarse control over the

age of messages.

The security argument indicates that the message contains sensitive data

and should therefore be encrypted. The message is encypted at the source IPC

layer and decrypted at the destination IPC layer. For very sensitive data spe-

cial encryption routines should be provided by the application layer for explicit

use by users.

2.2.2 Synchronous One-to-one Send

., The send_and_wait command is a synchronous one-to—one send primitive.

When the process issues a send_and_wait command, the process is blocked

until a reply is received or a timeout expires. If a reply is returned within the

timeout period, it is stored in the reply_message argument. Since the

send_and_wait command blocks the sending process, more information can be

found in the status argument. A possible set of values for the status argument

in this case are success, can_not_accept, can_not_send, can_not_deliver, and

no_reply. A status value of success indicates that a message was successfully

delivered and that a reply was successfully received. A status values of

can_not_accept indicates that the IPC layer will not accept the request. A

status value of can_not_send indicates that the request was accepted by the

IPC layer but because of problems in the lower layers the message could not be

sent. A status value of can_not_deliver indicates that the message was sent but
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could not be delivered to the destination. Finally, a status value of no_reply

indicates that the message was received by the destination process but that a

reply was not returned. For the synchronous one-to-one send the sending pro-

cess is blocked until the transaction is successful or until the timeout expires

(which ever occurs first). If the timeout expires, the status argument will con-

tain one of the above values (excluding success) to indicate at what point the

request failed. If a timeout argument is not used the system may provide a

default timeout. The send_and_wait command may use the optional argu-

ments, message, transaction_time, bufl‘ertime and security in the same way as

the send command does. Messages sent with a send_and_wait command always

have a record form.

2.2.3 Asynchronous One-to-many Send

The multicast command is our asynchronous one-to-many send primitive.

Qne-to-many sending at the process level is intended to mimic broadcasting at

the processor level. In order to do this we need a method to identify the

processes which should be the destinations of a one-to-many send. In order to

do this we will use the dynamic group concept. In Section 3 we will discuss

some primitives for group manipulation. For now we only need to remember

that the group_id argument indicates that a set of processes is the destination

of a one-to-many send. If the destination group is an open group [Cth85] then

the source process does not have to be a member of the destination group. On

the other hand, if the destination group is a closed group, then the source pro-

cess must also be a member of the destination group. The status argument

takes on the same values as in the asynchronous one-to-one send case. Since the

sending process is not blocked by this command, the sending process will not

know how many processes actually received the message unless explicit ack-

nowledgements are sent from the destination processes.
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The multicast command may use the same optional arguments as the

asynchronous one-to-one send command. The status argument will have the

same values as in the case of the asynchronous one-to-one send. In addition it

may also use the optional argument minimum_deliveries. This argument is an

integer which indicates the minimum number of processes that should receive

the message. Providing reliable broadcasting is a difficult problem. When the

broadcast is done at the data link layer, some of the processors may not receive

the message (for example because of receive buffer overflow). Consequently, it

may be expensive to guarantee that all processes in the destination process

group receive the message. The minimum_deliveries argument allows the sender

to indicate the degree of reliability that is required. If the minimum_deliveries

argument is not used the message will be broadcast only once. Further com-

ments on providing reliable broadcasting can be found in [ChMa84].

2.2.4 Synchronous One-to-many Send

The multicast_and_wait command is a synchronous one-to-many send.

This command blocks the issuing process until minimum_replies number of

replies have been returned or until a timeout expires. If the expected number

of replies is received, the status argument will have the value success. If only

some of the replies have been received when the timeout expires, then the

status argument will have the value not_enough_replies. In this case the

minimum_replies argument will contain the value of the actual number of

replies that were received. In all other cases where the message transaction was

not a success the status argument will take on the same values as in the syn-

chronous one-to-one send case. In all cases, after the message transaction is

completed the value of the minimum_deliveries argument will have the value of

the number of processes that are known to have received the message. Note

that the number of processes who actually received the message may be higher
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than the number of processes that the local IPC layer knows received the mes-

sage. Frequently, the minimum_deliveries and minimum_replies argument will

have the same values. However, this is not required. The only requirement is

that the minimum_replies argument is no bigger than the minimum deliveries

argument. If the minimum_replies argument is smaller than

minimum_deliveries, the IPC layer will continue to try and satisfy the

minimum_deliveries requirement until it is satisfied or until minimum_replies

replies have arrived (this is dependent on the method of reliable broadcasting

that is used).

2.2.5 Selective Blocking Receive

The receive command is a selective blocking receive primitive. This com—

mand causes the issuing process to be blocked until a message is received or a

timeout expires. The receive command indicates the process id of the process

from which it expects to receive a message. The spid argument must have the

value of the process id of the source process when the receive command is

issued.

The receive command can optionally use the bufiertime, flush,

receive_discipline, message tag, and message arguments. When the bufi‘ertime

argument is used by a receive command, it indicates that the message that is

received should not have been bufi‘ered for longer than bufi'ertime time units.

This gives the receiving process some coarse control over the age of the mes-

sages that it receives. If the bufi'ertime argument is used, the flush argument

can also be used. The flush argument does not have a value. If it is used, it

indicates that all messages that have been bufi'ered for longer than bufl'ertime

time units should be discarded.

When a process issues a receive command it can restrict the set of mes-
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sages that it is willing to receive by using the buflertime argument. Once this

restriction is established the IPC layer must decide which of the eligible mes-

sages will be delivered to the receiving process. Traditionally the oldest eligible

message would be delivered. In order to provide more flexibility to the applica-

tion processes we provide a receive_discpline argument. This argument allows

an application process to indicates how the next message should be chosen.

Some possible receive disciplines are last in first out (LIFO), first in first out

(FIFO), priority, and random. A LIFO discipline indicates that the youngest

waiting message should be delivered. A FIFO discipline indicates that the oldest

waiting (eligible) message should be delivered. A priority discipline indicates

that the message with the highest priority should be delivered. A random dis-

cipline indicates that a message should be chosen at random from the eligible

messages. If a receive_discipline argument is not used, then a FIFO discipline is

assumed.

The receive command can optionally use the message tag and message

arguments. However, it must use at least one of these arguments. If the mes-

sage argument is used, the length argument must also be used. If the message

tag and message arguments are both used, the next available message (subject

to the restrictions of the bufl'ertime and receive_discipline arguments) with the

correct tag will be stored in the message argument. If only the message argu-

ment is used, then the next available message (again subject to other argu-

ments) will be stored in message. In this case the information stored in message

will be both the message tag and the variable part of the message. If only the

message tag argument is used, then a successful receive indicates that the

appropriate message had arrived. If the message contains a variable part, that

part is not received and is discarded by the IPC layer.
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When the message argument is used with the receive command, the length

argument must also be used. If the next message is a record message, then the

length argument must be at least as big as the message; otherwise, an error

results. If the message is a stream message, then the next length number of

bytes will be stored in message (unless there are less than length bytes avail-

able). If the application process does not know the length of the next message,

it can use the message_length command to find out the length. The

message_length command can use the arguments message_tag, message,

bufiertime, and receive_discipline in same way as the receive command uses the

arguments. The message_length command does not change any of the stored

messages. All it does is to return the length of the next message that would be

returned if the same arguments were used by a receive command.

The status argument must be used with the receive command. The values

that the status argument can be given are success, message_too_long, and

failure. A status value of success indicates that a message was received

correctly. A status value of message_too_long indicates that the length argu-

ment given in the command was too short for the next message. This status

value will occur only if the next message had a record form. Remember that a

form value of record indicates that the message should be delivered as a single

entity. A status value of failure indicates that no message was available within

the timeout period.

2.2.6 Non-selective Blocking Receive

The receive_any command is a non-selective blocking receive primitive.

When a process issues a receive_any command it is indicating that it is willing

to receive a message from any process. The current value of the spid argument

is not used. When a message is received, the process id of the source of that
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message will be stored in spid. The receive_any command has the option of

using a gid (group_id) argument. If this argument is used, it indicates that the

process wants to receive a message that was multicast to the indicated group.

In order to do this the issuing process must be a member of the indicated

group. Except for the use of the spid and gid arguments, the receive_any com-

mand works like the receive command.

2.2.7 Selective Non-blocking Receive

The cond_receive command is a selective non-blocking receive primitive.

If a message is waiting when the command is issued, then this command

behaves exactly like the selective blocking receive. If a message is not waiting

when the command is issued, then the status argument is set to failure immedi-

ately. This command never causes the issuing process to block.

2.2.8 Non-selective Non-blocking Receive

" The cond_receive_any command is a non-selective non-blocking receive

primitive. If a message is available, when the command is issued, then the

cond_receive_any command works exactly like the receive_any command. If a

message is not available when the command is issued, then the status argument

is immediately set to failure and the process continues. The issuing process is

never blocked by the cond_receive_any command. Non-blocking receive com-

mands like asynchronous send commands allow the programmer to more fully

exploit the potential parallelism in an algorithm.

2.2.9 Replies

The reply command is used to reply to both synchronous one-to-one and

synchronous one-to-many sends. The reply commands behave like one—to-one

send commands. Unlike the asynchronous send the reply command always
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requires reliable service. The reply command does not block the replying pro-

cess. The IPC layer should still use reliable service but replying process will not

know if the reply was successfully received. The status argument for the reply

command can be given the values of local_accept or local_reject. The meaning

of these status values is the same as in the asynchronous one-to-one send case.

2.3. Group Manipulation Primitives

The concept of encapsulating a set of related processes within a group is

important in designing an IPC system that can support distributed program-

ming in a multiuser distributed system. In Section 2.2 we saw how a group of

processes associated with a unique group id can be the destination of a one—to-

many send. In this section we discuss some basic primitives (listed below) that

can be used to manipulate groups.

Create_Group(group_id, process_id, group_type, group_structure,

join_method, status)

. Destroy_Group(group_id, process_id, kill_processes, status)

Join(group id, process_id, timeout, status)

Invite group_id, host_id, guest_id, timeout, status)

Leave group_id, process_id, notify, status)

Remove(group_id, process_id, victim_id, status)

2.3.1 Creating a Group of Processes

The create_group command allows a process to create a new group. If a

new group is successfully created the argument group_id will be given the value

of the new group’s unique group id. The process_id argument contains the pro

cess id of the process that issues the create_group command. Also the process

which creates the new group becomes the first member of the group. The

group_type argument indicates the type of the group. Some possible group

types include, open groups and closed groups. These group types have been

defined in Section 2.2. The group_structure argument can take the values coor-

dinated or peer. In a coordinated group the creator of the group has special
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privileges in accepting new members and in destroying the group. The coordi-

nator of the group is said to own the group. In an peer group all processes are

equals. The join_method argument indicates how a new process may become a

member of the group. Some possible join_methods include know_gid, sponser,

and election. The status argument can be given the values of success or failure.

If the status value is success, then a new group was successfully created. If the

status value is failure, then a new group is not created. A create_group com-

mand may fail because the creating process did not have premission to create

new groups or because the system puts a limit on the number of groups that

can be created and that limit has been reached.

2.3.2 Destroying a Group of Processes

The destroy_group command allows a process to destroy an existing group.

In a coordinated group only the creator of the group may destroy the group. In

a peer group, when a process issues a destroy_group command, all members of

the group are asked to vote on the request to destroy the group. If a majority

of the members vote to destroy the group, then this group will be destroyed.

The kill_process argument is a boolean value. If kill_process is true, then all the

processes in the group are destroyed when the group is destroyed. If kill_process

is false, then only the binding of the processes to a group_id is destroyed when

the group is destroyed. That is the processes continue to exist after the group is

destroyed. The status argument will get the value success if the group is des-

troyed; otherwise, it will get the value failure

2.3.3 Joining a Group of Processes

If a process wants to join a group it will issue a join command. When a

process issues a join command it indicates the group id of the group it wants to

join and its own process id. If the join_method is know_gid, then the process
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will automatically become a member of the indicated group (if it exists). In this

way the group id acts as a capability to the group. If this method is used,

group ids should be unforgible. If the join_method is sponser, then the joining

process will be blocked until the coordinator invites (see below) the process to

join the group. If the join_method is election, then when a process tries to join

the group the other processes will vote to accept or refuse the request.

The status value of the join operation could be success, reject,

bad_group_id, or timeout. A value of success indicates that the process is now a

member of the indicated group. A value of reject occurs only if the join_method

was election and means that the current members of the group voted to reject

the join request. A value of bad_group_id means that the value of group_id is

not the id of any existing group. A value of timeout means that an invitation

from the coordinator or the election results did not arrive within the indicated

timeout period.

2.3.4 Inviting a Process into a Group

In a coordinated group the creator of the group may invite a new process

to join the group. In order to do this this creator executes an invite command.

When a process issues an invite command it indicates the group_id of the group

into which it is inviting the process, the process id of the process it is inviting,

and its own process id. In order for the invite command to be successful the

guest process must issue a join command. The status argument will take on the

values success or failure. If the guest process had issued the appropriate join

command, then the invitation will be successful and status will get the value

success. If the guest process does not become a member of the group, then

status will get the value of failure. Only the coordinator may invite a process

into the group.
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2.3.5 Leaving a Group

A process may leave a group at any time by issuing the leave command.

The argument notify is a boolean variable. If the value of notify is true, then all

members of the group are notified that the process is leaving the group. If the

value of notify is false, then the process leaves the group without notifying the

members of the group. The status argument will get the value success except

in the case where the group_id is invalid in which case status will be given the

value failure.

2.3.6 Removing a Process from a Group

In a coordinated group the coordinator may remove a process from the

group (for example the process may be behaving in an unreliable or eratic

manner) by using the remove command. The process_id argument is the process

id of the coordinator and the victim_id is the the process id of the process that

will be removed from the group. If the the victim process exists and is currently

a member of the group, it will be removed from the group and status will get

the value success. If the victim process does not exist or it is not a member of

the group then status will get the value failure.

2.4. General IPC Layer Support for IPC Primitives

There are a number of ways in which the services described in the previous

sections can be provided. One possible method is to create a complex IPC layer

which provides the services. In this section we explore the requirements of such

an IPC layer. We identify six classes of service that the IPC layer should pro-

vide: one-to-one expedite, one-to-one batch, one-to-one transaction, one-to—

many expedite, one-to—many transaction and one-to-many ordered.

2.4.1 One-to-one Expedite Service
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One-to-one expedite service is the simplest service that the IPC layer pro—

vides. This type of service allows a process to send a message to another process

without connection establishment or acknowledgements. When a process indi-

cates that it wants to send a message using this type of service, the IPC layer

finds the location (processor address) of the destination process and sends the

message. The IPC layer may also attach a checksum to the message so that

garbled messages can be discarded by the destination. The destination does not

send any acknowledgement and the message is sent only once (no retransmis-

sions). Some implementations will provide bufi'ering at the destination processor

while others will discard the message if the destination process is not ready to

receive it. From the IPC layer perspective this is the fastest and most efficient

type of interprocess communication. The usefulness of this type of service will

depend on the quality of the communication medium and the requirements of

the application. If most messages are delivered correctly, the application can

absorb the loss of some messages, and the application requires fast service, then

this may be the best service for the application to use. One type of application

that would find this type of service acceptable would be a real-time application

that periodically transmits measurements taken by a sensor. Such an applica-

tion wants the information transferred quickly and because the measurements

are periodically updated, the loss of a few measurements will not be a problem.

2.4.2 One-to-one Batch Service

One-to-one batch service provides reliable transmission of a large quantity

of data. This is the type of service that is found most frequently in commercial

IPC layers such as those that support TCP or XNS. This type of service is pro-

vided in three phases: a connection establishment phase, a data transmission

phase, and a connection termination phase. The connection establishment phase

identifies that both ends are ready and establishes some parameters that are
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used by the protocol. The data transmission phase involves the actual transfer

of data. The data is broken into packets and a checksum is usually attached to

each packet. The packets are acknowledged by the destination but there is not

necessarily one acknowledgement per packet. Packets are retransmitted until

they are received correctly. If the underlying communication medium remains

functional, the data will eventually be transmitted correctly. During the data

transfer phase, data and acknowledgements can be transmitted in both direc-

tions. The connection termination phase identifies that both ends have com-

pleted their data transfers and that all packets that have been sent have been

correctly received.

A standard type of protocol that is used for one-to-one batch service is a

sliding window protocol. In this protocol a window size is established during the

connection establishment phase. The window size indicates the maximum

number of unacknowledged packets that the sender may have outstanding. The

sender can continue to send packets as long as this limit is not reached. If the

limit is reached the sender will have to stop sending and wait for an ack-

nowledgement. A single acknowledgement message can be used to acknowledge

multiple packets (ideally the acknowledgements arrive frequently enough that

the window size limit is not reached). In this way the number of acknowledge-

ments can be reduced. Associated with each packet is a sequence number. This

number is used to identify the packet during acknowledgements. There are two

general forms of the sliding window protocol: go-baclc-n and selective

retransmission. In the go-back-n method if a message is lost or garbled, then

that packet along with all other packets that were sent after the lost packet

will have to be retransmitted. In the selective retransmission method only those

packets that are lost or garbled will have to be retransmitted. For more details

on sliding window protocols see [Tann81].
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2.4.3 One-to-one Transaction Service

One pattern that communication in distributed applications often follows

is a request-response communication. In this type of communication the sender

sends a messages and waits for a response from the destination process. The

send_and_wait primitive follows this communication pattern. This communica-

tion usually requires a reliable sending mechanism. One-to-one transaction ser-

vice is intended to provide efiicient service for request-response type communi-

cation. This service can take advantage of the fact that after a message is sent

a reply from the destination process is expected. If the reply is sent quickly

enough, it can also serve as the acknowledgement. If a reply cannot be sent

quickly enough, then an explicit acknowledgement will be sent. At the sending

end, if a reply or acknowledgement is not received within a timeout period, the

packet is retransmitted. Two important (and related) design parameters are the

time the destination IPC layer should wait before it sends an explicit ack-

nowledgement and the timeout period before the sender should retransmit the

packet. With a careful choice of these parameters a reliable and efficient

request-response type communication can be provided. The parameters may be

chosen statically as part of the system design or dynamically based on informa-

tion provided by the user (e.g., estimation of the time required before a

response will be received).

2.4.4 One-to-many Expedite Service

In order to provide access to the broadcast nature of many We the IPC

layer should provide one-to—many communication. The simplest type of one-to-

many communication is one-to-many expedite service. With this type of service

a process can broadcast a message to a particular group. The message will be

broadcast only once and in general the message may be received by some
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members of the group and not others (e.g., because of receive bufler overflow at

some stations). Providing this type of service requires the IPC layer to know

about the difl'erent process groups that exist in the system and the process ids

of the local processes that belong to each group.

2.4.5 One-to-many Transaction Service

As in the one-to-one case one—to-many communication can form a request-

response pattern. In this case a process broadcasts a message to a group and

requires a response from one or more members of the group. This service needs

to guarantee that at least N members of the group receive the message if N

responses are required. Following the pattern of one-to-one transaction service,

the IPC layer will use responses to a message as acknowledgements that the

message was received. If a response is not received within a timeout period, the

message is broadcast to the group again. In the case of one-to-one transaction

service, if the destination could not send a response quickly enough it would

send an independent acknowledgement. If this is performed in the one-to-many

case, the communication system could be overloaded with acknowledgements.

In order to alleviate this problem, we never have the destination processes send

acknowledgements. Instead the IPC layer at the senders end will continue to

retransmit the message until a response arrives. In order to control the number

of retransmissions the time between successive retransmission will get larger for

every retransmission. After a response is received, the length of the timeout

period is reset and a retransmission is sent if another response is not received

within the timeout period. This procedure is continued until N responses are

received or a maximum number of retransmissions have occurred. This method

may result in some unneeded retransmissions but the cost is much less that

having destination processes send explicit acknowledgements. The values associ-

ated with the timeout are critical to the performance of this method. Setting



46

the timeout dynamically based on some user provided information should

reduce the number of unnecessary retransmissions.

2.4.6 One-to-many Ordered Service

In one-to-many transaction service members of the same group may receive

multicast messages in diflerent orders. In some applications it is desirable to

have all members of a group receive the messages in the same order. This pro-

vides a kind of shared state for the processes in the group that can reduce the

complexity of the algorithm. An interesting method that allows all processes in

a group to receive the group messages in the same order was proposed in

[ChMa84]. In this method one IPC layer, called the token holder, acts as a fun-

nel through which all group messages must pass. When a process multicasts a

message to the group it expects to receive an acknowledgement from the token

holder. If an acknowledgement is not received the sending process retransmits

(rebroadcasts) the message. Note, each time the message is sent it is broadcast.

Attached to each message is a process id and a local sequence number. This

allows the receiving IPC layers to reject duplicates of the message. When the

token holder receives the message, it sends an acknowledgement to the sender.

The acknowledgement is also broadcast so that all IPC layers can receive it.

The acknowledgement contains the process id of the sender, the local sequence

number that sender attached to the message and a global (per group) sequence

number that the token holder associated with the message. This global

sequence number determines the order in which the messages should be given to

the members of the group. Since all IPC layers can hear the acknowledgement,

they can know the local sequence number. If an IPC layer (not the token

holder), hears an acknowledgement which has a sequence number higher than

the next sequence number expected, it will ask the token holder to retransmit

the the messages that it did not receive.
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The advantages of the above method are that once the token holder ack-

nowledges the message, the sender may discard the message (the token holder

keeps a copy and is responsible for retransmission). The number of ack-

nowledgements will usually be much less than one per process in the group. In

addition the sender can try to receive its own messages and can know in what

order other processes received the message. This can be helpful information in

some algorithms such as elections [KiGN86].

One issue that must be addressed is when can the token holder discard a

message. That is, how can the token holder know when all the necessary IPC

layers have received the message. [ChMa84] suggests that the (virtual) token be

passed from one IPC layer to another. When the token is passed the new token

holder must have received all the old messages that the old token holder has

received. If the token is passed to every IPC layer before it repeats its path,

then when an IPC layer becomes a token holder it can discard all messages it

had receive before the last time it was a token holder. All of this messages must

have been received by the other IPC layers since the other IPC layers could not

have accepted the token if they had not received the messages.



CHAPTER 3

DISTRIBUTED SCHEDULING ISSUES

A central problem in distributed systems is the scheduling of processes

onto processors. This problem is motivated by issues such as load balancing,

parallel algorithm requirements, algorithm-architecture matching, and utiliza-

tion of resources. Without a satisfactory solution to the distributed scheduling

problem, the creation of a unified service environment will not be possible.

The basic decision that must be made by a distributed scheduling algo—

rithm is whether to migrate a process from its current location (processor) or to

leave it where it is. The process migration procedure will require that two pro-

cessors, one the sender of the process and the other the receiver of the process,

agree to move the process. The information that will be used to make the deci-

sion on a particular‘process migration will depend on the goals of the distri-

buted scheduling algorithm. When a process is to be migrated, enough infor-

mation about that process must be sent to the receiving processor so the pro-

cess can be executed at the receiving processor. Frequently the receiving proces-

sor will have to return the results produced by the process to the sending pro-

CGSSOI'.

A primary consideration of many distributed scheduling algorithms is load

balancing. The overall performance of a distributed system can be improved if

extreme diflerences in the loads of the processors can be smoothed. The goal of

a load balancing algorithm is not to exactly even the load at each processor

rather it should try to smooth (through process migration) those extreme

diflerences in load that may result in underutilization of some processors (or

resources in general). Other issues in distributed scheduling will be discussed

48
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later.

Figure 3.1 shows an idealized view of the scheduling structure. The user

block represents the source of work or processes. The command interpreter will

determine if the process is migratable. In general we do not want to migrate

processes that have a very short execution time. For standard user commands

the command interpreter may have some information about the expected length

of the job. For example a request to list the contents of a file is not a good can-

didate for migration while a compilation of a large program may be a good can-

didate for migration. For user programs the command interpreter will need

some information from the user in order to make a good decision. The schedul-

ing agent makes the global scheduling decision. It will determine along with its

peer scheduling agents the place where a migratable job will be scheduled. The

file system agent contains information about the distributed file system. The file

system agent will provide information such as the individual disks loads and

the locations of copies of file to the scheduling agent. The scheduling agent will

make use of this information along with any information it has about the pro-

cess that is being scheduled, the load of the other processors, and the static

features of the system in making the scheduling decision. The local scheduler

makes the local scheduling decision. If the local system is a single processor sys-

tem, the scheduling decision may be something simple such as first come first

serve or round robin. If the local system is a multiprocessor the local scheduler

may have to make more complicated decisions.

3.1 Classification of Distributed Scheduling Techniques

The problem of scheduling in distributed systems has been addressed from

a variety of perspectives. These perspectives can be classified as deterministic,

probabilistic, and dynamic. In a deterministic [CHLE80, Ston78, Efek82]
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approach a known amount of work must be distributed throughout the system.

For example we may be given the fact that we have N processes that must be

run and the running time of each process. The problem is to distribute the

processes among the available processors so that all processes finish in the shor-

test possible time. More complicated approaches may assume more information.

For example they may know a precedence relation between the processes and

the communication behavior between the processes. In general this problem is

NP-hard and heuristic methods must be developed. Results of this approach

are primarily of theoretical interest and will not be further discussed. In general

they are not applicable to a general LAN environment. In some cases they may

be useful in a loosely coupled multiprocessor or a dedicated LAN.

In the probabilistic approach the nature of the work that arrives to the

system is assumed to be defined by some probability distributions. For example

we may be given probability distributions for arrival times and execution times.

If“the distributions are well known, this may be an acceptable approach. How-

ever, in general these distribution will not be known. Also, it has been shown in

[NiXG85] that dynamic algorithms can still outperform a probabilistically bal-

anced system under some conditions. The basic problem with the probabilistic

approach is that it does not cope with system changes due to workload fluctua-

tions.

In a dynamic scheduling approach [Farb73, Stan84, NIXG85] the schedul-

ing agents cooperate in order to scheduling processes based on both dynamic

and static information. The dynamic information is based on the current status

of system resources such as processors, communication channels, and disks. The

static information may include special processor features known by the system

and process characteristics made known to the scheduling agent when a process

is given to the scheduling agent.
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Figure 3.1. Ideal structure of scheduling agents
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3.2 Heterogeneous Systems versus Homogeneous Systems

A distributed scheduling algorithm will have to consider the features of

the machines in the system. If all machines are identical, then the system is

called homogeneous. In the most extreme case the term identical implies that

each processor is the same and is connected to the exact same set of resources.

If a system is not homogeneous, it is called heterogeneous. In a homogeneous

system, the scheduler does not need to consider any static features of the pro-

cessors when it makes the scheduling decision.

Diflerent levels of distinction can be made in determining if a system is

homogeneous or heterogeneous. Some possible classifications that can be used

include machine architecture, machine speed, and machine resources. A system

that is heterogeneous at the machine architecture level has a distributed archi-

tecture consisting of a variety of machine types. For example we could have a

system consisting of personal workstations, multiuser mini-computers and main—

frames, vector processor machines, multiprocessors, and other special purpose

architectures. In this case the distributed scheduling algorithm will need to con-

sider matching processes with an appropriate architecture. A system that is

heterogeneous only at the machine speed level has a distributed architecture in

which the processors all have the same basic characteristics (e.g. they all use

the same machine language) but the processors may run at difl'erent speeds. In

a system that is heterogeneous at the machine resources level, all processors

may be the same but those processors will be connected to difl'erent resources.

For example some stations may have disks attached to them while other sta-

tions may be diskless.

A general distributed system will be heterogeneous at least at the machine

resources level. In general a distributed scheduling algorithm for a unified ser-

vice environment will have to take into account both the static and dynamic
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features of the system. In order to make the best use of this information the

scheduling agent should also know certain characteristics of the processes that

are being scheduled. As a simple example, consider a process that indicates that

it will access a number of files. One consideration that the scheduling agent

should use in determining where to schedule the process is the physical location

of the files that the process will access. In another case a process may indicate

that it needs a special type of architecture. In this case the scheduling will need

to contact other scheduling agents that control a processor that satisfies the

processes needs.

3.3 Multiple Job Entry Points Versus Single Job Entry Point

In a distributed architecture based on an LAN there will generally be mul-

tiple entry points for processes. For example, in an LAN of workstations anyone

of the workstations may be an entry point for work into the system. This

makes it practically impossible for any processor to maintain a complete view

of the total system load. However in a loosely coupled multiprocessor such as a

hypercube there is only one place (the cube manager) where work can enter.

Thus we naturally have a centralized point of control. In this case it may be

wise to allow the cube manager to make some coarse scheduling decisions (espe-

cially with multiprocess jobs) and make only some finer modifications in a dis-

tributed fashion.

3.4 Multiple Process Jobs Versus Single Process Jobs

Most work in distributed scheduling (including our discussion in Chapter

4) treats processes in the system as if they were independent entities. In many

systems this is a reasonable assumption. However, if the unified service environ-

ment is to provide an environment in which distributed applications can be

written, then this is not a reasonable assumption. In a distributed application,
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processes will have a certain relationship with other processes in the algorithm.

This relationship can be described in terms of the concurrency relation between

the processes and the communication relation between the processes. The con-

currency relation indicates how much of the processes work can be done con-

currently. For example, we could have two processes in the algorithm that do

not communicate with each other and whose only purpose is to compute some

result and send it to a third process. In this case the work of both processes can

be done concurrently. At the other extreme we could have two processes that

work in lock step with process A computing a result and sending it to process B

and waiting for process B to do its work and returning a result back process A.

In this case there is no concurrency between the processes.

The communication relationship between processes indicates the amount of

information that is exchanged between processes. The more information that is

exchanged, the closer together we would like to schedule the processes. In a

sense the concurrency relation is related to communication as well. The con-

currency relation represents the frequency of a process waiting for information

from another process. Since in a distributed system we assume that information

is transferred only through explicit communication, the concurrency relation is

related to the frequency of communication. While the communication relation is

related to the amount (e.g. bytes) of the communication.

If we are going to accurately schedule processes that are part of a distri-

buted application, the scheduling agent will want to have information about

the concurrency and communication relations. If the information is statically

provided, then this problem is similar to deterministic or probabilistic methods

discussed above. However, in a highly dynamic distributed algorithm it may be

possible for these relationships to change during the life of the algorithm. In

this case protocols will have to be developed that allow the application
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processes to communicate with the scheduling agent. One possibility is to have

the distributed application schedule itself in cooperation with the schedule

agents. The scheduling agents will work from global knowledge of the system

state and system goals while the distributed application will work from local

knowledge of the best distribution (or scheduling) of the processes in the distri-

buted application.

3.5 Preemptive Versus Non-Preemptive Process Migration

In choosing a job to be migrated an important consideration is whether

jobs that have been started should be migrated. In general the answer is no. A

job should be migrated only if it is expected that it could receive better

response time than if it were not migrated. This is unlikely if the job is already

being given service at the local processor. Another problem with migrating jobs

that have already received service is that their whole memory image will have

to be migrated. This could cause a great deal of communication overhead.



CHAPTER 4

EMULATION OF LOAD BALANCING ALGORITHMS

In Chapter 3 we introduced the concept of load balancing as an important

issue in distributed scheduling. In this chapter we discuss two load balancing

algorithms, bidding and drafting, and look at the performance of these algo-

rithms in an Ethernet based LAN of workstations. The performance measure-

ments of the load balancing algorithms are generated by an emulation of the

algorithms on our LAN system of Sun workstations. The standard method of

evaluating dynamic load balancing algorithms is through simulation. The simu-

lation will make some assumptions about the network configuration, arrival

rates, and service rates. Sometimes the simulation will also consider the time

required to send messages between processors. The positive features of a simula-

tion are that it can be run on a single computer, the techniques for simulating

such systems are well known and the parameters of the system are completely

under the control of the person doing the simulation. The primary drawback of

a simulation is that it can not consider all of the parameters that will be part

of the actual system. The simulation may indicate that a particular algorithm

has promise but this will not guarantee its performance in the real system.

Another way to test the performance of a dynamic load balancing algo-

rithm is to build it into the kernel of the operating system. The primary advan-

tage of this method is that it provides the most realistic results. The primary

disadvantage is that it is a very time consuming task.

A third way to test the performance of a dynamic load balancing algo-

rithm is to do an emulation of the algorithm. An emulation of an algorithm is

an implementation of the algorithm on top of the operating system. The pri-
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mary advantages of this method is that we get results in a realistic environ-

ment, including the overhead of the algorithm itself, and it is less time consum-

ing to implement.

The remainder of this chapter is outlined as follows. Section 1 presents a

description of the bidding algorithm. In Section 2 we present the drafting algo-

rithm along with some simulation results of the drafting algorithm. In Section 3

we present results of our emulations of the bidding and drafting algorithms.

4.1 Bidding Algorithm

The bidding algorithm [Farb73] is a well known algorithm for dynamic

load balancing. The basic concept of the bidding algorithm can be defined as

follows. When a new job arrives, the scheduling agent will send a request for

bids message to all other processors in the system. Each processor that receives

a request for bid message will respond with a bid. The bid represents the qual-

ity of service that the processor thinks it could provide to the new job. In a

homogeneous system the bid may represent the current load of the processor. In

a heterogeneous system the bid may also be influenced by the special charac-

teristics of the processor and the special requirements of the process. When the

processor that initiated the bid request received all the bids, it will compare the

bids with its own bid and award the job to the best bid.

Some variations on the general bidding algorithm are possible. For example

a processor may not request bids unless it finds that it is overloaded. This

introduces the problem of determining when a processor is overloaded. A good

measure of load will reduce unnecessary bid requests while a bad measure may

result in too few or too many migrations. Figure 4.1 shows an pictorial descrip-

tion of the bidding algorithm.

4.1.1 A Formal Description of the Bidding Algorithm
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In this section we present a programming language description of the bid-

ding algorithm. The algorithm is presented in a Pascal-like language supple-

mented by the IPC primitives that we introduced in Chapter 2. Listed below is

a description of four processes: the request_bids process, the send_bids process,

the receive_bids process and the accept_new_jobs process.

process request_bids;

var

pcb: process_control_block;

bid_waiting_list: list_of_pcb_type;

begin

loop

get_new_job(pcb);

if idle then

1 load_local_execution_queue(pcb);

e se

multicast(schd_agent_group,my_id,” bid request” ,pcb.id);

{ the bid_waiting list is shared with the

receive_bids process}

add_pcb_to_list(pcb,bid_waiting_list);

end if

forever;

end_process;

process send_bids;

var

bid: bid_type;

source, id: process_id_type;

begin

loop

receive_any schd_agent_group,source,” bid request” ,id);

calc_bid(bid ;

send(my_id,source,” bid reply” ,bid,id);

forever;

end process;

process receive_bids;

var

pcb: process_control_block;

bid : bid_type;

source, id: process_id_type;

bid_waiting_list: list_of_pcb_type;

begin

loop

receive_any(schd_agent_group,source,” bid reply” ,bid,id);

update_pcb_list(bid,id, bid_waiting_list);

{ when all the bids for a particular process have
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arrived the decision about where to schedule the

process is made }

if all_bids_received(id,bid_waiting_list then

remove_pcb(pcb,id,bid_waiting_list ;

if pcb.best_bid > local_bid then

1 send(my_id, pcb.best_bid_agent,”new job”, pcb);

e se

load_local_execution_queue(pcb);

end_if

end_if

forever;

end_process;

process accept_new_job;

var

pcb: process_control_block;

source: process_id_type;

begin

loop

receive_any(schd_agent_group,source,” new job” ,pcb);

pcb.remote := true;

pcb.source := source;

forever;

end_process;

4.2 Drafting Algorithm

. The drafting algorithm is a relatively new algorithm introduced in

[NiXG85]. The bidding algorithm is an example of a sender initiated algorithm.

It is so called because the processor that initiates the algorithm wants to send a

process to a remote processor. The drafting algorithm is a type of receiver ini-

tiated algorithm. In this case the processor that would like to receive some

processes from other processors initiates the algorithm. There has recently been

interest in comparing the performance of sender initiated algorithms with

receiver initiated algorithms.

In the drafting algorithm each processor maintains its current processor

load. Instead of maintaining a numerical value for the load of each processor,

three load states are defined to represent the processor load. A processor in the

light load state indicates that it can accept some migrant processes. A processor

in the heavy load state indicates that some of its processes can be migrated. A
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normal load state indicates that no migration action should be taken by that

processor. Several load evaluation methods may be used. For example we could

count the number of waiting processes, the average length of time the waiting

processes have been waiting, the amount of main memory available, or a combi-

nations of these or other characteristics of the processor.

Each processor maintains a load table. There will be one entry in the load

table for each candidate processor. A candidate processor is a processor from

which a process may be migrated. Due to communication delay the load table

will not always accurately reflect the load of the candidate processors. An

important design issue is when announce load changes. Announcing the changes

too frequently may result in too much communication traflic while not

announcing them frequently enough will reduce the effectiveness of the algo-

rithm.

The basic work of the drafting algorithm is handled by some concurrent

processes that make up the scheduling agent. These processes implement the

drafting algorithm in the following manner. The send_draft_request process

will be activated whenever the processor becomes lightly loaded. When this pro-

cess is activated, it will examine the load table. If all candidate processors are

lightly or normally loaded, then no process migration is necessary and

send_draft_request process will go to sleep. As long as the processor remains in

the lightly loaded state, the send_draft_request process will be awakened if the

processor is notified that a candidate processor has entered the heavy load

state. When the send_draft_request process finds a candidate processor that it

thinks is heavily loaded, it will send a draft_request message to that processor.

This message indicates that the drafting processor is willing to accept migrant

processes. Each processor has a respond_draft_reguest process. This process

will listen for draftJequest messages. When the respond_draft_request process



62

receives a draft_request message it will respond with a draft_age message. The

draft_age message will contain the draft_age of the processor. This is a measure

of how urgently the processor wants to migrate a process. It can be seen as a

more detailed figure on the current load of the processor. For example the

draft_age could be the number of waiting processes or the time that the oldest

waiting process has been waiting. The draft_age will be used by the lightly

loaded processor to determine from which candidate processor a process should

be migrated. If a processor receives a draft_request message when it is no longer

heavily loaded, it will return a draft_age that reflects this fact.

After the drafting processor has received draft_age messages from all the

candidate processors that it thought where heavily loaded, it will determine a

draft_standard. The value of the draft_standard will be based on the values of

the draft ages that have been received. Note that if all the draft ages indicate

that all candidate processors are no longer heavily loaded, then the

send_draft_request process will go to sleep. After the draft standard is calcu-

lated the drafting processor will send a draft_select message to the processor

that returned the highest draft age. The draft_select message will contain the

draft_standard. The simplest draft_standard could just indicate that if the

winning candidate processor is still heavily loaded then it should migrate a pro-

cess. More complex draft standards could be based on the age of the waiting

processes or on the number of waiting processes (of course if the draft standard

is based on values such as these the draft age should also be based on these

values). For example, if the draft age is the waiting time of the oldest waiting

process, the drafting processor could choose a draft_standard to be the second

highest waiting time.

Each processor has a respond_draft_standard process. This process waits

to receive a draft_select message. When a draft_select message arrives it checks
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the draft_standard to see if it can still satisfy the draft_standard. If it can

satisfy the draft_standard, it will send a process to the drafting processor. If it

cannot satisfy the draft standard, it will send a too_late_message to the draft-

ing processes. A pictorial description is shown in Figure 4.2. Some simulation

results presented in [NiXG85] indicate that the drafting algorithm can provide

significant improvement in system response time.

4.2.1 A Formal Description of the Drafting Algorithm

In this section we present a programming language description of the

drafting algorithm. The algorithm is presented in a Pascal-like language supple-

mented by the IPC primitives that we introduced in Chapter 2 and by event

variable. We define three basic processes that make of the scheduling agent for

the drafting algorithm. These processes are located at the same processor and

can communicate through event variables. An event variable is a variable that

can be used to notify a process of a state change or be interrogated by a pro-

cess to check if a state is in effect. Each event variable, EV, can take one of

two values, current or notcurrent. An event variable can be manipulated by the

following procedures.

wait(ev)

signal(ev)

clear(ev2

current ev)

The wait procedure causes the issuing process to be blocked until the event

becomes current. The signal procedure cause the value of the event variable to

become current. The clear procedure causes the value of the event variable to

become notcurrent. The current procedure returns a value of true if the value

of the event variable is current and it returns a value of false if the value of the

event variable is notcurrent. Changing the value of an event variable is an

atomic operation. Listed below is a description of three processes:
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respond_draft_request, respond_draft_standard, send_draft_request.

process respond_draft_request;

var

source: process_id_type;

age: draft_standard_type;

begin

loop

receive_any(schd_agent_group,source,” draft_request” );

calc_draft_age(age);

send(my_id,source,” draft_age” ,age);

{the source of the draft request is the destination

of the draft_age message }

forever

end_process;

process respond_draft_standard;

var

source: process_id_type;

pcb: process_control_block;

migreply: migration_reply_record;

standard: draft_standard_type;

found: boolean;

begin

.. loop

receive_any(sch_agent_group, source, standard);

select_process cb,standard,found);

if found then this means a process that

satisfied the standard was found}

migreply.kind := process;

migreply.pcb := pcb;

else

migreply := too_late;

migreply := get_current_load();

end_if

send(my_id,source,” migration reply”, migreply);

forever

end_process;

process send_draft_request;

var

numheavy: integer;

processid: process_id_type;

standard: draft_standard_type;

proc_list: list_of_process_ids;

agelist: list_of_draft_ages;

migreply: migration_reply_record;

begin

loop
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wait(light_load);

{check if there are any heavy loaded candidates}

any_heavy(numheavy, proc_list);

if numheavy = 0 then

wait(normal_load or heavy message_arrive);

clear(heavy_message_arrive ;

if current normal_load) then goto Ll

else goto 2;

end_if

if numheavy > 1 then

multicast_and_wait(proc_list,” draft_request” ,

agelist, status);

calc_draft_standard(proclist,agelist,

standard, processid, foundheavy);

if not foundheavy then

wait(normal_load or heavy message_arrive);

clear(heavy_message_arrive ;

if current normal_load) then goto Ll

else goto 2;

end_if

else

standard := 0;

processid := first(proc_list);

end_if

if not current(light_load) then goto Ll;

send_and_wait my_id processid, ”draft_select”,

standard, migreply);

if migreply.kind = process then

1 load_mig_queue(migreply.pcb)

e se '

dup?ate_load_table(processid,migreply.load);

en _1

L2: until (not current(light_load))

Ll: forever;

end_process;

4.3 Emulation of Bidding and Drafting

A version of both the bidding algorithm and the drafting algorithm have

been implemented on the Sun workstations in the Distributed Computing

Research Lab (DRCLab). The physical configuration of our network consists of

five Sun-2 workstations connected by a 10 MBPS Ethernet. The Sun worksta-

tions are running the Unix 4.2 operating system. The Unix 4.2 operating system

does not provide the type of communication primitives that were presented in

Chapter 2. In Section 4.3.1 we will discuss the communication primitives that

are provided by Unix. 4.2. In Section 4.3.2 we will discuss the emulation
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programs and the results that we have achieved.

4.3.1 Unix 4.2 IPC Primitives

The Unix 4.2 operating system provided two families of transport level

protocols that can be used for interprocess communication. The protocols are

Transmission Control Protocol (TCP) and Unnumbered Datagram Protocol

(UDP). TCP provide connection oriented (virtual circuit) one-to-one batch com-

munication. The communication provided through TCP is highly reliable. UDP

provides unreliable one-to—one expedite communication. This can be used for

both one-to-one and broadcast based communication.

The interface to the communication system is through an object called a

socket. Unlike the IPC system defined in Chapter 2, in Unix 4.2 all messages

are sent to or received from sockets. A process can send or receive messages by

creating sockets. In order for two processes to communicate using TCP one pro-

cess must publish a socket id (or name) on which it will be willing to accept

connections. The other process will then try to create a connection by issuing a

connect command. Thus the communication is not symmetric during the con-

nection phase. Once a connection is established the two processes can communi-

cate using a blocking receive command, recv, and an asynchronous one-to-one

send command called send. Listed below are two generic examples of the send

and recv command. Each command uses the socket, slc, that is the endpoint for

its communication, a point to a bufl'er (array), the bufler_length that represents

the number of bytes that is being sent or received.

send sk,bufler, bufier_length

recv sk,bufler, bufler_length

If the UDP protocol is used then no connection phase is required. If pro-

cess knows the name of a remote socket, it can use the sendto command to

send information to the socket. If a process is willing to receive information
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from a UDP socket it issues a recvfrom command. UDP can also be used to do

a limited form of broadcasting. Using a special address format it can broadcast

a message to a socket on each machine in the network. The destination of the

message will indicate that it is a broadcast message and will provide a port

name to deliver the message to. Any socket that has the correct local port

name will receive the message. Since at most one socket can use the same port

name per machine, this protocol only allows a process to broadcast to one other

process on each processor. Unfortunately we found that this broadcast capabil-

ity was not very reliable and thus we did not use it in our emulation.

4.3.2 The Emulation Design

Figure 4.3 shows a high-level view of the emulation design. Each schedul-

ing agent consists of three processes: the job creation process, the job execution

process and the scheduling controller process. Since Unix 4.2 does not provide

the ability of processors to share memory, these processes must exchange infor-

mation in another ways. In our current structure the job creation process and

the job execution process are children of the scheduling controller process.

The job creation process creates processes with a Poisson arrival pattern.

Each newly created process is assigned a process id and has its starting time

attached to it. Each time a new process is created the job creation processes

sends its job id and its arrival time to the scheduling controller process through

a pipe. A pipe is a simple one way communication channel.

The scheduling controller process is responsible for making the global

scheduling decision in cooperation with the other scheduling controller

processes. The first thing that the scheduling controller process does is to create

TCP connections with all the qther scheduling controllers. This connections are

maintained throughout the life time of the emulation. After the connections
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are established the scheduling controller creates the job execution process and

the job creation process. After these processes have been created, the scheduling

controller starts executing the load balancing algorithm.

The job execution process does the actual execution of the jobs. It receives

new jobs to execute from the scheduling controller. It executes jobs in a first

come first serve manner. When it completes a job it returns the job to the

scheduling controller and attaches its completion time. If the job was a remote

arrival, the scheduling controller will ignore the completion time and send the

job back to its original processor. If the job was a local process, the scheduling

agent will record its completion time. The actual jobs that are executed are

functions that are called by the job execution process. In the emulations that

we have run thus far these jobs only use CPU resources.

The application processes that are executed are artificially generated but

they do use CPU time. During the emulation, the CPU on each station is

shared by the following processes: artificially generated application processes,

the job creation process, the job execution process, the scheduling controller

process, and some Unix operating system processes that could not be

suspended. In all of our tests we only used the four client stations. The file

server was not used for application processes because it serves many diflerent

functions and cannot be accurately used to compare performance with the

client stations. As a simple example, when a client writes some results of the

emulation to a file, the file server must do some work. For each client writing

the results creates the same amount of overhead. However, if the file server

were running application jobs, these jobs would entail the overhead of all the

clients file activity. Thus the application processes on the file server would not

be running under the same conditions as those on the client stations.
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As we indicated in our discussion of the bidding and drafting algorithms,

there are a number of parameters that must be defined when the algorithms are

implemented. These parameters include the following: the value used for bids,

when to request bids, the value used for draft ages, the choice of a draft stan-

dard, and a measurement of heavy load and light load for the drafting algo-

rithm. In the experiments discussed below we used the following parameters.

The value used for bids and draft ages was the number of waiting processes. A

station requested bids for a new job if there was at least one job waiting when

the new job arrived. A simplified draft standard was defined. As long as the

winning station was still heavily loaded when the draft select message arrives, it

could migrate a job. Note this is not the fairest draft standard to use since it

does not attempt to create a first come first serve ordering across stations. How-

ever, this will be the best choice in terms of minimizing response time and since

the goal of our experiments was to compare bidding and drafting in terms of

response time we chose this standard. In the drafting algorithm any station

with four or more waiting processes was considered heavily loaded and any sta-

tions with zero or one waiting processes was considered lightly loaded.

Figure 4.4 presents a graph of the results of our first experiment. The

arrival pattern was such that 2/5ths of the arrivals arrived at client 1, another

2/5ths arrived at client 2 , l/5th of the arrivals arrived at client 3, and client 4

had no external arrivals. The jobs that were executed were all relatively long

(the mean value of the execution time was 12 seconds and the execution time of

the shortest job was 4 seconds) thus making them all migratable.

Figure 4.5 presents the results of second experiment. In this experiment

each station had the same arrival rate making the stations probabilistically bal-

anced. The job mix was the same as that used in experiment one.
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In both of our experiments we executed approximately 4000 application

jobs in the system. Because of the long execution time each point on the graphs

took about 6 hours to generate.

As can be seen from both graphs both load balancing algorithms provide

improvement over the no load balancing case. Under our current conditions the

bidding algorithm outperforms the drafting algorithm. The primary reasons for

this are 1) the drafting algorithm reacts too slowly to load changes, 2) main-

taining global information creates too much communication overhead and does

not provide significant benefits in a small network, and 3) the drafting algo-

rithm is computationally more expensive and thus takes away cpu time from

the application jobs. Note that these results are valid for networks of a few

workstations (less than 10). In the bidding algorithm that we used, the station

with the winning bid is immediately sent a job. In a small network this is

acceptable because a station cannot win too many bids at the same time. In a

large network it is possible that a station could win many bids within a short

time and thus become overloaded. In this case we might migrate a job from one

overloaded processor to another overloaded processor. In order to prevent this a

more complicated bidding algorithm must be used. When a processor wins a

bid, it is notified of this fact and it is asked if it is still willing to accept the

job. This allows the processor to control the number of migrant jobs that it

accepts but it also requires two extra communications. This version of the bid-

ding algorithm will create more overhead and will react more slowly to load

changes.

As a final comment, the drafting algorithm as it is now defined migrates

only one job at a time. An interesting modification to this algorithm would be

to allow it to migrate 2 (or more) jobs at a time. When a process receives a

draft select message, it could be allowed to migrate 2 (or more) jobs that satisfy
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the draft standard. This would allow the drafting algorithm to keep very lightly

loaded processors from becoming idle too frequently.
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CHAPTER 5

DISTRIBUTED ALGORITHMS

One use of a distributed system is to develop distributed algorithms. Most

of the current work emphasizes the creation of distributed programs which con-

trol the distributed architecture through the creation of distributed operating

systems [\NiVaSO, PoMi83] and distributed database systems [\Nalk83]. More

recent work has addressed the issue of taking advantage of the potential paral-

lelism provided by the distributed architecture [FiMa85]. The focus of this

chapter is the development of general concepts of distributed algorithms. The

ultimate goal of this research is to sufliciently develop some design issues

specific to distributed algorithms so that greater use of distributed systems can

be made.

5:1 Distributed Algorithm Definitions

We define a distributed algorithm to be a set of processes, running on vari-

ous processors, that communicate through message passing and cooperate in

order to solve a problem. Distributed algorithms can be classified into two

categories, naturally distributed algorithms and artificially distributed algorithms

[GeNi85]. A distributed algorithm is considered naturally distributed if the

cooperating processes are located on difl'erent processors because the data

needed by the processes are located or generated at different locations. In other

words, the processes are distributed because the data are distributed. Most dis-

tributed control algorithms can be classified as naturally distributed. For exam-

ple, a load balancing algorithm [NiXG85, StSi84] which monitors the load at

each processor and can migrate processes if improvement in system perfor-

mance is expected. Such an algorithm has processes, located at each processor,
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which monitor the load at each processor, report changes in the load to other

members of the algorithm and agree to migrate processes when it appears

beneficial. In this example, the distributed data is the current load at each pro—

cessor. Note that processes of a naturally distributed algorithm are not migrat»

able.

Any algorithm which exhibits some parallelism could be expressed as an

artificially distributed algorithm [FiMa85]. In an artificially distributed algo-

rithm, it is not necessary to access physically distributed data. Instead, the

algorithm would be distributed in order to take advantage of parallelism or to

make a more eflicient use of resources. The advantages of distributing such an

algorithm will depend on the particular algorithm’s communication patterns

and on the type of distributed system available.

There are three important features of distributed algorithms: negotiation,

remote state maintenance, and reliability. Each of these will be discussed in the

O

following three sections.

5.2 Negotiation in Distributed Algorithms

A negotiation is a set of actions through which two or more processes

attempt to reach an agreement. The agreement may be an agreement on a

shared value or it may be an agreement to perform some action. The influence

of negotiation can be seen in one of the earliest distributed systems, Farber’s

Distributed Computing System [Farb73]. In this system, an algorithm, called the

bidding algorithm, requires a negotiation to find where a newly arrived job

would be scheduled. In [Smit80], Smith recognized the importance of negotia-

tion in his contract net protocol. Some more recent work in this area includes

[DLP885, DwLSS4].

A negotiation can take two general forms: coordinated and peer. In the
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case of a coordinated negotiation, one of the negotiators is called a coordinator

and the other negotiators are called respondents. The coordinator controls the

negotiation. Usually, information is passed to or from the coordinator. The

respondents do not communicate between themselves, unless they are

instructed to do so by the coordinator. During the negotiation phase, the coor-

dinator provides a central point of control. In a peer negotiation, all negotiators

(processes) are equals. There is not a centralized point of control and no nego-

tiator has a complete view of the negotiation. This is a more distributed form

of negotiation and a form which is important in distributed game playing. An

example of a peer negotiation is an election algorithm [Garc82, LyFr85]. In an

election algorithm, a set of peer processes elect a process to perform some spe-

cial function.

It should be remembered that a single distributed algorithm may have a

number of negotiation phases. It is not necessary for each phase to exhibit the

same characteristics. For example, for reliability purposes a coordinated nego-

tiation might require the coordinator to periodically communicate with each

respondent. If the coordinator fails, the respondents might be required to elect

a new coordinator. In this case we see two phases of negotiation, the former is

coordinated and the latter is peer.

Negotiators can be classified as either selective or non-selective. Each

negotiation follows a pattern in which one of the negotiators makes an offer and

the other negotiators may accept the ofl‘er, reject the ofl'er, or make a counter

ofi'er. A selective negotiator will agree only if a standard or range of standards

is satisfied. A selective negotiator is free to leave a negotiation without agree-

ment. An example of this is the migrant phase of the drafting algorithm

[NiXG85]. In this case, a processor is willing to accept a migrant process from a

remote processor only if the process can meet the draft standard (a decision
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making threshold). A non-selective negotiator must reach agreement in a nego-

tiation. While the negotiator will try to reach the best agreement possible, it

must always accept some ofl'er. A example of this is a simple bidding algorithm

in which bids are requested for each new job. Since the job must be scheduled

somewhere, one of the bids must be accepted (the local scheduler may also bid).

Some important examples of negotiation in distributed computing include

byzantine agreement, mutual exclusion, and process synchronization. The

byzantine agreement [PeSL80, LaSP82] problem addresses the problem of

finding agreement among a set of faulty processes. The faulty behavior of the

processes can include malicious attempts to mislead other processes. The mali-

cious processes may want to prevent an agreement or they may want the

correct processes to think an agreement has been reached when it has not.

The mutual exclusion problem [RiAgSl] in distributed systems has the

same goal as the mutual exclusion problem in centralized systems: to guarantee

that at most N (where N is usually 1) processes have access to a critical section,

such as updating a shared value, at any time. In distributed systems the prob-

lem is made more difficult because the critical section may be replicated in

many different locations. In a distributed mutual exclusion algorithm it is also

more diflicult to provide fair access to the shared value or critical section. In

order to allow a process to access a shared value, an agreement among all

processes that maintain a copy of the shared value must be reached.

The problem of process synchronization [Silb79, HLLR85] can also make

use of negotiation. Synchronization issues arise in the areas of initiation of dis-

tributed programs, termination of distributed programs [Kuma85, SzSP85], and

ordering of process actions. In initiating a distributed algorithm, all processes

in the algorithm must have identified themselves as ready to begin. Problems

arise in deciding how the processes should inform the others that they are ready
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and how to decide that all processes in the algorithm are ready. In distributed

termination, the problems include how to determine when the algorithm has

completed and how to assure that all processes in the algorithm know that it is

completed. Ordering of processes [Lamp78, LaSt81, LiSc83] is concerned with

identifying that the actions which must be completed before a process can start

actually have been completed.

5.3 Remote State Maintenance in Distributed Algorithms

Another important feature of many distributed algorithms is remote state

maintenance. The processes which are cooperating must have some knowledge

of each other’s state [ChLa85, NiXG85]. In order to do this, the processes will

periodically report their current state to some of the other processes in the algo-

rithm. It is important to note that no matter how frequently information is

exchanged between the processes, each process will have a slightly difl'erent

view of the system. The primary problems associated with remote state mainte-

nance are the frequency of remote state reporting and the amount of informa-

tion that should be reported. A tradeofl' exists between the cost of transmitting

information and the value of more accurate information. The algorithm

designer must identify the essential state information and changes to that infor-

mation that are significant to the remote processes.

5.4 Reliability of Distributed Algorithms

The final primary feature of distributed algorithms that we will discuss is

reliability. The reliability of an algorithm is a measure of how it performs in

the presence of faults. For distributed systems there are three primary

classifications of faulty behavior: fail-stop, omission, and byzantine [Stan85]. A

processor (each of these classifications will be described in terms of processors

but the concepts can also be applied to processes) is considered a fail-stop
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processor if it stops when a fault occurs. In other words the processor either

behaves correctly or it stops. In general other processors in a distributed system

cannot determine if a processor has stopped or is very slow. A processor that

can have omission faults may fail to send some required information but when

it does send information it is correct. A processor that may experience byzan-

tine faults may fail to send information and may send incorrect information.

During a byzantine failure a processor may act in malicious ways in order to

confuse the correct processors or to get them to act incorrectly.

Once a fault has occurred there are a number of steps that have to be

taken. They include fault detection/diagnosis, system reconfiguration , and sys-

tem recovery [Stan85]. Fault detection/diagnosis is concerned with identifying

the faulty processors. In a distributed system of fail-stop processors this is

difi'icult because it is not always possible to determine if a processor is slow or it

is stopped. In the byzantine case this is even a more diflicult problem. One pos-

sible approach is to use the concept of authentication as described in [PeSL80].

System reconfiguration is concerned with reorganizing the system after the

faulty processor has been identified. This may require the processors to redistri-

bute the responsibilities of the failed processor. System recovery is concerned

with those actions that must be taken to repair any damage that was done by

the failed processor.

5.5 Conclusions

There are other important issues in distributed algorithms including secu—

rity, algorithm correctness, algorithm complexity. Security is important when-

ever sensitive data is being handled. Guaranteeing security becomes even a

greater problem when data is transferred over publically accessible communica-

tion media. Correctness is an obvious goal of any algorithm design. However,
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showing that a distributed program is correct is very diflicult. Because of the

high degree of parallelism in distributed programs, testing the programs pro-

vides less assurance that it is correct than in the case of sequential programs. In

order to gain greater assurance that an algorithm is correct, a formal methodol-

ogy that can be used to prove correctness must be developed. The complexity

of a distributed algorithm is also an important design criterion. Some common

measurements of complexity include communication costs (number of messages

sent), computation costs, and the communication/computation cost ratio. The

communication/computation cost ratio can be used as a measure of the

appropriateness of implementing a distributed algorithm on a particular archi-

tecture. While each of the above features, security, correctness, and complexity,

are important in distributed algorithms, we do not emphasis them in this

chapter because they do not have a special relationship to the distributed

nature of an algorithm as do negotiation, remote state maintenance, and relia-

bility.

We conclude this discussion with some comments on the architectural

environment for distributed programming. A distributed architecture consists of

a number of processors, where each processor has its own local memory and

there is no shared memory. The processors are connected to a communication

subsystem that allows any two processors to communicate. The most common

example of this type of architecture is a local area network. Two features of a

distributed architecture are important. They are the time it takes to send a

message from one processor to another and the degree of autonomy that the

processors have. Two architectures are appropriate for distributed program-

ming. They are local area networks (LAN) and loosely coupled multiprocessors

[MeBo76]. The boundary between these two architectures is not well defined. In

terms of distributed programming, LANs can be characterized as having a
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longer (relatively) transmission time and greater processor autonomy; whereas

the loosely coupled multiprocessors has a shorter transmission time and less

processor autonomy. Naturally distributed algorithms will be developed for

both types of systems (for example, the control algorithms of a distributed

operating system). The primary difference will be how conducive the system is

to the development of artificially distributed algorithms. In order to efiiciently

execute artificially distributed algorithms, the message passing time should be

very short and the system should have strong control over where processes are

scheduled.



CHAPTER 6

THE DISTRIBUTED GANIE PLAYING ENVIRONMENT

The availability of distributed systems has created interest in the develop-

ment of distributed algorithms. In order to investigate distributed algorithms

an environment for investigating distributed algorithms, called distributed game

playing (DGP), has been developed. The DGP environment can be used to

investigate the basic features of distributed algorithms that were defined in

Chapter 5. The DGP environment allows researchers the flexibility to highlight

various features of distributed algorithms while creating managable size prob-

lems. In this chapter the basic features of the DGP environment are defined

and the relationship between the DGP environment and problems in distributed

computing is shown.

6:1 Generic Player Structure

A distributed game playing algorithm is a three tuple (P,L,A), where P is a

set of players, L is a language represented by a set of message forms that the

players understand, and A is a set of actions that players may take based on

the state of the game. Each DGP algorithm has five phases: tournament forma-

tion, round formation, game playing, round termination, and tournament termi-

nation. The three middle phases may be repeated many times. Figure 6.1

presents the overall structure of a game player .

process player;

type definitions;

message form definitions;

variable definitions;

begin

tournament formation phase;

repeat

84
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round formation phase;

game playing phase;

round termination phase;

until tournament is over;

tournament termination phase;

end player;

Figure 6.1. Generic Player Structure

The tournament formation phase involves a set of players trying to form a

tournament. The number of players in the set is not known until the tourna-

ment is formed. In a close tournament the new players cannot join the tourna-

ment when the tournament formation phase is completed. In an open tourna-

ment players may join even after the tournament formation phase is completed.

Usually the new players will be able to join the open tournament only between

rounds. In some cases, when the tournament has been formed, all players in the

tournament will know the name of all the other players in the tournament.

. Each tournament consists of a number of rounds. In each round, players

are bound to a game. The binding is accomplished through the cooperation and

agreement of the players in each game. There will be many games per round.

For example, a tournament with 2n players that requires exactly two players

per game would have n games per round. All games of one round are played

concurrently. Each player will be bound to at most one game per round. The

round formation phase involves players agreeing to join with other players to

form a game. When all players have joined a game or the maximum number of

games has been formed, the round formation phase is completed.

In the game playing phase, the players of each game must decide on an

order of play. In some games, players will want to elect a coordinator. During

the playing of the game, the players (or the coordinator) will be responsible for

maintaining the shared game state. The game state provides information that

all players can use to decide how to make their next play. If the players do not
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trust each other (i.e. unreliable players), they can monitor each play in order to

assure themselves that the play is legal. The players (or the coordinator) will

be responsible for determining when the game is over. When the game is com-

pleted, the players (or the coordinator) will have to announce that the game is

over and report any scoring information that is pertinent to the tournament.

After this, the players enter the round termination phase.

Players enter the round termination phase at different times depending on

when their current game ends. In some DGP programs, the round termination

phase requires that a player waits until all games of the previous round are

completed before the player returns to another round formation phase. In this

case a player in the round termination phase listens for announcements of com-

pleted games. When the player finds that all games are completed, the player

completes any remaining round termination actions and enters another round

formation phase (if the tournament is not over). In other DGP programs, a

player may enter a new round whenever there is enough players available to

form a new game. In this case a player in the round termination phase will

listen for games to be completed. When the player decides that enough games

have completed, the player may enter the round formation phase and try to

form a new game. In some cases, the player may be required to keep track of

the number of games in which the player has participated.

The tournament termination phase involves the confirmation by all players

that the tournament is completed. Announcement of pertinent information con-

cerning the results of the tournament may also take place. For example, the

name of the winning player and the scores of other top players could be

announced.

The active entities in a tournament are the players (and possibly game

managers). The players are not necessarily associated with human players.
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From the environment’s point of view, this is not an issue. Each player will be

represented by a process. It is the interaction of the processes which represent

players that is of interest to us. The internal structure of players in the same

tournament does not have to be the same. However, they must speak the same

language. In other words, when they communicate with other players, they

must follow the same protocols. There is not (necessarily) a coordinator at the

beginning of the tournament, although one can be elected after the tournament

is formed.

6.2 Characteristics of the DGP Environment

Some common features of distributed programs were presented in Chapter

5. These features can be easily investigated in the DGP environment. Negotia-

tion plays an important role in DGP programs. The only active entities in the

program are the players. Players must negotiate in order to form tournaments

and rounds. They must also negotiate to determine the order of play in a game.

The flexibility of the negotiation will depend on how the players are structured.

The agreement might require only the simple exchange of information or it

might require an extended negotiation. For example, a player might arrive

when a number of tournaments are being formed. This player could negotiate

with players in each tournament before deciding to join one. The complexity of

the negotiation will depend on what attributes are associated with the player.

Synchronization issues are important in the initiation and termination of

rounds and tournaments. In the case of the tournament formation phase,

players in the tournament must agree when the tournament formation phase

has been completed so that new players are not accepted after the tournament

is formed. When agreement on this point is reached, the tournament can begin

with the initial round formation. In the case of round termination, new round
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formation can not begin until all games of the previous round are completed (in

some cases) and all players agree that the games are completed. Synchroniza-

tion issues are also important in ordering of the players turns within one game

and in updating of the game state. Difl'erent strategies can be developed to

reflect diflerent levels of concurrency.

Remote state maintenance is needed whenever players need information

about the actions of other players, in which they were not directly involved.

For example, a copy of the shared game state will usually be kept by each

player. When one player takes its turn, it will change the shared game state.

The changes must be reported to all players in the game. The amount of infor-

mation included in the shared game state will aflect how well players can make

decisions during their turn. A variety of player designs can be used to see how

changes in the amount of information stored in the shared game state aflect

player performance. Remote state information will also be used to keep track of

information between rounds. This information could include scores associated

with each player and the identity of the winners of previous games.

Reliability problems are an issue when the players may be unreliable. In

this case players may monitor other players to make sure they update the

shared game state in a legal manner. Individual players could be represented by

a number of processes to take advantage of redundancy. In this case a players

actions could be decided by a vote among the processes that represent the

players.

The DGP environment can be used to investigate and illustrate problems

in distributed computing. The multiphase structure of a DGP algorithm

corresponds to the multiphase structure of many distributed algorithms

[Kuma85, ChLa85]. The tournament formation phase can be used to investigate

problems in load balancing and distributed initiation. The round formation
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phase can be used to investigate problems in system reconfiguration and

cooperative scheduling. The game playing phase can illustrate problems in

mutual exclusion (shared game state), distributed experts (teams of players),

and reliability (monitoring other players actions). The round termination phase

can be used to investigate distributed termination problems. In Section 6.1 we

will survey some problems in distributed computing and show how they can be

expressed in terms of DGP.

6.3 Classification of DGP Features

In Figure 6.2, we present some classifications that can be associated with

the DGP environment. In the tournament column, we list some classifications

for tournaments. A fixed length tournament will end after a fixed number of

rounds. The actual number of rounds might depend on the round formation

structure and the number of players in the tournament. In a fixed time tourna-

ment, a new round will not start after a certain time. The time value will usu-

ally be agreed upon by the members of the tournament during tournament for-

mation. In an unbounded time tournament, the length of the tournament is not

known after the tournament formation phase is completed. At some point dur-

ing the tournament, all (or some other agreed upon number) players will agree

to end the tournament. A fixed size tournament requires a fixed number of

players in order to start. The size is usually expressed as a multiple of the

number of players required for one game. For example, a tournament in which

the games required 3 players could require that the tournament has 3n players.

In this case the tournament formation phase might be required to remove some

players in order to get a multiple of three players. The fixed size attributed

could be combined with other attributes. For example, we could have a fixed

size, fixed length tournament.
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Figure 6.2. Some DGP Classifications

In the round column, we list some possible round structures. In a round

robin structure, all possible combinations of games must be played. For exam-

ple, if each game requires two players, then every player will try to play with

every other player. In a tournament ladder structure, only the winners of the

games in a round advance to the next round. The tournament ends when there

is only one player remaining. In an N-and-out structure, a player remains in the

tournament until the player losses N games. After each loss, a player moves

into a difierent bracket in which all players have lost the same number of

games. At some point in the tournament, there will be N players remaining.

Where one player has lost zero games, one player has lost one game, etc. These

players will play each other until only one player remains (i.e., all the other

players have lost N games). In an open negotiation structure, there are less

guidelines about how a new round can be formed. New rounds will be formed

through a more flexible negotiation between the players. One possibility is that

when a round ends, all players become “free agents” who can negotiate with

any other players to form a new game. Another possibility is that when a game

ends, the players in that game choose a player to trade (a kind of election).

When the player has been chosen, the group of players negotiate with other

groups of players to complete a trade.

In the game column, we list some attributes associated with games. A fixed

size game is one that requires an exact number of players. For example, a game
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could require exactly 4 players. In a bounded size game, there is a maximum

and minimum number of players required for the game. For example, a game

could require between 3 and 5 players.

In the player column, we list some attributes associated with players. A

stationary player is a player who is bound to one processor. This would be the

usual case when a player process is associated with a human player. A mobile

player can be scheduled at any processor. Such a player will be moved from one

processor to another in order to reduce communication costs. For example, all

the players in one game can be located at the same processor if the are all

mobile. Fail-stop and byzantine [Lamp83] are attributes that can be associated

with players if an algorithm designer wants to investigate reliability issues

within the DGP environment. A fail-stop player is a player that acts correctly

or does not act at all. A byzantine player may perform illegal and malicious

actions.

The classifications listed in Figure 6.2 represent only some possible

classifications. They are presented as a starting point for problems that can be

used to illustrate concepts in distributed computing and to practice distributed

computing. Problems that highlight different issues can be created by associat-

ing different attributes with tournaments, rounds, games, and players.

6.4. Using DGP to Illustrate Distributed Computing Concepts

The DGP environment can be used to illustrate, teach and investigate dis-

tributed computing concepts. In this section we review some important issues in

distributed computing and show how these issues can be illustrated using the

DGP environment. The concepts that we will discuss include bidding, mutual

exclusion, voting, distributed termination, and byzantine agreement.

6.4.1 Bidding in the DGP Environment
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As we mentioned earlier, the concept of bidding was one of the earliest

concepts in distributed computing. This concept has been used as a means of

load balancing in distributed systems [Farb73, StSi84] and as a control mechan-

ism for distributed problem solving [Smit80].

Bidding is a rather simple concept that is very powerful because of its gen—

erality. For example, in the case of load sharing, the process with excess work

could be a scheduling process that finds its processor overloaded. As new work

arrives this scheduling process may try to send that new work (processes) to

other processors by asking the remote scheduling processes if they will accept

new work. In a distributed problem solving example we could have a set of

cooperating distributed experts. These experts may have difierent areas of

expertise. One expert may find it needs a solution to a problem for which it is

not an expert. It may announce its need to solve a particular type of problem

and wait for bids from experts that know how to solve the problem.

For each specific application of the bidding concept, a number of design

choices must be made. These design choices include identifying processes that

should be sent request-for-bid messages and determining how long a process will

wait for bids. The destination of request-for-bid messages can be determined

statically or dynamically. In a static method all of the cooperating processes

could be sent each bid request. In a dynamic method the nature of the available

work that is being ofl'ered and the most recent state of the remote processes

could determine which processes will be sent request-for—bid messages. For

example, in a load sharing algorithm we could send request-for-bid messages in

three diflerent ways: 1) send request-for-bid messages to all remote scheduling

processes, 2) send request-for-bid messages to the remote scheduling processes

that control lightly loaded processors, or 3) examine the characteristics of the

work (process) and send request-for—bid messages to the remote scheduling



93

processes that control processors that can best satisfy these characteristics. In

determining the length of time that a process should wait for responses from

processes that were sent request-for-bid messages, we can look at three options.

One option is to have the process wait for a bid from each process that was

sent an announcement (this requires the process to know the number of ‘

processes that have received the request-for-bid messages). Another option is to

have the process wait for a specific time period for bids. A third possibility is to

have the process wait until it has found a bid that is acceptable. In determin-

ing who should be sent request-for-bid messages and how long to wait for bids

the algorithm designer must take into consideration the nature of the algorithm

and the nature of the underlying communication system.

The concept of bidding can be illustrated using DGP in a variety of ways.

For example, we could have a tournament that requires the players in the same

game to be located on the same processor. Each processor would have a game

manager which controls the players during round formation. The game

managers would cooperate to create a new round formation. Two goals of the

game managers could be to keep the (approximately) same number of players in

each game and to make sure that the players play with different players in each

round. The game managers could attempt to accomplish this by announcing

that certain players were available at the beginning of the round formation

phase. Following that other game mangers would send bids indicating their

desire to have a particular player. The announcements of available players

could include each available player’s name and a history of the previous players

with which it had played.

In another example we could have a tournament that has teams of players.

Each team could have a team manager which decides on the next ”move” that

should be made. The players on the team would have a variety of skills that



94

can be used to help the team manager make its decision. The team manager

would ask for help from the other players by asking for bids to evaluate the

current game state. Other players could also ask players for help when they are

evaluating their part of the game state. The team manager will decide on the

move to make based on its own evaluation and on the partial evaluations of the

other members of the team.

6.4.2 Mutual Exclusion in the DGP Environment

The problem of mutual exclusion in distributed systems has the same gen-

eral goal as in the case of centralized systems: to guarantee that at most N

(where N is usually 1) processes have access to a critical section at any time.

The problem is made more diflicult in distributed systems because the shared

values associated with the critical section may be replicated. For example, a set

of processes could share an integer value where each process maintains its own

copy of the shared value. If a process wants to update the shared value, it must

make sure that no other process is trying to update the value. In some cases

processes will be prevented from reading a value if it is currently being

updated. Another problem faced by a distributed mutual exclusion algorithm is

fairness. In a centralized system requests to enter a critical section can be

queued at a central point and processed in a FIFO (if necessary subject to

priorities) order. In a distributed system there is not a central point for queue-

ing such requests so it will take extra work to get the cooperating processes to

agree to handle requests in a fair order.

An early solution to this problem was presented by [RiAgSl]. In this solu-

tion a process that wanted to enter a critical region would request permission

from all processes that might want to enter the critical section. A process could

only enter the critical section when all processes returned their permission. If
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there where N processes that wanted to enter the critical section (and con-

trolled a copy of the critical section) then this algorithm would require 2(N-1)

messages. Other solutions to this problem can be found in [SuKa85, Maek85].

Mutual exclusion problems can be illustrated most easily in DGP by using

the game playing phase. In this phase a shared game state will be maintain by

each player in the game. When a player makes a ”move” it will update the

shared game state. There are a number of ways that the updating of the shared

game state can be controlled. If the game does not require that players play in

a specific order, then we can let players operate asynchronously and the mutual

exclusion algorithm that controls the shared game state will not address prob-

lems of fairness. In another example we allow players to operate asynchronous

but if two or more players try to access the shared game state at the (approxi-

mately) same time, the player that has accessed the shared value the least

number of times should be given priority. In a third example, we could force

the players to make moves in a fixed order, thus no player should access the

shared game state if the other players have not taken their turns. In this case

the algorithm should address the problem of a player failing and thus stopping

the other players from making further moves.

6.4.3 Distributed Termination

Another interesting problem in distributed computing is the problem of

distributed termination. Some distributed algorithms can be characterized as

operating in a series of phases: phase 1, phase 2, , phase N. Within each

phase processes operate asynchronously. The end of a phase represents a point

of synchronization where all cooperating processes must determine that they

have all completed phase i and are ready to start phase i+l. The distributed

termination problem can be characterized as the problem of determining if all
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processes have completed a particular phase of an algorithm. Distributed termi-

nation can also be used to identify deadlocks. For example we could have a set

of processes waiting to receive messages and no processes sending messages. A

distributed termination protocol could be used to detect this situation.

There are a number of ways in which the distributed termination problem

can be addressed. In the simplest case a process may have two states: working

or terminated. When a process enters the terminated state it cannot re—enter

the working state (if it has terminated a phase it will enter the working state

when it finds that all other processes are terminated and enters the next phase).

In this case when a process enters the terminated state it simply announces this

fact to the other processes and waits for all other processes to report that they

are terminated. If processes and the communication system are reliable, this

problem is relatively easy. A more complex distributed termination problem

allows a process to be in one of three states: working, idle, or terminated. The

working and terminated states have the same meaning as before. The idle state

indicates that the process is no longer doing any useful computation but it may

receive messages that will allow the process to re-enter the working state. A

process moves from the idle state to the terminated state when it can guarantee

that no message will arrive making it re-enter the working state. In general a

process will be able to enter the terminated state only when all other processes

are idle and there are no outstanding messages that could make any process re-

enter the working state. Solutions to this problem can be found in [DiSc80,

Fran80, MiCh82].

The problem of distributed termination can be investigated in many places

in a DGP algorithm. The structure of the DGP environment fits nicely into the

multi—phase structure algorithms described above. For example we could define

the tournament formation phase to be completed when the there are no more
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processes that want to join the tournament. In order to discover this fact we

could make sure that all players that could possibly join the tournament are

idle and that there are no outstanding messages indicating that a player wants

to join the tournament.

We can use the round formation phase as another example. Consider a

round formation phase in which players must be matched in pairs. Each player

could be in one of three states unmatched, temp_matched, or

permanent_matched. The round formation phase is completed when all players

are in the permanent_matched state. An unmatched player will try to become

temp_matched with another player. A temp_matched player may break its

current matching and become temp_matched with another player if the new

match is a better match (based on some criterion such as distance between

players). A player can only enter the permanent_matched state if it knows that

a better match will not be ofiered. In general this will happen when all players

are in the temp_match state and there are no outstanding messages ofl'ering a

new match.

6.4.4 Voting and Election Algorithms

Voting and election algorithms represent another important class of distri-

buted algorithms. These type of algorithms are used to increase the reliability

of a computation. For example, in some algorithms one process, called the coor-

dinator, will perform some special functions. Since the coordinator could fail,

there must be a mechanism that allows a new process to become a coordinator.

One way in which a new process can become the coordinator is to have an elec-

tion of a new coordinator after the failure of the old coordinator is recognized.

Another use of voting algorithms is to check that a computation was done

correctly. Assume that a particular computation is performed by a number of
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processes. If some of the processes perform the computation incorrectly, there

will be more than one result of the computation from which to choose. The

result that will be used can be chosen by having the processes vote on each

result. In simple election algorithms each process may have a single vote while

in more complex voting schemes processes may have multiple votes (and each

process will not necessary have the same number of votes).

Some solutions to elections algorithms have been proposed in [Gifl79,

Garc82, GaBa85]. The Bully algorithm [Garc82] is an election algorithm in

which the process will the highest process id or priority that recognizes the

failure of the coordinator will become the new coordinator. In this algorithm

when a process recognizes that the coordinator has failed it broadcasts this fact

to all other processes. If no response is returned in T time units, this process

becomes the new coordinator. If a process with a higher process id responds

within T time units then the process defers to the process with the higher id.

This algorithm requires many assumptions, most notablely the communication

system must be reliable. In [GaBa85] a method of distributing votes among a

number processes in order to achieve some reliability constraints is discussed.

Elections can be useful in many places in the DGP environment. For

example, after the tournament formation round is completed the players could

elect a tournament manager who would control the round formation phases and

who would keep information about the current status of the tournament. For

another example we could have a player split itself into a number of identical

players. When it was the players turn to move each copy of the player would

chose the next move it thought should be taken. The players would then vote

on which move (there may be more that one if some copies of the player are

unreliable) should actually be taken. Another use of voting can take place when

a player wants to join a tournament. One method that can be used to
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determine if the player should be allowed to join the tournament is to have the

current members of the tournament vote on each new player’s acceptance.

6.4.5 Byzantine Agreement

A problem that has recently attracted a lot of attention is that of byzan-

tine agreement. Byzantine agreement algorithms try to solve the problem of a

set of processes reaching agreement when some of the processes may be faulty.

The types of faults that may occur are very extreme. The faulty processes may

fail in arbitrary and malicious ways. The faulty processes may try to mislead

the correct processes by sending different information to different processes. The

goal of a byzantine agreement is to have all correct processes reach the same

conclusion.

Two important papers on byzantine agreement are [PeSL80, LaP882]. In

these papers the basic results of this problem in synchronous networks are esta-

blished. The basic result is that given a system of N processes in which at

most M processes can fail, an agreement is possible only if N Z 8M+1. This

solution assumes that a faulty process may send different messages to diflerent

processes and that it may pass incorrect information about the known state of

the system. Another algorithm which makes use of authentication (unforgible

identifiers) allows an agreement to be reached for N _>_ M

To some extent each of the problems discussed above are concerned with

distributed agreement. If it is possible for the processes to exhibit byzantine

behavior, then each of those problems will have to address the problem of

byzantine agreement. The agreement required in these algorithms is more com-

plex than those assumed in the past work on byzantine agreement and requires

further research if byzantine behavior is to be adequately address. Also the

players could be required to follow a set of rules when they play a game.
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Byzantine behavior can be investigated by identifying that a player is not fol-

lowing the rules and developing methods to exclude players that do not follow

the rules from further participation in the tournament.

6.5. Solutions to DGP Problems

In thissection we present some possible solutions to DGP problems. Our

purpose is to illustrate how problems can be constructed in the DGP environ-

ment and to discuss some of the assumptions that can be made. We discuss

three problems: a tournament formation problem, a player matching problem in

a broadcast network, and a virtual ring structure for a round robin tournament.

In our examples we use simplified interprocess communication that includes

asynchronous send, blocking receive, and broadcasting. For further discussion of

interprocess communication in distributed systems see [Geha84, Shat84,

LGKN86].

6.5.1 Tournament Formation in a Broadcast Network

The goal of the tournament formation phase is to identify a set of players

which want to form a tournament. This procedure starts when one or more

players announce that they would like to begin a tournament. When other

players hear the announcement of a new tournament, they can send a message

to the creator of the tournament indicating that they would like to participate

in the tournament. The tournament formation can end when all players that

might want to partake in the tournament have responded to the tournament

creator, when the tournament creator stops accepting new players, or when the

members of the tournament decide (as a group) to stop accepting new players.

An important issue in the tournament formation problem is to determine

the potential players that might want to join a tournament. The are two gen-

eral categories that we will consider: known players and anonymous players. If
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each player knows the identity of the other players that might want to play, we

have the case of known players. In this case we assume we have a set of

players, P = {p 1.? 2' . - - ,p, }, where each player will be in one of four states,

S = {idle ,playing , joining ,creating }. In this situation a player who is creat-

ing a tournament could wait for responses from all other potential players.

If a player does not know the identity of the other players that might

want to join the tournament, we have the case of anonymous players. In this

case, a player creating a tournament cannot wait for each player to respond in

order to determine the end of the tournament formation phase. With

anonymous players a player may arrive (or be created) at any time. When it is

created it could try to create a new tournament or join a current tournament.

If it cannot create a new tournament or join a tournament it will wait for other

players to arrive or it will leave (die). A possible solution to this problem is to

create game managers. The game managers will act as servers that will try to

place a player in a tournament. The players will be the clients of the game

managers. Any player will be able to asked a game manager to place it in a

tournament. The identity of a potential player is not known until it contacts a

game manager. The game managers will have well-known ids so that they can

be easily contacted by the players and other game managers. This type of

structure can be used to investigate client/server type applications.

In Figure 6.3 we show one possible solution to the tournament formation

problem. In this solution we assume that the players and the communication

medium are reliable and that we have known players. A player may decide to

either create a tournament or to try and join a tournament. If a player wants

to create a tournament, it will broadcast a ”create tournament” message to all

other players. If a player wants to join a tournament it will wait to receive a

”create tournament” message. When such a message arrives, the player will
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decide if it wants to join that particular tournament. If it does want to join, it

will send an ”I want to join” message; otherwise, it will send an ”I do not want

to join” message. When the tournament creator receives responses from all pos-

sible players, it will broadcast a list of the members of the tournament.

In the solution presented in Figure 6.3 a reliable broadcast protocol is

assumed. However, broadcast messages may arrive in different order to diflerent

players. If multiple players try to create a tournament at the same time, more

than one tournament will be created. In the solution presented in Figure 6.4 we

assume that we have reliable ordered broadcasting [ChMa84]. With reliable

ordered broadcasting all players will receive all broadcast messages in the same

order. We use this fact in the solution in Figure 6.4 to have one tournament

created even if many players try to create a tournament. In this example,

players that want to join a tournament will join the first available tournament

and players that try to create tournaments when another tournament is being

created will join the tournament that began creation first. The tournament that

began creation first is determined by the first ”create tournament” message that

is received by all players. The algorithm is similar to the algorithm in Figure

6.3 except that a player that tried to create a tournament will also listen for

”create tournament” messages. If it finds that its ”create tournament” message

was not the first ”create tournament” message to be sent it will join the tourna-

ment started by the player who sent the first ”create tournament” message.

Our final solution to the tournament formation problem involves game

managers. We assume the existence of a set of game managers each of whom

may control one tournament at a time. When player wants to join a tourna-

ment, it will send a message to a well-known game manager. The game

manager will try to place the player in a tournament. If the game manager is

currently forming a tournament, it can accept the player into that tournament;



103

CREATING A TOURNAMENT:

broadcast(” create tournament” );

for i := l to n-l {n is the number of potential players}

receive(player_id, message ;

if message = ”I want to jorn” then

add_player(player_id, tournament_members);

end for;

broadcast(”begin tournament” ,tournament_members);

{begin round formation}

JOINING A TOURNAMENT:

joined := false;

while not 'oined do

receive(player_id, ”create tournament”);

if want_to 'oin() then

send player__id, ”I want to join”);

joine := true;

lse receive(player_id, ”begin tournament”, tournament_members);

e

send(player_id, ”I do not want to join”);

end if;

end while

{begin round formation}

Figure 6.3: Tournament formation with reliable unordered broadcasting.
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otherwise, the game manager will send a ”request for bid” to the other games

managers. The player will be assigned to the game manager that returns the

best bid. In this case the bid will be the number of players currently in the

tournament that is being formed. The game manager with the least number of

players (lowest bid) will be awarded the new player. The solution is presented

in Figure 6.5. Note that in this example we have a number of independent

cooperating sets of processes: the game managers and each tournament that is

taking place. If a process wants to broadcast a message to other processes that

are cooperating with it, it will have to have a way of indicating the destinations

of the broadcast. One way that this can be done is to have the set of cooperat-

ing processes form a dynamic group [AhBe85, Cth85, GeNi85]. Each dynamic

group will have a unique id. This id will be used as destination of the broadcast

message. For example, the statement broadcast(groupl,message) will cause the

message to be sent to all the processes in groupl. In the above example we

would form one group for all game managers and one group for each tourna-

ment managed by a game manager.

6.5.2 Player Matching in a Broadcast Network

The responsibility of the round formation phase is to group players into

games. In this section we look at the problem of matching players in order to

form two player games. We are given a set of players each of which wants to

be matched with an opponent (another player in the tournament). Each player

has a history associated with it that provides a record of the players with which

it has previously played. The players must decide on a matching that satisfies

the following: no player is matched with a previous opponent and the max-

imum number of matches is created in each round. In general the maximum

number of matches is [n /2 J , where n is the number of players in the tourna-

ment. However, because of the history associated with each player this many
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CREATING A TOURNAMENT:

broadcast(” create tournament” );

created := true;

receive(player_id, ”create tournament”);

if player_id 7é my_id then

send(player_id, ”I want to join”);

receive player_id, ”begin tournament”, tournament members);

{go to t e round formation phase}

end if;

for i :---= 1 to n-l

receive(player_id, message ;

if message = ”I want to jorn” then

add_player(player_id, tournament_members);

end for;

broadcast(” begin tournament” ,tournament_members);

{begin round formation}

JOINING A TOURNAMENT:

receive(player_id, ”create tournament”);

send(player_id,”I want to join”);

receive(player_id, ”begin tournament”, tournament_members);

{begin round formation}

Figure 6.4: Tournament formation with reliable ordered broadcasting.
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matches will not always be possible. Thus, some players may sit idle in a

round. We assume each player knows ids of all other players and that the

player ids are (1,2, n).

One solution to this problem is to have each player broadcast the comple-

ment of its history (all players with which it could play). After this phase each

player has the same information as every other player and if each player uses

the same algorithm they can all find the same matching solution. The informa-

tion that indicates which players can be matched with other players can be

formed into a graph structure and this graph can be searched. The graph will

be a directed acyclic graph with n levels where a node on level i represents a

possible match for player i. The graph can be searched using a modified depth

first search (DFS) (the modification takes into account the fact that if player i

is matched with player j this players cannot be used later in the graph). In the

algorithm presented in Figure 6.6 the DFS procedure can be called many times.

Each time it runs into a dead end it will return the path it has found and the

length of the path. If the path length satisfies the minimum path length

requirement then the path is accepted; otherwise, the search is continued. If the

best path is required then the minimum path length should be n (a match for

each player). Note, this does not imply that a path of length n will be found

since one might not be possible (it depends on the history of the players). The

algorithm for this solution is presented in Figure 6.6.

The solution presented in Figure 6.6 does not take advantage of the poten-

tial parallelism of the problem. With a simple modification to the solution in

Figure 6.6 we can introduce some parallelism. Each player will choose a

different match for player 1 (if there are not n choices for player 1, a few

players will search from the same starting point or we could have each player

choose a different match for player i, where player i is the player with the most
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RECEIVE PLAYER REQUEST:

receive(player_id, I want to join a tournament" );

if tournament_forming then

send(player_id, ”you are accepted”, group_id);

add_player(player_id, tournament_members);

if size(tournament_members) Z min_tournament_size then

go to round formation phase

end if,

else

broadcast(game_managers,”request for bid”)

low_bid := -l;

Iow_manager := null;

for i := l to num_game_managers -l

receive(managerJd, bid);

if bid < low_bid then

if low_manager 76 null then

send(low_manager, ”reject”, null);

end if;

low_bid = bid;

low_manager := manager_id;

send(managerjd, ”reject”, null);

end 1';

end for;

if low_bid > -1 then

aend(low_manager,”you win”, player_id);

send(player_id, ”no tournament available”);

end if;

end if;

RECEIVE REQUEST FOR BIDS:

while size(tournament_members) < min tournament_size do

receive(managerJd,” request for bid” ;

if tournament_lorming or not tournament_in_progress then

else

tournament_forming := true;

bid := size(tournament_,rnembers);

send(manager_id,bid);

receive(manager_id,message, player_id);

if message = ”you win” then

send(player_id, ”you are accepted” );

add_playcr(player_jd,tournament_members);

I

send(managerJd,-l);

end if;

end while;

tournament_in_progress :== true;

{round formation}

bmadcast(toumament_id

{complete round formation}

”

begin tournament”, tournament_members);

JOINING A TOURNAMENT: . ‘

aend(game_manager, ”I want to jorn a tournament”);

reeeive(game_manager, message, tournamentjd);

if message = ”you are accepted” then

else

end

receive(game_manager, ”begin tournament”, tournament_members);

{go to round formation}

{try again or die}

I

Figure 6.5: Tournament formation with game managers
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possible opponents). In this way instead of having each player look at all possi-

ble paths we partition the paths into n difl'erent sets. Each player will search

one set. There is of course a price to pay for this speed-up. Since each player

searches a difl'erent set of paths, the players will not automatically arrive at the

same solution. Each player will have to broadcast the best solution that it

found. The players will then use the best solution that is found.

6.5.3 A Virtual Ring Structure for a Round Robin Round Structure

In this problem we assume the tournament formation phase has been com-

pleted and we present an algorithm that performs round formation and round

termination. Assume that each game in the tournament requires exactly two

players and the players are mobile. We also assume that there are 2n players

and m processors, where m Zn. During the tournament formation phase,

players are paired at different processors so that there is at most one pair of

players per processor. The round formation phase requires each player to iden-

tify itself to the player located at the same processor. When this is done, the

game playing phase may begin. In the round termination phase, players must

wait for all the games in the round to end. When the games are over, the

players will rotate in a predefined pattern to get into position for the next

round. Figure 6.8 shows the different patterns that each round will have for a

six-player tournament.

The tournament can start at any round depending on the initial pairing of

players. After the initial pairing of players is made, the rounds will be followed

in order (round 1 follows round 5) until five rounds have been played. In gen-

eral, a tournament with 2n players will require 2n -1 rounds. Each rotation of

a player requires the player to move to a new processor. The rotations that a

player will make in this algorithm can be described as follows. After the tour-
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PLAYER MATCHING:

broadcast(” potential players”, player_list);

for i := l to n-l {n is the number of players in the tournament}

receive(player_id,” potential players”, player_list);

add_player__list(player_id,player_list,player_list_array);

end for;

length := 0;

DFS(player_list_array,path,length);

while length < minimum_acceptable_length do

if length > best_length then

best_length := length;

best_path := path;

end if;

DFS(player_list_array,path,length);

end while;

{at this point a path has been found and the game playing can begin}

Figure 6.6. Player matching in a broadcast network
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nament formation phase is completed, each player knows the names of all the

other players in the tournament. The players will order themselves 1,2, - - - ,2n

according to the relative order of their names. The rotation pattern will use

this relative ordering. Player 1 will never move. Player 2 will follow player 3.

Player 2n —1 will follow player 2n . For the remaining players, player m will

follow player m +2 if m is odd or player m—2 if m is even. This rotation pat-

tern allows the tournament to be completed in the fewest number of rounds.

Figure 6.8 shows the rotation pattern for the six-player case. Remember that

the players in each game are assumed to be located at the same processor. Also,

one processor handles at most one game. These are not assumptions which are

part of the DGP environment. They are only assumptions of our solution to

this problem.

 

 

 

 

 

Round Robin Pairings

“ Games Round 1 Round 2 Round 3 Round 4 Round 5

Game 1 1,2 1,4 1,6 1,5 1,3

Game 2 3,4 2,6 4,5 6,3 5,2

Game 3 5,6 3,5 2,3 4,2 6,4       
 

Figure 6.8. Round and game assignments in a six-player tournament

Some readers may question the fact that the algorithm allows players to

request to be moved to another processor. This can be accomplished by issuing

a migrate command. We assume that the migration is always successful. In a

real system, the migration command would be a request to the operating sys-

tem which would not always be granted. If the request was not granted, the

process would take appropriate actions. In this case the algorithm would not



111

PARALLEL PLAYER MATCHING:

broadcast(” potential players”, player_list);

for i := l to 2n-1

receive(player_id,” potential players”, player_list);

add_player_list(player_id,player_list,player_list_array);

end for;

the next line chooses the starting point for each player}

player_list_array[1,0] gives the number of possible matches for layer 1}

path 1] := player_list_array[l,min(my_id,player_list_array[1,0])f

engt := 0;

DFS(player_list_array,path,length);

while length < minimum_acceptable_length do

if length > best_length then

best_length := length;

best_path := path;

end if;

DFS(player_list_array,path,length);

end while;

{at this point a path has been found that can be broadcast to the other player}

broadcast(”path announcement”, path)

best_path = null;

best_length = 0;

fori:= 1 ton-l

receive(player_id,” path announcement”, path)

length := get_length(path);

if length > best_length then

best_path := path;

best_length := length;

~ end if;

end for;

{go to round formation}

Figure 6.7. Parallel player matching in a broadcast network
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change significantly. The problem of scheduling processes in a distributed sys-

tem has drawn considerable attention [PoMi83, WaJu83, NiXG85, StRCB5,

TaT085]. In many cases, the scheduling problem is addressed as if processes are

all independent. Some more recent work [StSi84] has addressed the scheduling

of related processes. In an environment which supports distributed program-

ming, a question arises concerning which processes are closely cooperating and

thus would benefit from being scheduled at the same processor. If the relation-

ship between the processes is static, this coupling can be indicated at compile

time. However, if the relationship is dynamic, some run time indication of the

relationship between processes is necessary. We are currently investigating the

problems associated with providing this type of run time indication. The solu-

tion described above can be found in Figure 6.9.

6.6 Some Additional Problems

, Listed below is a set of potential problems of interest. Each of the prob-

lems listed below can be given various degrees of difliculty depending on the

assumptions about the players and the communication. Some possible sets of

assumptions include: 1) reliable, fail-stop, and byzantine players 2) reliable

one-to-one communication, unreliable one-to-one communication, 3) no broad-

casting, unreliable broadcasting, reliable unordered broadcasting, and reliable

ordered broadcasting. One choice can be made from each category.

Counting Players in a DGP Tournament: In this problem we are

interested in knowing the number of currently active players in the tourna—

ment. We assume that a player may leave the tournament without warning or

that players may die without warning. Solutions to this problem will investi-

gate the cost (in messages or frequency of communication) required to reach a

certain level of accuracy concerning the actual number of players. The
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ROUND FORMATION:

opponent_id := player_list [round];

send(op onent,”I am ready” ;

receive opponent,”I am rea y” )’

{begin game playing phase}

ROUND TERMINATION:

if my_id < opponent_id then

broadcast(tournament_id, ”game over”);

end if;

for i := 1 to n-1

receive(player_id,” game over” );

end for;

round := round + 1;

if round < n -1 and my_id 7g 1 then

processor_id := get_processor_id( ;

send(successor(my_id),”here I am ,processor_id);

receive(predecessor(my_id , ”here I am”, new_processor_id);

migrate(new_processor_id

end if;

{go to round formation if the tournament is not completed}

0

9

Figure 6.9: Round formation and termination in a round robin tournament
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evaluation of a solution can be based on an assumed probability of a player

dying or leaving the tournament. The current estimate of the number of exist-

ing players can be used to decide if the tournament can continue. This problem

is related to problems where reliability conditions would require a certain

degree of redundancy. If this degree of redundancy is not maintained, the

operation would move into a shutdown or hold state.

Player Matching: The problem of player matching is a very interesting one.

We saw one example of this problem in Section 2. These problems are useful for

investigating concepts in distributed scheduling, distributed decision making,

and process mapping and grouping in loosely coupled multiprocessors. The

matching problem does not always have to be concerned with matching two

players. The general problem is one of forming subsets of players that satisfy

certain criteria. Some more specific problems are listed below.

Piayer Matching in a Point-to-Point Network: This is similar to the

problem that we discussed in Section 2. We have a set of players that belong to

a tournament where each player wants to get matched with one opponent. The

goals of a solution to this problem are: no player is matched with a previous

opponent, the maximum number of matches are achieved, and the matches

represent a least cost matching. In this case, the cost is the sum of the links

that separate each pair of opponents. To actually find an optimal matching

may require an exhaustive search, but heuristics could be developed to find a

near optimal solution in a shorter time.

General Round Robin Tournament: This is a generalization of the problem

discussed in Section 2. Assume each game requires exactly N players and there

are M players in the tournament. Create a round formation strategy that
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allows each player to play with every combination of N—1 players and to have

the tournament complete in the least number of rounds. Note, this problem can

also be seen as a player matching problem. In this case the subset size is N

instead of 2 and the cost criterion is a global cost associated with the tourna-

ment rather than the local cost of one round. The goal of minimizing a global

cost may require a look ahead feature that estimates how good a matching is in

terms of estimated future cost. Solutions may be able to make use of min/max

and a/fi searching and pruning techniques.

Tournament Formation in a Multi—Tournament Environment: This

problem is concerned with developing strategies that allow players to join a

particular tournament when there are many tournaments seeking players.

Solutions can be based on either players competing to get into certain tourna-

ments or tournaments (represented by their manager or acting as a group) com-

peting to get certain players. This problem can be used to investigate various

distributed decision making strategies. In particular it can be used to investi-

gate diflerent methods by which a process is allowed to join a particular

dynamic group.

6.7. CONCLUSIONS

We have presented an environment of distributed programming called dis-

tributed game playing. This environment provides a good environment for the

investigation of the basic features of distributed algorithms: negotiation, remote

state maintenance, and reliability. An almost unlimited number of problems

can be created from this environment. This environment will provide many

manageable size problems. The environment is very flexible. The problems can

be defined so the interests of the user can be highlighted and other factors can

be minimized. In general, the interaction between players can be emphasized
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while the sequential parts of the players can be kept to a minimum. Problems

can be designed to provide practice in distributed programming. Other prob-

lems can be designed to evaluate an interprocess communication system. For

example, a user can create a set of problems which have varying degrees of

communication and computation requirements to produce a varied workload for

testing a distributed system.

We are currently developing more problems and solutions in the DGP

environment. The development of appropriate higher-level language structures

is essential to the development of distributed programming concepts. We are

investigating standard player interactions in order to discover general structures

that can be formalized into higher-level language constructs. We are also inves-

tigating the possibility of developing distributed debugging and execution con-

trol tools for our DGP environment. By creating expert game playing strategies

we can investigate problems related to artificial intelligence such as communi-

cating or cooperating expert systems.



CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

The importance of distributed computing is growing rapidly. With

increased requirements for computation speed, highly reliable systems, and

intergrated communication and computing resources the area of distributed

computing will continue to be important for many years. There are many

problems that must be addressed if distributed systems are to reach their full

potential. In this dissertation we addressed three problems: 1) the design of a

an interprocess communication system that can take advantage of the broad-

cast nature of many LANs and provides a foundation for the development of

distributed applications, 2) a comparison of two load balancing algorithms, bid-

ding and drafting, in an Ethernet based environment of workstations, and 3)

the development of an environment for investigating distributed applications.

7.1 Summary

The following results were achieved through this research:

(1) An interprocess communication system was designed. This system pro-

vides a wide variety of communication primitives that should satisfy the needs

of any distributed application designer. An important feature of this system is

the concept of a dynamic group of processes. This allows application processes

to make use of the broadcast feature of many LANs in a multiuser multipro-

grammed environment. The dynamic group concept also provides a good encap-

sulation for distributed applications.

(2) A comparison of the bidding and drafting algorithm shows that the

bidding algorithm is able to outperform the drafting algorithm in an Ethernet

based LAN of workstations with a small (10 or less) stations. The extra
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overhead incurred by the executions of the drafting algorithm results in the

bidding algorithm outperforming the drafting algorithm even though the draft-

ing algorithm maintains greater knowledge about the system. Through the use

of emulation techniques we were able to capture the real overhead of these

algorithms, both computation overhead and communication head, that is often

lost in a simulation study.

(3) The basic features of distributed algorithms are examined. These

feature include the difl'erence between naturally and artificially distributed algo-

rithms and the features of negotiation, remote state maintenance, and reliabil-

ity.

(4) An environment for investigating distributed applications called distri-

buted game playing was developed. The basic features of the environment were

defined. The relationship between the distributed game playing environment

and problems in distributed computing was shown through the use of some

illustrative examples. The distributed game playing environment provides a

flexible environment for investigating distributed algorithms and can be used to

illustrate known problems and to develop new problems in distributed comput-

ing.

7.2 Future Work

In this research we have touched on only a few of the problems in distri-

buted computing. Below we list some other problems that should be addressed.

(1) Scheduling in large networks and internetworks.

Consider the problem of having hundreds or thousands of computers con-

nected by a communication system. For example, we could have a number of

local networks of workstations interconnected together. Can a distributed

scheduling algorithm take advantage of all the computers in the internetwork?
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Requiring the scheduler on a processor to communicate with all other proces-

sors in the internetwork may cause too much communication overhead. A possi-

ble solution is to create a hierarchy of dynamic groups of schedulers that

cooperate to schedule processes throughout the internetwork.

(2) Scheduling in Message Passing Multiprocessors

A message passing multiprocessor such as a hypercube is also a kind of dis-

tributed architecture. This architecture is based on a point-to-point communi-

cation medium. One could investigate the performance of the drafting and bid-

ding algorithms in this type of architecture. Also, in many causes the message

passing multiprocessor will be used to solve one multiprocess problems. The

issues associated with scheduling multiprocess problems should also be

developed in order to take advantages of this type of architecture.

(3) Incorporating the dynamic group concept into message based multiproces-

SOI'S

O

In our research thus far we have looked at the dynamic grouping concept

only for broadcast based LANs. If we have a large message based multiproces-

sor that is to be shared by multiple users, then the dynamic group concept may

be useful. For example in order to test an algorithm in a message based mul-

tiprocessor, a user may only require a subset of the processors. This would

allow the multiprocessor to be shared by many users during the development

phase. After the algorithm had been tested it could be allocated to the whole

multiprocessor. In this type of an environment the dynamic group concept may

provide a useful encapsulations for controlling processors. A specific problem

that should be solved in this context is an eflicient method of multicasting in a

point-to-point environment.

(4) Development of more problems in the DGP environment
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The DGP environment provides the possibility of creating many problems

related to distributed computing. We will continue to develop problems and

solutions to problems in this environment. We will also try to find related prob-

lems and see if a classification of problems in the DGP environment can be

developed.

Of course there are many other problems in distributed computing that

can be investigated. Such as those related to fault tolerance or security. The

above problems were mentioned because of their relationship to the work

presented in this dissertation.
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