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ABSTRACT

EM PROBING AND HEATING OF BIOLOGICAL BODIES
WITH BARE AND INSULATED MICROPROBES
By
Abdolhamid Ghods

In the present research the schemes of using a microprobe for
determining the electrical properties of biological bodies in vivo
and for locally heating biological tissues are investigated, with
the application to hyperthermia cancer therapy or other medical
purposes. The relationship between the input impedance of the probe
and the electrical parameters of the surrounding medium is used to
determine the electrical properties of the medium, and the EM waves
in the biological bodies maintained by the current on the probe are
used to heat biological bodies locally.

A detailed analysis of the bare microprobe in a conducting
medium has been conducted and the electric field produced by the
probe in the medium derived. Using the method of moments, Hallen's
integral equation and electric field integral equation for the probe
current are transformed into systems of simultaneous algebraic equa-

tions which are then solved on a computer.



A general theory for an insulated microprobe in a conducting
medium based on lossy transmission line theory is presented. The
current on the probe, the electric field in the medium maintained
by the probe, and the heat pattern of the probe are found. Various
equivalent terminal impedances for the insulated probe are intro-
duced, and their effects on the current distribution and the heat
pattern are investigated.

Experiments have been conducted and the input impedances of
bare and insulated microprobes in saline with various normalities
are measured. The theoretical and experimental results are found

to be in good agreement.
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CHAPTER 1
INTRODUCTION

In recent years, electromagnetic radiation and propagation
have played an important role in human life. Intercontinental satel-
lite communication, radar detection, microwave technology, and the
use of EM energy for medical purposes are only a few examples of
the applications using electromagnetic energy these days.

Many medical researchers have investigated the scheme of using
EM energy to induce hyperthermia in biological bodies for the purpose
of cancer therapy. It is known that when the temperature of a can-
cerous tumor is raised a few dégrees above that of the surrounding
tissues, the adjoining chemo or radiotherapy becomes more effective
intreating tumors [1]. Therefore, it is the objective of many
researchers to find a noninvasive method by which to heat the tumor
without overheating the surrounding tissues.

Substantial progress was made in hyperthermia cancer therapy
when Leveen et al. [2] used 13.56 MHz EM radiation to eradicate
the tumors or to slow the progression of tumors in some cancer
patients. Other researchers [3,4] have used EM waves at various
frequencies to heat the tumors in animal bodies and reported sig-

nificant tumor eradication.



A successful analysis of the induced EM field inside an irra-
diated body with an fmbedded tumor, and design of an effective device
for focusing EM energy in the tumor will depend on the knowledge
of electrical properties of the tumor. Some researchers [5-8] have
used an open-ended coaxial cable, or a very short monopole, or a
symmetric probe [9] to study the electric field induced in the
biological bodies and measure the electrical properties of various
biological tissues.

In the present research the techniques for determining the
electrical properties of biological bodies in vivo and local heating
of an imbedded tumor with an unbalanced monopole, which consists of
a thin open-ended microcoaxial line with an extended center conduc-
tor, are studied theoretically and experimentally.

In Chapter II a theoretical analysis of a bare microprobe in
a conducting medium is presented. The distribution of the cﬁrrent
on the probe, and the input impedance of the probe are calculated
numerically with different methods for various cases. The driving
source is modeled as a delta gap or as a magnetic current ring.

In Chapter III the descriptions of the experimental setup
and the electrical properties of the saline are given. The input
impedance of the probe was measured by the vector voltmeter. The
experimental results are compared with the theoretical results.

Chapter IV contains the applications of the bare microprobe.

The heat pattern of the microprobe in the conducting medium and



the methods for measuring the conductivity and permittivity of the
conducting bodies are presented in this chapter.

In Chapter V a theoretical analysis of an insulated microprobe
in a conducting medium is given. The theory of lossy transmission
line is used to investigate the current distribution on the probe,
the input impedance of the probe, and the electric field produced
by the probe in the medium. Various physical geometries of the
insulated probes with different equivalent terminal impedances are
introduced. The current distributions along and the imput impedances
of the probes with various terminal impedances are compared in this
chapter. A series of experiments were conducted to measure the
input impedances of the insulated probes with various physical
geometries. The theoretical results and the experimental results
are compared.

In Chapter VI the application of insulated probes for local
heating is explained. The theory and the numerical results of the
heat pattern produced by the insulated probes with various terminal
impedances are given.

A brief description of the computer programs used in this

study to obtain numerical results is given in Chapter VII.



CHAPTER II

THEORETICAL STUDY OF A BARE MICROPROBE
IN A CONDUCTING MEDIUM

To measure the conductivity and the permittivity of a biolog-
ical tissue in situe or for local heating of a biological body, a
microprobe driven by an EM source can be inserted inside the tissue.
The evolutional geometries for a bare coaxial microprobe in a con-
ducting medium are shown in Figure 2.1. A coaxial microprobe con-
sists of a microcoaxial line with an extended inner conductor.

In a coaxial line the current is concentrated inside the line
and the current on the inner conductor is equal and in opposite
direction with the current on the inner surface of the outer conduc-
tor. Assuming no accumulation of charges at the end of the outer
conductor, the current at this end is continuous and the direction
of the current on the outer surface of the outer conductor is as
indicated in Figure 2.1(a). Inside the coaxial line the currents
are equal and in oppositedirections, therefore, their effects cancel
each other. Only the current on the extended inner conductor and
that on the outer surface of the outer conductor maintain anelectric
field in the medium. Hence the probe is equivalent to an asymmetric
dipole as shown in Figure 2.1(b). Since the dipole is in a lossy



e —

(a)

/\\\ current amplitude

-
/ Seo

V4 UL TN

(c)

Figure 2.1. Evolution of geometry of a bare microprobe in a con-
ducting medium.



medium, the current decays so rapidly that the probe can be truncated
as indicated in Figure 2.1(c) for the analysis.

The probe in a lossy medium is studied first by the well known
"Hallen's Integral Equation Method" and then followed by the "Elec-
tric Field Integral Equation Method" (Pocklington method).

Modeling the driving source in the probe is very important
and it does depend on the physical geometry of the probe. In the
electric field integral equation method the driving source is first

modeled as a delta gap and later as a magnetic current ring.

2.1. Hallen's Integral Equation for a Microprobe

The vector potential Az(z) on the surface of the probe main-

tained by the current Iz(z) on the probe satisfies the following

equation:

where Zi(z) is surface impedance of the probe and in general it is
assumed to be non-zero. Vo is the applied voltage at the gap and
6(z) is a delta function. The solution to the above differential

equation far Az(z) is given by
A(z) = AN(z2) + AP(2)
z z z

where the homogeneous solution A:(z) is



Ag(z) = -'%F [C1 cos kz + C, sin kz]

and the particular solution Ag(z) is
p ikl Yo _. 2 ioyes
Az(z) =-=>| 7 sin klz] + A Iz(z')Z (z')sin k(z' - z)dz'

The general solution for Az(z) is

w

v
Az(z) = - aj£[C1 cos kz + C, sin kz +-29 sin k|z|
z i
+ o Iz(z')Z (z')sin k(z' - z)dz' (2.1.2)

On the other hand, the vector potential on the surface of the probe

can be expressed as

|4 hl 1 e-j kR '
Az(z) ol ~ -h2 Iz(z ) R dz (2.1.3)

With the thin wire approximation, or with the assumption that the
surface current on the probe can be approximated by a line current

flowing along the axis of the probe, we can approximate R as

R =\/&z - 2024 a2

After combining equations (2.1.2) and (2.1.3) it gives




iR ity ‘ Vo
-hZIZ(Z)sz - Cy cos kz+C,sinkz+— sin k|z]
z i
+ Iz(z')Z (z')sin k(z' - z)dz' (2.1.4)
0

Equation (2.1.4) is called "Hallen's Integral Equation," which cannot

be solved in closed form, but it can be done numerically.

2.1.1. Moment Method Solution

In order to solve the integral equation (2.1.4), the moment
method is used to convert the integral equation into a system of
simultaneous linear algebraic equations with the probe current at
different locations of the probe as unknowns [10]. The probe is
partitioned into N segments, as shown in Figure 2.2. The unknown
current on the probe I(z) can be expressed in terms of a sequence

of pulse functions:

N
I(z) =) 1,P(2)
n=1

where

1 Zc (Az)n
P,(2) =
0 z ¢ (az),
The boundary conditions (B.C.) state that I(z) = 0 on the tips of
the probe, hence I, = Iy = 0. After the substitution of I(z) in

equation (2.1.4) it becomes



1 zy
1(2) ;2\/ 7o
2=0 I__--__ INe
-2
I(z) t .
) ’ﬂ\/,/”” ' #0
i
(egu,d)
- |- 2a2
z
N
zZ = -hz ______

Figure 2.2.

Geometry of the bare probe.
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N-1 .

] - k41’|’ .
2 : Inf y(z,2')dz' = - J:)-u—[cl cos kz + (32 sin kz
n=2 . :. -hz

N-1 z
v .
+ 7? sin k|z| + E I 2'(z")sin k(z' - z)dz} (2.1.5)
N=2 0

e-ij
where y(z,2') = ——

R
Equation (2.1.5) is forced to be satisfied at N midpoints of N seg-
ments. Hence there are a system of N simultaneous algebraic equa-
tions and N unknowns (Cl, Cos Ipy I3, ... IN-I)‘ Let us assume
that the short part of the probe (hl) is made of a very good con-
ducting material so that its surface impedance is approximately
zero and the long part of the probe (hz) is covered with lossy
material so that the surface impedance over this part of the probe
is finite. We can express Zi(z) as

0 0<z<h
i
2'(z) =

The system of equations now becomes
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N-1
C, cos kz, + —pr ZIA +C sinkz--vosinklz |
1 1" Jkar n"'ln 2 1 7 1
n=2
N-1 v
C, cos kz, + —ix ZIA +C, sin kz,, = - 0sinklzl
1 P17, n'2n 2 2 2 2
n=2
N-1
wy
C1 cos kch+1 + IkAw ﬂz InANc+1 n + c2 sin kch,'_1
n=2

i N+l ' . Vo
+ Ty . sin k(z' - zy ,4)dz' = - > sin k|ch+1|

N-1

WU .
C1 cos kch+2 + IK&T “Z InANc+2 l“+CZ sin kch+2
n=2

o [ e *H?
+ 7 sin k(z' - ch+2)dz'
0

i INc+2 Vo
+17 sin k(z' -2y ,,)dz' = - - sin k|ch+2|
o ch+1+A./2
. (2.1.6)

The surface impedance Zi of h2 in these equations is assumed to be

constant. Also, the coefficient Amn is defined as

v(z,z')a m#n
Ann [(Az) y(z,2')dz' =

n 2Ln|:-2A5 * /1 + ('ZAE)Z ]-jkA m=n
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a2 m > Nc

Yo

Let us define By = - » sin k|z, | and M = A +D_ whereD =0

for.(m and n) < Nc and for other values of m and n

z

if " .

Zf sin k(z' - zm)dz‘
zn-A/Z

Zn+A/2
= 1 '
Dmn Zf sin k(z' - zm)dz'
z

n-A/Z

m=n
m#n
m-n<0

With these definitions equation (2.1.6) can be expressed in the

matrix form as

_ ) - . -
cos kz1 sin kz1 C1
cos kz2 sin kz2 12

Man
. Ino1
_cos kzN sin kzN‘ i C2 |

(2.1.7)
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where various matrix elements have been defined. The inversion of

the equation (2.1.7) yields the unknowns: Cir I, I oe.

IN‘I’ Czo

2.2. Electric Field Integral Equation for a Microprobe

Maxwell's equations in a lossy medium are

v-D(F) = o(¥)

wxE(F) = -Juuh(F)
wh(F) = B(F) + (o+ jue)E(R)
v-B(r) = 0

Vector and scalar potentials in a conducting medium are

>+ u | S e'ij
A(r) = .o J(r') R dv'
v

> 1 2,y e IR
¢(r) =11r_e*[ p(r') R dv'
v

* oo s
where " = €(1 -~we)

(2.2.1)

(2.2.2)

Electric field can be expressed in terms of scalar and vector poten-

tials as

E(F) = - vo(¥) - juh(r)

(2.2.3)

Using equations (2.2.1) to (2.2.3) and the continuity equation

v-3(¥) + juo(¥) = 0, which gives the relationship between the
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-+ >
current density J(r) and the charge density p(:), the electric field

on the surface of the probe can be expressed as

sz(z)--J"’“—“ff [3—';% 1,(z") —;’;w(z.z')+k"'rz<z')w(z,z-)J dz'
zl

4rk
(2.2.4)

The boundary condition on the surface of the probe states that the
tangential components of the electric field at the inner surface

and outer surface of the probe should be equal:
R - . +
5.F(r=3)=2-E(r=a) (2.2.5)

The electric field at the inner surface of the probe maintained by

the source and the probe current is
T =y _ i e
2.-E(r=2a) =1 (z)Iz(z) - Ez(z) (2.2.6)

where Eg(z) is the driving electric field maintained by the source.
The electric field at the outer surface of the probe maintained by
the probe current and charge is given by (2.2.4). By equating
(2.2.4) and (2.2.6), we have

h
e 2 )+ KoL (2! ') [dz’
557 1,(2') 57 W(z,2') + KL (2')¥(2,2") |dz
-h

2

2[ .
= Lk [z‘(z)lz(z) - sgm] (2.2.7)

Equation (2.2.7) is called the "Electric Field Integral Equation."

In order to be able to solve the above equation, Eg(z) should be



15

determined. The driving source should be modeled based on the
physical geometry of the probe. First, the probe is studied with

a delta gap model and then it is modeled as a magnetic current ring

model.

In the case of a delta gap

1/26 z=0
Eg(z) = +Vyf(z) and f(z) =

0 z#0

where 2§ is the length of the gap and V0 is the applied voltage
across the gap. After substitution for E:(z) in equation (2.2.7),
it is solved by the moment method. The probe is partitioned the
same way as it was for solving Hallen's integral equation. The
unknown current I(z) is expressed as a sequence of pulse functions
and after the substitution of this current in equation (2.2.7), it

can be written as follows:

N 2'=z N

Zln[aa—z y(z,z') "] +Z Insz v(z,z2')dz' =
n= z =z; n=1 (Az)n

2

J:—:"—[z‘(z)rz(z) - Vof(2)] (2.2.8)
where

A
2 =2 -
ﬁ n .2-
2+ = 2 +'%



and

= u(z,2') = y'(z,2') =

7\ (2)

Equation (2.

16

_(z -2z )gl + jkR) o(2,2")
0 0 <z f-hl
A -hzizio

2.8) can be simplified as

N
z: In‘f v(zg,z')dz' + —17 Lv'(zp2) - v' (z24)]
1 (82), k " "

This system
numerically.

follows:

mn

Consequently

= L2 11 (207 (2,) - Vgf(z,)]
m=1,2, ... N (2.2.9)

of N simultaneous algebraic equations can be solved

Equation (2.2.9) can be expressed in matrix form as

1r h [ 1
L By
I B,
I B
L N J L N J
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. - a=lr . -
I | By
I B,

= Amn
I B
{- N 4 L J L Nd

where matrix [I] gives the current on the surface of the probe,
and the matrix [B] is the electric field on the surface of the probe
produced by the applied voltage. Matrix [A] is called the impedance
matrix. Elements of matrices [A] and [B] are defined as
0 m # Nc
m

) j4‘n’V0 l
wH A

m = Nc

A = Wzgoz')dz' + L [y (z0,2.) - v (202,)]
(Az)n k n 5
for m < Nc, or m > Nc and m # n.
Aon = v(zy,z')dz" + —12 [v'(z,2.) - 11:‘(2,,,,2,‘)]-35l 7!
(AZ) k - n n wi
n

for m > Nc and m = n. (2.2.10)

4 m < Nc

a, m > Nc
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Some numerical results are shown in Figures 2.3 to 2.5. In
Figure 2.3 the current distributions along bare probes of various
lengths in a conducting medium, obtained with Hallen's Integral
Equation method, are shown. In this case it is assumed that a;=a,
and h2 is variable. Since the probe is in a lossy medium, the cur-
rent on hz is decaying. In Figure 2.4 the current distributions
along the same bare probes in the same medium, obtained with the
Electric Field Integral Equation method, are given. Again, it is
observed that the current on h2 is decaying. In both Figures 2.3
and 2.4 it was assumed that the surface impedance everywhere on
the probe is zero. Figure 2.5 illustrates the current distributions
along the bare probes with variable surface impedances on h2' It
is seen that as the surface impedance increases, the current on h2
decays faster. Therefore, if we make Zi # 0, then the length of h2
has less effect on the input impedance and truncation of h2 creates
less error.

Figures 2.6 and 2.7 illustrate input resistances and input
reactances of the bare probes of various lengths in the salines
with normalities of 0.0, 0.1, 0.2, 0.3, and 0.4. In all cases

h1=7.5 mm and a = 0.43 mm, but h2 is varied from 30 to 75 mm. In
g
weoe't
input resistance changes moderately) when h2 is changed. However,
[0}

the case of = 0.0, the input reactance changes rapidly (the

for weger = 0.43 the changes on the input resistance and the input
reactance are much less than the case of meger = 0.0. For other

cases when > 0.43, the input impedance of the bare probe

WEQEP
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l h ! h,
2a
§ hl = 7.5 mm
c h, = variable
P ) a=0.43mm
5}
I 0.9
(l)tocr
_\
\ 9 _.1.34
_ — weQeR
20 o =0.43
ucoer
\- S x1.83
wtotr
15
g _=20.0
weot:r-
10 |
5-
> hz(m)
30 45 60 75

Figure 2.6. Input resistances of bare probes in the salines with dif-

ferent concentrations. .
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[
= hy = 7.5 mm
iz h, = variable
a=0.43m

-30 *

=20 ;

we"e =0.43
0°r

/M;e; 0.0

— ——e—_09_.0.9
(ﬂeOer
g _

/“’eoer-1°34

01 o~ —2—=1.83
weoer
- -

30 45 60 75 hy (m)

Figure 2.7. Input reactances of bare probes in the salines with dif-
ferent concentrations.
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becomes nearly independent of the length of hz; This phenomenon

> 0.43,

[+
wEOEr
the characteristics of the probe mainly depend on the properties of

implies that when the probe is in a lossy medium, with

the medium, not on hZ' These characteristics of the bare probe

can be used to measure the electrical properties of the lossy medium.

For checking the consistency of the theory let us consider

electrically short and thin bare probes. When
a << h, ah << 1, gh << 1

the current distribution along the probe is approximately triangular.
The input admittance Yin of a symmetric bare probe (h1 = h2 = h)
in a lossy medium is known [11] to be

Yin 2 Gin + juCin = rde— (o + Juc) (2.2.11)

Table 2.1 shows the input admittance of the bare probe at different
frequencies calculated from equation (2.2.11) and from theory
developed in the previous sections, Hallen's Integral Equation
method (HIEM) and Electric Field Integral Equation method (EFIE).
The physical dimensions of the probe are h = 10 mm and a; = a, =
0.43 mm. The probe is in a lossy medium with ¢ = 0.05 (s/m) and

€. = 7.4 ¢5. The results shown in Table 2.1 confirm the consistency

of the theoretical methods developed in this chapter.
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Table 2.1. Input admittance of an electrically short and thin bare
probe in a conducting medium.

Equation

Frequency HIEM . EFIE (2.2.11)
10 MHz 0.688 + j0.056 0.715 + j0.059 0.718 + j0.060
100 MHz 0.689 + jO.565 0.717 + j0.588 0.718 + j0.601

600 MHz 0.759 + j3.53 0.789 + j3.67 0.718 + j3.61
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2.2.1. Magnetic Current Ring as the Driving Source

In the study of the probe it is very important to properly
model the source region at the driving point. In the previous sec-
tions the source region at the driving point was modeled as a delta
gap and based on that model the current distribution along the probe
was found. In this section, the source region is modeled by a mag-
netic current ring.

As shown in Figure 2.8, the gap is replaced by a circular
magnetic current ring with a surface magnetic current, E&, flowing
around the probe. The relationship between the electric field at

the gap produced by the applied voltage and the surface magnetic

current is
K= -t T (2.2.12)

where n is the unit vector in the r direction. After substitution

for fi and £ in the equation (2.2.12). we have

R = - ?"3 3 , (2.2.13)

The magnetic vector potential produced by the surface magnetic cur-

rent is

R (F) = {;f K (r')u(F,r)ds® (2.2.14)
sl

where s' is the area of the source region.
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Figure 2.8. Equivalent magnetic ring model.
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Substituting the surface magnetic current from (2.2.13) in

(2.2.14), the magnetic vector potential can be written as

+ Vo . o JKR(F,F')
- | ¥ st . (2.2.15)
s ROAF)

{
-3
N’

n

Because of rotational symmetry tﬁe observation point is chosen at
¢ = 0. Ina cylindrical coordinate system, R(¥,F') can be expressed

as follows:

2,

R = [rz £ 2 - 2rr cos o' + (z - 2')3]

The unit vector ¢' in terms of the unit vectors x and y in the car-
tesian coordinate system is
o' = -x sin ¢' + ¥ cos ¢' . (2.2.16)

With (2.2.16), (2.2.15) becomes

r' STH Y4
Am 6 1? ¢! (? o ¢
f j‘ 2 e-ij(r' ) ]
‘3 " de'dz" (2.2.17)
R(¥,F')

Since the integrand of the first term on the right hand side is an
odd function of ¢', it integrates to zero. Also, at the plane of

=0,y =¢. The magnetic vector potential Kﬁ(;) is
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e-j kR (‘F’-F' )

ds' (2.2.18)
R(F,7')

AL (F) =-$2v§f;fcos ¢

sl
The electric field is related to the electric vector potential
> > > >
A(r) and the magnetic vector potential Am(r) by

> > > >
E(r) = 32 (e + kG ER) - Lo < B ) (2.2.19)

Since only magnetic current is present, K(?) = 0. Therefore,

> _ 113
Ez(r) T T Eroar (rAm¢)
-JkR(¥,%*)
V13 e IR,
=== r [ cos ¢' ———— ds' (2.2.20)
Brs ¥ ar[ fs R(FF) ]

Let us define the integrand in (2.2.20) as F(r,z):

e‘ij(?a?')
F(Y‘,Z) = cos ¢' Ee— ds'
g R(r,7')

The above integral cannot be carried out exactly, therefore, it

will be evaluated numericale. When R + 0 the integrand is singular.
This happens when the field point is in the source region. In order
to evaluate the integral when the field point P(r, O, t +-§) is in
the source region (see Figure 2.9), the integral is separated into

five integrals as stated below in (2.2.21).
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31

'JkR(?s?')
F(r,z) f f cos ¢' s de¢'dz’
-5 R(F,F')

S T

e-ij(F )
+ [ cos ¢' "'_:;—— d¢'dz'
t+e 7 -1 R( )

]

tte ;= = Lol X
2r e-JkR(r,r )
cos ¢' ——— do'dz’

¢t g R(F,F')
tre -JkR(r )
cos ¢' + _’ ) — d¢'dz’
the e'-j kR(Fs?. )
+ cos ¢! = d¢'dz’ (2.2.21)
R(r,r')

The last integral in this equation which has a singular point is
carried out analytically. The surface is approximated with the
same area [12]. Therefore,

€

fm Zr o~IKR(F,F) o~IKR(F,F)
f cos ¢' ——-qus'dz‘ =f cos¢'——__+——ds'
t 5 R(¥,7*) g R(¥,7')

- 2r
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The rest of the terms of F(r,z) can be found numerically and
(2.2.22) should be added to it. The derivative of F(r,z) with

respect to r, according to the finite difference, is

aF(r,z) . F(r,z) - F(r - ar,z)
ar Ar

After taking the derivative of F(r,z) numerically, its value can
be substituted in (2.2.20) to determine the electric field Ez(?)
produced by the equivalent magnetic current ring at any point in
the medium.

The effect of the length of the magnetic current ring on the
electric field produced by it is studied and it is shown in Fig-
ure 2.10. In this figure the length of the current ring is assumed
to be Ag = 1.0 or Ag = 2.0 mm, on a probe with a =a, = 0.43 mm,
in the medium with o = 1.1 (s/m) and €. = 76.7 at 600 MHz frequency.
The area under the curve is E-d1. In both cases the area under
the curve is approximately equal to one, which is equal to the driv-
ing voltage applied to the probe. The distribution of the electric
field maintained by the magnetic current ring on the surface of
the probe is close to a delta function. For this finding, it is
reassumed that the delta gap model for the source region is an
accurate model.

The input impedance of the probe has been calculated with
the magnetic current ring model for the driving source and using

the electric field integral equation method. The effect of the
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Ez (max) = 830.85 v/m
a; =ap =0.43 mm

h1 = h2 = 15 mm
f = 600 MHz
o=1.1(s/m)
e. =176.7
4 E, r
1.0
Ag = 1.0 mm
Ag = 2.0 mm
I 8 1

3.0 2.0 1.0 0 1.0 2.0 3.0 2z (mm)

Figure 2.10. Normalized electric field on the surface of the probe
maintained by the magnetic current ring model.
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length of the magnetic current ring on the input impedance was
studied, and the results are shown in Figure 2.11. 1In this figure
the length of the ring is changed from 0.5 mm to 2.0 mm but no sig-
nificant change in the input resistance or the input reactance is

observed for this range of change.

2.3. Comparison of Different Methods

In the previous sections different methods for solving the
bare probe in a conducting medium were discussed. The input admit-
tances of the probe with a, =a,=0.43mm, h, =7.5m, and
h2 = 45 mm at 600 MHz frequency in saline with 0.1 and 0.2 normali-
ties are shown in Tab1e~2.2. The results in Table 2.2 indicate
that the real part of the admittance (conductance) is in good agree-
ment for different methods, but the imaginary part (susceptance)

has some variations; this is caused by the size of partitions.
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Table 2.2. Input admittance of the bare probe in the saline with
normalities 0.1 N and 0.2 N.

Method 0.1 N Saline 0.2 N Saline
EFIE with
magnetic current ring 36.9 + j17.3 40.3 + j7.8
EFIE with
delta gap model 35.1 + j21.2 40.4 + j11.8
HIEM with

delta gap model 35.2 + j19.8 39.9 + j10.1




CHAPTER III

EXPERIMENTAL STUDY OF A BARE MICROPROBE
IN A CONDUCTING MEDIUM

In order to verify the theory of a bare microprobe in a con-
ducting medium, a series of experiments were conducted. The input
impedance of the probe embedded in different lossy media was measured.
One way to measure the impedance is to use a slotted line, VSWR
meter, and Smith chart. This method has two limitations: first,
at a low frequency a long slotted line is needed, and second, with
a Tow resistance in the load the VSWR in the line is very large
and a large VSWR can cause difficulties in using the Smith chart.

Another way to measure the impedance is by a vector voltmeter
and a V-1 (or E-H) probe, which is explained in more detail in
Section 3.2.

To simulate a lTossy medium salt water was used, therefore,
the electrical properties of saline, permittivity, and the conduc-
tivity should be known. These quantities are strongly dependent
on the frequency and the temperature. More about electrical proper-
ties of saline is explained in references [13-15]. The experimental

data in the above references are used in our study.

37
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3.1. Electrical Parameters of Saline

The electrical properties of pure water can be expressed as
e =¢e' - je", where €' = eoe; and ¢" = eoe;. The variations in
real and imaginary parts of complex permittivity due to the change

in frequency are indicated in equations (3.1.1) and (3.1.2).

____Zes-4.9 4.9 (3.1.1)
! = + 4. 1.
°r 1+ (wr)
(es - 4.9yt
- (3.1.2)
wT

where » is the angular frequency, €5 and t are called the static
dielectric constant and the relaxation time, respectively. In

these equations ¢_ and t are dependent on the temperature.

s

After salt is added to pure water, the static dielectric con-
stant (es) and the relaxation time (1) change with the salt concen-
tration in the solution. ¢' varies only due to the changes on t
and €ge e" varies not only due to the changes on t and €gs but
another term needs to be added in the following way:

g -

i (3.1.3)

= ot o 3.m _ o3 1
€= ¢ Jje J -

where oy is called the inonic conductivity and it is due to Na© and
C1™ ions in the solution. The total conductivity is
gy = a5+ we"

and
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e =¢' - % (o.i + we") (3.1.4)

In Table 3.1 electrical properties of saline are shown.
These results are obtained by interpolation for various normalities
of saline. At 600 MHz frequency the dominant terms for conductivity
and permittivity are the ionic conductivity and the static dielectric
constant, respectively. With the increase in temperature, the con-

ductivity of the saline increases while its permittivity decreases.

3.2. Experimental Setup

The schematic diagram of the experimental setup is shown in
Figure 3.1. The microprobe imbedded in a tank of saline is driven
by a R.F. generator through an E-H probe. The outputs of the E-H
probe are connected to a vector voltmeter for the measurement of
the input impedance.

The E-H (V-I) probe consists of a section of transmission
line with a short E probe and a small H probe. The E probe is a
short monopole that induces a voltage proportional to the E field
or voltage in the trnasmission 1ine. The H probe is a small loop
that induces a voltage proportional to the H field or the current
in the transmission line [16]. The vector voltmeter has two channels,
"A" and "B". If two signals are connected to channels "A" and "B",
the amplitude of each signal and the phase difference between them
can be measured by the vector voltmeter. By definition the imped-
ance at any point in the circuit is the ratio of the voltage to

the current at that point. Two signals from E and H probes can be



Table 3.1. Electrical properties of NaCl solution.
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20°C 30°C

Saline -12 .12

Normality <(10 sec) € °i(s/m) (10 sec) € ci(s/m)
0 10.1 80 0 7.5 77 0
0.1 9.92 78.2 0.889 7.44 75.2 1.044
0.2 9.74 76.4 1.778 7.38 73.4 2.089
0.3 9.56 74.6 2.667 7.32 71.6 3.113
0.4 9.38 72.8 3.556 7.26 69.8 4.178
0.5 9.2 71.0 4.44 7.2 68 5.22
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Generator

Figure 3.1. (a)

(b)

Vector
Voltmeter

A B

p [

I v
E-H Probe
50 9 50 @
Probe
'lAIl "B“
Saline D
Generator

(a) (b)

Experimental setup for the measurement of the input
impedance of a probe with an E-H probe and a vector

voltmeter.
Setup for adjusting the phase of a vector voltmeter.
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measured by the vector voltmeter and their ratio is the impedance
of the line at the V-I probe location. Physical geometry of the
bare probe which was used in the experiment is shown in Figure 3.2.

Before measurement several steps should be taken as follows:

(1) The vector voltmeter should be calibrated. For this
reason two equal signals are connected to channels "A" and "B" of
the vector voltmeter and the phase indicator should be adjusted
to show zero (see Figure 3.1(a)). The phase knobs should not be
changed during the experiment. The vector voltmeter measures the
phase difference between the signal connected to channel "B" with
respect to the signal on channel "A". The amplitude of each signal
could be measured separately.

(2) The E-H probe should be calibrated. A match load, for
this case a 50 @ load, is connected to the E-H probe and the voltage
probe and the current loopson the V-I probeare connected to channels

"A" and "B" of the vector voltmeter, respectively. We then let

50 = K —B_
A

<\

where VA and VB are voltages at channels "A" and "B". K is called
the calibration factor for the E-H probe and it should be evaluated
for different frequencies. The bar on VA and VB indicates that
these parameters are complex.

(3) Connect the unknown load, in this case the probe in

saline, to the E-H probe. Read the amplitudes of "A", "B", and the
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phase difference on the vector voltmeter. The impedance of the

probe at the location of the E-H probe is then equal to

ip = k£ (3.2.1)
A

<!

(4) The value for the input impedance that we found in step
(3) should be transformed to the probe location. For this purpose,
we need to know the factor of tan yl, where y is the propagation
constant of the transmission line and 1 is the distance between
the probe and the location of the E-H probe. If we short circuit

the probe and measure its input impedance we have
ip (short) = -J'zC tan vl (3.2.2)

where Zc is the characteristic impedance of the line which is 50 q

in our case.

(5) The impedance of the probe is given by the well-known

formula from the transmission line theory [17].

3.3. Comparison of Theoretical and Experimental Results

Experiments were carried out at 600 MHz frequency with the
probe imbedded in the saline with various normalities (0.1 N, 0.2 N,
0.3 N, and 0.4 N). The physical dimensions of the probe are:
a=0.43 mm, h1 = 7.5 mm, h2 = 30 or 45 mm, and the gap is about

1.0 mm. The tank has the dimensions of 21 cm x 21 cm, 23 cm. The
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theoretical results are calculated for the same probe in an infinite
conducting medium. |

In Figures 3.3 to 3.6 theoretical and experimental results
on the input resistance and input reactance of the bare probes in
the various lossy media are compared. In Figures 3.3 and 3.4, hz is
30 mm, and for this case there is a good agreement between theory
and experiment on the input resistance, but the agreement is only
fair on the input reactance at higher normalities of saline. Fig-
ures 3.5 and 3.6 are for hz = 45 mm, and for this case the agreement
between the theory and experiment is again good for the input resis-
tance and only fair for the input reéctance.

In these experiments the sources of errors can be classified
as follows:

(1) Small physical dimensions of the probe; since the radius
of the probe is very small (0.43 mm), it is very difficult to keep
it straight.

(2) The electrical properties of the saline are strongly
dependent on the salt concentration and the temperature and any
error in the salt concentration and the temperature will produce
;ifferent conductivity and permittivity.

(3) Another source of error is due to the junctions from

the microprobe to a standard GR 50 @ coaxial transmission line.
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CHAPTER IV
APPLICATIONS OF THE BARE PROBE

In the study of EM local heating of an imbedded tumor, it is
very important to know the conductivity and permittivity of the
tumor relative to that of the surrounding tissues. There are reasons
to suspect that the electrical properties of the tumor may be dif-
ferent from those of surrounding tissues because the blood flow to
and tissue structure of the tumor are different from the normal
tissues. A successful analysis of the induced EM field inside an
irradiated body with an imbedded tumor and an effective device for
focusing EM energy in the tumor will depend on the knowledge of
electrical properties of the tumor.

A bare probe can be used to measure the conductivity (o) and
permittivity (e) of the biological bodies in vivo. A bare probe,
when driven by an RF source, can also be used locally to heat the
biological tissues. Figure 4.1 shows a bare probe inserted in a

tumor.

4.1. Measurement of o and ¢

In Chapter II it was shown that a coaxial probe in a lossy
medium is equivalent to an asymmetrical dipole. The input admit-
tance of a dipole is a function of the frequency of operation,

physical dimensions of the dipole, and electrical properties of the

50
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surrounding medium (i.e. permittivity, permeability, and conductivity
of the medium). Permeability is defined as u = ugu ., which for a
nonmagnetic medium gives‘ur = 1. Therefore, the input admittance

of a fixed probe at a certain frequency in a nonmagnetic medium is
only a function of ¢ and ¢ of the surrounding medium.

The input admittance of a probe, Yin(o,e) = Gin(o,e) + jBin(o,<),
has a real part (conductance) Gin = fg(c,e) and an imaginary part
(susceptance) Bin = fb(o,e). The input conductance and susceptance
are functions of the conductivity and the permittivity of the medium.

For finding o and ¢ analytically from the conductance and
the susceptance of the probe, the functions f§ and fb should be
known. These functions cannot be expressed in terms of simple func-
tions, but the probe can be calibrated based on the theory developed
in Chapter II. Input conductances and input susceptances of the
probe are found for various values of ¢ and €. There are two ways
to use this information about the probe which lead to the determina-
tion of the electrical properties of a biological tissue or a lossy
medium.

In the first method, two sets of curves are drawn. One set
is the conductance and the other set is the susceptance of the probe
versus the conductivity, where the permittivity is. used as a param-
eter. These sets of curves for a typical probe are shown in Fig-
ures 4.2 and 4.3. The physical dimensions of the probe are given

in these figures and the frequency of operation is 600 MHz. The
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following example shows how electrical properties of a lossy medium
can be measured.

An experiment was conducted and the input admittance of a
bare probe with the same dimensions as given in Figure 4.2 was
measured. The conducting medium was 0.2 normal saline and the tem-
perature was 25°C. The input admittance of the probe was measured
to be Yin = 38.98 + j4.97 (mv). Draw two straight lines for
Gin = 38.98 and Bin = 4.97 in Figures 4.2 and 4.3, respectively.
From the possible values for . and o found in these curves inter-
sected by the two straight lines, we can estimate the conductivity
to be 2.4 (s/m) and the relative permittivity to be 65. The exist-
ing values for 0.2 normal saline at 25°C is about o = 2.21 (s/m)
and € = 74.8. Thus, the accurécy of this method is considered to
be satisfactory.

The second method for finding o and € is, after theoretically
finding the conductance and susceptance of the probe for various
possible values of o and e, the information is stored in the computer
and then the input admittance of the probe imbedded in a medium
with unknown o and ¢ is measured. The measured values are fed to
the computer and a computer program searches for the closest values
for o and ¢ of the unknown medium. Using this method the input
admittance of the probe measured in the above example gives €n= 65.5
and o = 2.4 (s/m). The second method seems to give more accurate

results.
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4.2. Local Heating

Another application of the bare probe is for local heating
in cancer therapy by microwave hyperthermia. In this section the
_heat pattern of a bare probe in a conducting medium is being studied.
In the previous chapter the current distribution along the probe
has been determined. The electric field produced by the current
on the probe at any point in the medium can then be found. The
heat created by the electric field in the lossy medium is given by
3 olE|2.

With the assumption that the current is only in the z direc-
tion and with a rotational symmetry in our problem, the vector
potential has only one component in the z direction and it is

expressed as

) hy .- IkR
Az(r,z) ol Iz(z ) R dz (4.2.1)
'h2
and
Ar(r,z) = A¢(r,z) =0.

The relationship between the magnetic field and the vector potential

is

>4

->
B =V x
Therefore,

Br(r,z) =B_(r,z) =0
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and

3Az(r,z)

By(r.z) = - — -

Maxwell's equation V x E(r,z) = u(o + jwe)E(r,z) implies that

E¢(r,z) =0
and
2
. 3°A_(r,2)
E.(r,2) = - i—“z’—;i—ai——- (4.2.2)
. 3A_(r,2z) azA (r,z)
Ez(r,z) = i%-[% zar + :rz ] . (4.2.3)

)
Assuming that R = [r2 + (; - z')2] and the current on the probe as

1,(z') -:E: 1P (z')

n=1

the electric field in the r direction is expressed as

Jou 32 1 o JkR
Er(r,z) i I P (z ) dz
h2 n=

4rk
or ¢
N h .
1 -jkR
= wy _3__ _3_ e '
Er(r,z) T J_—ZZ L oF Pn(z') az( R ) dz
41'|'k n=1 ‘h
2
Since 2 .. —3.- , then

9z 9z
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for -h, <z < h) (4.2.4)

After substitution for the current and the vector potential in

(4.2.3), we have

. e JkR
- Jwp |1 3 \
Ez(r,z) = [F'SF;/p :E: IP (z ) & dz
41rk h
- 2 n_
h, N
2 1 -jkR
) 1y € '
+-a—2-[ Z:InPn(z)——R dzJ
r -
-hz n—l
and then
o . s -ij -JkR
Ez(""z)=41rk Z In[?ﬁ'[ dz* +—2'
n=1 (Az)n (Az)
(4.2.5)
For large r or small r and z £ (Az)n we can write
-jkR -jkR
-" e R dz' =2 & R -
(az)
(4.2.5) then becomes
N .
E.( _ qu 4 2t kzr2 3Jkr'2 3r2 e"’kR
r,z) = I -
z n 2 3 4 R
Tl'k n=1 R R R

(4.2.6)
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For small r and ze(Az)n, we have

-jkR 1/2
[ i-ﬁ— dz' = 2Ln {'2A7 +[1 + (-213?)2] }- Jka
(az)

and

-3kR -1/2
P eepueg
(az), r

ar

2 -JkR =3/2
—a—gf S a2 = B+ 5 A0+ ()
(az) r
Substitute the above approximate expressions in (4.2.5), and we have

. N

E (r,2) = i%; In(fg)[l + (2%.')2]-3/2
Numerically the r and z components of the electric field can be
found in the medium. The heat produced by the field is given by
% olEl? . where |E|% = |E,|% + [E |2 .

Figures 4.4 and 4.5 show the equi-power contours for a bare
probe in the r-z plane. Electrical properties of the medium and
physical dimensions of the probe are also given in these figures.
The driving voltages are V0 = 8.44 volts and V0==7.63 volts in
Figures 4.4 and 4.5, respectively. The changes in the driving voltage
resulted from keeping the input power equal in both cases (input

power = 1 watt). The driving voltage is determined as follows:
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pz () = a, = 0.43
al-az-'o m
20' h1-7-5m
h2 = 30 mm
V0 = 8.44 volts
10 |
0 s +——  (mm)
10 20 30
100
-10
-20
8.46 0.47 0.14
-30

Figure 4.4. Equi-power contours for a bare probe in the r-z plane.
The power is normalized and the frequency of operation
f = 600 MHz, ap = 1.11 (s/m), € r2 = 7.
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a =a, = 0.43 mm
h1 = 15 mm

h2 = 30 mm

V0 = 7.63 volts

30

Figure 4.5. Equi-power contours for a bare probe in the r-z plane.
The power is normalized and the frequency of operation
f = 600 MHz, gy = 1.11 (s/m), €2 = 76.7.
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. 1 *
Power (input) = 1 watt = 5 ReVgl

] V6
5 Re = S
2 (Rin + jXin)

and
2 2 12

_ Rin + Xin
Vo'<2 “W‘)

The power in these figures is normalized. The length of the probe
h1 is 7.5 mm and 15 mm in Figures 4.4 and 4.5, respectively. In

both cases most of the power is concentrated near the probe, along
the z axis. As we see from these figures the heat pattern can vary

with changing the length of the probe.



CHAPTER V
INSULATED PROBES IN A CONDUCTING MEDIUM

In order to transmit energy into the conducting body and to
avoid direct contact between the probe and the body tissue, the
probe can be covered with insulated material. The insulated probe
is used extensively for local heating in biological bodies. For
heating applications, the insulated probe has two major advantages
in comparison with the bare probe:

(1) The input resistance of the bare probe is less than the
input resistance of the insulated probe in a conducting medium,
therefore, the insulated probe radiates more EM energy in the con-
ducting medium.

(2) The current on the bare probe decays rapidly along the
probe, hence most of the EM energy radiated from the bare probe is
concentrated near the driving point. However, in the insulated
probe case the current does not decay rapidly along the probe, thus,
the EM energy is distributed over a larger volume.

Evolution of geometry of the insulated probe in a conducting
medium is shown in Figure 5.1. Since the current flow is as shown
in this figure and the surrounding medium is lossy, the probe is

treated as a lossy transmission line. In this case the probe cannot
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be truncated, therefore, equivalent terminal impedances Zel and

Ze2 are introduced.

5.1. Theory of the Probe

Since an insulated probe in a conducting medium can be con-
sidered as a lossy transmission line, transmission line theory is
used to analyze the characteristics of the probe [18]. The equiva-
lent circuits of the insulated probe in a conducting medium in the
form of lossy transmission line are shown in Figure 5.2. To start
with, the equivalent transmission line of the probe is divided into
two sections, where ZCl and ZCz are the characteristic impedances
of section (1) and section (2), respectively. The driving voltage
V is divided into two voltages, V1 and V2. The input impedances
of each section are (Zin)1 and (Zin)z, respectively. The input
currents of these two sections are I1 and Iz, but since the current

at the junction is continuous, it requires that

This leads to the relation

V1 V2 ( \
. = 5.1.1
(Zm)1 (Z]n)2
The other relationship between V1 and V2 is
V= V1 + V2 . (5.1.2)

Using (5.1.1) and (5.1.2), V, and V, can be expressed as follows:
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el” + J“L,’, - Zez
'] Vo

1 47

I1 = I2 at junction

section (1) section (2)
(Zin)1 (Zin)2

Figure 5.2 Geometries for an insulated probe in a conducting
medium.
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(Zin)
v, =V 1
1 (21n71 + (Zin)2
(5.1.3)
(Zin)
Vo =V Iz + %Zin)
1 2
The input impedance of a transmission line is
. ZL + Zc tanh [yh]
Zin = I¢ 7 %7, tanh (¥h] (5.1.4)

where y is the propagation constant of the line, Zc and ZL are the
characteristic impedance and load impedance of the line, respec-

tively, and h is the length of the line.

z
Using the geometry of Figure 5.2 and defining tanh 8 =-Z£l
Z el
and tanh 8, = 722 » where Zel and Zéz are terminal impedances of

e2
two sections, the input impedance for each section of the line can

be expressed as

(Zin)1 = Zc1 coth(ylh1 + el)

(5.1.5)
(Zin)2 = ZC2 coth(yzh2 + 62)
Substituting (5.1.5) into (5.1.3), V, and V, become
ey Zcq coth(ylh1 + el)
1 ZCl coth(ylh1 + ei) + ZC2 coth(yzh2 + 92)
(5.1.6)

2 =V Ig; Coth(y,h; + 8,0 F I, Cothlyzhy + 65)
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The reflection coefficient of each section of the line is

I Wt SR SV
1°7. %2, 277

e1 VL1 e2 ¥ I¢2

-1

After introducing the above notations, the voltage and current
along each section of the probe will be found separately.

A set of coordinate system is introduced for section (1) of
the line as indicated in Figure 5.3(a). The voltage along the line

can be written as
-Y4S YqS
vy(s) = v* (e Parpe! ) (5.1.7)

At s = -h; the voltage V, = Vl(-hl). Substituting for r, in (5.1.7)

we have

V+ _ V1 cosh el + sinh ¢

2 cosh AT ei)

1

(5.1.8)

Using (5.1.7) and (5.1.8), the voltage along section (1) of the

1ine becomes

cosh (yls - 61)

Vl(S) = Vl Cosh (Ylhl F 61) (5.1.9)
The current distribution along the line is
+ -Y¢S Y4S
-V 1 1
I,(s) = z(_:f(e - rpe ) (5.1.10)



< I1
; +
el% Ze1 é;__v1
[, — by
S <—f (a)
s =0
< I2
Vo A Leo gzez
I, =™
(b) —» W
) W =0
- I1 -‘—-12
b + b
e Z ! c.><9+"2 ?Zez
hy Z < -h,
z=0
(c)

Figure 5.3. (a) Section (1) of the line.
(b) Section (2) of the line.

(c) Common coordinate system for both sections.
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After substitution for V' and ry in (5.1.10) the current along

section (1) of the line becomes

L(s) = V1 sinh (e1 - yls)
1 Zoy cosh (ylh1 + el)

(5.1.11)

In Figure 5.3(b) the coordinate system for section (2) of the line

is shown. The voltage and the current along this section of the

line are
cosh (Y2W - 92)
Vo) = Va ok Ty, 7 5,) (5.1.12)
V, sinh (8, = y,w)
Iy(w) = 52 2__ 2 (5.1.13)

Zco cosh (Yzh2 + 92)

So far there are two different coordinate systems for section (1)
and section (2) of the probe. Choose one common coordinate system
as indicated in Figure 5.3(c) and transform both coordinate systems

to the new coordinate system as
Z =75+ h1
Z=-W-h2

After transformation the voltage and current along the probe are
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cosh [Yl(z-hl) - 61]

11 1

for 0<Z<h

L (2) = V1 sinh [e1 - yl(z-hl)] '

1 ZCl cosh [Ylh1 + 61] (5.1.15)

and
cosh [yz(z+h2) + 92]
V2(2) = Vo —osh v b, 7 5,0 (5.1.16)
22 2
for 0 > z > -h2
V, sinh [e, + yv,(z+h,)]
I(z) = 72 2__2 2 (5.1.17)

2 cosﬁ'[’yzh2 + 62]

In these equations V1 and V2 are expressed in (5.1.6).

5.2.1. Parameters of the Transmission Line

In Figure 5.4(a) an insulated probe in a conducting medium is
shown. Region (1) in this figure is the outer conductor of the
microprobe and it is usually made of a material with very high con-
ductivity. Region (2) is the conducting medium with (02,52), and
region (3) is the insulating material with (od,ed).

The insulated probe in a conducting medium is equivalent to
a lossy coaxial cable with a complex propagation constant defined
as

y=NL=a+j8

where Y is the admittance per unit length and Z is the total

impedance per unit length of the line. For a coaxial cable Y is
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(2) conducting medium
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Figure 5.4. (a) Insulated probe in a conducting medium.

(b) Infinite cylinder.
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<
"

g + juC
where

270 2mre
= d and C = d
g In(a37a15 In(a37a1§

and the total impedance per unit length is

z=z"1+z;+ze

where Z{ and Z; are the surface impedances of the inner and outer
conductors of the transmission line, respectively, and Z® is called
the external impedance of the line.

For finding ZI and Z; we assume the infinite cylinder geometry
and that the current on the cylinder flows only in the z direction

as indicated in Figure 5.4(b). Start with Maxwell's curl equations:

v x E(F) = -juB(F)
v x B(F) = ulo + jue)E(r) .

Since the cylinder is assumed to be infinitely long and there is

rotational symmetry in the problem, we have

2E(r) _ 2H(Y) .
9z 9Z

2E(r) _ AH(F) _
3¢ 9¢

Ll
o
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The electric field has only one component on the z direction and

it is
> > -~
E(r) = zEZ(r)
Substituting for the electric field in Maxwell's equations, we have

2
3 E_(r) 3E_(r)

4 1°72 2 -
._8;2__+FT+kEZ(r) =0

where

k2

= w pe = Jwuo .

The solution of the above differential equation for the inner con-

ductor is

k,r)

Ez(r) = AJO(klr) + BNO( 1

where constants A and B can be determined by the boundary conditions.
On the z axis (r = 0) the electric field should be finite; this

condition implies that B = 0, therefore,

Ez(r) = Adn(kqr

0( 1 )
On the surface of the cylinder at r = a; we have
Ez(al) = AJO(klal)

or
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Ez(al)
A:
Jo(ka;)

Substituting for A, the electric field inside the cylinder is

Jo(klr)

Ez(r) = Ez(al) EBTVIEI7 0O<r<a
The current density on the cylinder becomes

Jz(r) = °1E (r)

z

The total current in the cylinder is

(o 2ra 0, 3, (kyay)
Iz = olEZ(r)rdrd¢ = ——FI—— Ez(al) EBTFIEIT
0 0

The definition of the surface impedance is the ratio of the electric
ffeid on the surface to the total current. For good conductors

most of the current flows on the surface, therefore,

i Ela) ko dplkyay)
1 I 2ma 0, Jl(kldIT

The solution of the differential equation for Ez(r) in the outer

conductor is
£, (r) = cH{M (kyr) + OH{Z) (ko)

Boundary conditions for this region are:
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(1) Electric field at infinity is Ez(r + ») - 0; this implies
that C = 0. Therefore

€, (r) = 0H{Z) (k1)
(2) At r = az we have
E,(ag) = DH(()Z)(kZa3)

or
E,(a3)

D =
Hézj(k2a3)

The electric field in region (2) is

Ez(r) = 52(33) H(Z-)_——(k a_

Al H(z)(k r) 27ma.,0 H(z)(k a,)
I = 958, (a3) —o—— rdrde = - — 22 £, (a3) —y -
0 a5 0 273 0 273

A B3 K Mo (kpay)

1



* For coaxial cables there is no radiation; therefore, r
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In the transmission line theory the external impedance is
due to the interaction between the currents on the conductors of

the line. The external impedance 2% is defined as

2% = r® + ju1® .

& is zero

and the external impedance becomes

Ze e

Jwl
where

]e

u
> ln(a3/a1) .

It is assumed that the insulated material is nonmagnetic (u = uo),

thus, we have
u .
e_. "o
7" = jw > ln(a3/a1) .

The total impedance per unit length and the admittance per unit
length of the probe have been defined for a general case. Now we
will consider some special cases.

Case (1). |k1a1| << 1, |k2a3l <«< 1
Small argument approximations for the first kind Bessel functions

are
2

Jo(x) =1 - (%)

$1-3 )

Jl(x)
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With these approximations the surface impedance of the inner con-

ductor is

A
1 2rna,o
1°1 kla1 1 kla1
2 2\ 2
and k1 =,/ -jwucl . This leads to

i_ 1 ‘Wl
172 * g
1°1

z

Small argument approximations for Hankle functions are

2 2
;r-'ln;;;

Héz)(x) 1+

SR

J

where y = 1.781. The surface impedance of the outer conductor in

this case can be written as

2 2
1+3j<1In——=—
/. k, ™ vkaas
2 = T 2ma.o . 2
392 j —f—
nk2a3

For k2 =/ -jwu02 , the surface impedance can be expressed as
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Case (2). |k1a1| >> 1, |k283| >> 1

The argument of Bessel functions are very large for this case and
asymptotic approximations can'be used. In this case the first kind

of Bessel functions are
2 nm T
Jn(x) = 5 cos (x - - * ?) [x]| >> 1

The surface impedance for the inner conductor then becomes

N
1= Znalol

For k1 =‘/ -jwuo, , the surface impedance on the inner conductor is

i_ 1 Wy .
Iy = Zna; \ 2o, (1+3)

Asymptotic approximations for Hankle functions are

(-1
MCINIEN PR x| > 1

The surface impedance of the outer conductor for this case can be
expressed as
K

Zi o
2 J 277330'2
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Fora good conductor, k2==,/-jwu202 , and the surface impedance of

the outer conductor becomes

i_ 1 [
2= ma\w, 149

The characteristic impedance of the line by definition is

= Z-, where

L. = Y

C

<IN

Z=r+jx, Y=g+ juC .

Substituting for Z and Y, the characteristic impedance becomes

7. = [X X
C g + JuC

The propagation constant of the line vy can be written as

y=a+jg=Vv(r+ix)(g+ juC)

Squaring both sides of the above equation and equating the real

and imaginary parts of both sides, we have

1

‘ 1/2 1/2
a = [-2 (rg - wxC) +-%{ (rg - wa)2 + (gx + wr‘C)2 } l

1/2 1/2
8 =l -% (wxC - rg) +-%{ (rg - me)2 + (gx + er)2 } I



81

The propagation constant of a lossy coaxial line is tabulated in
Table 5.1. The inner conductor of the line is copper and the outer

conductor is lossy medium with ¢ , = 69 and —— = 8.8. In this
Y‘2 (1)82

table it is assumed that w = 7.16 x 10° sec'l, k, = 41.6 (1 -3).

Since the inner conductor is a very good conductor, the surface

impedance of the inner conductor is very small. The surface

impedance of the outer conductor and the external impedance of the

line for various values of a; and ag are shown. and B

®approx approx

are taken from [19], but « are calculated numerically.

t and B

exac exact

5.2.2. Terminal Impedances of the Probe, Zg) and Zg

In Figure 5.5(a) a configuration of an insulated probe in a
conducting medium is shown. In order to investigate the character-
istics of the probe it is necessary to know the terminal impedances
of the probe at planeAA (Zel) and at plane BB (Zez)' At plane BB
the equivalent terminal impedance is complicated. The current at
this plane is not zero, therefore, this terminal impedance is not
infinity. An equivalent circuit for the terminal AA is shown in
Figure 5.5(b). In this figure when d = 0 the inner conductor is
in direct contact with the outer conductor of the transmission line,
or the conducting medium, therefore, Zelis very small.

For d/(a2 - al) << 1 and 27d/x << 1 we have [20]

a a ana
Vc_le'ln —g(%?];-l- In -%—1) (5.2.1)
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T to generator

B r—‘\\r_// B

conducting medium

R i =TT B |

(a)
Y;
2a, ) c ]
B 2a, . jB
’ EE——
T
dT
(b)
Figure 5.5. (a) Configuration of an insulated probe in a conducting
medium.

(b) Equivalent circuit for terminal AA.
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In the following example the terminal impedance (Z_,) of an insulated

el
probe is found.

Example: For an insulated probe with dimensions of a; = 0.43mm,
a, = 0.96 mm, d = 0.1 mm, and the dielectric material with o4 = 0,

€pg = 2.45, the terminal impedance (Zel) at 600 MHz frequency is
B = 0.0065 Yc
and

Z , =JB = j0.0065 YC .

el

In our study the line is lossy, therefore, a conductance should be

parallel with the capacitor in the equivalent circuit.

5.3.1. Input Impedance of the Probe

The input impedance of the insulated probe is a function of
several parameters. It is a function of physical dimensions of
the probe, the electrical properties of the conducting medium and
the insulator, the terminal impedances, and the frequency of the
operation.

In Figure 5.3(c) the current at the origin is

but from equation (5.1.15) the current at Z = 0 is given as

V1 sinh [ylh1 + 91]
1(0) =
YEI cosh [y;h;, + 8,1

(5.3.1)
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Substituting for V1 using (5.1.6) in (5.3.1), the current at the
origin in
1(0) =

y s1nh(ylh1+ ] )s1nh(y2 )t 92)
ZC cosh(y1h1+ el)smh(y2 2+—62)4-ZC2 smh(y1 1t ) )cosh(72h2+ ez)

(5.3.2)

By definition the input impedance is Zin = T%%T , Or

Zin =

Zc1 cosh (y1h1+ el)sinh(yzhz+ 62)4-2C2 sinh(ylhl*-el)cosh(72h2+-ez)

siﬁh(?ih1+ el)sinﬁ(72h2+ 92)
(5.3.3)

In this study it is assumed that both sections of the probe have
the same diameters for inner and outer conductors, and the same
dielectric material, therefore, the characteristic impedances
Zc1 = Zc2 = Zc and the propagation constants Y] T Y T Y. With

these assumptions the input impedance can be written as

cosh(Yh1+ el)sinh(yh2+ ez)+-sinh(yh1+ el)cosh(yh2+-92)
Slnh(thf 8,)sinh(yh, +6,)

Z1’n=ZC

(5.3.4)

The input impedance of the probe for three different cases of

terminal impedances are considered as follows.
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Case (1). In this case it is assumed that both terminal
impedances of the probe are infinity, Zel = Zéz = =; this implies
0, = 6, = tanh™} 0 = 0. Substituting for 6, and 8, in (5.3.4),

the input impedance of the probe becomes

sinh [Y(h1 + h2)]

Zin = Zc ok TvhyT sinh [vhy] (5.3.5)
For a symmetric probe, h1 = h2 = h, (5.3.5) becomes

Zin = ZZC.coth [vh] (5.3.6)
or

v« S g
If ZC is pure resistive, for Bh = n7v/2, n =1, 2, 3, ... the input

impedance of the probe becomes pure resistive.

In Figure 5.6 the input impedance of the insulated probe in a
dissipative medium as a function of the probe length is shown. In
this figure it is assumed that h1 = h2’ a; = a, = 0.47 mm,
ag = 0.96 mm, and the frequency of operation is 915 MHz. The elec-
trical properties of the insulator and the conducting medium are
= 0.0 (s/m), €

= 1.37 and o, = 0.88 (s/m), € 5 = 42.5, respec-

% rd
tively. For short insulated probes the input impedance is mostly

r

capacitive; the same phenomenon is observed in an electrically short

bare probe.
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50 | 5
4
100 200 300
3 Rin (@)
-100 | 2 cm=h
-200
J 1l cm=nh

-300 1

Figure 5.6. Input impedance Zin = Rin + jXin of symmetric insulated

probes in a dissipative medium, y = 10.72 + j49.38 and
Zc = 70.77 - j15.36 . Both terminal impedances are

assumed to be infinity.
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Case (2). In this case it is assumed that both terminal
. _ _ - - -1 _
impedances are zero, Ze1 = Ze2 =0, 8y 7'92 = tanh = » = jn/2.
Substituting for o, and 6, in (5.3.4), the input impedance of the

probe becomes

sinh [y(h1 + h2]

Zin = ZC cosh [th] cosh [yhé] (5.3.7)

For a symmetric insulated probe h1 = h2 = h, the input impedance

can be expressed as

Zin 22C tanh [yh] (5.3.8)
or

sinh (2czh) + jsin (28h)
C cosh (2ah) + cos (28h)

27

Zin

With the assumption that Zc is pure resistive, for gh = nn/2,
n=1, 2, ... the input impedance of the insulated probe is pure
resistive. Figure 5.7 shows the input impedance of the insulated
probe in a lossy medium as a function of the probe length. The
terminal impedances of the probe Ze1 and Ze2 are assumed to be zero.
The physical dimensions of the probe and the electrical properties
of the insulator and the lossy medium are the same as in case (1).
In this case for an electrically short probe the input imped-
ance is not mostly capacitive, and the input resistance is larger

than the input resistance of case (1).
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Xin (q)
200 |
100 |
-100 ¢
-200]
Figure 5.7. Input impedance Zin = Rin + jXin of symmetric insulated
probes in a dissipative medium, y = 10.72 + j49.38 and

Zc = 70.77 - j15.36 . Both terminal impedances are
assumed to be zero.
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Case (3). In this case it is assumed that one of the terminal
impedances is zero and the other infinity.

(a). The terminal impedances Zel = 0 and Ze2 = @, Substi-
tuting for 6, and 6, in (5.3.4), the input impedance of the probe

becomes

cosh [y(h1 + h2)]

Zin = Z¢ cosh TvhyT sTrh [yhy] (5.3.9)

(b). The terminal impedances Zel = » and Zez = 0. The input

impedance of the probe is

cosh [y(h1 + hz)]

Zin = Z¢ STnh [vh;T cosh [yh,]

(5.3.10)

Now consider a symmetric probe with h1 = h2 = h. The input imped-

ance of the probe becomes

Zin 22C coth [2vh] (5.3.11)

or

. sinh [4ah] - jsin (4gh)
Zin = 27 o ch T3ah] = cos (4gh)

For Bh = nv/4, n =1, 2, 3, ... the impedance of the probe is pure
resistive (Zc is a pure resistance).

In Figure 5.8 the input impedance of the insulated probes
with the terminal impedances of one zero and the other infinity

are shown. In this figure the dimensions of the probe and the
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Xin (@)
50 |
300
"~ Rin ()
;100) !
-200 |

Input impedance Zin = Rin + jXin of symmetric insulated
probes in a dissipative medium, y = 10.72 + j49.38 and
ZC = 70.77 - j15.36 Q. Terminal impedances Zel = 0 and

Ze2 = w.

Figure 5.8.
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electrical properties of the insulator and the conducting medium
are kept the same as that in case (1).

The input impedance of the insulated probe is a function of
the electrical properties of the insulator. In Figure 5.9 the input
impedance of the probe versus the dielectric constant of the insula-
tor is shown. Both terminal impedances of the probe are assumed
infinity in this figure.' Physical dimensions of the probe are
a; =3, = 0.43 mm, hl = 15 mm, h2 = 45 mm, and the frequency of
operation is 600 MHz. The probe is immersed in a conducting medium
with ¢ = 1.86 (s/m), e, = 76.3, and the insulator has oq = 0 and
a variable permittitivity. Changes in the input reactance is more
significant than the input resistance of the probe.

For an electrically short and thin insulated probe in a dis-

sipative medium we have
ah << 1, gh << 1, ag << h

and the input admittance of the probe has been found [11] to be

orh

2
L. P Y
Yin = G + JuC = T(h/a,) - 1 ;2

+(1+y)°

- ednh PZ + (1 +7)
ln(a3/a2) P2 £ (1 + Y)Z

(5.3.12)

where

_ €rd ln(h/a3) -1
wegE, €p 1n(a3/a2)
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The input admittance of the insulated probe obtained from (5.3.12)
and that from the theory developed in this study are compared in
Table 5.2. The input susceptances are in good agreement, but there
are some deviations in the input conductances. Mostly the devia-
tions in the input conductances come from the fact that the theory
developed in this study is not accurate for short insulated probes.

In this table the probe is symmetric with h1 = h2 = 15 mm,

a; = a, = 0.43 mm. The electrical properties of the insulator are
%
conducting medium are variable.

0.0 (s/m), Epd = 2.25, and the electrical properties of the

In Figure 5.10 the input impedance of the insulated probe
with three different terminal impedances are compared with input
impedance of a bare probe. The dimensions of the probes are:

3 =a, = 0.43 mm, h1 = 15 mm, h2 = 45 mm, and the frequency of
operation is 600 MHz. The electrical properfies of the insulator
are oy = 0 (s/m), Epd = 2.25, and the probes are immersed in the
saline with various normalities. The input resistances of the bare
probe and the insulated probe with terminal impedances Ze1=:ze2=‘”
are very close, but their input reactances are different.

So far it is assumed that both sections of the probe have
the same radius (a1 = az). Now we consider the case with 2 # 2y,
and find the input impedance of the insulated probe. In Table 5.3
the input impedances of the insulated probes with a; = a, and
a; # a, are compared. The input resistances are very close in two

different cases, but there is a constant shift in the input reactance.
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Xin (Q)
L 100
L -200 L 50
Rin
L 0.0
f = 600 MHz
h1 = 15 mm
h2 = 45 mm
b -100 Xin 3 = a, = 0.43 mm 4 -50
= 1.86 (s/m)
€p = 76.3
$-100
0
1.0 2.0 3.0 4.0 5.0 6.0

€rd

Figure 5.9. Inpht impedance Zin = Rin + jXin of the insulated probe
in a conducting medium versus permittivity of the insu-
lator. Terminal impedances Zel = Ze2 = «,
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Table 5.2. Input admittance of the electrically short and thin
insulated probe in a conducting medium.
Yin (Theory) Yin (Formula)

Frequency P = i% x 1070 x 1078
10 MHz 25.84 0.0005 + j73.3 0.18 + j73.3
10 MHz 52.94 0.0005 + j73.3 0.091 + j73.3
10 MHz 80.63 0.0005 + j73.3 0.06 + j73.3
10 MHz 109.73 0.0005 + j73.3 0.046 + j73.3
100 MHz 2.85 0.66 + j736.4 15.3 + j726.4
100 MHz 5.32 0.60 + j736.4 8.7 + j731.4
100 MHz 8.06 0.57 + j736.4 6.0 + j732.3
100 MHz 10.97 0.56 + j735.8 4.55 ; Jj732.6
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(1) = Bare probe
(2) = Insulated probe with Zel = Ze2 = 0.0
(3) = Insulated probe with Zel = ™, Ze2 = 0.0
(4) = Insulated probe with Zel = Ze2 )
Xin (@) Rin (@)
—_——— Xin
———  Rin
-2504 250
-200 ; 4200
-150 ¢ 4150
-100 4 4) e —————— +100
) —_
-50 4 \~\\\ + 50
(4)
(1)>_——=§____<
(1)
0.0 Pomdrednd X3 =1 -ﬁ_~~‘ +* 0.0
0.1N 0.2N 0.3N 0.4N

Normality of Saline

Figure 5.10. Comparison of the input "impedance Zin =
the bare probe with insulated probes with different

terminal impedances.

Rin + jXin of
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The shift in the reactance is due to the change in the admittance

per unit length of the transmission line. The admittance per unit
length is Y = g + juC, where g and C are inversely proportional to
the ln(a3/a2). In this case g is zero, since o4 = 0, and only C

is affected.

5.3.2. Experimental Verification of the Theory

In order to test the theory developed in this study, a series
of experiments were conducted to measure the input impedance of the
insulated probes with various terminal impedances in different con-
ducting media. To realize the terminal impedance of the probe
Ze2 = = in practice is very difficult, but the terminal impedance
L,y can be made very large. In Figure 5.11(a), since the probe
is in direct contact with the conducting medium (the outer conductor)
the terminal impedances of the probe, Ze1 and Ze2’ are very small.
On the other hand, in Figure 5.11(b) the terminal impedance Ze2
is again small but the terminal impedance Zel is very large. The
experiments were carried out only for these two cases.

The measurement was conducted by the vector voltmeter, and
the conducting medium was saline. The experimental procedures have
been explained in more detail in Chapter,III. In Figures 5.12-5.15
the physical dimensions of the probe are a, = a, = 0.43 mm,
ag = 0.96 mm, h1 = 15 mm, and h2 = 45 mm. In Figures 5.12-5.15
the theoretical values and the experimental results of the input
resistances and the input reactances of the insulated probes are

compared. The terminal impedances in Figures 5.12 and 5.13 are
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[~] to generator

Insulator

(1 to generator

Insulator

Conducting medium

Jl

Figure 5.11. Configurations of insulated probes.
(a) Terminal impedances Zq) and Zgp very small.
(b) Z,, very large and Z,, very small.

z (b)

el



100

Rin ()
} ee Experiment
— Theory
> 300
f = 600 MHz
[ ]
[
» 200
L]
1100
[ ]
f = 900 MHz
4- 4 4 S
0.1 0.5 1.0 normality

Figure 5.12. Comparison of theoretical and experimental results on

the input resistance of an insulated probe with termminal
impedances Z

= 0.0, Z_ , = 0.0 in various conducting
media. el e2
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Xin (@)
e o Experiment at 600 MHz
++ Experiment at 900 MHz
Theory
+100
[ ]
+ =600 MHz
14 0 <+
=900 MHz
-100
+ +* + ——
0.1 0.5 1.0
normality

Figure 5.13. Comparison of theoretical and experimental results on
the input reactance of an insulated probe with terminal

impedances Zel = 0.0, Ze2 = 0.0 in various conducting
media.
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Rin ()
e ¢ Experiment
—— Theory
4 300
® f=600 MHz
4 200 o
100
-_— . < f=900 MHz
$ v + + * g
0.1 0.5 1.0
normality

Figure 5.14. Comparison of theoretical and experimental results on
the input resistance of an insulated probe with ter-
minal impedances Zg] = », Zg2 = 0.0 in various cond-
ducting media.
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Xin (@)
t e ¢ Experiment at 600 MHz
+ + Experiment at 900 MHz
— Theory
-200 f = 600 MHz

-1004

0.1 0.5 1.0
normality

)

Figure 5.15. Comparison of theoretical and experimental results on
the input reactance of an insulated probe with terminal

impedances Zel = ™, Ze2 = 0.0 in various conducting
media.
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assumed to be Ze1 = 0 and Ze2 = 0, but in Figures 5.14 and 5.15

the terminal impedances are Ze1 = = and Ze2 = 0. From these results
it is observed that the agreement between theory and experiment is
very good for the case of Ze1 = » and Ze2 = 0, and for the case of

Z.=0, Ze2 = 0 the agreement is still considered to be satisfac-

el
tory. These results confirm the validity of the theory developed

for the insulated probe in this chapter.

5.4.1. Current Distributions Along the Insulated Probe

The current along each section of the probe can be found by
substituting for V, and V, in (5.1.15) and (5.1.17) using (5.1.6).

The current can be expressed as
L,(2) =

sinh(y2h2+ ez)sinh[(ylhl+ el)- YIZ]

v To, CoSh{y hy + 6,JSTARTy,h, + 8,0 F Zo, STAR(y;hy + 67COSh{y,h, + 6,

and

Iz(z) =

V7

-h, <Z<0 (5.4.2)
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If we assume both sections of the probe to have the same radius
(a1 = az) and the same dielectric material, then Loy =2 =1,

and S Yy <Y Equations (5.4.1) and (5.4.2) can be simplified to

Il(z) ='7; sinh [y(h1 +h,)] (5.4.3)
0<Z<h
and
sinh (yh, + 8,) sinh [(yh, + 6,) + yZ]
1,(2) = <+ 1__1 2_ 2 (5.4.4)
2 . STRR [v(h; + h )] a
-h, <7<0

The current along the probe for different terminal impedances is
found as follows.

Case (1). In this case Zop = Lgp = = 8] = 65 = 0. Substi-
tuting for 6, and 6, in (5.4.3) and (5.4.4), the current along each

section of the probe becomes

v sinh [yhz] sinh [th - vZ]

1,(2) = — - (5.4.5)
1 Z. sToh [y(h; + h,)]
0<Z<h
and
v sinh [yhl] sinh [yh2 + yZ]
1,(2) = - (5.4.6)
2 7; sinh [y(h1 + h2)]

'hz.i <0
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For a symmetric insulated probe h1 = h2 = h, the current along the

probe can be further simplified to

1(z) = 4 sinh [y(h - 12])] h<Z<h (5.4.7)

2, cosh (yh) L=<

In Figure 5.16, the current distributions along the insulated

probe with the terminal impedances Ze1 Ze2 = = are shown. In
this figure it is assumed that 3, =a, = 0.43 mm, ag = 0.96 mm,

h1 = 15 mm, and h2 is variable. The electrical properties of the
insulator and the conducting medium are aq = o, €pnd = 2.25, 0p=1.1,
€pp = 76.7.

The current at the tips of the probes are zero due to infinite
terminal impedances. It is observed that the current does not decay
along the probe, and for the short probe h1 = h2 = 15 mm, the cur-
rent has a triangular distribution which is similar to the current
distributions along a short bare probe.

Case (2). Both terminal impedances are zero, Zel = Zez =0,
implying o) = 8, = 5L . Substituting for 6, and 8, in (5.4.3)
and (5.4.4), the current distribution along each section of the

probe is

cosh (yhz) cosh [y(h1 -2)]

v
1(2) = 72 —<Toh Tv(hy + Fy)] (5.4.8)

0<7Z«< h1

and
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v cosh (th) cosh [y(hz +2)]

1(2) = 7 —<Tmh (B # Fp)] (5.4.9)

-h, <7 < 0

2
For a symmetric probe, h1 = h2 = h, the current along the probe

is simplified to

V  cosh [y(h - |z])]

21, sinh (vh) shy 21 <hy

I(Z) = (5.4.10)
The current distributions along the probes with terminal
impedances of Ze1 = Ze2 = 0 are shown in Figure 5.17. The physical

dimensions of the probes and the electrical properties of the
insulator and the conducting medium are the same as that for Fig-
ure 5.16. On the tips of the probe the current is very large
because the terminal impedances are assumed to be zero.

Case (3). In this case one of the terminal impedances is
zero and the other is infinity.

(a). The terminal impedances are Zel = » and Ze2 = 0 cor-
responding to 6, = 0 and 8, = %; . Substituting for 8, and 0, in
(5.4.3) and (5.4.4), the current along each section of the probe
is

Y cosh (Yhz) sinh [Y(h1 - 2)]
1(2) = 72 —cosh Tv(h, + h,)]

(5.4.11)

0<Zz<h

and
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y sinh (yhl) cosh [y(h2 +27)]

1,(2) = I cosh Tv(A; + F,)]

(5.4.12)

—h2 <71<0

For a symmetric insulated probe, h1 = h2 = h, the current in each

section of the probe becomes

_ V cosh (yh) sinh [y(h - |Z])]
1,(2) = 7 Y 5oh (Zyg) (5.4.13)
0<Z<h
and
_ V sinh (yh) cosh [y(h - |Z])]
-hz <1<0

In Figure 5.18, the current distributions Along the insulated
probes are shown. The current at the tip with infinite terminal
impedance is zero and at the tip with zero terminal impedance the
current is very large.

(b). The terminal impedances are L, = 0.0 and Z, = = cor-
responding to 8, = %} and 8y = 0.0. Substituting for 84 and 8y in

(5.4.3) and (5.4.4), the current along each section of the probe is

v sinh (Yhz) cosh [Y(hl - 2)]
Il(Z) - 7; cosh [y(h; + h,]T

(5.4.15)

0<Zz<h

and
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v cosh (th) sinh [y(h2 +2)]
1(2) = 7 —cosh Tvth; + Rl (5.4.16)

-h, <7 <0

For a symmetric probe, h1 = h2 = h, the current on each section of

the probe becomes

_ V sinh (yh) cosh [y(h - |Z])]
Il(z) _.zz Sosh (2yh) (5.4.17)
0<Z<h
and
_ V cosh (yh) sinh [y(h - |Z])]
IZ(Z) - 2;' cosh (ZY;) (5.4.18)
-h<Z<0

In Figure 5.19, the current distributions along the insulated
probes with Ze1 = 0.0 and Ze2 = = are shown. The dimensions of the
probe and electrical properties of the insulator and the conducting
medium are the same as that of case (1).

The current distributions on the probes with various terminal
impedances are shown in Figure 5.20. The current along the probe
changes with the change on the terminal impedances. Therefore,
the heat pattern produced by the EM energy delivered by the probe

changes with the change on the terminal impedances of the probe.
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CHAPTER VI
APPLICATION OF THE INSULATED PROBE

As mentioned earlier the input resistance of a bare probe
in a conducting medium is smaller than that of a corresponding
insulated probe. This implies that an insulated probe can deliver
more EM energy in the surrounding medium. For this reason the insu-
lated probe is extensively used for local heating in biological
bodies.

The heat produced by the probe in the medium is given by
% cIEI2 , where o is the conductivity of the medium and E is the
eiéctric field maintained by the probe in the med}um. In the pre-
vious chapter the current distribution along the probewas determined,
thus, the electric field produced by the probe current at any point
in the medium can be found. It is assumed that the current is only
in the z direction and there_is rotational symmetry in this problem.
The electric field in the medium is given by [18]

2 2
3 A 'Y a A 9
{ r _.__z_(_r._z_). + 2[__L(;_z_) + kgAz(r’z)] }

araz 3z

=

E(r,z) = - 3
ks ,
(6.1.1)

The vector potential is expressed as
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hy [ -ikR '
A,(r,z) = 1“;'[ f E—R- 1(z') %9;7 dz' (6.1.2)
-h -
2

where
1/2
R = {(z - z')2 + ag + r2 - 2a3r cos ¢'}
Substituting the vector potential given by (6.1.2) in (6.1.1), the

r and z components of the electric field can be obtained as

h T :
. 1 2
= wu ' 3 ' d 1
Eq(r,z) = - ZL@ f f I(2') 2= K(z,2') 52 dz
"2 Johy S en (6.1.3)
and
. hy [ 2 |
E (r,2) = - 4”&% 1(2') ( 3L7 + K2)K(z,2") %ﬁ; dz'
47Tk2 'h -1 82
2
(6.1.4)
where
-3k,R
K(z,z') = € R

Since the derivatives of the Kernkl are

; ' (z - z')(1 + jkj,R) ‘
37 Kz,2') = - 2 K(z,z')

2 (r-agcos ¢')(z-2')(3+35k, R-K3RE)
sz K(2:2') = . K(z,z'),
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2 (z- z')2(3+-3jk2R- kar%) - R%- jk2R3
o K(z,z') = 7 K(z,z') ,

The electric field components given by equations (6.1.3) and (6.1.4)

become
Jwu 1 T (Y“a3C05 ¢')(3+ 3jk2R-K§R2)
Ep(r,z) = - == I(z')(z-2") i
-h, o
K(z,2') S dz" (6.1.5)
and
" T (2- 2143+ 35k R - KRD)
E (r,z) = - 1% 1_(z')
z 2 z 4
41Tk2 h R
-h, -
RZ + k,R> - kZR? s
- R4 K(z,z') > d'z

(6.1.8)

For a very thin probe we can assume that all the current on the
. 3
probe is concentrated on the z axis, therefore, R = [r2+ (z- z')z) ,

and the components of the electric field can be expressed as

h . 2,2
1 r(z-2z') (3+3jk,R-k5R¢)
E(r,2) =- —l“—’“—z I(z') T 2 2 K(z,z')dz"
4Tfk2 _h R
2 (6.1.7)
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and

. hy (z-2")2(3+ 35k.R - k2R?)
E ( - Jwu 1 2 2
2(r2) = - =7 L(z') g
4rk R
2 -h2

2 3 2

RE + kR - sz"'
- 7 K(z,z')dz' (6.1.8)
R

The components of the electric field are found numerically and the
heat produced by the EM energy in the medium is obtained from
3 op|E|%, where [E|% = |E,|% + |€. | .

In Figures 6.1-6.4 the equi-power contours for insulated
probes with various terminal impedances are given. The electrical
properties of the insulated material are oq = 0.0 (s/m), erd==2'25’
and the physical dimensions of the probe are given in these figures.
In Figure 6.1 the terminal impedances are Ze1 = Ze2 = =3 in this
case most of the heat is concentrated along the z axis and around
the driving point. In Figures 6.2 and 6.3 it is assumed that one
of the terminal impedances is zero and the other is infinity; in
these cases the heat iﬁ concentrated mostly near the driving point
of the probe and the tip with zero terminal impedance. In
Figure 5.4 both terminal impedances are zero, and the heat is almost
uniformly distributed around the probe.

In general the heat produced by an insulated probe in a con-

ducting medium is distributed in a larger volume in comparison with
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z
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Figure 6.1. Equi-power contours for an insulated probe in the r-z
plane. Characteristic impedance of the probe Lc = 64.5
- j13.4, o9 = 1.11 (s/m), €pp = 76.7, and the frequency
is 600 MHz.
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el

Figure 6.2. Equi-power contours for an insulated probe in the r-z
plane. Characteristic impedance of the probe Z. = 64.5

- j13.4, o7 = 1.11 (s/m), €pp = 76.7, and the frequency
is 600 MHz.
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Figure 6.3. Equi-power contours for an insulated probe in the r-z
plane. Characteristic impedance of the probe Z. = 64.5
- j13.4, oy = 1.11 (s/m), €qp = 76.7, and the frequency
is 600 MHz.
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Figure 6.4. Equi-power contours for an insulated probe in the r-z
plane. Characteristic impedance of the probe Z. = 64.5
- j13.4, 0, = 1.11 (s/m), €pp = 76.7, and the frequency
is 600 MHz.
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the heat produced by the similar bare probe, and for an insulated
probe the heat pattern can be changed by the changing in the ter-

minal impedances.



CHAPTER VII

A USER'S GUIDE TO COMPUTER PROGRAMS USED TO
CALCULATE THE CURRENT DISTRIBUTION AND ELECTRIC FIELD
IN A BIOLOGICAL BODY INDUCED BY A BARE AND
INSULATED MICROPROBE

This chapter is divided into two sections. The first section
briefly explains the computer programs used to determine the current
distribution and input impedance of the bare probe immersed in a
conducting medium by solving Hallen's Integral Equation Method
(HIEM) or Electric Field Integral Equation (EFIE). The second part
gives explanation about the program used to find the parameters and
the characteristic impedance of the insulated probe imbedded in the

conducting medium.

7.1. Programs for the Bare Probe

Moment method is used to solve integral equations for both
cases HIEM and EFIE. The probe is divided into N segments, and the
current is assumed to be constant along each segment. The geometry

of the bare probe is given in Figure 7.1.

7.2. Program HALIEQ

This program solves Hallen's integral equation for the bare

probe. Given the necessary data the program solves equation (2.1.4)
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Section (1)

—w |

Section (2)

[-1-1

-

Section (3)

Figure 7.l. Geometry of the bare probe used in HALIEQ.
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for the current distribution, and the input impedance of both sym-

metric and asymmetric bare probes. The main program contains a

subroutine and a function as explained below.

CMATPAC is a subroutine that solves the system of linear equations
by Gauss's elimination process to determine the unknown
currents on the probe.

GRE is a function that cémputes Green's function.

7.2.1. Description of Input Variables and Input Data Files

The data deck is composed of two files with each file having
only one card. The names of the variables used in this program and
the format specifications are given in Table 7.1. The variables in
data files are defined below.

First data file--accommodates the following variables:

N is the total number of segments on the probe.

M1 is an even integer; it is the number of segments on the sec-
tion (1) and section (2) of the probe.

M2 is the number of segments on the section (3) of the probe.

Second data file--contains the following variables:

FREQ 1is the frequency of operation in Hz.

RR1  specifies the radius of the section (1) of the probe.

RR2 is the radius of the section (2) of the probe.

Z1 specifies the surface impedance of the probe in section (2)
and section (3); it is assumed that the surface impedance of
section (1) is zero.

ZIG specifies the conductivity of the conducting medium.

EPR is the relative permittivity of the conducting medium.
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Table 7.1. The symbolic names of the input variables and the format
specifications used in program HALIEQ.

File Card i Variable
Number Number Columns Name Format
1 1 1-3 N 13
4-6 M1 I3
7-9 M2 I3
2 1 1-12 FREQ F12.1
13-21 RR1 F9.5
22-30 RR2 F9.5
31-39 Z1 F9.1
40-45 Z1G F6.2
46-50 EPR F5.1
51-56 HH1 F6.1
57-62 HH2 F6.2

HH1  is the length of the section (1) of the probe.

HH2 specifies the length of the section (2) plus section (3) of
the probe.

7.2.2. Example

Let us assume that the probe has the dimensions of h1= 7.5 mm,
h2 = 15 mm, and the diameters of the two sections are equal (a1 =a,
= 0.43 mm). The frequency is 600 MHz, and the electrical properties
of the conducting medium are o = 1.11, ¢_= 76.7. The surface
impedance Zi = 100. Following is the 1list of numbers and corre-

sponding variable names should provide in file no. 1 and file no. 2.
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Numbers Variable Name Columns
File No. 1
024 N 1-3
016 M1 4-6
008 M2 7-9
File No. 2
600,000,000.0 FREQ 2-12
0.00043 RR1 15-21
0.00043 RR2 24-30
100.0 Z1 35-39
1.11 Z1G 42-45
76.7 EPR 47-50
7.5 HH1 53-55
15.0 HH2 58-61

The numerical results are presented after the listing of the program

HALIEQ.

7.3. Program EFZI

This program solves EFIE for the bare probe given in equa-

tion (2.2.7). Given the necessary data this program finds the current
distribution and input impedance of both symmetric and asymmetric
bare probes. The subroutines and functions used in the main program
are as explained below.
CAMTPAC is explained in HALIEQ.
MAGRIN is a subroutine that finds the electric field on the sur-

face of the probe, based on magnetic current ring as the

driving source.

SIMCON is a subroutine that calculates the first integral in a
double integral.



129

FCT is a function that provides the integrand of SIMCON.

SIMCOP is a subroutine that calculates second integral in a double
integral.

FCTP is a function that provides the integrand of SIMCOP.

GRE is a function that computes the Green's function.

7.3.1. Description of Input Variables and Input Data Files

The data deck is composed of two files, with each file having
only one card. The names of the variables used in the first data
file and the format specifications are given in Table 7.2. The
second data file has the same variables and formats as the variables
in the second data file in HALIEQ. The information about variables
in the first data file is explained below.

First data file--accommodates the following variables:

N is the total number of segments on the probe.

M1 is the number of segments on section (1) of the probe.

M2 is the number of segments on section (2) and section (3)
of the probe.

NG specifies the number of subdivisions the driving point
segment will undergo in the partitioning process of the
probe.

ITEST is either one or two; when it is one the driving source is
assumed to be a delta gap, and when it is two the driving
source is modeled as a magnetic current ring.

7.3.2. Example

Let us assume that all the conditions are the same as mentioned
in example 7.2.2, but the surface impedance is zero everywhere in

this case. The second data file is the same as explained in example
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Table 7.2. The symbolic names of the input variables and the format
specifications used in the first data file in program

EFZI.
File Card Variable
Number Number Columns Name Format
1 1 1-3 N I3
4-6 M1 13
7-9 M2 I3
10-12 NG I3
13-15 ITEST I3

7.2.2, except we have zero for surface impedance. The list of numbers

and corresponding variable names in file no. 1 are given below.

Numbers Variable Name ) Columns
File No. 1
024 N 1-3
008 M1 4-6
016 M2 7-9
001 NG 10-12
002 ITEST 13-15

The numerical results are presented after the listing of the program

EFZI.

7.4. Program Used for Insulated Probe

This section briefly explains the computer program used to
determine the parameters and the input impedance of the insulated

probe, with various terminal impedances. The probe is treated as a
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lossy transmission line. The symbolic name of the program is INPIMP.
The main program contains a subroutine COMBES, which finds the
Bessel's functions of first and second kind for complex argument and
complex order. The subroutine COMBES is explained in more detail

in [16].

7.4.1. Description of Input Variables and Input Data Files

The data deck is composed of five files, with each file having
only one card. The names of the variables used in this program and
the format specifications are given in Table 7.3. The variables in
data files are defined as below.

First data file--accommodates the following variables:

H1 is the length of the section (1) of the probe.
H2 is the length of the section (2) of the probe.

Second data file--contains the following variables:
ZIGD is conductivity of the insulating material.
EPRD is relative permittivity of the insulating material.

Third data file--contains the following variables:

Z1G2 is conductivity of the conducting medium.
EPR2 is relative permittivity 6f the conducting medium.

Fourth data file--contains the following variables:

A1 is the radius of the conductor in section (1).
Aé is the radius of the conductor in section (2).
A3 is the outer radius of the insulator.

Fifth data file--contains the following variable:

FREQ is the frequency of operation.
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Table 7.3. The symbolic names of the input variables and the format
specifications used in program INPIMP.

File Card Variable
Number Number Columns Name Format
1 1 1-8 H1 F8.5
9-16 H2 F8.5
2 1 1-6 ZIGD F6.2
7-12 EPRD F6.2
3 1 1-8 Z1G2 F8.4
9-13 EPR2 F5.2
4 1 1-8 Al F8.5
9-16 A2 F8.5
17-24 A3 F8.5
5 1 1-12 " FREQ F12.1

7.4.2. Example

The input impedance of insulated probe with a; = ay = 0.43 mm,
ag = 0.96 mm, h1 = 15 mm, and h2 = 45 mm is found by INPIMP. The
electrical properties of the insulator and the conducting medium
are o4 = 0.0, €od = 2.25, gy = 1.11, and‘er2 = 76.7. Following is

the 1ist of numbers and corresponding variable names
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Numbers Variable Name Columns
File No. 1
0.015 H1 2-6
0.045 H2 10-14
File No. 2
0.0 ZIGD 3-5
2.25 EPRD 9-12
File No. 3
1.11 Z1G2 3-6
76.7 EPR2 9-12
File No. 4
0.00043 Al 2-8
0.00043 A2 10-16
0.00096 A3 18-24
File No. 5
600,000,000.0 FREQ 2-12

The numerical results are presented after the listing of the program

INPIMP.
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(998980020000 ottsar st erssstesrtssttststseteertesaeriessssesrvisvcisnarve
C THIS PXOGRAM DETERMINS THE CURRENT OISTRIBUTION ON THE PROBE AND
C INPUT IMPEDANCE OF THE PROBE BY SOLVING HALLEN,S INTEGRAL EQUATION.

C.‘.‘.‘-....‘.‘........‘..“‘.“".‘.....“."‘.‘..."..‘-..‘...'.....‘.

PROGRAM HALIEQ (INPUT,OUTPUT)
COMMON/HALGRE / JK

DIMENSION G(100,100),2Z(100),S(100).03(3)
COMPLEX G.K,F,.F1,02,03,82,84,DET,A, E E1.E2,E3,E4,2IN,B1,UK,GRE
REAL MU,IREA,IIMA,LA

READ 100,N.M1 M2

READ 101,FREQ,RR1,RR2,Z1,Z1G,EPR,HH1, HH2
FREQ= FREO/1 OE+6

PRINT 102,FREQ.RR1,RR2,2ZI

R1=RR1 $ R2=RR2

PI1=4.0+ATAN(1.0) $ vV0=1.0
MU=4.0+PI*1.0E-7

OME=2.0+PI*FREQ=*1.0E+6

M3=M1+1 $ Ma=M1/2 $ M6=M4+1
H1=HH1/1000.0 $ H23HH2/1000.0 $ H3=H1
DEL1=(H1+H3) /M1

DEL2=(H2-H3)/M2
DEL3=(DEL1+DEL2)/2.0

C‘.....".‘.....-...‘..‘...'...‘.‘..“....“.......“.‘..."....“Q‘..‘

C PARTITION THE PROBE IN N SEGMENTS.

c......‘.".‘-.‘..-.‘...‘.'.‘“....‘.....“.‘.-t..‘..l‘..“......““.‘

11

14

12

13

10

DO 10 Ju=1,N

IF(JU-M3) 11,12,13
IF(JU.EQ.1) GO TO 14

DEL=DEL1 $ JJizJu-1
2(JJu)=Z(Ju1)-DE. $ GO TO 10
DEL=DEL1

Z(JJ)=H1-0.5«DEL $ GO TO 10
DEL=DEL3

JU2=JJ-1

Z(JJ)=2(uu2)- DEL $ GO TO 10
DEL=DEL2

Ju3=yuy-1

Z(JJ)=Z(JyJ3)-DEL

CONTINUE
EP=1.0E-9*EPR/(36.0+*P1)

PRINT 93.H1,H2,21G,.EPR

PRINT 39,N,M1,M2
K=0OME*CSQRT(MU*EP-CMPLX(0.0,1.0)*MU*Z1G/OME)
ALPHA=-AIMAG(K) $ BETA=REAL(K)
PRINT 81,ALPHA ,BETA
JK=CMPLX(0.0,1.0)*K

c..“..".".‘.."".“.‘....."....‘.-.‘.‘.‘...‘l‘.""“'.‘.....-‘...

C FIND THE DIAGONAL TERMS OF THE IMPEDANSE MATRIX.

ct.""...-.....‘.‘..‘.--.“..".“-.‘..‘l‘....--.‘..t....t....l..t.‘..

0O 2 1I=1,3
IF(11-2) 3,4.,5
DEL=DEL1

R=R1 $ GO TO 6
DEL=DEL1

R=R2 $ GO TO 6
DEL=DEL2

R=R2

HDEL=DEL/2.0
D=HDEL/R
D1=2.0*ALOG(D+SQRT(1.0+D*+2.0))
D2=D1-UK*DEL
D3(11)=D2

CONT INUE
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B=2(4.0+PI1)/(OME*MU)

B1=CMPLX(ALPHA ,BETA)

B2=8+81 $ B3:=B+21

B4=CMPLX(0.0,-B3)

M=N+1
c....-....‘t..‘..“.".t...‘..‘....'.0...0'..'.0...".'0'0.'...‘000&...
C THIS SECTION FINDS THE ELEMENTS OF THE IMPEDANCE MATRIX.
c“t““'ttt.‘ttt‘..t.".""‘t‘.t.-tt.O‘Q.tt‘tt'0.0't't"tt‘.i.-..t't.

DO 15 L=1,N

G(L,1)=B2+CCOS(K*Z(L))

G(L,.N)=B2«CSIN(K+*Z(L))

G(L,M)=-B2+(V0/2.0)+CSIN(K*ABS(2Z(L)))

15 CONTINUE

E1=(1-CCOS(K*DEL1/2.0))+B4

E2=(1-CCOS(K*DEL2/2.0))*B4

MS=N-M4

DO 30 JU=1,MS

DEL=DEL2

IF(J.LE.M4) DEL=DEL1

L=J+M4

S(J)=2(L)-DEL/2.0

30 CONTINUE
Ni=N-1
DO 40 I=1{,N
DO 40 J=2,N1%
IF(1.EQ.J) GO TO 41
DEL=DEL2
IF(J.LE.M1) DEL=DEL1
R=R2
IF(I.LE.M4) R=R1{
R3=SQRT((Z(1)-2(J)) #+2.0+R«+2.0)
IF(1.GT.M4_ AND.JU.GT.M4) GO TO 42

43 G(I,J)=GRE(R3)+DEL $ GO TO 40
42 IF(JV.GT.I) GO TO 43
L=1-M4 $ LL=J-M4 $ LP=LL+1

F=B4+(CCOS(K*(2(I)-S(LP)))-CCOS(K=(Z(I)-S(LL))))
G(I.J)=GRE(R3)*DEL+F
GO TO 40
41 IF(1.GT.M1) GO TO 44
IF(1.GT.M4) GO TO 45
Ju=1
G(I.,v)=03(udJ) $ GO TO 40
44 JJ=3
G(1.J)=D3(JJ)+E2
GO TO 40
45 JJ=2
G(I.,J)=D3(UJ)+E1
40 CONTINUE
CALL CMATPAC(-%.G,N,1,DET,1.0E-200)
AYIN=CABS(G(M4 ,M))
PRINT 111,AYIN,G(M4 M)®
ZIN=1/(G(M4 . M))
AZIN=CABS(ZIN)
PHI=ATAN(AIMAG(ZIN)/REAL(ZIN))*180.0/(2.0+P1)
PRINT 107.AZIN,ZIN,PHI
PRINT 103
DO 95 I1=1,N
IF(I1.EQ.1) GO TO 19
IF(I1.EQ.N) GO TO 19
AMPI=CABS(G(I1 .M))
GO TO 21
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19 G(I1,M)=0.0

AMP1=0.0
21 PRINT 25,11,2(11),AMPI.G(I1,M)
95 CONTINUE

c.‘-‘.‘““..‘.".“.“"“.‘.“.‘.““"‘..‘.“...‘.“'l“.".“"C"‘

C READ AND WRITE FORMATS.
c.‘..t......t.‘.....“‘“.‘.“‘Otl.“..t..‘.t..‘“...t.ttt..ttt.‘.tt‘..
25 FORMAT(1HO, 10X,13,4X,+2Z=% ,F6.4,4X,*AMP(I)=+ F8.4,4X,*[=",
C2(F8.4,2X))
39 FORMAT( 1HO,20X,2HN=,13,4X,3HM1=_13,4X,63HM2=_13,/)
81 FORMAT(1HO,.20X,*ALPHA=+ F8.2,4X,*BETA=+« ,F8.2,/)
93 FORMAT( 1HO, 10X, *H1=% _FB8.4,4X, *«H2=+ FB.4,4X,+SIG=+,F8.4, 4X,
C*EPR==,F8.4,/)
100 FORMAT(313)
101 FORMAT(F12.1,2(F9.5),F9.1,F6.2,F5.1,2(F6.1))
102 FORMAT(1HO, 10X, *FREQ=+* ,F7.2, *MHZ=*,4X, +A=* F8.5,4X,+*B=+ F8.5,4X,
*«Z2[=« F8.1,/)
103 FORMAT(1HO, 135(=*++),/)
105 FORMAT(2(F14.8))
107 FORMAT( 1HO,20X,*ABS(ZIN)=+¢,F8.2,4X,*2IN=+ 2(F8.2,2X),*PHI==,
CF8.2,/)
111 FORMAT( 1HO,20X,+*ABS(YIN)=+ F8.4,4X,»YIN=+ 2(F8.4,2X),/)
END

c.“t.....‘...“‘.‘.“..“.....“..‘.‘...‘...“t..“‘.t‘.....‘.‘.“..t‘

COMPLEX FUNCTION GRE(R1)
c‘.....“..‘t‘.“.‘.“..t.‘.t.‘..“‘.“..tt.“‘l.“..‘.tt.t.t“ttttt.tt
COMMON/HALGRE /UK
COMPLEX UK
GRE=CEXP(-UK*R1)/R1
RETURN
END ,
C..‘...“tt‘ttt‘t“..‘-t.“‘.“.‘0.tt't..‘t‘-‘.tt-...0.-....-....'-'tt.
C SUBROUTINE CMATPAC SOLVES THE SYSTEM OF EQUATIONS BY
C GAUSS-ELIMINATION PROCESS.
C‘..l....“l‘..'...l..-t.‘...".t.‘.t“t.‘tt.t..ttt..t".l.tt.'ott.t...
SUBROUTINE CMATPAC(IuOB,A,N,M,DET,EP)
DIMENSION A(100, 100)
TYPE COMPLEX A,B,DET,CONST,S
30 FORMAT(1X,42HTHE DETERMINANT OF THE SYSTEM EQUALS ZERO./
11X,36HTHE PROGRAM CANNOT HANDLE THIS CASE.//)
DET=1.
NP 1aN+1
NPM=N+M
NM1=N-1
IF(1y0B8) 2,1,2
1 D0 3 I=1,N
NPI=N+I
A(I.NPI)=1,
IPi=I+1
00 3 u=IP1 N
NPJ=N+J
A(I,NPJ)=0.
3 A(JU.NPI)=0.
2 DO 4 U=1,NMY
C=CABS(A(U.J))
JP1sy+1
DO S I=JyP1,N
D=CABS(A(I,J))
IF(c-D) 6.5,5
6 DET=-DET
DO 7 K=J,NPM

CMAQOOO 1

CMAOO002
CMAOO004
CMAOOOO0S
CMAOOO06
CMAQO0Q07
CMAOO008
CMAOOOO09
CMAOOQ 10
CMAQOO 11
CMAQOQO 12
CMAQOO 13
CMAQQO 14
CMAOOO 1S

CMAOOO 17
CMAQOO 18
CMAQOO 19

CMAQOO21
CMA00022

CMAQO0O24
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14

16
17
18
11

10

19
13
12
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DET=-DET

D0 7 K=J,NPM

B=A(I,K)

A(I,K)=A(J,K)

A(J,K)=B

Cc=D

CONTINUE
IF(CABS(A(U.J))-EP) 14,15,15
DO 4 1=UP{,N
CONST=A(1,J)/A(J.J)

DO 4 K=JP1,NPM
A(I,K)=A(I,K)-CONST+A(U.K)
IF(CABS(A(N,N)-EP))14,18,18
DET=0.

IF(1U0B) 16,16,17

PRINT 30

RETURN

DO 11 I=1,N
DET=DET+A(I,I)

IF(1J0B) 10,.10.17

DO 12 I={ N

K=N-1+1

KP 12K+ 1

DO 12 L=NP1,NPM

S=0.

IF(N-KPt) 12,19,19

00 13 JU=KP1{,N
S=S+A(K,J)*A(U.L)
A(K,L)=(A(K,L)-S)/A(K,K)
RETURN

END

24 16 8
600000000.0 0.00043 0.00043

100.0

1.11 . 76.7

7.

5

CMAO00027
CMAQOO28
CMAO0029
CMAOQO030
CMAOOQO31

CMAQO033
CMAOOO34
CMAQOO035
CMAO0036

CMAQOO38
CMAOOO039
CMAO0040
CMAQOQO4 1
CMAQ0042
CMAQO043

CMAQO04S
CMAOOO0O46
CMAOO047

CMAOO049
CMAOOO0S0
CMAQQOS 1
CMAO00S52
CMAOOOS3
CMAOQ0S4



FREQ= 600.00MHZ

Hl=

ABS(YIN)=
ABS(ZIN)=

R R T N A A A R R i

O 0 N O B & W N~

NN N NN = = = = e e = e =
S W N 0 O O 00 N O 1 &~ W N —~ O

.0075 H2=

A=
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.00043

0150 SIG= 1

N= 24 Ml= 16

ALPHA+ 23.37

Z=
Z=
Z=
Z=
Z=
Z=

.0070
.0061
.0052
.0042
.0033
.0023
Z= ,0014
Z= ,0005
Z=-,0005
Z=-,0014
Z=-.0023
Z=-,0033
Z=-,0042
Z=-,0052
Z=-,0061
Z=-.0070
Z=-.0080
Z=-,0089
Z=-,0098
Z=-,0108
Z=-.0117
Z=-,0127
Z=-,0136
Z=-,0145

.0505

YIN=

19.80 ZIN=

AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP(I)=
AMP (I)=
AMP (I)=
AMP (I)=
AMP (I)=

M2=

BETA+ 112,51

.0434

17.03

0.0000
0117
.0181
0244
.0303
.0360
.0415
.0505
.0522

.0469
.0453
.0435
.0417
.0396
.0373
.0348
.0319
.0288
.0253
.0216
0176
.0131
.0085

0.0000

B=

. 1100

8

.0258

-10.11

.00043

EPR=

PHI=

0.0000
.0110
.0170
.0227
.0280
.0329
.0374
0434
0454
0434
.0429
.0419
.0406
.0390
.0369
.0345
.0318
.0287
.0253
.0216
.0176
.0131
.0085

0.0000

Z1=

100.0

76.7000

-15.34

0.0000
.0038
.0062
.0088
0115
0146
.0179
.0258
.0258
.0178
0145
0116
.0092
.0071
.0053
.0038
.0025
.0015
.0008
.0002

-.0001

-.0003

-.0003

0.0000
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(WYY RPRRRYRNRRRRRRNRRNERARRARRR R LA RSN AR AREA AR AR LA AAAAARA LA LE AR Add

THIS PROGRAM SOLVES ELECTRIC FIELD INTEGRAL EQUATION TO FIND CURRENT
C DISTRIEUTION AND INPUT IMPEDANCE OF THE PROBE.

c.l....-.‘..‘...............‘.......‘.“..‘.......'...'.......‘."."..

c

13

11

12
10

PROGRAM EFZI(INPUT,OUTPUT,TAPE1)

DIMENSION D6(4),B(60),2(60).G(60,61),EZ(60)

COMPLEX K,JK,02,03.06,07.8,82,E3,E4,E7,G,.ZIN,A EZ,GRE BA ALR
e, JUK

COMMON/EZIMAG/A1,A2,JUK . DELG

COMMON/EFGRE/JUK

REAL LA ,MU

READ 100.N,.M1,M2 NG, ITEST

READ 103.FREQ,RR1,RR2,Z1,21G,EPR,HH1 HH2
FREQ=FREQ/1.0E+6

H12=HH1/1000.0

H2=HH2/1000.0

PRINT 101,FREQ.RR1,RR2,21,2IG,EPR, HY H2

PRINT 39.N,.M1,M2.NG,ITEST

PI=4.0«ATAN(1.0) $ V=1.0

MU=4.0*Ple1 QOE-7

OME=2.0+PI+«FREQ=*1.0E+6

M3:M1+1 $ M4=M1+NG $ MS=M4+1 $ NC=M1+1 $ NP=N+NG

A12RR1 $ A23RR2
DEL1=H1/MY
DEL2=H2/M2

DO 56 INM=1 1
DELG=0.001

DEL3=(DEL1+DELG)/2.0
DEL4=(DEL2+DELG)/2.0
H1=HH1/1000.0+0.5°DELG
H2=HH2/1000.0+0.5-DELG

00 10 U=1,NP

IF(J.LE.M1) GO TO 11
IF(J.GT.M4) GO TO 13

DEL=DEL3

J3=y-1

2(J)=2(J3)-DEL $ GO TO 10
DEL=DEL2

IF(J.EQ.M5) DEL=DELS4

J2=J-1

2(J)=2(J2)-DEL $ GO TO 10
IF(JU.EQ.1) GO TO 12

Jiay-1

2(J)=2(J1)-DEL1 $ GO TO 10
Z(J)=H1-DEL1+0.5

CONTINUE
EP=EPR=1.0E-9/(36.0+PI)

K=0ME «CSORT(MU*EP-CMPLX(0.0.1.0)+MU*ZIG/OME)
JK3K«CMPLX(0.0,1.0)

JUK = UK

ALPHA=-AIMAG(K) $ BETA=REAL(K)
PRINT 81, ALPHA BETA
LA=2.0*P1/BETA

PRINT S7.EPR.ZIG

PRINT 67.DELG

c..--........-‘...‘.........-.‘..".........-...‘........I...".'O.‘l.‘

FIND THE DIAGONAL TERMS OF THE IMPEDANCE MATRIX.

c...-..-....‘...“.-.-........‘.‘..-..‘.‘..I.......‘.....t....'.'l.'..‘

(o

DO 2 II=1.4
IF(I1.GT.2) GO TO 4
A3=A1 $ DEL=DEL!
IF(I1.€Q.2)0EL=DELG
GO TO 7



47

45

44

48
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A3=A2

DEL=DEL2

IF(11.EQ.3) DEL=DELG

HOEL=DEL/2.0

D=HDEL/A3
D1=22.0*ALOG(D+SQRT(1.0+D*=*2.0)) -
D2=D1-JK=DEL
R=SQRT(HDEL=*2.0+A3*+2.0)
RRE=1.0/R $ RSQ=RRE*=*2.0
D3=-DEL+*(RSQ+UK*RRE) *GRE(R)/(K*=2)
IF(I1.LT.2) D7=0.0

IF(I1.GE.2) D7=CMPLX(0.0,-4.0*PI/(OME*MU))~*ZI
D6(11)=02+03+07

CONTINUE

B1=(4.0+*PI1)/(OME*MU)
B2=CMPLX(0.0,-81)

IF(ITEST-2) 44,47,47

CALL MAGRIN(NP,Z,.E2)

DO 45 IR=1,NP

B(IR)=B2+EZ(IR)

GO TO 3

DO 48 NN=1,NP

B(NN)=0.0

IF(NN.EQ.NC) B(NN)=B2+(1.0/DELG)
CONT INUE

c...'.“."“"....‘I--.‘t-“.‘.t."".“‘...I.“‘..."“"l‘..‘.i“.‘-

C THIS SECTION FINDS ELEMENTS OF THE IMPEDANCE MATRIX.

c‘."““’ﬁ...-'.'.‘..“.“'.“““.“..“‘...ﬁ..".‘.'.t"."t.l'i"-.

3

55

DO 1S5 I=1,NP

DO 15 JJ=1,NP

IF(I.EQ.JYJ) GO TO 17

A3=A2

IF(1.LE.NC) A3=A1
R=SQRT((2(1)-2(UJ)) *+2.0+A3%+2.0)
DEL=DEL 1

IF(JJ.GE.M3) DEL=DELG

IF(JJU.GT.M4) DEL=DEL2
HDEL=DEL/2.0

E1=Z(1)-2(JJ)+HDEL $ E2=2(1)-2(JJ)-HDEL
R13SQRT(E1»%2.0+A3++2.0)
R2=SQRT(E2+*2.0+A3++2.0)

F121.0/R1 $ F2=F1++2.0
E3s-E1+(F2+UKsF1)=GRE(R1)
F3=21.0/R2 $ F4=F3++2.0
E4=-E2+*(F4+UK*F3)*GRE(R2)
G(I,JJ)=(E3-E4)/(K**2)+DEL*GRE(R)

GO TO 1S

IF(I-NC) 31,32,33

Jy=1 $ GO TO 34
J=2 $ GO TO 34
J=4

G(I,UJ)=06(V)
CONTINUE

MP=NP+1

DO S5 L=1,NP

G(L,.MP)=8B(L)

CONT INUE

CALL CMATPAC(-1,G,NP,1,DET,1.0E-200)
AYIN=CABS(G(NC,MP))

PRINT 111,AYIN,G(NC,MP)
ZIN=1.0/G(NC,MP) $ AZIN=CABS(ZIN)
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PHI=ATAN(AIMAG(ZIN)/REAL(ZIN))*180.0/(2.0+P1)
PRINT 107,AZIN,ZIN,PHI
PRINT 102
DO 95 I1=1,NP
AMP[=CABS(G(I1,MP))
PRINT 23,11,2(I1),AMPI G(I1,MP)
95 CONTINUE
56 CONTINUE

c.-."...........I...‘...'....."......Q..'..."."."tOl."'ot.".t".

C READ AND WRITE FORMATS.
c.-ltt..‘..-"..'..'...‘-."..0..'.t.....".."'..""'v"..t.'o'."'tn
23 FORMAT(10X,13,4X,4(F8.6,4X)./)
39 FORMAT( 1HO,20X,2HN=,13.4X, 3HM1= 13,4X,3HM2= 13, 4X,3HNG=. 13, 2X,
*e[TEST=+,13,/)
57 FORMAT( 1HO,20X,4HEPR=,F8.3.4X,4HZ2IG=,F8.4,/)
67 FORMAT(1HO,30X,SHDELG=.F8.6,/)
81 FORMAT(1HO, 10X,6HALPHA= E12.5,4X ,SHBETA= ,E12.5,/)
100 FORMAT(S(I3))
101 FORMAT( 1HO.SX.SHFREQ=,F6.2,4HMHZ ,2X,2HA= ,F7.5,2X.2HB= F7.5,2X,4H
*21= ,F7.1.2X.4H21G=,F6.2,2X,.4HEPR=_FS5.1,2X,3HH1= F7.4,2X,3HH2= F7.4
. /)
102 FORMAT(1HO, 135(+¢) /)
103 FORMAT(F12.1,2(F9.5).F9.1,F6.2,F5.1,2(F6.1))
107 FORMAT( 1HO,20X,9HABS(ZIN)= E12.5,4X ,4HZIN= 2(E12.5,2X) 4HPHI=,
«£12.5./)
111 FORMAT( 1HO,20X.9HABS(YIN)s ,E12.5,4X,4HYIN= 2(E12.5.2X)./)
END

C #0000 ¢0te vt taeretasetntosestestttriessststsravesvsesoPescvessndvsncscectocs

SUBROUTINE MAGRIN(NP,Z,E2)

c R E R AR EREEEX Y EE Y EFEFFEErFFETEEETE N N P E R R A I N I I I 2 A K IE 28 B 20 2 X I AN I U AL IV IR 2R AL I I L N 4
COMMON/MAGFCT/P1,2Z,R0O.ROP,ERQP /MAGFCP/22! ,RRO.RROP ,EEUK
COMMON/EZ2IMAG/A1,A2,UK, DELG
DIMENSION 2(60).F(4).EZ(60)

COMPLEX K,JK,EEUK,SUM1 EZ,.F,LSUM4 A SUMS, K SUM6 ,PATCH
REAL MU, LA
PI=4.0*ATAN(1.0)
EEUK=UK
DA=0.001=A1
XX=DELG/2.0
FACT=1.0/(8.0+PI*xX)
XEND=XX
ROP=A2
RROP=ROP
X1=-XX
ERR=0.001
EPS=XX/100.0
EPOR=EPS/RQOP
PATCH=PI sEPS*0.5-UK*P1+0.25°(EPS**2.0)
DO 20 INDEX=1{ NP
22=Z( INDEX)
221222
DO 21 U=1,2
RO=0.9*A1-(2-J)+DA
RRO=RO
IF((RO.EQ.ROP).AND.(INDEX.EQ.NC)) GO TO 23
CALL SIMCON(INDEX,X1,XEND,ERR,25,SUM{,NOI R)
F(J)=SUM1«R0O*ROP*2.0
GO TO 21
23 I1I=100+INDEX
CALL SIMCON(INDEX,EPS.XEND,ERR,2%.SUM4 ,NOI.R)
CALL SIMCON(II1.,0.0,.EPS,.ERR,25,SUMS NOI.R)
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20
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FORMAT( 1HO,50X ,2(E12.5,4X,E12.5),/)
F(J)=4.0+RO*(ROP*SUM4+ROP+SUMS+PATCH)

CONT INUE

EZ(INDEX)=FACT«(F(2)-F(1))/(RO+DA)

PRINT 22,Z(INDEX),.RO,EZ(INDEX)

FORMAT( 1HO, 20X ,2HZ=,F9.6,4X,4HRAD=,F9.6,4X ,3HEF=,F9.4,2X,F9.4,/)
CONT INUE

CONT INUE

END

C"“‘.l.“..t't..".‘.‘t.t“t"“.‘l‘t".‘.‘..'ttt#..0.'.“0.t“"'.tt

SUBROUTINE SIMCON(INDEX,X1,XEND,TEST,LIM,AREA ,NOI.R)

ct‘t‘.‘...."*..‘.“"-.-‘....‘.‘.‘-...'.'..‘.‘.‘t."."'.‘.".‘."'...

31

50

COMPLEX AREA,0DD,EVEN,AREA1Y,ENDS,FCT
NOI=0

0D0D=0.0

INT=1

vV=1.0

EVEN=0.0

AREA1=0.0

ENDS=FCT( INDEX,X1)+FCT(INDEX,XEND)
H=(XEND-X1)/V

0DD=EVEN+ODD

X=X1+.5¢H

EVEN=0.0

DO 3 I=1,INT

EVEN=EVEN+FCT( INDEX.X)

X=X+H

CONT INUE
AREA=(ENDS+4.0+EVEN+2.0+0DD)*H/6.0
NOI=NOI+1

A3=CABS(AREA)
IF((A3.LE.1.E-14).AND.(NOI.LE.2)) GO TO 4
IF((A3.LE.1.E-14).AND.(NOI.GE.2)) GO TO 50
R=CABS((AREA1-AREA)/AREA)
R=CABS((AREA1-AREA)/AREA)
IF(R-TEST) 32,32,4

RETURN

AREA1=AREA

INT=2=INT

V=2.0sV

GO TO 2

AREA=1.E-14

RETURN

END

cD....‘...".“".......‘...“‘.‘“."t“.l.'.‘t-.‘...Ovt.-‘..'..t.t-‘.

COMPLEX FUNCTION FCT(INDEX,ZP)

Ctt.‘t.“.tttt-li..tt-‘.“tt-“ltlt.‘-a'ttt't.t.t‘co!.tt‘o..‘t--t‘t-'tt

41

COMMON/MAGFCT/P1,2Z,R0O,ROP ,EPOR /FCTFCT/22ZP
COMPLEX SUM2

22P=2P

IF(INDEX.GT.100) GO TO 414

CALL SIMCOP(INDEX,0.0.PI,0.001,25,SUM2 ,NOI,.R)
FCT=SUM2

RETURN

CALL SIMCOP(INDEX,EPOR,PI1,0.001,25,SUM2,NOI,R)
FCT=SUM2

RETURN

END

c.‘.‘.‘..“.“...“‘.‘.‘“‘...‘..‘...".’.."‘.t‘.l.'..“..‘Ott‘.“.ll.

SUBROUTINE SIMCOP(INDEX,X1,XEND,TEST,LIM, AREA,NOI,R)

c."...‘.“..“..-..‘.--.“..-.‘...‘..‘.-..“.‘-“.‘.-...‘.“..‘.."...
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COMPLEX AREA,O0DD,EVEN,AREA1,ENDS,FCTP
NOI=0
0D0=0.0
INT=21
v=1.0
EVEN=0.0
AREA1=0.0
ENDS=FCTP(INDEX,X1)+FCTP(INDEX,XEND)
2 H=(XEND-X1)/V
ODD=EVEN+0DD
X=X1+.5+H
EVEN=20.0
DO 3 I=1,INT
EVENZEVEN+FCTP( INDEX,X)
X=X+H
3 CONTINUE
AREA=(ENDS+4.0*EVEN+2.0+00D)*H/6.0
NOI=NOI+1
A3=CABS(AREA)
IF((A3.LE.1.E-14) .AND.(NOI.LE.2)) GO TO 4
IF((A3.LE.1.E-14).AND.(NOI.GE.2)) GO TO SO
R=CABS((AREA1-AREA)/AREA)
IF(NOI-LIM) 31,32,32
31 IF(R-TEST) 32,32,4
32 RETURN .
4 AREA1=AREA
INT22+INT
V=2.0V
GO TO 2
SO AREA=1_.E-14
RETURN
END

Co-t.t-'o.t.c-.t...'t‘.0'0.'.......0....'.'.--...-0t'oto..oo'c.a'a.'-to

COMPLEX FUNCTION FCTP(INDEX,PHI)
CO..'......t....“...‘......‘.".‘.l'.'.....ﬂ....‘.-..'C."'O..‘-t'.."

COMPLEX GRE,LEEUK

COMMON/MAGFCP/2Z1,RR0O.RROP,EEUK /FCTFCT/22P

COPH3COS(PHI)

R1=*SQRT((ZZ1-2ZP)*+2.0+RR0O**2.0+RROP*¢2.0-2.0°RRO-RROP*COPH)

FCTP=GRE(R1)+COPH

RETURN

END

Ceoeree sttt ettt et teoreatst eetcsrstaitasedantserrvecvevsssorvndvnvoecye

COMPLEX FUNCTION GRE(RR)
C....C.."..'."...‘.....'....'..'.....‘..O“.'...D.."'.'.O-."'.'...'

COMMON/EFGRE/JUK

COMPLEX JUK

GRE=CEXP(-JJUK*RR)/RR

RETURN

END
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FREQ=600.MHZ A=.00043 B=,00043 ZI=).0 ZIG=1.11 EPR=76.7 H1=.0075 H2=,0150
N= 24 Ml= 8 M2=16 NG= 1 ITEST= 2

ALPHA= .23370E+02  BETA= ,11251E+03
EPR= 76,700 ZIG= 1.1100

DELG= .001000

Z= .007531 RAD= .000387 EF= .2553 -.0580
Z= .006594 RAD= .000387 EF= 3715 -.0641
Z= ,005656 RAD= .000387 EF= «3723 -.0718
Z= ,004719 RAD= .000387 EF= «9556 -.0817
Z= .003781 = ,.,000387 EF= 1.7953 -.0957
Z= .002844 RAD= ,000387 EF= 4.0563 -.1174
Z= ,001906 RAD= .000387 EF= 12.6046 -.1570
Z= ,000969 RAD= ,000387 EF= 72,4910 -.2482
Z= -,000000 RAD= .000387 EF= 830.8496 -.3941
Z= -,000969 RAD= .000387 EF= 72.4910 -.2482
Z= -.001906 RAD= ,000387 EF= 12.6046 -.1570
Z= -.002844 RAD= ,000387 EF= 4.,0563 -.1174
Z= -,003781 RAD= ,000387 EF= 11,7953 -.0957
Z= -.004719 RAD= ,000387 EF= «9556 -.0817
Z= -,005656 RAD= .000387 EF= <5723 -.0718
Z= -.,006594 RAD= .000387 EF= 3715 -.0641
Z= -.007531 RAD= .000387 EF= «2553 -.0580
Z= -,008469 RAD= .000387 EF= .1829 -.0528
Z= -.,009406 RAD= ,000387 EF= «1351 -.0484
Z= -,010344 RAD= ,000387 EF= .1020 -.0445
Z= -,011281 RAD= ,000387 EF= .0783 -.0410
Z= -,012219 RAD= .000387 EF= .0607 -.0378
Z= -,013156 RAD= .000387 EF= 0474 -.0348
Z= -,014094 RAD= .000387 EF= .0371 -.0321
Z= -,015031 RAD= ,000387 EF= .0290 -.0295

ABS (YIN)= .52670E-01. YIN= ,48716E-01 «20023E-01

ABS (ZIN)= ,18986E+02 ZIN= ,17561E+02 =-.72176E+01
PHI= -.11172E+02

++++++++++rr+rrrrrr A+t



.007531
.006594
.005656
.004719
.003781
.002844
.001906
.000969
-.000000
-.000969
-.001906
-.002844
-.003781
-.004719
-.005656
-.006594
-.007531
-.008469
-.009406
-.010344
-.011281
-.012219
-.013156
-.014094
-.015031

.009232
.015583
.021343
.026729
.031829
.036706
041455
.046337
.052670
«049592
.048082
«046793
«045427
.043869
042062
.039975
.037594
.034913
.031932
.028654
.025082
.021215
.017038
.012499
.007436

145

.009135
.015386
.021017
.026229
.031091
.035637
.039909
.044033
.048716
«047652
.047058
.046290
.045221
.043813
.042059
.039964
.037537
.034792
031744
.028409
.024797
.020914
.016750
.012255
.007272

.001334
.002467
.003716
.005146
.006812
.008791
.011216
.014428
.020023
.013736
.009870
.006840
.004325
.002216
.000462
-.000965
-.002084
-.002910
-.003457
-.003738
-.003767
-.003557
-.003120
-.002459
-.001553
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c.........“......t.".'0.“..‘.......0.00.0"O.'t"tt".o...t“.t‘..'.
c THIS PROGRAM FINDS INPUT IMPEDANCE OF INSULATED PROBE.
C.'O‘.Q.‘...‘0...t.t.ct'...‘......'00".0.00...00'0".'..0.0.0.0'..00..
PROGRAM INPIMP( INPUT,OUTPUT)
DIMENSION S(10).RR(10).BURE(40).BJIM(40).YRE(12).YIM(12),
$ZIN(4) :
COMPLEX U0(2).,J1(2).GAMA(2).2C(2)
COMPLEX YC.HO2.H12,211,221,2EL .K1,K2,X,SHGH! ER,ERR.D,KL ,KD,21,
*GH1,GH2,GH3,GH4,2 ARG, CHGH ,CHGH2 , SHGH2 , TETA1,TETA2, ZIN
REAL MU, L
N=3
READ T71,H1,H2
PI=ATAN(1.)+4.0
21G1=5.777€E+7
EPR1=1.0
AL=0.0
B8€=0.0
READ 103,Z1GD,EPRD
PRINT 104,21GD,EPRD
READ 52,21G2,EPR2
READ 100.A1,A2 A3
PRINT 101.A1,A2,A3
READ 106,FREQ
PRINT 108,.FREQ
OME=2.0+PI+FREQ
EP1=EPR1¢1 OE-9/(36.0°P1)
EPD=EPRD*1.0€E-9/(36.0°P1)
MU=4 .O«Ple1.0E-7
K1=CSORT(CMPLX(OMEe*2 O*MU*EP 1, -OME*MU<ZIG1))
0Q 7 J=1,19
IF(UV.EQ.1) A=A1
IF(J.EQ.2) A=A2
X=K1eA
JO(J)=CSQRT(2.0/P1eX)*CCOS(X-P1/4.0)

7 J1(J)=CSQRT(2.0/PI*X)+CCOS(X-3.0°P1/4.0)
EP2=EPR2+1.0€-9/(36.0+PI)
K2=CSQRT(CMPLX(OME *+2 . 0O*MU*EP2, -OME *MU*21G2))

PRINT 33,K1,K2
DO 10 I=1,1
IF(I.EQ.1) GO TO 1
A=zA2
GO TO 3
1 A=Ad
3 G=2.0+Pl+ZIGD/ALOG(A3/A)
C=2.0*PI+EPD/ALOG(A3/A)
YC=CMPLX(G,OME*C)
ARG=K2¢A3
U=REAL(ARG)
V=AIMAG(ARG)
CALL COMBES(U.V.AL,BE . N,BURE.BUIM, YRE, YIM)
HO2=CMPLX(BJURE(1).BJIM(1))-CMPLX(0.0,1.0)*CMPLX(YRE(1),YIM(1))
H12=CMPLX(BJRE(2).BJIM(2))-CMPLX(0.0,1.0)*CMPLX(YRE(2).YIM(2))
PRINT 31,00(1),J1(1)
PRINT30,HO2.H12
Z113CMPLX(0.0,1.0)*K1/(2.0*P1+A*2IG1)
2212(-K2+H02)/(2.0+*P1+A3+CMPLX(Z1G2,.0ME*EP2)+*H12)
2E=(OME*MU/(2.0*PI))*ALOG(A3/A)
ZEL=CMPLX(0.0, 2E)
L1=211+221
RI=REAL(21)
XI=AIMAG(21)
PL=RI/(XI+ZE)
P2SQRT(1.0+PL**2.0)
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FP=SQRT(0.5+(P+1.0))
GP=SQRT(0.5+*(P-1.0))
KD=CSQRT(-YC*ZEL)
KL=KD*SQRT(1.0+4XI1/ZE)*(FP-CMPLX(0.0,1.0)*GP)
ALPHA=-AIMAG(KL)
BETA=REAL(KL)
Z3211+Z221+2EL
R=REAL(2)
L=AIMAG(Z)/0OME
HC=(OME+*(R*C-L*G))/(OME**2.0*L+C+R*G)
FHC=SQRT(O.5*(SORT(1.0+HC*+2.0)+1.0))
PHC=SQRT(0.5*(SORT(1.0+HC*+2.0)-1.0))
2C(I1)=SQRT((OME«+2 O*L*C+R*G)/((OME*C)*+2.0+G*»+2.0))*(FHC-
«CMPLX(0.0, 1.0)*PHC)
PRINT 40.2C(1)
PRINT 21,1,ALPHA BETA
GAMA(I)=CMPLX(ALPHA . BETA)

10 CONTINUE
IF(A1.NE.A2) GO TO 8
GAMA(2)=GAMA( 1)
2¢c(2)=2¢(1)

8 DO S1 I1=1,3
IF(I11-2) 73,74,75%

73 TETA1=CMPLX(0.0,P1/2.0)
TETA2=TETA"
GO TO 76

74 TETA1=0.0
TETA2=CMPLX(0.0,P1/2.0)
GO TO 76

75 TETA2=0.0
TETA1=0.0

76 GH2=CEXP(GAMA(2)+H2+TETA2)
GH1=CEXP(GAMA( 1) *H1+TETA1)
GH3=1.0/GH1
GH4=1_0/GH2
SHGH1=(GH1-GH3)/2.0
SHGH2=(GH2-GH4)/2.0
CHGH1=(GH1+GH3)/2.0
CHGH2=(GH2+4GH4)/2.0
ZIN(II)=(2C(1)*CHGH1sSHGH242C(2)+*SHGH1*CHGH2)/(SHGH1*SHGH2)
PRINT 25.TETAY,TETA2,.ZIN(11)

51 CONTINUE

c“‘.."......‘t..t..‘.‘....‘..“.."..0..‘.‘....0.0t..."'t".'t."...

c INPUT ,QUTPUT FORMATS.
CCttl.“tt.ttt.tt'.ti.t.t.“.tt-ttttt‘-ti.tttttttttht...'tt.‘t.“t.tttt
21 FORMAT(1HO.20X.2HI=,12,4X,6HALPHA= F12.5,4X SHBETA= F12.5,//)
25 FORMAT( 1HO,20X.*TETA1=* ,2(FS5.2,2X),2X,*TETA2=+ ,2(F5.2,2X).2X.
*s2IN=s ,2(F12.3,2X)./)
30 FORMAT(1HO.20X,4HHO2=,2(E12.%,2X),4HH12=,2(E12.5,2X),/)
31 FORMAT( 1HO, 20X,3HUO>,2(E12.5,2X),.3HJ1=_2(E12.5,2X),/)
33 FORMAT( 1HO,20X,3HK1= 2(E12.5,2X),3HK2= ,2(E12.5,.2X)./)
40 FORMAT( 1HO.20X,25HCHARACTERISTIC IMPEDANCE=,2(F12.5,4X)./)
52 FORMAT(F8.4,F5.2)
S8 FORMAT( 1HO,20X,5HZ1G2=,F8.4,2X SHEPR2= ,F5.2,/)
71 FORMAT(2(F8.5))
100 FORMAT(S(F8.5))
101 FORMAT( 1HO.20X.3HA1= ,F8.5,2X,3HA2= ,F8.5,2X,3HA3=,F8.5,/)
103 FORMAT(2(F6.2))
104 FORMAT( 1HO, 20X,5HZ1GD=,F6.2,2X,5HEPRD=,F6.2,/)
106 FORMAT(F12.1)
108 FORMAT( 1HO, 20X, *FREQUENCY=#= F12.1,/)
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SUBROUTINE COMBES(X.Y,ALPHA ,BETA ,N,BURE ,BJUIM, YRE, YIM)
DIMENSION BURE(40).BUIM(40),YRE(12),YIM(12)
CALL BEGIN(X,Y ,N,K,R)
CALL JURECUR(X.Y.ALPHA ,BETA.K,R,BJRE BJUIM)
CALL JUSUM(ALPHA BETA,K,BURE,BJUIM,SUMRA, SUMIA)
CALL FACTOR(X,Y.ALPHA ,BETA,Q.R)
CALL UNORM(K.Q.R,SUMRA,SUMIA,BURE . BJUIM)
CALL YSUM (X.Y,ALPHA ,BETA.K,BURE ,BJIM, ASUMR, A ASUMI)
CALL YGNU (X.Y.,ALPHA . BETA.Q,R.ASUMR, ASUMI BJURE .BUIM, YRE,YIM)
CALL WRONSK (X,Y ,BJURE,BJIM,YRE,YIM)
BUSQ=BURE(1)*«2+B8UIM(1)ee2
IF(BJSQ-.00000005) 14,14,15
14 CALL YSUMP(X,Y,ALPHA . BETA,K,BURE ,BJUIM ASUMR, ASUMI)
CALL YGNUP(X,Y. ALPHA BETA,Q.R,ASUMR ASUMI BJRE,BJUIM,YRE,YIM)
15 IF (N-1)10,12,11
10 IF (N)13,12,12
13  CALL NEGN (X,Y,ALPHA BETA ,N,BJURE,BJIM,YRE,YIM)
GO 10 12
11 CALL YRECUR(X,Y,N,BURE,BUIM,YRE,YIM)
12 RETURN
END
CBES402 BEGIN SUBROUTINE PART 2 OF 16
SUBROUTINE BEGIN(X,Y,N,K,R)
SSQ:X- ®Q4Yee2
KTEN=SQRT(S5Q)+20.0
NTEN=IABS(N)+10
M=MAXO(KTEN,NTEN) /2
Kx2+M+ 1
R =K + ¢
RETURN °
END
CBES403 JRECUR SUBROUTINE PART 3 OF 16
SUBROUTINE JRECUR(X.Y. ALPHA ,BETA K, R ,BURE . BUIM)
OIMENSION BJRE(100).BJIM(100)
RALPHA=R+ALPHA
SSQ.X..20V002
BURE(K+2)=0
BUIM(K+2)=0
BURE(K+1)=1 OE-37
BJUIM(K+1)=0.0
Do4rI=1.,K
Li=K+1-1
RALPHA=RALPHA-1.0
A=((2.0*X*RALPHA)+(2.0°BETA*Y))/SSQ
B=((-2.0*Y*RALPHA)+(2.0*BETA*X))/SSQ
BURE(L1)=(A*BURE(L1+1))-(B=*BUIM(L1+1))-BURE(L1+2)
4 BUIM(L1)=(B*BURE(L1+1))+(A*BUIM(L1+1))-BJIM(L1+2)
RETURN
END
CBES404 JSUM SUBROUTINE . PART 4 OF 16
SUBROUTINE JSUM(ALPHA ,BETA,K,BURE,BJIM, SUMRA SUMIA)
DIMENSION BJURE(100).8JIM(100)
801 SUMRA=(BURE(3)*(ALPHA+2.0))-(BUIM(3)«BETA)
SUMIA=(BETA*BJURE(3))+((ALPHA+2.0)*BUIM(3))
GRE=1.0
GIM=0
S=1.0
D061I=%,K,2
S=S+1.0
GREN=( (GRE+(ALPHA+S-1.0))-(BETA*GIM))/S

[N N}
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GIM=((GIM«(ALPHA+S-1.0))+(BETA*GRE))/S
GRE =GREN
ALPTS=ALPHA+2.0+*$S
GUR=GRE*BJRE(1)
GJUI=GIM+«BUIM(I)
GURI=GRE+BUIM(1I)
GUIR=GIM+BURE(I)
SUMRB=ALPTS*(GUR-GUI)-BETA*(GUIR+GURI)+SUMRA
SUMIB=ALPTS*(GJIR+GURI)-BETA*(GJUI-GJR)+SUMIA
IF(SUMRA) 15,21, 15
15 IF(ABS((SUMRB/SUMRA)-1.0)-.00000005)21,21,10
21 IF(SUMIA)20,11,20
20 IF(ABS((SUMIB/SUMIA)-1.0)-.00000005)11,11,10
10 SUMRA=SUMRB
6 SUMIA=SUMIB
11 RETURN
END .
CBES405 FACTOR SUBROUTINE PART S OF 16
SUBROUTINE FACTOR(X.Y,ALPHA,BETA,Q.R)
CALL LOGGAM(ALPHA+1.0,BETA,U,V)
CALL COMLOG(X.Y,A1,81)
A2=ALPHA*A1-BETA+81
B2:=BETA*A1+ALPHAB 1
A2=-A2
B2=-82
CALL COMEXP(A2,B82,A3,B3)
Ad=_ 6931471806 +ALPHA
B4=_.6931471806*BETA
CALL COMEXP(A4,B4,AS5,BS)
A6=A3*A5-B3+BS
B6=B3*A5+A3+*BS
CALL COMEXP(U,V,A7.,B7)
Q=A6+A7-86+87

R=B6+*A7+A6+87

RETURN

END
CBES406 COMLOG SUBROUTINE PART 6 OF 16
c COMPLEX LOGARITHM - BRANCH CUT ON NEGATIVE REAL AXIS

SUBROUTINE COMLOG(X.Y,A,B)
P1=3.141592654
A= . S5+ALOG(X*X+YeY)
IF(X)5,1,4
1 B=.S5¢P1
IF(Y)2,3.8
2 8=-8B
GO TO 8
3 B8=0.
GO TO 8
4 B=ATAN(Y/X)
GO TO 8
5 B=ATAN(Y/X)
IF(Y)6,7.7
6 B=8-P1
GO TO 8
7 B=B+PI
8 RETURN
END
CBES407 COMEXP SUBROUTINE PART 7 OF 16
SUBROUTINE COMEXP(X,Y,A,B)
CsEXP(X)
A=C+COS(Y)
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B=Ce*SIN(Y)
RETURN
END

CBES408 JNORM SUBROUTINE
SUBROUTINE UNORM(K,Q,R,SUMRA,SUMIA BURE,BUIM)

101

12

13
100
102

103

DIMENSION BJURE( 100).BJUIM(100)

S=( (SUMRA+BURE(1))*Q)-((SUMIA+BUIM(1))*R)
T=((SUMIA+BUIM(1))*Q)+((SUMRA+BURE( 1))*R)

IF(ABS(S)-ABS(T)) 100, 101, 101
TS=T/S

TSSQ=S*(1.0+(TS*+2))

00131=1,K
BUREN=(BURE(I)+BJUIM(I)«TS)/TSSQ
BUIM(I)=(BJUIM(I1)-BJURE(I)*TS)/TSSQ
BJURE(1)=BJUREN

GO TO 14

ST=S/T

STSQ=T+((STe¢2)+1.0)

DO103I=1,K
BJUREN=(BURE(1)+*ST+8UIM(1))/STSQ
BUIM(I)=(BJUIM(I)«ST-BJRE(I))/STSQ
BURE(1)=8BUREN

14 RETURN

END

CBES409 YSUM SUBROUTINE
SUBROUTINE YSUM (X,Y ALPHA BETA.K.BJURE,BJUIM,(ASUMR ASUMI)

DIMENSION BURE( 100).BJIM(100)
A1=ALPHA-1.0

A2=A1-1.0

A3=A1+ALPHA

A43BETA*«2

AS=2.0%A4

ABSQ=(-A1)v2+Ad
GAMRE=((2.0+ALPHA)+(-A1)-Ad4)/ABSQ
GAMIM=(BETA+3.0)/ABSQ

ASUMR=GAMRE *BURE(3)-GAMIM«BJIM(3)
ASUMI =GAMIM+BURE(3)+GAMRE *BUIM(3)
T=1.0

DO 500 I=5.K,2

T=T+1.0

B1=22.0°T

F1=81+ALPHA

F2=A3+T

F3=A1+T

FS=T-ALPHA

F6=A2+81

GisF1+F2-AS

G2=(F24+42.0+F1)+*BETA
H1=G1+F3-G2+BETA
H232G2+F3+G1+BETA

P1aFSeFE+A4

P2=(FS5-F6)*BETA

P3=P1s224P2e+2

CRE=((H1+*P 14H2+P2)/P3)/T
CIM=((H2+*P1-H1°P2)/P3)/T
TEMP=-(CRE *GAMRE-CIM+GAMIM)
GAMIM=- (CIM*GAMRE +CRE *GAMIM)
GAMRE =TEMP
BSUMR=GAMRE *BURE (1) -GAMIM+*B8JIM(I)+ASUMR
BSUMI =GAMIM+*BURE (1 )+GAMRE «BUIM(1)+ASUMI

PART 8 OF 16

PART 9 OF 16

1F(ABS((BSUMR/ASUMR)-1.0)-.00000005)%521.521.510
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521 IF(ASUMI)S520,511,520

520 IF(ABS((BSUMI/ASUMI)" 0)-.00000005)511,511, 510

510 ASUMR=BSUMR

500 ASUMI=BSUMI

511 RETURN

END

CBES410 YGNU SUBROUTINE PART 10 OF 16
SUBROUTINE YGNU(X,Y ALPHA ,BETA.Q.R,ASUMR,ASUMI BJURE ,BJUIM,YRE YIM)
DIMENSION BURE( 100),.BJUIM(100),YRE(50),YIM(50)
PI=3.141592654
TPI=2.0/P1
QRE=TPI*(Q**2-R++2)

QIM=TPI+2.0*Q*R
DRE=QRE*ASUMR-QIM»ASUMI
DIM=QIM*ASUMR+QRE *ASUMI
IF(ALPHA) 1,2,

2 IF(BETA)1,3,1

3 CALL YZERO(X,Y,ALPRE,ALPIM)
GO TO 720

1 PALPHA=PI *ALPHA
COX3COS(PALPHA)

SIX=SIN(PALPHA)

EXY=EXP(PI+BETA)

EXY1=21_0O/EXY

COSH= . S*(EXY+EXY 1)

SINH= S+ (EXY-EXY 1)
DEN=(SIX*COSH)**2+(COX*SINH)*=2
ERE=(SIX*COX)/DEN

EIM=(-COSH*SINH)/DEN
ABSQ322.0+*(ALPHA*«2+BETA*»+2)
ALPRE=ERE-((QRE*ALPHA+BETA*QIM)/ABSQ3)
ALPIM=EIM-((QIM«ALPHA-BETA*QRE)/ABSQ3)

720 YRE(1)=ALPRE<BJRE(1)-ALPIM+*BJUIM( 1)+DRE
YIM(1)=ALPIM*BJURE( 1)+ALPRE+*BJUIM(1)+DIM
RETURN

END

CBES411 YZERO SUBROUTINE PART 11 OF 16
SUBROUTINE YZERO(X,Y,ALPRE,ALPIM)
TPI=2.0/3.141592654
CALL COMLOG(X,Y,A,B)
ALPRE=TPI*(-.1159315157+A)

ALPIM=TPI«8
RETURN
END

CBES412 WRONSK SUBROUTINE PART 12 OF 16
SUBROUTINE WRONSK(X.Y,BJRE.BJUIM,(YRE,YIM)
DIMENSION BURE( 100),.BJUIM(100).YRE(S0).YIM(50)
SSQ=X*e2+4Yse2
TP1=2.0/3.141592654
AZRE=TPI+X/SSQ
AZIM=-TPI*Y/SSQ
ZRE=BURE(2)*YRE(1)-BUIM(2)*YIM(1)
ZIM=BUIM(2)*YRE(1)+BURE(2)*YIM(1)
BZRE=2RE-AZRE
BZIM=ZIM-AZIM
BUSQ=BURE (1) **2+BUIM(1)*92
CZRE=BUJURE(1)/BJSQ
CZIM=(-BJIM(1))/BUSQ
YRE(2)=BZRE+CZRE-BZIM+*CZIM
YIM(2)=BZIM*CZRE+BZRE+*CZIM
RETURN
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CBES413 NEGN SUBROUTINE PART 13 OF 16
SUBROUTINE NEGN(X,Y,ALPHA BETA . N,BJURE ,BJUIM,YRE.YIM)
DIMENSION BURE( 100).BJIM(100),YRE(S0),YIM(50)
L=1ABS(N)+1
SSQ=Xee24Yee2
TX=2.0X
TY=22.0eY
RALPHA=ALPHA
A=(TX*RALPHA+TY*BETA)/SSQ -
. B=(-TY*RALPHA+TX<«BETA)/SSQ
BURE(2)=A*BURE(1)-B*BJUIM(1)-BJRE(2)
BJUIM(2)=B*BURE(1)+A*BJIM(1)-BJIM(2)
YRE(2)=AsYRE(1)-B+YIM(1)-YRE(2)
YIM(2)=B+YRE(1)+AsYIM(1)-YIM(2)
IF(L-3)3.2,2
2 00 1 I=3,L
RALPHA=RALPHA-1.0
As(TX*RALPHA+TY*BETA)/SSQ
B=(-TY*RALPHA+TX*BETA)/SSQ
BURE(I)=A*BJURE(I-1)-B+BJIM(I-1)-BJURE(I-2)
BUIM(1)=B+BJURE(I-1)+A«BUIM(I-1)-BJIM(I-2)
YRE(I)=AeYRE(I-1)-BeYIM(I-1)-YRE(1-2)
1 YIM(I)2BeYRE(I-1)+AeYIM(I-1)-YIM(I-2)
3 CONTINUE
RETURN
ENO
CBES414 YRECUR SUBROUTINE PART 14 OF 16
SUBROUTINE YRECUR(X,Y . N,BJURE,BJUIM,YRE,fYIM)
DIMENSION BURE(100),BJIM(100).YRE(S0).YIM(50)
SSQ=Xee24Yee2
TPI=2.0/3.141592654
AZRE=TPI*X/SSQ
AZIM=-TPIsY/SSQ
L=N+1 -
IF(L-3)3.2,2
2 00 1 I=3,L
ZRE=*BURE(I)*YRE(I-1)-BUIM(I)eYIM(I-1)
ZIM=BUIM(I)*YRE(I-1)+BURE(I)YIM(I-1)
BZRE=ZRE-AZRE
BZIM=ZIM-AZIM
BUSQ=BURE(I-1)*¢2+4BJUIM(I-1)ee2
CZRE=BURE(1-1)/8BUSQ
CZIM=(-BJIM(I-1))/BJUSQ
YRE(1)=BZRE=*CZRE-BZIM*CZIM
1 YIM(1)2BZIMsCZRE+BZRE*CZIM
3 CONTINUE
RETURN
END
CBES415 YGNUP SUBROUTINE PART 1S5 OF 16
SUBROUTINE YGNUP(X,Y.ALPHA ,BETA.Q,R,ASUMR, ASUMI ,BURE .BJUIM,YRE,YIM)
DIMENSION BURE(100),BJUIM(100).YRE(S0),.YIM(S0)
PI=3. 141592654
TP1=2.0/P1
QRE=TP1+(Q**+2-Re*2)
QIM=TP1¢2.0+Q*R
DRE=QRE *ASUMR-QIM*ASUMI
DIM=QIM*ASUMR+QRE *ASUMI
IF(ALPHA)1,2,1
2 IF(BETA)1.3,1
3 CALL YZERO(X,Y,ALPRE,ALPIM)
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GO TO 720
1 PALPHA=PI+ALPHA
COX=COS(PALPHA)
SIX=SIN(PALPHA) -
EXY=EXP(PI+«BETA)
EXY1=1.0/EXY
COSH= .5« (EXY+EXY1)
SINH= .S+ (EXY-EXY1)
DEN=(SIX*COSH)*+2+(COX*SINH)+e¢2
ERE=(SIX+*COX)/DEN
EIM=(-COSH*SINH)/DEN
ABSQ322.0+(ALPHA*+*2+BETA*+2)
ALPRE=ERE-((ORE*ALPHA+BETA*QIM)/ABSQ3)
ALPIM=EIM-((QIMeALPHA- ETA*QRE)/ABSOQ3)
720 TRE=ALPRE+BJURE(2)-ALPIM+BJUIM(2)+DRE
TIM=ALPIM+BURE(2)+ALPRE*BJIM(2)+DIM
ALPRE=-(Q*X+R*Y)/(X*¢2+Ys*2)
ALPIM=-(X*R-Q*Y)/(X2*2+Yee2)
YRE(2)=ALPRE+«BURE(1)-ALPIM«BJIM( 1)+TRE
YIM(2)=ALPIM+BURE( 1) +ALPRE*BJUIM( 1)+TIM
RETURN
END
CBES416 YSUMP SUBROUTINE PART 16 OF 16
SUBROUTINE YSUMP(X,Y,ALPHA ,BETA K,BURE,BJIM,ASUMR,ASUMI)
DIMENSION BJRE(100).BJUIM(100)
At=ALPHA-1.0
A2=A1-1.0
A3=A1+ALPHA
A4=BETA®s2
AS=2.0+A4
ABSQ=(-A1)*=2+Ad4
ROLDRE=((2.0+ALPHA)+*(-A1)-A4)/ABSQ
ROLDIM=(BETA+3.0)/ABSQ
RES1=-ROLDRE/2.0
VMS 1=-ROLDIM/2.0
STORE=3.*(ALPHA*X+BETA*Y)/(X*¢*2+Y*<2)
STOIM=3.+(X*BETA-ALPHA*Y)/(X*e2+Ys*2)
RES2=(ROLDRE+STORE -ROLDIM*STOIM)
VMS2=(ROLDRE*STOIM+ROLDIM*STORE)
ASUMR=RES 1+BJURE(2)-VMS1+BJIM(2)
ASUMR=ASUMR+RES2*BURE(3)-VMS2+BJUIM(3)
ASUMI=VMS 1+BURE(2)+RES1+BJUIM(2)
ASUMI =ASUMI +VMS2=BJRE(3)+RES2+BJUIM(3)
T=1.0
D0 SO0 1=3,K,2
T=T+1.0
B1=2.0+T
F1=81+ALPHA
F2=A3+T
F3sA1+T
FS=T-ALPHA
F6=A2+81
G1=F1+F2-AS
G2=(F2+2.0+F1)*BETA
H13G1*F3-G2+BETA
H23G2+*F3+G1+BETA
P1=FS*FG+A4
P2=(F5-FB)+*BETA
P33P 1ss2+P24¢2
CRE=((H1+P1+H2+P2)/P3)/T
CIM=((H2+*P1-H1+P2)/P3)/T
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TEMP=-(CRE *ROLDRE -CIM*ROLDIM)
RNEWIM=-(CIM*ROLDRE+CRE *ROLDIM)
RNEWRE=TEMP
RES1=(ROLDRE-RNEWRE)/2.0
VMS 1= (ROLDIM-RNEWIM) /2.0
RES2=(RNEWRE «STORE -RNEWIM*STOIM)
VMS2=(RNEWRE*STOIM+RNEWIM*STORE)
BSUMR=RES1°BURE(I+1)-VMS1+BUIM(I+1)+ASUMR
BSUMI=VMS 1¢BURE(I+1)+RES1+BJUIM(I+1)+ASUMI
BSUMR=RES2*BURE(1+2)-VMS2+BUIM(I+2)+BSUMR
BSUMI =VMS2+BURE(142)+RES2+BUIM(I+2)+BSUMI
IF(ABS((BSUMR/ASUMR)-1.0)-.00000005)521,521,510
521 [IF(ASUMI)S20,511,520
520 IF(ABS((BSUMI/ASUMI)-1.0)-.00000005)511,511,510
510 ASUMR=BSUMR

ASUMI =BSUMI
ROLDIM=RNEWIM
SO0 ROLDRE=RNEWRE
511 RETURN
ENO

SUBROUTINE LOGGAM(X,Y U,V)
CLOGGAM LOG OF THE GAMMA FUNCTION OF COMPLEX ARGUMENTS FORTRAN II
C THIS SUBROUTINE COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTION FOR
C COMPLEX ARGUMENTS. THE ROUTINE IS ENTERED BY THE STATEMENT
c CALL LOGGAM(X,Y,U,V)
C WHERE X IS THE REAL PART OF THE ARGUMENT
Y IS THE IMAGINARY PART OF THE ARGUMENT
U IS THE REAL PART OF THE RESULT
V IS THE IMAGINARY PART OF THE RESULT
DIMENSION H(7)
H(1)=2.269488974
H(2)=1.517473649
H(3)=1.011523068
H(4)=5.256064690€E- 1
H(S5)=2.523809524E-1
H(6)=3.333333333€-2
H(7)=8.333333333E-2
€2=1.57079632679
EB8=3.14159265359
B8120.0
B8220.0
J=2
X2=X
4 IF(X)1.2.3
3 B6=ATAN(Y/X)
Taxee2
S B7aYee2+4T
C REAL PART OF LOG
T1=.5+AL0G(B7)
IF(X-2.0)7.7.6
7 81=81+86
B82:=82+T1
X=X+1.0
Je i
GO TO 4
6 T3s-YeB6+(Ti12(X-.5)-X+9.189385332€-1)
T2=86+(X-.5)+YeT1-Y
T4=X
TS=-Y
T1=87
00 8 I=1,7

000
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T=H(I)/TH
T4=T«T4+X
TS=-(TeT5+Y)

8 T12T4+¢24T5s#2
T32T4-X+T3
T2=-TS5-Y+T2
GO TO (9.10).,J

9 T3=T3-B2
T2=T2-B1

10 IF(Xx2)11,12,12
12 U=T3
v=T2
X=X2
RETURN
11 U=T3-E4
V=T2-ES
X=X2
RETURN
c X 1S ZERO
2 T=0.0
IF(Y)13,14,15
13 B6=-E2
GO TO S
15 B6=E2
GO TO S
c X 1S NEGATIVE

1 E4=0.0
ES=0.0
1E620

16 E43E4+ . S5+(ALOG(X*»+2+4Y222))
ES=ES+ATAN(Y/X)
1IE6=1E6+ 1
X=X+1.0
IF(X)16,17.17
17 1F(MOD(1E6.2))18,4,18
18 ES=ES+ES
GO TO 4
14 PRINT 19,X2.Y .
19 FORMAT(29H ATTEMPTED TO TAKE LOGGAM OF 2HX=F6.0, 1X2HY8F6.0)
CALL EXIT
END
.01S .045
0.0 2.25%
1.11 76.7
.00043 .00043 .00096
600000000.0
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ZIGD= 0.00 EPRD= 2.25

Al= .00043 A2= .00043 A3= .00096

FREQUENCY= 600000000.0

Kl= .36992EH06 -.36992E+06 K2= .11251E+03 -.23370E+02

JO= .49863E+70 .52113E+70 Jl= 52113E+70 -.49863E+70

HO2= ,86464E+00 .14723EH01 HI12= -,11067E+01 .57375E+01
CHARACTERISTIC IMPEDANCE=  64.54555 -13.05870

I= 1  ALPHA+ 7.66206 BETA=  37.87144

TETAl= 0.00 1.57 TETA2= 0.00 1.57 ZIN= 176.549 -56.234
TETAl= 0.00 0.00 TETA2= 0.00 1.57 ZIN= 163.186 -196.332

TETAls 0.00 0.00 TETA2= 0,00 0.00 ZIN= 28.471 -98.405



CHAPTER VIII
SUMMARY

In this thesis we present some theoretical and experimental
results on the study of a bare microprobe and an insulated micro-
probe in a conducting (biological) medium. The dimensions of the
probe are set to be very small so that it can be imbedded easily
in a biological body.

Since the current on the bare probe in a conducting medium
is decaying rapidly, the probe can be truncated and treated as an
asymmetric dipole in the analysis. For increasing the decay of
the probe current, the probe can be coated with material with higﬁer
surface impedance. The current distribution along the probe, and
the effect of the surface impedance on the current and the input
impedance of the bare probe are found based on Hallen's integral
equation and electric field integral equation. These equations
are solved numerically by moment method. The driving source is
modeled as a magnetic ring or as a delta gap generator.

A series of experiments were conducted, and the input impedances
of bare probes in various conducting media were measured with vector
voltmeter and E-H probe. The agreement between the theory and the

experiment was found to be satisfactory.
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An investigation on the applicaton of a bare probe for mea-
suring electrical properties of a conducting medium, and for heating
a tumor imbedded in a biological body for the purpose of hyperthermia
cancer therapy is conducted.

The theory of lossy transmission line is used to solve the
problem of an insulated microprobe in a conducting medium. The
current on the insulated probe does not decay rapidly, therefore,
equivalent terminal impedances are introduced. The current distri-
butions along the probe for various terminal impedances are given.
The input impedance of the probe is discussed and the input impedances
of symmetric insulated probes with various terminal impedances are
presented graphically.

The heat patterns of insulated probes with various terminal
impedances are shown, and the effect of the terminal impedance on
the heat pattern is discussed. It is concluded that the heat pattern
can be altered by changing the terminal impedance of the probe.

Finally, the computer programs used for finding the current
distribution and the input impedance of bare and insulated probes
with examples are given.

In conclusion, the input impedance of the bare probe is more
sensitive to the surrounding medium, therefore, it is suitable for
measuring the electrical properties of biological bodies. On the
other hand, the insulated probe can transfer more power in a biolog-
ical body in comparison with the bare probe so that an insulated

probe is a better device for local heating.
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