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ABSTRACT

It is common practice to make simplifying assumptions in order that

convenient or familiar means may be used in the study of synchronous ma-

chines. For the purpose of this thesis, these assumptions will be con-

sidered in two groups. With the first group of assumptions, there re-

sults the familiar system of non-linear differential equations interre-

lating voltages, currents, speed, and torque for the synchronous machine.

This type of system of equations is not generally amenable to solution

except by numerical methods. Rather than attempt to solve this formid-

able system of equations directly, engineers working in the area of power

system stability use a second group of simplifying assumptions in order

to solve the system of equations by convenient means. Using both groups

of assumptions, the conventional method thus developed over the years is

to solve part gf the equations by modified steady state techniques and
 

then apply numerical methods to the remaining equations in order to obtain

a solution. Similar techniques are used by engineers in other areas where

the transient operation of synchronous machines is of interest. The study

of a synchronous motor with a periodically varying load or with impact

loading is an important example of these areas.

Recently, much work has been done toward applying‘the digital comp

puter to the study of the power system stability problem. However, the

trend is toward programming the conventional techniques with their two

sets of simplifying assumptions and empirical methods. In contrast, this

thesis is a report on an investigation of the numerical solution of the

complete system.of synchronous machine non-linear differential equations
 

without the second group of simplifying assumptions.
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Two classes of power system stability problems are studied here and

it is found that for the cases considered:

1. The solution can be carried out in detail without the second

group of simplifying assumptions.

2. The solution can be carried out under transient conditions with-

out developing or using extensive empirical relations that are necessary

in using modified steady state techniques for the transient prOblems.

3. The form of the results reported here gives more stability in-

formation and gives the information more directly.

h. The direct solution of the complete set of synchronous machine-

equations rather than solution by conventional means, produces results

that add to and verify accepted theory in some cases and contradict ac-

cepted theory in other cases.

A conclusion from the investigation reported here is that, for the

class of problems considered in this thesis, methods developed before the

advent of the digital computer should not be used as the basis for digi-

tal computer investigation. The more fundamental synchronous machine

equations can now be solved directly.

The physical and mathematical structure for the cases considered

here is the same as the structure in other areas involving transients in

synchronous machines. Therefore the advantages of direct solution of the

synchronous machine equations extend to areas other than power system

stability.
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I. INTRODUCTION

The purpose of a study of a synchronous machine is either to obtain

design information or to predict operating conditions for a machine. In

either case, use is made of the relation between the machine parameters:

inductances, resistances, inertia and the machine variables: voltages,

currents, speed, torque. The design problem is the problem.of obtaining

the proper machine parameters for a desired range of the variables. The

problem of predicting operating conditions is the problem.of obtaining a

subset of the variables for conditions imposed by specifying the machine

parameters and the remaining variables.

To aid in the study of a synchronous machine, it is desirable to ob-

tain a mathematical interrelation of the machine variables. Laboratory

meter indications show the relationship among the variables to be so com-

plicated that either exact mathematical interrelations cannot be found or

the resulting mathematical system.of equations cannot be solved. Some

simplifying assumptions, which lead to a mathematical system.of equations

that can be solved, have become conventional. The system of equations

resulting from the simplifying assumptions usually gives results that

have acceptable correlation with laboratory meter indications over a limp

ited range of the variables and for limited waveforms of the variables.

One of the prdblems encountered in Obtaining a mathematical relation

for the variables, is the irregular waveforms of the instrument indica-

tions. This prdblem is commonly treated by considering only the lower

frequency harmonics. Often only the fundamental frequency terms are used

in the representations.

Another prdblem is encountered in the fact that the apparent induc-
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tance and resistance coefficients are not constants but are rather com-

plicated functions of currents, power factor, field saturation, and other

factors. There are clearly defined procedures for determining inductance

and resistance numbers which are mean constants that partially take into

account the dependence of the coefficients on current, power factor, and

saturation.

The fundamental harmonic representation and constant inductance and

resistance coefficients are taken here as the first of two groups of sim—

plifying assumptions. With this first group of assumptions, there results

the standard system of differential equations for synchronous machines

non-linear in speed torque and current variables. In order to solve the

synchronous machine equations by convenient or familiar means, it is con-

ventional to make a second group of simplifying assumptions also. The

second group of assumptions are: constant speed operation, steady state

sinusoidal armature voltages and currents, constant direct current field.

With both groups of assumptions, the equations reduce to an algebraic

system of equations which are readily solved.

Relaxing any of these restrictions would yield pertinent information

and give mathematical results which more closely correspond to laboratory

observations of the meter indications. Much work has been done in the

study of the effects of higher harmonics and in the study of the effects

of saturation, current, and power factor on the inductance and resistance

coefficients. Elaborate techniques have been developed to make steady

state, constant speed techniques yield results correlating with observa-

tions under transient conditions. These techniques usually involve sep-

arating the equations into electrical and mechanical sets. The electrical
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equations are solved by modified steady state methods and the mechanical

equations are solved as differential equations, usually by numerical

methods. Little has been done, however, in the area of solving the com-

plete set as simultaneous non-linear differential equations. The pre-

sently accepted standard techniques were developed before the advent of

the digital computer, and numerical methods for solving merely the me—

chanical equation as a non-linear differential equation involve long and

tedious calculations. With the modern high speed computers, however,

there appeared, at the beginning of the research reported.here, to be no

reason why the complete set should not be solved as non-linear differen-

tial equations by numerical methods.

This thesis demonstrates the technique for solving the complete set

of equations by numerical methods by applying the techniques to two

classes of power system stability problems. Not only are the prdblems

solved without making the assumptions of constant speed, constant field

current, and sinusoidal armature voltages and currents, but for the

classes of prdblems considered the solution process is simpler than the

standard procedure. The form of the answers gives more stability infor-

mation and gives the information more directly. Further, the greater

generality of the techniques used in this thesis yields information which

in some cases adds to or verifies the accepted theory and in other cases

contradicts accepted theory. In particular, this additional information

was obtained relative to the variation of the field current and the vari-

ation of the direct and quadrature components of armature currents under

transient conditions of operation.

The techniques used here in solving the systems of equations for the
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two classes of power system stability problems can be considered in three

parts: First, the variables are changed in order to obtain a convenient

form for the coefficients. The variables used are closely related to

the variables of A. Blondel'sl two reaction analysis or the variables

resulting from a transformation of variables illustrated by R. H. Park.2

Secondly, the differential equations are manipulated into standard form

to permit numerical solution. In order to assure a unique continuous

solution, the form of the equations must be such that they can be put

into the standard form. Thirdly, an existing digital computer library

routine is used to solve the system of equations. The routine used is

based on the fourth order Runge-Kutta formulas. In conjunction with the

differential equation solving routine, a master and a function routine

must be supplied. The master and the function routines depend on the

particular problem to be solved and on the amount of data the computer

is required to print out.

The greater simplicity of the technique of this thesis is evident,

both in theory and application. The presently accepted standard tech-

niques for solving the machine equations use the simplifying assumptions

of constant speed and sinusoidal armature voltage and current variables

in part of the equations. The constant speed assumption makes it possible

to consider the equations in two separate groups. One group, called the

electrical equations, is a system of linear differential equations con-

taining only electrical variables. The other group, called the mechani-

cal equations, or the swing equations, is made up of one equation for

each machine under consideration. The swing equations are differential

equations non-linear in speed, field current, and armature current. The
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further assumption of sinusoidal steady state armature voltages and cur-

rents and a change of armature variables to the familiar direct and

quadrature components reduce the electrical equations to an algebraic

system of equations. Under steady state conditions, if the power, power

factor, speed, and armature voltages are specified, the algebraic system

of electrical equations can be used to determine armature and field cur-

rents. Neglecting losses, the armature and field currents determined

from the electrical equations satisfy the mechanical equations. But,

under fault conditions, the electrical and mechanical variables are in

a transient state and the simplified equations cannot be expected to
 

yield a solution which correlates with a solution of the differential

equations. To compensate for the difference in differential equation

solution and a steady state solution, the standard solution proceeds as

follows:

1. Initial armature currents, field currents, and angular positions

are determined from the steady state electrical equations.

2. New reactances, called transient reactances, are used with the

results of the steady state solution, previously Obtained, to determine

voltages and voltage angular positions. These voltages are called the

voltages behind the transient reactances.

3. It is assumed that the voltages behind the transient reactances

and the transient reactances of the machines do not change with the changes

in speed and current to be considered.

A. The voltages behind the transient reactances and the transient

reactances do change as fault and the fault removal change the network

parameters, however.
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5. Using initial conditions defined by previous steady state calcu-

lations and by the type of fault, the swing equations are solved.by

common numerical methods. For each increment of time assigned in the

numerical process, corresponding increments of changes in phase angles

for the voltages behind the transient reactances are determined. These

changes in angles are incorporated into the electrical power terms in

the swing equations when the next time increment is applied to the solu-

tion of the swing equations.

6. The solution is continued by adding increments of time until

sufficient information is available on the phase angles of the voltages

behind the transient reactances to determine if the system is stable*

or unstable.

7. Since the electrical power is calculated in terms of transient

reactance, voltage behind the transient reactance, and the phase angle

of the voltage behind the transient reactance, different power formulas

must be used for different states: steady state, fault on, fault removed.

8. If the changes in field currents are to be considereda, the

voltages behind the transient reactances must be modified for each in-

crement of time considered.

The synchronous machine equations are solved directly in this thesis

with only the first group of simplifying assumptions. Thus, the solution

under transient conditions is obtained without formulation in terms of

the so-called "transient reactance" and "field variation" effects and so

 

iA system is considered unstable if any of the synchronous machines fall

out of step with the system.
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‘without defining processes in which these reactances are used to give

results correlating with observations under transient conditions.

A common power system stability prdblem is that of determining how

fast the circuit breaker must operate and remove a faulted line for the

system to remain stable. Conventionally, the critical interval is ob-

tained by a criterion which determines a critical rotor displacement as

the variable. In order to determine the critical time, the numerh:al

solution, by standard methods, must proceed up to the critical rotor dis-

placement angle, although it need not be carried out until instability

is indicated. An alternative method, illustrated by Kimbarka, uses 232?

calculated swing curves. The use of pre-calculated swing curves requires
 

the steady state, constant speed, constant field current assumptions.

The pre-calculated swing curves cannot be used for some limiting cases,

and the pre-calculated swing curves do not represent conditions after

the fault has been removed. The techniques of this thesis do not require

the assumptions of either the criterion or the pre-calculated swing curve

techniques. Further, the variables determined by the general solution

presented here include both time and angle variables for the fault inter-

val and for the interval after the fault has been removed. The switching

time and the type of fault are controlled by the master routine in the

computer program.

The results reported here of a typical problem indicate that the

field current variation, commonly given considerable attentiong, is in-

significantly small even under extreme conditions, whereas the commonly

Jaeglected change in speed is really a more dominant variation. The re-

:sults of the numerical solution for the differential equations indicate



‘— 

-8-

that the direct and quadrature currents of Blondel's analysis or Park's

transformation have characteristics much different under transient condi-

tions than that usually assumed in standard steady state analysis and

that usually assumed in modified steady state analysis applied to the

power system.stability prOblem.

II. THE ROUND ROTOR SYNCHRONOUS MACHINE EQUATIONS

.AND THE TRANSFORMATIONS OF'THE VARIABLES

In this chapter the synchronous machine equations, obtained with

only the first group of simplifying assumptions, are listed and all co-

efficients are defined. Next, the transformations are listed and the

equations in the new variables are given.

The round rotor synchronous machine variables that are Observed by

means of meter indications are: the three-phase voltages of the machine

armature, the three-phase currents of the machine armature, the field

voltage and current, and the speed and torque at the shaft. With the

usual simplifying assumptions that the interrelationship of the variables

is represented with sufficient accuracy by considering only the funda-

mental harmonics and by considering the resistances and the inductances

as constants, the mathematical interrelations of the variables are:

Wt) 26’ +1.2” ggat’srm 480.)(2.1)a = as dt 65

vf(t) §E.Z’m(¢) IRE-5331'“ if“)

_ l 9 83 8" 3 +(2-1» T<t>--2 Us“) 114”] 75 arms) L.» if“)

(B + J-gr 5
dt

where (2/3“) and 005”) are column matrices representing the line to
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neutral voltages and currents of the three stator (armature) phases.

Specifically,

—"a(*'fl 380$

7/8“) vb(t) <93“) = ib(t)

vcm , 1cm    

The functions vf(t) and if(t) represent the rotor (field) voltage and

current respectively. The functions T(t) and.¢(t) are the shaft torque

and position respectively.

The coefficient matrices fless and ‘Qfss are of the form

    

 

72A 0 9-1 _RA o 0—7

WS3 = 0 BB 0 = o RA o

L_o o 129— Lo 0 R1}.

,. _

LAA LEA LG: LAA LAB LA;

ogss = LAB LBB L013 = LAB LAA LAB

:AC LBC I‘cc_J L __LA.'B LAB LAA_   

where LAA, LBB, and LCC are the self inductance constants for the respec-

tive stator phases and LAB’ LBA’ L , LC , LBC’ and LCB are the mutual

inductance constants representing the coupling between stator phases.

The constants Rff and Lff represent the resistance and inductance

coefficients of the rotor.

The coefficient matrix, caf;r(¢), is of the form

H
I

cos 9

er

cos (a - 1209)0881190 = align) =
sr

r cos (9 - 2h00)

  l
e
t
-
-

a
:

‘
—
v
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= 2with e 2 ¢

and p representing the number of poles of the machine and 6 representing

the displacement of the rotor in electrical angle measure.

The coefficients B and J represent the mechanical damping constant

and polar moment of inertia respectively.

A change of stator variables greatly simplifies the interrelation-

ship of (2.1). variables closely related to those to be used here were

develOped by A. Blondel1 in order to more accurately consider saliency

effects of salient pole synchronous machines. R. H. Park2 illustrated

that the new variables can be considered as a set of variables resulting

from a mathematical transformation of variables. Park's transformations

on the stator variables are:

   

Hohfl _1 1 1 _ an)“

(2.2) vd(t) = ~13- 2 cos a 2 cos (av-120°) 2 cos (o+120°) vb(t)

quh)‘ _:2 cos a -2 sin (ca-120°) -2 sin ($1203 ch(t)d

_io(t)- _ 1 1 1 _ Hath.)-1

iam = § 2 cos a 2 cos (9-1200) 2 cos (9.120% in“)

Liq(1-.) -2 sin e -2 sin (9-120°) -2 sin (9+120"_) bic(t)_   
It is a formidable task to apply the transformations of (2.2) to the

equations of (2.1). This application of the transformations would be

necessary, however, in order to rigorously define the coefficients in the

:resulting equations in terms of the observed relationships (2.1).

Koenig3 has shown these transformations (2.2) to be the product of

'three non-singular transformations. The three component transformations

applied to the stator voltage variables are:



 

-11-

    

v:(t)— l l l va(t)—

(2.3) v;(t) 71; 1 e3a/3 633/3 vb(t)

L";("')_ 4.1 ewes/3 east/3 30m-

2:“)... ‘1 0 o- 1:“;

(2.1.) v:(t) = o {39 o v;(t)

c:(t)4 LO 0 eJ€__ [Jr's-(t).-J      

where 92(t) is the conjugate of v:(t).

     

-}3tf1 .2 o ow'lgsf

(2.5) vd(t) 31—2 0 1 1 v:(t)

Ab

:9“)... _0 J -1_ Us“).

 

The transformations defined in (2. 3), (2.4), and (2.5) utilize

symmetries and inherent characteristics of the coefficient matrices and

with theorems developed by Koenig and Blackwellh, these transformations

are relatively easy to apply.

The transformation defined in (2.3) is the familiar symmetrical

component transformation. Application of the transformation of (2.3)

followed by the transformation in (2.h) defines the backward sequence

variables. Application of the transformation in (2.5) to the backward

sequence variables separates the real parts of the backward sequence com-

plex variables from the imaginary parts of the backward sequence complex

variables. The new armature real variables resulting from the three

transformations are essentially the same as the direct-axis and quadra-

ture-axis components of armature voltages.

Even though salient pole synchronous machines, for which these new

'variables were developed, are not considered in this investigation, the
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new variables are in a convenient form for numerical solution of the

differential equations.

After application of the transformations defined in (2.3), (2.h),

and (2.5) for the voltage variables of (2.1) and the same transformations

are applied to the current variables of (2.1), the machine equations be-

come:

0 o o d o

vs(t) RS+LS at o o o 15(t)

+ + d ° + d .

(2 6)a Va“) _ ° Rs+Ls dt Ls JELsr dt 1d“)

' ‘ ° + + + d ' .

vq(t) o - 9 Ls RS+LS at -ofensr iqa)

d d
Vf“) o JELsr 317. o Rf+Lf at if(t)

f2
(2.6» T(t) = ? LsrP1q(’°) if<t) + (B + a 1) (3

dt

where

112:1?“

L: = LAA + 2LAB

R:=1RAA

L; = LAA-LAB

The equations (2.6)a and (2.6)b make up the complete set of non-

linear differential equations of the synchronous machine. The only sim-

plifying assumptions required to obtain (2.6) were those required in the

initial formulation of (2.1): only the fundamental frequency terms need

to be considered, resistances and inductances can be represented by con-

stants. In a numerical solution of these non-linear equations, the first

question of concern is the existence of a solution. E. L. Ince5 gives

an existence theorem which applies to the problem considered here. Appli-

cation of the theorem is given in Appendix A.



 

__1
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III. TWO POWER SYSTEM STABILITY PROBLEMS

The problems presented in this thesis serve the purposes of: illus-

trating the thesis technique for two classes of power system stability

problems, comparing the thesis technique with the standard technique,

comparing the results of the two methods. The comparison of the results

is on the basis of the type and the amount of information available from

the solutions and a quantitative comparison of the variables when agree-

ment or discrepancy is evident.

This chapter states the two problems considered here. The assignment

of the various machine parameters is discussed. The inductance, resistance,

and inertia parameters are chosen as typical values for a particular class

of machine rather than values for a particular machine. These general

parameters were chosen to allow freedom in emphasizing the percent change

in some variables by taking limiting values of some of the parameters for

the class of machine considered. For example, in the first class of prob—

lem, the inertia constant was taken close to the lower limit for a turbo-

generator and a severe short circuit was considered. Thus, the electro-

mechanical transient components of all variables are emphasized.

The problems contained in this thesis are illustrative of two classes

of power system stability problems. With minor changes in programming,

the techniques illustrated here can be used in the study of a large vari-

ety of problems in either class.

3.1 THE FIRST CLASS OF PROBLEMS

To define the first class of problem, the term "infinite bus" must

first be defined. "Infinite bus" is the term used to describe a set of

terminals to which a machine is to be connected if that set of terminals
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has the characteristic that the voltages of the terminals are independent

of the currents over the range to be considered. The "infinite bus" con-

cept is commonly used in considering the operation of an individual ma-

chine which is part of an interconnected system when the power capacity

of the system is many times that of the individual machine.

The first class of problem considered here is the stability problem

of an individual machine relative to an "infinite bus." Important ex-

amples of this class of problem include:

1. The determination of the circuit breaker operating time that

would maintain machine stability if the breaker action removes the

faulted section of the system but does not disconnect the machine

from the system or bus.

2. The determination of the reclosure time of the circuit breaker,

that would assure machine stability, after a temporary local fault

has removed the machine from the bus.

3. The determination of the stability characteristics of an indi—

vidual machine for local and less severe sustained faults.

When solved by the thesis technique, the three problems listed in

this first group are mathematically identical. Only the engineering in-

terpretations are different. The different situations are represented

by specifying different variables or by changing constants at specified

switching times. The first of the three problems is used in this thesis

to illustrate the solution technique.

PROBLEM: Consider a generator connected to a power system where the

power system can be represented as an "infinite bus." Under pre—fault

conditions, the generator delivers 0.5 p.u. power at 0.85 power factor
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lag to the "infinite bus,' at a bus voltage level of l p.u. volts. Con-

sider a three-phase symmetric short circuit system fault near the genera-

tor such that during the fault the generator action can be described in

terms of a short circuit at the bus. When the circuit breakers remove

the faulted section of the system, the bus returns immediately to "infinite

bus" characteristics. Determine how rapidly the breaker must operate and

remove the faulted section in order that the generator remain stable.

The system parameters that must be specified to complete the state-

ment of the prOblem are the coefficients in (2.6)a and (2.6)b.

In a typical steam.turbine drive, the power output of the turbine is

taken as a constant over the switching interval and so (2.6)b is usually

modified by multiplying both sides by a. If the B term is neglected and

M is defined as

M=§3J

then (2.6)b becomes

(3.1) Pin = 6J2 L3r if(t) iq(t) + M 3

where Pin is the power supplied by the prime mover and.M is referred to

as the momentum of the machine.

Rather than assign values from a particular machine, typical per unit

values are assigned for a particular class of machine. Ranges for these

typical per unit values as obtained from the literature8’9 , are listed in

flable 3.1 along with the values used in the solution.

For a symmetric fault, the zero sequence voltage v:(t) and zero se-

quence current i:(t) are zero, so R: and L: numbers need not be assigned.

It can also be shown that parameters of transformers and lines which

«connect the generator to the bus can be included in R: and L; if the
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transformers and the lines are represented as series inductance and re—

sistance and if va(t) and vq(t) are the bus voltage components in place

of the generator terminal voltage componentsu. Further, from the form

of the equations (2.6)a it is clear that R: and «L; are the usual alter-

nating current resistance per phase and direct axis synchronous reactance

per phase respectively.

Typical per unit resistance for round rotor turbogenerators has a

range of 0.003 to 0.008 p.u. A value of 0.005 is used and it is assumed

to be the generator, transformer, and line resistances combined.

Typical per unit direct axis synchronous reactance for round rotor

turbogenerators at 60 cycles, has a range of 0.95 to l.h5 p.u. .A value

of 1.2 is used and it is assumed that this value includes generator, trans-

former, and line reactances.

Following the conventional assignment, b‘IELsr if(t) is l p.u. for

a: 377 and if(t) = 1 p.u. field current. Thus, ens/ELsr = 1 p.u. Again,

by convention, I p.u. if(t) is obtained from 1 p.u. vf(t) and l p.u. Rf.

The range of the Lf/Rf for round rotor turbogenerator is 2.8 to 9.2.

.A value of 6 is used, then L is 6 p.u.
f

The momentum term is usually given in terms of H constants. H is re-

lated to the momentum by

9.11
M = x f

‘where

G is the rating of the machine in megavolt-amperes

f is the frequency in cycles per second

M is the momentum in megawatts/electrical radian

For a round rotor turbogenerator, H has a range of 2.8 to 9.5 in-
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cluding the prime mover. The type of prime mover largely determines the

particular value in this range. A value of H = 3 is used. The low in-

ertia constant was chosen in order to emphasize the mechanical transient

and make the stability prOblem more critical.

3.2 SOME REFINEMENTS ON THE ROTOR-STATOR COUPLING TERMS

Kimbark8 has developed an equation for the purpose of considering

the percent change in field as resulting from the combined effects of

transients and regulator action. The change in field Kimbark represented

in terms of the field circuit time constant and components of armature

voltages. The regulator action is simulated by incrementing the armature

voltage component that is due to field current. In a numerical solution

of (2.6)a and (3.1) on the digital computer, the master routine can readily

simulate regulator action by incrementing the field current variable.

In order to Obtain more detailed and more accurate information on the

field decrement, refinements in the rotor-stator coupling terms are con-

sidered as outlined in the following paragraphs.

The coefficients in equations (2.6)a and (3.1) are evaluated at the

particular operating conditions under consideration. However, if a range

of the variables is being considered, it is found that these coefficients

‘vary. If the field decrement is to be studied, a more accurate representa-

‘tion of the rotor-stator (field-armature) relations is needed. The rep-

:resentation must take into account the particular Operating conditions

and in addition must take into account the effect of incremental changes

zibout the operating point. Consider the magnetization curve of a synchro-

iaous machine as represented in Fig. (3.1).
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Figure 3.1 I

At any particular operating point, if = If, the voltage-current relation

is given by the slope of the secant line through P. Thus, the éJELsr

terms in (2.6)a and (3.1) can be assigned a value equal to the slope of

this secant line. For incremental changes about If, however, the Oper—

ating point moves along the tangent line. This refinement is incorporated

into the term

v(t) = évfingr if(t)

by defining

if(t) = If + if1(t)

where

I is a constant or reference value of if(t)
16'

1f1

If .eJ—ELsr is the slope of the secant line in Fig. (3.1) and BK is

is the time varying component of if(t)

the slope of the tangent line at if(t) = If, then

v(t) = 9~f2Lsr If + ex lfl(t)

.All of the terms in (2.6)a and (3.1) which involve field and armature
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coupling are appropriately modified. The machine equations become

7.4a _ 32%: ads 5L? K at — 3.05)"

(3.2)a vq(t) + ism/2LBr If = - ' L; 324i; dg't' - ax iq(t)

vf - Rf If K 3‘11; 0 Rf+Lf g; in“)

__ .L 1.. .1 c _

. . d2

(3.2)b Pin = e.~f2Lsr If iq(t) + ex ifl(t) iq(t) + M d? e

The value of the slope of the tangent line changes with a change in

operating point and a given slope would be in error for a large increment

of change in current. The use of the tangent slope is an improvement

over the use of the secant slope if if1(t) remains small.

A typical value of slope OK for a synchronous machine at a typical

operating point is about 0.6 or 0.7 p.u. with b = 377. This value Of OK

as compared with typical values of 1.2 to 1.8 for b~f§isr shows the sig-

nificance of the refinement on the field decrement effect. All terms in-

volving field.and armature coupling are appropriately modified before the

problem is programmed.

3.3 THE SECOND CLASS OF PROBLEMS

The second class of prOblem considered here is the stability study

for two interconnected machines. The significance of this class of prOb-

lem lies in the fact that this prOblem represents an extension of the

technique of the first prOblem toward a multi-machine system, and in the

fact that with certain assumptions two interconnected systems fall into

this class.

Examples of problems of this class include:

1. Two synchronous machines are connected by a transmission

line. One machine is operating as a generator and the other as a
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motor. For a sudden increase in load on the motor, determine

whether the machines will fall out of step or not.

2. Two power systems, each represented by an equivalent syn-

chronous machine, are interconnected by a transmission line. For

a fault on the transmission line which is cleared in a specified

time, determine whether the systems remain in synchronism or not.

3. Two power systems, each represented by an equivalent syn-

chronous machine, are interconnected by a transmission line. Sys-

tem.A supplies power over the line, and system B receives power

from the line. For a sudden increase of demand in system B, or

for loss of a generating unit due to local fault, system.B require-

ments become P + AP. Determine whether the two systems will remain

in sychronism or not.

under the assumptions that permit a system to be represented by an

equivalent synchronous machine, the three prOblems are mathematically

identical. The first of the three is used in this thesis to illustrate

the technique.

PROBLEM: For the second problem of this thesis, consider a synchro-

nous generator supplying 0.5 p.u. power over a transmission line to a

synchronous motor receiving 0.5 p.u. power. For a sudden change in load

on the motor from 0.5 p.u. to 0.6 p.u., will the machines stay in syn-

chronism? Repeat for the case where the motor load changes from 0.5 p.u.

to 0.8 p.u. power. Initially, let the voltage at the motor terminals be

1 p.u. volts and the motor power factor be 0.85 lag.

The machine parameters are assigned typical per unit values as in

the first prOblem. The direct axis synchronous reactance of the motor
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is taken as 0.8 p.u. and the H constant of the motor is taken as 2. Let

the motor phase resistance be 0.005 p.u. and let the b‘IELsr be 1 p.u.

for both the motor and the generator. Assign the generator plus the

transmission line the direct axis synchronous reactance of 1.2 p.u. per

phase and a phase resistance of 0.005 p.u. Let the generator H constant

be 6.

IV. SOLUTION OF A STABILITY PROBLEM FOR A

SYNCHRONOUS MACHINE ON AN INFINITE BUS

This chapter presents the standard and the thesis techniques in

general and for the particular problem. Results are presented and com-

pared. Methods are compared and the extension of methods to other prob-

lems and other areas is discussed.

h.l THE STEADY STATE INITIAL CONDITION CALCULATIONS

The pre-fault conditions are the constant speed, steady state, and

constant field conditions under which equation (2.6)a reduces to

 

vdw Rs wLB 0 1d

(11.1) v = - 0113+ R+ - (in/EL i
q s 5 er q

va- —0 0 Rf J L1f_

     

The pre-fault conditions given in the statement of the first problem

are:

(VI = 1 p.u. voltage at the bus.

P = 0.5 p.u. power at 0.85 power factor lag.

wL: = 1.2 p.u. reactance

R: = 0.005 p.u. resistance

[II = .5882 p.u. current

In addition to equation (T1), the following equations apply for
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steady state sinusoidal conditions:

vd(t) + [V] sin 5

vq(t)

p

Q
: A

¢
+
V

II - |I| sin (5 + s)

|Ii cos (6 + B)- |v| cos 5 i (t)
q

where

B is the power factor angle

8 is the phase angle between the bus voltage, V, and the field

excitation‘voltage,

Ef = (in/ELM. If

Usually, this steady state problem is solved neglecting resistance

and the various quantities are pictured on a vector diagram as in Fig.

(h.1).

 

 

 
Figure h.l

Solving (h.l), the results are:

 

Ef = 1.5 /90 + 23.60 p.u. volts

5 = 23.6°

Id = -0.h96 p.u. current

I = 0.335 p.u. current
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If = 1.5 p.u. since Ef = If in p.u.

vd = 0.h0 p.u. volts

vq = -0.916 p.u. volts

Further, since the pre-fault conditions are considered as constant syn-

chronous speed, the initial values of 9 and O are:

9 377 radians per second

6 wto + s + ./2 = s + 1/2 = 0.1+116 radians

In steady state terms, the angle 8, sometimes called the torque

angle, is the angle represented in Fig. (h.l) as the phase angle between

the bus voltage and the voltage generated in the armature due to the

field current. In equations (2.1), and in the subsequent transformations,

8 is the angle of deviation of the rotor from the no-load synchronous

speed position. A synchronous machine is unstable if 6 increases with-

out limit. If a system is stable, the variation of 5 is generally an

oscillatory function of time. If a machine is stable for the first swing,

it is classified as stable, for by the end of the first swing, regulator

action and prime mover governor action will have begun and these actions

tend to stabilize the machine.

It is generally accurate to assume that prime mover governor action

does not take place until after the first swing of the oscillatory 8 and

does not enter into the stability calculations. Therefore, it is accurate

to assume that the prime mover power input remains constant during the

first swing. Some authors7’8 have developed formulas to take into con-

sideration generator field control by regulator action. The regulator

action is not usually initiated before the fault has been on for 0.2 or

0.3 seconds, however.
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h.2 NUMERICAL STUDY OF THE STABILITY PROBLEM OF A SYNCHRONOUS

MACHINE ON AN "INFINITE BUS"

by:

and

The mathematical statement of the problem to be solved here is given

(1) equations (3.2)a and (3.2)b,

(2) the initial conditions defined in section n.1,

(3) the fault conditions,

(4) the switching conditions.

The normal form of the system equations given in (3.2)a and (3.2)b

as required for a numerical solution by the Runge-Kutta method is:

(h.2)

V'—

d

d

agect)

fish)

L. 

51d“)

d .

Etiq(t)

d

Rim“)

 —

 

[—
+

e +
1

K2

-‘
[vd(t)'Rsid(t) ' aLsiq(t)]‘L%’- L;2(Lf ‘ Lg) [

[vd(t)-R;id(t) - 6L; iq(t)]

[vq(t) - R; iq(t) - OJ-ZLBrIf + b L:id(t) + bx ifl(t)] ii:

 

_ _ + _ - + K i _ R L

[vd(t) R8 id(t) 9 L15 iq(t):] L31}: - SJ f 1fl(t)/ f

b

  [pm - 5 (J2 Lsr If + x ifl(t)) iq(t)] i-

where, from.the transformations defined by equations (2.3), (2.h), and (2.5)

and

vd(t)

vq(t)

6(t)

IV, sin 5

- [V[ cos 5

am.+ 5 + 1/2

The flow diagram for the computer program Which was used to solve

these equations is shown in Fig. (h.2).
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The digital computer library routine, F-6, was used to solve the dif-

ferential equations. The F-6 routine was chosen because it uses the fourth

order Runge-Kutta10 formulas. The truncation error for the fourth order

Runge-Kutta formulas is of the order of (At)5, where At is the increment

of time used for each step. .Also, the F-6 routine limits the amount of

error by an automatic control of the size of the increment. Both of these,

the fourth order Runge-Kutta formulas and the increment control, tend to

lnake the program slow, but both are valuable assets when the exact char-

acter of the variables being investigated is unknown.

The differential equation solving routine, the master routine, and

tflae function routine are described in greater detail in Appendix B.

With the program described in Appendix B available, the solution to
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the first problem is obtained simply. Merely supply the program with the

specified initial conditions, the parameters for the particular machine,

and master routine counters.

The scaled initial values, scaled coefficients, and constants used

in the problem.are listed.

The numbers in memory location 3 through 8 as required by F-6.

In 3

In A

In 5

In 6

In 7

In 8

In 10

the integer 30 indicates the location of the first of the

sequence of initial conditions.

the integer 36 indicates the sum of entry 3 and n, the num-

ber of equations in the system.

the integer 13 indicates the scale factor on the fr, 2'13.

the integer 10 indicates the time increment, 2-10 see.

the integer 36. The yr will have their error held to about

1 in the 36 binary bit.

the integer 160 gives the memory location for the entry

into the fr routine.

the integer 100 gives the memory location of the first of

a sequence of scaled coefficients and constants.

The initial values of all the variables are scaled by 2'13 and read

in as follows:

Location Variable Scaled value

30 t 0

31 .9 = b 0.01.602

32 e 0.0002h20

33 1f1(t) 0

3“ 1d(t) -o.oooooosu6

35 iq(t) o.ooooh0882s



 

The coefficients and constants for the fr routine:

Location

100

101

102

103

10k

105

106

107

108

109

110

111

112

113

11A

115

116

Quantity

1/ J—zLBr

M

K +
/L,3

1
/L;

1
/Lf

P/M

V

Work space

Work space

Work space

Work space

8

“/2

5/,“

Scale

2'9

2'3

2-13

20

Scaled Value

0 .73633

0.01592

0.500

0.61360

0.1666

0.0038910

0

0.001h6lI-8

0.0015915

0 . 00021+h1h

program

0.0001917h7

0.63662

For master routine, read the following counters to control read out

and.switching.

If the integer k is placed in the 29th word of the master routine,

:read out will occur after each (k+1)st calculation.

If the integer p is placed in the 36th word of the master, switching

«ar fault removal occurs after p read outs.

If the integer q is placed in the 38th word of the master routine,
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the program completes q read outs before stopping.

The master reads out t, b, 6, ifl(t), 8, id(t), iq(t). However, if

zero is placed in the 33rd word of the master routine, only t, 5, and 0

will be read out.

The pre-set parameter in location 3 through 8 must be read in before

F-6 is read in. All the other information can be placed at the end of

the program. At the end of the read in, transfer control to the left side

of the first word of the master routine and the computer gives the results.

The critical switching time can be determined by altering the counter which

is the 36th word of the master routine.

The solution was Obtained for various switching times converging on

a critical value. Some of the results appear in Graphs n.1, n.2, h.3.

h.3 STANDARD PROCEDURE FOR SOLVING THE STABILITY PROBLEM.0F A

SYNCHRONOUS MACHINE ON AN "INFINITE BUS"

If a numerical solution is obtained for the system equations as in

section (he), the technique is the same for all single mchine stability

problems. In sharp contrast, standard.methods use a variety of techniques

for various types of problems and also utilize additional assumptions and

formulations to obtain results. In the interest of completeness and con-

trast, section (h.3) presents some of these standard techniques.

The standard procedure for the solution of the stability prOblem of

a synchronous machine on an infinite bus is started.with the steady state

solution of section (h.1). The values and.phase positions of the initial

q’ vd’ vq, Ef and 6 are determined. I

Usually, the equation (3.1) is written in the form

d2

(3.1) P = m 2L:5r if(t) iq(t) + M 5-2— 95

id, 1
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By neglecting the resistance, the electrical power term can be

written ‘ II I

V E

_ . . _ f .

(14.3) Pelect — mJ-2Lsr 1f(t) 1q(t) - ---——-xd 81D 5

where

IV! is the p.u. bus voltage

lEfI is the p.u. voltage component due to the stator direct

current field

8 is the torque angle

+

Xd = 0 LS the direct axis synchronous reactance

Standard methods, in order to use equation (4.1) with transient con-

ditions, contain some modifications for equation (h.l) coefficients and

contain some procedures for using equation (h.l). For a given steady

state armature voltage, power, and power factor, equation (h.l) can be

used to find v
d

is modified by replacing<m L: by new reactances, xdT and.XqT, called

, vq, id, iq, as in section (h.l). Then equation (h.l)

direct axis transient reactance and quadrature axis transient reactance,

respectively. The steady state vd, vq, id, iq with the new reactances

define a new voltage called the voltage behind the transient reactance.

Modified equation (h.1) becomes:

= E

(11.14) vd ‘1 - qu 101 d
+

vq - RS iq + xdT id - q

-R+i
8

‘where

Ed and B9 are the direct and quadrature components respectively

of the voltage behind the transient reactance.

Note that the equation (h.h) does not contain an if(t) term. The

cnlrrent if(t) was assumed constant in order to obtain (h.h).
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The quantities in (h.h) are commonly pictured on a vector diagram

as in Fig. h.3.
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Figure 11.3

The voltage behind the transient reactance, E, defined by

Eq=EcosSi F'..d=1331n8>1

IE! = [sq + ,3 Ed.

is assumed to remain constant during the transient interval if the field

decrement is neglected. During this interval if losses are neglected,

equation (1+ . 3) becomes

. mug: _
( .5) de sin 8 - Pelect

Since 6 = mt + n/2 + 6, equation (3.1) becomes

v E 2

(11.6) P =L-J—L‘Llsinb+M-‘Lb
in XdT dt2

Under the assumptions necessary to obtain equation (11.6), a solution

to (1.6) will indicate stability or instability. Standard techniques for

solving a stability problem use a numerical solution of (1+.O) to determine
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stability characteristics.

For this particular prOblem.of a short circuit at the bus, coeffi-

cients in equation (h.6) are obtained using steady state and modified

steady state methods. Then, from the time of occurrence of the fault

until the circuit breaker removes the fault, equation (h.6) is solved

with V set equal to zero. From.the time of the circuit breaker switch-

ing and continuing to the end of the calculations, V is returned to the

infinite bus status. The solution is carried out until the value of the

angle 5 indicates stability or instability. Various circuit breaker oper-

ating times must be considered until the time is found for which the ma-

chine operation becomes unstable. This time is called the critical switch-

ing time and the corresponding angle is called the critical switching angle.

For any switching time less than the critical value, the machine operation

would be stable, and for any switching time greater than the critical

value, the machine operation would be unstable.

Some important variations on the direct solution of equation (h.6)

are now considered.

In order to avoid carrying out the numerical solution of equation

(4.6) for various switching times until a critical switching time is deter-

mined, a criterion has been developed for determining the critical switch-

ing angle. Except in simple cases, the determination of this critical

angle requires a trial and error graphical integration approach. Further,

even with the critical angle known, the switching time must be determined

by numerical solution of equation (h.6) out to the critical angle. For

the particular problem of a short circuit at the bus as in this first the-

sis problem can be solved most readily by the equal area criterion. The
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solution is presented in the following paragraphs.

Under the appropriate assumptions, equation (h.3) was obtained.

V E

_ f

(h-3) Pelect - ———i;r- sin 5

A sketch of P as a function of 8 is given in Fig. (h.h). The
elect

horizontal line represents the initial power supplied to the generator,

80 the initial torque angle, 50 the switching angle. The angle, 5c, is

the critical switching angle when the cross-hatched area above the initial

power line is equal to the cross-hatched area below the initial power line.

—
;
>

03% /%

/////
l 25 62: 1+

 

  
 

 
Figure h.h

For the initial steady state condition

[VI = 1 p.u.

Pr) = 1.5 p.u.

x(1 = 1.2

Pelect = 0.5 p.u.

so = 23.6° = .h116 radians

P : gl)§1.§)

elect 1.2

for 5c the critical value

180° - 23.60

5 1.25 sin b d 8 - .5 (1800 - 23.6O - 5c) = .5 (5c - 23.6°)

sin 8 = 1.25 sin 5

c

then
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Next, with IVI equal to zero for short circuit at the bus, the criti-

cal 6c is determined to occur at 0.28 seconds by numerical solution of

equation (4.6).

.A second variation from the direct solution of equation (h.6) becomes

necessary if a study is to be made of the field decrement effect and/or if

a study is to be made of the incrementing of the field by regulator ac-

tion. Among the assumptions that were necessary to obtain equation (h.6)

was the assumption that the field current remains constant. Kimbark8 and

Crary'7 show the development of a formula that alters Eq of equation (h.6)

in order to consider these changes in field. The developed formula is:

AE E(t+53’-)-0J2L i(t)

(1"?) T5: f 0321. i(t)r f
+ sr f (23)

'r
f 2

Eq

 

 

where

the field excitation voltage in armature termsEf = wfaLsr If

L

Tf.= fig the field circuit time constant (armature open)

f

At is the time increment considered

Ef is incremented to simulate regulator action and for a given E1, the

formula determines the change in Eq or the change in field called the

field decrement. For each increment of time, Eq of equation (h.6) is in-

cremented by the amount indicated by (h.7) if the change in field effects

are to be considered.

An example by Kimbark8 uses equation (h.7) to determine the percent

change in field for a machine operating with a short circuit at the bus.
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The machine parameters for Kimbark's example placed the machine in the

same class as the machine of the thesis problem. The results listed for

Kimbark's example showed a decrease in field of about 23% in the first

half second of sustained short circuit.

A third deviation from the direct solution of equation (4.6) occurs

if the fault is a less severe fault than a symmetric short circuit at the

bus. An example of a less severe fault is illustrated by the problem of

a generator connected to a bus with a double circuit and the fault taking

the form of a symmetric short circuit on one of the two circuits. In such

a situation, equation (h.6) would have different Eq/XdT values for pre-

fault steady state, for the interval of the fault, and for the interval

after the fault has been removed. Even the equal area criterion.becomes

complicated in this third case. That the equal area criterion is not so

simple for this type of problem, and that the equal area criterion is not

readily adaptable to digital computer solution, is demonstrated.by a qual-

itative discussion of an example.

Dunne eaeeukt
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Figure h.5

The diagram of Fig. (h.5) represents a generator connected to an

infinite bus by two parallel lines. A fault occurs on one of the lines.

If the faulted line is removed by circuit breaker action, the critical
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switching angle can be determined using the equal area criterion as fol-
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Figure h.6

To apply the equal area criterion here, three different power angle

curves are required as shown in Fig. (h.6). The three power angle curves

are curves representing the relations in equation (h.3) for the Xd before,

during, and after the fault.

The horizontal line represents the value of power being supplied to

the generator by the prime mover at the initiation of the fault. The

cross-hatched areas above the initial power line are taken as positive,

and the cross-hatched areas below the initial power line are taken as

negative. The angle, 50, is the initial torque angle and 5c is the torque

angle at the time the fault is removed. By the equal area criterion, 5c

is the critical switching angle when

‘ A1 + A2 + A3 + Ah = 0

The critical 5c is usually found by graphical trial and error means. The

switching time is then found by numerical solution of equation (h.6) with

Eq and xdT determined for the faulted condition.
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7,8
Pre-calculated swing curves are sometimes used to determine the

critical switching time. Pre-calculated curves cannot be applied to the

open circuit and short circuit synchronous machines, however.

h.h COMPARISON OF RESULTS AND METHODS

The program was run for switching times of 0.1, 0.2, 0.25 and 0.3

seconds. Graph h.l of the results indicates that the system was stable

for switching at 0.25 seconds and the system was unstable for switching

at 0.3 seconds. These results compare favorably with the 0.28 critical

switching time obtained by the equal area criterion.

In contrast with Kimbark's8 results of a change in field of about

23% in the first 0.5 seconds of sustained short circuit, the if1(t) ob-

tained by direct solution here had a maximum variation of about 0.1% of

the steady field current If. This low order of magnitude for the change

in the field current is as should be expected on the basis of the terms

of equations of (h.2). In per unit quantities, the armature and field

inductances are:

Lf = 5

L5‘37“!

and in per unit quantities the voltage disturbances causing the changes

in the field and armature currents are of the same order of magnitude.

Both are approximately

[vd(t) - s L: iq(t)]

 

and

did(t)
‘ + 1

__= v(t)-eLi(t) '—dt [ d s q ] L;

diflhs) . + xT... = [vd(t) — 9 L8 iq(t)] L; If
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where K and L; are the same order of magnitude.

Kimbark8 represents the so-called change in field flux by a ficticious

voltage component in the armature circuit. This voltage component is de-

rived from the same relationships that appear in the equations solved in

this thesis. In the derivation the voltage component is related to the

field current.

From the thesis solution, for the time interval of 0.5 seconds, the

speed had increased by h.5$. The commonly neglected change in speed appears

to be a more significant variation than the field current decrement.

Very little more can be said in comparison of the results, since stan-

dard techniques usually give only 6 as a function of time, but the id(t)

and the iq(t) of the computer solution shown on Graphs h.2 and h.3 exhibit

characteristics distinctly different from.the form commonly assumed for

the id(t) and iq(t) variables.

The approximate mathematical expression for these current variables

obtained from the graph are:

1q(t)

ids)

0.82 sin (mt + V1)

1.25 + 0.82 sin (wt + Y2)

A closer examination of the data showed that the «1 terms were not con-

stant at 377 radians/second, but were more nearly 5, the instantaneous

angular velocity. It is commonly assumed that id(t) and iq(t) have a slow

variation with a period similar to the period of the mechanical oscilla-

tions. The period displayed here is around 0.0166 seconds, compared with

a mechanical oscillation of around 1.0 second. It is common to assume that

for the short circuit condition, iq(t) goes to zero immediately. The amp-

litude of the oscillations of iq(t) displayed in Graph h.2 is around twice
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the initial value of iq(t). The currents were obtained for the condi-

tions that the armature resistance was neglected and currents appear to

have the form of sustained oscillations, but the armature circuit time

constant is around one second so the decay would be slight in the time

shown if the resistance had been considered.

A review of the mathematical relations for the equations solved sub-

stantiates the results obtained. For the equations (2.6)a and (3.1), with

the assumption of constant speed and constant field current, the usual

form of Park's equations are obtained:

van) -- (rags; £3) 1am +bL;1q(t>

(h.8)

vq(t) = (112%; £13) iq(t) - 6L: id(t) - bJ—str If

Neglect R; and for short circuit conditions, vd(t) = vq(t) = 0, so the

equations (h.8) become:

7%;- id(t) = - éiq(t)

0.9) d , ,
ET; iq(t) = + e id(t) + 0421.8r If

For the initial conditions and coefficients of the present problem,

a Laplace transform solution of the two equations yields:

iq(t) 0.82 sin (at + 4’1)

(n.10)

id(t) 1.25 + 0.82 sin (bt + V2)

With the resistance considered

0.82 e'o'8t1q(t)

ids)

sin (ét + \V1)

(”'11) -0.8t
1.25 + 0.82 e sin (8t + ‘V2)

It is interesting to note that for the constant speed solution, the

0.82 coefficients of the sine terms and the 1.25 constant are independent
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of Speed. .A conclusion that for small changes in speed the id(t) and

iq(t) variables would have the same amplitudes and same forms is substan-

tiated by the results on Graph h.2.

.Admittedly, the average value of iq(t) is zero, and for a high inertia-

torque ratio of a power generator, the variation of the iq(t) would add

only a slight ripple to the swing curve 6 as a function of time. This high

inertia-torque ratio does not always exist, however, when the standard

technique of considering a system as an equivalent machine is used. The

high-inertia to torque ratio would not exist in small synchronous machines

in control systems, so in such a system the standard assumptions would

have questionable accuracy.

The form.of id(t) and iq(t) is of particular importance when solving

the differential equations (2.6)a and (3.1) by numerical methods. If the

id(t) and iq(t) variables had a slow variation with a period of the order

of one or two seconds, similar to the mechanical period, the time incre-

ment for the numerical solution could be taken as a value such as 0.05

seconds or some other value small compared with the period of variation

of the variables. The correct form of the currents, id(t) and iq(t), shows

a period of around 0.0166 seconds and.a time increment of 0.05 seconds,

for the numerical solution could not be expected to give significant re-

.sults.

Finally, in addition to comparing results of the standard and thesis

techniques, consider the differences in principles and methods for the

first class of problem.

In contrast with the standard technique, the thesis technique:

1. Solves differential equations as differential equations.
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2. Does not require the development or use of the transient

reactance concept.

3. By direct solution of equations (2.6)a and (3.1, gives

values of armature current, field current, speed, and torque

angle as a ftnction of time. The standard method gives the

torque angle as a function of time.

A. Does not drop field variation terms as in the development

of the equation (h.6), so field variation effects can be con-

sidered without developing additional formulas.

5. Can solve a large class of problems without changing proce—

dure. Changes in specified variables, specified parameters,

and switching times are controlled by the master routine of

the computer program.

V. TWO MACHINE SYSTEMS

The question arises as to the desirability of analyzing the single

machine system and the two machine system as separate problems rather than

as problems included in an n-machine formulation. A partial Justification

of this separate consideration is given in the following paragraphs.

There are many power system stability problems that fall into the one

machine or into the two machine class of problem and give satisfactory

correlation between calculated results and observation on the actual sys-

tem. The study of the effect of machine parameters on stability, circuit

breaker action for connecting or disconnecting individual machines, and

many others, are single machine problems. After a preliminary investiga-

tion, it may be found that one machine and a system can be adequately rep-

resented by a two machine analysis as far as the individual machine is
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concerned or two interconnected systems may be adequately represented as

two equivalent machines in a two machine analysis. The case actually in-

volving only two synchronous machines would arise only in isolated cases

or in low power level control systems. The latter is not a power system

stability problem.

The greater simplicity of the one machine or the two machine analysis

methods makes these methods more desirable than a generalized form when

these simpler methods give acceptable correlation with observed results

from the physical system. The simpler forms occur because of the element-

ary patterns for the transmission line systems interconnecting the ma—

chines. The multi—machine fonmulation would need to include a network

analysis program with the machine analysis program.

Whether standard or thesis methods of analysis are used, the two ma-

chine problem represents one step in the direction of a multi—machine

analysis. Even if methods do not apply directly, information obtained

by analyzing a two machine system should be helpful in formulating a multi-

machine analysis.

Some problems which are conventionally considered as two machine

problems are now listed.

1. Two machine representation is used in the study of an individual

machine delivering power to a system over a long transmission line.

As far as the individual machine variables are concerned, the distant

system is adequately represented as an equivalent machine. Studies

are commonly made of the effect on the individual machine of a fault

and fault clearing time for a fault on the transmission line con-

necting the machine to the system. Studies are made of the effect
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on the individual machine of an increase or decrease of the net gen-

eration of the system due to added loads, lightened loads, or faults

on the system.

2. Two machine representation is used in the study of two systems

which are interconnected by a transmission line. After some prelimi-

nary investigation, it may be found that the tie line stability is

adequately represented when the two systems are considered as two

equivalent machines. Studies are commonly made of the effect on the

tie line stability of a fault and fault clearing time for a fault on

the interconnecting transmission line. Studies are made of the effect

on tie line stability of a net increase or decrease in generation of

either system due to changes in load or local faults in either system.

3. The case of two interconnected synchronous machines would be

rare in power system study; however, analysis techniques in terms of

two machines are commonly presented and serve for the systems repre-

sented by two machines.

The prOblem worked in this chapter is that of two machines, and under

appropriate assumptions does represent two systems. The stability prOb-

lem considered is the prOblem caused.by an increment of change in power

of one of the machines. The transmission line fault is discussed.but not

illustrated by a numerical example. The standard techniques require a

different approach to the two types of problems, while the thesis tech-

nique is basically the same for the two types of prOblems.

5.1 THE DIFFERENTIAL.EQUATIONS OF'THE TWO.MACHINB SYSTEM

In this section, synchronous machine equations are combined, trans-

formations are chosen and applied, and the resulting system.of equations

for a two machine system are listed.
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Consider two synchronous machines interconnected by a transmission

line system, Equations of the form of (2.1)a and (2.1)b represent the

system as follows:

(5-1)a V81“) = $831+ a(117-08331 aqtérlwl) ‘Qsl(t)

vf1(t) €%”Xr81(¢l) Rfl+ it Lfl if1(t)

’ 4—” of (st)
(5-1)b T (t) = - ; [gf (t) i (t) 9 881

srl l

1 2 81 fl ] E73; 4£}81(¢1) Lfl

e0 (t)
d o

11:“) + (31”13?) “‘1

(5.2). Was) = @882. dc; “a €33.20wa J32“)

mm iii-03.32%) Rf2+ a4; 1,1,2 1mm

OZ
x81‘2(¢2)

(5.2)b T2(t) = -% [J;2(t) if2(t)] 5%; 020332

r32

Jags) d o

+ (B + J -) ¢
1f1(t) 2 2 dt 2

where the coefficients and matrices are defined as in Chapter II. The

(2) subscripts represent variables and coefficients for machine number

(2), and, as in the first problem, let the variables and parameters with

the (l) subscript represent machine (1) plus transmission system co-

efficients’4 and variables. For the specified connection pattern, by use

of circuit equations and segregate equations, (5.3) and (5.h) and the

application of the symmetrical component transformation of variables,

 





 

(5.3)

(5.4)

 

    

32m

= 4.200)

(2.3), to the stator voltage and the stator current variables, there re-

sults

(5-5)a

where
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—va1(ti- —va2(tij

ve1(t) vc2(t)

—1a1(t3— ‘_iae(t57

:931(t) = :b1(t) = 1b2(t)

I. 0 -W Rs+Ls g; 0

+ + d

0 0 RS+L8 a";

O = 0 0

vfl(t) o fiLarle‘Jel

d -

Lyf2(tZJ __ o - EELsrze J92

T1(t) = (Bl + J1 €§>a1 plLsrli

 

o o 0

.EL 391 - 1L. 392

° dthrle dthrae

+ '* d 11. 'J ._Jl ~J

RsLsdt dtLBrle 61 dtfinfif

d e3 EL

dtLarleJ91 Rf1+Lf1 dt 0

d a

_.o __

11(t)

+

11(t)

11(t)

1f1(t)

'J

1‘9m{11(t)e 61}

 

T2“) 3 (Ba * J2 3%)52 " 1’2 Lara 1:: Jm {-11“) e.162}

 



 

R: = R21 + 322

R: = Rgl + R22

L: = L31 + L22

L: = Lgl + L32

9: = wt + 61 + ‘/2

62 = at + 82 + 1/2

and

99:“ {1:(t) {3913 and Jm {41%) {392}

means the imaginary part of the bracketed quantities.

For the backward sequence transformation of the type represented by

equations (2.h), a choice must be made. Some of the forms in the litera-

ture that reduce the system to an equivalent machine would seem to sug-

gest a transformation in terms of 9, where

6=mt+51+52+1/2

This 6 would be necessary for convenient reduction of the mechanical equa-

tions to a single equivalent in terms of

812 = 81 + 52

The overall system of equations was simpler and.the identity of the

individual machines was retained, however, when either the 61 or 62 trans-

formation was used. Thus, transformations of the form of equations (2.h)

were applied to the stator variables for the theta equal to 91' Further,

the transformations of the form of equations (2.5) were applied to separ-

ate the reals of the backwards sequence variables from the imaginaries of

the backwards sequence variables, and the equations (5.6)a and (5.6)b were

obtained.



 

 

   

o R:+L: §% 0

o o R;+L; §%

(5.6)a o = o - élL:

vfl 0 (21'er 2%;

v o --J§L [cos (5 —s ) ii-- (6 .6 ) sin (a -s )
L f2_ __ 5r2 1 2 dt 1 2 1 2

o o

{91 L; JELsrl %

R;+L; gt "JEL8r1 b1

0 Rf1+ Lfl dit-

. d. ' '

JELsre [5111 (81-62) E + (61-62) cos (51-62)] 0

o ‘ :M

r d '- 2Lsr2 [cos (51-52) at + 62 sin (51-52)] id(t)

faLsra [- sin (81—52) % + .92 cos (61-82)] iq(t)

o if1(t)

Rf2 + L1’2 gt __ _ff2(t)    
a - f2 .

Tl(t) = (51+J1 Et)¢1 + /2 Lsrl p1 1f1(t) iq(t)

(5.6)b d . 4;

T2“) = (132w2 as, + /2 1:er p irate) [iq(t) cos (61-62) -

/ ‘ id(t) sin (51-52)]

Express the swing equations of (5.6)b in terms of power

. 2

(5 7) P = Gi‘JELsrl if1(t) iq(t) + M1 jig 91

= - 52 JELsra 11,2“) [rqm cos (51-52) - 1am sin (51-52)]

+M 6
2 dta 2



 

 

where

d2 on

91=wt+61+x/2 $591 '51

2— L = o.

92 — wt + 62 + 1/2 dt2 92 52

Equations (5.6)a and (5.7) are the differential equations of a two

machine system. The thesis technique is the solution of these, (5.6)a

and (5.7), directly by numerical methods on the digital computer. The

standard technique makes some simplifying assumptions and uses a modified

steady state method to obtain a solution to these equations.

5.2 STEADY STATE INITIAL CONDITIONS FOR THE TWO MACHINE PROBLEM

The initial conditions are usually specified as constant speed, con-

stant direct current field, constant amplitude sinusoidal armature voltages,

a constant average power, and constant power factor. If these initial con-

ditions are imposed on the sets of equations (5.6)a and (5.7), the equa-

tions (5.6)a are independent of the set (5.7). From the results of the

transformations on the steady state sinusoidal armature currents,

id(t) = - |Iml sin (51 + B)

lq(t) = lIml cos (51 + B)

where B is the power factor angle.

The results of the steady state solution to (5.6)a are commonly pic-

tured on a vector diagram as in Fig. (5.1).
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Figure 5.1

From the solution of (5.6)a the initial values are:

id = - 0.h8h0 51 = 23.6°

iq = 0.3350 52 = -280

if1 = 1.5

if2 = 0.852

From.the constant speed assumption:

51 = 377 radians/second

éé = 377 radians/second

51 + x/2 = 91 = 1.9823 radians

52 + r/a = 92 = 1.0821 radians

O.h116 radians

-O.h886 radians

The initial values Obtained from (5.6)a satisfy the equations (5.7).

5.3 NUMERICAL STUDY OF THE STABILITY PROBLEM OF A.TWO MACHINE SYSTEM

In this section the constant field current assumption is Justified.

The equations are put into standard form for numerical solution. The
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computer program is discussed, and the use of the program is illustrated

in solving the second problem.

Upon examination of the results of the first problem, it is found

that the percent variation in the field current was less than 0.1 percent

of the steady direct current. The system inertia was close to a.minimum,

and the fault one of the most severe likely to be encountered. .As these

results suggest, examination of terms in the differential equations shows

certain terms to be negligible. Some of these terms will be discussed and

eliminated as the two machine differential equations are put into standard

form for solution.

 

 

  

 

  

l 0 +4.; Lfl - 2 ETCOS(51-52)

0 1 0 -42 gains -5 )
rt 1 2

$21.31.1

0 l 0

Lfl

JEL L sin (5 -5 )
81‘ 81‘

(5.13) 2 eos(o -52) f2— 2 1 2 0 l

Lfe 1 Lf2

0 0 0 o

0 o 0 0

o 0 0 0

__ 0 0 o 0

—f ""

0 0 o 0 dt 1C1(t)

0 0 0 0 ad; 1q(t)

0 0 0 0 34,—; 1:1(t)

0 0 0 o 5% if2(t) =

1 0 0 0 '91

0 1 0 0 "l

0 0 l 0 '92

0 0 0 14 _ 92 J 
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+ u +
O

l

[-1281d - elLsiq+ (21451-292 sin (51—52) ire] L; T

+

S

a + o ' 1

[-R 1(1 + elLsid+ ~f2Lsrlel ifl - ~[2L3r2 92 cos (51-52) ire] I:

l

[Vfl ‘ Rfl in] Q;

- J2Lsr2(él-52) sin ($1.52) 1d - J2Lsr2(él-52) cos (ol-oanqwfz-Rfeifa] it

.91

[P1 - bl J21.“1 ifl iq] “11

2’2

° 1
{P2 + 92 J2L5r2 if2 [iq cos (51-82) - id sin (81-52)]; E L—
The 8 x 8 coefficient matrix of the first derivatives is of the form

6 o
11

0 B
22

where the 5 is a unit matrix.
22

The inverse is obtained when 61-: is obtained. The submatrix 611

is a 1|» x h and the inverse will not be presented here but significant terms

will be discussed.

The determinant of 811 is

  

2 2 2

2 Lara 2 Lsrl + (2Lsr1 L81?) sin2 (8 -5 )
" + ' + +2 1 2

L12 Ls Lfl Ls Ls Lfl L1’2

but

_ l
J—2Lsr1 = JELsrg - 3T7 p.u.

L+ = 3— . .

s 377 p u

and the order of mgnitude of the field inductances would be about 6 p.u.

for each Lfl and 1’12“ Thus, the determinant of 611 is approximately unity.
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Similarly, all the diagonal co—factor terms of the inverse are approx-

imately unity. For illustration purposes, consider the 33 co-factor a33.

2 12
2L 2(-——~)

833: __s_rf =1__317.2_ =1-6——1§—7? =1-.00088=1

_— x

LfaLs 6x377

The off diagonal co—factor terms a12,a13, and 81% which reflect the

right hand term into thed-—tid(t) equation are:

 

 

2

— 2Lsrai(oo) (so)312 - Lf L: 3n 1" 2 cos 1" 2

2 s
2

. libs; - 1m sin-egg)
13 L+ L L+2 l 2

f2 5

EL

a = sr2 cos (5 -6 )
1h + 1 2

B

The first four lines of the right hand side of (5.13) are of the form

[- ‘1

A

  
D..-

_ L1?)

where B, C, D are of the sane order of magnitude as A or smaller than A.

Thus,

(t) =A/L: + 13‘;/L + c/L + D/L
dt 1d 312 8‘13 f1 311. 1’2

where the last three terms are approximately (.OOOhh)(A/L;).

A similar analysis applied to the a; iq(t) equation leads to similar

results, so the equation (5.13) in standard form for solution with field

variables as constants is as follows:
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”' '1
d + 0 + o , l

Etid [’Rsid‘elLs i{6’2 ~[xi-"1:2 “1“ (51'52) 1:2] L;-

d + . + ° - 1

atiq [-Rfiiqi-elL8 id+91 J2L3r1 if1'92 J—21"er cos (51-52)if2] L:

6‘1 91

(5.1%) =
co 0 . 1

91 [P1 " 91 JZLBrl if). lq] If;

92 e2

.9. P+é~f2L i icos(5-5)-isin(8-8)]-1=—
L_2_J 228r2f2q 12 d 12142

The equations (5.1h) are the differential equations that describe the

two machine system. .Equations (5.1h) are programmed as the closed fr sub-

routine for the F-6 differential equation solving routine. The F-6 and

the ff routine for (5.1%) under the control of a master routine can be

used to solve all of the two machine stability problems discussed in this

chapter. The master routine as in the first prOblem controls the amount

of information extracted from.the computer, simulates faults and fault re-

moval by changing parameters in the fr routine, and simulates changes in

load by changing constants.

For the particular prOblem, the master routine was written to read

out t, 51, 52, id and iq. The change in load was affected on read in by

determining initial conditions for P1 = - Pé = 0.5 p.u. power and reading

in that P2 = - 0.6 p.u. at the beginning of the program. The frequency

of the read out and the duration of the program are controlled by the

master routine.

With the f} routine written for a two machine system, and a master

routine written for the type of stability prOblem.under consideration, the

second problem is solved.when.the proper initial conditions and system

parameters are supplied.to the computer with the program.
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For the second problem, the scaled initial conditions and parameters

are supplied to the computer as follows:

The numbers in memory location 3 through 8 as required by F-6:

In 3

In h

In 5

In 6

In 7

In 8

In 10

The initial

The integer 20 indicates the location of the first of

the sequence of initial conditions.

The integer 27 indicates the sum of entry 3 and n, the

number of equations in the system.

The integer 13 indicates that the scale factor on the

fr is 2'13.

The integer 10 indicates that the time increment is

2-10 see.

The integer 36; The g? will have their error held to

about 1 in the 361"-12 binary bit.

The integer 160 gives the memory location for the entry

into the fr routine.

The integer 100 indicates the memory location of the

first of a sequence of scaled coefficients and constants.

values of all the variables are scaled‘by 2"13 and read

in the following location.

Location

20

21

22

23

2h

25

26

Variable Scaled value

t O

52 0.01.602

92 0.0001322

b1 0.0h602

91 0.0002h20

iq 0.0000h088

i - 0.0000590
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The coefficients and constants for the fr routine:

Location

100

101

102

103

10h

105

106

107

108

109

110

111

112

113

Quantity

Pl/Ml

Fe + AP2

 

Scale Scaled Value

0.001917

0.006903

0.0000502h

0.00005965

0.001h6h8

0.0008320

0.03183

0.01061

0.01

0.36816h

0.73632

0.0001917

0.63662

0-005305

For the master routine, supply the following counters to control

read out.

If the integer "k" is placed in the 301:11 word of the master routine,

read out will occur after each (k+1)st calculation.

If the integer "p" is placed in the 36th word of the master routine,

read out will occur."p" times before the programistops.

The pro-set parameters in memory locations 3 through 8 must be read

in before F-6 is read in.

end of the program tape.

All the other information can'be placed at the

At the end of the read in, transfer control to

the left side of the first word of the master routine and the computer
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gives the results.

A common stability problem is the problem of determining the maximum

AP2 that can be permitted and still retain stability. The maximum AP2

can be determined by running the program a number of times with different

values of P2 + AP2 in memory position 101. The assigned values of AP2 can

be mde to converge on the critical value. The problem was run here for

AP2 as 0.1 p.u. and 0.3 p.u. or P2 + A132 as 0.6 and 0.8 p.u. power. The

results are presented on Graphs (5.1), (5.2), (5.3) and (5.1;).

5.1; STANDARD SOLUTION Fm THE TWO MACHINE PROBLEM

In the literature there are various approaches to the two machine

problem. The approach varies somewhat with the particular problem. If

it is desirable to consider system losses, the formulation is different

from the formulation for the lossless case. For determining critical

switching times, equal area criterion or pre-calculated swing curves may

be used. For stability information with added load increments, a form of

the equal area criterion may be used. All the standard techniques are

based on the concept of transient reactances and voltages behind transient

reactance , however.

To obtain the voltages behind the transient reactances for the two

machines, the steady state initial condition solution of section (5.2) is

a necessary first step. For the second step, each machine is considered

separately as in the case of individual nachines of Chapter IV. From the

initial condition, 1d’ i , vd, vq, and machine transient reactances, a

Q

voltage behind transient reactance is found for each nachine with equation

(hJ-t). These voltages are designated here as El and E2 for mchine (1)

and machine (2) respectively. Next, if the mchine and transmission line
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losses are neglected, the system can be reduced to an equivalent single

machine form.

2

d 5 IE1||E2|l2 __
(5.8) Mo 1? - Pl“ x12 Sin 512

where

L2M

=M1+ M2

6 is the angle between E and E initially, and the angle

12 1 2

between machine rotors during the transient.

X12 is the sum of the transient reactances between points, where

E1 and 32 are theoretically measured.

Equation (5.8) has the same form as the swing equation for a single

machine on an infinite bus. Under the assumptions that were necessary to

obtain (5.8) , the two machine problem can be solved by the standard. method

discussed in Chapter IV for the type of fault that would alter the tran-

sient reactance. If 512 increases without limit, then the machines fall

out of step. Equal area criterion can be used.

If losses are to be considered, the equivalent machine form of equa-

tion (5.8) cannot be obtained. A somewhat more complicated form results.

2
d 5 P - T P - T

12 _ 1 e1 __ 2 e2

(5'9) 2 " [ ]

 

 

dt “1 M:

where

2

IEll IEillfial
Te1 | 3 11' sin “11*W sin (812 4:12)

(5.10) E212 IEl_____l____IE2|
Te2 = '3 22‘ sin 0122 ',3 12' sin (812 + (112)

and where
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~911 and ;?22 are driving point impedances (transient)

$212 a transfer impedance (transient)

all’ 0:22, 012 are the complements of the respective impedance

angles.

For problems in determining critical switching times, the equal area

criterion can be applied using (5.9),‘but the power angle curve is not a

sinusoid and the graphical plot and analysis is tedious and subject to

inaccuracies of graphical methods. If losses are neglected, the equiva-

lent machine form of equation (5.8) is Obtained and the critical switching

time prOblem is the same as for a machine on an infinite bus if the equal

area criterion is used.

For the particular problem of this chapter, the equations that per-

mit consideration of changes in generation or load for machine (2) with

losses considered, are:

 
 

2

d 812 _ Pl - Tel P2 + AP2 - Te2
(5.11) 2 .. ——-—- + M

dt M1 2

If losses are neglected

P1 = ' P2 Te1 = -Te2

then

a? 812 AP2 Ml + M2

(5'12) :5- = “a; + ‘12??? (P1 - Tel) = G(8’12)

With losses, the right hand side of (5.12) is not a simple sinusoid as in

the case or the individual machine on an infinite bus, but a plot of the

right hand side of (5.11) as a function of 812 gives a figure as in Fig.

(5.2), where the so is the initial value of 512.
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Figure 5.2

By the equal area criterion the system is stable if the increment of

load is such that A1 < A2. For the machine of problem two neglecting

losses:

H1 = 6 H2 = 2

AP2 = -0.1

.r 0(512) = [+ Qé—l + % (0.15 - 1% sin 512]

= [- 0.05 + .333 - A26 sin 512]

= .383 - .h26 sin 612

But at 0(812) = 0 at 612 = 6h°

6&0

A1 = 51 6 [.383 — .1126 sin 512] d 512 = .0072

= .026

 

180-6!+°
A2 = [61.0 [.283 - A26 sin 512] d 012

Thus, for the increment of load AP2

 

- -O.1 and the lossless assumptions,
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the equal area criterion indicate stability.

For the increment of load AP = - 0.30

 

 

2

1f 0(512) = 1:9:§.+ {% (0.5 - 1‘5 2 '852 sin 51;]

at 0(512) = [.u83 - .u26 sin 512]

but the curve does not cross the 1f G(512) = 0 axis, so A1 >’A2 and the

system would.be unstable for AP2 = - 0.30 p.u. power.

A common problem in stability studies is the problem of determining

the maximum allowable AP2 for a given initial steady state power fer sta-

bility to be retained. A continuation of the above calculations would

permit convergence on such a critical 0P2.

If losses are considered, the solution for the point at which the

curve crosses the axis and the evaluation of areas would have to be per-

formed graphically.

5.5 COMPARISON OF RESULTS AND METHODS

Graph (5.1) of the results, a plot of 8 - s
1 2

illustrates that the system is stable for the case where AP: is 0.1 p.u.

and that the system is unstable for the case where AP2 is 0.3 p.u. These

as a function of time,

results correspond with the results of the standard solution.

Since the standard solution to a problem of this type simply indicates

if a system is stable or unstable for a particular 0P2 and does not give

information on 81, 52, 51 - 52, id, and iq, no further comparison can be

made. The additional information available from the thesis solution war-

rants some discussion, however.

The fact that 51, 8 and.6 - 6 are given as a function of time in

2 l 2

the thesis solution, contributes information on how the individual machine
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or system contributes to the stability characteristic of the combination.

In the standard approach this information is not available if the various

criteria are used. When the individual 8's are desired, the standard

techniques require the multi-machine approach and a numerical solution

to two simultaneous swing equations of the form of equations (5.10). Also

evident from the Graph (5.2) is the amount'both machines fall behind the

synchronous position even when the system is stable.

As in the first problem, the current variables id(t) and iq(t) have

a form much different than the form usually assumed for these variables.

Graph (5.3) is a plot of the envelope of the id(t) and iq(t) variation

for both AP2 values considered. Graph (5.h) is a plot which pictures the

variation of iq(t) for the case of AP2 = 0.1. The oscillatory component

of the current variables is not so pronounced as it was for the circuit

fault, but the variation is large enough to be an important factor in

choosing the program increment.

In any stability problem, an important consideration is the current

variation in relation to the circuit breaker action or relay action. Stand-

ard solution for the two machine problem requires a separate solution for

the currents when relay action is being considered. The solution presented

here gives the currents in the direct and quadrature axis component forms.

If desired, an inverse transformation to convert these to terminal vari-

ables could be included in the master routine.

In noting the differences in principles in standard solution and the

solution presented here for the second problem, these differences are

practically a repeat of those listed for the first problem.

In contrast with the standard techniques, the thesis techniques:



 
l. Solves differential equations as differential equations.

2. Does not require the development or use of the transient

reactance concept.

3. By direct solution of equation (5.1h), gives values of

armature current, 8 and 82, as functions of time.1;

h. Can solve a large class of problems without changing pro-

cedure. The programmed equations (5.1h) represent the

system. Different stability problems are simulated by

using the proper master routine.

5. Considers losses or neglects losses without a change in

basic form.

VI. SUMMARY

The common simplifying assumptions were considered in two groups in

this thesis. The first group of simplifying assumptions were the assump-

tions that fundamental harmonic representation is accepted and that the

resistance and inductance coefficients can be represented by constants.

For the first problem with the first group of assumptions, the synchronous

machine on an infinite bus is represented by the non-linear differential

equations (2.6)a and (3.1). For the second problem with the first group

of assumptions, the two machine system is represented by the non-linear

differential equations (5.6)a and (5.7). The technique of this thesis

consists of solving these systems of non-linear differential equations

with the use of the digital computer and numerical analysis methods. A

second group of simplifying assumptions were necessary in order to obtain

formulas used in standard stability techniques. These assumptions were

constant speed, constant direct current field, and steady state armature
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voltages and currents. The thesis solution is more general, in that the

second group of assumptions are not necessary, and further, the identity

of all the variables is maintained for more detailed study.

For the electromechanical transient of a stability study, the numeri-

cal solution of the equations (2.6)a, (3.1), (5.6)a and (5.7), gives the

stability information directly. The standard solution of the electrome-

chanical transient problem utilizes the assumptions that the electrical

variables can be described by a steady state algebraic system of equations

with the coefficients altered to values which apply under transient condi-

tions. These transient parameters and fictitious armature voltage compo-

nents are used in the numerical solution of the mechanical equation or

the swing equation. The results of the computer solutions illustrated

that of all the second group of assumptions, the assumption of the steady

state character of the electrical variables was most radically out-of-line.

Standard solutions of stability problems often use criteria based on the

second group of assumptions and the further assumption that the system

losses can be neglected.

In contrast with the solutions to similar problems in the literature,

the field current variation was shown to be negligible in the results of

the first problem. It can be concluded that the assumption of constant

field current is a reasonable assumption; however, rather than eliminate

the field current term as is done in standard solutions, it is convenient

to leave the field current terms in the equations so that these terms can

be incremented to simulate regulator action.

The change in speed was found to be a more pronounced variation than

the variation in field current. The constant speed assumption did not
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appear to be unreasonable even for the low inertia and severe fault of

the first problem, however.

The fact that the thesis solution gives the additional information

about the field current, speed, and armature current components, while

the standard solution does not give any of these directly, is certainly

significant. The armature currents must be determined for relay and cir-

cuit breaker study.

The variation of iq(t) and id(t) illustrated in the results of both

problems was probably the most pronounced deviation from accepted theory.

Clearly, both id(t) and iq(t) have forms or components containing the fonm

of

II] an(ét+ y)

In the standard derivation and use of the id(t) and iq(t), it is

common to start with Park's equations,

_ + + £L_ - +

vd(t) — (RS+L3 at) id(t) + 9 L8 iq(t)

(6'1) + +d ' + 'J-
vq(t) = (R8+Ls a?) iq(t) - 0 L8 id(t) - e 2LBr If

Certainly it is not reasonable to assume the terms

+ d

(6 2) Ls dt 1d(t)

+ d

Ls at iq(t)

are zero or negligible for the current variations displayed in the results

presented here. It can be seen, however, that neglecting the relations

(6.2) in (6.1) and redefining

~ +

e L i (t)

(6.3) . 2 ‘1

e 1.8 id(t)
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in terms of transient reactances could lead to results similar to those

obtained by direct solution of (6.1).

The form of the current variables played an important part in.the

determination of the proper time increment for the numerical solution.

In particular in the first prOblem, the time increment had to be small

compared with the period of the current variation, approximately 0.0166

seconds.

The standard techniques for both the one machine and the two machine

problems require that different methods or criteria be used for different

faults or different stability problems. If losses are to be considered,

still a different form is needed. In sharp contrast, the thesis procedure

is very flexible and is adapted readily to many types of stability'prob-'

lem. The ff routine is programmed as required by the particular system

under consideration. There are trivial differences in programming for

the lossy and the lossless cases. 'With the system adequately described

by programming f}, all the various types of faults and stability prOblems

can be solved by using a pr0per master routine.

The methods of solution used here and.the advantages of these methods

illustrated.here extend to areas other than the areas of power system.sta-

bility. The synchronous motor connected to an infinite bus has the same

differential equations as the generator on the infinite bus. A.master

routine that controlled the Pin term could use the one machine program

to study the synchronous motor for various periodic or impact loads. The

control system problem of two synchros has the same differential equa-

tions as the two machine system, The terms sometimes neglected in power

systems may not be negligible with control system.apparatus, however.
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The equations and programs presented here are for round rotor ma-

chines and for symmetric faults. The programs also cover only one and

two machine systems. Further investigation aimed toward extending these

methods into the areas of salient pole machines, non-symmetric faults,

or multi-machine systems, appears to be indicated by the results pre-

sented here.

.A conclusion based on the results of the investigation reported here

is that, for the class of problems considered in this thesis, methods de-

veloped before the advent of the digital computer should not be used as

the basis for digital computer investigation. The more fundamental syn-

chronous machine differential equations can now be solved directly.



 



 

APPENDIX A

An Existence Theorem

E. L. Ince5 gives an existence theorem.which applies to the problem

considered here. Appendix.A is a restatement of that theorem.

The system of equations to which the existence theorem is to apply

is a system of n ordinary differential equations in the n+1 variables.

x, yl’ ya, 0000000, yn0

The desired solutions are the n equalities

3’1 = 81(X); 3’2 = 820:). H": yn = sub!)-

These equalities are to satisfy the conditions

0 _ o o _ o o = o
yl- 3].(x )’ y2— 82(x )’ 000000000, yn %(X)

where

x0 0 o o

’ yl’ ya, 000000000, yn

represent the initial values of the variables.

Further, for the theorem to apply, the differential equations must

be expressible in the normal form:

1..
’53:" f1(x, 1'1. ya. ......, yn)

“'2
“at; " f2(x: 3'1: 3'2) 00-0-0: yn)

(11.1)

na—

75?" fnh‘: 3'1) 3'2: ......, yn)

Equations involving higher order derivatives than first order are

included by’a change of variables. Specifically, consider, for example,

the equation

2

d _ E(21.2) 3% - fix, y. .33)
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To obtain the required normal form, let

2-91
dx

and write (3.2) as a pair of simultaneous equations.

(A.3)

Theorem

= f(x: 3') z)

E
H
?

E
1
3

a
.

.1: For a system of equations of the type of (3.1), let

(x0, yi, yg, ......, y:) be a set of real numbers assigned to

the real variables (x, yl, ya, ......, yn). Let D be a domain

defined by the inequalities:

o o o
IX‘X Isa, ’yl-yllsbl’ COD-0000’ lyn-ynlsbn-

Let M be the greatest of the upper bounds of fl’ f2, ......, fn

for arguments restricted to D, and let h be the least of

a, bl/M, b2/M, ......, bn/M.

If f1

(n+1) arguments when the arguments are restricted to D and if

, f2, ......, fn are single valued and continuous in the

the Lipschitz conditions

lfr(x, yl’ y2, 00000, yn) - f(x’ Y1, Y2, 0.0000, Yn) I <

1(1- lYl-yll + K2 IY2-y2l + scones-o + Kn Yn-ynl

apply for each r = l, 2, 3, ......., n when

(x, Y1, Y2, ....., In) and (x, yl, 32: ......, yn)

are in D, then there exists a set of unique continuous solutions,

vi = 21(X), V2 = 32(X). ......., yn = sn(X)o

These solutions satisfy the differential equations for all x

such that Ix — xol < h, and reduce to:
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II

N

O O 0

3'1, ya, 000000, yn for X

The types of terms occurring in the synchronous machine equations

(5.7) and (6.11;) are included in the following:

f = A1 sin kx + A2ylyh + A3y2

1

f2 = Bl cos kx + Bayuy3 + B3yhy2 + Bhyl

f3 = Cl sin kx + Cayhyi

f5 = El + Eey'hy3y1

Clearly, the elementary functional forms in (3.h), are single valued

and continuous functions for finite (x0, yi, ....., y?) and for finite

(a, b1, b2, ...., b5) defining the domain D of the theorem. Further, for

these types of equations the Lipschitz conditions apply for the arguments

in D.

The domain, D, of the existence theorem is, in general, very small

relative to the range of the variables to be considered in any given prOb-

lem. Different initial values of the variables and corresponding domains

covering the range of the variables extend the existence theorem to a

larger range of the variables.

Even with the assurance that a unique continuous solution exists

for a desired range of variables, numerical approximation solutions are

subject to limitations and errors of the particular numerical method used.



 

  



 

 
APPENDDi B

The Operation of the Digital Computer Program

The digital computer library routine, F-6, uses the fourth order

Runge-Kutta formulas. The Runge-Kutta formulas, F-6, the differential

equation routine, and the master are described in Appendix B.

For the system of differential equations in the normal form of equa-

tions (A.l), the r32 equation is the first derivative of the rth variable:

dt y = fr (t) 3'1: _-'—-) y.- , yk)
r

For given values for all the variables at the beginning of the nth incre-

ment of time, the Runge-Kutta formulas determine the value of the variable

yr at the end of the nth increment or the beginning of the (n+1)at incre-

ment. Let the subscripts indicate the variable, the superscript the inter-

val, and fr the first derivative of the rth variable, then by Runge-Kutta

  

   

(n+1) r n
(B.l) yr — yr + Ayr

where

= 1 I _1; II I]; III 1 1v

(B.2) Ayr B Ayr+3 Ayr+3 A yr+6 A yr

and

o n n

A yr = fr [15 .v V1) """ 2 Y?) "") YR] At

.. At A__’y1 A'y n 43%
A yr = fr [tn + 2, y§+ 2—, ---, yr + 2r, ---, yk + 2 ] At

(B-3) u n at

A y A y A
at n n l n r n 3k

Ayr=fr[t+ %'*1y1 2’---’yr+ 2’---’yk+ 2]“?

Aivyrf= frPt + At. Y1 + A”yl. ---. y: + AmyJr. --- yk + A”yk] M

The fr for this thesis problem are the expressions of equation (h.2).

The digital computer library routine, F-6, used here controls the

amount of truncation error and the increment by comparing Ayf of expression

(B.2) with A"yr of equations (B.3). If these two approximations, Ayf and
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A"'yr, for the increment of the variable yr differ by more, for any yr,

than an amount specified by the user, the program recomputes Ayr with

the interval reduced by half. If necessary, the routine continues de-

creasing the increment until the difference is within the specified limits.

The user of the F-6 routine must supply a closed subroutine which

evaluates the fr of formula (A.l). The F-6 routine referes to the fr

routine to evaluate A'yr, A"y£, A”’y and Aivyr. Scaling must be usedr’

so that all fr remain less than one for the range of the variables con-

sidered.

In order to use F-6, the digital computer memory locations 3 through

8 must contain the following parameters during read in and operation of

F—6.

Location 3 must contain the number "a", where "a" is the memory lo-

cation of the first of the sequence of locations for the initial values

of the variables. The t initial value is in "a" and the initial values

of the other variables follow in sequence.

Location u must contain (a+n) where n is the number of equations in-

cluding dt/dt = 1.

Location 5 must contain the number "m". "m" is an integer and the

fr routine calculates scaled fr’Er’ such that

fr = 2'“1 fr < 1

location 6 must contain the integer to - m. The quantity 2‘30 is

the specified scaled increment At. The program decreases this increment

if necessary.

Location 7 must contain the integer "e" which is a number such that

the integral part of 3/h e is equal to or less than (50 - m). The integer
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"e" is used to specify the required accuracy of the calculations.

Location 8 must contain the integer "b" which is the memory location

of the entry into the fr routine.

When the master routine transfers control to F-6, F-6 uses the scaled

initial values of the variables and the fr routine to compute new scaled

values of the variables. The initial values of the variables are replaced

by the new values, then control is transferred back to the master.

The r; routine is the program.of the differential equations (A.l).

The differential equations represent the system, thus the ff adapts the

program to the system. The fr routine must be written as a subroutine,

which, when entering, evaluates the scaledfr and then returns control to

F-6. The fr routine takes the scaled variables from the computer memory

locations containing the initial values required by the F-6 program.and

calculates the scaled fr according to formulas (Atl). These fr are placed

in the memory positions a + n + r, where "a" through "a + n - 1" contain

the initial values of the variables. The evaluation of the fr for this

particular problem requires the determination of vd(t) and vq(t) where

vd(t) [VI sin.8

vq(t) - IVI cos 6

In order to evaluate the trigonometric functions, the f} program uses the

digital computer library routine for sine and cosine evaluation. The fr

program was written so that it could.be applied to any machine operating

on an infinite bus. The integer "g" must be placed in the digital com-

puter memory location 10. "g" is the location of the first of the scaled

coefficients and constants of formula (A.l). The other coefficients are

scaled and read in in a definite sequence. The scalings and the sequence
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are presented in the solution of the problem.

After each increment of time, F—6 returns control to the master rou-

tine. Thus, the master can be written so that it removes the scale fac-

tor, prints any of the desired variables, and prints out these variables

as frequently as would be useful. At any desired time, the time deter-

mined by counting the increments, the master routine can simulate faults,

circuit breaker action, or changes in load conditions. The master simu-

lates these actions by changing coefficients or constants in the fr rou-

tine at a Specified time. For example, the short circuit at the bus in

the first thesis problem is represented by the bus voltage being set equal

to zero. At a time, determined by a counter in the master routine, the

bus voltage is returned to the pre-fault value. The action of returning

the bus voltage simulates circuit breaker action and the action is per-

formed by the master routine.
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