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ABSTRACT

It is common practice to make simplifying assumptions in order that
convenient or familiar means may be used in the study of synchronous ma-
chines. For the purpose of this thesis, thesé assumptions will be con-
sidered in two groups. With the first group of assumptions, there re-
sults the familiar system of non-linear differential equations interre-
lating voltages, currents, speed, and torque for the synchronous machine.
This type of system of equations is not generally amenable to solution
except by numerical methods. Rather than attempt to solve this formid-
able system of equations directly, engineers working in the area of power
system stability use a second group of simplifying assumptions in order
to solve the system of equations by convenient means. Using both groups
of assumptions, the conventional method thus developed over the years is

to solve part of the equations by modified steady state techniques and

then apply numerical methods to the remaining equations in order to obtain
a solution. Similar techniques are used by engineers in other areas where
the transient operation of synchronous machines is of interest. The study
of a synchronous motor with a periodically varying load or with impact
loading is an important example of these areas.

Recently, much work has been done toward applying the digital com-
puter to the study of the power system stability problem. However, the
trend is toward programming the conventional techniques with their two
sets of simplifying assumptions and empirical methods. In contrast, this
thesis 1s a report on an investigation of the numerical solution of the

complete system of synchronous machine non-linear differential equations

without the second group of simplifying assumptions.



Two classes of power system stability problems are studied here and

it is found that for the cases considered:

1. The solution can be carried out in detail without the second
group of simplifying assumptions.

2. The solution can be carried out under transient conditions with-
out developing or using extensive empirical relations that are necessary
in using modified steady state techniques for the transient problems.

3. The form of the results reported here gives more stability in-
formation and gives the information more directly.

4, The direct solution of the complete set of synchronous machine
equations rather than solution by conventional means, produces results
that add to and verify accepted theory in some cases and contradict ac-
cepted theory in other cases.

A conclusion from the investigation reported here is that, for the
class of problems considered in this thesis, methods developed before the
advent of the digital computer should not be used as the basis for digi-
tal computer investigation. The more fundamental synchronous machine
equations can now be solved directly.

The physical and mathematical structure for the cases considered
here is the same as the structure in other areas involving transients in
synchronous machines. Therefore the advantages of direct solution of the
synchronous machine equations extend to areas other than power system

stability.
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I. INTRODUCTION

The purpose of a study of a synchronous machine is either to obtain
design information or to predict operating conditions for a machine. 1In
either case, use is made of the relation between the machine parameters:
inductances, resistances, inertia and the machine variables: voltages,
currents, speed, torque. The design problem is the problem of obtaining
the proper machine parameters for a desired range of the variables. The
problem of predicting operating conditions 1s the problem of obtaining a
subset of the variables for conditions imposed by specifying the machine
parameters and the remaining variables.

To aid in the study of a synchronous machine, it is desirable to ob-
tain a mathematical interrelation of the machine variables. Laboratory
meter indications show the relationship among the variables to be so com-
plicated that either exact mathematical interrelations cannot be found or
the resulting mathematical system of equations cannot be solved. Some
simplifying assumptions, which lead to a mathematical system of equations
that can be solved, have become conventional. The system of equations
resulting from the simplifying assumptions usually gives results that
have acceptable correlation with laboratory meter indications over a lim-
ited range of the variables and for limited waveforms of the variables.

One of the problems encountered in obtaining a mathematical relation
for the variables, is the irregular waveforms of the instrument indica-
tions. This problem is commonly treated by considering only the lower
frequency harmonics. Often only the fundamental frequency terms are used
in the representations.

Another problem is encountered in the fact that the apparent induc-
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tance and resistance coefficients are not constants but are rather com-
plicated functions of currents, power factor, field saturation, and other
factors. There are clearly defined procedures for determining inductance
and resistance numbers which are mean constants that partially take into
account the dependence of the coefficients on current, power factor, and
saturation.

The fundamental harmonic representation and constant inductance and
resistance coefficients are taken here as the first of two groups of sim-
plifying assumptions. With this first group of assumptions, there results
the standard system of differential equations for synchronous machines
non-linear in speed torque and current variables. In order to solve the
synchronous machine equations by convenient or familiar means, it is con-
ventional to make a second group of simplifying assumptions also. The
second group of assumptions are: constant speed operation, steady state
sinusoidal armature voltages and currents, constant direct current field.
With both groups of assumptions, the equations reduce to an algebraic
system of equations which are readily solved.

Relaxing eny of these restrictions would yield pertinent information
and give mathemaetical results which more closely correspond to laboratory
observations of the meter indications. Much work has been done in the
study of the effects of higher harmonics and in the study of the effects
of saturation, current, and power factor on the inductance and resistance
coefficients. Elaborate techniques have been developed to make steady
state, constant speed techniques yield results correlating with observa-
tions under transient conditions. These techniques usually involve sep-

arating the equations into electrical and mechanical sets. The electrical
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equations are solved by modified steady state methods and the mechanical
equations are solved as differential equations, usually by numerical
methods. Little has been done, however, in the area of solving the com-
plete set as simultaneous non-linear differential equations. The pre-
sently accepted standard techniques were developed before the advent of
the digital computer, and numerical methods for solving merely the me-
chanical equation as a non-linear differential equation involve long and
tedious calculations. With the modern high speed computers, however,
there appeared, at the beginning of the research reported here, to be no
reason why the complete set should not be solved as non-linear differen-
tial equations by numerical methods.

This thesis demonstrates the technique for solving the camplete set
of equations by numerical methods by applying the techniques to two
classes of power system stability problems. Not only are the problems
solved without making the assumptions of constant speed, constant field
current, and sinusoidal armature voltages and currents, but for the
classes of problems considered the solution process is simpler than the
standard procedure. The form of the ansvers gives more stability infor-
mation and gives the information more directly. Further, the greater
generality of the techniques used in this thesis yields information which
in some cases adds to or verifies the accepted theory and in other cases
contradicts accepted theory. In particular, this additional information
was obtained relative to the variation of the field current and the vari-
ation of the direct and quadrature components of armature currents under
transient conditions of operation.

The techniques used here in solving the systems of equations for the
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two classes of power system stability problems can be considered in three
parts: PFirst, the variables are changed in order to obtain a convenient
form for the coefficients. The variables used are closely related to
the variables of A. Blondel'sl tﬁo reaction analysis or the variables
resulting from a transformation of variables illustrated by R. H. Park.2
Secondly, the differential equations are manipulated into standard form
to permit numerical solution. In order to assure a unique continuous
solution, the form of the equations must be such that they can be put
into the standard form. Thirdly, an existing digital computer library
routine is used to solve the system of equations. The routine used is
based on the fourth order Runge-Kutta formulas. In conjunction with the
differential equation solving routine, a master and a function routine
must be supplied. The master and the function routines depend on the
particular problem to be solved and on the amount of data the computer
is required to print out.

The greater simplicity of the technique of this thesis is evident,
both in theory and application. The presently accepted standard tech-
niques for solving the machine equations use the simplifying assumptions
of constant speed and sinusoidal armature voltage and current variables
in part of the equations. The constant speed assumption makes it possible
to consider the equations in two separate groups. One group, called the
electrical equations, is a system of linear differential equations con-
taining only electrical variables. The other group, called the mechani-
cal equations, or the swing equations, is made up of one equation for
each machine under consideration. The swing equations are differential

equations non-linear in speed, field current, and armature current. The
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further assumption of sinusoidal steady state armature voltages and cur-

rents and a change of armature variables to the famillar direct and
quadrature components reduce the electrical equations to an algebraic
system of equations. Under steady state conditions, if the power, power
factor, speed, and armature voltages are specified, the algebraic system
of electrical equations can be used to determine armature and field cur-
rents. Neglecting losses, the armature and field currents determined
from the electrical equations satisfy the mechanical equations. But,
under fault conditions, the electrical and mechanical variables are in

a transient state and the simplified equations cannot be expected to

yleld a solution which correlates with a solution of the differential
equations. To compensate for the difference in differential equation
solution and a steady state solution, the standard solution proceeds as
follows:

1. Initial armature currents, field currents, and angular positions
are determined from the steady state electrical equations.

2. New reactances, called transient reactances, are used with the
results of the steady state solution, previously obtained, to determine
voltages and voltage angular positions. These voltages are called the
voltages behind the transient reactances.

3. It is assumed that the voltages behind the transient reactances
and the transient reactances of the machines do not change with the changes
in speed and current to be considered.

L. The voltages behind the transient reactances and the transient
reactances do change as fault and the fault removal change the network

parameters, however.
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5. Using initial conditions defined by previous steady state calcu-
lations and by the type of fault, the swing equations are solved by
common numerical methods. For each increment of time assigned in the
numerical process, corresponding increments of changes in phase angles
for the voltages behind the transient reactances are determined. These
changes in angles are incorporated into the electrical power terms in
the swing equations when the next time increment is applied to the solu-
tion of the swing equations.

6. The solution is continued by adding increments of time until
sufficient information is available on the phase angles of the voltages
behind the transient reactances to determine if the system is stable®
or unstable.

7. Since the electrical power is calculated in terms of transient
reactance, voltage behind the transient reactance, and the phase angle
of the voltage behind the transient reactance, different power formulas
must be used for different states: steady state, fault on, fault removed.

8. If the changes in field currents are to be considereds, the
voltages behind the transient reactances must be modified for each in-
crement of time considered.

The synchronous machine equations are solved directly in this thesis
with only the first group of simplifying assumptions. Thus, the solution
under transient conditions is obtained without formulation in terms of

the so-called "transient reactance" and "field variation" effects and so

*A system 1s considered unstable if any of the synchronous machines fali

out of step with the system.



-7-
without defining processes in which these reactances are used to give
results correlating with observations under transient conditions.

A common power system stability problem is that of determining how
fast the circuit breaker must operate and remove a faulted line for the
system to remain stable. Conventionally, the critical interval is ob-
tained by a criterion which determines a critical rotor displacement as
the variable. In order to determine the critical time, the numerical
solution, by standard methods, must proceed up to the critical rotor dis-
placement angle, although it need not be carried out until instability
is indicated. An alternative method, illustrated by Kimbarks, uses pre-

calculated swing curves. The use of pre-calculated swing curves requires

the steady state, constant speed, constant field current assumptions.

The pre-calculated swing curves cannot be used for some limiting cases,
and the pre-calculated swing curves do not represent conditions after

the fault has been removed. The techniques of this thesis do not require
the assumptions of either the criterion or the pre-calculated swing curve
techniques. Further, the variables determined by the general solution
presented here include both time and angle variables for the fault inter-
val and for the interval after the fault has been removed. The switching
time and the type of fault are controlled by the master routine in the
computer program.

The results reported here of a typical problem indicate that the
field current variation, commonly given considerable attentions, is in-
significantly small even under extreme conditions, whereas the commonly
neglected change in speed is really a more dominant variation. The re-

sults of the numerical solution for the differential equations indicate
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that the direct and quadrature currents of Blondel's analysis or Park's
transformation have characteristics much different under transient condi-
tions than that usually assumed in standard steady state analysis and

that usually assumed in modified steady state analysis applied to the

povwer system stability problem.

II. THE ROUND ROTOR SYNCHRONOUS MACHINE EQUATIONS
.AND THE TRANSFORMATIONS OF THE VARIABLES

In this chapter the synchronous machine equations, obtained with
only the first group of simplifying assumptions, are listed and all co-
efficients are defined. Next, the transformations are listed and the
equations in the new variables are given.

The round rotor synchronous machine variables that are observed by
means of meter indications are: the three-phase voltages of the machine
armature, the three-phase currents of the machine armature, the field
voltage and current, and the speed and torque at the shaft. With the
usual simplifying assumptions that the interrelationship of the variables
is represented with sufficient accuracy by considering only the funda-
mental harmonics and by considering the resistances and the inductances

a8 constants, the mathematical interrelations of the variables are:

viw| | R 3L Ll g ||

(2.1) = ss dt’ ss
: ve(t) Edé jrs(m Reg* 'c%% Lee || 1e(t)
' L L (DL (v
(2.1)v T(t) = - 1 [‘Q (t) 1i.(t) 2 88 sT 8 .
2 L £ ] i L) Lp 14(t)
(B+4 4 a

dt
where ?/;(t) and Js(t) are columm metrices representing the line to
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neutral voltages and currents of the three stator (armature) phases.

Specifically,
(v (4) ] EX2)
V() | v (t) d(8) = | 1,(%)
v | 1,(¢)

The functions vf(t) and if(t) represent the rotor (field) voltage and
current respectively. The functions T(t) and @¢(t) are the shaft torque
and position respectively.

The coefficient matrices ﬂe and ‘;fss are of the form

88
RA (o} Q RA 0 0
% = |0 R, 0 =|o R, O
Lg 0 RC 0 0 RA
- ] [~
Lin Ima I I Lag Lyp)
Ko Lz Lep|= |Zap  Lan Ias
| fac me L] [Tan Tan T
where PAA’ LBB’ and Lcc are the self inductance constants for the respec-

tive stator phases and LAB’ LBA’ LAC’ L.., LBC’ and LCB are the mutual
inductance constants representing the coupling between stator phases.

The constants Rff and Lff represent the resistance and inductance
coefficients of the rotor.

The coefficient matrix, cifsr(¢), is of the form

—E;r cos 0 o
L9 = L. (#) = | L cos (6 - 120°)
L . cos (e - 240°)
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=P
with 6=3 ¢

and p representing the number of poles of the machine and 6 representing
the displacement of the rotor in electrical angle measure.

The coefficients B and J represent the mechanical damping constant
and polar moment of inertia respectively.

A change of stator variables greatly simplifies the interrelation-
ship of (2.1). Variables closely related to those to be used here were
developed by A. Blondell in order to more accurately consider saliency
effects of salient pole synchronous machines. R. H. Park2 illustrated
that the new variables can be considered as a set of variables resulting

from a mathematical transformation of variables. Park's transformations

on the stator variables are:

v ] [ 1 1 ] _va(tT
(2.2) [vy(t) = % 2 cos @ 2 cos (8-120°) 2 cos (6+120%)| v, ()
_.vq(t)d | -2 cos 6 -2 sin (6-120°) -2 sin (e+lao°_) | v(t) ]
)| [ 1 1 BIEXC]
1,(8) | = % 2 cos 6 2 cos (6-120°) 2 cos (6+120°)| 1, (¢)
L1(1(1;) -2 8in @ -2 sin (6-120°) -2 sin (o+120°_) bic(t)_

It is a formidable task to apply the transformations of (2.2) to the
equations of (2.1). This application of the transformations would be
necessary, however, in order to rigorously define the coefficients in the
resulting equations in terms of the observed relationships (2.1).

3 has shown these transformations (2.2) to be the product of

Koenig
three non-singular transformations. The three component transformations

applied to the stator voltage variables are:
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v:(tf_ 11 1 N P&g(tf-
(2.3 | vy [= F|1 J2/3 Iy (v)
Ly;(t) 1 e-Ja'/3 e'ja"/3 vc(t)
_v‘;(t)— B 0 o | —v:(t;
(2.8) |V [= [0 % o ||vi(e)
c:(t)a _? 0 ejé_- LY;(t{—
where OZ(t) is the conjugate of v:(t).
-;3tfj (2 o 6—-;3t;
(2.5) |vy(t) ]15 0 1 1 v:(t)
Ab
_vq(t)_ _o —— l_vs(t)__

The transformations defined in (2.3), (2.4), and (2.5) utilize
symmetries and inherent characteristics of the coefficient matrices and
with theorems developed by Koenig and Blackwellh, these transformations
are relatively easy to apply.

The transformation defined in (2.3) is the familiar symmetrical
component transformation. Application of the transformation of (2.3)

followed by the transformation in (2.4) defines the backward sequence

variables. Application of the transformation in (2.5) to the backward
sequence variables separates the real parts of the backward sequence com-
plex variables from the imaginary parts of the backward sequence complex
variables. The new armature real variables resulting from the three
transformations are essentially the same as the direct-axis and quadra-
ture-axis components of armature voltages.

Even though salient pole synchronous machines, for which these new

variables vere developed, are not considered in this investigation, the
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new variables are in a convenient form for numerical solution of the
differential equations.

After application of the transformations defined in (2.3), (2.4),
and (2.5) for the voltage variables of (2.1) and the same transformations

are applied to the current variables of (2.1), the machine equations be-

come:
o 0.0 d )
vs(t) R+L. 3 0 [ [ is(t)
+.. .+ d P i ) B o
i vg®)| 0 Rl = oL’ JELSr | 1a®
¥ > . ¥ + _+ d ‘. ’
vq(t) 0 - 6L R+L 3 -eJ_éLsr 1q(t)
d 4
velt) 2 &Lsr a 9 Retle g || (%)
V2 a4
(2.6)v T(t) = b Lsrmq(t) if(t) + (B+4J E) [']
where
O =
R = Ry,
O,
Ls = LAA + 2LAB
+
R:s b RAA
+
Ly = Ly - Ly

The equations (2.6)a and (2.6)b make up the complete set of non-
linear differential equations of the synchronous machine. The only sim-
plifying assumptions required to obtain (2.6) were those required in the
initial formulation of (2.1): only the fundamental frequency terms need
to be considered, resistances and inductances can be represented by con-
stants. In a numerical solution of these non-linear equations, the first
question of concern is the existence of a solution. E. L. Im:e5 gives
an existence theorem which applies to the problem considered here. Appli-

cation of the theorem is given in Appendix A.
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III. TWO POWER SYSTEM STABILITY PROBLEMS

The problems presented in this thesis serve the purposes of: illus-
trating the thesis technique for two classes of power system stability
problems, comparing the thesis technique with the standard technique,
comparing the results of the two methods. The comparison of the results
is on the basis of the type and the amount of information available from
the solutions and a quantitative comparison of the variables when agree-
ment or discrepancy is evident.

This chapter states the two problems considered here. The assignment

of the various machine parameters is di d. The induct , resistance,

and inertia parameters are chosen as typical values for a particular class
of machine rather than values for a particular machine. These general
parameters were chosen to allow freedom in emphasizing the percent change
in some variables by taking limiting values of some of the parameters for
the class of machine considered. For example, in the first class of prob-
lem, the inertia constant was taken close to the lower limit for a turbo-
generator and a severe short circuit was considered. Thus, the electro-
mechanical transient components of all variables are emphasized.

The problems contained in this thesis are illustrative of two classes
of power system stability problems. With minor changes in programming,
the techniques illustrated here can be used in the study of a large vari-
ety of problems in either class.

3.1 THE FIRST CLASS OF PROBLEMS

To define the first class of problem, the term "infinite bus" must

first be defined. "Infinite bus" is the term used to describe a set of

terminals to which a machine is to be connected if that set of terminals
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has the characteristic that the voltages of the terminals are independent
of the currents over the range to be considered. The "infinite bus" con-
cept is commonly used in considering the operation of an individual ma-
chine which is part of an interconnected system when the power capacity
of the system is many times that of the individual machine.

The first class of problem considered here is the stability problem
of an individual machine relative to an "infinite bus."” Important ex-
amples of this class of problem include:

1. The determination of the circuit breaker operating time that

would maintain machine stability if the breaker action removes the

faulted section of the system but does not disconnect the machine
from the system or bus.

2. The determination of the reclosure time of the circuit breaker,

that would assure machine stability, after a temporary local fault

has removed the machine from the bus.

3. The determination of the stability characteristics of an indi-

vidual machine for local and less severe sustained faults.

When solved by the thesis technique, the three problems listed in
this first group are mathematically identical. Only the engineering in-
terpretations are different. The different situations are represented
by specifying different variables or by changing constants at specified
switching times. The first of the three problems is used in this thesis
to illustrate the solution technique.

PROBLEM: Consider a generator connected to a power system where the
power system can be represented as an "infinite bus." Under pre-fault

conditions, the generator delivers 0.5 p.u. power at 0.85 power factor
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lag to the "infinite bus," at & bus voltage level of 1 p.u. volts. Con-
sider a three-phase symmetric short circuit system fault near the genera-
tor such that during the fault the generator action can be described in
terms of a short circuit at the bus. When the circuit breakers remove
the faulted section of the system, the bus returns immediately to "infinite
bus" characteristics. Determine how rapidly the breaker must operate and
remove the faulted section in order that the generator remain stable.

The system parameters that must be specified to complete the state-
ment of the problem are the coefficients in (2.6)a and (2.6)b.

In a typical steam turbine drive, the power output of the turbine is
taken as a constant over the switching interval and so (2.6)b is usually
modified by multiplying both sides by 5. If the B term is neglected and
M is defined as

M=¢J
then (2.6)b becomes

(3.1) P = ev2 Loy 1g(t) 1,(%) + o

where Pin is the power supplied by the prime mover and M is referred to
as the momentum of the machine.

Rather than assign values from a particular machine, typical per unit
values are assigned for a particular class of machine. Ranges for these

typical per unit values as obtained from the literature8’9

, are listed in
Table 3.1 along with the values used in the solution.

For a symmetric fault, the zero sequence voltage v:(t) and zero se-
quence current ig(t) are zero, 8o Rg and L: numbers need not be assigned.

It can also be shown that parameters of transformers and lines which

connect the generator to the bus can be included in R: and L: if the
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transformers and the lines are represented as series inductance and re-
sistance and if vd(t) and vq(t) are the bus voltage components in place
of the generator terminal voltage componentsh. Further, from the form
of the equations (2.6)a it is clear that R; and mL; are the usual alter-
nating current resistance per phase and direct axis synchronous reactance
per phase respectively.

Typlcal per unit resistance for round rotor turbogenerators has a
range of 0.003 to 0.008 p.u. A value of 0.005 is used and it is assumed
to be the generator, transformer, and line resistances combined.

Typical per unit direct axis synchronous reactance for round rotor
turbogenerators at €0 cycles, has & range of 0.95 to 1.45 p.u. A value
of 1.2 is used and it is assumed that this value includes generator, trans-
former, and line reactances.

Following the conventional assignment, b'JELBr 1f(t) is 1 p.u. for
6 = 377 and 1,(t) = 1 p.u. field cwrent. Thus, wN2L__ = 1 p.u. Agaln,
by convention, 1 p.u. 1f(t) is obtained from 1 p.u. vf(t) and 1 p.u. R.

The range of the Lf/Rf for round rotor turbogenerator is 2.8 to 9.2.

A value of 6 is used, then L_ is 6 p.u.

f
The momentum term is usually given in terms of H constants. H is re-
lated to the momentum by

oH

M x f

where
G is the rating of the machine in megavolt-amperes
f is the frequency in cycles per second
M is the momentum in megawatts/electrical radian

For a round rotor turbogenerator, H has a range of 2.8 to 9.5 in-



-17-

cluding the prime mover. The type of prime mover largely determines the

particular value in this range. A value of H= 3 1s used. The low in-
ertia constant was chosen in order to emphasize the mechanical transient
and make the stability problem more critical.

3.2 SOME REFINEMENTS ON THE ROTOR-STATCR COUPLING TERMS

Kimbark8 has developed an equation for the purpose of considering
the percent change in field as resulting from the combined effects of
transients and regulator action. The change in field Kimbark represented
in terms of the field circuit time constant and components of armature
voltages. The regulator action is simulated by incrementing the armature
voltage component that is due to field current. In a numerical solution
of (2.6)a and (3.1) on the digital computer, the master routine can readily
simulate regulator action by incrementing the field current variable.

In order to obtain more detailed and more accurate information on the
field decrement, refinements in the rotor-stator coupling terms are con-
sidered as outlined in the following paragraphs.

The coefficients in equations (2.6)a and (3.1) are evaluated at the
particular operating conditions under consideration. However, if a range
of the variables is being considered, it is found that these coefficients
vary. If the field decrement is to be studied, a more accurate representa-
tion of the rotor-stator (field-armature) relations is needed. The rep-
resentation must take into account the particular operating conditions
and in addition must take into account the effect of incremental changes
about the operating point. Consider the magnetization curve of a synchro-

nous machine as represented in Fig. (3.1).
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Z; PR
Figure 3.1 *
At any particular operating point, i = I £ the voltage-current relation
is given by the slope of the secant line through P. Thus, the éJELsr
terms in (2.6)a and (3.1) can be assigned a value equal to the slope of
this secant line. For incremental changes about If’ however, the oper-
ating point moves along the tangent line. This refinement is incorporated
into the term
v(t) = 6zL_ 1.(t)
by defining
1(t) = I, + 1p(t)
where
I, 1s a constant or reference value of if(t)
iy is the time varying component of if(t)
ir éfansr is the slope of the secant line in Fig. (3.1) and & K is
the slope of the tangent line at i f(t) = I, then
v(e) = oNaL, I+ &K 1 (%)

All of the terms in (2.6)a and (3.1) which involve field and armature






coupling are appropriately modified.
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The machine equations become

—

v, (t) _R:+L: ad%- ® L';S K -% 4 o)
(3.2)a | v (t) + éJ_éLsr I - € L‘; R:+L; ;%;— - 8K iq(t)
ve - R, I K& 0 Ro+L, % 1. (%)
. . 2
(3.2)6 By = evar, I, 1 () + & 1,(8) 1(¢) + M :1‘1:5 6

The value of the slope of the tangent line changes with a change in
operating point and a given slope would be in error for a large increment
of change in current. The use of the tangent slope is an improvement
over the use of the secant slope if ifl(t) remains small.

A typical value of slope éK for a synchronous machine at a typical
operating point is about 0.6 or 0.7 p.u. with & = 377. This value of 6K
as compared with typical values of 1.2 to 1.8 for b.JELhr shows the sig-
nificance of the refinement on the field decrement effect. All terms in-
volving field and armature coupling are appropriately modified before the
problem is programmned.

3.3 THE SECOND CLASS OF PROBLEMS

The second class of problem considered here is the stability study
for two interconnected machines. The significance of this class of prob-
lem lies in the fact that this problem represents an extension of the
technique of the first problem toward a multi-machine system, and in the
fact that with certain assumptions two interconnected systems fall into
this class.

Examples of problems of this class include:

1.

Two synchronous machines are connected by a transmission

line. One machine is operating as a generator and the other as a
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motor. For a sudden increase in load on the motor, determine

whether the machines will fall out of step or not.

2. Two power systems, each represented by an equivalent syn-
chronous machine, are interconnected by a transmission line. For

a fault on the transmission line which is cleared in a specified

time, determine whether the systems remain in synchronism or not.

3. Two power systems, each represented by an equivalent syn-
chronous machine, are interconnected by a transmission line. Sys-
tem A supplies power over the line, and system B receives power
from the line. For a sudden increase of demand in system B, or

for loss of a generating unit due to local fault, system B require-

ments become P + AP. Determine whether the two systems will remailn

in sychronism or not.

Under the assumptions that permit a system to be represented by an
equivalent synchronous machine, the three problems are mathematically
identical. The first of the three is used in this thesis to 1llustra£e
the technique.

PROBLEM: For the second problem of this thesis, consider a synchro-
nous generator supplying 0.5 p.u. power over a transmission line to a
synchronous motor receiving 0.5 p.u. power. For a sudden change in load
on the motor from 0.5 p.u. to 0.6 p.u., will the machines stay in syn-
chronism? Repeat for the case where the motor load changes from 0.5 p.u.
to 0.8 p.u. power. Initially, let the voltage at the motor terminals be
1 p.u. volts and the motor power factor be 0.85 lag.

The machine parameters are assigned typical per unit values as in

the first problem. The direct axis synchronous reactance of the motor
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is taken as 0.8 p.u. and the H constant of the motor is taken as 2. Let
the motor phase resistance be 0.005 p.u. and let the b*fELsr be 1 p.u.
for both the motor and the generator. Assign the generator plus the
transmission line the direct axis synchronous reactance of 1.2 p.u. per

phase and a phase resistance of 0.005 p.u. Let the generator H constant

be 6.

IV. SOLUTION OF A STABILITY PROBLEM FOR A
SYNCHRONOUS MACHINE ON AN INFINITE BUS

This chapter presents the standard and the thesis techniques in
general and for the particular problem. Results are presented and com-
pared. Methods are compared and the extension of methods to other prob-

lems and other areas is discussed.
4.1 THE STEADY STATE INITIAL CONDITION CALCULATIONS
The pre-fault conditions are the constant speed, steady state, and

constant field conditions under which equation (2.6)a reduces to

— - — 4 + — - -
vd R8 mLB 0 1d
.1) |v |= |- at " - wevaL 1
q 5 s sr qQ
o] | © 0 R, 1 [ ]

The pre-fault conditions given in the statement of the first problem

are:
IVI = 1 p.u. voltage at the bus.
P = 0.5 p.u. power at 0.85 power factor lag.
wL: = 1.2 p.u. reactance
R; = 0.005 p.u. resistance
| 1| = .5882 p.u. current

In addition to equation (4.1), the following equations apply for
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steady state sinusoidal conditions:
vd(t) = +lV] sin % id(t) = !Il sin (3 + B)
vy(t) = - | V| cosd 1,(8) = | 1| cos (58 + B)

where
B is the power factor angle
® is the phase angle between the bus voltage, V, and the field
excitation voltage,

JEf = wJéLBr If

Usually, this steady state problem is solved neglecting resistance

and the various quantities are pictured on a vector diagram as in Fig.
(%.1).

Figure k4.1

Solving (4.1), the results are:

E, = 1.5 + 23.6° p.u. volts
5 = 23.6°

Iy = -0.496 p.u. current

I = 0.335 p.u., current
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If = 1.5 p.u. since Ef = If in p.u.
vy © 0.40 p.u. volts

Vq = "00916 pouo VOl‘tS

Further, since the pre-fault conditions are considered as constant syn-

chronous speed, the initial values of 8 and 6 are:

6

377 radlans per second

]

wt + B + %x/2 = & + x/2 = 0.4116 radians

In steady state terms, the angle &, sometimes called the torque
angle, is the angle represented in Fig. (4.1) as the phase angle between
the bus voltage and the voltage generated in the armature due to the
field current. In equations (2.1), and in the subsequent transformations,
® is the angle of deviation of the rotor from the no-load synchronous
speed position. A synchronous machine is unstable if ® increases with-
out limit. If a system is stable, the variation of ® is generally an
oscillatory function of time. If a machine is stable for the first swing,
it 1s classified as stable, for by the end of the first swing, regulator
action and prime mover governor action will have begun and these actions
tend to stabilize the machine.

It is generally accurate to assume that prime mover governor action
does not take place until after the first swing of the oscillatory & and
does not enter into the stability calculations. Therefore, it is accurate
to assume that the prime mover power input remains constant during the
first swing. Some authors7’8 have developed formulas to take into con-
sideration generator field control by regulator action. The regulator
action is not usually initiated before the fault has been on for 0.2 or

0.3 seconds, however.






4.2 NUMERICAL STUDY OF THE STABILITY PROBLEM OF A SYNCHRONOUS
MACHINE ON AN "INFINITE BUS"

The mathematical statement of the problem to be solved here is given

by:

(1)
(2)
(3)
and (4)

equations (3.2)a and (3.2)b,

the fault conditions,

the switching conditions.

the initial conditions defined in section 4.1,

The normal form of the system equations given in (3.2)a and (3.2)b

as required for a numerical solution by the Runge-Kutta method is:

f'_

(4.2)

)

dt d(

a
wia(t)

—

[ra0ma0) - mfr 0] &

[V(t)-R 1(t)-e~f21. Ao +aL1(t)+ac1 (t)]

&

L - 15

[vd(t)-R:id(t) - bL; iq(t)]

Ls

vd(t)-R; 1,() - oL 1(t)

X
q :' Ly L, - ﬁ] - By 1 (¢)/Ly

[ -e(~f21. I, +K1 (t))i(t)]

vhere, from the transformations defined by equations (2.3), (2.4), and (2.5)

and

- |V] cos B

ot + 8 + x/2

vy(t) = |v] sin &

The flow diagram for the computer program which was used to solve

these equations is shown in Fig. (4.2).
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Figure 4.2

The digital coﬁputer library routine, F-6, was used to solve the dif-
ferential equations. The F-6 routine was chosen because it uses the fourth
oxrder Runge-l(uttalo formulas. The truncation error for the fourth order
Runge-Kutta formulas is of the order of (At)5 , where At is the increment
of time used for each step. Also, the F-6 routine limits the amount of
error by an automatic control of the size of the increment. Both of these,
the fourth order Runge-Kutta formulas and the increment control, tend to
make the program slow, but both are valuable assets when the exact char-
acter of the variables being investigated is unknown.

The differential equation solving routine, the master routine, and

the function routine are described in greater detail in Appendix B.

With the program described in Appendix B available, the solution to
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the first problem is obtained simply. Merely supply the program with the

specified initial conditions, the parameters for the particular machine,

and master routine counters.

The scal

ed initial values, scaled coefficients, and constants used

in the problem are listed.

The numbers in memory location 3 through 8 as required by F-6.

In 3

In 4

In 5

In 6

In 7

In 8

In 10

the integer 30 indicates the location of the first of the
sequence of initial conditions.

the integer 36 indicates the sum of entry 3 and n, the num-
ber of equations in the system.

the integer 13 indicates the scale factor on the fr, 2-13.
the integer 10 indicates the time increment, 2-10 sec.

the integer 36. The Y, vill have their error held to about
1 in the 36 binary bit.

the integer 160 gives the memory location for the entry
into the fr routine.

the integer 100 gives the memory location of the first of

a sequence of scaled coefficients and constants.

The initial values of all the variables are scaled by 2713 and read

in as follows

Location Variable Scaled Value
30 t 0
31 N 0.04602
32 8 0.0002420
33 1py (%) 0
3k 1,(¢) -0.000060546

35 iq(t) 0.0000408825
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The coefficients and constants for the fr routine:

Location

100
101
102
103
104
105
106
107
108
109
110
111
112
113
11k
115

116

Quantity
1/var
M
/Lt
/it
L/Le

P/u

\'s
Work space
Work space
Work space
Work space

8

*/2

S/u‘

Scale
2"9

2-3

2713

20

Scaled Value
0.73633
0.01592
0.500
0.61360
0.1666
0.0038540

o
0.0014648
0.0015915

0.000244 14

program
0.000191747
0.63662

For master routine, read the following counters to control read out

and switching.

If the integer k is placed in the 29th word of the master routine,

read out will occur after each (k+l)st calculation.

If the integer p is placed in the 36th word of the master, switching

or fault removal occurs after p read outs.

If the integer q is placed in the 38th word of the master routine,
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the program completes q read outs before stopping.

The master reads out t, 6, 6, ifl(t), 5, id(t), iq(t). However, if
zero is placed in the 33rd word of the master routine, only t, 5, and é
will be read out.

The pre-set parameter in location 3 through 8 must be read in before
F-6 is read in. All the other information can be placed at the end of
the program. At the end of the read in, transfer control to the left side
of the first word of the master routine and the computer gives the results.
The critical switching time can be determined by altering the counter which
is the 36th word of the master routine.

The solution was obtained for various switching times converging on
a critical value. Some of the results appear in Graphs 4.1, 4.2, 4.3,

4.3 STANDARD PROCEDURE FOR SOLVING THE STABILITY PROBLEM OF A
SYNCHRONOUS MACHINE ON AN "INFINITE BUS"

If a numerical solution is obtained for the system equations as in
section (4.2), the technique is the same for all single machine stability
problems. In sharp contrast, standard methods use a variety of techniques
for various types of problems and also utilize additional assumptions and
formulations to obtain results. In the interest of completeness and con-
trast, section (4.3) presents some of these standard techniques.

The standard procedure for the solution of the stability problem of
a synchronous machine on an infinite bus is started with the steady state
solution of section (4.1). The values and phase positims of the initial

id’ iq, \PY v, Ef and 5 are determined.

q
Usually, the equation (3.1) is written in the form
2
- a~
(3.1) P = mJ-aLsr 1(t) 1(t) + M e ¢
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By neglecting the resistance, the electrical power term can be

written l II '
VIIE
- _ el .
(4.3) Pect mJ'éLsr 10(t) 1(¢) = X, e 5
where

]Vl is the p.u. bus voltage

|Efl is the p.u. voltage component due to the stator direct
current field

5 1is the torque angle

X q - @ L; the direct axis synchronous reactance

Standard methods, in order to use equation (4.1) with transient con-
ditions, contain some modifications for equation (4.1) coefficients and
contain some procedures for using equation (4.1). For a given steady
state armature voltage, power, and power factor, equation (4.1) can be
used to find v

d
is modified by replacing w L: by new reactances, XdT and XQT’ called

» Vg 14 iq, as in section (4.1). Then equation (4.1)

direct axis transient reactance and quadrature axis transient reactance,
respectively. The steady state \FE vq, id, iq with the new reactances
define a new voltage called the voltage behind the transient reactance.
Modified equation (4.1) becomes:
+
(1) Vg - R: id - qu iq = Ed
vq - Rs iq + XdT id = Eq
where
Ed and Eq are the direct and quadrature components respectively
of the voltage behind the transient reactance.
Note that the equation (4.4) does not contain an if(t) term. The

current if(t) was assumed constant in order to obtain (L4.lL4).
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The quantities in (4.4) are commonly pictured on a vector diagram

as in Fig. 4.3.

Figure 4.3

The voltage behind the transient reactance, E, defined by
Eq = E cos Bi Ed = B sin 81
|E| = lEQ + 3 Edl
is assumed to remain constant during the transient interval if the field
decrement is neglected. During this interval if losses are neglected,

equation (4.3) becomes

MIEA
(4.5) X sin® = P ..

Since 6 = wt + x/2 + 8, equation (3.1) becomes

V||E 2
(4.6) P =I—J-'—-‘llsin5+n—‘1§s

in xdT dt

Under the assumptions necessary to obtain equation (4.6), a solution
to (4.6) will indicate stability or instability. Standard techniques for

solving a stability problem use a numerical solution of (4.6) to determine
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stability characteristics.

For this particular problem of a short circuit at the bus, coeffi-
cients in equation (4.6) are obtained using steady state and modified
steady state methods. Then, from the time of occurrence of the fault
until the circuit breaker removes the fault, equation (4.6) is solved
with V set equal to zero. From the time of the circuit breaker switch-
ing and continuing to the end of the calculations, V is returned to the
infinite bus status. The solution is carried out until the value of the
angle 5 indicates stability or instability. Various circuit breaker oper-
ating times must be considered until the time is found for which the ma-
chine operation becomes unstable. This time is called the critical switch-
ing time and the corresponding angle is called the critical switching angle.
For any switching time less than the critical value, the machine operation
would be stable, and for any switching time greater than the critical
value, the machine operation would be unstable.

Some important variations on the direct solution of equation (4.6)
are now considered.

In order to avold carrying out the numerical solution of equation
(4.6) for various switching times until a critical switching time is deter-
mined, a criterion has been developed for determining the critical switch-
ing angle. Except in simple cases, the determination of this critical
angle requires a trial and error graphical integration approach. Further,
even with the eritical angle known, the switching time must be determined
by numerical solution of equation (4.6) out to the critical angle. For
the particular problem of a short circuit at the bus as in this first the-

sis problem can be solved most readily by the equal area criterion. The
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solution is presented in the following paragraphs.

Under the appropriate assumptions, equation (4.3) was obtained.

V E

-t
(4.3) Pelect = xd sin &

A sketch of P as a function of ® is given in Fig. (4.4). The

elect
horizontal line represents the initial power supplied to the generator,
80 the initial torque angle, 5c the switching angle. The angle, Bc, is
the critical switching angle when the cross-hatched area above the initial

pover line is equal to the cross-hatched area below the initial power line.

?
o¥ //-%
7,

2, Oe m

Figure 4.4

For the initial steady state condition

Jv] = 1 p.u.
lEf' = 1.5 p.u.
Xd = 1.2
Pelect = 0.5 p.u.
5, = 23.6° = 4116 radians
= ill&l;ﬁl 8in 3 = 1.25 8in &

Pelect =~ 1.2
for 6c the critical value

180° - 23.6°
5 l25sin8dbd-.5 (180° - 23.6° - 8,) = .5 (8, - 23.6°)
(]
then
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Next, with IVI equal to zero for short circuit at the bus, the criti-
cal Sc is determined to occur at 0.28 seconds by numerical solution of
equation (4.6).

A second variation from the direct solution of equation (4.6) becomes
necessary 1f a study is to be made of the field decrement effect and/or ir
a study is to be made of the incrementing of the field by regulator ac-
tion. Among the assumptions that were necessary to obtain equation (4.6)
was the assumption that the field current remains constant. Kim‘bark8 and
Cra.ry7 show the development of a formula that alters E_ of equation (4.6)

q
in order to consider these changes in field. The developed formula is:

8E  E(t + 523) - 'eJELsr 1.(t)

(3.7) - >
At 8N2Lgr 15(t) a4
q
vwhere
Ef = w'JéLsr If the field excitation voltage in armature terms
Le
T, = g the field circuit time constant (armature open)
£

At is the time increment considered
Ef is incremented to simulate regulator action and for a given Ef the

formula determines the change in Eq or the change in field called the
field decrement. For each increment of time, Eq of equation (4.6) is in-
cremented by the amount indicated by (4.7) if the change in field effects
are to be considered.

An example by Kimbark8 uses equation (4.7) to determine the percent

change in field for a machine operating with a short circuit at the bus.
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The machine parameters for Kimbark's example placed the machine in the
same class as the machine of the thesis problem. The results listed for
Kimbark's example showed a decrease in field of about 23% in the first
half second of sustained short circuit.

A third deviation from the direct solution of equation (4.6) occurs
if the fault is a less severe fault than a symmetric short circuit at the
bus. An example of a less severe fault is illustrated by the problem of
a generator connected to a bus with a double circuit and the fault taking
the form of a symmetric short circuit on one of the two circuits. In such
a situation, equation (4.6) would have different Eq/XdT values for pre-
fault steady state, for the interval of the fault, and for the interval
after the fault has been removed. Even the equal area criterion becomes
complicated in this third case. That the equal area criterion is not so
simple for this type of problem, and that the equal area criterion is not
readily adaptable to digital computer solution, is demonstrated by a qual-

itative discussion of an example.

Do\»\o\t c'\‘(c-\)..\*—

Gen, BPus

V4
la)

Fau lt

Figure 4.5
The diagram of Fig. (4.5) represents a generator connected to an
infinite bus by two parallel lines. A fault occurs on one of the lines.

If the faulted line is removed by circuit breaker action, the eritical
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switching angle can be determined using the equal area criterion as fol-

lows:

B.Fo%&
&F Fault

Aftey
Fault Remsval

Buer

AN
A Duvin
A 2 A5 Faul
5, E T
o £ 5 —>
Figure 4.6

To apply the equal area criterion here, three different power angle
curves are required as shown in Fig. (4.6). The three power angle curves
are curves representing the relations in equation (4.3) for the x(1 before,
during, and after the fault.

The horizontal line represents the value of power being supplied to
the generator by the prime mover at the initiation of the fault. The
cross-hatched areas above the initial power line are taken as positive,
and the cross-hatched areas below the initial power line are taken as
negative. The angle, bo, is the initial torque angle and Gc is the torque
angle at the time the fault is removed. By the equal area criterion, 6c

is the critical switching angle when

Al + A2 + A3 + Ak =0
The critical bc is usually found by graphical trial and error means. The
switching time is then found by numerical solution of equation (4.6) with

E_ and X_ determined for the faulted condition.

q aT
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Pre-calculated swing curves7’8 are sometimes used to determine the

critical switching time. Pre-calculated curves cannot be applied to the
open circuit and short circuit synchronous machines, however.
4.4 COMPARISON OF RESULTS AND METHODS
The program was run for switching times of 0.1, 0.2, 0.25 and 0.3
seconds. Graph 4.1 of the results indicates that the system was stable
for switching at 0.25 seconds and the system was unstable for switching
at 0.3 seconds. These results compare favorably with the 0.28 critical
switching time obtained by the equal area criterion.
In contrast with Kimbark'58 results of a change in field of about
23% in the first 0.5 seconds of sustained short circuit, the 1ﬂ(t) ob-
tained by direct solution here had a maximum variation of about 0.1% of
the steady field current lr. This low order of magnitude for the change
in the field current is as should be expected on the basis of the terms
of equations of (4.2). In per unit quantities, the armature and field
inductances are:
Lf =5
1.2
s~ 377

and in per unit quantities the voltage disturbances causing the changes

L+

in the field and armature currents are of the same order of magnitude.

Both are approximately

[vd(t) -6L 1q(t)]

and
ai,(t) x
_gt_. . [vd(t) -0 L: iq(t)] Li:
i (t) . K
- [vd(t) -6 1q(t)] =
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where K and L; are the same order of magnitude.

Kimba.rk8 represents the so-called change in field flux by a ficticious
voltage component in the armature circuit. This voltage component is de-
rived from the same relationships that appear in the equations solved in
this thesis. In the derivation the voltage component is related to the
field current.

From the thesis solution, for the time interval of 0.5 seconds, the
speed had increased by 4.5%. The commonly neglected change in speed appears
10 be a more significant variation than the field current decrement.

Very little more can be saild in camparison of the results, since stan-
dard techniques usually give only d as a function of time, but the i d(1’.)
and the 1 q(t) of the computer solution shown on Graphs 4.2 and 4.3 exhibit
characteristics distinctly different from the form commonly assumed for
the 1,(t) and iq(t) variables.

The approximate mathematical expression for these current variables
obtained from the graph are:

iq(t)

14(%)

0.82 sin (ot + ‘Vl)

1.25 + 0.82 sin (wt + “Pa)

A closer examination of the data showed that the @ terms were not con-
stant at 377 radians/second, but were more nearly @, the instantaneous
angular velocity. It is commonly assumed that 1 d(t) and iq(t) have a slow
variation with a period similar to the period of the mechanical oscilla-
tions. The period displayed here is around 0.0166 seconds, compared with
a mechanical oscillation of around 1.0 second. It is common to assume that
for the short circuit condition, iq(t) goes to zero immediately. The amp-

litude of the oscillations of iq(t) displayed in Graph 4.2 is around twice
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the initial value of iq(t). The currents were obtained for the condi-
tions that the armature resistance was neglected and currents appear to
have the form of sustained oscillations, but the armature circuit time
constant is around one second so the decay would be slight in the time
shown if the resistance had been considered.

A review of the mathematical relations for the equations solved sub-
stantiates the results obtained. For the equations (2.6)a and (3.1), with
the assumption of constant speed and constant field current, the usual
form of Park's equations are obtained:

+ .+ d

- vy(t) = (RL+L] =) 1,(¢) + 8 L] 1,(t)

+ .+ d s _+ .
vo(t) = (R+Ly 55) 1.(t) - & 1] 14(¢) - efaLsr I,
Neglect R; and for short circuit conditionms, vd(t) = vq(t) = 0, so the

equations (4.8) become:

$h® = - a1 (e
(4.9) 4 ] )
= 1q(t) = +014(t) + eJ_aLBr I,

For the initial conditions and coefficients of the present problem,
a Laplace transform solution of the two equations yields:

1q(t) = 0.82 sin (6t + ¥))
(4.10) .
id(t) = 1.25 + 0.82 8in (6t + \ra)
With the resistance considered
-0.8t

iq(t) 0.82 e

1,(¢)

sin (@t + Y’l)
(4.11) 0.6t

1.25 + 0.82 e sin (6t + V¥

0)
It is interesting to note that for the constant speed solution, the

0.82 coefficients of the sine terms and the 1.25 constant are independent
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of speed. A conclusion that for small changes in speed the id(t) and
iq(t) variables would have the same amplitudes and same forms is substan-
tiated by the results on Graph 4.2.

Admittedly, the average value of iq(t) is zero, and for a high inertia-
torque ratio of a power generator, the variation of the 1q(t) would add
only a slight ripple to the swing curve 5 as a function of time. This high
inertia-torque ratio does not always exist, however, when the standard
technique of considering a system as an equivalent machine is used. The
high-inertia to torque ratio would not exist in small synchronous machines
in control systems, so in such a system the standard assumptions would
have questionable accuracy.

The form of id(t) and iq(t) is of particular importance when solving
the differential equations (2.6)a and (3.1) by numerical methods. If the
id(t) and iq(t) variables had a slow variation with a period of the order
of one or two seconds, similar to the mechanical period, the time incre-
ment for the numerical solution could be taken as a value such as 0.05
seconds or some other value small compared with the period of variation
of the variables. The correct form of the currents, id(t) and iq(t), shows
a period of around 0.0166 seconds and a time increment of 0.05 seconds,
for the numerical solution could not be expected to give significant re-
.sults.

Finally, in addition to comparing results of the standard and thesis
techniques, consider the differences in principles and methods for the
first class of problem.

In contrast with the standard technique, the thesis technique:

l. Solves differential equations as differential equations.
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2. Does not require the development or use of the transient
reactance concept.

3. By direct solution of equations (2.6)a and (3.1, gives
values of armature current, field current, speed, and torque
angle as a function of time. The standard method gives the
torque angle as a function of time.

4. Does not drop field variation terms as in the development
of the equation (4.6), so field variation effects can be con-
sidered without developing additional formulas.

5. Can solve a large class of problems without changing proce-
dure. Changes in specified variables, specified parameters,
and switching times are controlled by the master routine of

the computer program.

V. TWO MACHINE SYSTEMS

The question arises as to the desirability of analyzing the single
machine system and the two machine system as separate problems rather than
as problems included in an n-machine formulation. A partial justification
of this separate consideration is given in the following paragraphs.

There are many power system stability problems that fall into the one
machine or into the two machine class of problem and give satisfactory
correlation between calculated results and observation on the actual sys-
tem. The study of the effect of machine parameters on stability, circuit
breaker action for connecting or disconnecting individuel machines, and
many others, are single machine problems. After a preliminary investiga-
tion, it may be found that one machine and a system can be adequately rep-

resented by a two machine analysis as far as the individual machine is
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concerned or two interconnected systems may be adequately represented as
two equivalent machines in a two machine analysis. The case actually in-
volving only two synchronous machines would arise only in isolated cases
or in low power level control systems. The latter is not a power system
stability problem.

The greater simplicity of the one machine or the two machine analysis
methods makes these methods more desirable than a generalized form when
these simpler methods give acceptable correlation with observed results
from the physical system. The simpler forms occur because of the element-
ary patterns for the transmission line systems interconnecting the ma-
chines. The multi-machine formulation would need to include a network
analysis program with the machine analysis program.

Whether standard or thesis methods of analysis are used, the two ma-
chine problem represents one step in the direction of a multi-machine
analysis. Even if methods do not apply directly, information obtained
by analyzing a two machine system should be helpful in formulating a multi-
machine analysis.

Some problems which are conventionally considered as two machine
problems are now listed.

1. Two machine representation is used in the study of an individual

machine delivering power to a system over & long transmission line.
As far as the individual machine variables are concerned, the distant
system is adequately represented as an equivalent machine. Studies
are commonly made of the effect on the individual machine of a fault
and fault clearing time for a fault on the transmission line con-

necting the machine to the system. Studies are made of the effect
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on the individual machine of an increase or decrease of the net gen-
eration of the system due to added loads, lightened loads, or faults
on the system.

2. Two machine representation is used in the study of two systems
which are interconnected by a transmission line. After some prelimi-
nary investigation, it may be found that the tie line stability is
adequately represented when the two systems are considered as two
equivalent machines. Studies are commonly made of the effect on the
tie line stability of a fault and fault clearing time for a fault on
the interconnecting transmission line. Studies are made of the effect
on tie line stability of a net increase or decrease in generation of
either system due to changes in load or local faults in either system.

3. The case of two interconnected synchronous machines would bhe
rare in power system study; however, analysis techniques in terms of
twvo machines are commonly presented and serve for the systems repre-
sented by two machines.

The problem worked in this chapter is that of two machines, and under
appropriate assumptions does represent two systems. The stability prob-
lem considered is the problem caused by an increment of change in power
of one of the machines. The transmission line fault is discussed but not
illustrated by a numerical example. The standard techniques require a
different approach to the two types of problems, while the thesis tech-
nique is basically the same for the two types of problems.

5.1 THE DIFFERENTIAL EQUATIONS OF THE TWO MACHINE SYSTEM

In this section, synchronous machine equations are combined, trans-

formations are chosen and applied, and the resulting system of equations

for a two machine system are listed.
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Consider two synchronous machines interconnected by a transmission
line system. Equations of the form of (2.1)a and (2.1)b represent the

system as follows:

V)| |Fesyr &Cee, &Len @) |[Lanw

(5.1)a 881 4t 881
ve (t) a%oxrsl(fél) Ry + -:—t Ley || 1g,(8)
' < L, (#,)
(5.1)b T,(t) = - 1 [J (t) ifl(t) 9«9 88) sr '\
90 (t)
d °
1:(1;) + (B ) A
(5 2)6 Vsa(t) - %832-” di 882 EdEoZSra(¢2) "osa(t)
veo(t) %"zrszwa) Rop* ':1‘1; Lep 100(t)
: < oL pen(#,)
.2 =X [J (¢) 1 t)] 882 sra\Pp
(5.2)b T2(t) 2 82 f2( 3%; ofrsg Lfl
e

o (%) (3, + 3 3) b
where the coefficients and matrices are defined as in Chapter II. The
(2) subscripts represent variables and coefficients for machine number
(2), and, as in the first problem, let the variables and parameters with
the (1) subscript represent machine (1) plus transmission system co-
efficientsu and variables. For the specified connection pattern, by use
of circuit equations and segregate equations, (5.3) and (5.4) and the

application of the symmetrical component transformation of variables,
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[ vao(t)]
= | vpo(t)
 vealt).
[ 1,5(¢) ]

= iba(t)
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Veolt)

L0

(2.3) » to the stator voltage and the stator current variables, there re-

sults
B l 0.0 d
0 RS+LBE‘E 0
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(5.5)a] 0 |= 0 0
d -JG
Ve (£) 0 3tlsr e 1t
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R+
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T (8) = (B, + 3 D) - oy Loy 1y, Ly {1(0) 0]
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RZ=R§l+R:2
R;=R;1+R2
L(;:L:l :2
L = Ly + Lgp
91=‘”t+51+"/2
62=wt+52+x/2

and

Jm= {i{(t) e"wl} and ('“(’m {-1;_("5) e-'jea}
means the imaginary part of the bracketed quantities.

For the backward sequence transformation of the type represented by
equations (2.4), a choice must be made. Some of the forms in the litera-
ture that reduce the system to an equivalent machine would seem to sug-
gest a transformation in terms of 6, where

0 =at + Bl + 0, + x/2

This 6 would be necessary for convenient reduction of the mechanical equa-
tions to a single equivalent in terms of

812 = 81 + 52

The overall system of equations was simpler and the identity of the
individual machines was retained, however, when either the 81 or 92 trans-
formation was used. Thus, transformations of the form of equations (2.4)
were applied to the stator variables for the theta equal to ai' Further,
the transformations of the form of equations (2.5) were applied to separ-
ate the reals of the backwards sequence variables from the imaginaries of
the backwards sequence variables, and the equations (5.6)a and (5.6)b were

obtained.
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where
2 .
91=m+61+x/2 ;?61= 1
2
- A e R
92—m+52+-/2 dtzea— 5,

Equations (5.6)a and (5.7) are the differential equations of a two
machine system. The thesis technique is the solution of these, (5.6)a
and (5.7), directly by numerical methods on the digital computer. The
standard technique makes some simplifying assumptions and uses a modified
steady state method to obtain a solution to these equations.
5.2 STEADY STATE INITIAL CONDITIONS FOR THE TWO MACHINE PROBLEM

The initial conditions are usually specified as constant speed, con-
stant direct current field, constant amplitude sinusoidal armature voltages,
a constant average power, and constant power factor. If these initial con-
ditions are imposed on the sets of equations (5.6)a and (5.7), the equa-
tions (5.6)a are independent of the set (5.7). From the results of the

transformations on the steady state sinusoidal armature currents,
14(t) = - |1,| sin (8, +B)
14(8) = |I,] cos (8, +B)

where P is the power factor angle.

The results of the steady state solution to (5.6)a are commonly pic-

tured on a vector diagram as in Fig. (5.1).
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Figure 5.1

From the solution of (5.6)a the initial values are:

1y = = 0.48U0 5 = 23.6° = 0.4116 radians
1, = 0-33%0 5, = -28° = -0.4886 radians
1g = 1.5

ifa = 0.852

Prom the constant speed assumption:
él = 377 radians/second
b2 = 377 radians/second

1.9823 radians

8, +=/2= 6,

B, + n/2 = 6, = 1.0821 radians

The initial values obtained from (5.6)a satisfy the equations (5.7).
5.3 NUMERICAL STUDY OF THE STABILITY PROCBLEM OF A TWO MACHINE SYSTEM
In this section the constant field current assumption is justified.

The equations are put into standard form for numerical solution. The
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computer program is discussed, and the use of the program is illustrated
in solving the second problem.

Upon examination of the results of the first problem, it is found
that the percent variation in the field current was less than 0.1 percent
of the steady direct current. The system inertia was close to a minimum,
and the fault one of the most severe likely to be encountered. As these
results suggest, examination of terms in the differential equations shows
certain terms to be negligible. Some of these terms will be discussed and
eliminated as the two machine differential equations are put into standard

form for solution.

pr— ! LB Lsr
1 0 w2 =2 2—72-cos(5 -5,)
Le, L 17°2
0 1 0 - N2 22X254n(s. -5,.)
L+ 1 2
~/—2LM.l
0 1 0
Ley
JaL L... sin (5,-5,)
[ ¢ 8T
(5.13) 2 cos(s -5,) J2 =2 12 0 1
Leo 1 Leo
0 0 0 0
0 0 0 0
0 0 0 0
| 0 0 0 0
o o o o][&i(
at ~d
a
0 0 0 0 T 1q(t)
a
0 0 0 0 i ig (%)
d _
0 0 0 0 I iep(t)| =
1 0 0 0 91
0 1 0 0 6,
0 0 1 0 8,
0 0 0 1L 8
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+ o et 3 i 1

[_Rsid - GLptr V2L 8, sin (5)-5)) 1f2] = _\
i s : . 1

[-Rsiq + oLt VLG 8 ipy - VLgy, 8y cos (8,-5,) 1f2] =

["fl - Rp 121] L%l

& “[al'srg(é]_'éz) sin (51-52) 1 - J’al'sre(él'éz) cos (51-62)iq+vf2-Rf21f2] Lfig
'91
[Pl - o ey, 1 1q] %
.92

{92 + Vel 1p [1q cos (5,-8,) - 1, sin (51-52)]§ “La

The 8 x 8 coefficient matrix of the first derivatives is of the form

B 0

11

0 B

22

where the 622 is a unit matrix.

The inverse is obtained when [ﬁﬁ is obtained. The submatrix 6 1

is a 4 x 4 and the inverse will not be presented here but significant terms
will be discussed.

The determinant of Bll is

2 2 2
2 Lsrz 2 Lsrl (21'51'1 LS!‘2)_

+ = T +2
Lep Ly ey 15 L In Lep

2
sin' (51-52)

but

Jar_ =4z

- L
sr1 srp = 377 PO

+ 2
= == p.u.
s "3 P
and the order of magnitude of the field inductances would be about 6 p.u.

for each Lpy and Lgy. Thus, the determinant of 611 is approximately unity.
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Similarly, all the diagonal co-factor terms of the inverse are approx-

imately unity. For illustration purposes, consider the 33 co-factor 333.

2 112
2L 2(—
5,33=l—- srf=l =1-61 =1 - .00088 * 1
Lep Ly 6x377 x 377

The off diagonal co-factor terms a5 313, and an, which reflect the

right hand term into the 3 (t) equation are:
212
T TR s (s -5)005(5 -8,)
12 Le Lt iR 172
2 s
Jar, 2 Ve,
a.= PrL o srg siu2 (5,-5,)
13 N L L+2 172
s f2 s
JaL,

s:
8 = = cos (51-52)

vwhere B, C, D are of the same order of magnitude as A or smaller than A.
Thus,
36 1a(®) = AL+ gy /I‘ L & /I'fl oy gy
where the last three terms are approximtely (.OOOM)(A/L+).
A similar analysis’applied to the d_t' iq(t) equation leads to similar
results, so the equation (5.13) in standard form for solution with field

variables as constants is as follows:
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tia [—Rsi d-elLs iq+92 vz aLsrg sin (51-52) ifa] -
d + . _+ . . 1
E‘Eiq [-Rsiq+ell's i d+el 'f 2L8r1 ifl-e2 J— 2Lar2 cos (81-52)1f2] L‘;
8) ot
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o0 [ 1
o [Pl - o Volan 1n) iq] My
62 6,
8 P.+e.N2L 1 1 cos (8,-5,) - 1 sin(a-s)]-l—
2 | 2" "2 Terz f2 | 7q 172’ 7 74 172} M,
b e &

The equations (5.14) are the differential equations that describe the
two machine system. Equations (5.14) are programmed as the closed fr sub-
routine for the P-6 differential equation solving routine. The F-6 and
the £ routine for (5.14%) under the control of a master routine can be
used to solve all of the two machine stability problems discussed in this
chapter. The master routine as in the first problem controls the amount
of information extracted from the computer, simulates faults and fault re-
moval by changing parameters in the fr routine, and simulates changes in
load by changing constants.

For the particular problem, the master routine was written to read

out t, 81, 82, 16. and 1q' The change in load was affected on read in by

determining initial conditions for Pl = - P2 = 0.5 p.u. pover and reading
in that P, = - 0.6 p.u. at the beginning of the program. The frequency

of the read out and the duration of the program are controlled by the
master routine.

With the f routine written for a two machine system, and ‘a master
routine written for the type of stability problem under consideration, the
second problem is solved when the proper initial conditions and system

parameters are supplied to the computer with the program.



For the second problem, the scaled initial conditions and parameters

are supplied to the computer as follows:

The numbers in memory location 3 through 8 as required by F-6:

In 3

In 4

In 5

In 6

In 7

In 8

In 10

The initial

The integer 20 indicates the location of the first of
the sequence of initial conditions.

The integer 27 indicates the sum of entry 3 and n, the
number of equations in the system.

The integer 13 indicates that the scale factor on the
£ 1s 2713,

The integer 10 indicates that the time increment is
2710 gec.

The integer 36; The g, will have their error held to
about 1 in the 3622 binary bit.

The integer 160 gives the memory location for the entry
into the fr routine.

The integer 100 indicates the memory location of the

first of a sequence of scaled coefficients and constants.

values of all the variables are scaled by 2-13 and read

in the following location.

Location
0
21
22
23
24
25
26

Variable Scaled Value
t 0
éa 0.0L4602
92 0.0001322
bl 0.04602
6 0.0002420
iq 0.00004088
i - 0.0000590
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The coefficients and constants for the fr routine:

Location
100
101
102
103
104
105
106
107
108
109

110 w =

111
112

113

For the master
read out.

If the integer
read out will occur

If the integer

read out will occur.

Quantity

Pl /M1

P + AP

Scale

Scaled Value

0.001917
0.006503
0.00005024
0.00005965
0.0014648
0.0008320
0.03183
0.01061
0.01
0.368164
0.73632

0.0001917
0.63662
0.005305

routine, supply the following counters to control

"k" is placed in the 301"h word of the master routine,

after each (k+1)st calculation.

"p" is placed in the 361"h word of the master routine,

"p" times before the program stops.

The pre-set parameters in memory locations 3 through 8 must be read

in before F-6 is read in.

end of the program tape.

All the other information can be placed at the

At the end of the read in, transfer control to

the left side of the first word of the master routine and the computer
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gives the results.

A common stability problem is the problem of determining the maximum
AP2 that can be permitted and still retain stability. The maximum AP2
can be determined by running the program a number of times with different
values of P2 + AP2 in memory position 101. The assigned values of AP2 can
be made to converge on the critical value. The problem was run here for
4P, as 0.1 p.u. and 0.3 p.u. or P, + AP, as 0.6 and 0.8 p.u. power. The
results are presented on Graphs (5.1), (5.2), (5.3) and (5.4).

5.4 STANDARD SOLUTION FCR THE TWO MACHINE PROBLEM

In the literature there are various approaches to the two machine
problem. The approach varies somewhat with the particular problem. If
it is desirable to consider system losses, the formulation is different
from the formulation for the lossless case. For determining critical
switching times, equal area criterion or pre-calculated swing curves may
be used. For stability information with added load increments, a form of
the equal area criterion may be used. All the standard techniques are
based on the concept of transient reactances and voltages behind transient
reactance, however.

To obtain the voltages behind the transient reactances for the two
machines, the steady state initial condition solution of section (5.2) is
a necessary first step. For the second step, each machine is considered
separately as in the case of individual machines of Chapter IV. From the

initial conditiomn, i,, £ , v, vq, and machine transient reactances, a

a’ 7@’ 'd
voltage behind transient reactance is found for each machine with equation
(4.4). These voltages are designated here as E, and E, for machine (1)

and machine (2) respectively. Next, if the machine and transmission line
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losses are neglected, the system can be reduced to an equivalent single

machine form.

2

a2 EATY
12 _ 2
(5.8) Mo-—&-t-é-— = Pl - x12 sin 512
where
Mh
Ml + M
512 is the angle between El and 32 initially, and the angle

between machine rotors during the transient.
x12 is the sum of the transient reactances between points where
E]. and E2 are theoretically measured.

Equation (5.8) has the same form as the swing equation for a single
machine on an infinite bus. Under the assumptions that were necessary to
obtain (5.8), the two machine problem can be solved by the standard method
discussed in Chapter IV for the type of fault that would alter the tran-
sient reactance. If 512 increases without limit, then the machines fall
out of step. Equal area criterion can be used.

If losses are to be considered, the equivalent machine form of equa-

tion (5.8) cannot be obtained. A somewhat more complicated form results.

2
(5.9) 455 [Pl “Ta Po- Tea]
at? M M,
where I 2 I “ l
E
1 Ey
T = sina, . + sin (8 )
(5.10) el |Q ]%l 11 ||3‘||12| 12 ~ 12
: E B
_ Bl E) 115a]
Ten |3 22! sin o, + l 7 12] sin (812 + al2)

and where
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‘?11 and 4?22 are driving point impedances (transient)
~?12 a transfer impedance (transient)

all’ a22, a12 are the complements of the respective impedance
angles.

For problems in determining critical switching times, the equal area
criterion can be applied using (5.9), but the power angle curve is not a
sinusoid and the graphical plot and analysis is tedious and subject to
inaccuracies of graphical methods. If losses are neglected, the equiva-
lent machine form of equation (5.8) 1s obtained and the eritical switching
time problem is the same as for a machine on an infinite bus if the equal
area criterion is used.

For the particular problem of this chapter, the equations that per-
mit consideration of changes in generation or load for machine (2) with
losses considered, are:

2
d° 8, [P -Tyy Fp+AP-T,
(5~11) 2 = M

¥ >

dt
If losses are neglected

=B Ta= Te
then
s, APy M+ M,
(5.12) 2 et e (Py - Ty)| = 6(&,,)

With losses, the right hand side of (5.12) is not a simple sinusoid as in
the case of the individual machine on an infinite bus, but a plot of the
right hand side of (5.11) as a function of 8,, glves a figure as in Fig.

(5.2), where the ao is the initial value of 512.
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Figure 5.2

By the equal area criterion the system is stable if the increment of

load is such that Al < A2' For the machine of problem two neglecting

losses:

But

Thus, for the increment of load AP2 =

AP, = -0.1

af 6(5,,) = [+ °—él + 1—82 (0.15 - -1—'2—’2-‘—'—82 sin 512]

= |- 0.05 + .333 - .426 sin &
[ 12

= .383 - .426 sin 512

x£ G(B,,) =0 at B, = &°
6100
A = e [.383 - .426 sin 512] as = .0072

= .026

A2=

180-64°
f&o [.283 - 426 sin 512] a8,

= -0.1 and the lossless assumptions,
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the equal area criterion indicate stability.

For the increment of load APQ = - 0.30
_ 9.3, 8 _ 1.5 x .852
xf 6(512) = [ 5+ 13 (0.5 5 sin 512
xt G(5,,) = [.ue3 - .426 sin 512]

but the curve does not cross the xf G(bla) = 0 axis, 80 A > A, and the
system would be unstable for AP2 = - 0.30 p.u. power.

A common problem in stability studies is the problem of determining
the maximum allowable AP2 for a given initial steady state power for sta-
bility to be retained. A continuation of the above calculations would
permit convergence on such a critical AP2.

If losses are considered, the solution for the point at which the
curve crosses the axis and the evaluation of areas would have to be per-
formed graphically.

5.5 COMPARISON OF RESULTS AND METHODS

Graph (5.1) of the results, a plot of 8, - 8, as a function of time,
illustrates that the system is stable for the case where APa is 0.1 p.u.
and that the system is unstable for the case where AP2 is 0.3 p.u. These
results correspond with the results of the standard solution.

Since the standard solution to a problem of this type simply indicates
if a system is stable or unstable for a particular AP2 and does not give
information on 61, 82, 81 - 52, 1d’ and 1q, no further comparison can be
made. The additional information available from the thesis solution war-
rants some discussion, however.

The fact that 81, )

and 51 - 5, are given as a function of time in

2 2
the thesis solution, contributes information on how the individual machine
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or system contributes to the stability characteristic of the combination.
In the standard approach this information is not available if the various
criteria are used. When the individual 8's are desired, the standard
techniques require the multi-machine approach and a numerical solution

to two simultaneous swing equations of the form of equations (5.10). Also
evident from the Graph (5.2) is the amount both machines fall behind the
synchronous position even when the system is stable.

As in the first problem, the current variables id(t) and iq(t) have
a form much different than the form usually assumed for these variables.
Graph (5.3) is a plot of the envelope of the id(t) and 1q(t) variation
for both AP, values considered. Graph (5.4) is a plot which pictures the
variation of :lq(t) for the case of 4P, = 0.1. The oscillatory component
of the current variables is not so pronounced as it was for the circuit
fault, but the variation is large enough to be an important factor in
choosing the program increment.

In any stability problem, an important consideration is the current
variation in relation to the circuit breaker action or relay action. Stand-
ard solution for the two machine problem requires a separate solution for
the currents when relay action is being considered. The solution presented
here gives the currents in the direct and quadrature axis component forms.
If desired, an inverse transformation to convert these to terminal vari-
ables could be included in the master routine.

In noting the differences in principles in standard solution and the
solution presented here for the second problem, these differences are
practically a repeat of those listed for the first problem.

In contrast with the standard techniques, the thesis techniques:



1. Solves differential equations as differential equations.

2. Does not require the development or use of the transient
reactance concept.
3. By direct solution of equation (5.1%), gives values of

armature current, 5., and 52, as functions of time.

1’
4. Can solve a large class of problems without changing pro-
cedure. The programmed equations (5.14) represent the
system. Different stability problems are simulated by

using the proper master routine.

5. Considers losses or neglects losses without a change in

basic form.

VI. SUMMARY
The common simplifying assumptions were considered in two groups in

this thesis. The first group of simplifying ptions were the

tions that fundamental harmonic representation is accepted and that the

resistance and inductance coefficients can be repr by st

For the first problem with the first group of assumptions, the synchronous
machine on an infinite bus is represented by the non-linear differential
equations (2.6)a and (3.1). For the second problem with the first group
of assumptions, the two machine system is represented by the non-linear
differential equations (5.6)a and (5.7). The technique of this thesis
consists of solving these systems of non-linear differential equations
with the use of the digital computer and numerical analysis methods. A

second group of simplifying ons were y in order to obtain

formulas used in standard stability techniques. These assumptions were

speed, direct current field, and steady state armature
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voltages and currents. The thesis solution is more general, in that the
second group of assumptions are not necessary, and further, the identity
of all the variables is maintained for more detailed study.

For the electromechanical transient of a stability study, the numeri-
cal solution of the equations (2.6)a, (3.1), (5.6)a and (5.7), gives the
stability information directly. The standard solution of the electrome-
chanical transient problem utilizes the assumptions that the electrical
variables can be described by a steady state algebraic system of equations
with the coefficients altered to values which apply under transient condi-
tions. These transient parameters and fictitious armature voltage compo-
nents are used in the numerical solution of the mechanical equation or
the swing equation. The results of the computer solutions illustrated
that of all the second group of assumptions, the assumption of the steady
state character of the electrical variables was most radically out-of-line.
Standard solutions of stability problems often use criteria based on the
second group of assumptions and the further assumption that the system
losses can be neglected.

In contrast with the solutions to similar problems in the literature,
the field current variation was shown to be negligible in the results of
the first problem. It can be concluded that the assumption of constant
field current is a reasonable assumption; however, rather than eliminate
the field current term as is done in standard solutions, it is convenient
to leave the field current terms in the equations so that these terms can
be incremented to simulate regulator action.

The change in speed was found to be a more pronounced variation than

the variation in field current. The constant speed assumption did not
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appear to be unreasonable even for the low inertia and severe fault of
the first problem, however.

The fact that the thesis solution gives the additional information
about the field current, speed, and armature current components, while
the standard solution does not give any of these directly, is certainly
significant. The armature currents must be determined for relay and cir-
cuit breaker study.

The variation of iq(t) and id(t) illustrated in the results of both
problems was probably the most pronounced deviation from accepted theory.
Clearly, both id(t) and iq(t) have forms or components containing the form
of

|1] sin (6t + ¥)

In the standard derivation and use of the 1d(t) and iq(t), it is

common to start with Park's equations,

va(® = Rt ) 1.(0) + b1 1)

(6.1)

+a

+
vq(t) = (RB+LS T

e .
) 14(8) - B L] 1,(¢) - oV 1,
Certainly it is not reasonable to assume the terms

d
(6.2) L @ ta®

. o 1%

Ls 3
are zero or negligible for the current variations displayed in the results
presented here. It can be seen, however, that neglecting the relations
(6.2) in (6.1) and redefining
.+
6L 1q(1-.)

(6.3) .
oL, 1,(t)
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in terms of transient reactances could lead to results similar to those
obtained by direct solution of (6.1).

The form of the current variables played an important part in the
determination of the proper time increment for the numerical solution.

In particular in the first problem, the time increment had to be small
compared with the period of the current variation, approximately 0.0166
seconds.

The standard techniques for both the one machine and the two machine
problems require that different methods or criteria be used for different
faults or different stability problems. If losses are to be considered,
still a different form is needed. In sharp contrast, the thesis procedure
is very flexible and is adapted readily to many types of stability prob-
lem. The f} routine is programmed as required by the particular system
under consideration. There are trivial differences in programming for
the lossy and the lossless cases. With the system adequately described
by programming fr’ all the various types of faults and stability problems
can be solved by using a proper master routine.

The methods of solution used here and the advantages of these methods
illustrated here extend to areas other than the areas of power system sta-
bility. The synchronous motor connected to an infinite bus has the same
differential equations as the generator on the infinite bus. A master
routine that controlled the P1n term could use the one machine program
to study the synchronous motor for various periodic or impact loads. The
control system problem of two synchros has the same differential equa-
tions as the two machine system. The terms sometimes neglected in powver

systems may not be negligible with control system apparatus, however.
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The equations and programs presented here are for round rotor ma-
chines and for symmetric faults. The programs also cover only one and
two machine systems. Further investigation aimed toward extending these
methods into the areas of salient pole machines, non-symmetric faults,
or milti-machine systems, appears to be indicated by the results pre-
sented here.

A conclusion based on the results of the investigation reported here
is that, for the class of problems considered in this thesis, methods de-
veloped before the advent of the digital computer should not be used as
the basis for digital computer investigation. The more fundamental syn-

chronous machine differential equations can now be solved directly.






APPENDIX A
An Existence Theorem

E. L. Ince5 gives an existence theorem which applies to the problem
considered here. Appendix A is a restatement of that theorem.
The system of equations to which the existence theorem is to apply

is a system of n ordinary differential equations in the n+l variables.

x, yl) ya, oev ooy yno

The desired solutions are the n equalities

¥y = & (%), ¥5 = 8y(x), eeneny v, = g (%)
These equalities are to satisfy the conditions

o o o) o o o

Y, = g (x7), ¥, = 32(x )5 ceceeeene, ¥ = gr(x")
where

o _0o o o

x’ yl’ y2, ...l..l..’ yn
represent the initial values of the variables.

Further, for the theorem to apply, the differential equations must

be expressible in the normal form:

1_
ax fl(x: yl’ y2) cecceny yn)

4y,
Ix - fa(x: Yl) Ya: cecceey yn)

(A.1) Ceesscececesscescsenans

a =
ax fn(x: yl’ Ya: R ERY) yn)
Equations involving higher order derivatives than first order are

included by a change of variables. Specifically, consider, for example,

the equation

2

2
(a.2) X - £(x, y, ?—,3")
dx
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To obtain the required normal form, let

-

dx
and write (3.2) as a pair of simultaneous equations.

. L. #(x v, 2)

dx
Theorem A.1: For a system of equations of the type of (3.1), let

(xo, y:, y;, essceey yg) be a set of real numbers assigned to
the real variables (x, Yys Vs eeeeees yn). Let D be a domain
defined by the inequalities:

Ix—xolf a, ‘yl - y;' < bl’ cessscany |yn - y:l Sbn.
Let M be the greatest of the upper bounds of fl’ f2, sesessy fn
for arguments restricted to D, and let h be the least of

a, bl/M, b2/M, s bn/M.

Iif fl, fa, coseney fn are single valued and continuous in the

(n+l1) ar vhen the are restricted to D and if
the Lipschitz conditions
|fr(x, Ypr T ceeees F) = £(x, X Yoy eeeens, Yn)l <
R A IR R T S N A
apply for each r = 1, 2, 3, «eeee.., 0 When
(x, Y5 Yoy weenes Yn) and (x, Yys Ypr weenees yn)
are in D, then there exists a set of unique continuous solutions,
¥ = gl(x), Y, = gz(x), ceeeeeny Yy = %(x).
These solutions satisfy the differential equations for all x

such that Ix - x°| < h, and reduce to:



"A. 2"

(o] o} [e] (o]
yl’ y2, LI AL I N ) yn fOI’ X=X.

The types of terms occurring in the synchronous machine equations

(5.7) and (6.1%4) are included in the following:

£, = Al sin kx + Aaylyh + A3y2

1l

f2 = Bl cos kx + Bay,.‘y3 + B3yh’y'2 + Bl&yl
f3 = Cl sin kx + Czyhyl

f =

5 B+ By

Clearly, the elementary functional forms in (3.4), are single valued
and continuous functions for finite (x°, yi, ceceey yg) and for finite
(3: b]_: b2
these types of equations the Lipschitz conditions apply for the arguments

s eesey bS) defining the domain D of the theorem. Further, for

in D.

The domain, D, of the existence theorem is, in general, very small
relative to the range of the variables to be considered in any given prob-
lem. Different initial values of the variables and corresponding domains
covering the range of the variables extend the existence theorem to a
larger range of the variables.

Even with the assurance that a unique continuous solution exists
for a desired range of variables, numerical approximation solutions are

subject to limitations and errors of the particular numerical method used.






APPENDIX B
The Operation of the Digital Computer Program

The digital computer library routine, F-6, uses the fourth order
Runge-Kutta formulas. The Runge-Kutta formulas, F-6, the differential
equation routine, and the master are described in Appendix B.

For the system of differential equations in the normal form of equa-

tions (A.1), the 13}3 equation is the first derivative of the rth variable:

ad? = 5 (ts Yy SE sy Yppemes )

For given values for all the variables at the beginning of the nth incre-
ment of time, the Runge-Kutta formulas determine the value of the variable
¥, at the end of the n®® increment or the beginning of the (n+1)5% incre-
ment. Let the subscripts indicate the variable, the superscript the inter-

val, and rr the first derivative of the rt'b variable, then by Runge-Kutta

(B.1) y£n+l) = y: + by,

where

(B.2) by, = % a7y + % Ay, + % Ky % atvy_

and
I V= fr [tn, ¥ys om0 B 2, ---, y:] At

o 2y =1, [tn B f—%—l, T :;’r, iy :3)'1;] "
Aivy = £, [tn + At, y; + A‘"yl, - y: + A'"yr, - y; + A'"yk] Aot

The £ for this thesis problem are the expressions of equation (4.2).
The digital computer library routine, F-6, used here controls the
amount of truncation error and the increment by comparing Ayr of expression

(B.2) with A”yr of equations (B.3). If these two approximations, ay,_ and
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A"'yr, for the increment of the variable y,_ differ by more, for any v,
than an amount specified by the user, the program recomputes Ayr with
the interval reduced by half. If necessary, the routine continues de-
creasing the increment until the difference is within the specified limits.

The user of the F-6 routine must supply a closed subroutine which
evaluates the f of formula (A.l). The F-6 routine referes to the E
routine to evaluate A'yr, I Ve A"'yr, and Ai"yr. Scaling must be used
so that all fr remain less than one for the range of the variables con-
sidered.

In order to use F-6, the digital computer memory locations 3 through
8 must contain the following parameters during read in and operation of
F-6.

Location 3 must contain the number "a", where "a" is the memory lo-
cation of the first of the sequence of locations for the initial values
of the variables. The t initial value is in "a" and the initial values

of the other variables follow in sequence.

Location 4 must contain (a+n) where n is the number of equations in-
cluding %¥/at - 1.

Location 5 must contain the number "m". "m" is an integer and the
£, routine calculates scaled £ ,f_, such that

to=2"g <1

Location 6 must contain the integer £, - m. The quantity 27%o 15
the specified scaled increment At. The program decreases this increment
if necessary.

Location 7 must contain the integer "e" which is a number such that

the integral part of 3/h e is equal to or less than (50 - m). The integer
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" _n

e 1s used to specify the required accuracy of the calculations.

Location 8 must contain the integer "b" which is the memory location
of the entry into the fr routine.

When the master routine transfers control to F-6, F-6 uses the scaled
initial values of the variables and the fr routine to compute new scaled
values of the variables. The initial values of the variables are replaced
by the new values, then control is transferred back to the master.

The f_ routine is the program of the differential equations (A.1).
The differential equations represent the system, thus the f r adapts the
program to the system. The fr routine must be written as a subroutine,
vhich, when entering, evaluates the scaled fr and then returns control to
F-6. The £ routine takes the scaled variables from the computer memory
locations containing the initial values required by the F-6 program and
calculates the scaled fr according to formulas (A.l1). These fr are placed
in the memory positions a + n + r, where "a" through "a + n - 1" contain
the initial values of the variables. The evaluation of the fr for this

particular problem requires the determination of vd(t) and vq(t) where

vy(t) = | V| sin®

vq(t) - IVI cos &

In order to evaluate the trigonometric functions, the fr program uses the
digital computer library routine for sine and cosine evaluation. The fr
program was written so that it could be applied to any machine operating
on an infinite bus. The integer "g" must be placed in the digital com-
puter memory location 10. "g" is the location of the first of the scaled
coefficients and constants of fornmla (A.l). The other coefficients are

scaled and read in in a definite sequence. The scalings and the sequence
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are presented in the solution of the problem.

After each increment of time, F-6 returns control to the master rou-
tine. Thus, the master can be written so that it removes the scale fac-
tor, prints any of the desired variables, and prints out these variables
as frequently as would be useful. At any desired time, the time deter-
mined by counting the increments, the master routine can simulate faults,
circuit breaker action, or changes in load conditions. The master simu-
lates these actions by changing coefficients or constants in the fr rou-
tine at a specified time. For example, the short circuit at the bus in
the first thesis problem is represented by the bus voltage being set equal
to zero. At a time, determined by a counter in the master routine, the
bus voltage is returned to the pre-fault value. The action of returning
the bus voltage simulates circuit breaker action and the action is per-

formed by the master routine.



BIBLIOGRAPHY

1. Blandel, A., "Transactions of the St. Louis Electrical Congress,’' 1904.

2. Park, R. H., "Two-Reaction Theory of Synchronous Machines - Part I,
Generalized Method of Analysis," A.I.E.E. Transactions, Vol. 48, pp.
TL6-30, July, 1929.

3. Koenig, H. E. and Blackwell, W. A., "On the General Properties of
Terminal Equations for Polyphase Machines,”" Final Report Project
G-3062, National Science Foundation.

4, Koenig, H. E. and Blackwell, W. A., book unpublished.

5. Ince, E. L., Boock - "Ordinary Differential Equations,” Dover Publica-
tions, Inc.

6. Puckstein, Lloyd, and Conrad, Text - "Alternating Current Machinery,"
Wiley.

7. Crary, S. B., "Power System Stability," Vol. II, Text, Wiley.

8. Kimbark, E. W., "Power System Stability," Vol. I and III, Text, Wiley.

9. Standard Handbook for Electrical Engineers, A. E. Knowlton, McGraw-
Hill.

10. Kunz, K. S., "Numerical Analysis," McGraw-Hill.

11. Johnson, D. L. and Ward, J. B., "The Solution of Power System Stability
Problems by Means of Digital Computers,” A.I.E.E. Transactions, Vol.
75, Part III, 1956 - pp. 1321-7.

12. Brown, W. T. and Cloves, W. J., "Combination Load-Flow and Stability
Equivalent for Power System Representation on A-C Network Analyzers,"
A.I.E.E. Transactions, Vol. T4, Part III, pp. 782-6, 1955.

13. Narinder, E. 0., "A Rational Method for the Step-by-Step Calculations
in Power System Transient Stability Studies," A.I.E.E. Transactions,

Vol. Tk, Part III, 1955, pp. 1087-91.



1k,

15.

16.

17.

-2-

Lane, C. M., Long, R. W., and Powers, L. N., "Transient Stability
Studies II, Automatic Digital Computation,” A.I.E.E. Transactions,
Vol. T7, Part III, 1958, pp. 1291-5.

Gabbard, J. L., Jr. and Rowe, J. E., "Digital Computation of Induc-
tion-Motor Transient Stability," A.I.E.E. Transactions, Vol. 76, Part
III, 1957, pp. 970-5.

Shackshaft, G. and Aldred, A. S., "Effect of Clearing Time on Synchro-
nous Machine Transient Stability," A.I.E.E. Transactions, Vol. 76,
Part III, 1957, pp. 633-7.

Shankle, D. F., Murphy, C. M., Long, R. W., and Harder, E. I., "Tran-
sient Stability Studies," Part I - Synchronous and Induction Machines,

A.I.E.E. Transactions, Vol. 73, Part III B, 1954, pp. 1563-80.



;WM‘“” ;. .




-~k

e



ssssssssssssssssssssssssssssssss

T




