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ABSTRACT

THE EFFECT OF INTERNAL NUCLEON

MOTION AND NUCLEAR BINDING

ON ELASTIC PION-NUCLEUS SCATTERING

By

Kenneth E. Gilbert

This thesis is a theoretical study of elastic pion-

nucleus scattering at energies near the pion-nucleon (3,3)

resonance ( EiTT = 100:300 MeV). Specifically, the work

investigates the effect of internal nucleon motion and nuclear

binding on resonant elastic pion-nucleus scattering. The nuclei

considered are uHe, 120, and 160.

The basic approach is first to calculate the effects

using exact numerical methods and then to develop analytic

approximations which take into account the main features of

the numerical results. In all cases, an optical potential is

obtained which contains no adjustable parameters.

Nucleon motion effects are calculated exactly using

an independent particle model for*uHe and the free pion-nucleon

t-matrix. This exact model, which is numerical, is compared

with three existing models for pdonénucleus elastic scattering.

The existing models all treat nucleon motion in an ad hog way

and none of them give satisfactory agreement with the exact

numerical model. By systematically approximating the multiple
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Kenneth E. Gilbert

integrals required in the exact model, an improved analytic model

is developed. The improved analytic model gives excellent agree-

ment with the exact numerical model and, in addition, allows a

transparent understanding of the main effects of nucleon motion.

The nucleon motion model for'uHe is generalized for the

cases of 12C and 16O and a comparison is made with experimental

data fOr all three nuclei. Both the exact numerical model and

its analytic equivalent give significantly improved agreement

with the 1’11.; data and good agreement with the 12c and 160 data.

We conclude that nucleon motion effects are significant

and Should be accurately accounted for since §9.222 treatments can

lead to spurious results.

Nuclear binding effects are calculated using a 3-body

model for'uHe. The target nucleon is bound to the rest of the

“He nucleus by an s-wave separable potential which has a single

bound state at ~20 MeV. In this model, binding effects are

relatively small and can be approximated with a simple analytic

formula. By extending the formula to include an infinite number

of bound states, an upper limit on binding effects is estimated.

In this unphysical limiting case, the effects of nuclear binding

are about twice as large as in the single-state case.

After generalizing the uHe 3-body model for the cases

of 120 and 16O, the results are compared with experiment. The

relatively small binding effect in the singleestate model is

found to be compatible with the experimental data. However,
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Kenneth E. Gilbert

the unphysical model with an infinite number of bound states gives

poor agreement with experiment.

We conclude that nuclear binding is a relatively small

effect in resonant elastic pion-nucleus scattering.
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CHAPTER I

INTRODUCTION

1. The Pi-Meson As a Nuclear Probe

It is certainly reasonable to ask why pi-mesons (pions)

should be used to probe the nucleus. After all, it is much easier

(and cheaper) to use more conventional projectiles such as protons

The answer is that pions have some unique propertiesand electrons.

First, pionsWhich make them particularly useful as nuclear probes.

have three charge states (17* , 11", 1r°) so that double charge

Second, pions are bosons and therefore canexchange is possible.

(Absorptionbe absorbed by "clusters" of nucleons in the nucleus.

by a single free nucleon cannot occur.) Hence, pion absorption

experiments may yield new information about correlations among

nucleons inside the nucleus. Third, and perhaps most important,

the pion-nucleon interaction is dominated in the 100-300 MeV region

by the well-known (3,3) resonance.:L The (3,3) resonance makes it

Pessible to vary the strength of the pion-nucleus interaction by

¥

e quantum numbers associated with the (3,3) resonance

éCI-re I (isospin) = 3/2, J (total angular momentum = 3 2, and L
eorbital angular momentum) = 1. At resonance, the laboratory kinetic

nergy 01‘ the incident pion is about 190 MeV.
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more than an order of magnitude simply by varying the energy of

the incident pion beam. This convenient "knob" on the interaction

strength is not present with conventional probes such as protons and

electrons. Fourth, the (3,3) resonance has total isospin 3/2 so that

positive pions interact mainly with protons and negative pions

interact mainly with neutrons. Pions should therefore be useful

in determining proton and neutron distributions. Finally, the zero

spin and relatively small mass of the pion considerably simplify

theoretical analysis of pion-nucleus scattering.

2. Elastic Scattering of Pions from Nuclei

When an energetic particle such as a 100-300 MeV pion

COllides with a nucleus it usually scatters elastically, so in

many cases,inelastic scattering can be treated as a small perturbation

On the elastic wave function. In order to use a perturbative method

f01' inelastic scattering, it is necessary to have an accurate elastic

Wave function as input. A careful experimental and theoretical

Study Of elastic scattering is therefore the first step toward a

COmplete description of pion-nucleus scattering. Hence, in recent

Years, elastic pion-nucleus scattering has received increased attention

by both experimentalists and theorists.

,, lOne such perturbative approach is the well-Imown

distorted-wave" Born approximation (DWBA) .
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3, The Present Experimental Situation

The present experimental situation in pion-nucleus physics

is a. bit strange. Several "meson factories" have recently become

operational and should produce high quality pion-nucleus scattering

data in the very near future. But, so far, no results from the

meson factories have been published and the only data presently

available come from older accelerators which were not designed for

pion-nucleus scattering. While these data are not of the quality

eXpected from the meson factories, some fairly good elastic scattering

measurements have been made for light nuclei. Binon et. al. have

measured differential cross sections for elastic 1T -1 C scattering

at 120, 150, 180, 200, 230, 260 and 280 MeV (Bin70). The same group

has reported preliminary results for elastic 'W-uHe scattering at

110; 150, 180, 220 and 260 MeV (Bin71). Bercaw et. al. have measured

elastic differential cross sections for 11' -l60 scattering at 160,

170; 220. 230 and 240 MeV (Ber72). Other data have been reported 1

but the “He, 12C and 160 data cited here are the most systematic

data available at present in the (3,3) resonance region (100-300 MeV).

LP . Previous Calculations

Many theoretical calculations have been done to explain the

12
T- C and ‘W-16O data2 and a few have been done to explain the

1;
1r- He data. (Mac73, Ger73, Fra7u). Most of the calculations use

¥

1For a listing of experimental results see K0170, Cer7llv.

re 2It is impractical to give a complete list here. Some more

cent results can be found in Lan73, Pha73, Kis74, Kuj7u.
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either the Glauber theory (G1a67) or an optical potential model

derived from Watson's multiple scattering theory (Wat53, Ker59).

These calculations describe the ‘W-lZC and 'W—l60 data fairly well,

regardless of the model, but are in poor agreement with the Tr-uHe

data. 1

A survey of the pion-nucleus scattering data indicated

120 and 16O,to us that while multiple scattering is important in

Single scattering dominates in “He. Our preliminary calculations

and multiple scattering calculations by Charlton and Eisenberg (Cha7l)

also showed strong single scattering in He. The dominance of single

scattering in this case explains why most "standard" models give

120 and 160 data, but poor agreementfairly good agreement with the

with the “He data. Apparently, the gross features of multiple

Scattering do not depend much on the details of the model so that

maranally accurate models which give poor results for He can still

$1"eff'a:1.:r:ly good agreement with the 12C and 160 data. Hence. it

appeared that a more careful calculation of the single scattering

ten Was needed for a good description of the 'W-uHe elastic

Sc3a$teib1ing data.

5 ‘ % Calculation

The objective of the present investigation to explain the

‘fl' L;

- He, “-120 and ‘W-160 elastic scattering data in the (3,3)

ms°nance region, using a theoretical optical potential which contains

\

However, R. Mach obtains good agreement with the 1f fiHe

an? at 110 and 150 MeV. He does not report results at higher

1.83.88 (M3073).
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no adjustable parameters. Since the existing 1 -12C and TT -160

data can be fit fairly well with almost any model, most of our effort

is directed toward a more accurate optical potential for He. We then

generalize our TV -uHe optical potential to obtain optical potentials

for 1ac and 16o.

In the optical potential formalism used in this calculation,

the single scattering term is given by the momentum-space Optical

potential. Hence, a more careful evaluation of single scattering

L,

in He is equivalent to a better calculation of the TV -uHe optical

In this work we make a careful investigation of twoPotential.

1" —uHe optical potential:factors which we expected to affect the

1) internal motion of the target nucleons; 2) nuclear "binding"

effects. Both of these effects were expected to be important because

of the strong energy dependence of the pion-nucleon interaction in

the 100—300 MeV region.

The motion of the target nucleons inside the nucleus

causes the pion-nucleon center-of-mass energy to be "smeared" over

a. range of about 100 MeV. This C.M. energy distribution gives rise

‘to a distribution of pion-nucleon interaction strengths due to the

Plasence of the (3,3) resonance. In most previous calculations the

effect of nucleon motion in pion-nucleus scattering has been either

neglected entirely or else treated in some arbitrary way. In this

28‘:'-<3‘\12l.a.tion we make an exact numerical treatment of nucleon motion

using an independent particle model for ”He. We find considerable

3‘fffiél‘ence between the predictions of our model and typical "standard"

In

odels. However, we find that it is possible to accurately approximate
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our exact numerical result with a simple analytic model. Both our

exact numerical model and its analytic approximation give significantly

1.2C
improved agreement with the 4He data and good agreement with the

and 160 data.

We investigate nuclear binding effects using a simple

3-body model. In our model a single target nucleon is bound in a

The nucleon thus interacts with the incident pionpotential well.

We expected binding effects toand also with a binding potential.

be large in the (3,3) resonance region because the pion-nucleon

However, we find that binding effectsinteraction is strong there.

Our model predicts
are fairly small even quite near the resonance.

that binding effects weaken the optical potential by 10 - 20 % in

the resonance region and that the effect is considerably smaller

away from the resonance region.

In order to provide a more detailed outline of the approach

taken in this work, we now discuss the main points contained in each

Chapter.

In Chapter II we outline the Watson optical potential

formalism and give the major approximations used in our calculation.

We also discuss the motivation for the calculation in light of the

LPHe 12 16
o C and 0 data and the qualitative features of the Watson

optical potential formalism. Both the data and the formalism suggest

L;
that multiple scattering effects are significantly smaller in He

than in 120 and 160. (Numerical calculations confirm this conjecture.)

Hence, we argue that an accurate evaluation of the single scattering

”berm (i.e. , the optical potential) is necessary for a good descrip-

‘t‘ioh of Tr-uHe scattering.
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In Chapter III we discuss our calculation of the 11‘ flHe

Optical potential. We use an independent particle model for He and

a simple separable parameterization of the free pion-nucleon t-matrix.

(In most of this work we take the basic pion-nucleon interaction to

be the free pion-nucleon t-matrix, i.e. , we use the impulse approxi—

mation. ) Our objective is to properly treat the motion of the target

nucleons so that the essential features of the free pion-nucleon

t-matrix are accurately represented in the pion- He optical potential.

In calculating the pion-“He optical potential we use the method of

"vector brackets" (see Appendix D) to take advantage of the separability

0f the pion-nucleon t-matrix. (Vector brackets are the same as

Meshinsky or oscillator brackets except the coordinate-space radial

Wave functions are spherical Bessel functions instead of harmonic

Oscillator wave functions.) The vector bracket method is shown to

considerably reduce the computational effort required in the calculation.

However, even with the vector bracket method, it is necessary to

Perform non-trivial multiple integrals.

Chapter IV is devoted to a discussion of the so-called

“ factored form" of the optical potential and to two typical 2.4 103

Preschptions for obtaining a factored form. The factored form

involves writing the optical potential as the product of a pion-nucleon

interaction factor and a nuclear ground state form factor. The

motivation for the factored form is twofold. First, one avoids the

1it‘ll-time integrals discussed in Chapter III and, second, one obtains

Convenient separation of nuclear structure effects from pion-nucleon

1

I“telnet-ion effects. However, most "standard" versions of the
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factored form treat nucleon motion in an arbitrary way so that the

essential features of the pion-nucleon interaction are not accurately

represented in the optical potential.

In Chapter V we discuss a recently published impulse model

which is a significant improvement over the models discussed in

However, the derivation of this more recent model isChapter IV.

This recentjust as arbitrary'as the two models in Chapter IV.

E 1122 model is included in this study for the sake of completeness.

In Chapter VI we take a more systematic approach to the factored

form of the optical potential.

In Chapter VI we make a definition for an "effective"

P1(In-nucleon impulse interaction in terms of the fully integrated

1+

-“ - He optical potential which is calculated in Chapter III.

0111‘ definition allows us to have a factored form for the optical

Potential and at the same time to make an exact treatment of nucleon

“touch. We compare our "exact" or fully—integrated effective impulse

interaction with the "standard" prescriptions discussed in Chapters

IV and v and find there are significant differences.

In Chapter VII we develop a simple but accurate approxi-

mation for the exact or fully-integrated impulse interaction of

chapter VI. By comparing our approximation with the exact result

at SeVera]. different energies, we show that our approximation gives

a. Very good representation of the exact result. While no more com-

13:Licated to apply than the "standard" approximationSv Our a'I’Pl‘m‘in‘a"Ci0“

allows us to easily understand the differences between the exact

e:t‘fGCB‘lzive impulse interaction and the standard prescriptions.
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Using our approximation as a guide we give a qualitative discussion

of the role of nucleon motion in the effective impulse interaction.

In Chapter VIII we consider corrections to the impulse

In our model the pion scattersapproximation using a 3-body model.

The pion interactsfrom a nucleon that is bound in a potential well.

with just the nucleon and not with the potential well itself. We

use an 8 -wave separable potential to represent the potential well

and find that the "binding" effects of the potential well are relatively

small. The main effect in our model is a lO - 20 % reduction in the

We alsostrength of the optical potential near the (3,3) resonance.

construct a simple analytic approximation which gives fairly good

agreement with the exact numerical calculation for binding effects.

In order to estimate an upper limit on the binding effects we extend

O‘lu approximation to a potential well with an infinite number of

bound states (a separable potential can P13064108 only one bound state)

and find the effects are about twice as large as with a single bound

Statea

In Chapter IX we discuss the details of the calculation

120 and 16o.of the elastic differential cross sections for He,

He Sj-Ve the ground state form factors and indicate how we obtain the

input for a Lippmann-Schwinger scattering equation.

The calculated elastic differential cross sections for

“He: 12(2 and 16o are compared to the data in Chapter x. For each

nucleus, the discussion is divided into two parts: 1) impulse inter-

a’Q‘l‘dxan results and 2) impulse-plus-binding correction results.

We find that the fully-integrated impulse model (and good approximations

t9

it) gives satisfactory agreement for all three nuclei, and that
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16
120 and o the data do not distinguishother models do not. In

between the various models.

The relatively small binding correction given by the single

state model is found to be compatible with the experimental data.

The larger correction given by an (unrealistic) model with an infinite

number of bound states overestimates the binding effects.

Chapter XI contains a summary and our conclusions.
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CHAPTER II

THE OPTICAL POTENTIAL FORMALISM

AND PION-NUCLEUS ELASTIC SCATTERING

1. Formal Theory

Watson et.al. have shown that it is possible to formally

describe the scattering of a projectile from a nucleus exactly in

terms of a two-body operator which is commonly called the "optical"

potential" operator (Wat53). In this section, we present the

essential elements of the Watson optical potential formalism as

given by Kerman, McManus, and Thaler (Ker59).

We assume a Hamiltonian of the form

(2.1) Hm: = H, *- \<1r *Vw

where H» is the nuclear Hamiltonian, K“. is the pion kinetic

energy operator and

A

(2.2) V... "‘ 3‘51”...”

is the sum of two body interactions between the pion and the target

nucleons .

ll
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The pion-nucleus scattering operator T (E) 18

1"”

Given by

-|

(2.3) 12“,“) = V.” + VW(E.-H,,- Kwt-Le} TWLE)

Where E. is the kinetic energy of the pion plus the nuclear

ground state energy.1 In calculating the matrix elements of

I-‘ruca 3 between antisymmetrized nuclear states we need to

calcmate < I“: \ Zn 45;!»(‘3‘ \ M > where

Lin.) and \M: > denote the nuclear states. Since the

c .
matrix element (M: \ 61;"(3) \NL» is

independent of the label J . we can write equation (2-3) as

(2-4) twat): AWN + Afiflace)Tw<c-3.

Here A is the number of target nucleons, and G (,E 3 =

. '-|

QaLE‘Hv-Kw+tpe\ ,where O" is

a. Projection operator for completely antisymmetric nuclear states.

We now define the t-matrix 1‘ (e) for scattering

1m
0:?

a. pion from a bound nucleon;

\

1 I

“1‘1 Throughout this work, we use E. s to denote energies

1;] ch do not include rest mass energ, and £035 for energies

Ni; do. For example, E1? means the kinetic energy of the pion

‘AJ‘, 18 ' E“ + We?! 0
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(2.5) Tn“) -.-. «Tm.- «Tmcqcey 1;ny

The operator 1;“ is a many-body operator and therefore

extremely difficult to evaluate, so we will later approximate

’Vm‘ with the t-matrix for scattering of a pion from a free

nucleon. The free pion-nucleon t-matrix is given by

(2' 6) t““LEX = 45-1» +43%» 0‘09 “’3 {Zn-”($3

-\

Where %°Le\ '= (Q'Kfi‘K-w +Le\ . We can relate

:1“. to t‘“ by using equation (2.6) to get 4);” in terms

01‘ t‘“ and substituting the result into equation (2.5). After

Some operator algebra we obtain

(2.7) The: x = twat» + tmttx [G £63~ %.Lef)’\‘m&€\ .

Note 2. does not necessarily equal E and that in fact e.

is an arbitrary parameter. We shall return to this point in

QI‘lapter VIII. For now we shall assume fig E .

We continue the formal development by using equation (2.5)

t0 get 4);.“ in terms of 1;“ so that we can write the
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pion-nucleus scattering operator as

(2.8) T179 = ATV.“ + (Pt-“1“”, 6(va .

(We hereafter suppress the variable E in the scattering operators.)

The above equation for T1“, can be put in a more symmetric form

0

by defining an auxillary scattering operator T1?!)

(2.9) Tr.» -._._-.-. [awn/931‘.” .

I

The operator T is given by the more symmetric integral

e<11—‘lation

(2.10) T“ =.- Us“? 4.. (page g-r'
(W TN TN 10"

I

The auxillary scattering Operator ‘1“) can be thought of as

a. “multiple scattering" operator. For example, if there were just

one target nucleon (A -- 1) then there would be no multiple scattering

I

6.1-1d we would have T = 0 and T = ’\\' .

10’ TV 1".)

At this point, equation (2.10) is in the form of an optical

I><>~tential equation where the optical potential is taken to be

N

(A - l) l 11’“ . However, the propagator in equation (2.10)

a:Lllows excited intermediate nuclear states so that the equation
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would be extremely difficult (if not impossible) to solve. The

formal remedy is to put the excited nuclear states into the definition

0f the optical potential. We define a "first order" optical potential

9

Operator UV” as ,

(2.11) U12.” :1 LA-W’I‘jw”

With the complete optical potential operator being given by

(2.12) U1“, = U119 + U1; Li- \o><o\\ (:1 U1“)

when ‘07 represents the nuclear ground state. The scattering

l

o:Petl'a‘ator T- I written in terms of the complete optical potential,

 

1r

U1“, , is

(2-13) T. = U + U \°><°‘ '

1W 1w 1” E-KV-Kwt-LeTWV '

Hell‘s E- is the kinetic energy of the pion plus the kinetic energy

due to motion of the nucleus as a whole (for example, in the pion-

111-‘~<:1eus C.M. frame) and the operator Ky is the kinetic energy

Qbemtor for translation of the nucleus as a whole. With the internal

Illlclear degrees of freedom removed, we have a two-body equation which

Qalt). be easily solved.
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For elastic scattering we want to calculate

. l

h k s<?1r\<o\-‘:I\'p ‘0) \?1r>,wherete et ‘?E>

and ~‘P1;> describe respectively the initial and final pion

~

States in the pion-nucleus C.M. frame. Writing

<P1(’\<O\T1;y\o)\?£> as ELLE’PE" PI}

and <?1;‘<0‘ Ulw‘°7|P1r7 as an“); Pt)

We have

Equation (2.14) involves only the pion coordinates and gives an

exact description of elastic pion-nucleus scattering. However, it

13 clearly just as difficult to calculate the complete optical

UWV as it is to solve the original equation for T .

Th “7’

Q value of the optical potential formalism is that it allows us

‘t:

O relate the pioné-nucleus scattering operator 1:”) to the pion-

Anucleon scattering operators ‘1“) and t1”) in a systematic way.
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In order to actually calculate ‘1“) we make the

following approximations :

a) The Coherent Approximation:

We approximate the complete pion-nucleus

optical potential U“, with the first

order optical potential KlKV . The coherent

approximation is equivalent to neglecting excited

intermediate nuclear states in equation (2.10).

b) The Impulse Approximation:

The scattering operator ’T\ for

I?!)

scattering of a pion from a bound nucleon is

approximated by the free pion-nucleon scattering

o rator ~tkur .
pe 9 “

IJESi—Ilg the above approximations, we obtain for the pion-nucleus

Optical potential operator

(2.15) UT?” 2. LR~\3‘t‘WN .

:Iirl Imost of our calculations we use equation (2.15) for the pion-

1”‘l‘LIQ‘ZLeus optical potential. In Chapter VIII we investigate corrections

—t;<:’ 'the impulse approximation in a simple 3—body model.

We remark finally that the optical potential formalism

3:223E3sented here is by no means unique. There are many other ways of

tiefining Operators and grouping terms. The reason for using the
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formalism described here is to put the resonant character of the

free pion—nucleon interaction directly into the approximation for

the pion-l-nucleus optical potential. If we could solve the problem

exactly it would of course be irrelevant how the various terms

were grouped.

2. Qualitative Emarks

In this section we discuss some qualitative features of

the pion-nucleus optical potential and pion-nucleus scattering.

We indicate how these features motivated the approach taken in this

 

work.

If we write the auxillary pion—nucleus scattering operator,

1

‘1“) , as a power series in U‘WV , the first few terms are

‘ 10><o\
2. z:

( 16) 1;.” U + U 4. . . .

Ta-IQng U‘WV to be (A-‘St-W” , we have

 (2.17) T‘}; = LA-Wtwn + LPN-St?” |o><o\ tm

E'- K1‘Ky+£’e

+ .. . .

I {e 1 ‘
h e the Born a. IOXimation for i

YA ”.48 DTP “:1 A tWN , i.e., the single scattering

a':DII~Z>‘...r‘oximation. For a small nucleus such as He it is plausible that

the Born or single scattering term is more dominant than in larger

12 16
nuclei such as C or 0 where multiple scattering is stronger.
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Hence we might expect the characteristic features of pion—nucleon

scattering to be more prominent in ‘W -U’He scattering than in

'W 4-1261 or 'W —l60 scattering. Indeed, this appears to be the

case when one compares the elastic differential cross sections for

aHe, L20, and 16O in the 100—300 MeV region. (See, for example,

Figure 10.1 and Figures 10.5 #- 10.8 in Chapter X.) The strongly

p -wave character of the pion-nucleon interaction causes a nearly

stationary minimum in the 'W -4He elastic cross section at about

75° in the 'W -’+He C.M. frame. In 120 and 16O, on the other hand,

the minima appear to be diffractive, moving inward with increasing

energy. In 120 and 16O the details of the pion-nucleon p -wave

interaction are apparently masked by multiple scattering effects,

"hi-1e in “He the Born term dominates, producing a characteristic

P ”—wave minima.

The fact that optical potential models based on the impulse

approximation give reasonable agreement for 12C and 160, but poor

a'St‘eement for “’He, coupled with the fact that the "IT —uHe cross

Sections have a definite p -wave minimum led us to conclude that

a. I“ore accurate treatment of the single scattefing term (i.e. , the

o:D‘tical potential) was needed in the case of 'W ~4He scattering.

It was expected that an improved “He optical, when appropriately

€61'leralized for larger nuclei, would also give better agreement with

the 12c and 160 data.
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CHAPTER III

CALCULATION OF THE 1T -4He OPTICAL POTENTIAL:

INTEGRATION OVER THE TARGET NUCLEON MOMENTA

It was shown in Chapter II that the coherent approximation

and. impulse approximation give a pion-nucleus Optical potential Of

the form

(3 -l) Um, t 9". P1,) '3 (A")< §i<¢es HMWGQWJ>
h

where the kets ‘ PE) and \ Pi> describe respectively the

P1011 states in the pion-nucleus C.M. frame (TDCM frame) and

\ WQ§> describes the nuclear ground state. The operator t1",

is ~the free pion-nucleon t-matrix in the TUCM frame. In this

cit‘l-‘aqfler we discuss the explicit evaluation of equation (3.1) for

1“ -I+He scattering.

l ‘ An Independent Particle Model for ”He

we want to take the main effects of nucleon motion into

a’<-‘-C=<Junt in a simple way so we assume an independent particle model

for “He. In this model equation (3.1) gives a very simple form for

the 1V J’He optical potential

20
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(3.2)

U L?a w24
1
’
.

m--u KWmy“3%Mytgnv‘fi;

Law3

In equation (3.2), tw“ is the spin—isospin averaged free

Pi Ola-nucleon t—matrix and K)“ is a single particle ground state

The vector 7a; is defined as the seven

.0: ,9}: )where we“ , DE,

wa-Ve function for uHe.

Conlponent vector ( a)“ ,

a, ‘ .
11d & are respectively the collision energy, initial pion

A;

momentum, and final pion momentum,all in the pion-nucleon C M frame

is the nucleon momentum( TNCM frame). The vector P“

A!

in the C. M. frame of the ”He nucleus alone and the vector %/ is

the 3-momentum transfer, Pn- "' PW, . The reference frames and

N

I’i‘irlematics involved here are discussed in Appendix A.

2 - Some Numerical Considerations

Although equation (3.2) is very simple in form, it is

quite tedious to evaluate numerically. First, a 3-dimensional integral

InIlst be done to Obtain WC?“ , %\ . Then another

11'11:.egral is required to obtain“a l’partial wave decomposition Of

UV”W1‘,9 3 for use in a scattering equation.
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0

Hence for each value of \P-w\ and \ P“. \ . a u-dimensional

integral must be done, so that one is faced with calculating a large

nUmber of multiple integrals. In Appendix B we give a parameteri-

Zation for the free pion-nucleon t—matrix which is separable in the

Coordinates ’g’ and 23:. . We can exploit this separability

to reduce the computational task considerably. Using the "vector

bracket" technique described in Appendix D, we reduce the problem

to the calculation of many 2-dimensional integrals rather than many

4-dimensional integrals. Obtaining the final algebraic form Of

eclllaiion (3.2) using vector brackets is tedious although the final

form itself is rather simple. A derivation is given in the next

Sec-"'t:’1.on.

3 ' Derivation of the TI —uHe Optical

Potential Using Vector Brackets

In this section we give a derivation of the T —uHe

OD"tical potential using the vector bracket method described in

AIDIDGndix D. Our derivation serves as an example of the use Of vector

b:E‘Ei-czkets and also shows how the separability of the pion—nucleon

t‘matrix allows a considerable reduction in computational effort.

The derivation itself is not essential for an understanding of the

lehaining chapters so this section can be skipped over by the casual

: eElder.

We want to calculate the matrix element

(3.3) o a P.\= (A-q<a.‘\<o\'tw\o>m> .
l

WV EN
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~

Inserting a complete set of nucleon momentum states on both sides of ti“!

We obtain

(3.4)

U1“) &?1\‘_: PI\ =

  

KA‘\)SS A311» SSP4.” q)"C?~26)? (P404)

(”33 Gm)” "’

XQHQCmg.m\ P.O\2§

where WLPA) and “2*{24“} are <3;do} and

<0‘PPfiifi> ~respectively.

make the following definitions (see Appendix c for details con-

QeI‘l'ling the notation) =

<3 - e w cm 2 Rent: to

(3-6) Hi“); 2 Y:(W2H)\WL1.MF>

Lwa

l

with a similar definition for \ P > .
1"

~
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Also, we define

(3.7) \PH»)_LZM:{f}M240 \‘umd LN MM>

MN

I
With a similar definition for \ P > .

Now equation (3.4) can be written

em ka'fié as = we“ P11: AP; aim
(aw? QNTP

 

 

Mice,Lm\ Z Y(PJHYL6)
LWMW Lu“W

Hr MK

.
_

x <21L;H;(K\>4L LLzo HM'=o\tm\P L=0 MN=°>12W LTMb

The unit operator in terms of the WM QM coordinates (or equiva-

lthly, the relative and center-of—mass coordinates) is given by

(3.%

_ u u $322." $31 I, u "

A“ " “’i 7‘7‘» 78 mg as“ W“
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or in terms of "coupled" angular momenta

(3.10)

1:

Q" N \| i! n 88—-&"WAK'I40;, u u u\ a: { M2,.” 12)3" Tm? (a——S-3<&‘7£ wm‘'La 12,31.

2.... 9-1"

Inserting the unit vector of equation (3.10) on both sides of t1?»

we have (The "coupled state" \ .kuxui "‘M" flan £1“

defined in Appendix G.)

(3-11) 0U’t‘P£3= Lee-oi: Y n‘iflrf‘i‘“N {W «M1

L; M' imm‘"

_;__AE“S?: Agni“8L"Awflgkul—fl-fl8L“;4%“8%1,31%“

:2.—

Us,(in: (NY33 0:: 3"" (’1W33 (2103 @‘W S3

e edifices <P; e1, MW Le Lew \w w (”MW1e"

x<&"e<"'£"’iv1“1£ £9: \E“ \ may" i"'w"’1é" 2e”)

‘ <‘e‘u‘xm1m’mmk'u £¢rm\ P“. szf‘M L1 L”: O>



I.“
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where the states \?'w “am i‘YA L‘W Ln: 0 >

and We 9.1. 1' ’M' U“ LL =0 5

are-5‘15" ‘MLWNV‘ Luszn~0>

and \ Q“! L“ M‘?\ P4.» L7 .0 M'30) respectively.

Note that i = i. — L1?-— L“ since LN-- L;

~ ~ a~ IV "‘

We now need the matrix elements of £1!» between the TVNCM

kets and also the overlaps between the WNCM kets and the

“Dc-M kets. (These overlaps are the so-called "vector brackets".)

The matrix elements of 41““ are given by

(3 .12)

093%" 1'ma" 1*» 52«\t' \k'"x"':t'w"‘1&"'1

.. on 851::”m1"‘)S("‘"WWmswm

 
x ZUZIHWSW t:Lwould?9a 3

G I: 2.1%" 4" k"

Where

(3 -13)

 

06%

t1LchM,&!, 2‘): XtILkwr,hg’h3
fitxfi‘hu%ueifih

E“! %t (he)



H
.

"~."..ab
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and

(3.110
“$353149."

.. 2 e, -—\

(Wm)Lark-3: 8W “0 [$3146. 1°

1.;w ”a meet,

 

 

A more complete discussion of the parameterization of H» is

given in Appendix B. The vector bracket expressions are of the form

(See Appendix D for a detailed discussion of the various factors in

equation (3.15).)

(3 - 15)

<&I\|.Km 1m mm 9“". 1%»: ‘ PW ?4-N im LT? L“ >

..._. Law\3(4w5‘£U"'i \ sm“'W>SW) 8. 6:

X

 

 W2fiz<W.)
woe-.1““MK
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The factors to note in the vector bracket expression are the delta

functions. These delta functions, together with the delta functions

in t1”! (equation (3.12) ), allow us to simplify things

‘ I

considerably. For example, since L“. = f and L“: t ,

~ ~ ~

( u ~

we have Lw = L‘. ‘-= 1 : f.“ . Hence, in equation (3.11),

A. ~ ~~

II m m

we can eliminate the sums over ( f" , m ), ( i ,m ), and

( L19: M; )0 Also, we have Rafi": 2km and LI" Zfi‘km -

The sum over M." can be done trivially since the final result

is independent of (M , and W?- MT .

The kinetic energy conserving delta functions SON) and SCW')

allow us to eliminate two of the momentum integrations. (We

eliminate P4” and P4; .) The integral over (Km ' is

eliminated using the delta function S (”Kn-km) in equation (3.12),

leaving us with integrals over just CK" , k“ , and km .

From equation (A.10) in Appendix A, we obtain the relationships

<£’>‘=(a¢ - 93' M" andw’ A!

I" 2,.- o u 2/

L&)- (PW‘ .L‘?) . Wethenwrite

N we N n Ha

the integrals over &" and «9L as integrals over X

m u A, u "'_ A An
and. X where X '2: P‘K o ‘2 and X -" P17“ OK .

(This eliminates the need for the 9 functions.) A straight-

forward substitution of the vector bracket expressions and the

PiOn-nucleon t-matrix eXpression into equation (3.11) now gives
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x “(“41" -

 

 

 



29

(3.16) Um) K 1". P3!) 7-

 

 

  

(arenas-Jr \) $5";

U’V")JCZ (ZL“+\)L2.2&"+\) ML“. V)

L‘Q‘Kfl

I’E’Rk"

1’ 9e M“
t §fcffl 0’ o ' "L Q n (? (Kuhn-£1")

‘ «“14an : 4&7. 3(“1 1r 3:)? 1'

(fig)

L 13’1ch "‘

where

(3.17) Lear“ L1, Kw) =

131*." \

/2.
\ u u

u u l wwLfi ) wfigh )]

SA‘ 0503i ) RR“) we» meta!)
-\ 13.9..."

>k

X if {[ 249x"it" ”1%)L370): ( €")Yc&u)]
i! “*- Rx" Mo"

x [15%)Yo}$43113 .

=. "-r Mk‘k
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The square root factor in )1: 9*" comes from the X

factor in equation (3.13). (See equation (13.5) in Appendix B for

a discussion of the \6 factor.) In the integrals in equation (3.16)

H

and (3.17), the vectors & , P: and in; are related to

~
~

0

v1- and ‘K’ via the equations

~~

1213“ ‘2' - @i/wTE' > CE." = )1." 92:
~

I
\

and r, = ?4; ~ T P; (see Appendix A). For example,

~ ~ ~

(3.18) Kk: )1 :

.

“3' Y’ *Ww>‘c>§>‘- Laws/neg was? \
where

A

(3.19) X“ = “I ' CK"

, 2. I 2'

With similar expressions for (PH) and ($110.) . The

~ I

9
1 and 96

N

l

orientation of the vectors R“- . 1)”

"" N

can be drawn as shown in Figure 3.1.

H

(K /

 

~ I

PN

‘ku + ~

Figure 3-1 - The relationship between the pion and nucleon momenta

in the Tr
I

c f d h t al t ' d itmoment 1’? .rame an t e ot momen um 26’ an re a five
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In the numerical calculation we assume the pion-nucleon

interaction is in the (3,3) channel only ( 1: 3/2- , 3:272, , 1 "7" ).

and we take the pion-nucleon t-matrix to be the same off-shell as

on-shell, i.e., we take 5 l . We have found the results

1112*:

in the (3,3) resonance region to e rather insensitive to the choice

or o

25:31...
The advantage of using vector brackets should now be clear.

Vector brackets allow us to take advantage of the separability of the

pion-nucleon t-matrix, so we just have to calculate the function

2.
u and integrate it with 't, / %

3131*
133k" 131k“

asirflicated in equation (3.16). In addition, we automatically

obuun.a partial wave decomposition of the optical potential. Hence,

the computational effort is considerably less than in the original

form (equation (3.2) ) where h-dimensional integrals are required.
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CHAPTER IV

THE FACTOBED FORM OF THE 1T -uHe OPTICAL

POTENTIAL: Two 513 Egg MODELS

In this chapter we review some of the conventional ad £3.99.

models for the factored pion-nucleus optical potential that are

currently popular and show the shortcomings inherent in these models.

First, however, we need to consider the factored form in general and

show the assumptions which are necessary to obtain a factored optical

potential .

1. Definition of the Factored Form

In order to avoid the multiple integrals involved in

calculating the fully integrated optical potential (equation (3.2) )

the "factored form" of the optical potential is often used (Lan73,

Kuj7u, Mil7u). In the factored form, the pion-nucleon t-matrix

"' I

t‘fl'fl( Jl.\ (recall (3:: (wCM)k )k” is evaluated at

some "effective" value of .g and taken outside of the integral

over the nucleon momenta. Denoting the effective value of .2;

as I} and using the factored form for the ”He optical potential

we have

1,, 31,29:- (A fink-(1)506)

32
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where (09%) is given by

 

(4.2) (“1)?- “V(PJ+A2%)W(Pw)£?
~ (1;)

The quantity (09%) is the ground state form factor and is just

the Fourier transform of the ground state density Fc‘g) :

' .V‘

egg ~(t3) («$32 (Mfg Agr .

An empirical form factor is usually used in equation (4.1) rather

than a form factor obtained from some assumed ground state wave

function.

2. The Ad Hoc Models

 

The ad 222 versions of the factored form which we consider

in this chapter are typical of the models found in the literature

in that .£E is obtained by some plausible but rather arbitrary

prescription. These models are presented solely for pedigodical

purposes and do not give good agreement with the fully-integrated

'1‘.-uHe optical potential of Chapter III. Our objective is to

make some connection with the work of other workers and not to give
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an exhaustive account of the various (incorrect) choices for .{3 .

In Chapter VII we give our own version of the factored form which

results from a systematic approximation to the integrals over the

nucleon momenta.

In our discussion we consider just the choice of .EE ,

but there are actually three distinct problems involved in generating

a factored optical potential from first principles:

a) The off-shell parameterization of tw”(.q:\

b) The choice of .£1
~

0) The 2‘, -space form of the Optical potential

(assuming the calculation is done in ’1; —space)

PrOblem (a) is in practice often closely connected to problem (c)

since useful 1: 4space optical potentials are obtained only for a

special class of unphysical divergent off-shell parameterizations

such as the Kisslinger and "local" parameterizations (Lan73, Lan74b).

We use a simple non-divergent zero-range separable parameterization

throughout this study and work entirely in momentum space so that

we isolate problem (b), the choice of 33. .1

Our criteria for a "good" choice of 1g}. is one for

which the factored form is in good agreement with the exact or

fully integrated optical potential of Chapter III. As will be shown,

most typical ad hgg models involve "bad" choices for I]: . How-

ever, the prescription we obtain in Chapter VII by systematically

approximating;§he integrals over the nucleon momenta gives a "good"

choice for J}; .

 

1Our calculations and the work of Landau and Tabakin

(Lan74b) indicate that a non-divergent zero-range t-matrix gives

essentially the same results as a short-range t-matrix.
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3. Angle Transformations

The problem of choosing a value for -£3 in equation (4.1)

has received considerable attention in recent years (Ded7l, Fal72,

Lan73, Kuj7u, M11714). For the most part, however, the emphasis has

been on the choice of the so—called "angle transformation" which is

closely connected to the choice of effective values for the 1TNCM

momenta a and g, (which we denote as E and E I respectively).

Except for the work of Landau et.al. (Lan73), the question of a good

value for {San (the effective collision energy) has not been dis-

cussed in much detail in the literature. Hence, we shall mainly be

concerned with the various angle transformations currectly in vogue.

The purpose of the angle transformation is to take into

account the "mapping" of the scattering angle from the 1tNCM frame

to the TENChK frame. In the early work of Kisslinger (Kis55), a

One—to-one mapping was used so that C0591!" '3'— CO"; 9“," .1

Dedonder (Ded7l) and Faldt(Fal72) were the first to point out that

a transformation of angles is important in pion¥nucleus scattering

and they proposed a linear angle transformation of the form

C0591“: Q,+ b COS any .‘2 An angle transformation similar

¥

1The relation between the cosines and the associated

momentum vectors is

C°59..= E-E/rgxxEx , c059,“; E'E/IPIHRH'

2However, to our knowledge, the "local"optical potential

of Lee and McManus (Lee7l) was the first model to actually take the

angle transformation into account. The angle transformation implied

by Lee and McManus is the same on-shell as the one proposed by

Dedonder and Faldt.
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to that of Dedonder and Faldt was later used in the momentum space

calculation of Landau, Phatak, and Tabakin. Hence, for purposes

of discussion we consider two models: (a) a "simple static approxi-

mation" '- this model uses a one-to-one transformation ( C0361”:-

Q0581“, ) and is representative of the early Kisslinger-type

angle mappings; (b) a "modified static approximation" - this model

incorporates a linear mapping of the form CO”; 6““:- 0;? b C056”

and is representative of models incorporating the angle transformation

of Dedonder and Faldt.

1%. The Simple Static Agaproximation

Our quasiJ-relativistic kinematics relate the WUCM

momenta and ‘WNCM momenta by (see equation A.13 in Appendix A

for the details of the kinematics) by

.. _ a
(ban) 15- %[\-(&A__‘.) “ft/hf] -(ww/w.) Em

(4.5) .951: Pfl'IE‘ — ¥)w;/wa - Luz/”0) P4,“ '

If we assume the struck nucleon remains "frozen" in the “He nucleus

I

then we have P4“ '-"- 4“: O and the effective values of

I ~ A.

k and k are

N N

(4.6) E : %[\-(E—E)w;/wj
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(in?) «E; = E’[\-— as)”; Adj

0

In equations (4.4) -'- (4.7), b)“. [00. is essentially the ratio

of the relativistic pion mass to the nucleon mass. It should be

clear that the simple static approximation implies C05 en.“—

5. The Modified Static Approximation

The modified static approximation is the same as the

simple static approximation except the 'ITNCM angles are related

to the “TQM angles via a transformation of the form COS 611R "’

O.+b C0591,” . The relations between the magnitudes of the

momenta are taken to be the same as in the simple static approximation.

Hence, we have for the modified static approximation

(”-8) [Eh- \ffl [\-— (&£)w;/wfl

(m9) HQ”: HEWEI - (A- \w'fi:V/wil

= ‘0 0 .(4.10) Case‘m CL.+ C 89“”
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Numerous prescriptions have been given in the literature

for choosing the "a" and "b" in equation (4.10) (Ded7l, Fal72, Lan73).

We shall use here a prescription that is typical of those in the

literature. We shall not be concerned with the details of previous

calculations because,as we shall see later, the proper relationship

between (.059 and C059 is, in fact, nonlinear. A linear

1TI| 1L9

relationship is obtained only if the recoil of the struck nucleon

is neglected. For example, our quasi-relativistic kinematics give

W

~ ~

a...) (Jag—g)": (P 4432‘

or

(4.12) $059“:

I

[Ui‘t— Qz‘z— 9;:- vg”)AM + (Pris Aggy cosew

where k denotes Ig‘ , etc. .

Due to the recoil of the struck nucleon, the quantities l (E \

and ‘Q“ actually depend on C059 so equation (4.12)

~ 1W

represents a nonlinear angle transformation. However, as equation

(4.12) is often used (Fal72, Lan73), l-Q \ and ‘jSI\ are taken

to be independent of C05 9“,” and a linear angle transformation

is obtained. For instance, Landau, Phatak, and Tabakin (Lan73)

suggest taking the momenta on-shell and calculating \k‘ and ‘ tl‘
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assuming a nucleon which remains frozen in the nucleus so ”3' ‘ 2".

[&'\E k. . Using the ansatz of Landau, Phatak, and Tabakin

wetake |Pfll 2'. |fi;‘§ F1: sothat

N ~

Hal: Ms“: D - “iflwé/wfle; =3 96.

Substituting these values for the magnitudes of the momenta in

equation (4.12) we get the transformation

(a 13) (.056 " \- (9° [k 37' ( o /& icos 9

w ' Wu ' " ° + 2“ A w.

Hence, in equatio; (4.10), we have (L: \ -- ( El: /&°\2. and

b =(?1: / 4&0) . Equation (4.13) is valid for forward scattering

where no momentum is transferred to the struck nucleon but is

incorrect at other angles. For example, equation (4.13) allows

‘ C056“”\ to exceed 1 at backward angles. These unphysical

values of £0561". introduce serious discrepancies into the optical

potential. As we shall see later, the agreement between the modified

static approximation and the fully integrated optical potential

is very poor at backward angles.

6. The Effective Collision Energy

So far, nothing has been said about the choice of we“

in the g hoc models we have discussed. In general, most workers

use a. value of men that is plausible for forward scattering (Lan73 ,

Kis 74). Hence, for our study we use the value of we.“ obtained

in Chapter VII with our systematic approximation, but evaluated for



H
)

(
)

g
n. . )1 Lab;

in. {6.2%

3% v.19 I J.“
h.

p or.
( -l(|

umblam c. .2.

at; .n
4

octll - -t

.o v... .0») .. J.
(dill-Wt.“

‘.-‘
U

n.

saw.“ a. w); A

I

.

_ J ..u film a "Cacti.
1.-“ \

D! I». .(-rl(-<.’“
(. .1

I

I

v 0.....0 w.
_. h... tum mHmHmw...

2:.

I.“ $1651
)4, 5.pt .

o'(ffi.. .

 

 an N

fix

 
an... 



4O

forward on-shell scattering. This choice is intended to be repre-

sentative of the models found in the literature.1 The explicit

result is.2

(4.14) 6‘”: (,3°- (“13/2 U.)[ ( “67342 ‘2? * < 94:71'

In equation (4.14), the quantity (PP2“) is the ground state

average of P‘N (we use (9:“7:~l fm2). The variable P1:

is the relativistic momentum of the incident pion in the “TQM frame.

We take the energy parameter 00° to be

a...) w°= m;me + (wot/antatvio + tat/S] -

This expression for (10° is just the relativistic energy of the

pion plus the ground state average of the relativistic nucleon

0

energy (neglecting the potential energy). That is, (.0 is

0 V;(has) w=(v\‘ep°"+m;e‘) +mfic} + (N-é/zmc501?)
‘

a... ( eel) = < 3:“) + (P; /p,)2'

 

lThe difference between equation (4.14) and typical choices

is, at most, a few MeV. (See, for example, (Lan73) ).

zThe result6€ven here is obtained from the "linear approxi-

mation" (equation (7.6 of Chapter VII) for [P \-.= ‘9‘: he“9' and

£059wa.-
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CHAPTER V

THE FACTORED FORM OF THE 11' fine OPTICAL

POTENTIAL: A RECENT 5p p99 MODEL

When our work was nearing completion, Kujawski and Miller

(Kuj74), Miller (M1174), and Landau (Lan74) proposed angle trans-

formations which take into account the recoil of the nucleon. We

shall not discuss these recent developments in great detail since

in Chapter VII we present a more systematic choice for all of the

variables (wgm ’ h... ‘ ‘E‘ 3 : _a~ which is just as

N

easy to use as any of these more recent ad _h_g_c_:_ prescriptions.

However, for completeness, we shall give the general form of these

prescriptions.

.. l .—

Instead of assuming ‘% \ — \k \: a. as in the

angle transformation used in the modified static approximation,

we could have calculated \h\ and ‘h'\ by assuming some

~ A:

value for P in the quasi—relativistic relationsl

~

(5-1) Eli'- ‘3- Kw%/w°)‘)£ > 23 = Pu: (“g/c.3635,

 

lSee Appendix A for a discussion of kinematics.
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where GEE :: “ES. :; ‘E;'«+-‘i‘ :3 “;.*.i%: for a free

nucleon. The value for ~Pfl used bymli‘lille’rui is P" = 0

an

and the value used by Landau is E = — ii (93 _ 93' 3 .

With either of these choices, equation (5.1) leads to a non-linear

relation between Cosg‘n‘ and QO$9vy and the

resulting Optical potential is in much better agreement with the

fully integrated optical potential than the two Older ad hgg models

Of Chapter IV. In fact, the choice made by Landau gives an angle

transformation that is almost identical to the one we Obtain in

our systematic approximation to the fully integrated optical

potential.

A convenient way to compare the transformation of Kujawski,

Miller, and Landau (KML) with the transformations of the simple

static approximation (SSA) and the modified static approximation

(MSA) is to set [93 \-:. \ P35'\-.. (9° (1. e., on—shell)

and expand the transformation formulas in powers of b); I (,3... \l 5

keeping terms up to the first power in w“- I my . With this

procedure, we get the results shown in Table 5.1.2 In Figure (5.1)

we compare these transformations graphically for P1: :7- |.5 ¥M.

(aw: |88 MeV) . At Ova-0° , all three

transformations have the same value. The MSA and KLM approximations

0

also have the same slope at 9 7- O . At 6 = 180° the

1w 1”;

 

1The form given by Miller is equivalent on-shell to the

form given by Kujawski and Miller.

2To order ”31/93. , the transformations of Kujawski,

Miller, and Landau are the same for ‘9‘, -_-, ‘Qé\= 9

~
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TABLE 5.l--A comparison of the angle transformations used in the simple

static approximation (SSA), the modified static approximation (msa) , and

the Kujawski-Miller-Landau approximation (KML).

 
 

SSA: cote“: case“,

0 a O

as... (.0561... = “ZUw/w" + (\ + awe/w 3 Case”

0 2.

XML: C05 6“.“ -: -m§/m° + C069“, 4- (ww[w°)COS 91W

 



 
 

  

MSA

I

/
I

FIGURE 5.1--Graphical representation of the angle transformations

used in the simple static approximation (SSA), modified static

approximation (MSA), and the Kujafski-Miller-Landau approximation

(KML) for "3‘ =\|3\= e“; 1.5 fm
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SSA and ma approximation both give cos 9.“: -‘\_ while

the MSA gives COS 91m?! -2. . As discussed in previous

chapters, the unphysical backward angle values for 005 91"“

obtained with the MSA leads to large discrepancies in the optical

potential. The ICLM transformation has a C051 9““, term

which cancels the constant term for 91W... 0. or 150° 50

that C0591“ varies nonlinearly between + l and - 1 .

The inclusion of nucleon recoil via the KML angle transformation

apparently remedies most of the problems associated with the simple

static approximation and modified static approximation.

Although the more recent prescriptions which include

nucleon recoil are certainly an improvement over the prescriptions

represented by the simple static approximation and the modified

static approximation, they are no less arbitrary. Our systematic

approach to the factored form in Chapter VII eliminates this

arbitrariness by relating the prescription for' .aE: to the

fully integrated result and perhaps more importantly, our prescrip—

tion allows some insight into the physics of elastic pion-nucleus

scattering.

In Chapters VI and X we show results using the angle

transformation of XML. The general agreement with the fully

integrated result is surprisingly good although some important

features of the fully-integrated result (which are associated with

the choice of to“ ) are not given by the XML ansatz.
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CHAPTER VI

THE FACTORED FORM OF THE 1'" -uHe OPTICAL POTENTIAL:

THE EFFECTIVE PION-NUCLEON IMPULSE INTERACTION

1. Definition of the Effective Impulse Interaction

Writing the ‘fi' -uI-Ie Optical potential in a factored

form allows a convenient separation Of nuclear structure effects

from the pion-nucleon interaction effects; however, we must realize

that the pion-nucleon interaction factor which multiplies the ground

state fbrm factor is actually an effective pion-nucleon interaction.

The interaction factor is a function of just the pion coordinates

but should contain the effects of internal nucleon motion. It is

not clear.§‘pgigri that the simple static approximation or modified

static approximation properly represent the nucleon motion effects

(a pgsteriori they do notl) so we define an effective pion-nucleon

impulse interaction by writing the fully-integrated 11' -He optical

potential in the form

W U».a m= .‘)<.OF‘ft)

 

1However, the more recent KML approximation gives much

better agreement with the fullyeintegrated result than either the

simple static approximation or the modified static approximation.

46



. , /
firms w

. I- ‘0

4.»qu v4 TL tf ). . r
11x... t

 



47

0r

-\

(6.2) <t1m> :[( A-t) ‘0 ($31 Um" E“: P“)

~ ~

where (tfiflv is the effective pion-nucleon impulse interaction

and U1", is the fully-integrated 1‘ -4He optical potential

calculated as described in Chapter III. The above definition for

(tVfl allows us to have a factored form for the Optical

potential without making any arbitrary choice for £2. . We can

now focus our attention on (th> rather than the Optical

potential itself.

It should be noted that (t‘tu) is well defined only

in cases where P($3 has no zeros or where U1“, L P‘: PW\

xv av

can be written explicitly in factored form. Since we expect that

(an) does not depend strongly on the details of the

nuclear wave function, we take LP L P4N\ to be of the form

3, 2, ~

No EXVQ'HkR. 9“» with R0... (,5 {.m . This

choice results in a gaussian form factor so that <t“fl>

' l
is well defined. We calculate U using the

W L ‘3 Pl! 3
gaussian wave function and then obtain the fully-integrated result

for (Hg) via the definition in equation (5.2). In the

next section we compare the exact or fully-integrated result for

t with the result given by the simple static approxi-
1!“

mation and the modified static approximation.
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2. The Fully-Integrated IJulse Interaction Compared to the

Simple Static Approximation and the Modified Static Approximation

The two .a_.d hgg approximations used in Chapter IV to obtain

a factored form of the 1" JH—Ie Opti cal potential can now be re-

garded as approximations for the exact or fully-integrated effective

impulse interaction, i.e., (hfl'flw 9.: tfifl Q .9: 3

where .95 is given by the prescriptions in Chapter IV. We will

consider the simple static approximation and the modified static

approximation to be approximations for (tfiflv in the

remainder of our discussions.

In Figures 6.1 - 6.3 we show on-shell <t“N»

the following cases: (a) the fully-integrated result Obtained

from a numerical evaluation of U‘WV k g“; a:3 and the

definition in equation 6.2; (b) the result Obtained from the simple

static approximation; (c) the result obtained from the modified

static approximation. In all three cases we have assumed the pion-

nucleon interaction is in the (3,3) channel only and we have used

the following zero-range form for tm(£1.\:

A A

(63’ t,,,L.a.\= Yak“tubflew.

The above form is just the parameterization described in Appendix B

with I: 3/2.)I= 3/2, , and L3‘ . The factor d

is hence (| ’3“) tle .

It is apparent from Figures 6.1 - 6.3 that there are

33»

significant differences between the fully-integrated result for
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FIGURE 6.1—- The real and imaginary parts of the effective pion—

nucleon impulse interaction as a function of the cosine of the

pion-nucleus C.M. scattering angle calculated by three methods:

(a) (solid line) the effective interaction resulting from full

inte ation of the impulse approximation (FIA); (b) (short dash

line§rthe simple static approximation (SSA); (c) (dot—dash line)

the modified static approximation (MSA). The laboratory kinetic

energy of the pion is 110 MeV.
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‘ RE <t1rN>

- IOOO(MeV-fm3)

IIO MeV

 
 

   ------ SSA - -Iooo
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- 800 (MeV -fm3)
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FIGURE 6.1.
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RE <t1m>

\‘ - 200(MeV-fm3)

\\

\

~\ I80 MeV

\\ . L :00
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\\\ \

\ .

II 14, 4;>‘<" ‘\\ f\; ‘3' e? é;

‘\ ~ 1T 7T

\ \ \‘

‘\\
\\\\

--Ioo \\

-'200

IM<t1rN>

~ 2000 (MeV-fm3)

 
 

 

—— FIA

----- SSA ‘\

----- MSA  ~‘2000
FIGURE 6.2--As in Figure 6.1 except at 180 MeV. Note the strong

down bending at backward angles in the real part of the fully-

integrated impulse interaction (FIA).
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RE <t1m>

260 MeV ’ 800 (MeV-M3)
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FIGURE 6.3——As in Figure 6.1 except at 260 MeV.-
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(hfifiv and the results given by the simple static approximation

and the modified static approximation. In trying to understand

these differences we have arrived at a simple prescription for

(tun) which is in good agreement with the exact result and

which allows us to understand in a transparent way the main effects

of nucleon motion in elastic pion-nucleus scattering. We present

our prescription for (“kw“) in Chapter VII.

3. Comparison of the Fully-Integrated Impulse Interaction

with the Kujawski-Miller—Landau Model
 

As mentioned in Chapter V, when our study was nearly

finished, the newer models which take nucleon recoil into account

began to come into use. For the sake of completeness, we have

calculated <th> using the KML angle transformation in

Chapter V. The results are shown in Figures 6.4 - 6.6. Clearly,

the KML approximation is a much better representation of the fully-

integrated result for <t“N> , although there are still

some significant discrepancies.

It is important to note that at each energy the KML

approximation for <t‘RN) (as well as the other two pg hog

approximations) is just a complex constant times the function for

(.05 0“" given by the associated angle transformation

in Table 5.1. The surprisingly good agreement between the KML

approximation and the fully-integrated result thus indicates that

nucleon recoil is an important effect in (twu> .



FIGURE 6.#--The real and imaginary parts of the effective pion-

nucleon impulse interaction as a function of the cosine of the

pion-nucleus C.M. scattering angle calculated by two methods:

(a) (solid line) the effective interaction resulting from full

integration of the impulse approximation éFIA§g (b) (large dots)

the Kujawski-Miller—Landau approximation KML to case (a). The

laboratory kinetic energy of the pion is 110 MeV.

IIO
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FIGURE 6.5--As in Figure 6.4 except at 180 MeV.
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FIGURE 6.6--As in Figure 6%» except at 260 MeV.
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CHAPTER VII

A SYSTEMATIC APPROXIMATION FOR THE EFFECTIVE

PION-NUCLEON IMPULSE INTERACTION

In this chapter we outline a method for obtaining a

systematic approximation for the effective pion-nucleon impulse

interaction.

1. A Linear Approximation

We assume the fluctuations in t“”L-I}:’ \ due to

nucleon motion are small and make a linear expansion of 11“” (.0. \

obtaining for <£WN7 1

(\I "‘ #r

(7'1) <twu> = f) (.33 chfiufi' £3?“ ‘3

X[t1m(43:) +(V;I:m)? (11:12. A3?‘34»

cm
N

 

1It turns out a similar approach has previously been

used in nucleon—nucleus scattering (Kow63, Ade72). We thank

R. Landau for bringing these calculations to our attention.
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where the expansion point _fl. is arbitrary at this time. Clearly

~

if we choose _a. to be

~

(72)}: (“$3 S‘szi’fl, +F_\_" 59““?“CA?“

~ (210

 

the linear term vanishes so that we obtain the simple prescription

(7.) (twp a Em (:9

where :é is defined in equation (7.2). We call the above

prescription the "linear approximation" for <t“"> .

In order to obtain an explicit expression for (t‘u>

we use the gaussian form for “P(?4N} given in Chapter VI and

make a change of variable P:“a 12%“ L" so we have

2A

(7.4) 3; 2 €(%)-\ex9(- R7; ‘3‘”) A: ,.
P

x811. N: eva‘ 2R0 P/3)E;‘:)3

The form factor associated with our gaussian wave function is

efo- “tit/L) so we have finally

(7.9%: S41. MDex? (~23. P“M‘339*

' (2.1V)



(
i

0

ill!
I.)4,‘C

ItIll"'11)«II
N.‘rrrdpI

D

5‘

wsn,

'4was
'..

-

'

{u

..
q.110$0.”.

F“.in1I.u.¢

‘

,t‘)ICH.

“L.(I:  

 



60

We use the quasi-relativistic kinematics given in Appendix A and

obtain for .2. 1

~

(7.6) 13m= (.5- -——-.‘:[L“jai(?5*?£§+<?;c’>:l

(7.7) E '-"‘- E‘Q’D‘; /u>° %3(?£+?g)

(7.8) 1: = flaw;/m°)(%i\(vg ‘43‘31?) '

~

I
:

In equations (7. 6) - (7.8), E and P}; are respectively

the initial and final momentum of the pionin the WVCM frame.

The quantity' 000 is the relativistic energy of the incident pion

(0).“. -(‘fiC PW; + mWC >72; and (P41) is the

usual ground state average of Pet: . The energy parameter

0 0 ~

(ID is 03.“. plus the ground state average of the relativistic

nucleon energy (neglecting the potential energy), i.e.,

(7.9) (0° 2 w; + Mun?" + “1‘1/2M“0)<?:7

 

1We could use fully relativistic kinematics just as

easily. For purposes of comparison we consistently use the quasi-

relativistic kinematics of Appendix A.
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where (P:7"—<::“7 + LP“? hot. It should be noted

that for on-shell values of ?W and PE, and 61'p: 00, the

above prescription for (tun) reduces to the1'prescriptions

in the simple and modified static approximations.

In Figures 7.1 '- 7.3 we compare the linear approximation

for (t'fi“7 with the fully-integrated result.

2. A QuadraticAJproximation

A smoothing effect is mising in our linear approximation

for <t““> that can be included by using energy averaged

input for E““ or by including higher order terms in the

expansion of ti?» . We consider here a quadratic approximation

1
to in the ero-ran e t-matrix of e uation 6. .0'.“th _ z 5 <1 ( 3)

We thus expand the to second order in we». but only to

I

first order in k and l . This procedure provides a simple

~ ~

way of accounting for the main part of the nonlinear energy depen-

dence in t“

In Figure 7.4 we show 0‘33 k wa\ in the energy

7- 1..
region Uh“ \- M “A C. ’50 (mvtmfiyc - 400 MeV .

In regions where d3; L wa\ shows strong nonlinear

behavior, we want our quadratic approximation to produce an averaging

effect. For example, the peak in IM L433 3 at

.— ‘l- 2.’(40,.M me*“\a\c .. ISO MeV should be lowered

somewhat with a quadratic approximation.

 

1The parameterization in equation (6.3) is

tmg 4.3 = Y 0&3} L “3.3 43.3%. .
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FIGURE 7.l-—The real and imaginary parts of the effective pion—

nucleon impulse interaction as a function of the cosine of the

pion-nucleus C.M. scattering angle calculated by two methods:

(a) (solid line) the effective interaction resulting from full

integration of the impulse a proximation (FIA); (b) (large dots)

the linear approximation (LA) to case (a). The laboratory kinetic

energy of the pion is 110 MeV.
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. FIGURE 7.2--As in Figure 7.1 except at 180 MeV. The down bending

at backward angles in the real part is due to the higher average

two-body scattering energy for large angle scattering, which for

this case actually raises the energy from below to above resonance.
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FIGURE 7.3-——As in Figure 7.1 except at 260 MeV.
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We choose 0(3‘3kw0M3 to be of the form

— - 2.

where “3‘“ is given in equation (7.6). We require that

ti . h ° (.0equa on (7 9) be exact at t e pornts CM 3 WHAT. 6.0

where 6" 1' is the avera value ofno ee ( wcm— "2'93

calculated from equation (7.5). The explicit result for 6:0 is1

(7.10) 23(ch
a 2;.)[0:9<::.>

the“ m< 9.0]
(Note 6202' depends on the scattering angle, being larger~

at forward angles.) Using the above quadratic form for 0‘33

and proceeding as with the linear case, we obtain

(7'11) (twp : é-[Emf It,“ Hi“ (:1-3]

 

lWe us; equation (7.5) with .{L -) ( wcn" acmx

to define G.” . For R. - L5 v§m we have

(P;“)’” i {-vvfz‘ and ($.73 5/3 tn .

6239'.“ is about 30 MeV near the (3, 3) resonance.

 



where

-1- — - -,

(7.12)_(L :(w +6- 32:32 .

C.M— 0.)) N

The difference between the quadratic approximation and the linear

approximation is fairly small, but there is a slight improvement

so we use the quadratic approximation in the actual calculation of

elastic scattering cross sections.

3. Qualitative Effects of Nucleon Motion in the

Effective Impulse Interaction

The linear approximation for (t-“Q> contains the

main features of the fully-integrated result (see Figures 7.1 - 7.3)

so we can use the simple form in equation (7.3) to understand how

the effects of internal nucleon motion enter into the effective

pion-nucleon impulse interaction. First, however, we need to under—

stand the properties of _{L . The dependence of .22., on

P“-
~ ~

fact that the average value of P ,4 is "' L "'1" \

it 2A ’3?

and P“. shown in equations (7.6) - (7.8) is due to the

and not zero (we define "average“ here by using equation (7.5)

with .[L -" ? ). This result for ? is valid for any

~ 2.” f8“
single particle wave function of definite parity. Due simply to

momentum conservationthe average value of the final QNCM nucleon

momentum is “9410+ A..:.\%_"' E:— . Thus for

E4“ 3 TA

elastic scattering (viewed in the hNCM frame) where the nucleon

"absorbs" momentum Eff but no energy, the nucleon wave

function favors collisions where the nucleon momentum vector is
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reversed without changing magnitude. The effect of this momentum

— - "1

"selection rule" is to make “an , ‘91 and k all larger for
«I ~

large angle scattering than for small angle scattering. (We assume

‘ ‘ .’
\?£\ _ ‘9“ ‘ here for purposes of discussion.)

A. _

Let us now examine how the properties of .{L are reflected

- ~

in the behavior of t1”) L4}. 3 . We consider only the

parameterization of equation (6.3), but the main effects should be

present in any parameterization. First, in the angle factor, our

I

prescription for “E. and ‘93: generates an effective angle trans-

formation from the WNCM frame to the “VCM frame. This angle

transformation is essentially the same as the Kujawski-Miller—Landau

(KML) angle transformation given in Table 5.1 and shown in Figure 5.1

in Chapter V. In the limit £347 ‘1, our transformation is identical

with Landau's. (The (A- \)]A factor arises in our transformation

because we take into account the (small) effect of the recoil of the

nucleus as well as the recoil of the nucleon.) Hence, in our trans-

: . ' — —lformation c.0561,“ _ «92 £3 /‘.e£\\k\ A

varies nonlinearly between + l and - l as Cos a“ 2 fit. 9",

v

varies between + l and - l . It is interesting to note that for

\ fl: \: \P“.\ , Miller's choice( 9,, = O ) gives

—' ~ .I- ~ 1 La ' ~ .6 - - l. L '

‘g ‘ 1; ‘£\ .1. whiAe\ ndau 5 choice 2 - 2. 9“,-wa

.. ‘ a "’ "
arid— our resu-l-t ( Pt? .. .5? L 93 .. PI 3 ) both give

‘k' ‘ z: ‘t \ . Hence, elastic scattering in the WVCM

frame corresponds (on the average) to elastic scattering also in

the WNCM frame when nucleon motion is taken into account correctly.1

 

lThere is actually a different “NC-M frame for each

component of the nucleon momentum. We really mean the "average"

“NW frame when we speak of "the" WNCM frame in elastic

pion-nucleus scattering.
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Next, the factor X in equation (7.3) (see Appendix B

for an explicit form) has a nonneglible dependence on P‘- and

~I

at . This factor has previously been treated as a constant

~

for each scattering energy. (Lan73, Kuj74). At backward angles

X is approximately 1, whereas at forward angles X is about

.8 or .9 for the energies we consider.

Third, the most interesting feature of the effective

impulse interaction is the dependence of 0‘33 c we“) on

fir
~

scattering amplitude (He or Im part) is increasing with energy, the

l

and F“. . In energy regions where the free pion—nucleon

factor 433 me‘x (Be or Im part) is larger at backward angles

because u) is larger there. The reverse is true in energy

CM

regions where the free scattering amplitude is decreasing with

increasing energy. This effect is quite evident in the real part

of <t1tfl7 at a pion laboratory energy of 180 Mev (see

Figure 7.2). For this case the forward scattered pions have an

average WNCM collision energy that is below the resonance

energy while backward scattered pions have an average collision

energy that is above the resonance energy. The real part of the

free scattering amplitude changes sign at the resonance energy,

causing the real part of (£11137 to be strongly distorted

at backward angles. At other laboratory energies the effect is

much less dramatic, but is still present.

I Finally, itis interesting to note that although our

parameterization of £1!» in equation (6.3) is a zero-range

form, the effective impulse interaction (tun has a finite

range (which changes with the WDCM scattering energy (0. ) due

_ '

to the dependence of (Om on P“, and ES. .

~

 



CHAPTER VIII

CORRECTIONS TO THE IMPULSE APPROXIMATION

Up to this point we have assumed the t-matrix for

scattering of a pion from a bound nucleon is the same as the free

pion-nucleon t—matrix, i.e.. we have used the impulse approximation.

We now consider corrections to the impulse approximation using a

3-body model.

The calculation described in this chapter was motivated

by estimates given by Goldberger and Watson which indicated that

binding effects in pion-nucleus scattering are large in the (3,3)

resonance region (Gol6h). Our calculations indicate that the effects

are, in fact, not very large. Moreover, since the calculation of

binding effects is very tedious even in a simple 3—body model, we

have developed a fairly good approximation to our exact calculation.

Most of the work presented in this chapter was done some

time before the calculation presented in previous chapters and,

consequently, there are some minor differences between the model

used here and the one used in previous chapters. In this chapter

we assume an infinitely heavy nucleus and use a finite-range

off-shell parameterization of the free pion-nucleon t—matrix.

Our experience indicates that these two factors do not significantly

affect the results. Since the binding correction itself turned out

to be fairly small, it was not necessary to modify this early model.

71
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l. A33:Body;Model

Instead of treating the complete problem of a pion and

A target nucleons, we consider the interaction of a pion with a

single nucleon which is bound in a fixed potential well.1 We

shall assume in this chapter that our 3-body model is a reasonable

approximation for the (A + l)—body problem. In Appendix E we give

a theoretical justification for the model.

In our model the incident pion interacts only with the

nucleon and not with the potential well itself, so the model

Hamiltonian is

(8.1) Hsz+HN+V“N.

Here K“ is the relativistic pion kinetic energ, H" is the

Hamiltonian for the bound nucleon and VWN is the potential

between the pion and the target nucleon. The nucleon Hamiltonian

H” is taken to be

(53-2) H“: KN +UM

 

1We note that since the potential well is fixed in space,

nuclear recoil effects are neglected and the “FUR coordinates

are identical to the laboratory coordinates.
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where K“ is the nucleon kinetic energy and U” is a single

particle binding potential. Our 3-body Hamiltonian is formally

similar to the original (A + 1)5-body problem in that the nuclear

Hamiltonian H, is replaced with H" .

By replacing H, with H“ in the formalism of

Chapter II, we can easily obtain the t-matrix for scattering of

a pion from a bound nucleon in terms of the free pion-nucleon

tz-matrix. 1

(8.3) Tum) sqfle'l *tcke"[°8“” gill-4)] Tmtey

Here t1“. is the free pion-nucleon t-matrix and °t and 0x0

are given by

. '4

(804) *Le\ = (E-“fi'K”- UN +L€\

' 3 . -\

(8.5) arcs): LE-Kw-K“+cg\ .

 

1We thus replace the nuclear degrees of freedom with

the degrees of freedom associated with a single bound nucleon.
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The propagator %-(,E\ can be written as

(8.6) 08m): 08.63 *- caAnku 8’“)

where RN is defined as

(8.7) RN = UN + UN cEOLE3 RN °

That is, RN is the t-matrix associated with the potential U

’t“
“’N

(8.8) if“: E\ -.-. inf) + tamce‘) [050(3) - (34.5)

+’ %OKE')R“ $0C‘X] 4:".(23

In Chapter II it was stated that the energy E. in

N 0

We can now write as

tn“‘1.) is an arbitrary parameter. Several authors have

suggested that E, can be chosen so as to minimize the second

term in equation (8.8) (Sch72, Lan73). We intend to calculate

the second term explicitly so we simply take E}?- E. . Setting

EL:- E. in equation (8.8) we obtain for T1“,
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(8.9) Thu) = tugs) + fake.) (30(6) RN 08002) flute.) .

Rather than attempting to solve the full integral equation for

1;.“ , we calculate the first two terms in the series. It

turns out that the second term is small compared to the first

term, so our procedure is reasonable. We also assume that t1!“

acts only in the (3,3) channel (i.e., “tn“: +333 ), so we

want to calculate

(8.10) first“ = tum) Jet-tat?) 3.5.5)?“ ‘3.£€\t3§F-3 .

The separable parameterization of Appendix B is used for tag .

The off-shell factor fibfi) used in the separable parameterization

(see Appendix B) was taken to be k /(\+ kt ‘3‘) 000%}

rather than unityl. The t—matrix RN is assumed to have a single

:5- wave bound state at EN = - 20 MeV.

Equation (8.10) can be thought of in terms of multiple

scattering and represented diagrammatically as in Figure 8.1.

1In previous chapters a zero-range force was used so that

the off-shell factor was one. The off-shell factor given here was

taken from the work of Charlton and Eisyeznberg (Cha71). The factor

2.

(out) is (ta-ewe“ + m“. a) and r,

was taken to be .5 fm. We have found the elastic cross sections

to be relatively insensitive to the form of the off-shell factor.
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“- 1r
\ 1 4

\\ I \ -~

‘ I, \ /’ \ I
\ \ / \ /

T .. \ I + ‘ \’

Km ' 'H‘ N

Figure 8.1 - Diagrammatic representation of equation (8.10).

The first diagram is the impulse term and the second is a correction

to the impulse term. In the second diagram the nucleon is scattered

by the potential well (via RN ) between scatterings with the pion.

The interaction of the nucleon with the potential well causes the

nucleon wave function to be "distorted" in the intermediate states.

Thus, our 3-body model takes into account multiple interaction

of the pion with the same nucleon and the distortion of the nucleon's

wave function by the binding potential.

In preliminary calculations using a square well for UN ,

the main contribution from RN appeared to be coming from the

bound state pole. It is well known that near a bound state pole

a one-term separable potential gives a good approximation for a

local potential (Lov6h). Also, a separable potential for U con—
N

siderably simplifies the calculation,so the binding potential was

taken to be an s —wave separable potential of the form

(es-11> UNLP; 9&3 -.:. lu‘uhuflufl
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where unififi = (dz+?:\‘) 9“: 3A“ {'M-‘

and I 7" 38‘35 MeV' £M.‘ . These values for OK

and X give a bound state at -20 MeV with an EMS radius of

1.61 fm. (A one-term separable potential can produce only one

bound state.) The t-matrix associated with the above separable

potential is

(8.12) RuLawN'fiQ-s lumbmsxuxm .

The energy factor Y‘NLE} is given by

km» \ "

91m." 24 (a + up]

 

 (8.13) V“ LE3=[\ + (

7

‘where in; =: (EZ.VV\..EL /h${“)‘z'°

The matrix elements for the binding correction term were

calculated using the vector bracket method as described in Chapter III

for the impulse term. The binding correction term considered here is

considerably more complicated than the impulse term, so instead of

giving a detailed derivation we indicate schematically the procedure.

A more complete development is given in Appendix F.

We want to calculate
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(8.14) A‘EW“E (P11- K°\t33°30?‘w “5ot33\°7)Pg> °

Denoting a complete set of two—body states for the pion—nucleon

C.M. frame as ‘WNCM)S(‘WNQN\\ and a complete set

for the pion-nucleus C.M. frame as \ WVLM) S <‘“‘ng\

we calculate

(8.15) at... -.-. < 9130 \wvcu7g<www\wwcw7(<wwcw\

x t33\lTNCM>S<WcM\TWQM) SOW
LM

" %0R“ %0 \WVCM7S (WCM\
“N CM>S<1TNCM\

X £33 \WNQM)S<'WNCM\ “c
h784'WVCM\ O)‘ ?fl'> .

2. Numerical Results for T1311

We have calculated exactly the L = O and L = 1 components

I

of < V: ‘(o \Tfl'fl ‘0>\PE> for energies between 31 and

373 MeV (P. = .5 tn“ +0 2,5 {.M“ ) . In Figure 8.2

the result for L = l is plotted on an argand diagram. The solid

line is the impulse result and the dashed line is the impulse result
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(3|) ’

l 1 l l 1 J L l l l l I1 1 1 1 RE

' 500 0 -500 -|000 -|500

(AM/4m” '

FIGURE 8.2--An Argand diagram of the L = 1 component of

< E“: \(O \t‘HJ 0) \ PE) (impulse result)

and

< PI: ‘< D‘Tm\ O > ‘ P‘s) (impulse plus binding effects).

The solid line is the impulse result and the dashed line is the

impulse result plus the binding correction. At a given energy, the

arrow connecting the solid line and the dashed line is the binding

correction itself.
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plus the binding correction. At a particular energy, the arrow

connecting the solid line and the dashed line is the binding

correction itself. The real and imaginary part of the binding

correction (i.e., the arrow) is shown as a function of energy in

Figure 8.3.

One immediately apparent feature in Figure 8.2 is that

the binding correction term (i.e.,the arrow) is small and "rotates"

about twice as fast as the impulse term. A more careful study

indicates that the binding correction term varies approximately

as ( -i ) times the square of the impulse term. The simple relation-

ship between the binding correction term and the impulse term

prompted us to look for some simple approximation which we could

justify theoretically. In the next section we derive an approxi-

mation for the binding correction term.

3. A Single State Approximation for Binding Effects

As we mentioned in the previous section, the main

contribution from the t—matrix RN comes in vicinity of the

bound state pole, i.e., RN(e) is the largest for 3% EB .

We want to consider now a simple model which takes into account

just the bound state pole contribution.

The one-body t-matrix associated with a potential V can

be written

(8.16) T = v + v (E- K+Le)“T
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where K is the kinetic energy operator. We can also write T

as

(8-17) T :. V + V Z M0<MA
m .

E'EM‘t-Le

whence the kets \M.) are the eigenstates of K + V and include

"W
the continuum. Near a bound state with energy E the L—

i

tens-In dominates so we can approximate the t-matrix there by

(8....) Ta V “N“ ‘V

E- Evie

 

T1113 :form, which is discussed in some detail by Lovelace (Lov64),

is the form we will take for RN . However, in our problem RN is

giVen by equation (8.7) which includes the pion kinetic energ,r

0P8rator in the propagator. Writing out the propagator % o

exPli citly, we have for RN

, -\

(8.19) R“: U“+U“(E-Kv-K“+L63 RN .

An ec[trivalent eQuation: analogous to equation (8'17)’ is

(8°20) RN=UN+UNZ \;?<b\ r U

“ -KT-ELt-Le
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where \b) are the eigenstates of KN + UN , including the

We assume the potential UN has only one bound

state and use the form in equation (8.18) to obtain an approximate

form for RN near this single pole.

continuum states.

(8-21) Rfig UN ‘°><O\ .U“

EEKW-EBH‘B

Hence EB is the energy of the bound state ‘0) . Now the energy

E is E. = 56* E.“- where E.“ is the kinetic

energy of the pion. The denominator in equation (8.21) hence is

Thus, in our single pole approximation, we have for RN

IO)<o\

(8.22) R = U“ . V»
N En‘Kwfle

use, we take for the pion-nucleon t-matrix the spin-isospin

a-Ve:I:'aged (3,3) channel component of tag which we denote as

t3; . Then using equation (8.22) for RN we have for the

bil’lding correction term

_. ' - UN‘°><°\U '-
<8.23) at“-<3\<o\t33%. {aw-Kn; getalmpg) -
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Inserting a complete set of pion states on both sides of

% R“ ck.) and remembering that %o and RN are diagonal

with respect to the pion momentum we obtain

‘3 ll

- ) at s S A P - ..(8 21» we in? < PI: (<O\‘t33\ 2.5 >

U“ \o>(0\ U...

x°ho , fio<§lz3aio>tgr>°
 

I .

The denominator E17- K‘. +Le can be written

 

(8.25) LET‘K:+LES‘Z K“ - LWSLEW‘K;\ .

II

I

’1.
2

Since K“. 2 {tic} P13 + M;C.~)" MEG} we can

Write the S -function in terms of the momentum

  

_\ . o

(8.26) (E“- u + L6) = W n - urea... MP} P‘s)

Fit-K“, ‘Wc? F1:

1. - "I" 0 ‘2-
Where E“. = (ktct e; + fiQA‘) _ mtg?- E on“... MWC’
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3 u u" u

Remembering that A PT means ?'W A?“ (3.1?“

'W

and keeping just the S -function contribution from RN we have

ll

a’:jE'—«t;ez‘ the integration over ‘3‘.

(8 -27) At‘WN: 3,3119; (a; \<O\:E33 \ ?1:">

mv ~

X(- L“ (Q; ?:)%OU” \°)<°\U” C30

'W’c.‘

X<?‘:“\:€3‘5\0>\PI> °

 

H

In equation (8.27) the notation ( P“. > means a state where

N 0 ~ 0

\ R | = 9 but the direction of P is still an
W ‘- 1"
~ ~

1r"Vtegiltaxion variable. We can further simplify Atw“

I

noting the form that (to now has. Before we took the LS

Part of RN , ‘30 was given by

by

-\

(8.28) 06": (EB+E“-Kw-\<N+Le) .

. " 0

Taking the LS part of RN puts IP“.\: P so Kw
~ 1"

and %0 becomes

(8.29) ”16°:(EB-KN4r LEY‘ .
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-\

Now by definition (EB- Kut 3.6:) UN ‘0) '3 ‘0)

so we can write equation (8.27) as

(8-30) Stun: gfl:h;géa?«<9;
\M‘%‘0>\?1:u>

X <P“°“\<o\:€:n ‘°>\?w> ‘

—- on

The quantity < P“: \(O \f33 \ o)‘ P“ > is the

same matrix element that was calculated for the optical potential

in our independent particle model for “He, 1.8.. we wrote in

earlier chapters (for just the (3,3) channel):

(8 31 > o“”(P

2
:
1
-

, 91:") s (A-\\< v1," \(o \‘Esgl o>\ VETS

so We can write equation (8.22) as

 

(8.32) At“ : ' “L”; P;

" LIA-t)" “W‘s"

‘ .u o"

xgdha‘uUmki BE)U1HSP" PB) .
N
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W113 a partial-wave expansion of U‘WV we obtain:L

 3) At "' ‘ (—-—"‘-’-i'“4 Po

(8 ’ 3 1‘" " (rt-n" 81Fwe

2._L__-H

L

x ,1.-——U1'U4?9;)U;vLP;8,)PLLz;-$,).

In Figure 8.1+ we compare the approximation for At-"N given

in equation (8.33) with the exact result for L = 1 . Our approxi-

mation is fairly accurate and since the binding correction is small

we felt that the approximate form was adequate for our purposes.

Our approximation allows us to understand the main features

of At“I in a simple way. The fact that the bound state pole

0f RN contributes strongly means that the factor %0Rn *0

is largely imaginary and the pion momentum is on-shell so that

< 9.. \<o \t..c,.me,. t... \o) \ 2.7

variesapproximately as - L[<PPK‘<O‘:€33‘°> ‘ va-lz’.

This relationship between the phaseof the impulse term and the

phase Of the binding correction causes the impulse + binding

term to lie "inside" the impulse term on a argand diagram (see

Figure 8.2). In the resonance region the binding correction term

is approximately 1800 out of phase with the impulse term so that

—-—\‘

1In equation (8. 33) the partifl—wave components

are defined by the expansion

Uriah”‘-“"‘U.m'0W3; it.)
-
.
P

 



 

 
 

  
 

.
R
E
A
L
P
A
R
T

\
/
’

I
M
A
G
I
N
A
R
Y
P
A
R
T

-
-
2
0
0

.
5

L
O

I
1
5

1
1

1
l

 
2
.
1
0

2
.
5

5
L
C

L
S

2
.
1
0

O

l
L

1
1
1
]

1
L

l
l

1

I
I

3
|

I
O
Z

|
8
8

2
5
9

3
7
3

3
|

I
O
Z

l
8
8

2
5
9

3
7
3

E
1
r
(
M
e
V
)

I

F
I
G
U
R
E

8
.
1
4
m
-
T
h
e

r
e
a
l

a
n
d

i
m
a
g
i
n
a
r
y

p
a
r
t
s

o
f

<
9
:

‘
<
0
\
t
3
}
%
o
k
u
$
0
£
3
3
‘
0
)

\
g
)

f
o
r
9
:
1
)

c
a
l
c
u
l
a
t
e
d

t
w
o

w
a
y
s
:

(
a
)

(
s
o
l
i
d

l
i
n
e
)

t
h
e

e
x
a
c
t

r
e
s
u
l
t

u
s
i
n
g
v
e
c
t
o
r

b
r
a
c
k
e
t
s
;

(
b
)

(
d
a
s
h
e
d

l
i
n
e

t
h
e

s
i
n
g
l
e

s
t
a
t
e

a
p
p
r
o
x
i
m
a
t
i
o
n

f
r
o
m

e
q
u
a
t
i
o
n

(
8
.
3
3
)
.

T
h
e

s
o
l
i
d

l
i
n
e

i
s

t
h
e

s
a
m
e

a
s

i
n
F
i
g
u
r
e

8
.
3
.

2
:
5

'.
P
f
”
(
f
m
fl
)

l
l

  

88



89

the imaginary part of the pion-nucleon interaction strength is

reduced by 10 - 20 % . Above and. below the resonance, the phase

1. 5 such that the real part is decreased.

The bound t—matrix ‘1‘“ is now obtained using our

a,,13:92::‘cbximatzl.on for At““ . (We also write the impulse term

Ln terms of U‘w.)

(8-34) <91;\<°\’:m\°>\?}!>

.. \ ZLH ‘- a

PM 2'41! UMP?“ PW} +

-i. 00.39.. .

A-\ Bw":3e‘- UWW'P‘: “INC?“ 915:}

x PLL 9. - P“\

 

If We extend our approximation to include all terms in the series

implied by equation (8.9), we obtain

(8.35) < a; \<°\1:m\o>\?£> :-

l 2__L+\

u-nL _41;_UH

UL g b L o

_ “L919...BUM?“ Pa

“3;?-BVC.) an](A-\\( ‘—

HT'48;‘-;\‘c)1wU U)“;

.Lv.‘ 2.»

 

x [10:43“)
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We shall refer to the above approximation as the "single state

a,1119:]:‘03‘21111331510n" for the t—matrix T'WN since we have assumed a single

bound state for the nucleon. Equation (8.35) is used in the actual

calculations of the cross sections. The numerical differences

between "equations (8.314) and (8.35) are very small.

1;, - A Closure Limit

In order to estimate an upper limit on binding effects

of the sort we discussed in the previous sections, we now consider

a model where there are an infinite number of bound states (as in

a hamonic oscillator potential). We want to emphasize that our

aim is only to estimate an upper bound for binding effects and not

to represent any physical system.

We generalize equation (8.22) to represent an infinite

number of bound states by taking RN to be of the form

03-36) R LE) = “ .
“ z; E- EM-t- Le.

5° “that equation (8.30) for At'KN becomes

(a...) AtM-eggfigz AJLP..<P£\(O\t53\m)\P:>
1“.

K < 91;"‘<M‘€33\ °>‘?lr> '
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Using the factored form as was done in the optical potential

calculation (see Chapter VI) we can write equation (8.37) as

(8.38)

X (P'
.Mx-%§>,o..ct*-v.w<t..u§x29>

N N

/here no? -03" +4.1 W—E am it?

the flation; =( m?- (.4. +mfi'c} L PM31)VL. The vector

p“. has fixed“magnitude

is defined by

“‘3‘? but the direction is variable.

0

Since the energy ml’ is much larger than £0“ EM

we ’M M. o

et to and to obtainin

S “)1 “31‘ at: P“ g

(8. :39)

set=( éfiméa<2. 39>

(ML?

 

‘3»thW'-44’”)?L95—-?.,3.
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Now the form factors are given by

M0

‘8‘” Emits“ Sifiquotgéii
m)"

so that using closure we have

(8.41) '_ o . = l_ .

E (Don‘t: EXPMOLPAS-?I\ (000( P: 912‘

|

The Quantity foo L E“.- wa is just what we have

~ I0

veen calling ()(%3 so equation (8.39) can be written

(8A2)

4. P1? m;

At“: ( szfi‘c13‘0q')

x (All. Gem: e5»Gauge» .

“aid. mg a partial-wave expansion of (t3‘5 L P". 9‘: 3) and

~ ~

< {33 (PI? Pw\> we obtain the result

4
.
‘
fl
'
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(8A3)

Atfiuz (2:2:Wt:t) (0 ($3

K 23—“:<1E33L?‘P°3><:E33LP; PM)PU"9'»

 

@tending our result to include all terms implied by equation (8.9)

/e have

(8.111») 0;“)

"L"__1r__

New»: ext—T—K‘c"1)? 30"

2—2m (tncewv.))._<t33(91. P91 PLA

at 3.» -
I. 4‘“ LOOK?"

l *’ __“.

8‘?RC} (twéw“ 9")>L

Using this approximation we obtain for the closure limit form

f ‘

° 1!»

 



(8A5)

 

PufKowm‘oNiw>= (“5192”ZL-H x

 

F- .
P A A

< t33(er %‘>L--(31:21; <t33(:f)»ih33(19w)>l. fawn?»

L ‘ + 37.1%;1<t33QP1§PW°>>L_  

’The 010sure limit varies with energy in roughly the same way as

the single state approximation, but the effect is about twice as

large. For example, near the (3,3) resonance the single state

approximation reduces the imaginary part of the impulse term by

about 10 - 20 % in the forward direction while the closure approxi-

m§tions reduces it by about 30 - 1&0 %

The results we obtain for AtWN in the closure

limit are in good agreement with results given by Goldberger and

Watson (G016+) who estimate the binding correction term to be

aIbQut 2/3 of the impulse term near the (3,3) resonance. Goldberger

311k Watson do not sum the binding correction series so their result

comesponds to the result we obtain in equation (8 1+3) Our equation

0

(8.4-3) gives the binding correction at 9 = 0 to be about 60 %

of the impulse term near the (3,3) resonance, but after the series

is S‘ummed in equation (8.144) the correction is only about 30 - 1+0 76

of the impulse term.

 



q
. w
.

I

 



95

In Figures 8.5 - 8.7 we show the effective impulse

interactions given by the single state approximation and the closure

limit.
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FIGURE 8.5-~Three different versions of the effective pion-nucleon

interaction: (a) (solid line) the fully-integrated impulse result

(FIA); (b) (dashed line) the single state approximation for binding

effects €SSAB); (e) (dot-dash line) the closure limit for binding

effects CAB). The laboratory kinetic energy of the pion is 110 MeV.
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FIGURE 8.7--As in Figure 8.5 except at 260 Mev.

 



CHAPTER IX

CALCULATION OF THE ELASTIC SCATTERING CRwS SECTIONS

In previous chapters the calculation of the pion—nucleus

optical potential was discussed; in this chapter we discuss the

calculation of elastic cross sections from the pion-nucleus

optical potential .

l. Elation 0f the Cross Section to the Pion-Nucleus t-Matrix

The elastic differential cross section is related to the

elastic scattering amplitude {“99‘,\ by

(9.1) Aw/sz. :. \,§ng\ \2.

and the elastic scattering amplitude in related to the pion-nucleus

t_matnx Tm

 

0 O

(9.2) _. __ ‘ W w»

100
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where |P; ‘1:- ‘Y‘; \-{> , P1: being the incident

pion momentum in the mug frame. The energies (.01: and

b): are given by hf}..._ (M1g*+‘w'c7’ P413».

and “012- (“43¢W+M19°2)7~

Defining the partial wave components of 17‘”(P“ PW}

as

IL
A, A A

(9.3) T1‘.” (9‘: PW} : ZWSTRV(?L: ?3\ R} Pu. P1X Ac 91;?»

~\

so that

(9.4) Tr”(PEI {DEV @(ZL;‘»T17120)“?\?(Pw'afl

 

we easily obtain for the total elastic cross section,

(9_5) *‘S‘Q‘LB‘?\\1A-¢

PH b);V5___v\ ZZL-H

7.1V w°+to?)

 

USing the Optical Theorem, we have for the total cross section,

e.,-=0](9.6) C)" : 4'“.

TOT
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The reaction cross section is then given by

R

Q 6’ = ‘ E(9 7) TOT 0"?" <3;01' .

2. Calculation of the Pion-Nucleus t—Matrix

I

The auxillary pion-nucleus t-matrix ‘YRTV was defined

in Chapter II using a relativistic Lippmann-Schwinger equation

of the form

(9.8)

RM?“ ‘30 = Unfit?" P39

u I ll

(00- (Amt) +Le (210”

with the actual pion-nucleus t—matrix being given by

(9.9)

I

R(PW'PE\=(A/A-\)TW(P1EF\.
» N fl
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I

In order to actually solve for -r;ry we must first reduce

equation (9.8) to a one-dimensional integral equation. We define

I

the partial wave components of 1;.” and U‘WV using the same

definition as for -‘;EV (see equation (9.3) ) and obtain a one-

L.
I

dimensional Lippmann—Schwinger equation for' -T;EV

(9.10)

IL , L c

T (P p“): U‘VU’IP‘S

00 , " IL 4 "2'

Ufivwwqrfiwui‘ 9‘) PF 491':

(0,-(ok9‘h + Le. (pm-)3

 

L.
l

The above integral equation for -T;r is solved numerically

P

using matrix inversion techniques. The method is discussed in

Appendix G.

3. Partial-Wave Decomposition of the Optical Potential

As discussed in the previous section, a partial wave

decomposition of the 3-dimensional optical potential is needed

for the solution of the scattering equation. In this section we

discuss the procedure for obtaining such a partial wave decomposition.

We always assume a 3-dimensional pion-nucleus optical

potential of the form
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(9.11) UWL P; gr) : (A-\\<tm§ {9gp

~~

where A is the number of target nucleons and (0(3) is an

empirical ground state form factor.

When we have an explicit 3-dimensional form for (tWN>

(as in the quadratic approximation, for example), it is simple to

obtain the partial wave components of UT”) . We first write

Was

(9-12) loggfi= EL, (0L ( t1: P9 PJ :1 ‘30 ’

Then we .111. (HO as

(9.13) (imp -= 2;. (2:;‘)<‘bm L R} 5’. $1) .
'W

 

So we have

(9.111)
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Multiplying equation (9.14) by PL‘ P“,AI'P‘.\ and

 

5' A

integrating over F“ . P‘. we obtain

(9-15)

L P:

0“ 99:9

(fi-WLZ m<fl‘fl"00\\.0§<‘t ( ‘
m 2L+ t “flvfl' EL." PW 9'\ .

When we obtain (“00) numerically by calculating the

“He optical potential using a gaussian ground state wave function

L.
and the definition in equation (6.2),we calculate Um) in a

slightly different way. The definition in equation (6.2) gives us

(9.16) (tun) : ":5— U (a: PE)/®(%D

where U‘(9"?P) is the numerically computed gaussian “He

optical potential~and F ($3 is the associated gaussian form

factor. The numerical calculation of Uo‘ automatically gives us

the partial wave components U; so it is convenient to use

these components directly in the calculation of the partial wave

com nents of U . The general optical potential U is

P° 1W 1W

given by
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(9.17)

Um ( P3" Pr) = (9“) (t...) {0 (517)

= (MET”t‘gEl/PJT] (“99)

(9.18)

U (949»:
“V

 

(NOB‘Z2(2|A1'T')\J;(P,rP'PP)PH“;)flgV/Np.

We now define a ""reduced form factor ‘0(’%)/P(%) and make

a partial wave decomposition of this reduced form?factor.

(9.19)

EC37)?’ (Np/@931 2.? any.» $91.39
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Then following the same procedure as in equations (9.19) and (9.15),

we obtain for the partial wave components of the pion-nucleus

optical potential

 

(9.20)

{1;} P,‘ 9,) =

(351)2J :LL:\‘)<L....1Ooo‘LO>U°:(9“9‘3‘?”on

The above method thus allows us to calculate optical potentials

with realistic form factors directly from the fully integrated

aussian ”He optical potential. We note that even for ”He this

method is necessary since the empirical “He form factor is not

purely gaussian (Fr067) .

1+. The F931 Factors

In calculating elastic cross sections for uI-Ie, 12C, and 16O

the form factor in the relation U‘fl'y( p‘PEV (A-\)<t‘N» P(%)

is always a ground state form factor compatible with electron scatter-

ing experiments.

The ground state form factor is defined as

(9.21) (OLgX ‘5'- [OQC %)/€P(z\
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where to is the nuclear charge form factor obtained from electron

scatterifg and F is the charge form factor for a proton. The

division of f Pby f is intended to remove the effect of the

0. P
finite proton size s0 {2 I F? is the form factor for an

ensemble of point particles.1 We take (0 to be

P

(9.22) to (5p .-. exp (- if: f/ a.)

P -

where r? = .76 fm. (Ehr59).

For “He we take Fa from the work of Frosch et.al.

(Fr067), so using equation (9.21), we have for the “He ground state

form factor

(9.23) (9(1): L | — (£1,7'36] exp (- baht)

where Q: .316 fm and b= .606 £111 .

For 12C and 16O we use the parameterization of Ehrenberg

et. al. (Ehr59) for (O . The resulting ground state form factor is

Q

 

1The finite nucleon size is already contained in the

pion-nucleon t—matrix so it should not be included in the nuclear

form factor.
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(9.21»)

1°91.) =

Cl - o(( ‘dcflf/z (21-343 ex]: L— (ibctchf/AJ

where QC”: 1.66 fm, QCh: 1.59 fm, a( = (A—u)/6.

5 . Treatment of the Non-Resonant Channels

 

In calculating nucleon motion effects and binding effects

we aSS‘JIIISL‘i. the pion-nucleon interaction is in the (3,3) channel only.

In the actual calculation of elastic cross sections we include the

non-resonant parts of the optical potential via the simple static

a-I’P1‘039‘-Ina.tion. Consequently, whenever nucleon motion or binding

effects are taken into account the optical potential is the sum of

two parts. A "resonant" part which includes nucleon motion and/or

binding effects and a "nonresonant" part obtained from the simple

static approximation. This procedure is adequate since the non-

I"’I‘SCHhELnt part of the optical potential is relatively small at the

energies we consider.

6° Conlomb Effects

Finally, the coulomb potential is neglected in this calcu-

ladzion. The work of Lee and McManus (Lee71) indicates that coulomb

effects are unimportant in the (3,3) resonance region.



CHAPTER X

COMPARISON OF THE CALCULATED

CROSS SECTIONS WITH EXPERIMENT

1- IEPulse Approximation Results for “He

The results for'nHe given by the fully-integrated impulse

aPPI‘OXimation (FIA), the simple static approximation (SSA), and

‘the mOdfixfied static approximation (MSA) are compared to the

experimental data in Figure 10.1. The results for the quadratic

approximation are shown in Figure 10.2 and for the Kujawski-Miller—

Landau (KML) approximation in Figure 10.3.

We shall be mainly concerned with the predictions of the

FIA (01?:its equivalent) since this model is preferred on theore-

$1931 encounds. However, in order to show the consequences of using

§§;§QE_Inodels which are poor approximations to the FIA optical

potentigil, we also discuss the predictions of the SSA and MSA.

a. The First Minimum in ”He:

The first minimum in “He is apparently due

to the p -wave pion-nucleon resonance and is

approximately stationary at ~ 770 in the WUCM

system. The correct prediction of this minimum

is an important test of any 11' —uHe optical

potential.

110
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FIGURE lO.l--The elastic 17 -uHe differential cross sections

resulting from three different effective pion-nucleon impulse

interactions: (a) Esolid line) the fully-integrated impulse

result (FIA); b short dash line) the simple static approximation

(SSA); c) (dot-dash line) the modified static approximation (MSA).

The energies shown are the laboratory kinetic enerat of the pion.
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As can be seen in Figure 10.1, the FIA

correctly predicts the location and relative

depth of the first minimum at all energies

except 260 MeV where the experimental minimum

is somewhat weak. At 260 Mev the predicted

minimum is too far forward by 5° and too

deep.

The SSA and MSA do not fit the first

minimum in “He nearly as well as the FIA.

The MSA gives the first minimum too far

forward at all energies and the SSA gives the

first minimum at too large an angle at all

energies except 150 MeV. For most energies,

the relative depth is too large with the MSA.

The SSA generally gives a more accurate depth

for the first minimum, but fails badly at 180 MeV.

The first minimum becomes considerably

weaker at 260 MeV. All three models indicate

a decreasing depth for energies above 220 MeV,

but none of the models have the proper degree

of weakening at 260 MeV. The FIA and MSA minima

are too deep, and the minimum vanishes completely

with the SSA.

The predictions of the various models for

the first minima in “He are directly related to

the angle transformations involved (i.e., the



llh

relationshi between 0 a and 059 .p C. 5 1m C w )

These angle transformations will be discussed

in detail in a later section.

The Second Minimum in “He:

At 180 MeV, a second minimum appears and

is quite prominent at 220 and 260 MeV, moving

toward smaller angles with increasing incident

pion energy. This second minimum is consistent

with the experimentally observed zero in the

”He form factor (Fr067). Although we use form

factors compatible with electron scattering in

all our models, we still fail to predict the

second minimum. Our form factors are obtained

by dividing the electron scattering nuclear

charge form factor by the proton charge form

factor. This procedure is intended to remove

the effect of the finite proton size so that

we are left with the nuclear form factor for

an ensemble of point nucleons. For an inde—

pendent particle model and harmonic oscillator

wave functions, our procedure is valid (Ehr59).

However, for ”He it is an approximation of

questionable validity since the nucleons are

highly correlated and hence only approximately

described by single particle wave functions.
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It may be that a more accurate treatment

of nucleon size effects is necessary for

a correct prediction of the second minimum.

The Discrepancy at Forward Angles:

At all energies, except 260 MeV, the

predicted cross section is too large for all

the impulse models. The binding correction,

which we discuss later on, weakens the pion-

nucleus optical potential somewhat and thus

gives improvement in the forward direction.

At 180 MeV, the FIA is too large at

forward angles and also at backward angles,

although the overall shape is good. The

weakening effect of the binding correction

improves the agreement with experiment at

both forward and backward angles.

Relation of the ”He Cross Sections

to the Angle Transformation:

Single scattering dominates in ”He so

that the cross sections vary with angle

2.

approximately as \ \J \ . Hence, the

IV?

features of the cross sections are closely

connected to the features of the effective

interaction <t1ffl> used in each model.

Since most of the larger effects in

(tKN» can be related to the angle
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transformation, it is simpler to discuss the

features of dr/AQ, in relation to the

features of the various angle transformations.

The angle transformations shown in Figure 5.1

can be used to understand most of the effects.

The KML curve in Figure 5.1 can be taken to

represent the angle transformations of the

FIA and quadratic approximation since they all

are the same (on-shell) to order (W; Iw'f": V25 .1

For a given model, the predicted position

of the first minimum in “He is directly related to

the zero in the corresponding C°$e1rg V‘ (.05 91W

curve in Figure 5.1. For example, the MSA

minimum in city/$.12, is at the smallest angle

and SSA is at the largest angle with the FIA

in between the MSA and SSA. Looking at

Figure 5.1, we see the same relation exists

for the zeros of the various angle transformations.

The features of the three angle transformations

(SSA, MSA, KML) are also clearly seen in the

backward scattering. The FIA and SSA are not

too different at backward angles,with the FIA

generally being slightly higher. At backward

 

1There is no explicit analytic form for the FIA

angle transformation since the FIA result is

obtained numerically.
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angles, the MSA cross sections are larger

than the FIA and SSA cross sections (and also

the data) by a factor of 4 to 6. This large

discrepancy in the MSA arises from the MSA

angle transformation which allows \ £05 EMA

to exceed one at backward angles.

The Quadratic Approximation and the

Kujawski-MillereLandau Approximation:

The “Ha results for the quadratic approxi-

mation are shown in Figure 10.2. The quadratic

approximation results from a systematic approxi-

mation to the fully-integrated impulse model

(see Chapter VII). It is evident that the

quadratic approximation.gives a very good

representation of the fully-integrated impulse

approximation (FIA) .

In Figure 10.3 we show the results for’uHe

using the Kujawski-Millethandau (KML) model.

The agreement with the FIA results is essen-

tially the same as that obtained with the

quadratic approximation. Hence, we see that

a proper angle transformation is essential for

a good representation of the FIAl. However,

 

lAgain, recall that the angle transformation

in the KML model is essentially the same as the

one in the FIA.
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FIGURE 10.2--The elastic "TY-“He differential cross sections cal-

culated by two methods: (a) (solid line) the fully-integrated

impulse result (FIA); (b) (dashed line) the quadratic approximation

(QA) to case (a). The energies shown are the laboratory kinetic

energy of the pion.
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FIGURE lO.3--The elastic"fl' -uHe differential cross sections cal-

culated by two methods: (a) (solid line) the fully-integrated

impulse result (FIA); (b) (dashed line) the Kujawski—Miller—Landau

(KML) approximation. The energies shown are the laboratory kinetic

energy of the pion.
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we should point out that at lower energies

the angle transformation effects and collision

energy effects (i.e., won effects) are com-

parable although neither is a dominant effect.

For example, at 110 and 150 MeV, the simple

static approximation (which contains no angle

transformation or collision energy effects)

gives cross sections which are not too

different from the FIA result. Angle

transformation effects, which vary as

w; I we , become increasingly important

at higher energies while collision energy

effects remain about the same as at lower

energies. Hence, the angle transformation

gives the dominant effect for the energy

region above the (3,3) resonance.

2. Impulse-plus—Binding Correction Results for “He

We now consider the results obtained for ”He with the

following models: 1) the fully-integrated impulse approximation

(FIA); 2) the single state approximation for binding effects (SSAB);

3) the closure approximation for binding effects (CAB). The results

for all three cases are shown in Figure 10.4.

a. The Single State Approximation for

Binding Effects:

Due to the weakening of the optical

potential produced with SSAB, the SSAB cross
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FIGURE 10.9--The elastic 1T -uHe differential cross sections

resulting from three different effective pion-nucleon interactions:

(a; (solid line) the fully-integrated impulse result (FIA);

b short dash line) the single state approximation for binding

effects (SSAB); (c) (dot-dash line) the closure limit for binding

effects CAB). The energies shown are the laboratory kinetic

energy of the pion.
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sections are lower than those given by the

FIA. At 110 and 150 MeV the reduction is

fairly small, giving a slight improvement

at forward angles and a slight worsening

at backward angles. At 180 and 220 MeV

the forward angle cross section is improved

some and the backward angle cross section

is improved significantly. At 260 MeV

the forward angle cross section is not

improved (or perhaps is slightly worsened),

but the backward angle cross section is

improved noticeably. At 110, 150, and

180 MeV the position of the first minimum

is not changed by the binding correction,

but at 220 and 260 MeV the minimum is

shifted f0rward by a few degrees. Thus,

the overall result of the SSAB is to

noticeably improve the agreement with the

uHe data.

The Closure Approximation for Binding Effects:

The CAB affects the “He cross section

a good deal more than does the SSAB, with

the effect being greatest at 150 and 180 MeV.

Generally, the CAB overestimates the binding

correction. At 110 MeV the forward angle
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result of the CAB is as much too low as the

SSAB result is too high. The fit at the

minimum is considerably worsened, but the

backward angle result is left unchanged.

At 150 MeV the CAB gives very poor results,

being too low at forward angles and too

high at backward.angles. The first minimum

at 150 MeV is too far forward and too shallow.

The forward angle result at 180 MeV is as

good as the SSAB result, but the first

minimum is too far forward and the cross

section at backward angles is too high.

At 220 MeV the CAB result goes through the

one data point at forward angles and is

comparable to the SSAB at backward angles.

The 260 MeV result is somewhat too low at

forward angles but comparable to the SSAB

result at backward angles. Also, the CAB

minimum at 260 MeV is far too deep.

The overall effect of the CAB is to

worsen the agreement with experiment. This

result is not surprising since the CAB is

only intended to give an estimate of an

upper limit on the binding correction and

is not intended to be a realistic model.
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12
3. Impulse Approximation Results for C

We now consider the impulse approximation cross sections

for 120 using the same models as used for'uHe. The results are

shown in Figures 10.5 - 10.8. Again, we are mainly interested

in the FIA result (and good approximations to the FIA), but we

discuss the other models in order to show the sensitivity of the

elastic cross sections to the features of the optical potential.

a. Nature of the Minima in 120:

In “He, single scattering dominated so we

could identify the first minima as coming from

the pion-nucleon p-wave resonance and the

second minima as being diffractive in character.

In 12C, such an identification is not possible

because multiple scattering strongly affects

the shape of the elastic cross section and

masks the features of the single scattering

term. For example, one of the models studied

by Lee and McManus (Lee7l) is a simple local

optical potential which completely neglects

the p-wave nature of the pion—nucleon interaction.

Although this crude model does not give a satisfac-

tory fit to the data, it nevertheless is capable

of reproducing the gross features of pion-120

data (i.e., two minima). Hence,it is pointless

to try to relate the features of d 6" lAIL

directly to the details of the optical potential.
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However, the main differences between the

various optical potentials are usually

reflected in some way in the elastic cross

sections, even though for 12C the general

shape of 36" (All. is independent of the

details of Ilwy .

The Fully—Into ted Impulse 12

Approximation FIA) Results for C:

The FIA results for 12C are shown in

Figures 10.5 - 10.8. At forward angles the

agreement of the FIA with the data is good.

In particular, the first minimum and first

maximum are described fairly accurately up

to 260 MeV. The agreement at the second

minimum and second maximum is only fair,

with the cross section at backward angles

being underestimated at all energies. The

tendency to underestimate the large angle

cross sections in 120 seems common to many

models (Lan73, Lee7l, Kuj74) including models

with the optical potential parameters adjusted

for a best fit (Ste70). Lee and McManus

(Lee7l) have suggested that ground state

deformation effects are possibly important

in 120 so it may be that a more sophisticated

treatment is required for 120. Nevertheless,

the fit obtained with the FIA is as good or

better than any so far published.
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FIGURE 10.5--The elastic TT' ~120 differential cross sections

resulting from three different effective pion-nucleon impulse

interactions: Ea) (solid line) the fully-integrated impulse

result (FIA); b short dash line) the simple static approximation

(SSA); c) (dot-dash line) the modified static approximation (MSA).

The energies shown are the laboratory kinetic energy of the pion.
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Comparison of the Modified Static Approximation

(MSA) and Simple Static Approximation (SSA) to

the FullyaIntegrated Impulse Approximation (FIA):

120 the differences in the models areFor

not as clearecut as in.uHe. As already mentioned,

the gross shape of the 120 cross section does not

depend much on the details of the model. A

rather model-independent shape, together with

sparse backward angle data, makes it difficult

to reach any definite conclusions as to which

model is to be preferred.

Except for the 260 and 280 MeV results,

the MSA does not fit the 120 data near the first

minima and maxima as well as the FIA. 0n the

whole, the MSA fit at backward angles is com-

parable to the FIA even though the MSA and FIA

differ by as much as an order of magnitude at

some energies. The MSA is generally as much

too high at backward angles as the FIA is too low.

At 120 MeV the SSA is actually better than

the FIA and at 150 MeV the fit is comparable.

At 180 and 200 MeV the SSA is too large at the

first minima and maxima, but is as good as the

FIA at backward angles. Beyond 200 MeV the SSA

continues to be too large at the first minimum

having only a "shoulder" where the first minimum

should be. However, at 280 MeV the FIA fit

has degenerated to the point that it is no

better than the SSA.
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Although we cannot clearly distinguish

between the FIA, SSA, and MSA on the basis of

120, it is evident that the calculated 120the

cross sections are still somewhat dependent on

the model, even though the general shape of

Arlin. is the same for all the models.

For example, the depth and position of the

second minima is quite sensitive to the model

and at backward angles the differences in the

different models are quite large. In 12C.

L].

as in He, the unphysical values of $056“...

in the MSA show up rather'dramatically in the

large angle cross section. Moreover, the

difference between the FIA and SSA at higher

energies and backward angles is even greater

in 120 than in.uHe.

The Quadratic Approximation and the Kpgawski-

MillereLandau (KML) Approximation in C:

The quadratic approximation (discussed in

Chapter VII) is compared to the fully—integrated

impulse approximation (FIA) in Figmres 10.9 - 10.12.

The quadratic approximation obviously provides

an excellent approximation to the FIA, although

there are a few small differences at backward

angles at some energies.
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culated by two methods: (a) (solid line) the fullyaintegrated

impulse result (FIA); (b) (dashed line) the quadratic approximation

(QA) to case (a). The energies shown are the laboratory kinetic

energy of the pion.
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FIGURE lO.l3-sThe elastic WT -12C differential cross sections cal-

culated by two methods: (a) (solid line) the fully-integrated

impulse result (FIA); (b) (dashed line) the Kujawski-MillerbLandau

(KML) approximation. The energies shown are the laboratory kinetic

energy of the pion.
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The KML approximation for 120 is shown

in Figures 10.13 - 10.16. At lower energies,

the KML approximation is not as close to the

FIA as is the quadratic approximation because

of the neglect of collision energy effects in

the KML model. At higher energies, where angle

transformation effects dominate, the KML model

is just as good as the quadratic model.

12C
4. Impulseeplus-Bindingpcorrection Results for

In Figures 10.17 - 10.20, we show the 120 results obtained

using the single state approximation for binding (SSAB) along with

the closure approximation for binding (CAB).

In.uHe, the SSAB gave noticeably improved agreement with

experiment, but in 120 the SSAB leaves the (fairly good) FIA result

essentially unchanged.

In 12C, the CAB causes some rather drastic changes in the

cross section. The largest effect occurs at 150 MeV where the CAB

result at 9: 0° is too low by a factor of 3. Even at 280 MeV,

where the CAB binding correction is smallest, the CAB result under-

estimates the first maximum by a factor of 3 or'4. In 120, as in

”He, the CAB model evidently gives much too large an effect.

16
5. Impulse Approximation Results for O

The results for 160 using the fully-integrated impulse

approximation (FIA), simple static approximation (SSA), and modified

static approximation (MSA) are shown in Figures 10.21 - 10.23.



11+?

FIGURE lO.l7--The elastic TT -120 differential cross sections

resulting from three different effective pion-nucleon interactions:

Es; Esolid line) the fully-integrated impulse result (FIA);

b short dash line) the single state approximation for binding

effects 535113); (e) (dot-dash line) the closure limit for binding

effects CAB). The energies shown are the laboratory kinetic

energy of the pion.
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FIGURE 10.20--As in Figure 10.17.
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The quadratic approximation is shown in Figures 10.24 - 10.26,

and the Kujawski-MilleraLandau (KML) approximation is shown in

Figures 10.27 — 10.29.

a.

b.

The Fully-Inte ted Impulse 16

Approximation FIA) Results for

In 160, as in 12C, the FIA gives a good

0:

description of the data. Although the FIA cross

sections are quite similar in 16O and 120,

there is one interesting difference. In 120

the FIA generally was too low starting at about

600 or 700 and got worse toward larger angles.

The 160 results do not show the same tendency to

underestimate the data. Since 160 is a spherical

nucleus, these results lend some support to the

suggestion of Lee and McManus (Lee7l) that the

backward angle discrepancy in 120 is a result

of ground state deformation effects. However,

since the 160 data only extends to about 75°,

definite conclusions on this point must await

further large angle data.

Comparison of the MSA and SSA to the FIA forléo:

The FIA gives a somewhat better account of

the region around the first minimum in 160 than

the SSA or'MSA. This feature is the same as in

12 16
0, although in 0 there seems to be less

dependence on the model. At 230 MeV, for example,
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FIGURE 10.214-The elastic.“ -160 differential cross 39 Otiors:

resulting from three different effective pion-nucleon 1111 se

interactions: (a) (solid line) the fully-integrated imp“; ,cimatlon

result (FIA); (b) (short dash line) the simple static 3,29% (MSA)-

(SSA); c) (dot-dash line) the modified static approxima he pion-

The energies shown are the laboratory kinetic energy 0f ’5
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FIGURE 10.23--As in Figure 10.21.
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ions 031‘

FIGURE 10.24--The elastic 1T -l60 differential cross 58at ted

culated by two methods: (a) (solid line) the fully-in'be giganaflon

impulse result (FIA); (b) (dashed line) the quadratic 359:9 memo

(QA) to case (a). The energies shown are the laboratory

energy of the pion.

 



(IS/aw) vp/np

F
I
G
U
R
E

1
0
.
2
4

7
T
-
'
6
0

1
0
3
‘

.
1
0
3

1
0
0

l
6
0
M
e
V

1
0
0

I
7
0
M
e
V

1
0

‘
1
0

0
.
1

\
0
.
1

1
0
'
2

1
0
'
2

—
F
I
A

-
-
-
0
A

.
l
.
—

l
l

1
I

L
J

1
0
"
“

1
I

l
i

1
0

0
6
0

1
2
0

1
8
0

0
6
0

1
2
0

’
P
l
O
N
-
N
U
C
L
E
U
S

c
.
m
.
A
N
G
L
E

(
d
e
g
)

1
0
'
3
,

1
0
'
3
f

 

158



‘
7
7
-
‘
5
0

1
0
3

1
0
3

1
0
0

2
2
0
M
e
V

1
0
0

2
3
0
M
e
V

1
0

..
1
0

0
.
1

p
1

0
.
1

f

\
\

1
0
-
2

(1., gm) zip/op

1
0
'
3
_

2
1
A

1
0
'
3

J
}

1
l

1
l

1
J

.
J
‘
,

1
L

J

1
0

O
6
0

1
2
0

1
8
0
1
0

0
8
0

1
2
0

1
8
0

P
l
O
N
-
N
U
C
L
E
U
S

c
.
m
.
A
N
G
L
E

(
d
e
g
)

F
I
G
U
R
E
l
O
.
2
5
-
A
s

i
n
F
i
g
u
r
e
1
1
0
.
2
4
.

 
l

 
 

 
159



160

 
 

7T- '50

m3

1% - 240 MeV

35 m o

.o

E 1 '

€504 f

\b — FIA

‘0 ”'2 ---‘ 0A

10'3 i I

10-..- ‘ l fiL 1 J

0 Go 120 180

PlON-NUCLEUS c.m. ANGLE (deg)

FIGURE lO.26--As in Figure 10.24.
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FIGURE lO.27--The elastic 1‘ -160 differential crc)55 5901510118 cal-

culated by two methods: (a) (solid line) the fill-1r“ : Jimdau

fitory kinetic
impulse result (FIA); (b) (dashed line) the Kujawgicjl—

(KML) approximation. The energies shown are the lbbo

energy of the pion.
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a comparison of the results near the first

minimum shows the models in noticeably closer

agreement in 160 than in 12C. The backward

angle results, however, are just as sensitive

to the details of the models.

c. The Quadratic Approximation and the Kpgawski-

Miller—Landau (KML) Approximation in 0:

The quadratic approximation gives an accurate

representation of the FIA in 160 just as in “He

and 120. There are again some small differences

at backward angles.

e 16
Th 0 results for the KML approximation

are also similar to the KML results in 120. At

lower energies the neglect of collision energy

effects causes some significant differences

between the KML approximation and the FIA.

However, at higher energies the differences are

quite small .

6. Impulse—plus—Binding Correction Results for 160

The 160 results for the single state approximation for

binding (SSAB) and closure approximation for binding (CAB) are shown

in Figures 10.30 - 10.32.

160 the small change in dt/Aa. given by the SSAB

is entirely compatible with the data. (In 120 the SSAB worsened

In

the fit by'a small amount.) The SSAB is hence compatible with the

experimental results for all the nuclei we have studied.
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ti

FIGURE 10.30——The elastic T( 360 differential cro55 Sigtegzfionsg

resulting from three different effective pion—nucle o I (FIA);

(a) (solid line) the fully—integrated impulse result for binding

(b) (short dash line) the single state approximati. 01:14; for binding

effects (SSAB); (c) (dot-dash line) the closure 1:1. kinetic

effects CAB). The energies shown are the laboratory

energy of the pion.
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The CAB results for 160 are the same as in 120; the

CAB overestimates the binding correction by a considerable amount.

 



CHAPTER XI

SUMMARY AND CONCLUSIONS

We have studied elastic scattering of pions from He,

12 16O in the 100-300 MeV region. We began our study by
C and

calculating an optical potential for “He which was based on the

impulse approximation and a harmonic oscillator shell model.

The integration over the nucleon momenta was carried out exactly.

We defined an effective pion—nucleon impulse interaction as the

fully-integrated 1T -uHe optical potential divided by the associated

harmonic oscillator form factor. Because we calculated the

scattering in momentum space, it was not necessary to put the

effective interaction or the associated optical potential into a

coordinate space form.

We next studied three 951 hoc models for the effective

impulse interaction, two of which gave poor agreement with the

The third _ag .1392 model, which took intofully-integrated version.

account nucleon recoil, gave much better agreement with the fully-

integrated results, although there were still serious discrepancies.

By systematically approximating the integrals over the

nucleon momenta, we developed our own simple but accurate approxi-

Our systematicmation to the fully-integrated impulse interaction.

approximation provided some insight into the effects of nucleon

motion in the effective impulse interaction.
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We found that the optical potentials based on the fully-

integrated impulse approximation (FIA), or its equivalent, gave a

satisfactory account of the data for “He, 12C and 16O. The 29.222

models which were not good approximations to the FIA (such as the

modified static approximation) gave poor agreement with the “He

12C and 160data. No definite conclusions could be reached for

due to the lack of sufficient backward angle data.

On the basis of the “He results, and on theoretical grounds,

we conclude that it is important to accurately approximate the

integrals over the nucleon momenta. We further conclude that an

accurate approximation can be made by evaluating the free pion-

nucleon t—matrix at certain "effective" values of the pion-nucleon

C.M. momenta and energy. The prescription we give in the "quadratic"

approximation (Chapter VII) provides an accurate representation

of the fUlly-integrated impulse interaction and is as easy to use

in momentum-space calculations as any of the conventional ngQQQ

models.

Corrections to the impulse approximation (which we call

"binding" corrections) were studied using a 3-body model where the

pion scatters from a single target nucleon which is bound in a

potential well. Using a separable s-wave binding potential, we

exactly calculated the first correction to the impulse approximation

and found it to be relatively small. A simple approximation (called

the single state approximation) was developed which gave fairly good

agreement with the exact result. In order to estimate an upper

limit on binding corrections, the single state approximation was
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extended.to include an infinite number of bound states. This extended

(approximation, (called the closure approximation) was found to give

za'binding correction which is approximately twice as large as in

the single state approximation. We found for ”He that the single

state approximation gave noticeable improvement but that the closure

.approximation (which was not intended to be physically realistic)

rmrie the agreement with experiment somewhat worse. For 120 and 16O,

'the single state approximation was essentially the same as the impulse

.approximation, but the closure approximation overestimated the binding

correction by a large amount. We thus found the ”He, 12C and 160 data

'to be compatible with the relatively small binding correction of the

single state approximation but not compatible with the larger correction

of the closure approximation.

We conclude, therefore, that binding effects are relatively

small in the (3,3) resonance region. We expect other effects

(neglected here) such as physical absorption of the pion and excitation

of virtual nuclear states (dispersive effects) to be as important as

the binding effect considered here.

Representing the pion—nucleus optical potential in momentum

space and solving a momentum—space Lippmann—Schwinger equation for

the elastic scattering proved to be a useful and convenient approach.

This method enabled us to easily study the sensitivity of the cross

sections to various kinematical and dynamical factors. For example,

we easily verified by direct calculation that in the (3,3) resonance

region the elastic cross sections are not very sensitive to the

details of the off-shell parameterization. As a result, we were

able to use a simple zero-range t-matrix with confidence.
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We feel that this work provides a useful approach for

obtaining an accurate impulse—type pion-nucleus optical potential,

thus making it possible to obtain meaningful estimates of higher

order corrections from a comparison of impulse approximation results

with experiment. We also feel that our single state estimate of

binding effects is reasonable and shows that such effects do not

greatly change the predictions of the impulse approximation in the

(3 ,3) resonance region.
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At a laboratory kinetic energy of 100 - 300 MeV, a pion

is quite relativistic, so at first glance it seems necessary to

use fully relativistic kinematics. However, due to the fact that

m“, /m‘?.‘ 1/7, it is possible to use essentially nonrelativistic

kinematics except for the pion energy.

The primary reason for developing "quasi—relativistic"

kinematics is to allow a straightforward application of the vector

bracket method which is discussed in Appendix D. The vector bracket

method was originally constructed for nonrelativistic problems where

the various momenta are related via linear equations. Fully

relativistic kinematics involve nonlinear relations; but as shown

in this appendix, we can linearize the relations at the energies

we consider. A secondary reason for quasi—relativistic kinematics

is to make contact with the nonrelativistic forms so we can use

our physical intuition more effectively.

Experimental pion-nucleon phase shifts give us information.

about pion—nucleon scattering in the pion-nucleon C.M. frame

( TTNCM frame); however, the pion—nucleus scattering calculation

is usually done in the pion—nucleus C.M. frame ( lTVCN\ frame),

so we must make a transformation between the two frames. Even

though the pion is relativistic in both the TTNCM frame and the

1EPCR\ frame, the transformation between the two frames is not

very relativistic because the WINCH frame is moving at a
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nonrelativistic velocity with respect to the TWCM frame.l

First order relativistic effects can be taken into account without

losing the simplicity of nonrelativistic kinematics. We present

both the relativistic and nonrelativistic equations and then show

how to construct a simple formalism that is nonrelativistic in

form but that agrees to within a few percent with the relativistic

formalism.2

We first define the momentum and energy variables that

we will deal with.

: pion momentum in the UPON frame.

nucleon momentum in the “TQM frame.

total pion-nucleon momentum in the

“VCM frame; K: “up?" .

I
X

l
i
‘
z
fl
‘
o

pion energy in the TIDCM frame.

2
8

=
1
8

nucleon energy in the “Ten frame.

0

8 scattering energy in the WNCM frame;

0

pion momentum in the WNCH frame

(the nucleon momentum is —.k, ).
~

is,

(Jan: scattering energy in the WNCM frame.

(Our "momenta" here are actually wavenumbers in fm-l.)

 

I J'Due to the fairly small ratio in“. mM ,the velocity

of the Wynn frame relative to the 10mm me is less than

~ .31; at the energies we consider.

2The transformation between laboratory and 1rycaa

coordinates presents no problems, so it is not discussed here.

The lab-1rvcan transformations used in this calculation are

fully relativistic.
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The nonrelativistic kinematics are given by (Rod67):

(A-l) 00“. '-'- mwc} + ”k" (if/2m“.

(A.2) 99,, = mnc} + Wet/2.1m“

"‘11

“€an

 

(L3) {a =(mqu - m‘V‘D143/(V"t"“"'11) = ‘11"a 1‘.

(AA) 00”“ 3 (OW-t (1)“ '- ELK?” /2. (“Mirth“)

and the relativistic kinematics are given by (Hag64):

a. 4- ‘7- " V2.

(L5) 00,." (“‘19 “‘ T“ Er)

(A.6) h)”: (mug * C. E

-\

(1.7) “E, =- E‘tfic‘twmtmcmtw’fl Lew.gi]1g-(Li‘lwcb‘)£

‘/1L
~ 2.

(A.8) wen: L (0° _.‘kzd-‘KZJ ,
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Since the target nucleons move at nonrelativistic velocities we

can write equation (A.6) as

(11.9) 00“ ’-‘-.1 mflc} +t‘e: /zmM

Also, in the 100 — 300 MeV region we have \P‘3' \- 2. trad ,

15—0-3 im", 03“.?! 300 MeV, and 10'... c.)9’ (200 MeV.

Using these values in equation (A.7), we find the leading term is

about 1.5 fm_1, the second term is about .05 fm—l, and the third

term is about .5 fm-l. Hence, the second term, which is complicated,

can be dropped without any significant loss in accuracy. Further,

since 'RC—1X7'L‘ (5.2. and 0cM— 03 we can write equation

(A.7) and (A.8) as

(A.10) 2% g I; " (wt/0301C,

2
“Rd"

‘
3

5
.

d
.

(A.ll) LDC“ -

The above equations for 4k. and ODCF\ can be obtained from the

nonrelativistic equations (A.3) and (A.4) simply by making the

an t.
replacements mw-t h)“ /c , and Mu" wulc where

Q“, is calculated from equation (A. 5). We will use this pre-

scription unless stated otherwise.
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Sometimes it will be useful to call 4%; the relative

pion-nucleon momentum and 9C the center-of-mass momentum.

~

Then our transformation can be regarded as a transformation from

“”04 coordinates to relative and center-of-mass coordinates.

The momentum and energy transformations we have given

thus far are all that is needed if the initial and final states

of the nucleon are free particle states. If the nucleon is bound

in a nucleus we need to consider a third frame, the C.M. frame of

the nucleus alone, since we use single particle ground state wave

functions which depend on the nucleon momentum in the nuclear center-

of-mass frame. We shall refer to the nuclear C.M. frame as the

4N¢M frame since we mainly consider W -1+He scattering in

our derivations. However, we shall leave the number of target

nucleons, A, arbitrary in our equations in order to obtain a more

general result.

The initial and final momentum of the “He nucleus in the

frame are respectively "‘ P‘, and - 9‘: . We show the situation

schematically in Figure A.l:v In Figure A.~1, the symbol ® denotes

the He center-of-mass. Using P4“ to indicate the nucleon

~

momentum in the 4NCM frame, we have for the nucleon momentum

in the THEM frame

(A.12) :P

.
F

N _ (M‘/MHD Pu

.. ~0/A\ P1,. .

‘3

i
l
l

1
’

2
2
.
»
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(Before collision)

Q
a

(
a
n
!

 

 

(After collision)

E

 

Figure A.l - Schematic representatio of an elastic 'IT-u'He

scattering. The symbol 8 denotes the He center of mass.
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We can now write the TTVCW\ frame variables in terms of the

variables and 41“.“ variables.

A-( (1) u.)

“'13) ‘1‘." "w["(T)'z§6 " 7;:- P...

2

fi-t

(A.14) (K. 3 (_._-87)?“ + 19*“

It should be noted that there are actually two 4NCM frames

involved (the initial and final) since the nuclear center-of-mass

itself is deflected by the collision with the pion. We ignore

this point in our discussions and speak of "the" 4NCM frame

as if there were only one.

Finally, in pion-nucleus scattering, it is necessary to

distinguish between on-shell and off-shell kinematical variables.

On-shell variables are fixed whenever the 'ITUCM scattering energy

is fixed so we write them with an "o". For example, we write the

on—shell value of 03-“ as (13%. .
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In pion-nucleus scattering we need the entire (on-shell

and off-shell) pion-nucleon t-matrix in the pion-nucleus C.M. frame

(“DCM frame). The experimental pion-nucleon phase shifts give

us the pion-nucleon t-matrix only on the energy shell and in the

pion-nucleon C.M. frame (TTNCM frame) so that we must first

make some parameterization for the off-shell part of the

t—matrix and then transform to the WPCM frame.

The on-shell pion—nucleon t-matrix in the “MGM frame

z"SI:
~8W‘K’C‘ L _1

(13-1) tI‘JLiwcmbkMkv): [me

/“x 23-h,

where 1J3, L denote respectively the pion—nucleon eigenchannel

is related to the pion-nucleon phase shifts by

 

 

isospin, total angular momentum, and orbital angular momentum.

The quantity 5:31 is the eigenchannel phase shift and

7L I 3L is the eigenchannel absorption parameter. The

on-shell momentum in the “WWW frame is 4R. , and /'(R is

the relativistic reduced mass, which is defined as

0) (9e 3 00 V2,
(B. 2) ”R = 11’ ° N(&.) ]

w“. GE.) + one.»
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/2.

where D.“ (k a» = (M:C" + t16¢kt )

‘I

and touch.) = («116* + Vol 923) z

The phase shifts and absorption parameters were taken from the

CERN theoretical fit as tabulated in Her70.

There are several popular off-shell parameterizations

for the pion-nucleon t—matrix (Lan73), but the one best suited to

our purpose is the separable parameterization used by Landau and

Tabakin (Lan72).

(k

(3'3)trams...$.18)=tI3Lw‘Niko.9<.)%——%—ULm )
71*.)

Landau and Tabakin obtain the g's in equation (B. 3) by solving

an inver e att ri roble 0 th t % i C3:

8 sc e ng P m S a 13')... I:

defines a separable potential which reproduces the on—shell pion-

nucleon t-matrix. We have found our pion-nucleus scattering results

to be relatively insensitive to the choice of the g's (for smooth

nondivergent forms) so we take the g's to be unity.

In part of our pion-nucleus scattering calculation

we need the spin-isospin averaged form of the pion-nucleon t—matrix.

Using the parameterization of equation (B.3) and averaging over spin

and isospin we obtain for the 3-dimensional t—matrix in the “MGM

frame
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(3.4) it“ (“emit . 99:) ‘-

Ti:2 (1+ 9230+ v.3 tnLLtom ,A, 11') 818-12) .

13L *

In order to insure Lorentz invariance of probability

we must make a transformation of the pion—nucleon scattering operator

itself. The scattering operator in the 'WVCM frame is related

to the scattering operator in the “NC.“ frame by

(13-5) (tmywm‘fi 7" 104m. wucm

where Y is given by

Y2

 

(13.6) 7 -.-. MW) come) DRUM coma)

01.19;) 0“19.13 10“ (Pa 10‘0“

In equation (B.6) the unprimed momenta and primed momenta refer

respectively to momenta before and after the collision. The 'I

.. '1 4- 1 '1. 3
energies are defined as LOVLM - (MTG +‘k C. X1)
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V7.

and (3.)“le 1:: (MJCA- + kid; X13 .

The transformation in equation (B.5) is a purely relativistic effect

and should not be confused with the momentum and energy transformations

discussed in Appendix A. In a completely nonrelativistic formalism

TrN)1wa :3 (thUWNGM

even though momentum and energy transformations would still be necessary.

we would have (t

There is a minor point we have so far glossed over. When

equation (B.5) is used for the pion-nucleon t—matrix in the

frame, the 1‘ factor gives rise to a form that is a function

I

of the WV CM nucleon momentum P.) and P.) and the “TC-M

' ~ ~

I

pion momentum P“ and P“- as well as 00‘" , k and It .

~ ~ ~ ~

However, since the kinetic energy of the nucleon is always much

I

less than its rest mass energy, the dependence of ){ on “ and F:

a!
~

I

is very weak. Further, P“. and P“. are fixed in the integral

~ ~

over nucleon momentum (see equation (3.2)) so that for convenience

we write the UVCM t—matrix as a function of just wen , k
«I

I

and -85 just as we would in a completely nonrelativistic theory.

In the actual calculations the dependence of the TU’CM pion—

(

nucleon t-matrix on P“- , P.“ , 1”,.) and ?“ is taken

A. ~~ «1

into account properly.
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We denote the state vector of a particle with definite

momentum as i a) . The normalization is taken to be

< 9“ P) ":- LZW§S (P... P\ . The coordinate representation

of ‘37 is A,

'F.r A 11- ,. .L,

(0.1) (13$): 3" ”'4 4W2YLMLY)YLMLP3LJLC 9r)

LM

where we define

(0.2) (‘5‘ I.) E Z YL:($)<£ \ PLM§

LM

so that

* A

(0.3) \E') =2. 2 YLMC‘?)\PLM>

LM

The state ‘PLM> is a state of definite angular momentum and

kinetic energy. The normalization is < P‘L' M. i P L M» :

(WW)3 SU-ULW $004M) XL?" P) /P7’
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A two particle state for particles of definite momentum is

written \P.)\ 9:» 2 \9‘: ‘32) or

* A A

(0.4) \Q 927 '-‘- Z YLM (VAYL ML Pt)‘?'._‘m>l?1 HMO
L1M1 1 I .

L2“;

We often need to couple the angular momentum of particles

1 and 2 . We write such a "coupled" state as

(0.5) ( 9,9111% L\L'L>=’ Z1 <L.L, M,M.\1’fl§

Mm, -

x \?.L.M.>\P,L,M,7 .

If one of the particles has spin, say particle l, we can couple

the spin to L1 and write (we assume a spin of 1/2 so

A:

(Cl-6) \?10(.S,%L1> = Z <L\S‘ M\S\%\ 91 3\%>

"1 51.}

K \ V1L1“1>\Slt> .
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Then this state can be coupled to the angular momentum of particle 22

to obtain

(0.7) (9.1? 11,1ng L,L>= 2 <3 Lila"); \%%%>

JteM-L

x \P. was. L,_M,) .

If more convenient, we could of course use a different order for

the coupling.

Since the states ‘P‘>\P‘L> are complete we have

~ ~

that

(0.8) \?.7\91§S:3:;38i_j_:t (EKQL \ -_-_-

Similarly we can write

(0.9) “’1 911M L1L1>Z 889‘‘9‘?Sig-SS! (9 P1 {M L Li): 1

gm (110301“)

L1L1.
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and

 

(0.10) \emmrglng :1}:_~_£;3"E1::;<99 ‘Mtsd—‘L \=1.

'1‘

AthLL

Suppose now 9‘ and P7, are related to two other

~~

vectors /k and ‘13; by the relations

~~

(0.11) Y" : Oflifv +‘ofli

((2.12) \31 2: mpg + \OICK

where we assume the Jacobian ‘aqbz‘ “‘sz is equal unity.

For example, ‘9: might be the relative momentum and (K the

~

center-of-mass momentum (see Appendix A). The state \&> ‘33»

'th '~1 tt t” stt P ,wais en equlva en O me a e \ A)‘ P2» b can now

define as before

(0.13) wag,»— 7:. Y9:(M w: 2MD

ghmk
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if A

(0.11») mg» 2 Z YQ‘JECK) \‘K ’Q‘KwW-w

980‘“): 0‘

(0'15) \‘k‘fo'WLRk 1.3K) :-

‘ZEI"<:SL%iSlfl<"Aflt)~\Q<.\jgfwyhi;>\4k.Q‘:“Nfl:j7\qfiQfi{'“q£;> .

"‘4: “'K

The spin can be included as before

“'16) ‘3‘ 31k 5(a- Q43 2

z <‘QQA/W‘k Afi‘ 5&&&%§ \‘kflkmk>\ ”4%) .

MkAa

And as before, we can further couple the two single particle states

((3.17) ”(OK- (3'39: Milk Rex? :2

Z <54g’1x3m- W‘fl %%%> ”i Shoa- £fl>\kflkmk>,

){a “k
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The states ‘%;§\°&> also form a complete set of

states so we can write

(c.18) mmwjrx8&1 («KM =— 1
0M3

01‘

NM. Lac
(0.19) \k'K (mH RX>EK 88*—(7:33 Q“),1<‘&.K {m 1‘4. 29C\

:1

01‘

(0.20) WWW} Sklhflpg 88—“—‘86. Xit): (“x t»?szged

1‘

 

on cm

35.16.. ’Q'k

I
I

P
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The completeness relations given in this appendix are

useful when we want the matrix elements of a two-body operator in

terms of some "unnatural" coordinates and the operator has a simple

known form in terms of "natural" coordinates. In such a case the

unit operators in terms of the natural states can be inserted in

the proper places so that the operator is "sandwiched" between

natural states. Then we need only the overlaps between the natural

and unnatural states. This procedure is discussed in detail in

Appendix D.
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"Vector brackets" can be used in scattering problems in

the same way Moshinsky or oscillator brackets (Mos59) are used in

bound state problems. The purpose of both types of brackets is to

provide a more convenient and systematic method for evaluation of

certain matrix elements. Oscillator brackets are generally used

to calculate state "overlaps" for two independent particles moving

in a harmonic oscillator well so that the coordinate-space radial

wave functions involved are proportional to EX P(- QTY?) X

(Laguerre polynomial). Vector brackets, on the other hand, are

related to overlaps between free particle states so that the

associated radial wave functions are proportional to spherical

Bessel functions. Except for the different associated radial wave

functions, oscillator brackets and vector brackets are identical.

However, it is possible to obtain an explicit expression for vector

brackets while oscillator brackets usually must be tabulated in

numerical form or evaluated on a computer. We give a general

expression for the vector bracket in this appendix.

Vector brackets have been used in various forms in 3-body

theory for quite some time. We thank.Dr. Nancy Larson for intro-

ducing us to these overlaps and for providing notes which made it

possible to derive results appropriate for 2-body states. Balian

and Brezin (Bal69) give a derivation which leads to a more useful

form than we derived originally. Recently, Wong and Clement (Won72)

generalized the overlap and introduced the name "vector bracket" into
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the literature. The general expression obtained by Wong and Clement

is given here. Suppose we want to calculate

(13.1) (PcPlf'm‘ 1:1; ‘ Q \ 9. him Q‘Q‘>

U C ’

where ‘2H|*'IL1L'=’ jfi’ and 9L"*'jlt. ::' ‘iz

~

(See Appendix C for notation).

Also, suppose we know Q in terms of the k , K coordinates

‘3 ~

(for example, Q and ‘K; might be the relative and center-of—mass

~ ~

momenta). That is, we know

(13.2) (fi'X'i'M‘fl&12¥l\Q\& (K i M 2;, at».

We can evaluate the expression in equation (D.l) by inserting the

unit Operator

(B.3)

'& X” i m“ 2*” 91.9;38§——24:WZE~_%<&”%£H

9n." 3*" flxul

Ifl’W (2W3)
‘flggfflj<hl

=1
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on both sides of Q in equation (D.l) and performing the sums and

integrals,provided we have an expression for overlaps of the form

(M) (m) = < P.‘ F.’ i' m‘ 2.‘ 21 Wk" (”"1" 14." fix") '

The expression in equation (D.4) is the so—called "vector bracket."

I I I

When ‘9‘. and K are related to P\ and F, by

~ N ~ 41

(13.5) 8:“ = «ff: + 0..., v.1

~ A!
N

_ I I

(13.6) x "' b. P‘ + b ?

~ 1. 1.
~ A!

Wong and Clement show that the expression in equation (D.4) is given

by

(13.7)

(Im) : N‘mS”; (1'1"); (‘M' M“ ) g (w)

1 | ‘ __

“ Budam“ M mu ?.'?.‘%.'x" AIflI
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where

(D.8) N2 = a normalization factor (we use N = (211’ )3 )

(D.9) w = b.5{kua‘ Q,‘ QI'KM.

., (e)..-mumv:"- a». w‘)

(”'10) X, = (9'3“: at? 9:7" 0.112;") /( 2- % 0We: ‘92-.)

I Z- Z

(1....) x2: 0:" - In} v35— 5,?! ) /(2_ b.b,_?:(>;) .

The variables X, and X2. are eXpressions for the cosine of the

angle between P, and P: . The functions which are defined as

A. ~

(13.12) 9 (XL) =

<e= ~23

just insure that \X‘ \ and \X1\ are less than or equal 1 .

The symbol A is

1,11
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(DJ-3) “I,“ =

1' ar

2 “:2 <1.2; Wmdfm>Y. ( $3 Y: {61:}

cm 3 ‘i‘ "Hm-z. 91 M, 12‘“:

[2a«2mm:m>YW>Y<$Qg
Zhlluh °

Mi'K

The vectors ‘1‘ , Yt’ £3 and ‘X' all lie in a plane and

the relative angles between thevectors are fixed by the magnitudes

of the vectors. The orientation of the plane itself is arbitrary.

For computational purposes it is useful to take the vectors?to lie

 

in the X-Y plane so that YLM( 9 :‘W/z JQ(ewn Ywhere

(Marya. y

(D 1L») (A ) [3+2 (1+M)‘(L-M)flz
. __ 1+M_____! {-M ’ ’

40v (l-m)evcn

0 JF-ov Ll-M) 04A

The factor 5(w) expresses conservation of kinetic

 

energ. For example, for the familiar transformation

:Hm,‘ -v.\ 9.: \/(MHag ,‘Xu P." + P,"
~ A!

we obtain the result
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(13.15) 30,4) = LilZ/A)S(&.Z/~+ Tut/gm

.. P,“ 2m, - ‘37sz

where fl: M‘M‘ /(N‘*M1) and (m: M‘+ M1. 0

Finally, we note that parity conservation requires

(9.. +11+2&..+1,<.) even

The inclusion of spin is straight forward. We shall list some

results for the case where one of the particles has spin 1/2.

First, some useful expansions:

N

(13.16) for 3" = 1".» v2 , El: :3: + 1'1!

A» ’V’ ’~' ‘fi’

and

Se‘sli-tl}; ’Xzé'i-J‘L
~

”59%);1121147

’7- 71+LI+QL+3'"1 1:3: . .

= i. {1' (3‘ 1'} [(3.1 H)(2j.+t) Q")

x [9311} )‘y;i'£.‘il>
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(D.17) for & ”2 2k" + 71. , 3" '3 11h" + 1%”

«g: ': 2£u+gffl ’8“: £'+ ’1

u (c 11 '| .

\k x % 8% 3k" 1&1! ’Q‘XU»

- 2 YA 1“" 54.“ y,u ‘24’1 n + I I!

a" ’Q'k" 3“ {II3E21+I)(23&0+fl(-I)I -& W4"?

x WW” y" y); {"1“ 32k»)

(D.18) For the simple case

<42. ,Ku ‘25“ g; 1"th 1‘14?" F: $31? ill: 1...,»

= w‘mnygmum)

X (fin Xui'w'=o£&“ £564 9"F111'1h':0 1:21)

The simple case in (D.18) together with the expansions in equations

(p.16) and (D.17) can be used to obtain
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(p.19) 3€.=1E.+‘Ii %:J,+‘/2.

1:! ':, 5L:‘+-JL:. ft: 1: it‘ 4r ”5L

A: N ~

(fax (09% in" “fig"‘9 P )hi1 Ql>

-..-. 3”,“?! )8L%;()%){::1: Jaguzfufl’zflhn+0]

V7." 2*" +.Q¢x" +%

h

fiLf‘) <‘fiu 'Xui'm':° £h|'£,xfl‘?" 9:1'4M'tofl:fli>

(D. 20)

. 2 V1. I! ‘J41. “a + ~ )1— 225"+()’éz“

J": 0;): ,S);= 0.4. {3:

<48 u u

'K‘b (3%1,.0. Mult'?” 9/);5' 0' .0'5

-4&3“); 3.80),"1,‘ )

V1119: 3k ’1. A .1 i - -0 IA-

x 2&22x" 01' &' HQ )‘dat' (21“)E23&.11X2J|+13]

1.241. +2-K"+£' +9.1:

xL-n <&"q("4'0m—“.144'11,‘IP'?“111m.0‘0')



APPENDIX E

THEORETICAL JUSTIFICATION OF THE 3-BODY

MODEL IN PION-NUCLEUS SCATTERING
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In Chapter VIII we obtained the t-matrix for scattering

of a pion from a single nucleon which is bound in a potential well.

This 3-body t-matrix was later used in place of the free pion-nucleon

t-matrix in the calculation of elastic pion scattering from ”He,

12C, and 160. In this appendix we give a theoretical justification

for the use of the 3—body t—matrix in pion-nucleus scattering.

In the development of the optical potential formalism

in Chapter II, we eliminated the pion—nucleon potential, ‘45“ ,

17M

by writing “J. in terms of the t—matrix I?» where we defined

WM 1!»

A

113.1 4‘ = ’0-()WM 1‘.'~,-1.-’\1'.;met\‘m,

The propagator (I was given as

-\

(m) G. = (L tE-Ev—Kwuq

where Q; is a projection operator for completely antisymmetric

states. The elimination of 1‘.“ using equation (E.l) is clearly

an arbitrary step. Any operator equation containing KEEN could

have been used to eliminate “3;“ . However, the resulting equations

for the optical potential do not have conventional forms for some

choices.
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Kerman, McManus, and Thaler (Ker59) give a systematic

way for eliminating VII“ in their Appendix IV. Their approach

is completely general and shows the conditions necessary to end up

with a conventional Schroedinger (orVLippmann-Schwinger) scattering

equation. We first present their approach and then we apply the

result to our 3-body model.

Kerman, McManus, and Thaler (KMT) point out that we can

define a whole series of scattering operators .+36‘

(12.3) tor: «gm MR,“ (Shy—to-

which can be used to eliminate ’01:“ . The propagator Gd” is

completely arbitrary; however, as we shall see, there is only a

certain class which lead to a final scattering equation of conventional

form. Our objective here is to show that we can make a consistent

definition of the pion—nucleus optical potential when 60" is

the propagator used in our 3—body model.

If we use equation (E.3) to eliminate fig”; , we obtain

for any choice of (ia_

__ l

(EA) TTW ‘- {A /LA-\) ‘1”

U INJ

E. I '= A- 1: 1+ "I!
( 5) 'W L ‘) crL Gr ‘1”,\
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(E's) aa- : E k ILA-"311.161" Gr/A‘] '

Equations (E.u) — (E.6) are the same results we obtained in Chapter II,

N

except now we have 60" instead of G and td' instead of

/\

l1m . Defining the first order optical potential as

0

(13.7) U1” : LIX—”fir

and the complete optical potential as

(M) U1»: U; + U13, (l- \O><6\\21J¢ Um)

I

the equation for 12.“? becomes

.__1 ~ I
(12.9) ‘w = OW + OW l07<o\(a,.\o><o\‘[jw

Further, the t-matrix t0“ can be written in terms of the free

pion—nucleon t-matrix



(13.10) '12,,- -‘-"- "CTN-t- in.“ C61,: 3.\£o-

where, as before, 't: is 'ven b

(an) {31“ = 417“ + ’U'T'm Odo-£31,.“

In order for equation (E.9) to be the conventional one—body

Lippmann-Schwinger equation we must have 1

(E.12) <O\Qr\‘=07 (E‘w-KK+L£:\

or equivalently,

(E.13) <O\G6_\0V: <0\ G1\07

-1

(Recall that (No.10): (ETI- Kwt-Lé)

 

1We assume an infinitely heavy nucleus here so the nuclear

kinetic energy terms are not present.

-)
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The Hamiltonian for the bound nucleon in our 3-body problem

was HN= Kid" UN . If we use an independent particle model

for the nucleus and single out one of the nucleons (call it nucleon #1),

we obtain the one—particle Hamiltonian H , '-'- K, + U , . We

therefore define a t-matrix t (its; in terms of H‘ and ”I!“

(“4) tab: “new111 (SK-tau

.
-‘

where 6‘: (E‘+E.“."K“U“ KW+L6\

The t—matrix tab is the same t-matrix that was calculated in

Chapter VIII. (In Chapter VIII we denote the 3-body t—matrix as

If. H th tati t t id nf i“0‘ . ere we use e no on 35 o avo co us on

with the t-matrix in equati n (E. l) .) Hence, we now want to see

f<°‘&.‘°>= <0‘G\O)=~LE1r-KW+L&).|

Since G1. is a one-nucleon operator and '0) is an antisymmetric

nuclear (many-body) state, we have

£3 1|

A d:\ E.“‘ Kw + (EPEAQ'EG

 

(p.15) <0\G,\o§ '-

W‘here ck indicates the occupied single—particle states and E q is

the single-particle energy. In an independent-particle picture of

the ”He ground state, all the occupied single particle states have



216

the same energy' fig , so for that case we have the required result:

< o \ main-e (E..— K... Lei ,

L.

Hence, for He, we end up with the usual Lippmann-Schwinger equation

for Tr." when we use the 3-body t—matrix, tsfi , to obtain

12
the (first order) optical potential. For c and 160, we have that

-\
~ 0

(0‘51”) =(E1r‘K1r *“e

since we consider energies where E“. )7 CE" E‘B .

Further, in equation (E.6) the 6'6- term is multiplied by l/A .

Hence, for 120 and 16O, we obtain an ordinary Lippmann-Schwinger

equation to a very good approximation.

Thus we have shown that it is possible to use the 3—body

t—matrix in the definition of the optical potential, but we have not

shown that this procedure makes the first order optical potential

(which is what we use for U1.” ) a better approximation to the

complete optical potential. To show that there is an improvement

would require showing that the higher order terms are smaller for

U1?” 2 Q,-\ \ £33 than for q” '2'. (A- ‘)tTTN .

We therefore take a "try and see" attitude in this work, and require

that the final justification come from a comparision with experiment.
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CALCULATION OF BINDING CORRECTIONS

USING VECTOR BRACKETS
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The first binding correction term is given in our

3-body model by

(F.l) Atwnr-tggaogngotg} -

In Chapter VIII we showed in a schematic way how this term is

calculated. In this appendix we discuss the details of the

calculation.

We want to calculate the matrix elements of At'WN

and average over the z-components of spin and isospin of

target nucleon. Hence, we want to evaluate (we use <1 [5‘3“‘:>

to denote the matrix elements of AtTVN

(F 2) < Ath>-'-  

(2": +13 (23'“3:“:

LtAa

11M dammit-12.191?

In equation (F.2), \* L1. Al> E \W)‘ Ll>\A’”z»

where \W» denotes the wavefunction for the bound (s-wave)

N 'N

nucleon; A}: and L, ‘2 are the z—components of the nucleon
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spin and isospin respectively. The initial and final pion momenta

l .

are I, and ‘1‘ respectively and L};

f n . 1r .
o t e pion isospin; also we define ”I!"L; >2... \ ?E» h... >

Since all the operators in 6%: are"diagonal with respect

is the z-component

“ .L:

to the total isospin I = L +L~ , we can easily sum on .

~

We first write the isospin state 335‘L,” LNE»%

as

(as) \ L“ L“%)\ L” '11:)

7, <r1,\t“'t'° a}; 0;) III.)

11:.

Then we calculate

(FW)<A't-“» 2““H11."i+\z Z

11% (v.3 A"?!

 

(1:21LwLfiLZLfi%><IX%\<:n-KWAQM\At\+A%>\?“>\112> ,

The matrix elements of At?“ are independent of I; and
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. . u“ . 2 _ QI+|

(F.5) Z (J C4 Li L; \II;> " .1r
.9 lb +\

Iaba

So taking 1%:0 we have

(F.6)

y 11+\ 2 ‘

<15th ‘ I L12,“ “30;." +\\ N in.“ H

41-

x <11§0|<§3KWA3;\AtW\K\JA«:>\§>\IIz=°>

We assume the pion-nucleon interaction is only in the (3,3) channel

so I: yz . Hence, we want

(F.7)

(Amb=(z/%\ QHZGLLKW”32‘ New“N‘39

1%
The sum over the nucleon spin can also be easily done, but it is

 

not quite as straightforward as for the isospin. First, we write

the state \ W0 A'N%>\?£» as
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(F.8)

N A-“7‘9“ %<%%%\ LTA. M‘r a")

"‘ a:

RNA;

8"»A '
‘ RN} 9'” “)1! ‘Ps‘ % 3&1 LT Ln”)(1w)3

 

In equation (F.8), i:- L“ since LN=O . (We use this

redundant notation in order to be consistent with the notation

in Appendix D.) The function RL?A\ is defined by

l __ t " '

W93) «(mung Rum
is the "radial" part of the momentum space wavefunction. Using

the expansion in equation (F.8) we have

\

(m) (aim =33- (‘2
 

<waM“-UmDQgekLw/LM“D

(Mymy

x YL'w um) g?”AP“\°”‘\Q'°RWSWP»)

Ln)” 0“")

v. < 91; 9; 95‘be‘i'Lx.‘ L'uzoptm \qumg L1r Luzo>
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Now conservation of total angular momentum and conservation of

l l

parity require (‘1? '3 L“: i 3 1 (Recall the nucleon

wavern tion is s-wa e. Also ‘tHT i 1 de ndent ofc v ) , 4<:£§ .{j7' s n pe

so using the fact that
29

(MO) 2 (Ln-A? ”WA-3, \%’%’a—$ = 1L“

A: %% lLrlq

(p.11) 3 (3' \= gilt} 9(516'

ZMWYHHWWM: 41* L" K 0

\ -——\ “| "

em: HEALT(?~%*‘\"LTW“-?w\

 

 

‘7- ' 2
x g?» “f R?“ ““3 R00”; \%00(Q”\

2CN\3 2 ON 33

K < 9‘" a: 95953-1 L1; Ln“ ‘AthTrRs $931L1TLH=Z>
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At this point we take advantage of the separable form for RN

(see Chapter VIII) by writing %0 e.,) 630

(ms)

 

“some73" g‘i—9‘ I”5"» “Ami"
8.3%I (2W33 L2“\3 f0“. 33

1" L3

xH>“9" $131,304 $.93(e9,“,P.¢")u~(e.1')

x1Y~L5~H(P
'S\KuN (9N0!) %I(E, 91:311.“)

x<fi"?.§' "%9: 1 Ln Ln ’0‘

(Note: u 2 || sin e u 2’. 0 )4 L“ c LN

Inserting the above form for (kofincao we obtain

H

(Again, by conservation of angular momentum and parity, L11- : Luv .)

(F.1u)

<mo=3~Z <23+\\8"w““M‘ 02-mm
W‘BLT 01W)

x 3 La: v," ”6 MELWt L0
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where

@19chP" (25 Lxfl-.—

  0234“ ag'flAP" R P‘ L " 1:

° Lam?"Ego (2“):- C ‘08 ’ ‘r’ N )uuu’»)

" <Pu‘ R; “121: L“L~:°\t33 “>1: P: Mei L'L: z°>

II

The expression for B L P“. fl. %’Lw 3 is quite similar to

the impulse term calculated in Chapter III. Insteadof

R(?J)R(efl“3 we ha::R(?“308° (E)? ‘PNIM)

and we have t3} instead of t33 . As with the1Timpulse term

in Chapter III, we insert a complete set of “NC“ states

on each side of tB'S , i.e. , we insert the unit Operator

(F.16)

\t"°""‘)5"‘b; «1,. .. ZSV'flW on" “K"

A””2%", cm" m)3

’B‘hu’Qhuktkn

K @"cx" ‘3"‘34'M' 2M“ =- :L
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where X‘:‘ +,Quand"8 :Il '/’B’ku 'k, 4?." {L + ’7;

W ~ ~

The matrix elements of ”€33 for the above states are

(F.17)

< w w y 54' w 2“. 2%.. \t” W" 1'" y" 3;" in.» My»
: w)3§‘£°ru_oxm )

 

()(N‘L S ( ‘bn %") g(%; 3: Bgmr’
n‘m) Maths/2‘)

x 3024;," 94533 (210." A S“y" ,quch xt33(wm
42"4'")

where from Appendix B we have

 

(F.18)

t33( we.“ w w" x = Xtame“MA(333C w macaw)

and %:3( Q.)

(F.19)

tntwcm 42.9“): ‘8‘W2t‘CZ-Z 7233 e' "' 1

NR 1;. (a. ‘
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(See Appendix B for the details. The off-shell factor ‘3.” should

not be confused with the free particle propagator 3° .) Using

the separable form in equation (F.18) for t33 we obtain for B

(F.20)

5‘96”: (3 HA: RX"?- y‘: in ( we“ )9“ 92°)

(2w? <33” ( 0.20) l

x 31(P-“1”%Lw\'52 (1)131“ ELI-3

where

(F.21)

31“} (Kn '3' L“\:

2"Va"UV“‘5‘? Km: much")
m9 (3“ 8‘

 
 

x (PWPfl' %%%=o‘i LwLnto H551" Ni- ’86.492an:1 LX>
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(F.22) 3.“ P1“ ‘1“ % LW\

2VeflkjgggA61."
(3“ )3 (3“-“~33

 1.49m(2 Vanna“)

x <23?"?‘%%%1 L.“- L: 1'— O \Q"‘ “K“ 35% zit'VzLQ-"11k’>

The vector bracket expression in equation (F.21) and (F.22) is

given in equation (D.19) of Appendix D. The quantities E31. and

are evaluated in the same wa as the :E}‘ factor

B2. y 131*

of the impulse term (see section 3 of Chapter III). Proceeding as

in the impulse term we obtain for Bi and B

.Q + ‘/

(F.23) BL(?‘R CK (3 LT\: -L4W§ZL_1)%+
‘k 2.

V1 x. 3!; 1 .Jz,

Kb; (3 LT} 8}”?thWWWJM

 

 

 

 ‘11mm wmww(9&1

*
—

L'l‘

xZ “_.aékx“HAWD13fW223:

fins-L“. A

M {QWYWWTS
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Where -F|L is KL?N\%3(‘&\ for L21 and

uu(?n\%o(59{Pu\’\n%(st) for (a:“'2. The

variable is o
X PW‘K

Using the results from equations (F.14), (F.20) and (F.23)

and regrouping some of the factors, we have finally for (At‘fi’fl»

 
_. 31 29m

(1.321») (As-t1» "' fiz‘. (XLQL'nHBL1?Lr(81("'?“.3

1:: (EV

V1 1 3,1 1 V7, 1 3,2. “12' H

x i 9F A?“ \YLE’KI’LPJIfD

O

x (50% ?1£'Lt lindé L 949,? Lwiqfl

The function fi is given by

(F.25)

ll CD «7' fl

(3 t h ?n Lnm = 81 w tscww t, 023

° tied.)

x Y11(?‘l\”b’<" LTI’ QQ v7! ?1:°K"L11 (ex)
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(F.26)

P t? 1" 1L It Lwlx\=§Ax-¥L[U1:Lh\wp(k\1

“Mcmw(P,,\

xZ“:(iRXM&M«\L,W>Y(4: \Y(‘Xqr“;mY(9,1}

As before, {-12, R(?“3%33(h\ and

{-23 "u(«mob(a?m 3,02.)- Th

U 0integration variable x is at ,

In order to avoid the singularities on the real axis,

the integrals over PF” and x are taken along complex

contours by making the substitution P: —> 91:69 (P

and ‘k"—§ °Kn 6L ? . The validity. of this procedure

is discussed by Hetherington and Schick (Het65).



APPENDIX G

SOLUTION OF THE

LIPPMANN-SCHWINGER EQUATION
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Haftel and Tabakin have developed a simple matrix

method fOr solving the Lippman-Schwinger equation in momentum

space (Haf70). We present here a modified version of their method.

Our method does not involve "subtracting out" the singularity in

the free two-particle green function and produces the transition

matrix itself rather than the phase shifts.

The Lippmann—Schwinger equation for two spinless particles

interacting via an arbitrary potential \/ is given by

(G-l) TU»..:' 33):: VUfSfi-t— V(§?."3T(wo)?.uf.\ 43—9..

w,- may)» +‘te Q“):

I

where ?> and ‘E: are respectively the initial and final
~

momenta1 in the two particle center—of—mass frame. The energy

variable 090’") is given by

2 ’ 2. Ii"

(gm) QL€3=M\Q}+m1c3+-‘VEE« /2.WH «$sz [amt

for the nonrelativistic case and by

 

1As in previous sections, the momenta here are actually

wave numbers.
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u 'I. 4. 1c} u" Y7, 1 q 2.; Ht)’;

(G.3) CAL?“ )-=va, c. +‘Vs E; ) *- (mtg t-‘btg P

in the relativistic case. The energy parameter w, is related

to the on-shell momentum Po by

N

(GJI) 9).: (ALE)

where QCVQ) is given by equation (G.2) for the nonrelativistic

case and by equation (G.3) for the relativistic case.

For a central potential, we have after a partial wave

expansion

(6.5)
II

v("'51“) .9" v) f"A?

0 (orw(?")+ie (1“)3

 

TL(Q.,P'P3=VL(?'P) +800

where

(is) VL?‘1>_x= ZKZL+‘\V(P'P)? (P'- P3

(G.7) TLQ” ‘2' 3.3: Z kaLxBTLLwHP'flRLW?)

L
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The momentum variables without ,~, in equations (G.5) - (G.7)

denote the magnitudes of the vector momenta.

By rationalizing the denominator of the integral in

equation (0.5) we obtain

(ca) TL(L.>,,?'?) =an'e) *-
(I) I n "+ g E(9.9”)V(PPMT(wc,P"P) Hi?"

where O P: - PT.+ (a e (3.1"):

 

(G09) é (PO e") : XM‘M‘L _L

I‘d-m1 'th

for the nonrelativistic case and

(c.1o) c? 9“: (“0“?03'Iwt(?"3\(wz(?03*wzc?")) _|_

F) 0|(?c\+w\(.?')+w1(?e\+wt(P") 2.01

for the relativistic case.

In equation (G.lO) the energies LO‘ and UL are

given by

(G.ll) L.)(93': LN:c,cit-Vac}Phi) L““1).;
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Using the identity

Ck,‘ E>f> CL)!

(0.12) 1:. + (Jr 80““)

X”‘)(."‘ué: XL" X15

 

we can write equation (G.8) as

(G13)

710.3,)? P)-" VL(?P) -LL?o)3“?MW(? V.‘TLtwo)?o P)

agar?

 

m ‘

9’8 P“’o?“W..<?'PP‘)TL.(°)¢)?"
*‘3 P4?"

o. i?.ut" ‘?;F' (ngr)3

We now obtain a finite integral by making the substitution

I!

P = ? LLX . Also, we are interested only in

O \_x

the half-off-shell t—matrix, T C (40° ) ? )0?B , so we consider

the equation

(c.1u)

T (e.,? 93-: vu 93+...—0““Mpcve.)V(vaLuna. .0)
1m)

 

__ WK @U’?")v(P 'P")TmayP'o) LL

29., X m?
—-l
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Let us now digress for a moment and consider just the

principal-value integral in equation (G.14). In a Gaussian formulation

of numerical integration we have the quadrature rule

3 u

(G-15) _amtofix 9-" Z WLIV (XL)

A in

where RX) is an arbitrary function to be integrated and .(L(X')

is a preassigned weight function. The weights WL and points

XL are found by requiring the moments ‘MM.

3 N

M Z M

L —

. _ M

A L 4

be exact for M equal zero to 1N-\ so that equation ((3.16)

is exact if +Q‘\ is a polynomial of order 2 2N‘\ . For

Gauss-Legendre integration we would take _flLX)=\ and E A) 81:

[-X) 1] . In our principal—value integral in

equation (G.11+) we can choose the weight function to be |/X .

With this weight function and N even, we obtain the result:L

9v QAuss

«2.17) X; = X;

 

1For N odd, the "center" {L is zero, so the

center weight is not defined.
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N 691055 (Moss

(G.18) We 37- WU / b

where "PV" refers to m): VX and "Gauss" refers to M): ‘ .

Thus, an Nepoint Gauss—Legendre evaluation of integrals of the form

3'; DQAX/x is exact if ‘9“) is a polynomial of order

.2 ZN... (N even), provided the points are taken symmetrically

about x = O .

For convenience, we now make the following definitions:

((2.19) TL. L U30 , PL F.) '5 TL

(c.2o) Vt. ( Pi. ‘33 E VLJ

(0.21) FL?¢,?L\E€D

Where 1);: ?0L \+ Xffl’wss 3/Q - XEIAUSS) .

We call ?0 the N + 1 point, and write equation ((3.14) as
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(9.22)

,._..\I . _FV'W? ..

Tk ”NH :L11::\ 9"“ VHN“ \RH

Gauss

3:.‘_E( PJ/(W?)PJV“JTJWJ /X6240$S

““4 on

We further define weights

ff" (39,055 a, .

C ‘ __:!_3 FAQ’S /lewss) 4:5»

93““ L11")

 

_
—
_

 
(02.23)“:

_. FTW PM,”

1 Law )3

 

Po $:N+\

so that equation (G.22) can be written

M-H

((524) T1: VL,N+\ + i-W-J VLJT;

A“
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Or equivalently,

NH

(G35) 2 (SL3 —-W-J- VL\T3 = VL,N+\ .

A“

Equation (G.25) defines a system of complex equations which we

solve by Gauss elimination.

In order to check the accuracy of our method we calculated

differential elastic cross sections for several different local

optical potentials using our method and the optical potential code

GIBELUMP (Doe73). We found that 16 points gave results that agreed

with the GIBELUMP results to 3 digits. In addition, the pion-nucleus

.differential cross sections calculated with 16 and 24 points agreed

with each other to three digits. Hence, we feel that our code

produces reliable results for the cases calculated in this work.


