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ABSTRACT

EM PROBING AND HEATING OF BIOLOGICAL BODIES

WITH BARE AND INSULATED MICROPROBES

By

Abdolhamid Ghods

In the present research the schemes of using a microprobe for

determining the electrical properties of biological bodies in vivo

and for locally heating biological tissues are investigated, with

the application to hyperthermia cancer therapy or other medical

purposes. The relationship between the input impedance of the probe

and the electrical parameters of the surrounding medium is used to

determine the electrical properties of the medium, and the EM waves

in the biological bodies maintained by the current on the probe are

used to heat biological bodies locally.

A detailed analysis of the bare microprobe in a conducting

medium has been conducted and the electric field produced by the

probe in the medium derived. Using the method of moments, Hallen's

integral equation and electric field integral equation for the probe

current are transformed into systems of simultaneous algebraic equa-

tions which are then solved on a computer.



A general theory for an insulated microprobe in a conducting

medium based on lossy transmission line theory is presented. The

current on the probe, the electric field in the medium maintained

by the probe, and the heat pattern of the probe are found. Various

equivalent terminal impedances for the insulated probe are intro-

duced, and their effects on the current distribution and the heat

pattern are investigated.

Experiments have been conducted and the input impedances of

bare and insulated microprobes in saline with various normalities

are measured. The theoretical and experimental results are found

to be in good agreement.
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CHAPTER I

INTRODUCTION

In recent years, electromagnetic radiation and propagation

have played an important role in human life. Intercontinental satel-

lite communication, radar detection, microwave technology, and the

use of EM energy for medical purposes are only a few examples of

the applications using electromagnetic energy these days.

Many medical researchers have investigated the scheme of using

EM energy to induce hyperthermia in biological bodies for the purpose

of cancer therapy. It is known that when the temperature of a can-

cerous tumor is raised a few degrees above that of the surrounding

tissues, the adjoining chemo or radiotherapy becomes more effective

intreating tumors [1]. Therefore, it is the objective of many

researchers to find a noninvasive method by which to heat the tumor

without overheating the surrounding tissues.

Substantial progress was made in hyperthermia cancer therapy

when Leveen et al. [2] used 13.56 MHz EM radiation to eradicate

the tumors or to slow the progression of tumors in some cancer

patients. Other researchers [3,4] have used EM waves at various

frequencies to heat the tumors in animal bodies and reported sig-

nificant tumor eradication.



A successful analysis of the induced EM field inside an irra-

diated body with an imbedded tumor, and design of an effective device

for focusing EM energy in the tumor will depend on the knowledge

of electrical properties of the tumor. Some researchers [5-8] have

used an open-ended coaxial cable, or a very short monopole, or a

symmetric probe [9] to study the electric field induced in the

biological bodies and measure the electrical properties of various

biological tissues.

In the present research the techniques for determining the

electrical properties of biological bodies in vivo and local heating

of an imbedded tumor with an unbalanced monopole, which consists of

a thin open-ended microcoaxial line with an extended center conduc-

tor, are studied theoretically and experimentally.

In Chapter II a theoretical analysis of a bare microprobe in

a conducting medium is presented. The distribution of the current

on the probe, and the input impedance of the probe are calculated

numerically with different methods for various cases. The driving

source is modeled as a delta gap or as a magnetic current ring.

In Chapter III the descriptions of the experimental setup

and the electrical properties of the saline are given. The input

impedance of the probe was measured by the vector voltmeter. The

experimental results are compared with the theoretical results.

Chapter IV contains the applications of the bare microprobe.

The heat pattern of the microprobe in the conducting medium and



the methods for measuring the conductivity and permittivity of the

conducting bodies are presented in this chapter.

In Chapter V a theoretical analysis of an insulated microprobe

in a conducting medium is given. The theory of lossy transmission

line is used to investigate the current distribution on the probe,

the input impedance of the probe, and the electric field produced

by the probe in the medium. Various physical geometries of the

insulated probes with different equivalent terminal impedances are

introduced. The current distributions along and the imput impedances

of the probes with various terminal impedances are compared in this

chapter. A series of experiments were conducted to measure the

input impedances of the insulated probes with various physical

geometries. The theoretical results and the experimental results

are compared.

In Chapter VI the application of insulated probes for local

heating is explained. The theory and the numerical results of the

heat pattern produced by the insulated probes with various terminal

impedances are given.

A brief description of the computer programs used in this

study to obtain numerical results is given in Chapter VII.



CHAPTER II

THEORETICAL STUDY OF A BARE MICROPROBE

IN A CONDUCTING MEDIUM

To measure the conductivity and the permittivity of a biolog-

ical tissue in situe or for local heating of a biological body, a

microprobe driven by an EM source can be inserted inside the tissue.

The evolutional geometries for a bare coaxial microprobe in a con-

ducting medium are shown in Figure 2.1. A coaxial microprobe con-

sists of a microcoaxial line with an extended inner conductor.

In a coaxial line the current is concentrated inside the line

and the current on the inner conductor is equal and in opposite

direction with the current on the inner surface of the outer conduc-

tor. Assuming no accumulation of charges at the end of the outer

conductor, the current at this end is continuous and the direction

of the current on the outer surface of the outer conductor is as

indicated in Figure 2.1(a). Inside the coaxial line the currents

are equal and in opposite directions, therefore, their effects cancel

each other. Only the current on the extended inner conductor and

that on the outer surface of the outer conductor maintain an electric

field in the medium. Hence the probe is equivalent to an asymmetric

dipole as shown in Figure 2.1(b). Since the dipole is in a lossy
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Figure 2.1. Evolution of geometry of a bare microprobe in a con-

ducting medium.



medium, the current decays so rapidly that the probe can be truncated

as indicated in Figure 2.1(c) for the analysis.

The probe in a lossy medium is studied first by the well known

"Hallen's Integral Equation Method" and then followed by the "Elec-

tric Field Integral Equation Method" (Pocklington method).

Modeling the driving source in the probe is very important

and it does depend on the physical geometry of the probe. In the

electric field integral equation method the driving source is first

modeled as a delta gap and later as a magnetic current ring.

2.1. Hallen's Integral Equation for a Microprobe

The vector potential Az(z) on the surface of the probe main-

tained by the current 12(2) on the probe satisfies the following

where 21(2) is surface impedance of the probe and in general it is

assumed to be non-zero. V0 is the applied voltage at the gap and

6(2) is a delta function. The solution to the above differential

equation for Az(z) is given by

A (z) = Ah(z) + A912)
2 z z

where the homogeneous solution A2(z) is



h_jk .
Az(z) - - (0 [C1 cos_kz + C2 Sln kz]

and the particular solution A:(z) is

p five. 2.1.. .
Az(z) = - to 1r-s1n klzl + 0 12(2 )2 (z )s1n k(z' - z)dz

The general solution for Az(z) is

. V

Az(z) = - J—k-[Cl cos k2 + C2 sin kz +79 sin klzl

+[ozlz(z')zi(z')sin k(z' - z)dz'] (2-1-2)

0n the other hand, the vector potential on the surface of the probe

can be expressed as

U hl I 9-.ij 1
Az(z) =‘4F -h2 Iz(z ) R dz (2.1.3) 

With the thin wire approximation, or with the assumption that the

surface current on the probe can be approximated by a line current

flowing along the axis of the probe, we can approximate R as

R =‘Jiz - z')2 + a2

After combining equations (2.1.2) and (2.1.3) it gives

 



h1 e-ij .k4 v0
-hZIz(z') T dz' = - Jw—u'l [C1 cos kz+C2 sin kz+-2— sin k|z|

z .

+ f 12(2')Zi(z')sin k(z' - z)dz'] (2.1.4)

0

Equation (2.1.4) is called "Hallen's Integral Equation," which cannot

be solved in closed form, but it can be done numerically.

2.1.1. Moment Method Solution
 

In order to solve the integral equation (2.1.4), the moment

method is used to convert the integral equation into a system of

simultaneous linear algebraic equations with the probe current at

different locations of the probe as unknowns [10]. The probe is

partitioned into N segments, as shown in Figure 2.2. The unknown

current on the probe I(z) can be expressed in terms of a sequence

of pulse functions:

N

I(z) = Z InPn(z)

n=1

where

1 Z s (AZ)n

Pn(z) =

0 2 L (A2)n

The boundary conditions (B.C.) state that 1(2) = 0 on the tips of

the probe, hence I1 = IN = 0. After the substitution of I(z) in

equation (2.1.4) it becomes
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Figure 2.2. Geometry of the bare probe.
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N-1 1 .

21 f W(z.z')dz' = - 11%?[C1 cos kz + C2 sin kz

n

n=2 . -h2

N-1 2
v .

+ 7‘1 sin klzl + Z : In 21(2')Sin k(z' - z)dZ'] (2-1-5)

N=2 0

-ij

where w(z,z') = 9-1——

Equation (2}1.5) is forced to be satisfied at N midpoints of N seg-

ments. Hence there are a system of N simultaneous algebraic equa-

tions and N unknowns (C1, C2, 12, I3, ... IN-l)’ Let us assume

that the short part of the probe (hl) is made of a very good con-

ducting material so that its surface impedance is approximately

zero and the long part of the probe (hz) is covered with lossy

material so that the surface impedance over this part of the probe

is finite. We can express 21(2) as

. O 0 5.2 5_h1

21(2) =

The system of equations now becomes
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N-l
V

um . ._ 0 .
C1 cos k21+3E4TrZInA1n + C2 s1n kz1 -2— $111 klzl]

n=2

N-l V

C coskz + w" ZIA +C sinkz =- 0sinklzl
1 2 jEIn n 2n 2 2 7?. 2

n=2

N-1

mu

c1 C°S kch+1 ” 3m: InANc+1 n " C2 5‘" kch+1
n=2

1 ch+1 . ' . vo

+ Z INc+1 0 s1n k(z - ch+1)dz = - 7r-sin kIch+1I

N-l

mu , .
C1 cos kch+2 + W3"2 InANc+2 "+02 Sll’l kch+2

n=2

1.jch+1*“2 k( )d

+ Z sin 2' - z z'
0 Nc+2

i ch+2 V0

+ Z sin k(z' -ch+z)dz' = - -2- sin klch+zi

. zNC+1+A/2

(2.1.6)

The surface impedance Zi of h2 in these equations is assumed to be

constant. Also, the coefficient Amn is defined as

r w(2.2')A m f n

A (,')d'=i
mn fumni’zz Z

L 2Ln[.§5 +‘ ’1 + (245)2 :l-jka m = n 
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 .52 m > No

' V
_ 1 0 . - -

Let us define Bm - - if'SI" klzml and Mmn - Amn + Dmn where Dmn - O

for (m and n) 5.Nc and for other values of m and n

. z

1 " .
Z] 5111 k(z' - zm)dz' m = n

zn-A/Z

Zn+A/2

D = ( Zijf. sin k(z' - zm)dz' m f n

zn-A/Z

 . 0 m - n < 0

With these definitions equation (2.1.6) can be expressed in the

matrix form as

 

- . . . l

cos kz1 s1n kzli C1 1 31

cos kz2 sin kz2 12 82

Mmn = (2.1.7)

IN-I

Lcos kzN sin k2". - C2 .. LB".     
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where various matrix elements have been defined. The inversion of

the equation (2.1.7) yields the unknowns: C1, 12, I3, ... IN-l’ C2.

2.2. Electric Field Integral Equation for a Microprobe
 

Maxwell's equations in a lossy medium are

17-15(35) -- .m

17,631?) = mm

Wm?) -- 33(7) + (Gambia?)

+ +

v-B(r) = 0

Vector and scalar potentials in a conducting medium are

 

 

++ ' ++ 'ij

A(r) =£%-d/pd(r') e R dv' (2.2.1)

v

+ 1 + e"ij
“Ms-my] p(r') R dv' (2.2.2)

v

where 6* = 8(1 - 12)
(06

Electric field can be expressed in terms of scalar and vector poten-

tials as

Ed?) = - m?) - jam?) (2.2.3)

Using equations (2.2.1) to (2.2.3) and the continuity equation

v?3(F) + jmp(F) = 0, which gives the relationship between the
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++

current density J(r) and the charge density o(?), the electric field

on the surface of the probe can be expressed as

52(2)“ fig-f [33r12(2') % 1p(z,z')+ k2I2(z')w(z,z') dz'

" T (a.u

The boundary condition on the surface of the probe states that the

tangential components of the electric field at the inner surface

and outer surface of the probe should be equal:

4..

a) (2.2.5)

The electric field at the inner surface of the probe maintained by

the source and the probe current is

2.ar=a=zhanu)-§u) (Lam

where E:(z) is the driving electric field maintained by the source.

The electric field at the outer surface of the probe maintained by

the probe current and charge is given by (2.2.4). By equating

(2.2.4) and (2.2.6), we have

hl 3 , 3 . 2 1 u I32712“ ) .33 w(z,z ) + k 12(2 )w(z.z ) dz

'"2 2

=-1%§5— [21(2)Iz(z) - E:(z)] (2.2.7)

Equation (2.2.7) is called the "Electric Field Integral Equation."

In order to be able to solve the above equation, E:(z) should be
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determined. The driving source should be modeled based on the

physical geometry of the probe. First, the probe is studied with

a delta gap model and then it is modeled as a magnetic current ring

model.

In the case of a delta gap

'1/25 2 = o

E:(z) = 4-V0f(z) and f(2) =

0 2 f 0 k

where 26 is the length of the gap and V0 is the applied voltage

across the gap. After substitution for E§(z) in equation (2.2.7),

it is solved by the moment method. The probe is partitioned the

same way as it was for solving Hallen's integral equation. The

unknown current 1(2) is expressed as a sequence of pulse functions

and after the substitution of this current in equation (2.2.7), it

can be written as follows:

N

Z In [33—2 1p(z,z') 2226+] Z Inzkf 111(2, 2 ')dz' =

z '=z+ (AZ)nn=1 n=1

2

33—3“— [z‘mxzm - Vof(z)] (2.2.8)

where

A
z = z —
a n .2-

2+ 3 2n +'%
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and

_ (z - z')(1 + ij)
 -§% w(2.2') = w'(2.2') = R2 w(Z.Z')

. 0 Oizihl

21(2) = i

[21 -h2_<_z_<_0 

Equation (2.2.8) can be simplified as

N

I l 1 l I

:2E:In{ 142m.z )dz +-;§-[w (zm.zfi)-v (zm.z:)]

n=1 (Az)n

= 347 [12(zmlzkzm) - vonzmn

m = 1, 2, ... N 1 (2.2.9)

This system of N simultaneous algebraic equations can be solved

numerically. Equation (2.2.9) can be expressed in matrix form as

 

follows: .

' 1 r l r

I1 31)

'12 B2

Amn =

I B

L L N 4 in N .     
Consequently
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r r 1'1 ' 1

111 B1

= Amn

I B

i N d i. J . NJ     
where matrix [I] gives the current on the surface of the probe,

and the matrix [B] is the electric field on the surface of the probe

produced by the applied voltage. Matrix [A] is called the impedance

matrix. Elements of matrices [A] and [B] are defined as

. 0 m f Nc

 

 i- am A

Amn =f w(zm.2')d2' + :1; [w'(zm.2_) - w'(zm.zfi)]

(Az)n "

for m 5_Nc, or m > Nc and m # n.

Amn '4] w(zm.2')d2' + :1; [v'(zm.za) - ¢'(zm.Z:)J-%$1 Z1

(:32)" -

for m > He and m = n. (2.2.10)

a1 m 3DNc

 . a2 m > Nc
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Some numerical results are shown in Figures 2.3 to 2.5. In

Figure 2.3 the current distributions along bare probes of various

lengths in a conducting medium, obtained with Hallen's Integral

Equation method, are shown. In this case it is assumed that a1==a2

and h2 is variable. Since the probe is in a lossy medium, the cur-

rent on h2 is decaying. In Figure 2.4 the current distributions

along the same bare probes in the same medium, obtained with the

Electric Field Integral Equation method, are given. Again, it is

observed that the current on h2 is decaying. In both Figures 2.3

and 2.4 it was assumed that the surface impedance everywhere on

the probe is zero. Figure 2.5 illustrates the current distributions

along the bare probes with variable surface impedances on hz. It

is seen that as the surface impedance increases, the current on h2

decays faster. Therefore, if we make 2‘ f 0, then the length of h2

has less effect on the input impedance and truncation of h2 creates

less error.

Figures 2.6 and 2.7 illustrate input resistances and input

reactances of the bare probes of various lengths in the salines

with normalities of 0.0, 0.1, 0.2, 0.3, and 0.4. In all cases

h1==7.5 mm and a = 0.43 mm, but h2 is varied from 30 to 75 mm. In

0’

(0605'-

input resistance changes moderately) when h2 is changed. However,

 

the case of = 0.0, the input reactance changes rapidly (the

 

for = 0.43 the changes on the input resistance and the input
weoer

 

reactance are much less than the case of = 0.0. For other

0

(0603'.

> 0.43, the input impedance of the bare probe
 

cases when weoer
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Figure 2.6. Input resistances of bare probes in the salines with dif-

ferent concentrations. -
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becomes nearly independent of the length of hz. This phenomenon

> 0.43,
 

. . . . . G

impl1es that when the probe 15 in a lossy med1um, w1th weoer

the characteristics of the probe mainly depend on the properties of

the medium, not on hz. These characteristics of the bare probe

can be used to measure the electrical properties of the lossy medium.

For checking the consistency of the theory let us consider

electrically short and thin bare probes. When

a << h, ah << 1, sh << 1

the current distribution along the probe is approximately triangular.

The input admittance Yin of a symmetric bare probe (h1 = h2 = h)

in a lossy medium is known [11] to be

 

.; o . ._ 'TI’h ._

Y1" ‘ G1" + JNC‘" ‘ Ln(h/3) - 1 (U + ch) (2.2.11)

Table 2.1 shows the input admittance of the bare probe at different

frequencies calculated from equation (2.2.11) and from theory

developed in the previous sections, Hallen's Integral Equation

method (HIEM) and Electric Field Integral Equation method (EFIE).

The physical dimensions of the probe are h = 10 mm and a1 = a2 =

0.43 mm. The probe is in a lossy medium with o = 0.05 (s/m) and

er = 7.4 50' The results shown in Table 2.1 confirm the consistencY

of the theoretical methods developed in this chapter.
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Table 2.1. Input admittance of an electrically short and thin bare

probe in a conducting medium.

 

 

 

Equation

Frequency HIEM , EFIE (2.2.11)

10 MHZ 0.688 + j0.056 0.715 + 30.059 0.718 + 30.060

100 MHZ 0.689 + j0.565 0.717 + j0.588 0.718 + j0.601

600 MHz 0.759 + j3.53 0.789 + j3.67 0.718 + j3.61
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2.2.1. Magnetic Current Ring as the Driving Source

In the study of the probe it is very important to properly

model the source region at the driving point. In the previous sec-

tions the source region at the driving point was modeled as a delta

gap and based on that model the current distribution along the probe

was found. In this section, the source region is modeled by a mag-

netic current ring.

As shown in Figure 2.8, the gap is replaced by a circular

magnetic current ring with a surface magnetic current, 2%, flowing

around the probe. The relationship between the electric field at

the gap produced by the applied voltage and the surface magnetic

current is

'fié-fixE ' QJJE

where h is the unit vector in the f direction. After substitution

for h and E in the equation (2.2.12). we have

%=_%$ _ mam

The magnetic vector potential produced by the surface magnetic cur-

rent is

KMG) = 18;] '12m(?-")¢('F,'F')ds' (2.2.14)
SI

where s' is the area of the source region.
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Substituting the surface magnetic current from (2.2.13) in

(2.2.14), the magnetic vector potential can be written as

(9-ij11?)

Afih-%fif&'e.H as. any

5. R( ')

 

Because of rotational symmetry the observation point is chosen at

a = O. In a cylindrical coordinate system, R(F,F') can be expressed

as follows:

2.R = [r2 + r - 2rr' cos 4' + (Z - 2'12]

The unit vector 3' in terms of the unit vectors i and 9 in the car-

tesian coordinate system is

1‘ = -i sin 1' + 9 cos ¢' . (2.2.16)

With (2.2.16), (2.2.15) becomes

(+)= 6 ['31]:0 e-ijCFfF') d 'd '

Am r va'4;[ sin a' R(F'F') a z

AID] 211' e_ij(rFl) ]

+ y cos ¢' +_+ d¢'dz' (2.2.17)

_5' 0 Rh‘. 1'")

Since the integrand of the first term on the right hand side is an

 

 

odd function of a', it integrates to zero. Also, at the plane of

a a 0, 9 = I. The magnetic vector potential Ah(:) is
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A 'ij(-Fs-Fl)

Am“) = “1225718? I cos 41'. e ds' (2.2.18)

SI

 

R(F,F')

The electric field is related to the electric vector potential

++ ++

A(r) and the magnetic vector potential Am(r) by

+++__L.2++-l +-

E(r) - jwe {vv + k ] A(r) e v x Am(r) (2.2.19)

Since only magnetic current is present, 3(F) = 0. Therefore,

 

+ + _ ll 3

Ezir) ' "'E r ar (rAma)

-'kR(F'F')
v 1 a e 3 ’

=-§——-—-—— r cos a' ds' (2.2.20)

1T5 7‘ 8r [ Ll RfFo-Vh) ]

Let us define the integrand in (2.2.20) as F(r,z):

e‘ij(-;s?d)

F(r.2) = cos 1' ds'

SI

 

R(F,F')

The above integral cannot be carried out exactly, therefore, it

will be evaluated numerically. When R + 0 the integrand is singular.

This happens when the field point is in the source region. In order

to evaluate the integral when the field point P(r, 0, t +-§) is in

the source region (see Figure 2.9), the integral is separated into

five integrals as stated below in (2.2.21).
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Figure 2.9. Geometry of magnetic current ring when the field point

is in the source region.
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t 11' 6'3 kRVFs?’ )

F(r,z) = cos 4' +.+ do'dz'

R(r,r')

 

 

 

 

“8 2F e-ij(F,F')

cos ¢ da'dz’ (2.2.21)

R(F,F')

The last integral in this equation which has a singular point is

carried out analytically. The surface is approximated with the

same area [12]. Therefore,

6

[“6 27 e-ij(+“*') e-a‘kaFJ')
f cos (1' +7" da'dz' =f cos¢' TF' ds'

1: _2€L RY‘.( 7 SI R(Y‘, )

' r
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The rest of the terms of F(r,z) can be found numerically and

(2.2.22) should be added to it. The derivative of F(r,z) with

respect to r, according to the finite difference, is

aF(r,z) é F(r,z) - F(r - Ar,z)

Bl" AY‘

After taking the derivative of F(r,z) numerically, its value can

be substituted in (2.2.20) to determine the electric field Elm

produced by the equivalent magnetic current ring at any point in

the medium.

The effect of the length of the magnetic current ring on the

electric field produced by it is studied and it is shown in Fig-

ure 2.10. In this figure the length of the current ring is assumed

to be A9 = 1.0 or A9 = 2.0 mm, on a probe with a1 = a2 = 0.43 mm,

in the medium with o = 1.1 (s/m) and er = 76.7 at 600 MHz frequency.

The area under the curve is E-dl. In both cases the area under

the curve is approximately equal to one, which is equal to the driv-

ing voltage applied to the probe. The distribution of the electric

field maintained by the magnetic current ring on the surface of

the probe is close to a delta function. For this finding, it is

reassumed that the delta gap model for the source region is an

accurate model.

The input impedance of the probe has been calculated with

the magnetic current ring model for the driving source and using

the electric field integral equation method. The effect of the
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Figure 2.10. Normalized electric field on the surface of the probe

maintained by the magnetic current ring model.
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length of the magnetic current ring on the input impedance was

studied, and the results are shown in Figure 2.11. In this figure

the length of the ring is changed from 0.5 mm to 2.0 mm but no sig-

nificant change in the input resistance or the input reactance is

observed for this range of change.

2.3. Comparison of Different Methods
 

In the previous sections different methods for solving the

bare probe in a conducting medium were discussed. The input admit-

tances of the probe with a1 = a2 = 0.43 mm, h1 = 7.5 mm, and

h2 = 45 mm at 600 MHz frequency in saline with 0.1 and 0.2 normali-

ties are shown in Table 2.2. The results in Table 2.2 indicate

that the real part of the admittance (conductance) is in good agree-

ment for different methods, but the imaginary part (susceptance)

has some variations; this is caused by the size of partitions.
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Input impedance of the probe varies as the function of

the length of the magnetic ring.



36

Table 2.2. Input admittance of the bare probe in the saline with

normalities 0.1 N and 0.2 N.

 

 

 

Method 0.1 N Saline 0.2 N Saline

EFIE with

magnetic current ring 36.9 + j17.3 40.3 + j7.8

EFIE with

delta gap model 35.1 + j21.2 40.4 + j11.8

HIEM with

delta gap model 35.2 + j19.8 39.9 + j10.1

 



CHAPTER III

EXPERIMENTAL STUDY OF A BARE MICROPROBE

IN A CONDUCTING MEDIUM

In order to verify the theory of a bare microprobe in a con-

ducting medium, a series of experiments were conducted. The input

impedance of the probe embedded in different lossy media was measured.

One way to measure the impedance is to use a slotted line, VSWR

meter, and Smith chart. This method has two limitations: first,

at a low frequency a long slotted line is needed, and second, with

a low resistance in the load the VSWR in the line is very large

and a large VSWR can cause difficulties in using the Smith chart.

Another way to measure the impedance is by a vector voltmeter

and a V-1 (or E-H) probe, which is explained in more detail in

Section 3.2.

To simulate a lossy medium salt water was used, therefore,

the electrical properties of saline, permittivity, and the conduc-

tivity should be known. These quantities are strongly dependent

on the frequency and the temperature. More about electrical proper-

ties of saline is explained in references [13-15]. The experimental

data in the above references are used in our study.

37
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3.1. Electrical Parameters of Saline
 

The electrical properties of pure water can be expressed as

e = e' - Jc", where c' = 802; and e" = 608;. The variations in

real and imaginary parts of complex permittivity due to the change

in frequency are indicated in equations (3.1.1) and (3.1.2).

ES - 4.9

r + 4.9 (3.1.1)
1 + (wt)

8" = (85 - 4.9)wt (3.1.2)

‘4 1 + (m)2

(
'
1 l
l

 

where w is the angular frequency, as and T are called the static

dielectric constant and the relaxation time, respectively. In

these equations a and T are dependent on the temperature.
5

After salt is added to pure water, the static dielectric con-

stant (es) and the relaxation time (T) change with the salt concen-

tration in the solution. 2' varies only due to the changes on r

and e . e" varies not only due to the changes on T and 65, but
5

another term needs to be added in the following way:

a ‘

1 (3.1.3)
=1_-u_-_

e 8 32 J m

where °i is called the inonic conductivity and it is due to Na+ and

Cl' ions in the solution. The total conductivity is

at = 01 + we"

and
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e = e' - g-(oi + we") (3.1.4)

In Table 3.1 electrical properties of saline are shown.

These results are obtained by interpolation for various normalities

of saline. At 600 MHz frequency the dominant terms for conductivity

and permittivity are the ionic conductivity and the static dielectric

constant, respectively. With the increase in temperature, the con-

ductivity of the saline increases while its permittivity decreases.

3.2. Experimental Setup
 

The schematic diagram of the experimental setup is shown in

Figure 3.1. The microprobe imbedded in a tank of saline is driven

by a R.F. generator throughanE-H probe. The outputs of the E-H

probe are connected to a vector voltmeter for the measurement of

the input impedance.

The E—H (V-I) probe consists of a section of transmission

line with a short E probe and a small H probe. The E probe is a

short monopole that induces a voltage proportional to the E field

or voltage in the trnasmission line. The H probe is a small loop

that induces a voltage proportional to the H field or the current

in the transmission line [16]. The vector voltmeter has two channels,

"A" and "B". If two signals are connected to channels "A" and "B",

the amplitude of each signal and the phase difference between them

can be measured by the vector voltmeter. By definition the imped-

ance at any point in the circuit is the ratio of the voltage to

the current at that point. Two signals from E and H probes can be



Table 3.1. Electrical properties of NaCl solution.
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20°C 30°C

Saline _12 _12

Normality 1(10 sec) Es oi(s/m) 1(10 sec) 85 01(s/m)

0 10.1 80 0 7.5 77 0

0.1 9.92 78.2 0.889 7.44 75.2 1.044

0.2 9.74 76.4 1.778 7.38 73.4 2.089

0.3 9.56 74.6 2.667 7.32 71.6 3.113

0.4 9.38 72.8 3.556 7.26 69.8 4.178

0.5 9.2 71.0 4.44 7.2 68 5.22
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Experimental setup for the measurement of the input

impedance of a probe with an E-H probe and a vector

voltmeter.

Setup for adjusting the phase of a vector voltmeter.
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measured by the vector voltmeter and their ratio is the impedance

of the line at the V-I probe location. Physical geometry of the

bare probe which was used in the experiment is shown in Figure 3.2.

Before measurement several steps should be taken as follows:

(1) The vector voltmeter should be calibrated. For this

reason two equal signals are connected to channels "A" and "B" of

the vector voltmeter and the phase indicator should be adjusted

to show zero (see Figure 3.1(a)). The phase knobs should not be

changed during the experiment. The vector voltmeter measures the

phase difference between the signal connected to channel "8" with

respect to the signal on channel "A". The amplitude of each signal

could be measured separately.

.(2) The E-H probe should be calibrated. A match load, for

this case a 50 a load, is connected to the E-H probe and the voltage

probe and the current loops on the V-I probe are connected to channels

"A" and "B" of the vector voltmeter, respectively. We then let

50 = k._§_

A

<
I

where VA and VB are voltages at channels “A" and "B". R is called

the calibration factor for the E-H probe and it should be evaluated

for different frequencies. The bar on VA and VB indicates that

these parameters are complex.

(3) Connect the unknown load, in this case the probe in

saline, to the E-H probe. Read the amplitudes of "A", "B", and the



h1 = 7.5 mm

h2 = variable

a1 = 0.1 mm

a2 = 0.43 mm

A9 = 1.0 mm

Figure 3.2.
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phase difference on the vector voltmeter. The impedance of the

probe at the location of the E-H probe is then equal to

2p = k —11- (3.2.1)

A

<
I

(4) The value for the input impedance that we found in step

(3) should be transformed to the probe location. For this purpose,

we need to know the factor of tan yl, where y is the propagation

constant of the transmission line and l is the distance between

the probe and the location of the E-H probe. If we short circuit

the probe and measure its input impedance we have

2p (short) = -jzC tan 11 (3.2.2)

where Zc is the characteristic impedance of the line which is 50 o

in our case.

(5) The impedance of the probe is given by the well-known

formula from the transmission line theory [17].

3.3. Comparison of Theoretical and Experimental Results
 

Experiments were carried out at 600 MHz frequency with the

probe imbedded in the saline with various normalities (0.1 N, 0.2 N,

0.3 N, and 0.4 N). The physical dimensions of the probe are:

a - 0.43 mm, h1 = 7.5 mm, h2 = 30 or 45 mm, and the gap is about

1.0 mm. The tank has the dimensions of 21 cm x 21 cm, 23 cm. The
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theoretical results are calculated for the same probe in an infinite

conducting medium. 1

In Figures 3.3 to 3.6 theoretical and experimental results

on the input resistance and input reactance of the bare probes in

the various lossy media are compared. In Figures 3.3 and 3.4. ha 15

30 mm, and for this case there is a good agreement between theory

and experiment on the input resistance, but the agreement is only

fair on the input reactance at higher normalities of saline. Fig-

ures 3.5 and 3.6 are for h2 = 45 mm, and for this case the agreement

between the theory and experiment is again good for the input resis-

tance and only fair for the input reactance.

In these experiments the sources of errors can be classified

as follows:

(1) Small physical dimensions of the probe; since the radius

of the probe is very small (0.43 mm), it is very difficult to keep

it straight.

(2) The electrical properties of the saline are strongly

dependent on the salt concentration and the temperature and any

error in the salt concentration and the temperature will produce

different conductivity and permittivity.

(3) Another source of error is due to the junctions from

the microprobe to a standard GR 50 a coaxial transmission line.
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CHAPTER IV

APPLICATIONS OF THE BARE PROBE

In the study of EM local heating of an imbedded tumor, it is

very important to know the conductivity and permittivity of the

tumor relative to that of the surrounding tissues. There are reasons

to suspect that the electrical properties of the tumor may be dif-

ferent from those of surrounding tissues because the blood flow to

and tissue structure of the tumor are different from the normal

tissues. A successful analysis of the induced EM field inside an

irradiated body with an imbedded tumor and an effective device for

focusing EM energy in the tumor will depend on the knowledge of

electrical properties of the tumor.

A bare probe can be used to measure the conductivity (0) and

permittivity (e) of the biological bodies in vivo. A bare probe,

when driven by an RF source, can also be used locally to heat the

biological tissues. Figure 4.1 shows a bare probe inserted in a

tumor.

4.1. MeaSurement of o and e
 

In Chapter II it was shown that a coaxial probe in a lossy

medium is equivalent to an asymmetrical dipole. The input admit-

tance of a dipole is a function of the frequency of operation,

physical dimensions of the dipole, and electrical properties of the

50
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surrounding medium (i.e. permittivity, permeability, and conductivity

of the medium). Permeability is defined as u = nour, which for a

nonmagnetic medium gives ur = 1. Therefore, the input admittance

of a fixed probe at a certain frequency in a nonmagnetic medium is

only a function of o and e of the surrounding medium.

The input admittance of a probe, Yin(o,e)==Gin(o,e)+-j8in(o,s),

has a real part (conductance) Gin = fg(o,e) and an imaginary part

(susceptance) Bin = fb(o,e). The input conductance and susceptance

are functions of the conductivity and the permittivity of the medium.

For finding a and c analytically from the conductance and

the susceptance of the probe, the functions fg and fb should be

known. These functions cannot be expressed in terms of simple func-

tions, but the probe can be calibrated based on the theory developed

in Chapter II. Input conductances and input susceptances of the

probe are found for various values of o and c. There are two ways

to use this information about the probe which lead to the determina-

tion of the electrical properties of a biological tissue or a lossy

medium.

In the first method, two sets of curves are drawn. One set

is the conductance and the other set is the susceptance of the probe

versus the conductivity, where the permittivity is used as a param-

eter. These sets of curves for a typical probe are shown in Fig-

ures 4.2 and 4.3. The physical dimensions of the probe are given

in these figures and the frequency of operation is 600 MHz. The
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following example shows how electrical properties of a lossy medium

can be measured.

An experiment was conducted and the input admittance of a

bare probe with the same dimensions as given in Figure 4.2 was

measured. The conducting medium was 0.2 normal saline and the tem-

perature was 25°C. The input admittance of the probe was measured

to be Yin = 38.98 + j4.97 (mu). Draw two straight lines for

Gin = 38.98 and Bin = 4.97 in Figures 4.2 and 4.3, respectively.

From the possible values for er and 0 found in these curves inter-

sected by the two straight lines, we can estimate the conductivity

to be 2.4 (s/m) and the relative permittivity to be 65. The exist-

ing values for 0.2 normal saline at 25°C is about a = 2.21 (s/m)

and er = 74.8. Thus, the accuracy of this method is considered to

be satisfactory.

The second method for finding 0 and e is, after theoretically

finding the conductance and susceptance of the probe for various

possible values of o and e, the information is stored in the computer

and then the input admittance of the probe imbedded in a medium

with unknown 0 and e is measured. The measured values are fed to

the computer and a computer program searches for the closest values

for o and e of the unknown medium. Using this method the input

admittance of the probe measured in the above example gives er==65.5

and o = 2.4 (s/m). The second method seems to give more accurate

results.
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4.2. Local Heating
 

Another application of the bare probe is for local heating

in cancer therapy by microwave hyperthermia. In this section the

'heat pattern of a bare probe in a conducting medium is being studied.

In the previous chapter the current distribution along the probe

has been determined. The electric field produced by the current

on the probe at any point in the medium can then be found. The

heat created by the electric field in the lossy medium is given by

101512.

With the assumption that the current is only in the z direc-

tion and with a rotational symmetry in our problem, the vector

potential has only one component in the z direction and it is

expressed as

 

_ u h1 e-ij

Az(r,z) =‘4; Iz(z ) R dz (4.2.1)

'“2

and

Ar(r,z) = A¢(r,z) = 0 .

The relationship between the magnetic field and the vector potential

is

>
+

+

B = V x

Therefore,

Br(r,z) = Bz(r,z) = O
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and

aAz(r,z)

B¢(r,Z) = ' 3r

Maxwell's equation v x B(r,z) = u(0 + jus)E(r,z) implies that

E¢(r,z) = 0

and

2
. a A (r,z)

Er(r,z) = --i¥w——5%33———- (4.2.2)

. 3A (r,z) 32A (r,z)

Ez(r,z) = f; [% JF— + ——:—rf—] . (4.2.3)

1

Assuming that R = [r2 + (z - z')2] and the current on the probe as

N

12(2') = IE: InPn(z') ,

n=1

the electric field in the r direction is expressed as

 

 

jun 32 e-ij

Er(Y‘,Z) = - 7m h:ZInPn(Z)e (12'

or '

N h .

1 -JkR

Er(r,z)= “41—72 In gaff Pn(z') :32-(9 R ) dz'

4nk _1
n-1'h2

Since jL-= - -§T-, then
32 82
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I-

2 “2+

N
. e-ij n

Er(r.z) = - %21n[(1k-§+—5)-—-

"k n=1 z'=z_

n

for -h2 5_z §_h1 (4.2.4)

After substitution for the current and the vector potential in

(4.2.3), we have

 

  

  

 

'hz "=1

32 [Ni ( ) - kR J

+ 1 P 2' dz'
3:2 _ n n R

-h2 n-1

and then

N
e-ij e-ij

- w 1.3.. -
EZ(r’Z) 41rk Z In[ 1‘ 31‘] C12 +3-2- d2]

n=1 (Az) (Z

(4.2.5)

For large r or small r and z t (Az)n we can write

-ij -ij
e . _ e

d], R dz - A R .

(AZ)n

(4.2.5) then becomes

N .

2 2 . 2 2 -ij

_ qu +2+k r 3 kr 3r e

Ez(r,z)-- ZInFR—k T'J—T'j] R
411k ":1 R R R

(4.2.6)
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For small r and ze(Az)n, we have

-ij /

[ e__§_ dz' = 2Ln {-295 + [1 + (7;?)2] }- jkA

(AZ)In

and

-ij -1/2

% erz'=“A—2[1*(2AF)2]
(112),, r

 

81‘

2 -ij -3/2
a e . _ 2A 1 A. 2 A 2
7] R dz -;§[1+§(§F)]I1+(§F)]

(A2)
n

Substitute the above approximate expressions in (4.2.5), and we have

O '11)): N A A 2 '3/2
520.2) = 21:32 143111 + (72;) 1

n=1

Numerically the r and 2 components of the electric field can be

found in the medium. The heat produced by the field is given by

1.11-:12 , where (5)2 = 11:21? + |Er|2.

Figures 4.4 and 4.5 show the equi-power contours for a bare

probe in the r-z plane. Electrical properties of the medium and

physical dimensions of the probe are also given in these figures.

The driving voltages are V0 = 8.44 volts and V0==7.63 volts in

Figures 4.4 and 4.5, respectively. The changes in the driving voltage

resulted from keeping the input power equal in both cases (input

power = 1 watt). The driving voltage is determined as follows:
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9‘2 (mm)

 

  

 

a1 = a2 = 0.43 mm

20 0 h]. - 7.5 [1'11

h2 = 30 mm

Vo = 8.44 volts

10 A

0 J 4- r (m)

30

100

-10

-20

8.46 0.47 0.14

-30

Figure 4.4. Equi-power contours for a bare probe in the r-z plane.

The power is normalized and the frequency of operation

f= 600 MHz, 02 = 1.11 (s/m), er = 76.7.
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.A

2 (mm)

a1 = a2 = 0.43 mm

h1 = 15 mm

h2 = 30 mm

VO = 7.63 volts

? s—JI-

30 r (M)

 
Figure 4.5. Equi-power contours for a bare probe in the r-z plane.

The power is normalized and the frequency of operation

f = 600 MHZ, 02 = 1.11 (s/m), €r2 = 76.7.
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. 1 *

Power (input) 1 watt =-§ ReVOI

1 V121
= _ Re 0 o o w

2 (R1n + jX1n)

 

and

2 2 1/2

_ Rin + Xin

V0 ‘ (:2 ""7$fii”' )

The power in these figures is normalized. The length of the probe

h1 is 7.5 mm and 15 mm in Figures 4.4 and 4.5, respectively. In

both cases most of the power is concentrated near the probe, along

the z axis. As we see from these figures the heat pattern can vary

with changing the length of the probe.



CHAPTER V

INSULATED PROBES IN A CONDUCTING MEDIUM

In order to transmit energy into the conducting body and to

avoid direct contact between the probe and the body tissue, the

probe can be covered with insulated material. The insulated probe

is used extensively for local heating in biological bodies. For

heating applications, the insulated probe has two major advantages

in comparison with the bare probe:

(1) The input resistance of the bare probe is less than the

input resistance of the insulated probe in a conducting medium,

therefore, the insulated probe radiates more EM energy in the con-

ducting medium.

(2) The current on the bare probe decays rapidly along the

probe, hence most of the EM energy radiated from the bare probe is

concentrated near the driving point. However, in the insulated

probe case the current does not decay rapidly along the probe, thus,

the EM energy is distributed over a larger volume.

Evolution of geometry of the insulated probe in a conducting

medium is shown in Figure 5.1. Since the current flow is as shown

in this figure and the surrounding medium is lossy, the probe is

treated as a lossy transmission line. In this case the probe cannot
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be truncated, therefore, equivalent terminal impedances Ze1 and

Ze2 are 1ntroduced.

5.1. Theory of the Probe
 

Since an insulated probe in a conducting medium can be con-

sidered as a lossy transmission line, transmission line theory is

used to analyze the characteristics of the probe [18]. The equiva-

lent circuits of the insulated probe in a conducting medium in the

form of lossy transmission line are shown in Figure 5.2. To start

with, the equivalent transmission line of the probe is divided into

two sections, where ZCl and Zc2 are the characteristic impedances

of section (1) and section (2), respectively. The driving voltage

V is divided into two voltages, V1 and V2. The input impedances

of each section are (Zin)1 and (Zin)2, respectively. The input

currents of these two sections are I1 and 12, but since the current

at the junction is continuous, it requires that

1:12.

This leads to the relation

V1 = V2 (511)
(Zin)1 (Zin)2 ’ ' °

The other relationship between V1 and V2 is

V = V1 + V2 . (5.1.2)

Using (5.1.1) and (5.1.2), V1 and V2 can be expressed as follows:
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4.

Zelé Zc1 V1 -

section (1)

 

section (2)

(Zin)1 (Zin)2

Figure 5.2 Geometries for an insulated probe in a conducting

medium.
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r (Zin)1

V1 =V (mil + (Zin)2

( (5.1.3)

(Zin)2

(V2 =V(Zin)1+ (21102 

The input impedance of a transmission line is

ZL + 2C tanh [vh]

21” = Zc 2C + 2L tanfi*[yh] (5°1°4)
 

where y is the propagation constant of the line, Zc and ZL are the

characteristic impedance and load impedance of the line, respec-

tively, and h is the length of the line.

Z

Using the geometry of Figure 5.2 and defining tanh 61 = IQ

Z el

and tanh e = J2 , where Z and Z. are terminal impedances of
2 Ze2 e1 e2

two sections, the input impedance for each section of the line can

be expressed as

 

(Zin)1 = ZCl coth(y1h1 + 81)

(5.1.5)

(Zin)2 = ZCZ coth(y2h2 + 82)

Substituting (5.1.5) into (5.1.3), V1 and V2 become

IV = V ZCl c0th(ylh1 + 81)

1 2C1 COth(y1h1 + Bi] + ZCZ COth(Yzh2 + 82)

1 (5.1.6)

2 Zc1 cot‘hhlh1 + 91) + 2C2 cothhzh2 + 82)

  .V
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The reflection coefficient of each section of the line is

r _ Ze1 c1 _ Ze2 ' Zcz
- Z

-.____.._._,I' -

1 Ze1 + Zc1 2 Ze2 + Zcz

After introducing the above notations, the voltage and current

along each section of the probe will be found separately.

A set of coordinate system is introduced for section (1) of

the line as indicated in Figure 5.3(a). The voltage along the line

can be written as

 

'Y S y S

V1(s) = v+ (e 1 + r1e1> (5.1.7)

At 5 = -h1 the voltage V1 = V1(-h1). Substituting for P1 in (5.1.7)

we have

V cosh e + sinh e

v+=%- 1 1 (s1&
cosh (ylh1 + 61)

Using (5.1.7) and (5.1.8), the voltage along section (1) of the

line becomes

cosh (YIS - 61)

 

V1(S) = V1 COSh (Ylhl + 61) (5.1.9)

The current distribution along the line is

+ - S y S

_ v Y1 1
11(5) - faie - I‘le ) (5.1.10)



 

   

 

 
 

 

 

 

«‘— I1

2 i '1
e1jfi: Zc1 éy_v1

I -—a-

1 -h1

Si<h-+ (a)

s = 0

-<--12

V2+ Zcz if:ze2

12«—-4>1 V

(b) 1.. w

'h2 w = o

+— I1 <—-12

+ .—

Ze1 V1 V2 Ze2

- -F

h1 z 4—1 -112

z = 0

(C)

Figure 5.3. (a) Section (1) of the 1ine.

(b) Section (2) of the line.

(c) Common coordinate system for both sections.
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After substitution for V+ and II in (5.1.10) the current along

section (1) of the line becomes

v1 sinh (e1 - YIS)

ZCl cosh (ylh1 + oi)

 
11(5) = (5.1.11)

In Figure 5.3(b) the coordinate system for section (2) of the line

is shown. The voltage and the current along this section of the

 

 

line are

cosh (wa - 92)

v2(W) = V2 COSh (y2h2 + 82) (5.1.12)

V sinh (6 - y w)

12(w) = 2 2 2 (5.1.13)
2C2 COSh (Yzhz + 927

So far there are two different coordinate systems for section (1)

and section (2) of the probe. Choose one common coordinate system

as indicated in Figure 5.3(c) and transform both coordinate systems

to the new coordinate system as

Z = s + h1

h
i

fl

-W’hz

After transformation the voltage and current along the probe are
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cosh [11(z-h1) - 61]

 

  

r V1(z) = V1 COSh [Ylhl + 61] (5.1.14)

1 for 0,: 2.5 h1

V1 sinh [81 - 11(Z-h111
L I = .

1(2) ZCl cosh [ylh1 + 01] .(5.1.15)

and

1 V (2) = V cosh [Y2(z+h2) + 92] (5 1 16)

2 2 cosh[y2h2 + 62]' ° ‘

l for 0.: 2.: -h2

‘_ V2 sinh [82 + y2(z+h2)]

ZC2 cosh[y2h2 + 82]

 

  (5.1.17)H

N

A

N

V

I

In these equations V1 and V2 are expressed in (5.1.6).

5.2.1. Parameters of the Transmission Line

In Figure 5.4(a) an insulated probe in a conducting medium is

shown. Region (1) in this figure is the outer conductor of the

microprobe and it is usually made of a material with very high con-

ductivity. Region (2) is the conducting medium with (02,52), and

region (3) is the insulating material with (0d,ed).

The insulated probe in a conducting medium is equivalent to

a lossy coaxial cable with a complex propagation constant defined

as

y = /VZ = a + jB

where Y is the admittance per unit length and Z is the total

impedance per unit length of the line. For a coaxial cable Y is
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I, 2a
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5 L11

C111

l1

1!

1|

1 I ...
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(1) (0 a)
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A E... 5.2.31

3 3

l

(a) 1‘

2a3

(b) /

Figure 5.4. (a)

(b)

X

l.)

  

Insulated probe in a conducting medium.

Infinite cylinder.
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.
<

I
I

9 + 30C

where

Zno 2pc

= d and C = d
g |n(a37a1) |n(a3/a1)

and the total impedance per unit length is

z=z"1+z;+ze

where Z} and 2; are the surface impedances of the inner and outer

conductors of the transmission line, respectively, and Z8 is called

the external impedance of the line.

For finding Z1 and 2; we assume the infinite cylinder geometry

and that the current on the cylinder flows only in the z direction

as indicated in Figure 5.4(b). Start with Maxwell's curl equations:

+-+

v x E(?) -ij(r)

Vxfifi) mo+mnah.

Since the cylinder is assumed to be infinitely long and there is

rotational symmetry in the problem, we have

 

+1+ +-+

3E(r) = 3H(r) = 0

32 32

+1+ +-+

2%flelgfilso



74

The electric field has only one component on the 2 direction and

it is

 

2

aE(r) aE(r)

’- +12. new
or a

where

k2 = w us - jwuo .

The solution of the above differential equation for the inner con-

ductor is

E (r) = AJ k r) + BN
2 0(1 k"0(1)

where constants A and B can be determined by the boundary conditions.

0n the z axis (r = 0) the electric field should be finite; this

condition implies that B = 0, therefore,

Ez(r) = AJO(k1r)

On the surface of the cylinder at r = a1 we have

Ez(a = AJO(k a )
1) 1 1

07‘
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Ezl(a )

A = JoIk1311

Substituting for A, the electric field inside the cylinder is

00(k1r)

Ez(r)= EZ(aa1) i—BTEIEIY 0.: r.: 61

The current density on the cylinder becomes

Jz(r) = 0 E (r)

The total current in the cylinder is

a1 2“ Zwalo 1 01(k1a1)

= OIEZ(Y‘)Y‘dY‘d‘P =T Eaz(1).]W

0 0

The definition of the surface impedance is the ratio of the electric

field on the surface to the total current. For good conductors

most of the current flows on the surface, therefore,

2. = Ez(a1) k1 00(k1a1)

l ..

1 I2 211a101 J1(k1aI)

 
 

The solution of the differential equation for Ez(r) in the outer

conductor is

Ez(r) = CHél)(k2r) + ougz)(km,r)

Boundary conditions for this region are:
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(1) Electric field at infinity is Ez(r‘+ m) + 0; this implies

that C = 0. Therefore

2
52(r) = pug )(kzr)

(2) At r = a3 we have

E (a
z 3) = 0H82)(k2a3)

01"

o = (:§(a3)

Ho (kza3)

 

The electric field in region (2) is

Héz)(k2r)

E (F) = E (33) 2

Z 2 H5 )(k2a3)

 

The current in this region is

Zn m (2) (2)
H (k r) 21a 0 H (k a )
0 2 3 2 1 2 3

I = 0 E (a ) rdrd¢= - E (a )
2 f0 fa 22 3 ”((32)(k233) E2 2 3 H(2)

3

 
 

The surface impedance for the outer conductor is then

2

_ ________ _ kg ”6 )(kzaa)

2 I ZFEFTF‘ (2)
3 2 H1 (k2

 

a3)



‘ For coaxial cables there is no radiation; therefore, r
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In the transmission line theory the external impedance is

due to the interaction between the currents on the conductors of

the line. The external impedance Ze is defined as

Ze = re + ije .

e is zero

and the external impedance becomes

ze = jwle

where

e - AL.l - 2w ln(a3/a1) .

It is assumed that the insulated material is nonmagnetic (u = no).

thus, we have

u .

e _ . 0

Z - Jw-§; ln(a3/a1) .

The total impedance per unit length and the admittance per unit

length of the probe have been defined for a general case. Now we

will consider some special cases.

Case (1). Iklall << 1, |k2a3l << 1

Small argument approximations for the first kind Bessel functions

are

. x2

J0IX) = 1 ' I?)

2

41m £21134»)
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With these approximations the surface impedance of the inner con-

ductor is

 

  

_ 1 :gg- +380

Z.

flanl

1

1

Small argument approximations for Hankle functions are

Héz)(x) 5 1 + j $~ln-§%

H§2)(x) 513}

where y = 1.781. The surface impedance of the outer conductor in

this case can be written as

 

. 2 2

1 + j-— ln-—————
21 _ k2 n ykza3

2 - - 2nd 0 . 2
3 2 j-———-—

uk2a3

For k2 =\/ -ju1uo2 , the surface impedance can be expressed as
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Case (2 . lklall >> I, |k2a3| >> I

The argument of Bessel functions are very large for this case and

asymptotic approximations canibe used. In this case the first kind

of Bessel functions are

2 n 11

Jn(x) s Ei-cos (x - 7;-+-Z) |x| >> 1

The surface impedance for the inner conductor then becomes

. k

Z1 = j 1

1 2"31°1

For k1 = ‘/ -ju1uo , the surface impedance on the inner conductor is

Zi = 1 mu

1 211a1 '23; (1 + j)

Asymptotic approximations for Hankle functions are

. .. 1x1 >>1

The surface impedance of the outer conductor for this case can be

expressed as

. k2

z' - j
2 2nd 0
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Fora good conductor, k2= ‘/-jwuzoz , and the surface impedance of

the outer conductor becomes

i 1 “’“2

22‘21753‘ 25“”)

The characteristic impedance of the line by definition is

-2. 2ZC - Y Y , where

Z = r + jx, Y = g + ij .

Substituting for Z and Y, the characteristic impedance becomes

Z s r + jx

C 94-ij

The propagation constant of the line Y can be written as

 

Y=a+JB=\f(Y‘+J'X)(9+J'wC)

Squaring both sides of the above equation and equating the real

and imaginary parts of both sides, we have

1
. 1/2 1/2

a = [.2 (rg - wa) +-%{ (rg - wa)2 + (gx + (urC)2 } I

1

1/2 1/2

a =l -%'(me - rg) +-%{ (rg - wXC)2 + (gx + urC)2 }
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The propagation constant of a lossy coaxial line is tabulated in

Table 5.1. The inner conductor of the line is copper and the outer

conductor is lossy medium with €r2 = 69 and -9¥-= 8.8. In this
008

2

table it is assumed that w = 7.16 x 108 sec'l, k2 = 41.6 (1 - j).

Since the inner conductor is a very good conductor, the surface

impedance of the inner conductor is very small. The surface

impedance of the outer conductor and the external impedance of the

“approx and Bapprox

are calculated numerically.

line for various values of a1 and a3 are shown.

are taken from [19], but a and B
exact exact

5.2.2. Terminal Impedances of the Probe, Zel and Ze2
 

In Figure 5.5(a) a configuration of an insulated probe in a

conducting medium is shown. In order to investigate the character-

istics of the probe it is necessary to know the terminal impedances

of the probe at planeAA(Ze1) and at plane 88 (Zez). At plane 88

the equivalent terminal impedance is complicated. The current at

this plane is not zero, therefore, this terminal impedance is not

infinity. An equivalent circuit for the terminal AA is shown in

Figure 5.5(b). In this figure when d = 0 the inner conductor is

in direct contact with the outer conductor of the transmission line,

or the conducting medium, therefore, Zel is very small.

For d/(a2 - a1) << 1 and 2nd/A << 1 we have [20]

a a a a

T=_i_1_'|n £(%E]L+ Ill—23;) (5.2.1)
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f to generator

. hr .
  

conducting medium  
2
1

A ------ --- --- A   
(a)

 i
l
-

 

 

  

 

f

   

(b)

Figure 5.5. (a) Configuration of an insulated probe in a conducting

medium.

(b) Equivalent circuit for terminal AA.
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In the following example the terminal impedance (Z ) of an insulated
e1

probe is found.

Example: For an insulated probe with dimensions of a1==0.430mu

a2 = 0.96 mm, d = 0.1 mm, and the dielectric material with 0d = 0,

8rd = 2.45, the terminal impedance (Zel) at 600 MHz frequency is

B = 0.0065 YC

and

Z = JB = j0.0065 Y
e1 C '

In our study the line is lossy, therefore,aaconductance should be

parallel with the capacitor in the equivalent circuit.

5.3.1. Input Impedance of the Probe
 

The input impedance of the insulated probe is a function of

several parameters. It is a function of physical dimensions of

the probe, the electrical properties of the conducting medium and

the insulator, the terminal impedances, and the frequency of the

operation.

In Figure 5.3(c) the current at the origin is

but from equation (5.1.15) the current at Z = 0 is given as

1(0) = Zc1 cosh [ylhl + 61] (5‘3'1)
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Substituting for V1 using (5.1.6) in (5.3.1), the current at the

origin in

1(0) =

sinh(y1h1+-61)sinh(y2h2+-ez)

\I _ . .

'ZClcosh(y1h1+-91)51nh(Y2h2+-62)+ZC2 s1nh(Y1h1+-el)cosh(Y2h2+-6§)

(5.3.2)

By definition the input impedance is Zin = T(%)" or

Zin =

Zc1 cosh (y1h1+61)sinh(y2h2+62)+ZC2 sinh(y1h1+-61)cosh(yzh2+-02)

 

sinh(y1h1+-61)sinh(yzh2+-02)

(5.3.3)

In this study it is assumed that both sections of the probe have

the same diameters for inner and outer conductors, and the same

dielectric material, therefore, iflua characteristic impedances

ZCl = ZC2 = ZC and the propagation constants Y1 = Y2 = y. Wlth

these assumptions the input impedance can be written as

COSh(Yh1+ 01)S‘inh(yh2+ 02) + Sinh(yh1+ 91)COSh(yh2+ 02)

Zin= zC $1nh(yh1.+ 01)sinh(rh2+ 62)
 

(5.3.4)

The input impedance of the probe for three different cases of

terminal impedances are considered as follows.
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Case (1). In this case it is assumed that both terminal

impedances of the probe are infinity, Ze1 = Zéz = 00; this implies

_ _ -1

the input impedance of the probe becomes

0 = 0. Substituting for 91 and 62 in (5.3.4),

sinh [Y(h1 + h2)]

 

 

2‘" = 20 sinh [yhl] sinh [yhz] (5°3'5)

For a symmetric probe, h1 = h2 = h, (5.3.5) becomes

Zin = 2ZC coth [Yh] (5.3.6)

or

Zin ‘ 220 2222 (3:2) : i32”(§§fi?’

If ZC is pure resistive, for 8h = nW/Z, n = 1, 2, 3, ... the input

impedance of the probe becomes pure resistive.

In Figure 5.6 the input impedance of the insulated probe in a

dissipative medium as a function of the probe length is shown. In

this figure it is assumed that h1 = hZ’ a1 = a2 = 0.47 mm,

a3 = 0.96 mm, and the frequency of operation is 915 MHz. The elec-

trical properties of the insulator and the conducting medium are

= 0.0 (s/m), e = 1.37 and 02 = 0.88 (s/m), e 2 = 42.5, respec-
Od rd

tively. For short insulated probes the input impedance is mostly

l"

capacitive; the same phenomenon is observed in an electrically short

bare probe.



Xin (Q) 87

 

 

 

50 0

300

Rin (Q)

‘100 o

-200 n

J 1 cm = h

-300 + 
Figure 5.6. Input impedance Zin = Rin + inn of symmetric insulated

probes in a dissipative medium, y = 10.72 + j49.38 and

Zc = 70.77 - j15.36 9. Both terminal impedances are

assumed to be infinity.‘
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Case (2). In this case it is assumed that both terminal

1 a = jn/Z.impedances are zero, Ze1 = Ze2 = 0, 01 5‘02 = tanh

Substituting for 01 and 02 in (5.3.4), the input impedance of the

probe becomes

sinh [y(h1 + hz]

21" ‘ zc cosh [yhljcosh [yhz]
 

(5.3.7)

For a symmetric insulated probe h1 = h2 = h, the input impedance

can be expressed as

Zin 2ZC tanh [yh] (5.3.8)

or

sinh (20h) + jsin (28h)

C cosh (Zah) + cos (28h)
2Z Zin

With the assumption that Zc is pure resistive, for ab = nn/Z,

n = 1, 2, ... the input impedance of the insulated probe is pure

resistive. Figure 5.7 shows the input impedance of the insulated

probe in a lossy medium as a function of the probe length. The

terminal impedances of the probe Ze1 and Ze2 are assumed to be zero.

The physical dimensions of the probe and the electrical properties

of the insulator and the lossy medium are the same as in case (1).

In this case for an electrically short probe the input imped-

ance is not mostly capacitive, and the input resistance is larger

than the input resistance of case (1).
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Xin (Q)

200 h

100,,

 

 

-1001

 -2004 
Figure 5.7. Input impedance Zin = Rin + inn of symmetric insulated

probes in a dissipative medium, y = 10.72 + j49.38 and

Z = 70.77 - j15.36 9. Both terminal impedances are

assumed to be zero.
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Case (3). In this case it is assumed that one of the terminal

impedances is zero and the other infinity.

(a). The terminal impedances Ze1 = 0 and Ze2 = m. Substi-

tuting for 61 and 92 in (5.3.4), the input impedance of the probe

becomes

cosh [y(h1 + h2)]

Zin ‘ Zc cosh [thj’sinhtyhzj (5°3°9)
 

(b). The tenninal impedances Ze1 = m and Ze2 = 0. The input

impedance of the probe is

cosh [7(h1 + h2)]

2‘" ‘ Zc sinthhIJCOShfyhzj (5°3'10)
 

Now consider a symmetric probe with h1 = h2 = h. The input imped-

ance of the probe becomes

22Zin C coth [2Yh] (5.3.11)

OY‘

sinh [4ah] - jsin (43h)

C cosh [4ah] - cos (43h)
22 Zin

For 8h = nw/4, n = 1, 2, 3, ... the impedance of the probe is pure

resistive (2C is a pure resistance).

In Figure 5.8 the input impedance of the insulated probes

with the terminal impedances of one zero and the other infinity

are shown. In this figure the dimensions of the probe and the
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Xin (Q)

50..

300

7 Rin (o)

-100‘, 1' 1 cm

-200.,

 
Figure 5.8. Input impedance Zin = Rin + inn of symmetric insulated

probes in a dissipative medium, 7 = 10.72 + j49.38 and

ZC = 70.77 - j15.36 a. Terminal impedances Ze1 = 0 and

Z
e2

=m.
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electrical properties of the insulator and the conducting medium

are kept the same as that in case (1).

The input impedance of the insulated probe is a function of

the electrical properties of the insulator. In Figure 5.9 the input

impedance of the probe versus the dielectric constant of the insula-

tor is shown. Both terminal impedances of the probe are assumed

infinity in this figure.' Physical dimensions of the probe are

a1 = a2 = 0.43 mm, h1 = 15 mm, h2 = 45 mm, and the frequency of

operation is 600 MHz. The probe is immersed in a conducting medium

with o = 1.86 (s/m), er = 76.3, and the insulator has °d = 0 and

a variable permittitivity. Changes in the input reactance is more

significant than the input resistance of the probe.

For an electrically short and thin insulated probe in a dis-

sipative medium we have

ah << 1, 8h << 1, 83 << h

and the input admittance of the probe has been found [11] to be

2
onh

Y1” = G + 49‘: =1n(h/a3) - 1 P2
 

+ (1 + Y)2

+ jw Tn(a3/a2) P2 + (1 + y) (5.3.12)
 

2

where

P = weoer and Y = Er 711(33/32)
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The input admittance of the insulated probe obtained from (5.3.12)

and that from the theory developed in this study are compared in

Table 5.2. The input susceptances are in good agreement, but there

are some deviations in the input conductances. Mostly the devia-

tions in the input conductances come from the fact that the theory

developed in this study is not accurate for short insulated probes.

In this table the probe is symmetric with h1 = h2 = 15 mm,

a1 a2 = 0.43 mm. The electrical properties of the insulator are

°d 0.0 (s/m), 8rd = 2.25, and the electrical properties of the

conducting medium are variable.

In Figure 5.10 the input impedance of the insulated probe

with three different terminal impedances are compared with input

impedance of a bare probe. The dimensions of the probes are;

a1 = a2 = 0.43 mm, h1 = 15 mm, h2 = 45 mm, and the frequency of

operation is 600 MHz. The electrical properties of the insulator

are od = 0 (s/m), 8rd = 2.25, and the probes are immersed in the

saline with various normalities. The input resistances of the bare

probe and the insulated probe with terminal impedances Ze1==Ze2=<=°

are very close, but their input reactances are different.

So far it is assumed that both sections of the probe have

the same radius (a1 = a2). Now we consider the case with a1 f a2,

and find the input impedance of the insulated probe. In Table 5.3

the input impedances of the insulated probes with a1 = a2 and

a1 # a2 are compared. The input resistances are very close in two

different cases, but there is a constant shift in the input reactance.
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Rin (0)

.100

1. 50

Rin

r 0.0

f = 600 MHz

h1 = 15 mm

h2 = 45 mm

41-100 al = a2 = 0.43 mm '4» -50

o = 1.86 (S/m)
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p-IOO

0

1.0 2.0 3.0 4.0 5.0 6.0

Erd

Figure 5.9. Input impedance Zin = Rin + inn of the insulated probe

in a conducting medium versus permittivity of the insu—

lator. Terminal impedances Ze1 = Ze2 = m.
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Table 5.2. Input admittance of the electrically short and thin

insulated probe in a conducting medium.

Yin (Theory) Yin (Formula)

Frequency P =«fi% x 10'6 x 10'6

10 MHz 25.84 0.0005 + j73.3 0.18 + j73.3

10 MHz 52.94 0.0005 + j73.3 0.091 + j73.3

10 MHz 80.63 0.0005 + 373.3 0.06 + j73.3

10 MHz 109.73 0.0005 + j73.3 0.046 + j73.3

100 MHz 2.85 0.66 + j736.4 15.3 + j726.4

100 MHz 5.32 0.60 + j736.4 8.7 + 3731.4

100 MHz 8.06 0.57 + j736.4 6.0 + j732.3

100 MHz 10.97 0.56 + j735.8 4.55 4 j732.6
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.(1) = Bare probe

(2) = Insulated probe with Ze1 = Ze2 = 0.0

(3) = Insulated probe with Ze1 = m, Ze2 = 0 0

(4) = Insulated probe with Ze1 = Ze2 = w

Xin (Q) Rin (Q)

...... Xin

-————— Rin

-250<» 4250

-2004> 4200

~1501- 0150

-100 .. (4) ———————————————— ..100

(2) _________...s
‘50 " \‘\\\ 1‘ 50

(4)

(1)>'—‘%~_<

(1)

0.0 ¢----M__~~ % 0.0

0 1N 0.2N 0 3N 0.4N

Normality of Saline

Figure 5.10. Comparison of the input impedance Zin = Rin + inn of

the bare probe with insulated probes with different

terminal impedances.
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The shift in the reactance is due to the change in the admittance

per unit length of the transmission line. The admittance per unit

length is Y = g + ij, where g and C are inversely proportional to

the ln(a3/a2). In this case 9 is zero, since 0d = 0, and only C

is affected.

5.3.2. Experimental Verification of the Theory
 

In order to test the theory developed in this study, a series

of experiments were conducted to measure the input impedance of the

insulated probes with various terminal impedances in different con-

ducting media. To realize the terminal impedance of the probe

Ze2 = m in practice is very difficult, but the terminal impedance

Ze1 can be made very large. In Figure 5.11(a), since the probe

is in direct contact with the conducting medium (the outer conductor)

the terminal impedances of the probe, Ze1 and Z92, are very small.

0n the other hand, in Figure 5.11(b) the terminal impedance Ze2

is again small but the terminal impedance Ze1 is very large. The

experiments were carried out only for these two cases.

The measurement was conducted by the vector voltmeter, and

the conducting medium was saline. The experimental procedures have

been explained in more detail in Chapter,III. In Figures 5.12-5.15

the physical dimensions of the probe are a1 = a2 = 0.43 mm,

a3 = 0.96 mm, h1 = 15 mm, and h2 = 45 mm. In Figures 5.12-5.15

the theoretical values and the experimental results of the input

resistances and the input reactances of the insulated probes are

compared. The terminal impedances in Figures 5.12 and 5.13 are



to generator

 

2a2__,. _‘_

Ze2

Insulator

Conducting medium

H \

Z  e1 (a)

1
4
‘

 

  

to generator

.Ei E? Ze2

/’

; $4.... Insulator

/ S
112 j /

/

/ /

:1 C: Conducting medium

2 r/

/ zj

/ /
h /

1 / E
j 281 (b)   

Figure 5.11. Configurations of insulated probes.

(a) Terminal impedances Zel and Ze2 very small.

(b) Ze1 very large and Ze2 very small.
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Rin (Q)

A
.o Experiment

--'Theory

' 1. 300

f = 600 MHz

0

O

0200

O

11100

O

f = 900 MHz

3 ‘ * 5 41 4h-

0.1 0.5 1'0 normality

Figure 5.12. Comparison of theoretical and experimental results on

the input resistance of an insulated probe with terminal

impedances Ze1 = 0.0, Ze2 = 0.0 in various conducting

media.
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. - Experiment at 600 MHz
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Theory

0+100

0

* =600 MHz

410 +

7=900 MHz

-100

3 r 3 ‘ f 4—

0.1 0.5 1.0

normality

Figure 5.13. Comparison of theoretical and experimental results on

the input reactance of an insulated probe with terminal

impedances Ze1 = 0.0, Ze2 = 0.0 in various conducting

media.
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_ Theory
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fi' f=600 MHz

4) 200 o
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normality

Figure 5.14. Comparison of theoretical and experimental results on

the input resistance of an insulated probe with ter-

minal impedances Zel = w, Ze2 = 0.0 in various cond-

ducting media.
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Figure 5.15. Comparison of theoretical and experimental results on

the input reactance of an insulated probe with terminal

impedances Ze1 = w, Ze2 = 0.0 in various conducting

media.
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assumed to be Ze1 = 0 and Ze2 = 0, but in Figures 5.14 and 5.15

the terminal impedances are Ze1 w and Ze2 = 0. From these results

it is observed that the agreement between theory and experiment is

very good for the case of Ze1 = w and Ze2 = 0, and for the case of

Ze1 = 0, Ze2 = 0 the agreement is still considered to be satisfac—

tory. These results confirm the validity of the theory developed

for the insulated probe in this chapter.

5.4.1. Current Distributions Along the Insulated Probe

The current along each section of the probe can be found by

substituting for V1 and V2 in (5.1.15) and (5.1.17) using (5.1.6).

The current can be expressed as

 

11(2) =

V Sinh(yzhzi'82)Slnh[(ylh1+-81)-‘YIZ]

0 < z < “1 (5.4.1)

and

I2(Z) =

Sinh(y1h1+ 01)S‘1nh[(yzh2 + 92) + 722]

V
 

ZCl cosh(y1h1+-01)sinh(yzh2+-02)+-ZC2 sinh(y1h1+-ei)cosh(y2h2+-02)

412 _<_ z i 0 ' (5.4.2)
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If we assume both sections of the probe to have the same radius

(a1 = a2) and the same dielectric material, then ch = Zc2 = 2c

and 71 = Y2 = y. Equations (5.4.1) and (5.4.2) can be simplified to

V S‘inh(yh2 + 82) S‘inh [(7111 + 81) - yl]

 

 

11(2) = T sinhTy(h + h )1 (“-3)
c 1 2

0 5.2 §_h1

and

sinh (yh + 0 ) sinh [(yh + 0 ) + yZ]

1 (Z) = l- 1 1 2 2 (5 4 4)
2 Z sinh [7(h + h )] ° ‘

c 1 2

-h §,Z 5,0

The current along the probe for different terminal impedances is

found as follows.

Case (1). In this case Ze1 = Ze2 = m, 01 = 82 = 0. Substi-

tuting for 01 and 02 in (5.4.3) and (5.4.4), the current along each

section of the probe becomes

Sinh [yhz] sinh [yhl - yZ]

 

 

_ V

11(2) " z— sinh mh + h )1 (”-5)
c 1 2

0 §_Z i h1

and

I (Z) = . (5.4.6)
2 '2; Slnh [y(h1 + hi7]
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For a symmetric insulated probe h1 = h2 = h, the current along the

probe can be further simplified to

v sinh [y(h - IZJ)] _h < z < h (5.4.7)
[(2) = 22c cosh (yn) -— -—
 

In Figure 5.16, the current distributions along the insulated

probe with the terminal impedances Ze1 = Ze2 = m are shown. In

this figure it is assumed that a1 = a2 = 0.43 mm, a3 = 0.96 mm,

h1 = 15 mm, and h2 is variable. The electrical properties of the

insulator and the conducting medium are “d = 0, erd = 2.25, 02= 1.1,

€r2 = 76.7.

The current at the tips of the probes are zero due to infinite

terminal impedances. It is observed that the current does not decay

along the probe, and for the short probe h1 = h2 = 15 mm, the cur-

rent has a triangular distribution which is similar to the current

distributions along a short bare probe.

Case (2). Both terminal impedances are zero, Ze1 = Ze2 = 0,

implying 01 = 02 = 44-. Substituting for 91 and 02 in (5.4.3)

and (5.4.4), the current distribution along each section of the

probe is

V cosh (yhz) cosh [y(h1 - 2)]

11(2) ‘ 72' sinh [v(h1 + h2)] (5'4°8)
 

0 :_Z §_h1

and
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V cosh (th) cosh [y(h2 + 2)]

12(2) ‘ T simi [(7011 + 112)] (55-4-9)
 

C

For a symmetric probe, h1 = h2 = h, the current along the probe

is simplified to

V cosh [v(h - 121)]

1(2) ='2Z; sinh (Yh) -h2 5'2 j'h

 

1 (5.4.10)

The current distributions along the probes with tenninal

impedances of Ze1 = Ze2 = 0 are shown in Figure 5.17. The physical

dimensions of the probes and the electrical properties of the

insulator and the conducting medium are the same as that for Fig-

ure 5.16. On the tips of the probe the current is very large

because the terminal impedances are assumed to be zero.

Case (3). In this case one of the terminal impedances is

zero and the other is infinity.

(a). The terminal impedances are Ze1 = w and Ze2 = 0 cor-

responding to 01 = 0 and 02 = %§-. Substituting for 61 and 02 in

(5.4.3) and (5.4.4), the current along each section of the probe

is

\/ cosh (yhz) sinh [y(h1 - 2)]

11(2) = 72' cosh [7(h1 + h2)] (5'4'11)
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V sinh (yhl) cosh [y(h2 + Z)]

12‘“ = ‘2‘; cosh fy(h1 + 112)) (“'12)

“h2:Z<0

 

For a symmetric insulated probe, h1 = h2 = h, the'current in each

section of the probe becomes

 

 

_ v osh n) s' n (n- Izl)
11(2) — 7: C LY cosngg) J (5.4.13)

0 §_Z §.h

and

._ V sinh ( h) cosh [ (h - JZ()]
12(2) - 7; J cosh (sz1 (5.4.14)

-h2 5_Z §_0

In Figure 5.18, the current distributions along the insulated

probes are shown. The current at the tip with infinite terminal

impedance is zero and at the tip with zero terminal impedance the

current is very large.

(b). The terminal impedances are Ze1 = 0.0 and Ze2 = w cor-

responding to 01 =-%g and 02 = 0.0. Substituting for 81 and 62 in

(5.4.3) and (5.4.4), the current along each section of the probe is

sinh (yhz) cosh [y(h1 - Z)]

__‘L

11(2) - Zc cosh [y(h1 + h2)] (5'4'15)
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V cosh (yhl) sinh [y(h2 + 2)]

12(2) =‘2; cosh [mi1 + n2)] (5°4°15)

-h2 §_Z 5_0

 

For a symmetric probe, h1 = h2 = h, the current on each section of

the probe becomes

 

 

._ V sinh (yh) cosh [7(h - IZI)]
11(Z) -.Z; COSh (th) (5.4.17)

0 5_Z 5_h

and

_ V cosh ( h) sinh L (h - '21)]
12(2) - 22- Y cosh (2Y8) (5.4.18)

-h §_Z §_O

In Figure 5.19, the current distributions along the insulated

probes with Ze1 = 0.0 and Ze2 = m are shown. The dimensions of the

probe and electrical properties of the insulator and the conducting

medium are the same as that of case (1).

The current distributions on the probes with various terminal

impedances are shown in Figure 5.20. The current along the probe

changes with the change on the terminal impedances. Therefore,

the heat pattern produced by the EM energy delivered by the probe

changes with the change on the terminal impedances of the probe.
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CHAPTER VI

APPLICATION OF THE INSULATED PROBE

As mentioned earlier the input resistance of a bare probe

'hi a conducting medium is smaller than that of a corresponding

insulated probe. This implies that an insulated probe can deliver

more EM energy in the surrounding medium. For this reason the insu-

lated probe is extensively used for local heating in biological

bodies.

The heat produced by the probe in the medium is given by

%-OIEIZ , where o is the conductivity of the medium and E is the

electric field maintained by the probe in the medium. In the pre-

vious chapter the current distribution along the probewas determined,

thus, the electric field produced by the probe current at any point

in the medium can be found. It is assumed that the current is only

in the z direction and there tis rotationalsyimnetry in this problem.

The electric field in the medium is given by [18]

. 32Az(r,z) ‘ 32AZ(r,z) 2

r araz + Z 322 + k2A2(r,z)] }

E
.

5032) = - J

"2 I

(6.1.1)

The vector potential is expressed as
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hl n -jk2R

- 11 e 1 d ' 1
Az(r,z) - E] f ———R—— 12(2 ) 1%- dz (6.1.2)

“he '11

1/2

where

= {(2 - z')2 + a3 + r2 - 2a3r cos 6'}

Substituting the vector potential given by (6.1.2) in (6.1.1), the

r and 2 components of the electric field can be obtained as

=-_J£u_ __ d .
Er(r,z) 2 araz K(z, z ') fl dz

411k2

(6.1.3)

and

E (r,z) = jw“ -——— + k2)K(z,z')-99: dz'1
2 4nk :22 Zn

2

(6.1.4)

where

e-jsz

K(z,z ) = R
 

Since the derivatives of the Kernel are

a ' (z - z')(1 + ijR) '
E K(Z,Z ) = - R2 K(Z,Z ) :
 

32 (r-a3cos<)>')(z-z')(3+3jk2 R-kng)

araz K(z, Z )= R4 K(Z.Z').
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a2 (z-z')2(3+3jk2R-k§R2)-R2-jkzn3

3:2- K(Z,Z ) = R4 K(Z,Z ) 9

The electric field components given by equations (6.1.3) and (6.1.4)

become

 

. 1 T (r- a3 cos 6')(3+3jk2R- K3132)
12(2')(z-2') 4

411k2 -h -n R

  

 

2

. d¢' .
K(z,z ) 7?? dz } (6.1.5)

and

. h1 " (z-z')2(3+3jk2R- kgnz)

E (n2) = - 3“?” I (2')
z 2 z 4

40k R
2 'hz "TI

R2 + jk2R3 - k§R4 d¢
- 4 K(z,z') — d‘z

R ‘11

(6.1.8)

For a very thin probe we can assume that all the current on the

. 1

probe is concentrated on the z axis, therefore, R = [rZi-(z-mz')2] ,

and the components of the electric field can be expressed as

h . 2 2

1 r(z-z') (3+3Jk R-kR)

Er(Y‘.Z)=- _JLPZI 12(2') 4 2 2 K(z,z')dz'

411k R

2 h2 (6.1.7)
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and

 

 

.w “1 (z- z' )2(3+ 331211- (($112)

E2032) = - 41—"? 12(2') 4
411k R

2 -h2

R2 + jk2R3 - k§R4

- 4 K(z,z')dz' (6.1.8)

R

The components of the electric field are found numerically and the

heat produced by the EM energy in the medium is obtained from

1.21512, where (5)2 = (5212 +(er12.

In Figures 6.1-6.4 the equi-power contours for insulated

probes with various terminal impedances are given. The electrical

properties of the insulated material are Gd = 0.0 (s/m), erd==2.25,

and the physical dimensions of the probe are given in these figures.

In Figure 6.1 the terminal impedances are Ze1 = Ze2 = m; in this

case most of the heat is concentrated along the z axis and around

the driving point. In Figures 6.2 and 6.3 it is assumed that one

of the terminal impedances is zero and the other is infinity; in

these cases the heat is concentrated mostly near the driving point

of the probe and the tip with zero terminal impedance. In

Figure 6.4 both terminal impedances are zero, and the heat is almost

uniformly distributed around the probe.

In general the heat produced by an insulated probe in a con-

ducting medium is distributed in a larger volume in comparison with
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2 (mm)
Ze1 = Zez = m

20 a1 a2 = 0.43 mm

a3 = 0.96 mm

, h = 15 mm

Ze1 h2 = 30 mm

0 :u-

30 r (mm)

 
 

 

  1'30 11

 
Figure 6.1. Equi-power contours for an insulated probe in the r-z

plane. Characteristic impedance of the probe ZC = 64.5

- j13.4, 02 = 1.11 (s/m), 8r2 = 76.7, and the frequency

is 600 MHz.
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Ze1 = w, Ze2 = 0.0

a1 = a2 = 0.43 mm

a3 = 0.96 mm

20 4- h1 = 15 mm

h = 30 mm
Ze1 2 g

o -i i a ..

10 20 30 r (mm)

100 ‘ 7.9 3.9 1.8

30

‘ ’ Ze2

Figure 6.2. Equi-power contours for an insulated probe in the r-z

plane. Characteristic impedance of the probe Z = 64.5

- j13.4, 02 = 1.11 (s/m), €r2 = 76.7, and the frequency

is 600 MHz.
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Figure 6.3. Equi-power contours for an insulated probe in the r-z

plane. Characteristic impedance of the probe Z = 64.5

- j13.4, 02 = 1.11 (s/m), Er2 = 76.7, and the frequency

is 600 MHz.
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Equi-power contours for an insulated probe in the r-z

plane. Characteristic impedance of the probe Z = 64.5

- j13.4, 02 = 1.11 (s/m), Er2 = 76.7, and the frequency

is 600 MHz.
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the heat produced by the similar bare probe, and for an insulated

probe the heat pattern can be changed by the changing in the ter-

minal impedances.



CHAPTER VII

A USER'S GUIDE TO COMPUTER PROGRAMS USED TO

CALCULATE THE CURRENT DISTRIBUTION AND ELECTRIC FIELD

IN A BIOLOGICAL BODY INDUCED BY A BARE AND

INSULATED MICROPROBE

This chapter is divided into two sections. The first section

briefly explains the computer programs used to determine the current

distribution and input impedance of the bare probe immersed in a

conducting medium by solving Hallen's Integral Equation Method

(HIEM) or Electric Field Integral Equation (EFIE). The second part

gives explanation about the program used to find the parameters and

the characteristic impedance of the insulated probe imbedded in the

conducting medium.

7.1. Programs for the Bare Probe
 

Moment method is used to solve integral equations for both

cases HIEM and EFIE. The probe is divided into N segments, and the

current is assumed to be constant along each segment. The geometry

of the bare probe is given in Figure 7.1.

7.2. Program HALIEQ
 

This program solves Hallen's integral equation for the bare

probe. Given the necessary data the program solves equation (2.1.4)
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Figure 7.1. Geometry of the bare probe used in HALIEQ.
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for the current distribution, and the input impedance of both sym-

metric and asymmetric bare probes. The main program contains a

subroutine and a function as explained below.

CMATPAC is a subroutine that solves the system of linear equations

by Gauss's elimination process to determine the unknown

currents on the probe.

GRE is a function that computes Green's function.

7.2.1. Description of Input Variables and Input Data Files
 

The data deck is composed of two files with each file having

only one card. The names of the variables used in this program and

the format specifications are given in Table 7.1. The variables in

data files are defined below.

First data file--accommodates the following variables:
 

N is the total number of segments on the probe.

M1 is an even integer; it is the number of segments on the sec-

tion (1) and section (2) of the probe.

M2 is the number of segments on the section (3) of the probe.

Second data file--contains the following variables:
 

FREQ is the frequency of operation in Hz.

RRI specifies the radius of the section (1) of the probe.

RR2 is the radius of the section (2) of the probe.

21 specifies the surface impedance of the probe in section (2)

and section (3); it is assumed that the surface impedance of

section (1) is zero.

ZIG specifies the conductivity of the conducting medium.

EPR is the relative permittivity of the conducting medium.
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Table 7.1. The symbolic names of the input variables and the format

specifications used in program HALIEQ.

 

 

 

File Card . Variable

Number Number Columns Name Format

1 1 1-3 N I3

4-6 M1 I3

7-9 M2 13

2 1 1-12 FREQ F12.1

13-21 RR1 F9.5

22-30 RR2 F9.5

31-39 21 F9.1

40-45 ZIG F6.2

46-50 EPR F5.1

51-56 HHl F6.1

57-62 HH2 F6.2

 

HHI is the length of the section (1) of the probe.

HH2 specifies the length of the section (2) plus section (3) of

the probe.

7.2.2. Example
 

Let us assume that the probe has the dimensions of h1==7.5 mm,

h2 = 15 mm, and the diameters of the two sections are equal (a1 = a2

= 0.43 mm). The frequency is 600 MHz, and the electrical properties

of the conducting medium are a = 1 11, er = 76.7. The surface

impedance 21 = 100. Following is the list of numbers and corre-

sponding variable names should provide in file no. 1 and file no. 2.
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Numbers Variable Name Columns

File No. 1

024 N 1-3

016 M1 4-6

008 M2 7-9

File No. 2

600,000,000.0 FREQ 2-12

0.00043 RR1 15-21

0.00043 RR2 24-30

100.0 21 35-39

1.11 ZIG 42-45

76.7 EPR 47-50

7.5 HH1 53-55

15.0 HH2 58-61

 

The numerical results are presented after the listing of the program

HALIEQ.

7.3. Program EFZI
 

This program solves EFIE for the bare probe given in equa-

tion (2.2.7). Given the necessary data this program finds the current

distribution and input impedance of both symmetric and asymmetric

bare probes. The subroutines and functions used in the main program

are as explained below.

CAMTPAC is explained in HALIEQ.

MAGRIN is a subroutine that finds the electric field on the sur-

face of the probe, based on magnetic current ring as the

driving source.

SIMCON is a subroutine that calculates the first integral in a

double integral.
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FCT is a function that provides the integrand of SIMCON.

SIMCOP is a subroutine that calculates second integral in a double

integral.

FCTP is a function that provides the integrand of SIMCOP.

GRE is a function that computes the Green's function.

7.3.1. Description of Input Variables and Input Data Files
 

The data deck is composed of two files, with each file having

only one card. The names of the variables used in the first data

file and the format specifications are given in Table 7.2. The

second data file has the same variables and formats as the variables

in the second data file in HALIEQ. The information about variables

in the first data file is explained below.

First data file-~accommodates the following variables:
 

N is the total number of segments on the probe.

M1 is the number of segments on section (1) of the probe.

M2 is the number of segments on section (2) and section (3)

of the probe.

NG specifies the number of subdivisions the driving point

segment will undergo in the partitioning process of the

probe.

ITEST is either one or two; when it is one the driving source is

assumed to be a delta gap, and when it is two the driving

source is modeled as a magnetic current ring.

7.3.2. Example
 

Let us assume that all the conditions are the same as mentioned

in example 7.2.2, but the surface impedance is zero everywhere in

this case. The second data file is the same as explained in example
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Table 7.2. The symbolic names of the input variables and the format

specifications used in the first data file in program

 

 

 

EFZI.

File Card Variable

Number Number Columns Name Format

1 1 1-3 N 13

4-6 M1 13

7-9 M2 13

10-12 NG I3

13-15 ITEST I3

 

7.2.2, except we have zero for surface impedance. The list of numbers

and corresponding variable names in file no. 1 are given below.

 

 

 

 

Numbers Variable Name ' Columns

File No. 1

024 N 1-3

008 M1 4-6

016 M2 7-9

001 MG 10-12

002 ITEST 13-15

 

The numerical results are presented after the listing of the program

EFZI.

7.4. Program Used for Insulated Probe
 

This section briefly explains the computer program used to

determine the parameters and the input impedance of the insulated

probe, with various terminal impedances. The probe is treated as a
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lossy transmission line. The symbolic name of the program is INPIMP.

The main program contains a subroutine COMBES, which finds the

Bessel's functions of first and second kind for complex argument and

complex order. The subroutine COMBES is explained in more detail

in [16].

7.4.1. Description of Input Variables and Input Data Files
 

The data deck is composed of five files, with each file having

only one card. The names of the variables used in this program and

the format specifications are given in Table 7.3. The variables in

data files are defined as below.

First data file--accommodates the following variables:
 

H1 is the length of the section (1) of the probe.

H2 is the length of the section (2) of the probe.

 

Second data file--contains the following variables:

ZIGD is conductivity of the insulating material.

EPRD is relative permittivity of the insulating material.

Third data file--contains the following variables:
 

2182 is conductivity of the conducting medium.

EPR2 is relative permittivity of the conducting medium.

Fourth data file--contains the following variables:
 

A1 is the radius of the conductor in section (1).

Aé is the radius of the conductor in section (2).

A3 is the outer radius of the insulator.

Fifth data file-~contains the following variable:
 

FREQ is the frequency of operation.
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Table 7.3. The symbolic names of the input variables and the format

specifications used in program INPIMP.

 

 

 

File Card Variable

Number Number Columns Name Format

1 1 1-8 H1 F8.5

9-16 H2 F8.5

2 1 1-6 2180 F6.2

7-12 EPRD F6.2

3 1 1-8 ZIGZ F8.4

9-13 EPR2 F5.2

4 1 1-8 A1 F8.5

9-16 A2 F8.5

17-24 A3 F8.5

5 1 1-12 ' FREQ F12.1

 

7.4.2. Example
 

The input impedance of insulated probe with a1 = a2 = 0.43 mm,

a3 = 0.96 mm, h1 = 15 mm, and h2 = 45 mm is found by INPIMP. The

electrical properties of the insulator and the conducting medium

are Gd = 0.0, e d = 2.25, 02 = 1.11, and-er2 = 76.7. Following isr

the list of numbers and corresponding variable names
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Numbers Variable Name Columns

File No. 1

0.015 H1 2-6

0.045 H2 10-14

File No 2

0.0 2160 3-5

2.25 EPRD 9-12

File No. 3

1.11 ZIGZ 3-6

76.7 EPR2 9-12

File No. 4

0.00043 A1 2-8

0.00043 A2 10-16

0.00096 A3 18-24

File No. 5

FREQ 2-12600,000,000.0

 

The numerical results are presented after the listing of the program

INPIMP.
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c...’...-O0.0......‘0.0lifitittfifiifitfit‘ttittt..‘t...’...‘........OOOCO'.

C THIS PROGRAM DETERMINS THE CURRENT DISTRIBUTION ON THE PROBE AND

C INPUT IMPEDANCE OF THE PROBE BY SOLVING HALLEN.S INTEGRAL EQUATION.

Citifltltttttt.....OC‘OC...‘.....tt...“..“Ctttttitt‘ttt...t.“......i.

PROGRAM HALIEQ (INPUT.0UTPUT)

COMMON/HALGRE/JK

DIMENSION G(100.iOO).Z(iOO).S(100).D3(3)

COMPLEX G.K.F.F1.02.03.82.84.DET.A.E.61.E2.E3.E4.ZIN.81.dK.GRE

REAL MU.IREA.IIMA.LA '

READ 100.N.M1.M2

READ 101.FREO.RR1,RR2.ZI.ZIG.EPR.HH1.HH2

FREO=FREO/i.OE+6

PRINT 102.FR£0.RR1.RR2.ZI

R1=RR1 s R2=RR2

PI=4.o-ATAN(1.0) s vo=1.o

MU=4.0*PI-1.0E-7

0ME=2.0*PI*FREO*1.0E+6

M3=M1+1 s M4=M1/2 s M6=M4+1

H1=HH1/1000.0 S H2=HH2/1000.0 S H3=H1

DEL1=(H1+H3)/M1

DEL2=(H2-H3)/M2

DEL3=(DEL1+DEL2)/2.0

ct.......‘t...C......‘titfiifiitfifitfi.tiflt......0‘...tt......tttttttlit...

C PARTITION THE PROBE IN N SEGMENTS.

c....‘lfitfifittitfiittti......fi.......‘ttflttfiitttfifiiiItittlfittttttttttI...

11

14

12

13

10

oo 10 00:1.N

IF(uu-M3) 11.12.13

IF(dd.EO.i) GO To 14

DEL=DEL1 s daiauu-i

Z(dd)=2(ddi)-DEL 5 GO T0 10

DELIDELi

z(uu)=H1-o.5coEL 3 60 To 10

DEL=DEL3

uuz-uu-i .

Z(dd)=2(dd2)-DE s GO To 10

DEL=DEL2

003-00—1

z(dd)=2(003)-DEL

CONTINUE

EP-1.oe-9vEPR/(36.0rPI)

PRINT 93.H1.H2.ZIG.EPR

PRINT 39.N.M1.M2

K=0ME‘CSQRT(MU'EP-CMPLX(0.0.1.0)*MU‘ZIG/OME)

ALPHAs-AIMAGIK) s 86TA=REAL(K)

PRINT 81.ALPHA.BETA

UK=CMPLX(0.0.1.0)'K

CD...“..U.C.O‘"...Ct.....t...‘..t......‘O‘Ofitt‘lttltitttttitltfititttt

C FIND THE DIAGONAL TERMS OF THE IMPEDANSE MATRIX.

C'...‘....I..O....fl‘i......fifi.........‘CtttttttfittititOttttittttttittt.

DO 2 II-i.3

IF(II-2) 3.4.5

DEL=DEL1

R=R1 3 GO TO 6

DEL-DELi

R-R2 8 GO TO 6

DEL'DELZ

R=R2

HDEL-DEL/2.0

D-HoEL/R

01-2.0-ALOG(D+SORT(1.0+Ort2.0))

DZ-Di-dK—DEL

03(II)-02

CONTINUE
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88(4.0‘PI)/(0ME'MU)

BI=CMPLX(ALPHA.8ETA)

82=B-Bi s 83=8tZI

B4=CMPLX(0.0.'B3)

M=N+i

CO‘COtOO‘OOi...‘...'¢’.fifififififitfi‘.‘...Ottttfifi.*.00tttififi0'Otttttlttfittt'

C THIS SECTION FINDS THE ELEMENTS OF THE IMPEDANCE MATRIX.

C...*.$.fififitittfitittfittttttiifittfitttttittfitlfittt‘fittttfitttttttttttttttt

15

3O

43

42

41

44

45

40

OO 15 L-1.N

G(L.i)=82tCCOS(K¢Z(L))

6(L.N)=82rcs1N(K~Z(L))

G1L.M)=-B2'(V0/2.0)*CSIN(K*ABS(Z(L)1)

CONTINUE

E1'(1-CCOS(KtDEL1/2.0))‘B4

E2=(1~ccos(K~OEL2/2.o))*84

M5=N~M4

OO 30 d-1.M5

OEL=OEL2

IF(d.LE.M4) OEL=OEL1

L=U+M4

S(d)=Z(L)-DEL/2.0

CONTINUE

N1sN-1

oo 40 I-1.N

oo 40 d'2.Ni

IP(I.Eo.U) GO TO 41

OELsOELz

IF(d.LE.Mi) OEL=OEL1

R=R2

IF(I.LE.M4) R=R1

R3=SORT((Z(I)-Z(d)) *‘2.0+R**2.0)

IP(I.GT.M4.ANO.U.CT.M4) GO TO 42

G(I.d)=GRE(R3)'DEL S GO TO 40

IF(d.GT.I) GO TO 43

L’I-M4 S LL3d-M4 S LPSLL+1

F=B4'(CCOS(K*(Z(I)-S(LP)))‘CCOS(K*(Z(I)-$(LL))))

G(I.U)=GRE(R3)—OEL+F

GO TO 40

IF(I.GT.M1) GO TO 44

IF(I.GT.M4) GO TO 45

00-1

G(I.d)=D3(dd) 5 GO TO 40

00-3

G(I.d)=DS(dd)+E2

GO TO 40

00-2

C(I.U)=03(Ud)+E1

CONTINUE

CALL CMATPAC1-1.G.N.1.0ET.1.0E-200)

AVIN-CABS(G(M4.M))

pRINT 111.AVIN.G(M4.M)I

ZINsi/(61M4.M))

AZIN-CABS(ZIN)

PHI=ATAN(AIMAG(ZIN)/REAL(ZIN))t180.0/(2.OrPI)

PRINT 107.AZIN.ZIN.PHI

PRINT 103

00 95 11-1.N

IF(Ii.EO.i) GO TO 19

IF(Ii.EO.N) GO To 19

AMPI-CABS(G(Ii .M))

GO To 21
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19 G(Ii.M)=0.0

AMPI=o.o

21 PRINT 25.11.2(11).AMPI.G(11.M)

95 CONTINUE

c...‘t......t..t.....‘fittfitiiti‘tfitfi...!‘iittit.tfitt‘tllttttt......ttt.

c READ AND wRITE FORMATS.

CO‘OOtttfifititttiiitltfl.‘OtttttfittOOOOtOOOOOOttltttltttitttttttttttto...

25 PDRMAT(1HO.10x.I3.4x.cz=-.F6.4.4x.~AMP(I)sr.F8.4.4x.-I=-.

C2(F8.4.2X))

39 PDRMAT(1Ho.2ox.2HN=.13,4x.3HM1-.13.4x.3HM2-.13./)

81 FORMAT(1HO.2OX.*ALPHA=*.F8.2.4X.'BETA=*.F8.2./)

93 PORMAT(1Ho.10x.tH1=t.Pe.4.4x.«H2=:.F8.4.4x.tSIG=t.P8.4,4x.

c-EPR=:.F8.4./)

100 FORMAT(313)

101 FORMAT(F12.1.2(F9.5).F9.1.F6.2.F5.1.2(F6.1))

102 FORMAT(1HO.10X.'FREO='.F7.2.VMHZ*,4X.*A=I,F8.5.4X.'83-,F8.5.4X.

t-ZI-P.F8.1./)

103 FORMAT(1HO.135('+‘)./)

105 FORMAT(2(F14.8))

107 PORMAT(1Ho.2ox.tABS(ZIN)=-.P8.2.4x.tZIN=-.2(P8.2.2x).rPHI=-.

CF8.2./)

111 PORMAT(1Ho.2ox.oABS(YIN)=—.Pa.4.4x.~YIN--.2(Pa.4.2x)./)

END

c#‘.“.....tfititttlitfi3....t...‘..‘..tlt..fi..tfi$......ttfititttttttttltt

. COMPLEX FUNCTION CRE(R1)

CttttttfittttttttntttttCOOOCttttttlttttttttttttttttltttt-ttttats...at...

COMMON/HALCRE/UK

COMPLEX UK

GRE=CEXP(-UK~R1)/R1

RETURN

END .

Ctfitttllfititttttttt...Ittlttttiit...ttttttttttttitttt......tttitttit...

c SUBROUTINE CMATPAC SOLVES THE SYSTEM OF EQUATIONS ev

c GAUSS-ELIMINATION PROCESS.

Ctitttttltttttttttttatltttttttttttttttttttttttt-ttttttttOtittttottttttt

SUBROUTINE CMATPACIIUOB.A.N.M.DET.EP)

DIMENSION A(1oo.1oo)

TYPE COMPLEX A.8.DET.CONST.S

3o FORMAT(1X.42HTHE DETERMINANT OF THE SYSTEM EDUALs ZERD./

11x.36HTHE PROGRAM CANNOT HANDLE THIs CASE.//)

DET-i.

NP1=N+1

NPM=N+M

NM1=N-1

IF(IUOB) 2.1.2

1 DO 3 I-1.N

NPI=N+I

A(I.NPI)=1.

IP1-I+1

DO 3 d-IP1.N

NPd=N+d

A(I.NPU)=O.

3 A(U.NPI)=O.

2 DD 4 0-1.NM1

C=CABS(A(d.d))

UP1-U+1

Do 5 IaUP1.N

D-CABS(A(I.U))

IF(C-D) 6.5.5

6 DET--DET

DO 7 K-U,NPM

CMAOOOO1

CMAOOOO2

CMAOOOO4

CMA00005

CMAOOOOG

CMAOOOO7

CMAOOOOB

CMA00009

CMAOOOlO

CMAOOO11

CMA00012

CMAOOO13

CMA00014

CMAOOO15

CMA00017

CMAOOO18

CMA00019

CMAOOO21

CMAOOO22

CMAOOO24



15

14

16

17

18

11

10

19

13

12

137

DETa-DET

Do 7 K=d.NPM

B=A(I.K)

A(I,K)=A(U.K)

A(d.K)=B

c=D

CONTINUE

IP(CABS(A(U.0))-EP) 14.15.15

00 4 I=dP1.N

CONST=A(I.d)/A(d.d)

DO 4 K=dP1.NPM

A(I.K)=A(I.K)-C0NSTPA(J.K)

IF(CABS(A(N.N)-EP))14.18.18

DETso.

IF(IUOB) 16.16.17

PRINT 30

RETURN

Do 11 I=1.N

DET=DET~A(I.I)

IP(IUDB) 10.10.17

00 12 I-1.N

KaN-I+1

KP1=K+1

DD 12 L=NP1.NPM

s-o.

IF(N-KP1) 12.19.19

00 13 U=KP1.N

S=S+A(K.d)tA(d.L)

A(K.L)=(A(K.L)-S)/A(K.K)

RETURN

END

24 16 8

GOOOOOOO0.0 0.00043 0.00043 100.0 1.11 76.7
7

.5

CMAOOO27

CMA00028

CMAOOOZQ

CMAOOOSO

CMAOOO31

CMAOOO33

CMAOOO34

CMAOOO35

CMA00036

CMAOOO38

CMAOOOBB

CMAOOO4O

CMAOOO41

CMAOOOA2

CMAOOO43

CMAOOO45

CMAOOOdS

CMAOOO47

CMAOOO49

CMAOOOSO

CMAOOOS1

CMA00052

CMAOOOSB

CMAOOOS4
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FREQ= 600.00MHZ A= .00043 B= .00043 ZI= 100.0

H1= .0075 H2= .0150 SIG= 1.1100 EPR= 76.7000

N= 24 Ml= 16 M2= 8 .'

ALPHA+ 23.37 BETA+ 112.51

ABS(YIN)= .0505 YIN=I .0434 .0258

ABS(ZIN)= 19.80 ZIN= 17.03 -lO.11 PHI= -15.34

++++++++++++++w+_++++.++++.+.++++.++++_+.+++

1 Z3 .0070 AMP(I)= 0.0000 I= 0.0000 0.0000

2 Z= .0061 AMP(I)= .0117 I= .0110 .0038

3 Z8 .0052 AMP(I)= .0181 I= .0170 .0062

4 Z8 .0042 AMP(I)=l .0244 I= .0227 .0088

5 2' .0033 AMP(I)- .0303 I= .0280 .0115

6 Z= .0023 AMP(I)= .0360 I= .0329 .0146

7 Z3 .0014 AMP(I)= .0415 I= .0374 .0179

8 Z= .0005 AMP(I)= .0505 I= .0434 .0258

9 Z=-.0005 AMP(I)= .0522 I= .0454 .0258

10 Z=-.0014 AMP(I)= 7.0469 I= .0434 00178

11 Z=-.0023 AMP(I)= .0453 I= .0429 .0145

12 Z=-.OO33 AMP(I)= .0435 I= .0419 .0116

13 Z=-.0042 AMP(I)= .0417 I= .0406 .0092

14 Z=-.0052 AMP(I)= .0396 I= .0390 .0071

15 28-.0061 AMP(I)= .0373 I= .0369 .0053

16 Z=-.0070 AMP(I)= .0348 I= .0345 .0038

17 Z=-.0080 AMP(I)= .0319 I= .0318 .0025

18 Z=-.0089 AMP(I)= .0288 I= .0287 .0015

19 Z=-.0098 AMP(I)= .0253 I= .0253 .0008

20 28-.0108 AMP(I)' .0216 I= .0216 .0002

21 Z=-.0117 AMP(I)= .0176 I= .0176 -.0001

22 Z=-.0127 AMP(I)- .0131 I= .0131 -.0003

23 Z-.0136 AMP(I)'I .0085 I8 .0085 -.0003

24 Z=-.0145 AMP(I)= 0.0000 I= 0.0000 0.0000
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LOU-CCU.........0......-......ICUUCUCCUCUCOO......‘UOCCCUUUUI......‘CUU

THIS PROGRAM SDLVES ELECTRIC FIELD INTEGRAL EQUATION TO FIND CURRENT

C DISTRIBUTION AND INPUT IMPEDANCE OF THE PROBE.

COO.......‘O‘IIOOOOUIOOCO......U.‘......CCOCCCOIOC'OOO......00000......

C

13

11

12

10

PROGRAM EFZI(INPUT.0UTPUT.TAPE1)

DIMENSION 06(4).B(60).Z(60).G(60.61).EZ(60)

COMPLEX K.UK.02.03.06.D7.B.82.E3.E4.E7.G.ZIN.A.E2.GRE.8A.ALR

'.ddK

COMMON/EZIMAG/Ai.A2.dK.OELG

COMMON/SECRE/UUK

REAL LA.MU

READ 100.N.M1.M2.N0.ITEST

READ 103.FREO.RR1.RR2.ZI.ZIG.EPR.HH1.HH2

FREO=FREO/1.0E+6

H1=HH1/1000.0

H2=HH2/1000.0

PRINT 101.FRE0.RR1.RR2.2I.2IG.EPR.H1.H2

PRINT 39.N.M1.M2.NG.ITEST

PI=4.0-ATAN(1.0) s v-1.0

MU84.O'PI'1.OE-7

OMea2.o-PI-PRE0-1.0E+6

M3=M1+1 s M4-M1+NC s M5=M4+1 S NC=M1+1 s NP=N+NC

A1=RR1 s A2=RR2

DEL1=H1/M1

DEL2=H2/M2

DO 56 INN-1.1

DELG-0.001

DEL3=(DEL1+DELG)/2.o

DEL4-(DEL2+DELG)/2.0

H1=HH1/1ooo.o+o.s-DELG

H2=HH2/1000.0+0.5-DELG

Do 10 0-1.NP

IFIU.LE.M1) GO TO 11

IF(J.GT.M4) GO TO 13

DEL=OEL3

03-0-1

ZIU)-Z(03)-DEL s 60 TD 10

OELsOELZ

IF(U.EO.MS) OEL=DEL4

0250-1

2(d)'ZIUZ)-OEL S GO To 10

IFIU.E0.1) GO TO 12

0120-1

2(dl'Z(dll-DEL1 S 60 TO 10

2(0)=H1-DEL1-o.5

CONTINUE

EPsEPR-1.OE-9/(36.0-PI)

K=OME-CSORT(MU‘EP-CMPLX(0.0.1.0)-MU'ZIG/OME)

UKaK-CMPLXID.0.1.0)

UUK-UK

ALPHAa-AIMAGIK) s BETAsREAL(K)

PRINT 81.ALPHA.BETA

LA'2.0'PI/BETA

PRINT 57.EPR.ZIG

PRINT 67.DELG

COO...I......I‘I....C..........CII......OICOOCOOCIt-CO......IOCOO......

FIND THE DIAGONAL TERMS OF THE IMPEDANCE MATRIX.C

COCOIIOCOCO......‘C‘...’......‘OCCOCCC.........IIIOCCOUOUICOOOCOOIOOIOO

DO 2 II'1.4

IFIII.GT.2) GO TO 4

A3-A1 S DEL'DELi

IF(II.EO.2)OEL=DELG

GO TO 7
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A3=A2

DEL=DEL2

IF(II.EO.3) DEL=DELG

HOEL=OEL/2.0

O=HDEL/A3

01-2.0*ALOG(D+SORT(1.0+O*'2.0)) .

D2=01-UK-DEL

R=soRT(HDEL--2.0+A3rv2.0)

RRE=1.o/R S RSQ=RRE**2.0

D3=-DEL'(RSO+UK1RRE)tGRE(R)/(K'*2)

IF(II.LT.2) 07:0.0 .

IF(II.GE.2) D7=CMPLX(0.0.-4.0*PI/(OME'MU))'ZI

06(II)=02+03+D7

CONTINUE

Bi=(4.0~PI)/(OME*MU)

82=CMPLX(0.0.-B1)

IF(ITEST-2) 44.47.47

CALL MAGRIN(NP.Z.EZ)

DO 45 IR=1.NP

B(IR)=82*EZ(IR)

GO TO 3

DD 48 NNa1.NP

B(NN)=0.0

IF(NN.EQ.NC) B(NN)=BZ*(1.0/OELG)

CONTINUE

CItttfitiflfifitttttttltttltttttit
‘fitltfittitttlttififi*tttflflfiiitti

ttttttttl“

C THIS SECTION FINDS ELEMENTS OF THE IMPEDANCE MATRIX.

C*.'.Itifiitttttttttittitfittitfitttlttfitt‘fltttiitttitttiit.‘fitfifltiiti‘.t‘

3

55

DO 15 I=1.NP

DO 15 dd=1.NP

IF(I.EO.dd) GO TO 17

A3=A2

IF(I.LE.NC) A3=A1

R=SDRT((Z(I)-Z(UU)) u2.0+A3n2.0)

OEL=DEL1

IF(dd.GE.M3) DEL=DELG

IFIUU.GT.M4) DEL=DEL2

HDEL=DEL/2.0

E1a2(I)-Z(UU)+HDEL s E2=Z(I)-Z(dd)-HDEL

RiasoRT(Eit#2.0+A3**2.0)

RZ=SORT(E2‘*2.0+A3**2.0)

P1=1.0/R1 s F2=Fi**2.0

£3=-Eie(F2+deFi)-GRE(R1)

P3-1.0/R2 S F4=F3t*2.0

E4=-E2*(F4+thF3)*GRE(R2)

G(I.dd)'(E3-E4)/(K"2)+DEL*GRE(R)

GO TO 15

IF(I-NC) 31.32.33

081 S GO TO 34

d=2 S GO TO 34

d=4

G(I.Jd)=06(d)

CONTINUE

MP8NP+1

DO 55 L-1.NP

G(L.MP)=B(L)

CONTINUE

CALL CMATPAC(-1.G.NP.1.DET.1.0E-200)

AYIN=CABS(G(NC.MP))

PRINT 111.AYIN.G(NC.MP)

ZIN-1.0/G(Nc.MP) S AZIN=CABS(ZIN)
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PHIaATANIAIMACIZINl/REAL(ZIN))-180.O/(2.0'PI)

PRINT 107.AzIN.zIN.PHI

PRINT 102

DO 95 Il=i,NP

AMPI=CABS(G(Ii.MP))

PRINT 23.I1.Z(Ii).AMPI.G(Ii.MP)

95 CONTINUE

56 CONTINUE

Ct...OIOOOCCtttt-ttttOCOOOCUOIOCOOOOOOOCOO6.5.6.0009...0.00.00.00.00...

C READ AND WRITE FORMATS.

CO.........‘CIOOOCCOCOCO-......CC......COOOOIOOOCCIOOOUVOOOIt...'00....

23 FORMAT(10X.13.4X.4(F8.6.4X)./)

39 FORMAT(1H0.20X.2HN=.13.4X.3HM1-.I3.4X.3HM2=.13.4x.3HNc=.13..2x.

'°ITEST".I3./)

57 PDRMATI1H0.20X.4HEPR=.P8.3.4x.4HzICs.Fa.4./1

67 PORMAT(1H0.30X.5HDELGs.P8.6./)

81 PORMATI1H0.10X.6HALPHA=.E12.5.4X.5HBETA-.E12.5./l

100 FORMAT(5(IB))

101

102

FORMAT(1HO.5X.5HFREO=,F6.2.4HMHZ .2X.2HA=,F7.5.2X.2HB=.F7.5.2X.4H

‘ZI'.F7.1.2X.4HZIG‘.F6.2.2X.4HEPR=.FS.1.2X
.3HH1=.F7.4.2X.3HH2=.;7.4

./1

FORMAT(1HO.135(‘+‘)./)

103 FORMAT(F12.1.2(F9.5).F9.1.F6.2.F5.1.2(F6.1))

107

111

FORMAT(1HO.2OX.9HABS(ZIN)‘.E12.5.4X,4HZIN‘.2(E12.5.2X).4HPHI8.

-E12.5./)

PORMAT(1H0.20X.9HABS(YIN)=.E12.5.4X.4HYINs.2(E12.5.2x)./)

END

C ....OOIIt...O......‘C......OCCI......‘IOCOOCCOCOUCOCCVCOOIOCOIOOOOO...

SUBROUTINE MAGRIN(NP.Z.EZ)

c ...-IOICCOOJOOCOCCCCC..C......‘O...O..........‘C'COOO0.100000.........

23

COMMON/MAGFCT/PI.ZZ.RO.ROP.EROP /MAGPCP/ZZI.RRO.RROP.EEUK

COMMON/EZIMAG/Ai.A2.UK.DELG

DIMENSION Z(60).F(4).EZ(60)

COMPLEX K.UK.EEUK.SUM1.EZ.F.$UM4.SUMS.SUM6.PATCH

REAL MU.LA

PI=4.0‘ATAN(1.0)

EEdK-UK

DA-0.001-A1

XXsDELG/2.o

PACT-1.0/(8.0-PI-Xx)

XENDaXX

ROP-A2

RROP-RDP

Xin-xx

ERR-0.001

EPSxXX/100.o

EPORsEPS/ROP

PATCHIPI~EPS*O.5-UK«PI'O.25'(EP5-'2.O)

DO 20 INDEx-1.NP

2282(INDEX)

ZZI=ZZ

DO 21 J-1.2

RO'O.9-A1-(2-d)'DA

RRo-RO

IF((RO.EO.ROP).AND.(INOEX.EO.NC)) GO TO 23

CALL SIMCONIINDEX.X1.XEND.ERR.25.SUM1.NDI.R)

F(JI-SUMi-ROEROP'2.O

GO To 21

IIIiOO+INDEX

CALL SIMCON(INDEX.EPS.XENO.ERR.25.SUM4.NOI.R)

CALL SIMCON(II.0.0.EPS.ERR.25.SUM5.NOI.R)
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21

22

20

59
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FORMAT(1H0.50X.2(Ei2.5.4X.Ei2.5)./)

F(U)=4.0«ROv(ROPrSUM4+ROPrSUM5+PATCH)

CONTINUE

EZ(INDEX)=FACT-(P(2)-F(1))/(ROoDA)

PRINT 22.2(INDEX).RO.E2(INDEX)

FORMAT(1H0.2OX.2HZ=.F9.6.4X.4HRAD=.F9.6.4X.3HEF=.F9.4.2X.F9.4./)

CONTINUE

CONTINUE

END

CutttttttfifitttttiItttttfitttttfittfifitfitlfifltfiiCtfitfittttt'ttittttCitt'Vtfiti

SUBROUTINE SIMCON(INDEX.X1.XEND.TEST.LIM.AREA.NOI.R)

Ctfiltltittiifiiiitfififittt-fititt..’*‘.‘.‘.t“.fifii.ttttitttttilttttttfitiitt

31

50

COMPLEX AREA.OOD.EVEN.AREA1.ENDS.FCT

NOI=0

00080.0

INTsi

v-1.0

EVEN=0.0

AREA1=0.0

ENDS=FCT(INDEX.X1)+FCT(INOEX.XEND)

H=(XEND-X1)/V

DDD=EVEN+ODD

X=X1+.5-H

EVEN=0.0

DO 3 I=1.INT

EVEN=EVEN+FCT(INDEX.X)

X=X+H

CONTINUE

AREA=(ENDS+4.0*EVEN+2.0‘000)*H/6.0

NOI=NOI+1

A3=CABS(AREA)

IF((A3.LE.1.E-i4).ANO.(NOI.LE.2)) GO TO 4

IF((A3.LE.1.E-14).AND.(NOI.GE.2)) GO TO 50

R=CABS((AREA1-AREAl/AREA)

RsCABS((AREA1-AREA)/AREA)

IF(R-TEST) 32.32.4

RETURN

AREAisAREA

INT=2*INT

v=2.0-v

GO TO 2

AREA=1.E-14

RETURN

END

Gift.t...“...‘....$..CtttititttfiitiititttttCttfittittt.vttitttttttttt...

COMPLEX FUNCTION FCT(INDEX.ZP)

Cttlttltfittttiltit‘ttfifitiltlthItfittittttittttitttttit.Cttlttttiibttfitt

41

COMMON/MAGFCT/PI.ZZ.RO.ROP.EPOR /FCTFCT/ZZP

COMPLEX SUM2

ZZP=ZP

IF(INDEX.GT.100) GO TO 41

CALL SIMCOPIINOEX.0.0.PI.0.001.25.SUM2.NOI.R)

FCTSSUMZ

RETURN

CALL SIMCOP(INDEX.EPOR.PI.0.001.25.SUM2.NOI.R)

FCT'SUM2

RETURN

END

Citattttltoat.totattttttut‘tttlttuc‘ttt-ntntattttttatcttttt.ottatset...

SUBROUTINE SIMCOP(INDEX.X1.XEND.TEST.LIM.AREA.NOI.R)

Ctitthiti‘.Otifitfiltfififitllt.‘l...‘..*..i..ttittO..I.¥tifi.tfifittlltttttttt
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COMPLEX AREA.ODD.EVEN.AREA1.ENDS.FCTP

NOI-O

ODD=0.0

INTaT

v=1.o

EVEN=0.0

AREAT-o.o

ENOSaFCTP(INOEX.X1)+PCTP(INOEX.XENO)

2 H=(XENO-X1)/v

OOO=EVEN+OOO

X=X1+.5-H

EVEN=0.0

OO 3 IaT.INT

EVEN=EVEN+FCTP(INOEX.X)

X=X+H

3 CONTINUE

AREAs(ENOS+4.o-EVEN+2.o~OOO)-H/6.o

NOI=NOI+1

A3=CABS(AREA)

IF((A3.LE.1.5-14).AND.(NOI.LE.2)) GO TO 4

IF((A3.LE.1.E—14).ANO.(NOI.GE.2)) GO To 50

R=CA8$((AREAT-AREA)/AREA)

IF(NOI-LIM) 31.32.32

31 [F(R-TEST) 32.32.4

32 RETURN -

4 AREA1=AREA

INT22'INT

v=2.o-v

GO To 2

so AREA=1.E-14

RETURN

ENO

Ctlflfitt......‘OOOCCCOOC...-.........CI..UCCCI....-O....00.000.000.00...

COMPLEX FUNCTION FCTP(INOEX.PHI)

Cl...I...........IOIOIIOOCCCOOCVOtittttttltttttttfiC..-OOtttooctnnoo.ott

COMPLEX GRE.EEUK

COMMON/MACFCP/ZZI.RRO.RROP.EEUK /FCTFCT/ZZP

COPH=COS(PHI)

RTrSORT((ZZI-ZZP)-'2.o+RRo--2.o+RROPfc2.o-2.0oRRO-RROP-COPH)

FCTP=GRE(R1)‘COPH

RETURN

END

COOOCICDICCCCC......C...-.‘C..C.....UCOCIOOCOCCCOO'QOC'......CVIfififittt'

COMPLEX FUNCTION CRE(RR)

C.........‘C.......C......I...'......‘C.........‘COOCCOOOUCICOOQVCCOCC'

COMMON/EFGRE/JUK

COMPLEX UUK

GRE=CEXP(-JUK-RR)/RR

RETURN

ENO
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FREQ=600.MHZ A=.OOO43 B=.00043 ZI=).O ZIG=1.11 EPR=76.7 H1=.0075 H2=.0150

N= 24 M1= 8 M2= 16 NG= 1 ITEST= 2

ALPHA= .2337OE+02 BETA= .11251E+O3

EPR= 76.700 ZIG= 1.1100

DELG= .001000

z= .007531 RAD= .000387 EF= .2553 -.0580

z= .006594 RAD= .000387 EF= .3715 -.0641

z= .005656 RAD= .000387 EF= .5723 -.O718

z= .004719 RAD= .000387 EF8 .9556 -.0817

z= .003781 RAD= .000387 EF= 1.7953 -.0957

z= .002844 RAD= .000387 EF= 4.0563 -.1174

z= .001906 RAD= .000387 EF- 12.6046 —.1570

z= .000969 RAD= .000387 EF= 72.4910 -.2482

z= -.000000 RAD= .000387 EF= 830.8496 -.3941

z= -.OOO969 RAD= .000387 EFB 72.4910 -.2482

2: -.001906 RAD= .000387 EF= 12.6046 -.1570

z= -.002844 RAD= .000387 EF= 4.0563 —.1174

z= -.003781 RAD= .000387 EF= 1.7953 -.0957

z- -.004719 RAD= .000387 EF= .9556 -.0817

z= -.005656 RAD- .000387 EF= .5723 -.0718

z= -.006594 RAD= .000387 EF= .3715 -.0641

z= -.007531 RAD= .000387 EF= .2553 -.0580

z= -.008469 RAD- .000387 EF= .1829 —.0528

z= -.009406 RAD= .000387 Era .1351 -.0484

z= -.010344 RAD= .000387 EF= .1020 -.0445

z= -.011281 RAD= .000387 EF= .0783 -.0410

Z: -.012219 RAD= .000387 EF3 .0607 -.0378

z= -.013156 RAD= .000387 EF3 .0474 -.0348

z= -.014094 RAD= .000387 EF= .0371 -.0321

z- -.015031 RAD- .000387 EF- .0290 -.0295

ABS(YIN)= .52670E—Ol. YIN= .48716E—01 .20023E—01

ABS(ZIN)= .18986E+02 ZIN= .17561E+02 -.72176E+01

PHI= -.11172E+02

+++++++++++++++++++++++++++++++++



.007531

.006594

.005656

.004719

.003781

.002844

.001906‘

.000969

-.000000

-.000969

-.001906

-.002844

-.003781

-.004719

-.005656

-.006594

-.007531

-.008469

-.009406

-.010344

-.011281

-.012219

-.013156

-.014094

-.015031

.009232

.015583

.021343

.026729

.031829

.036706

.041455

.046337

.052670

.049592

.048082

.046793

.045427

.043869

.042062

.039975

.037594

.034913

.031932

.028654

.025082

.021215

.017038

.012499

.007436

145

.009135

.015386

.021017

.026229

.031091

.035637

.039909

.044033

.048716

.047652

.047058

.046290

.045221

.043813

.042059

.039964

.037537

.034792

.031744

6028409

.024797

.020914

.016750

.012255

.007272

.001334

.002467

.003716

.005146

.006812

.008791

.011216

.014428

.020023

.013736

.009870

.006840

.004325

.002216

.000462

-.000965

-.002084

-.002910

-.003457

-.003738

-.003767

-.003557

-.OO3120

-.002459

-.001553
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C...C...........O.It........CCOOCOIOOOOCOOOOI0.0...OItOOOOOOOUOCOOOOUOC

c THIS PROGRAM FINDS INPUT IMPEDANCE OF INSULATED PROBE.

c0000....0....OIOCOOOOOOOOOOCOOOOOOOOOOOOOOOOOOQO000.00.00.000000000000

PROGRAM INPIMP(INPUT.OUTPUT)

DIMENSION S(10).RR(10).8dRE(40).BdIH(40).YRE(12).YIM(12).

SZIN(4) '

COMPLEX 00(2).UT(2).GAMA(2).ZC(2)

COMPLEX vc.H02.H12.ZTI.z2I.ZEL.K1.K2.X.SHGH1.ER.ERR.D.KL.KD.ZI.

~GH1.GH2.GH3.GH4.2,ARG.CHGHT.CHGH2.SHGH2.TETA1.TETA2.ZIN

REAL MU.L

N'3

READ 71.H1.H2

PI=ATAN(1.)-4.o

ZIG1-5.777E+1

EPR1-1.0

AL-o.o

BE*0.0

READ 103.ZIGD.EPRD

PRINT 104.21GD.EPRD

READ 52.zIG2.EPR2

READ 100.A1.A2.A3

PRINT 101.A1.A2.A3

READ 106.FREO

PRINT 108.FREO

OME-2.O-PI-FRE0

EPIsEPRT-I.OE-9/(36.o-PI)

EPDaEPRDoT.OE-9/(36.O-PI)

MU=4.o-PI-1.oE-7

KT-CSORT(CMPLXIOMEc~2.o-MU~EPT.-OME-MUczIG1))

DO 7 u-1.1

IF(U.Eo.1) A-A1

IF(J.EO.2) A-A2

x-KT-A

UO(U)=CSORT(2.o/PIoX)*CCOS(x—PI/4.o)

7 d1(d)=CSORT(2.0/Pl'x)'CCOS(X-3.0'PI/4.0)

EP2=EPR2-1.0E-9/(36.0-PI)

K2=CSORT(GMPLX(OMEo-2.O-Mu-EP2.—OME-Mu-zIG2))

PRINT 33.K1.K2

DO 10 1-1.1

IF(I.EO.1) GO TO 1

A:A2

GO To 3

1 AsAT

3 G-2.o-PI-ZIGD/ALOG(A3/A)

C32.O*PIOEPD/ALOG(A3/A)

VC=CMPLX(G.OMe-c)

ARG=K29A3

U=REAL(ARG)

VaAIMAGIARG)

CALL COMBES(U.V.AL.8E.N.BURE.BUIM.VRE.YIM)

HO2=CMPLX1BJRE(1).801M(1))-CMPLX(0.0.1.0)'CMPLX(YRE(1).YIM(1))

H12=CMPLX(BJRE(2).BJIM(2))‘CMPLX10.0.1.0)‘CMPLX(YRE12).YIM12))

PRINT 31.UO(I).J1(I)

PRINT30.HO2.H12

Z1I=CMPLX(0.0.1.0)‘K1/(2.0'PI-A'ZIGI)

22I'(-K2'H02)/(2.0-PIRA3'CMPLX1ZIGZ.0ME*EP2)'H12)

ZE'(OME‘MU/(2.0'PI))-ALOG(A3/A)

ZEL-CMPLX(o.o.ZE)

ZI¢ZTI+221

RI-REAL(ZI)

XI-AIMAG(ZI)

PL-RI/(XI+2E)

PsSORT(T.o+PL--2.o)
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73

74

75

76

51

1147

FP=SORT(O.5*(P+1.0))

GPsSORT(O.5¢(P-1.0))

KD=CSORT(-Vc-ZEL) .

KL=KD*SORT(1.0+XI/ZE)*(FP-CMPLX(0.0.1.0)‘GP)

ALPHAa-AIMAG(KL)

BETA=REAL(KL)

Z=ZTI+Z2I+ZEL

R=REAL(2)

L=AIMAG(Z)/OME

HC=(OME*(R*C-L*G))/(0ME**2.0-L¢C+R*G)

FHC=SORT(O.5’(SORT(1.0+Hctt2.0)+1.0))

PHC=SORT(O.S*(SORT(1.0+HC“2.0)°1.0))

zc(I)ssoRT((OMEt-2.09Loc+R~G)/((OME~C)¢¢2.O+Gt-2.o))'(FHC-

'CMPLX(0.0.1.0)*PHC)

PRINT 40.2C(I)

PRINT 21.1.ALPHA.BETA

GAMA(I)=CMPLx(ALPHA.BETA)

CONTINUE

IF(A1.NE.A2) Go To a

GAMA(2)=GAMA(1)

zc(2)-zc(1)

Do 51 II-1.3

IF(II-2) 73.74.75

TETA1=CMPLx(o.o.Pl/2.o)

TETA2-TETA1

GO To 76

TETAT-o.o

TETA2=CMPLx(O.o.P1/2.o)

GO TO 76

TETA2=o.o

TETA1=0.0

GH2=CEXP(GAMA(2)-H2+TETA2)

GH1=CEXPIGAMA(1)~H1+TETA1)

GH3=1.0/GH1

GH4-1.0/GH2

SHGH1=(GH1-GH3)/2.0

SHGH2=(GH2-GH4)/2.o

CHGH1=(GH1+GH3)/2.0

CHGH2=(GH2+GH4)/2.o

ZIN(II)=(ZC(1)PCHGH1PSHGH2+ZC(2)'SHGH1*CHGH2)/(SHGHIPSHGH2)

PRINT 25.TETA1.TETA2.ZIN(II)

CONTINUE

c...‘........ttttiitfi‘tfi....‘.0..t0.tttfittlitOttttttttifitt......ttifit‘.

C

C...

21

25

INPUT.OUTPUT FORMATS.

tittttttitttttttittttttitttttttttittttttttttt'ttOttttttitttttitttfit

PORMAT(1Ho.2ox.2HI-.12.4X.6HALPHA-.F12.5.4x.5H8ETA-.F12.5.//)

FORMAT(1H0.2OX.¢TETA1-¢.2(F5.2.2X).2X.*TETA2=*.2(F5.2.2X).2X.

t-ZIN-‘.2(F12.3.2X)./)

FORMAT(1Ho.2ox.4HHo2-.2(E12.5.2x).4HH12=.2(E12.5.2X),/)

FORMAT(1H0.2OX.3HUO=.2(E12.5.2X).3Hd1'.2(E12.5.2x)./)

PORMAT(1H0.20X.3HK1-.2(E12.5.2x).3HK2-.2(E12.S.2X)./)

FORMAT(1H0.20x.25HCHARACTERISTIC IMPEDANCE-.2(F12.5.4x)./)

FORMAT(F8.4.F5.2)

FORMAT(1HO.20X.SHZIG2=.F8.4.2X.SHEPR2-.F5.2./)

PORMAT(2(P8.5))

FORMAT(5(F8.5))

FORMAT(1H0.20X.3HA1-,F8.5.2X.3HA28.F8.S.2X.3HA3-.F8.5./)

FORMAT(2(F6.2))

EORMAT(1H0.2ox.5H21GD-.F6.2.2X.5HEPRD-.F6.2./)

FORMAT(F12.1)

FORMAT(1HO.20X.*FREOUENCYS'.F12.1./)
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END

SUBROUTINE COMBES(X.Y.ALPHA.8ETA.N.BURE.BUIM.VRE.VIM)

DIMENSION BdRE140).BdIM(40).YRE(12).YIM(12)

CALL 8EGIN1X.V.N.K.R)

CALL dRECUR1X.Y.ALPHA.BETA.K.R.BJRE.BJIM)

CALL USUMIALPHA.8ETA.K.BURE.8UIM.SUMRA.SUMIA)

CALL FACTOR(X.V.ALPHA.BETA.o.R)

CALL UNORM(K.0.R.SUMRA.SUMIA.BORE.BUIM)

CALL YSUM (X.V.ALPHA.8ETA.K.OURE.8UIM.ASUMR.ASUMI)

CALL YGNU (X.Y.ALPHA.BETA.O.R.ASUMR.ASUMI.8dRE.BdIM.YRE.YIM)

CALL wRONSK (X.Y.BdRE.BdIM.YRE.YIM)

BUSO=BURE(1)--2+BUIM(1)--2

IF(BUSD-.00000005) 14.14.15

CALL vsUMP(X.v.ALPHA.8ETA.K.8URE.8UIM.ASUMR.ASUMI)

CALL YGNUP(X.Y.ALPHA.BETA.0.R.ASUMR.ASUMI.8dRE.8dIM.YRE.YIH)

IF (N-1)1o.12.11

IF (N)13.12.12

CALL NEGN (X.Y.ALPHA.8ETA.N.BJRE.8JIM.YRE.YIM)

GO To 12

CALL YRECUR(X.Y.N.BJRE.BJIM.YRE.YIH)

RETURN

END

C865402 BEGIN SUBROUTINE PART 2 OF 16

SUBROUTINE BEGIN(X.Y.N.K.R)

SSQ:XU02¢Y002

KTEN=SDRT(SSD)+20.0

NTEN-IABS(N)+10

M-MAXO(KTEN.NTEN) /2

K829M+1

R - K + 1

RETURN'

END

CBES403 JPECUR SUBROUTINE PART 3 OF 16

SUBROUTINE URECUR(x.v.ALPHA.BETA.K.R.BURE.BUIM)

DIMENSION BdRE1100).BdIH(100)

RALPHAaR+ALPHA

SSQ.X002+Y002

BURE(K+2)-O

BUIM(K+2)-o

BURE(K+1)-1.OE—37

BJIM(K+1)'0.0

DOAIs1.K

L1-K+1-I

RALPHAaRALPHA-1.o

A-((2.0-x-RALPHA)+(2.o-BETon))/Sso

B-((-2.Oov-RALPHA)+(2.o~8ETA-X))/SSD

BURE(L1)-(A-BURE(L1+1))-(8-BUIM(L1+1))-8URE(L1+2)

BUIM(L1)-(ao8ORE(L1+1))*(A-BUIMIL1+1))-BUIM1L1+2)

RETURN

END

CBE5404 JSUM SUBROUTINE 0 PART 4 OF 16

801

SUBROUTINE OSUMIALPHA.3ETA.K.OURE.aUIM.SUMRA.5UMIA)

DIMENSION BUREI1oo).BUIM(1DO)

SUMRA=(BJRE(3)‘(ALPHA+2.0))‘(BUIM13)*BETA)

SUMIA-(EETAcaUREI3))+((ALPHA+2.O)-BUIM(3))

GRE-1.0

GIMnO

5-1.0

DOGI-S.M.2

s-s+1.0

GREN'((GRE‘(ALPHA+S-1.O))'(BETAPGIM))/S
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GIM=((GIM~(ALPHA+S-1.O))+(8ETA-GRE))/S

GRE=GREN

ALPTSaALPHA+2.o-s

GdR=GRE*BdRE(I)

GdI-GlMthIM(I)

GURI=GRE~8OIM(I)

GJIR=GIM18JRE(I)

SUMRB=ALPTS‘(GdR-GJI)‘BETA‘1GJIR+GJRI)+SUMRA

SUMIB=ALPTS'(GdIR+GdRI)-BETA‘(GJI-GJR)+SUMIA

IF(SUMRA)15.21.15

IF(ABS((SUMRB/SUMRA)°1.0)-.OOOOOOOS)21.21.1O

IF(SUMIA)2O.11.2O

IF(ABS((SUMIB/SUMIA)-1.o)-.ooooooos)11.11.1o

SUMRA=SUMRB

SUMIA=SUMIB

RETURN

END

CBES405 FACTOR SUBROUTINE PART 5 OF 16

SUBROUTINE FACTOR(X.v.ALPHA.BETA.o.R)

CALL LOGGAM(ALPHA+1.o.BETA.u.V)

CALL COMLOG(X.Y.A1.81)

A23ALPHAFA1-BETA*B1

82=BETAFA1+ALPHAPB1

A28-A2

822-82

CALL COMEXP(A2.B2.A3.83)

AA-.6931471806«ALPHA

84s.6931471806«BETA

CALL COMEXP(A4.84.A5.85)

A6=A3~A5-33-35

86=BSFAS+A3*BS

CALL COMEXP(U.V.A7.B7)

oaAGtA7-Beca7

R=BGPA7+A6987

RETURN

END

CBES406 COMLOG SUBROUTINE PART 6 OF 16

C COMPLEX LOGARITHM - BRANCH CUT ON NEGATIVE REAL AXIS

SUBROUTINE COMLOG(X.Y.A.B)

PI=3.141592654

A8.5‘ALOG(x-X+YPY)

IF(X)5.1.4

88.59PI

IF(Y)2.3.8

88-8

Go To 8

Eco.

GO TO 8

B=ATAN(Y/X)

Go To 8

B=ATAN(Y/X)

IF(Y)6.7.7

B-B-P!

GO TD 3

B=B+PI

RETURN

END

C8E5407 COMEXP SUBROUTINE PART 7 OF 16

SUBROUTINE COMEXP(X.Y.A.B)

CsEXP(X)

AaCcCOS(v)
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a-CvSINIV)

RETURN

END

CBES4OO JNORM SUBROUTINE PART 8 OF 16

SUBROUTINE dNORM(K.O.R.SUMRA.SUMIA.BJRE.BJIM)

DIMENSION BdRE(100).BdIM(100)

S'((SUMRA+BJRE(1))‘O)‘((SUMIA+BJIM(1))‘R)

T'((SUMIA+BUIM(1))‘O)*((SUMRA+BJRE(1))'R)

IF(ABS(S)-ABS(T))100.101.101

101 TS-T/S

TSSO=S~(1.O+(TS—-2))

12 00131-1.K

BUREN-(BURE(I)+BUIM(I)-Ts)/Tsso

BdIM(I)'(8dIM(I)-BdRE(I)-TS)/TSSO

13 BORE(I)-BUREN

GO TO 14

100 ST-S/T

STSO=T'((ST"2)+1.0)

102 DO103I=1.K

BUREN'(BJRE(I)‘ST+8JIM(I))/STSO

BJIM(I)'(BJIM(I)‘ST-BdRE(I))/SYSO

103 BURE(I)=8UREN

14 RETURN

END

COE5409 YSUM SUBROUTINE PART 9 OF 16

SUBROUTINE YSUM (X.Y.ALPHA.BETA.K.BdRE.BdIM.ASUMR.ASUMI)

DIMENSION BdRE1100).BdIM(100)

A1-ALPHA-1.o

A2-A1-1.o

A3=A1+ALPHA

A4-3ETA--2

As-2.O~A4

ABSO*(‘A1)°'2+A4

GAMREa((2.O+ALPHA)~(-A1)-A4)/AeSO

GAMIM-(BETAo3.O)/Aaso

ASUMR-GAMRE-BURE(3)-GAMIMtBUIM(3)

ASUM!=GAMIMPBJRE(3)+GAMRE‘BUIM(3)

Ta1.o

DO 500 I-5.K.2

T-T+1.o

a1-2.o-T

F1sa1+ALPHA

F2-A3+T

Pa-A1+T

F5-T-ALPHA

F6-A2+a1

G1-F1-F2-A5

62=1F2+2.oor1)-OETA

H1-G1-F3-Gz-BETA

H2=G2PF3+G1PBETA

P1-F5cF6+A4

P2-(F5-F61-BETA

P3-P1--2+P2--2

GRE-((H1991+H20P2)/P3)/T

CIN‘1(H2¢P1-H1¢P2)/P3)/7

TEMP--(CRE.GAMRE-CIM:GAMIM)

GAMIM--(CIMcGAMRE+CRE-GAMIM)

GAMRE-TEMP

BSUMR-GAMRE’BJRE(I)‘GAMIMOBJIM(I)+ASUMR

BSUMI-GAMIM-BUREII)+GAMRE~8UIM(I)+ASUMI

IF(ABS((BSUMR/ASUMR)-1.0)'.OOOOOOOS)521.521.510
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521 IF(ASUMI)520.511.52O .-.

520 IF(ABS((BSUMI/ASUMI)-1.0)-.OOOOOOOS)511.511.SfiO

$10 ASUMR=BSUMR ‘

500 ASUMI=BSUMI

511 RETURN

END

C8E541O YGNU SUBROUTINE PART 10 OF 16

SUBROUTINE YGNU1X.Y.ALPHA.BETA.O.R.ASUMR.ASUMI.BdRE.BdIM.YRE.YIM)

DIMENSION BURE(100).BUIM(100).YRE(SO).YIM(SO)

PI'3.141592654

TPI'2.0/PI

QRE=TPI‘(O“2‘R“2)

OIM=TPI‘2.0‘Q‘R

ORE'ORE‘ASUMR'OIM‘ASUMI

DIM=OIMPASUMR+ORESASUMI

IF(ALPHA)1.2.1

2 IF(BETA)1.3.1

3 CALL YZERO(X.Y.ALPRE.ALPIM)

GO TO 720

1 PALPHA=PIoALPHA

COX=COS(PALPHA)

SIx-SIN(PALPHA)

EXY-EXP(PI'BETA)

Exv1=1.o/Exv

GOSH-.s-(Exv+Exv1)

SINH-.5t(Exv-Exv1)

DEN’(SIX‘COSH)"2+(COX*SINH)"2

ERE=(SIXoCDX)/DEN

EIM=(-COSH~SINH)/DEN

ABSQ3=2.O'(ALPHAPE2+8ETAPP2I

ALPRE=ERE-((ORE'ALPHA+BETA-OIM)/ABSO3)

ALPIM=EIM-((DIM-ALPHA-EETAtORE)/A3503)

720 YRE(1)=ALPRE'BJRE(1)-ALPIM*BJIM(1)+DRE

YIM11)=ALPIM*BJRE(1)+ALPRE*BUIM(1)+DIM

RETURN

END

CBES411 YZERO SUBROUTINE PART 11 0F 16

SUBROUTINE YZERO(X.Y.ALPRE.ALPIM)

TPI-2.O/3.141592654

CALL COMLOG(X.Y.A.B)

ALPRESTPI‘(-.11593151S7+A)

ALPIM-TPI-a

RETURN

END

CBES412 wRONSK SUBROUTINE PART 12 0F 16

SUBROUTINE wRONSK1X.v.8URE.BUIM.VRE.v1M)

DIMENSION 8URE(100).BUIM(100).VRE(50).VIM(50)

SSO'XP-2+Y#*2

TPI-2.O/3.141592654

AZRE'TPIFX/SSO

AZIM--TPI-Y/SSO

ZREPBJRE12)PYRE(1)-BJIM(2)*VIM(1)

ZIMPBJIM(2)'YRE(1)+8dRE(2)'YIM(1)

azREsZRE-AZRE

BZIM-ZIM-AZIM

BdSOPBdRE(1)*‘2+BdIM(1)*02

CZRE=BURE(1)/BUSO

CZIM-(-BUIM(1))/Buso

VRE(2)-82REcC2RE-BZIM-CZIM

YIM(2)-BZIMtczRE+BZREtCZIM

RETURN
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END

CBES413 NEGN SUBROUTINE PART 13 OF 16

SUBROUTINE NEGN1X.Y.ALPHA.BETA.N.8dRE.8dIM.YRE.VIM)

DIMENSION BURE(100).8UIM(100).YRE(50).VIM(50)

LaIABS(N)+1

sso-x-.2+vo-2

TX=2.0‘X

Tv=2.o-v

RALPHA-ALPHA

A=(TXoRALPHA+TVoBETA)lsso

, a=(-Tv-RALPHA+Tx-8ETA)/Sso

BURE(2)=A-BURE11)-8-BUIM(1)-EURE(2)

BUIM(2)=8-6URE(1)+A-BUIM(1)-6UIM(2)

1RE(2)=A-YRE(1)-a-VIM(1)-vRE(2)

VIM(2)=B-YRE(1)+A-VIM(1)-VIM(2)

IF(L-3)3.2.2

2 DO 1 Ia3.L

RALPHAaRALPHA-1.o

A=(Tx-RALPHA+TY°BETA)/SSO

B=(-Tv-RALPHA+TXveETA)/Sso

EURE(I)-A-OURE(I-1)-B-8UIM(I-1)-BURE(I-2)

BUIM(I)se-BUREII-1)+A-OOIM(I-1)-EUIM(I-2)

YRE(I)=A'YRE(I-1)-B-YIM(I-1)-YRE(I-2)

1 YIM(I)'B'YRE(I-1)+A'YIM(I'1)-YIN(I'2)

3 CONTINUE

RETURN

END

CBES414 YRECUR SUBROUTINE PART 14 OF 16

SUBROUTINE YRECUR1X.Y.N.BdRE.BdIM.YRE.VIM)

DIMENSION BURE(1OO).BUIM(100).VRE(50).VIM(501

SSO=x-~2+v--2

TPI=2.O/3.141592654

AzREaTPon/Sso

AZIMa-TPI-v/SSO

L=N+1 ~

IFIL-3)3.2.2

2 DO 1 I-3.L

ZREsBUREII)-VRE(I-1)-BUIM(I)-VIM(I-1)

ZIM=BUIM(I)~VRE(I-1)+BURE(I)-VIM(I-1)

ezRE=2RE-A2RE

azIMszIM-AZIM

BdSO=8dRE1I-1)"2+BJIM(I-1)"2

CZREsedREII-1)/BUSO

CZIM=1-BUIM(I-1))/BUSO

YRE(I)=BZRE-CZRE-BZIM-CZIM

1 VIM(I)=BZXMPCZRE+BZREPCZIN

3 CONTINUE

RETURN

END

CBE5415 YGNUP SUBROUTINE PART 15 OF 16

SUBROUTINE VGNUPIX.Y.ALPHA.BETA.0.R.ASUMR.ASUMI.BURE.BUIM.VRE.VIM)

DIMENSION BdRE(100).BJIM(100).YRE(50).YIM(SO)

PI-3.141592654

TPIs2.0/PI

ORE-TPI-(o-Fz-R-oz)

OIM-TPI'2.0*O'R

DREsORE-ASUMR-OIM-ASUMI

DIMsOIMoASUMR+0RE~ASUMI

IF(ALPHA)1.2.1

2 IF(BETA)1.3.1

3 CALL Y2ERO(X.Y.ALPRE.ALPIM)
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GO TO 720

1 PALPHAaPItALPHA

COX=COS(PALPHA) .

SIX=SIN(PALPHA) '

EXYIEXP(PI*BETA)

EXY1-1.0/EXY

COSH'.5*(EXY+EXY1)

SINH=.S*(EXV-EXY1)

DEN=(SIXFCOSH)F*2+(COX*SINH)0'2

ERE=(SIX‘COX)/DEN

EIM=(-COSHFSINH)/DEN

A8503=2.o'(ALPHAv42+BETAc12)

ALPRE=ERE~((OREoALPHA+8ETAvOIM)/A8S03)

ALPIM-EIM-((OIMoALPHA- ETAcORE)/ABS03)

720 TREaALPREFBdRE(2)-ALPIM'BJIM(2)+DRE

TIM=ALPIMFBURE(2)+ALPRE*8JIM(2)+DIM

ALPREI-(O*X+R-Y)/(X--2+Yt*2)

ALPIMI-(X*R-OFY)/(X"2+Y0*2)

YRE(2)=ALPRE*8JRE(1)-ALPIM*BJIM(1)+TRE

VIM(2)=ALPIM—BJRE(1)+ALPRE*BJIM(1)+TIM

RETURN

END

CBES416 YSUMP SUBROUTINE PART 16 OF 16

SUBROUTINE VSUMP(X.Y.ALPHA.BETA.K.BURE.BUIM.ASUMR.ASUMI)

DIMENSION BURE(100).BUIM(1DO)

A1=ALPHA-1.O

A2-A1-1.o

A3=A1+ALPHA

A4=BETAPP2

As-2.OvA4

ABSO'1-A1)*‘2+A4

ROLDRE'((2.0+ALPHA)*(-A1)-A4)/ABSO

ROLDIM'(BETA93.O)/ABSO

RES1=-ROLORE/2.0

VMS1--ROLDIM/2.o

STOREIS.'(ALPHA-X+BETA'Y)/(X**2+v*~2)

STOIM-3.‘(XPBETA-ALPHAFY)/(X1'2+Y"2)

RESZ=(ROLDRE‘STORE~ROLDIM‘STOIH)

VM52-(ROLDRE~STOIM+ROLDIMoSTORE)

ASUMR-RES1thRE(2)-VMS1FBJIM(2)

ASUMR-ASUMR+RESZPBJRE(3)-VMS2*8JIM(3)

ASUMIsVMS1-BURE(2)+RES1-BUIM(2)

ASUMI=ASUMI+VM52-BURE(3)+RE52~8OIM(3)

T-1.o

DO 500 I-3.K.2

T-T+1.o

a1-2.o-T

F1=O1+ALPHA

F2=A3+T

F3-A1+T

F5-T-ALPHA

F6=A2+B1

G1-F10F2-A5

st(F2+2.OtF1)16ETA

H1-G1-F3-G2-BETA

H2-G2tF3+G1:6ETA

P1-F5'F6+A4

92-(F5-F6)*BETA

P3-P1c-2+P2¢c2

ORE-((H1PP1+H2'PZ)/P3)/T

CIM'((H2*P1-H1tP2)/P3)/T
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TEMP:-(CREcROLORE-CIMvROLDIM)

RNEUIMs-(CIMoROLORE+CRE-ROLDIM)

RNEwRE-TEMP

RES1=(ROLDRE-RNENRE)/2.0

VMS1=(ROLDIM-RNEHIM)/2.0

RES2=1RNEWRE'STORE-RNEWIM'STOIM)

VM52=(RNEwRE-STOIM+RNEMIM-STORE)

BSUMR=RES1~BJRE(I+1)-VMS1PBUIM(I+1)+ASUMR

BSUMIIVMS1FBUREII+1)TRESIPBJIM(I+1)1ASUMI

BSUMR=RE52-86RE(I+2)-VMS2-86IM(I+2)+8$UMR

BSUMI=VMS2PBJRE(I+2)+RE52-BJIM(I+2)*BSUMI

IF(A85((BSUMR/ASUMR)-1.o)--00000005)521.521.510

521 IF(ASUMI)520.511.520

52o IF(ABS((BSUMI/ASUMI)°1.0)‘.OOOOOOOS)511.511.510

51o ASUMR=BSUMR

ASUMI=BSUMI

ROLDIMsRNEwIM

500 ROLDRE=RNEVRE

511 RETURN

END

SUBROUTINE LOGGAM(X.v.U.v)

CLOGGAM LOG OF THE GAMMA FUNCTION OF COMPLEX ARGUMENTS FORTRAN II

C THIS SUBROUTINE COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTION FOR

C COMPLEX ARGUMENTS. THE ROUTINE IS ENTERED BY THE STATEMENT

6 CALL LOGGAM1X.Y.U.V)

C wHERE X IS THE REAL PART OF THE ARGUMENT

v IS THE IMAGINARY PART OF THE ARGUMENT

U 15 THE REAL PART OF THE RESULT

v IS THE IMAGINARv PART_OF THE RESULT

DIMENSION H17)

H(1)-2.269488974

H(2)-1.517473649

H(3)=1.011523068

H(4)=5.2560646906-1

H(s)-2.S23809524E—1

H16)-3.333333333£-2

H17)=8.333333333E-2

E2-1.57o79632679

E8-3.14159265359

81=0.0

82=o.o

0-2

X2-X

4 IF(X)1.2.3

3 86=ATAN(v/X)

Tax--2

s B7-Y-02+T

C REAL PART OF LOG

T1-.5-ALOG(87)

IF(X-2.0)7.7.6

7 81=B1+86

82-82+T1

x-x+1.o

u-1

GO TO 4

6 T3o-Vo86+(T1-(X-.5)-X+9.189385332E-1)

T2-86-(X-.5)+VoT1-v

T4-x

TSI-Y

T1-87

DO 3 I-1.7

0
0
0



155

T=H(I)/T1

T4=T~T4+X

T5=-(T-T5+Y)

8 T1aT4662+T5tt2

T3=T4-X+T3

T2x-T5-Y+T2

GO TO (9.10).d

9 T3=T3-82

T2=T2-B1

1o IF(X2)11.12.12

12 U=T3

v=T2

X=X2

RETURN

11 U=T3—E4

VaTZ-ES

x=x2

RETURN

C x 15 ZERO

2 T=0.0

IF(Y)13.14.15

13 Ber-£2

GO TO 5

15 86-E2

GO TO 5

C X IS NEGATIVE

1 E4-o.o

E580.O

IEGPO

16 £4=E4+.5'(ALOG(XPF2+Y¢*2))

Es-ES+ATAN(Y/X)

IE6=IE6+1

X=x+1.o

IF(X)16.17.17

17 IF(MOD(IE6.2))18.4.18

18 ES=E5+E8

GO TO 4

14 PRINT 19.x2.v .

19 FORMAT(29H ATTEMPTED TO TAKE LOGGAM 0F 2HXsF6.0.1X2HV8F6.0)

CALL EXIT

END

.015 .045

0.0 2.25

1.11 76.7

.00043 .00043 .00096

GOOOOOOO0.0
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ZIGD= 0.00 EPRD= 2.25

A18 .00043 A2= .00043 A3= .00096

FREQUENCY= 600000000.0

Kl= .36992E+06 -.36992E+06 K2= .11251E+03 -.23370E+02

JO= .49863E+70 .52113E+70 J1= 52113E+7O -.49863E+70

H02= .86464E+00 .14723E+01 H12= —.11067E+01 .57375E+01

CHARACTERISTIC IMPEDANCE= 64.54555 -13.05870

I= 1 ALPHA+ 7.66206 BETA: 37.87144

TETA1= 0.00 1.57 TETA2= 0.00 1.57 ZIN= 176.549 -56.234

TETAIB 0.00 0.00 TETA2= 0.00 1.57 ZIN= 163.186 -196.332

TETAl- 0.00 0.00 TETA2= 0.00 0.00 ZIN= 28.471 -98.405



CHAPTER VIII

SUMMARY

In this thesis we present some theoretical and experimental

results on the study of a bare microprobe and an insulated micro-

probe in a conducting (biological) medium. The dimensions of the

probe are set to be very small so that it can be imbedded easily

in a biological body.

Since the current on the bare probe in a conducting medium

is decaying rapidly, the probe can be truncated and treated as an

asymmetric dipole in the ana1ysis. For increasing the decay of

the probe current, the probe can be coated with material with higher

surface impedance. The current distribution along the probe, and

the effect of the surface impedance on the current and the input

impedance of the bare probe are found based on Hallen's integral

equation and electric field integral equation. These equations

are solved numerically by moment method. The driving source is

modeled as a magnetic ring or as a delta gap generator.

A series of experiments were conducted, and the input impedances

of bare probes in various conducting media were measured with vector

voltmeter and E-H probe. The agreement between the theory and the

experiment was found to be satisfactory.
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An investigation on the applicaton of a bare probe for mea-

suring electrical properties of a conducting medium, and for heating

a tumor imbedded in a biological body for the purpose of hyperthermia

cancer therapy is conducted.

The theory of lossy transmission line is used to solve the

problem of an insulated microprobe in a conducting medium. The

current on the insulated probe does not decay rapidly, therefore,

equivalent terminal impedances are introduced. The current distri-

butions along the probe for various terminal impedances are given.

The input impedance of the probe is discussed and the input impedances

of symmetric insulated probes with various terminal impedances are

presented graphically.

The heat patterns of insulated probes with various terminal

impedances are shown, and the effect of the terminal impedance on

the heat pattern is discussed. It is concluded that the heat pattern

can be altered by changing the tenninal impedance of the probe.

Finally, the computer programs used for finding the current

distribution and the input impedance of bare and insulated probes

with examples are given.

In conclusion, the input impedance of the bare probe iS more

sensitive to the surrounding medium, therefore, it is suitable for

measuring the electrical properties of biological bodies. 0n the

other hand, the insulated probe can transfer more power in a biolog-

ical body in comparison with the bare probe so that an insulated

probe is a better device for local heating.
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