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ABSTRACT

SELF-COMPLEMENTARY GRAPHS:

THEIR STRUCTURAL PROPERTIES

AND ADJACENCY MATRICES

BY

Richard Addison Gibbs

In this thesis we examine some structural properties

and adjacency matrices of self-complementary graphs. We first

describe a basic algorithm.which will produce all self-

complementary graphs, and from which most of the main results

are derived. We show that any self-complementary graph con-

tains a collection of induced subgraphs, each isomorphic to

the "smallest" self—complementary graph,P3. A useful adjacency

matrix is introduced and for certain self—complementary graphs

we exhibit a decomposition of such matrices which facilitates

the calculation of their eigenvalues. Finally, some results

are presented concerning the possible degrees of the points

of a self-complementary graph.
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INTRODUCTION

Heretofore, self—complementary graphs have been the

subject of little investigation. For a given positive

integer n, algorithms for constructing all self-complemen-

tary graphs having n points have been developed, and a

formula for the number of such graphs has been derived.

Other results have been obtained, chiefly concerning

special types of self—complementary graphs: regular,

quasi-regular and cyclic. Also, the characteristic

polynomials of the standard 0,1 adjacency matrices of

special self-complementary graphs have been studied.

Hewever, structural properties of self—complementary

graphs have not often been considered.

In this thesis, we present a new algorithm for con-

structing all self-complementary graphs and use it to

obtain several results concerning the structural character—

istics of these graphs. In addition, a different adjacency

matrix is defined and we show that the eigenvalues of the

matrices corresponding to special self-complementary graphs

are relatively easy to find. Some properties of the

eigenvalues of these matrices are presented. Finally,

results are given concerning the degrees of the points of

self-complementary graphs.



CHAPTER I

SURVEY OF THE LITERATURE

Only two articles on self-complementary graphs them—

selves and two on their enumeration have been listed in

the Mathematical Reviews. In 1963, Read [4] presented

formulas which enumerate, for a given n, the number of

non-isomorphic self-complementary graphs having n points.

In 1962 and 1963 articles were published by Sachs [6] and

Ringel [5], respectively, in which each presented an

algorithm for constructing all self-complementary graphs

having a given number of points. In addition, Ringel proved

that if G is self—complementary, then the diameter of G is

2 or 3. Sachs' paper, which is more comprehensive than

Ringel's, contains several results concerning special

self-complementary graphs, including the matrix properties

referred to in the introduction. The results of Ringel and

Sachs will be acknowledged as they appear below.

In 1969 Palmer [3], using Read's results, discovered

a simple asymptotic formula for the number of self—

complementary graphs having a given number of points. Hi5

results are referred to in Appendix B.



CHAPTER 2

DEFINITIONS AND NOTATION

A grgph G = G(V,E) consists of a finite set V together

with a subset, E, of V(2), the set of unordered pairs of

distinct elements of V. V is called the set of vertices

or pgints of G, E is called the set of egggg or liggg.

A graph G is connected if, for any two points vi and vj,

there exists in E a sequence of edges

where v. = v. and v. = v. for some k. If (v ,v )6 B then
11 1 1k 2l

v and v arethe edge (vl,v2) 18 said to lgig V1 and V2, 1 2

adjacent in G, and v1 and v are endpoints of (v1,v2). The
2
 

number of points to which a point v is adjacent is the

degree of v, written deg(v). If G has points l,2,...,n,

the sequence

deg(l), deg(Z),..., deg(n)

is called the degree sequence of G. If G has degree sequence

k,k,...,k

G is regular 9; degree k.

Two graphs Gl(Vl,El) and GZ(VZ,E2) are isomorphic,

written G1 3’G2, if there is a one-to-one map 0 from V1

3



onto V2 such that

(v,W) E E1

if and only if

(OM, OM) 6E2.

o is called an isomorphism of G1 onto G2 and we will write

O(Gl) = G2.

If G1 g'Gz and both have n points we may think of V1

and V2 as being the set {l,2,...,n} . Then a is Simply

a permutation of the symbols l,2,...,n. For example, if

G1 and G2 are as in Figure 2.1

N w I
"

N

 

7A
5 4 5

  LI  

 

O
J

Figure 2.1 Two isomorphic graphs.

then the permutation

c = (14) (235)

is an isomorphism of G1 onto G (We will assume throughout2.

that all permutations are represented as the product of

disjoint cycles.)

If G1 = 62 = G then the permutation G such that

0(6) = G

is called an automorphism of G. An automorphism of a graph

G, then, is a relabeling of its points which preserves

adjacency. For example, the permutation



O = (12)(35)

is an automorphism of the graph G2 above. The set of all

automorphisms of a graph G, together with the operation of

permutation multiplication, is a group, [—16), called the

agtomorphism group of G.

The complement, E, of a graph G is the graph with the
 

same point set as G such that two points are adjacent in G

if and only if they are not adjacent in G. For example, the

graphs below are complements of one another.

’4

Figure 2.2 Complementary graphs.

Q!
If G G then G is self—complementary. There are no

self-complementary graphs having two or three points. There

is one self—complementary graph having four points, which

I_J

Figure 2.3 P3, the self-complementary graph

we shall denote P3.

having four points.

There are two self-complementary graphs having five points.



Figure 2.4 The two self-complementary graphs having

five points.

The graph having n points and all pairs of points

adjacent is called the complete graph with n points and is

denoted Kn' It is easy to see that Kn has (2) =.fll%:£h

lines.

A subgraph H(V1,El) of a graph G(V,E) is any subset Vl

of V together with any subset E1 of E such that if (v,w) 6 El

then V'E V1 and ‘w 6 V1. A subgraph of G induced by the

sUbset V1(: V is the sabgraph with point set V1 and all

lines of G having both endpoints in V1.

For example, the figure below presents a graph, sub—

graph and an induced sUbgraph.

Li
(a) (b) (C)

Figure 2.5 a) A graph, b) a subgraph, C) an induced

subgraph.

There are several matrices which can be assigned to a

graph. The standard 0,1 adjacency matrix has its i-j entry 1
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if i and j are adjacent, 0 otherwise. The adjacency matrix

which we shall use was found by Seidel [7] to have advantages

over the standard 0,1 adjacency matrix. It is particularly

well suited for the study of self-complementary graphs. The

adjacency matrix, A(G) = (aij)’ of a graph G having points

labeled l,2,...,n has as its i-j entry

0 if i = j

aij = 1 if i is not adjacent to j

-1 if i is adjacent to j.

If G is the graph in Figure 2.6

A2 3

Figure 2.6 A three point graph.

then

0 -l l

A(G) = ~l O -1

1 -1 O
0

Since aij = aji’ the matrix A(G) is symmetric and has real

eigenvalues.

Other definitions and notations will be given as the

need arises. For a complete lexicon of graph theory

vocabulary, see Harary [2]. A general review of basic matrix

theory can be found in Finkbeiner [l].

The end of a proof will be denoted by the symbol ' []'.



CHAPTER 3

THE CONSTRUCTION ALGORITHM

Let IL(G)| be the number of lines of graph G. If G

has n points then

IL(G)|+ |L(5)| = |L(Kn)l = (2) = rug-1)

If G is self-complementary then

IL(G)| =|L('5)l

so that

_ l_n _ ngn-l)

IL(G)| -2(2) - 4 .

Hence either n or (n-l) must be divisible by 4. This proves

Theorem 3.1. If G‘g G and G has n points then

n E O or 1 (mod 4).

We show below, by developing an algorithm, that if

n E O or 1 (mod 4) then there exist self-complementary graphs

having n points. Before discussing this construction algorithm

we mention a property of self—complementary graphs which

follows immediately from the definition.

I
n

Theorem 3.2. If G 'G then G is connected.



Proof: It is easy to Show, and well known, that G

and G cannot both be disconnected.

Let G QUE have n points labeled from 1 to n. From the

definition, we know that there exists a permutation, O, of

the symbols l,2,...,n such that G(G) ='G. we will call O

a complementing_permutation or anti-automorphism of G.

For example, particular complementing permutations

corresponding to the four and five point self-complementary

graphs are given in Figure 3.1.

 

5

1 3 1 3 5

Graph 2M4 2 4 - A .

l 2 4 3

complementing (1234) (1234)(5) (1234)(5)

permutations

(1432) (2453)(1) (l432)(5)

Figure 3.1 Self-complementary graphs and

complementing permutations.

Notice that non-isomorphic graphs may have the same

complementing permutation and that a particular graph may

have more than one complementing permutation. The structure

of a complementing permutation is described in the follow—

ing theorem due, independently, to Ringel [5] and Sachs [6].

Thegrem 3.3. Suppose that 0(6) 5'5 and that G has n points.
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1) If n 5 O(mod 4) then each cycle of a has length

divisible by 4.

2) If n 5 1(mod 4) then a has exactly one cycle

of length l and all other cycles have length divisible

by 4.

.Prggfz If p is any complementing permutation of G then

the pair of points (i,j) has the opposite adjacency relation

of the pair (p(i),p(j)). Hence p can fix no pair of points.

Therefore a can have no transpositions and at mOst one

2k+1

,

l-cycle. Note that any odd power of G, such as d is

also a complementing permutation of G. Thus 6 can have no

cycles of length 2k+1 or 4k+2 because 62k+l will have at

least 2k+1 l-cycles in the former case and at least 2k+1

transpositions in the latter. Therefore all cycles in d,

with the possible exception of a single l-cycle, have lengths

divisible by 4.

D

As an immediate corollary we have

Corollary 3.1. If n = 4k+l then G has a least one point of

degree 2k.

Proof: The point fixed by any complementing permutation

must be adjacent to exactly half of the remaining points.El

It was observed in the proof of Theorem 3.2 that if

62k+1 '-
o'(G) = G then (G) = G. It follows that

{G]o(G) =5} 3 ]G]62k+1(G) =5}.
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As the labeling of the points of G is immaterial, it is

apparent that, if a and p have the same cycle structure,

then

{G lO‘(G) =5}: {GI p(G) =5}.

Now, we can eliminate all odd prime power divisors of the

cycle lengths of O by raising O to the product of such odd

powers. This new permutation 6' will have all its cycle

lengths powers of 2. (Of course, none can be of length 2.)

Therefore, successive odd powers of O' will have the same

cycle structure as 6'. Consequently, if we can find, for

permutations on n symbols,

(1) U {GI a' (e) = a}
C"

where the union is taken over all possible cycle structures

where the cycles have 2-power lengths, we will have found

all self-complementary graphs having n points. We remark

that a particular graph may occur in several of the individ-

ual sets. For example, four of the graphs in Appendix A have

an 8-cycle as well as a two 4-cycle complementing permutation.

The following algorithm, suggested by the algorithm of

Ringel [5], provides a method for constructing (but not

uniquely) all self-complementary graphs having a given

complementing permutation a with cycles having 2-power

lengths. This algorithm is basic to the entire thesis and

will be referred to often.
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Construction Alggrithm. Assume, without loss of generality,

that the symbols in a are numbered consecutively from 1 to n,

and that the cycles are of non-decreasing lengths

4k4k (except for a possible l-cycle (n) at the1, 2, on.

end). Here, of course, k1, k2, ... are powers of 2. We

focus our attention on the following symbols: the symbols

2, 3, ..., 2k1 + 1

of the first cycle, the first 4kl symbols of each other cycle,

and the symbol n if (n) is a l—cycle. This set will be called

the Egggg of the symbol 1. (We will construct a graph G with

points labeled 1,...,n and therefore we identify the

symbols in a with the points of G.) Consider the (unordered)

pairs (l,j) where j is in the range of 1. For each pair we

arbitrarily decide whether or not 1 and j will be adjacent

in G. Once this choice has been made, the same choice must

apply to the pairs

2' 2i. .
(O 1(1), a (3)) 1 = 1, 2, ..., 2ki

where j is in a cycle of length 4ki . If j = n = 4k + 1

3

let i = l, 2, ..., 2k1. The opposite adjacency relation

must apply to the pairs

(a21‘1<1>, 021‘1(j))

where i is as above.
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This completes the first stage of the algorithm. We next

reduce the problem by replacing the permutation O by the

simpler permutation 0*, on n—4k1 symbols, obtained from O

by deleting its first cycle. Now, apply the procedure out-

lined above to 0*. Then delete its first cycle and continue

until no cycles remain. The procudure will terminate since

a has a finite number of symbols. This completes the

algorithm.

We must now show that, in fact, a well-defined graph is

determined and that it is self—complementary.

Theorem 3.4. As a result of performing the Construction

Algorithm:

1) the adjacency relation between points is well-

defined,

2) every pair of points is assigned an adjacency

relation,

3) the graph thus constructed is self-complementary.

Proof: 1) The pair (l,j) cannot be sent to itself by

an odd power of 0 because clearly 021-1

621-1

(3) F j, and if

(1) = j then j is the symbol 2i in the first cycle

and 021-1(j) 5 41-1 (mod 4k1) E -l(mod 4) # 1. Thus the

pair (l,j) can never be assigned simultaneous adjacency

and non-adjacency. The same argument applies to the pairs

(61(1), Gi(j)) and carries over for all stages of the

Construction Algorithm.

2) It is clear that, once the first point of each
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cycle has its adjacencies determined with all the points

which follow it, all adjacencies of the graph are determined.

For the remainder of this thesis we adopt the notation

0 if i = j

(2) d(i,j) = 1 if i is not adjacent to j

-1 if i is adjacent to j.

Thus a(i,j) = aij is the i—j entry of the adjacency matrix

A(G). By the Construction Algorithm,

k . k . k . .

(3) 0(6 (1), a (3)) = (-1) a(l,J).

If jIg 4kl’ that is if j is in the first cycle, then letting

i = 1 and j = 4k + l - j in (3) we see that
l

a(1,j) = (—1)j"l a(1,4k + 2 - j)
1

Hence, all adjacencies in the first cycle are determined if

we know the adjacencies between 1 and

2’ 3, coo, 2k1+l

The adjacencies between 1 and the first 4k1 points in

any other cycle determine all adjacencies between the first

cycle and that cycle. This is because the adjacencies between

1 and the first 4kl points form a pattern of period 4kl

since kl divides kj for j > 1.

We have shown, then, that the adjacencies among points

in the first cycle and the adjacencies between the points of

the first Cycle and all other points of the graph are

determined once the adjacencies between 1 and the points

in its range are given. Repeating the argument for each
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stage of the Construction Algorithm proves that all adjacen-

cies of the graph are determined.

3) Now that we have shown that the adjacencies are

unique and that all possible adjacencies are determined, it

follows immediately that the graph constructed from the

Construction Algorithm is self-complementary, because the

given permutation a is an isomorphism. That is, G(G) = G;

We have observed that every self—complementary graph

having n points possesses a complementing permutation O

with cycles having 2—power lengths. Hence, for a given such

permutation, as the various arbitrary choices of initial

adjacencies are chosen, the Construction Algorithm will

produce,possibly with repetitiOn, all self-complementary

graphs having 0 as a complementing permutation. That is, it

is possible to find

{GI 0"(G) =5}

so that, according to (1), all self-complementary graphs

having n points can be determined.

We illustrate the application of the Construction

Algorithm on a permutation O having 9 symbols, to construct

a self-complementary graph having 9 points. Let

G = (1234)(5678)(9).

The range of l is

2,3,5,6,7,8,9.
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For 5, the range is

6,7,9.

Let G(i,j) be as in (2) and let us choose the values

. _ -l for j = 2,5,8

“(13) ' {l for j = 3,6,7,9

. —l for ' = 6 9

G(S’j) = l for j = 7’ ’

We shall represent this adjacency assignment schematically

as in Figure 3.2.

(1 2 3|4) (5 6 718) (9)

Figure 3.2 An adjacency scheme for a self—

complementary graph.

In the scheme, if a line is not drawn from an initial point

to a point in its range, non-adjacency is implied. From

the Construction Algorithm we infer that

G(l,4) = 1

= ‘(I :2: :ggggw

“‘3’j’ = if: :3: 3 Z fjij;,8,9

“”J’ {i§:§:fi%§“9

I

l
—
‘

d(5,8)
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. _ —l for j = 5,8

0‘ (6’3) ' {I for j = 7,9

. _ —l for j = 8,9

a(7,3) 1 for j = 5,6

a(8 .) _ —l for j = 6,7

’3 " 1 for j = 5,9

The graph G, determined by the Construction Algorithm,

is given in Figure 3.3.

 

   

Figure 3.3 The self—complementary graph constructed

from the scheme in Figure 3.2.

There are several important corollaries which follow

immediately from Theorem 3.3, the Construction Algorithm,

and Theorem 3.4. Assume throughout that G has n points and

that O'(G) = 5.

Corollary 3.2. The set of points in any subset of the cycles

of a will induce a self-complementary subgraph of G.

Proof: O, restricted to the symbols in the chosen cycles,

will, by the Construction Algorithm, produce a self-comple-

mentar ra h.
Y 9 P E]
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In the example above, the sets

{1,2,3,4,9j and {5,6,7,8}

induce the subgraphs shown in Figure 3.4.

f /\ LI

Figure 3.4 Subgraphs induced by cycles of a

complementing permutation.

 

H M 4
:
.

w
t

Corollary 3.3. In any cycle of O with length greater
 

than 1, the points alternate in degree, the sum of the

consecutive degrees being n-l.

in aProof: If i 2l is adjacent (on the left, say) to i

cycle of G then G(il) = i2. Hence

deg(ll) In G = deg(12) in G = n-l-(deg(12) 1n G).L__1

In the example above, the first cycle has degrees 3,5 and the

second has degrees 4,4.

Corollary 3.4. Let G have point set V. If S (IV contains
 

all points of certain degrees, and T is the set of points

of degrees complementary to those in S, then S L/T'induces

a self-complementary subgraph of G.

nggf: By Corollary 3.3 the set of points in S LIT is

fixed under O and must therefore constitute a subset of the

cycles of 6. Hence, by Corollary 3.2, the induced subgraph
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is self-complementary.

Note that if S(\ T = D then S and T have the same number

2

of points, say m, and there are %; lines between the sets

(half the possible number).

Corollary 3.5. If H is any subgraph of G induced by the

point set S Civ and we interpret G(H) to be the graph

induced by the point set {6(1), i 6 S} , then

n
2

0’ (H) H.

In particular if H is a self-complementary induced subgraph

of G then

01(H) Q’H i=l,2,...

Proof: i1 and i2 in S are adjacent in H if and only

if 0(il) and 0(i2) are non-adjacent in 0(H).

Corollary 3.6: The set of automorphisms and anti—automorphisms
 

of G form a group in which rYG) is a (normal) subgroup of

index 2. It follows that G has as many automorphisms as

anti-automorphisms.

Proof: We know that rkG) is a group. Since 62(6) = G

it follows that d_l(G) = G (and that 6(5) = G). Also, if

p(G) = a then 0") and pd belong to r(G) .E]
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Corollary 3.7. 17G) is a non-trivial group.

Proof: Since 0' has order divisible by 4, 0'2 cannot

be the identity permutation. But 0'2 6 RG) OD

The properties of a self-complementary graph having

n = 4k+l points can be determined directly from a self-

complementary (induced) subgraph of 4k points. In fact,

if 6(G) = G and G has n = 4k+l points then from Corallary 3.1,

the point n has degree 2k. Moreover, by the Construction

Algorithm, n is joined to alternate points in each cycle

of 6. By Corollary 3.2, if we remove the point n and its

2k lines we will obtain a self-complementary graph having

4k points. Conversely, if we start with a self-complementary

graph G having 4k points and complementing permutation p, we

can easily construct all self-complementary graphs having

4k+l points and having G as a 4k point induced subgraph:

simply connect the new point to alternate points in each

cycle of p. By the Construction Algorithm, this new graph

will be self-complementary. Observe in Figure 3.1 that the

two five point graphs are obtained from the four point graph

with complementing permutation (1234) by joining 5 to l and

3, and to 2 and 4, respectively.

Hence we shall restrict our attention in the remainder

of the thesis to self-complementary graphs having 4k points.



CHAPTER 4

THE DECOMPOSITION THEOREM

In this chapter we show that every self-complementary

graph having 4k points possesses a collection of k disjoint

induced subgraphs isomorphic to P3.

First, we investigate some properties of self-

complementary graphs which possess a complementing per-

mutation consisting of a single cycle. Graphs of this type

have been considered by Sachs [6]. The present results go

beyond those of Sachs, however Sachs observed part 2) of

the next theorem.

Theorem 4.1. Let G(G) = G where

then

a: (12 4k)

1) each odd-labeled point of G is adjacent to

exactly k even-labeled points and each even-labeled

point is adjacent to exactly k odd-labeled points

2) G has points of two degrees: for some r such

that

k S_r S 3k-l

there are 2k points of degree r and 2k points of

21
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degree 4k—l-r. Moreover, for every such r, at least one

self-complementary graph G with 6(G) = G exists having

2k points of degree r and 2k points of degree 4k-l-r.

2329:: 1) Using the o(i,j) notation of (2) in Chapter 3

we obtain

- a(4k+2-2i,l)

- a(l,4k+2-2i).

Hence 1 is adjacent to 2i if and only if it is Egg adjacent

to 4k+2-2i. Therefore, 1 is adjacent to exactly half of the

2k even-labeled points. By the Construction Algorithm, this

implies that every odd-labeled point is adjacent to exactly

k even-labeled points. Similarly we have

4k+l-Zi C4k+l—21 O4k+1—21

d(2,21+1) (—l) a( (2), (21+l))

= - (1(4k-l'4" (21431) :2)

- a(2,4k+4—(Zi+l))

en: that 2, and hence any even-labeled point, is adjacent

tx) exactly k of the odd-labeled points.

2) As a is a single cycle, by Corollary 3.3, there

arse only two degrees of points in any graph G such that

0’03) ='G. These degrees alternate among the symbols in 0

SC) that the odd-labeled points have the same degree, say r,

arni the even—labeled points have the complementary degree
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4k-l-r. By 1) we have

k S'r

and

k < 4k-l-r.

that is,

k‘S r‘S 3k-l.

Let r be given such that

we indicate hOW'tO construct a graph G such that G(G) =‘G

and the odd-labeled points have degree r. Since 1 is

adjacent to k even-labeled points, we must join 1 to

exactly r-k oddblabeled points. Since

4k—2i
_2. _ . .

4k 1 04k 21(1), 0 (21+1))

d(l,2i+l) = (-l) a(

a(4k+l-2i,l)

a(l,4k+2—(21+l))

it follows that, if 1 is joined to s of the odd-labeled

points

3,5,000’2k-l

it is also joined to s of the points

2m3,2ms,n.,4ha.

The adjacency relation between 1 and 2k+1 = 4k+2 - (2k+1)

implies no other adjacency. If r-k is even, join 1 to £35
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of the points

3,5,...,2k-l,

to any subset of the points

2,4,...,2k

and apply the Construction Algorithm. The graph constructed

will have the odd-labeled points of degree r, the even—

labeled points of degree 4k-l-r. If r-k is odd, join 1 to

the point 2k+1, to Ezgli- of the points

3,5,...,2k-l

and to any subset of the points

2,4,...,2k

and apply the Construction Algorithm. The graph constructed

will, as above, have the odd-labeled points of degree r, the

even—labeled points of degree 4k-l-r.E)

d—

Remark: Sachs calls a graph G quasi—regular if G G has
 

4k points, 2k of degree 2k-l and 2k of degree 2k. By the

Construction Algorithm, quasi-regular graphs can be

constructed for all k. If we construct a new graph G' from G

by adding a new point, of degree 2k, joined to the points

of G of degree 2k-l, then G' will have 4k+l points and will

be regular of degree 2k. Conversely, given a regular self—

complementary graph, it must have 4k+l points, for some k,

and be regular of degree 2k. If, for a given complementing

permutation, we remove the fixed point and its 2k lines,
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a quasi-regular self-complementary graph having 4k points will

remain.

We now present the fundamental lemma which will lead

to the Decomposition Theorem, one of the main results of

the thesis.

Lemma 4.1. Let G(G) ='G, o = (l 2 ... 4k). G contains a

subgraph isomorphic to P induced by the set of points

3

{,l,2,2i—l,2i}-

for some i such that

(l) 2 < i < k+l.

Proof: Let i be the first positive integer for which

a(l,21) = — a(l,2).

Then the subgraph induced by the set

{l,2,21-l,2i}

is isomorphic to P Because, if3.

a(1,2) = -l = d(2i-l,2i)

then

a(l,2i-2) = -l

and

a(2,2i-1) = 1,

Also

d(l,2i-l) - a(2,2i)



26

so the subgraph induced by the set

{l,2,21-l,21}

will be one of those in Figure 4.1.

l[—‘—“‘2i—l 1] lZi-l

2 21 2 21

subgraphs if a(l,2) = —l.

 

Figure 4.1 The two possible P3

If, on the other hand,

d(l,2) = l = d(21-1,2i)

then the subgraph induced by the set

{1,2,21-1,2i}

will be one of those in Figure 4.2.

lx2i—l l: :Zi-l

2 2i 2 2i

Figure 4.2 The two possible P subgraphs if d(l,2) = 1.
3

To show that such an i, as in (1), exists, observe that if

a(1,21) = a(l,2) i = 2,3,...,k

then, from the proof of 1), Theorem 4.1,

a(l,2k+2) = d(1,4k+2 - (2k)) = - a(1,2)
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so that the subgraph induced by the set

[1,2,2k+1, 2k+2}

must be isomorphic to P .

3CD

We are now in a position to present the main result of

this Chapter.

Theorem 4.2. (The Decomposition Theorem).

If G "=I G has 4k points then G possesses a collection of k

disjoint induced subgraphs each isomorphic to P3.

2599;: Let G be a complementing permutation of G whose

cycle lengths are powers of 2. (We kn w from Chapter 3 that

at least one such permutation exists.) By Corollary 3.2 the

points in each cycle of O induce a self-complementary sub-

graph of G. It thus suffices to Show that these subgraphs

have the desired decomposition.

Consider a cycle of G of length 2m. For convenience of

notation, let the cycle be

(1 2 3 2‘“).

Suppose, according to Lemma 4.1, that 2i is the first even-

labeled point such that

[1,2,2i+1,2i+2}

induces a P3 subgraph of G. Consider the set of odd integers

(2) {02ti(l)] = (a£§ t = O,l,2,... .
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If

i = 2 -s , 5 odd

then, since

t = 2m-l—r

is the smallest integer such that

2ti a O (mod 2m),

the set (2) will contain Zm-l-r distinct odd integers. Thus

m—2—r

2 distinct pairs of odd integers

4i
(1, 021(1)), (0 (1), a6i(1)), ...

are determined.

If r > 0, select an odd integer j < 2m which is not

In [afik and obtain a new set

{Sam} t = O,l,2,... .

2m-2-r new disjoint pairsThis set will determine, as before,

of odd integers. We continue until every odd integer less

than 2m belongs to some set. 2r such sets will be con—

. . -2 . . . .
structed, thus determining 2m dISJoInt pairs of odd

integers. For each pair

- 21 .
(23+1, O (23+1))

thus determined, we associate the following pair of even

integers

(2j+2, 021(2j+2))
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and observe that the subgraph induced by the set

. . 2i . 2i .
23+l, 23+2, O (23+l), O (23+2)

is isomorphic to P . This is because the above point set

3

is the image of the set

{1, 2, 21+1, 21+2}

under 623, so that Corollary 3.5 applies. Hence a cycle of O

with length 2m furnishes a set of 2m-2 disjoint induced

subgraphs isomorphic to P . Therefore, assembling such a set
3

for each cycle, we obtain a collection of k disjoint induced

subgraphs of G, each isomorphic to P3.D

For example, let G be determined by the adjacency scheme in

Figure 4.3.

(1 2 3 4 5|6 7 8)(9 1O 11 12 13|14 15 16)

 

Figure 4.3 An adjacency scheme.

Since, from Theorem 4.2, i = l for the first cycle and i=2

for the second, the set, as in (2), for the first cycle is

{1, 3, 5, 7} 'and for the second cycle the sets are {9, l3}

and {11, 15} . Thus the first cycle produces the subgraphs

in Figure 4.4 and the second produces those in Figure 4.5.
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Figure 4.4 The two P3 subgraphs furnished by the

first cycle.

9 13 ll 15

10: :14 12: :16

Figure 4.5 The two P3

second cycle.

subgraphs furnished by the



CHAPTER 5

ADJACENCY MATRICES

In this chapter it is shown that adjacency matrices

corresponding to certain self-complementary graphs have

a special form which simplifies the calculation of their

eigenvalues.

We first derive some additional properties of the

adjacency matrix defined in Chapter 2.

Theorem 5.1. If G has 2k points and A is an eigenvalue of

2

A(G) then Ajfl- is an algebraic integer. In particular,

we conclude that

l) A(G) is non-singular

2) If A is an integer then >\is odd

3) If )(2 is an integer then A2 is odd

4) If a graph H has 2k+1 points then the

rank of A(H) is at least 2k.

Proof: Consider the matrix A2(G). Each diagonal entry

is 2k-l. The off—diagonal entries, being the inner—products

of two rows of A(G), consist of the sum of 2k—2 (+l)'s

and (-l)'s and hence are even integers. Therefore the matrix

31
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has integer entries and thus has algebraic integer eigen—

values. That is, if A is an eigenvalue of A(G) then

AZ-l

2

is an algebraic integer. Since - %-is not an algebraic

integer, Azyb. Therefore A(G) is non-singular. Statements

2) and 3) follow immediately. If H has 2k+1 points then

deletion of any row and its corresponding column from A(H)

leaves an adjacency matrix for a graph having 2k points

which is, by l), non—singular. Statement 4) then follows.

Let G with points l,2,...,n have adjacency matrix

Al

A(G). If G = GI and the points of G are labeled l,2,...,n
1

then we know that there is a permutation O of the symbols

l,2,...,n such that

O G = G .( ) 1

Corresponding to a, there is an nxn permutation matrix

P = (pij) defined by

1 if G(i) = j

pij = 0 otherwise.

The equation

G(G) = G1
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becomes, in matrix form,

PT A(G) P = A(Gl).

Conversely, if Q = (qij) is any nxn permutation matrix,

then QT A(G) Q will be the adjacency matrix of a graph, G1,

isomorphic to G. In fact, if p is a permutation on l,2,...,n

with

p(i) = j if and only if qij = 1

then

II C
)

pm

This proves

Theorem 5.2. If and G1 are graphs having n pointsG

’e‘.’l,2,...,n then G G1 if and only if there exists an nxn

permutation matrix P such that PT AM)P=M%L

A property of the eigenvalues of an adjacency matrix is

given in the next theorem.

Theorem 5.3. If the graph G having n points has adjacency

matrix A(G) with eigenvalues

algooo,an

then

a2=MmD.

1=l
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Proof: The diagonal entries of A2(G) are all n—l.

Therefore

trace (A2(G)) = n(n-l).

. . 2 . .
If ai is an eigenvalue of A(G) then ai IS an eigenvalue

of A2(G). Since the trace of a matrix is the sum of its

eigenvalues, the result follows.

Having observed these preliminary properties, which

hold for any graphs, we now consider matrices and eigen—

values of self-complementary graphs. Since, for any graph G,

A(G) = ”A (G) 9

if G‘1 G, there exists a permutation matrix P such that

-l T
P A(G)P = P A(G)P = —A(G).

Since A(G) is similar to -A(G), both have the same eigen—

values. But ai is an eigenvalue of A(G) if and only if -ai

is an eigenvalue of —A(G). We conclude that the eigenvalues

of A(G) occur in opposable pairs (except for the eigenvalue

a = 0 if n is odd). If G has 4k points we can list the
n

eigenvalues as

+ai_a1, __ 2, ... , i_a2k.

If G has 4k+l points, 0 must be an eigenvalue of multiplicity

one by 4) of Theorem 5.1, and we can list the eigenvalues as

tal, 12:12,, :a2k, 0.
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From Theorem 5.3 we see that, for a self-complementary graph G

having n points and adjacency matrix A(G) with non-zero eigen—

values

ial, ,-I_-a2k , k=[§]

we have

2k

Zai2= (3).

i=1

We summarize these results as

'd
Theorem 5.4. Let G ‘5 have n points and adjacency matrix

A(G). Then

1) The non-zero eigenvalues of A(G) occur in

opposable pairs. If

:al, 000 ,iaZk ) k=[ ]

6
)
:
:

are the non-zero eigenvalues of A(G) then

2k

: 2 n

all " (2) 0

i=1

2) If G has 4k+l points then A(G) is singular

with rank 4k.

We now consider self-complementary graphs with the

property that they possess a complementing permutation

having cycles of equal length. If G QNG has 4k points and
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possesses a complementing permutation 0 whose cycles have

equal length, then A(G) can be transformed into the direct

sum of two matrices of dimension 2k, thus Simplifying the

determination of its eigenvalues.

We emphasize that any relabeling of the points of any

graph G will give rise to an isombrphic graph G1 with

adjacency matrix similar to A(G). The same effect is

obtained by relabeling rows and columns of the adjacency

matrix rather than relabeling the points. If G has a

complementing permutation consisting of the product of

cycles of equal length, we will use this latter option to

construct a matrix similar to A(G) whose eigenvalues are

more readily determined.

Before proving it, we illustrate this process with an

example. Let

U = (l 2 3 4 5 6 7 8)

and let G be determined by the adjacency scheme in Figure 5.1.

(l 2 3 4 5'6 7 8)

VJ

Figure 5.1 An adjacency scheme.

Then G is the graph in Figure 5.2.

 

   

3

Figure 5.2 The graph constructed from the scheme.
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It follows that

  

r0 — + — + + + +.

—O+-+---

++O-+-++

A(G) = _ - _ O + - + — (where — means -1

+ + + + O - + — and + means 1).

+ - - - - O + -

+—++++0—

L+-+-----O]

Note that 62 = (l 3 5 7)(2 4 6 8) is the automorphism rotating

G through 90°. If we list the rows and columns of A(G) in the

order

+

+
o
+

o
+

l
l

+
+
+

+ +

I

I I

O

I

+
o
+
+

+
+
+

I

+

o
+

I

  r
:

I I l

+

I I

O

This new Al can be described as a symmetric 4 x 4 matrix

whose entries are 2 x 2 matrices of special form. On the

diagonal we have

iI‘féI

and elsewhere we have

that-[1’3-
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Let

s = O l

l O

and

_ 2 _ l 0

e - S - O l 3

then

' 7
S -eI-S e+s -eI-s

A1 = -e+s -s e-s -e—s

e+s e—s s -e+s

-e+s —e-s -e+s -s

. . ' 2 2

If we replace 5 by Its eigenvalue 1 and e = s by l = l

we obtain the 4 x 4 matrix

[1 O 2 0]

B1 = -l O -2

2 O l O

L0 -2 O -1‘

If we replace 5 by its other eigenvalue -1 and e = 52 by

(-l)2 = l we obtain the matrix

”-1 -2 O —21

B = -2 l 2 O

O 2 -l -2

]:2 O -2 l .  

Now, Bl has eigenvalues i_l, i_3, B2 has eigenvalues

:_3, i_3, and the eigenvalues of A(G) are i_l, i_3, i_3, + 3,

precisely those of B1 and B . In fact, if we transform A

2 l

by the product RP where
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'1 -1 O O O O O O-1

1 1 O O O O O O

R = 3:: O O 1 -1 O O O O

‘/2 O O 1 1 O O O O

O O O O 1 -1 O O

O O O O 1 1 O O

O O O O O 1 -1

[O O O O O O 1 1

and

I1 0 O O O O O 0‘1

O O O O 1 O O O

P = O 1 O O O O O O

O O O O O 1 O O

O O 1 O O O O O

O O O O O O 1 O

O O O 1 O O O 0

LO 0 O O O O O 1_

we obtain

(RP)-l A1(RP) = B1 0

0 B2

where O is the 4 x 4 zero matrix.

This example illustrates the result of the main

theorem of this Chapter.

Theorem 5.5. If a self-complementary graph G, having 4k

points, possesses a complementing permutation consisting

of the product of cycles of equal length then:
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1) A(G) is similar to a symmetric 2k x 2k matrix

whose entries are polynomials in the matrix s = [(1) (15] .

The diagonal entries are S or -S and all the other

entries are :,e i_s.

2) If we form B by letting e = s = l and B by
l 2

letting e = -s = 1 then the eigenvalues of A(G) are

those of B1 and 32'

Proof: 1) Let G(G) = G where

G = ( l 2 ... 4kl)(4kl+l ... 8kl)...(...4k).

Form Al from A(G) by labeling its rows and columns in the

order

'1, 2k +1, 2, 2k +2,..., 2k 4k
1 l 1’ 1

4k +1, 6k1 +1, 4k +2, 6k +2,..., 6k 8k
1 l l’ l1

For the entry at row i and column j put a(i,j). We focus

our attention on the consecutive pairs

(1, 2k1+1),(2, 2kl+2),..., (4k—2k 4k).
1:

Consider the 2x2 smeatrix formed by 2 of these pairs.

. . . (m,2kl+m) . . .

I? ‘3]

.7

I
'
D

Q
F
r
+

+ r
,
-
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There are two cases.

Case 1) If t = m then we have a block on the diagonal

of A and so

1

a = d = 0.

Now,

b = G(t, 2kl+n0

and

2k1 2kl

c = G(2k1+t,m) = (1(0 (t), 0' (2kl+m))

2k1

= (-l) G(t, 2kl+m) = OL(t, 2kl+m)

= b.

Therefore

a b

[c a] = i s -

Case 2) If t # m then

a = d(t,m)

and

b d(t, 2kl+m).

Thus, since all cycles have the same length 4k1, we have

2k

a(2kl+t, 2kI+m) = 0(6

2k

1(t), a 1(m))D
.
)

II

2k

(1-1) 1 d(t,m) = aa(t,m)

and
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2k 2k

1 (t), o 1(2kl+m)0 II OL(2kl + t,m) = a(o

2kl

(-l) d(t, 2kI+m) = a(t, 2k1+m) = b.

Therefore

a b _

[c4
This completes the proof of l).

2) The matrices e and s are simultaneously diagonal—

ized by the matrix

2 O

[O O] , r-l(-e-s)r

[O O] -1

o 2 , r (-e+S)r

II

'
I
I

O
t
o

I
0
C
)
I

(l) r—l(e+s)r

r-l(e-s)r H

I
C
C
)

I

|
_
.
_
O
_
J

Let

Pr '1

r

R: '
O

Q

r

L _  
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will be composed of 2x2 blocks of the forms listed in (1).

Those on the diagonal of A are of the first two types
2

whereas the off-diagonal blocks are of one or more of the

other four types. It can be seen that the i-j entry of A2

is zero whenever i+j E 1 (mod 2). Therefore, if we transform

A by the 4k x 4k permutation matrix P whose columns are
2

respectively, columns

1, 3, 5, ..., 4k—l, 2, 4, 6, ... , 4k

of the unit matrix of dimension 4k, we will obtain

-1

P A2 P — C O

O D

The entries of C are the "upper-left" entries of the 2x2

blocks in A2 and the entries of D are the "lower-right"

entries of those 2x2 blocks. Now, observe that, in the 2x2

matrices in (1), if we let e = s = l we obtain the upper-

left entries and if we let e =-s = l we obtain the lower-

right. Therefore C = B1 and D = B2. Finally, since A(G) is

similar to

Bl O

O B

2 l

the eigenvalues of A(G) are those of B1 along with those

of B2 El

Recalling that A(G) has opposable eigenvalues, we remark

that it can be shown that B1 and B2 themselves have
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opposable eigenvalues.

In Theorem 5.1 we observed some properties of the

eigenvalues of adjacency matrices of arbitrary graphs. For

self-complementary graphs of the type considered in

Theorem 5.5, more specific properties exist.

Theorem 5.6. Let G be as in Theorem 5.5. If )(is an

eigenvalue of A(G) then

2

_Z_:_£
4

is an algebraic integer. In particular, if )‘2 is an

integer then A2 E 1 (mod 4)

grggfz The matrices B1 and B2 in Theorem 5.5 have 1

and -l on the diagonal and O, 2 or —2 off the diagonal.

Hence

B = I + 2M

and

B = I + 2M2

where M1 and M2 have integral entries. Therefore the

eigenvalues of M1 and M2 are algebraic integers. Now,

2 .
Bi = I + 4Mi + 4Mi , i — 1,2

and so
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If ,X is an eigenvalue of A(G) then, by Theorem 5.5, .X is

and eigenvalue of B1 or B2 so that

where x is an eigenvalue of M or M . In any case, x is an
1 2

algebraic integer and so is x2 + x. Clearly if ,X 2 is an

integer, then

[*2 5 1 (mod 4)

since the only rational algebraic integers are integers.

It is suspected that the result of Theorem 5.6 holds for

any self-complementary graph having n E 0 (mod 4) points.

The method of Theorem 5.5 and the result of Theorem 5.6

are applicable to all ten of the self-complementary graphs

having eight points, as each possesses a complementing per-

mutation consisting of two 4-cycles. In Appendix A we list

the ten graphs and some of their complementing permutations,

together with the eigenvalues of their adjacency matrices.

In concluding this chapter we observe that not all

self-complementary graphs satisfy the conditions of Theorem

5.5. The following example presents a self-complementary

graph having twelve points which possesses no complementing

permutation consisting of three 4-cycles.

Let

g = (l 2 3 4)(5 6 7 8 9 10 ll 12)

and consider the adjacency scheme in Figure 5.3.
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(1 2 3I4)(5 6 7 8 9'10 11 12)

Figure 5.3 An adjacency scheme.

The graph G constructed from this scheme is given in

Figure 5.4, where points 2 and 4 are also connected to

all of the points

5, 7, 9, 11

but the lines have not been drawn.

8
1* 1m- .3

v//

it

  
 

Figure 5.4 The graph constructed

from the scheme.

If G has a complementing permutation 6' consisting

of three 4-cycles then

o"=aa

where a is an automorphism of G. HOwever, the only auto—
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morphisms of G are

I, (5 9)(7 11)(6 lO)(8 12),

(1 3)(2 4)(5 11 9 7)(6 12 10 8),

(l 3) (2 4) (5 7 9 ll) (6 8 10 12)

and, if we multiply a by any of these, the product will

consist of a 4—cycle and an 8-cycle. Therefore G has no

complementing permutation consisting of three 4-cycles.



CHAPTER 6

TYPE—SEQUENCES

Let G be a graph having n points and let p be a point

of degree d. In G, p will have degree n—d-l. For this reason

it is seen that for each point of degree d in a self-

complementary graph having 4k points there must correspond

a point of complementary degree 4k—d-l. Moreover, if G 9’ G-

has 4k points and G(G) ='G then, by Theorem 3.3 and

Corollary 3.3, we see that there are an even number of points

in G of any given degree. These two observations lead to a

simple way of denoting the degree sequence of a self-

complementary graph having 4k points. Since points of

complementary degree exist in equal number, we need only

specify the degrees less than 2k. Since each degree has even

multiplicity, the degree sequence is described by a type-

seguence of k integers less than 2k, each representing

2 points of that degree and 2 of the complementary degree.

For example, a self-complementary graph having 8 points and

degree sequence

1, 1, 3, 3, 4, 4, 6, 6

has type—sequence

1,3

48
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one with degree sequence

3, 3, 3, 3, 4, 4, 4, 4

has type-sequence

3, 3

etc. The type-sequences for all self-complementary graphs

having eight points are given in Appendix A.

Will any set of k positive integers less than 2k be the

type-sequence for some self—complementary graph? Not

necessarily. Certain conditions must be satisfied by the

set of integers.

Theorem 6.1. In the type-sequence of a self-complementary

graph having 4k points, the integer i can occur at most

i times.

21293: We must show that if G "=’ G has 4k points, then G,

has at most 21 points of degree 1. (Of course, i < 2k.)

Assume there are t points of degree i. By Corollary 3.4 and

the note following it, there must be exactly t2/2 lines

connecting the t points of degree i to the t points of

degree 4k-i—l. Since this number t2/2 cannot exceed the

number t-i of point-line incidences determined by the

t points of degree i, we have

2 .

t .

2 'S t-i

or
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From Theorem 4.1, if G §:G having 4k points possesses

a single cycle complementing permutation then the points of G

have exactly two degrees, r and 4k—l—r (assume r < 2k), with

k < r.

The preceeding theorem provides a more general result,

applicable regardless of the cycle structure of a comple-

menting permutation.

CLI—

Corollary 6.1. If G G has 4k points with 2k points of
 

degree r < 2k, then r > k.

Proof: The type—sequence of G has k numbers, all equal

to r. By the theorem, r can occur at most r times. Therefore

we must have

r > k.

C]

There is an interesting inequality which must be

satisfied by the sum of the numbers in a type-sequence.

Theorem 6.2. Let

dl’ d2’ "’ ’ dk

be the type-sequence of G Q'G having 4k points. Then

k

k2: d.<2k2-k.

1:

Proof: Since di < 2k - l for all i, we have
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k

5di£k(2k-l) =2k2-k.

i=1

Consider the subgraph G induced by the 2k points of degree
1

less than 2k. The sum of the degrees of these 2k points is

k

i=1

Since 2k2 lines join these points to the points of degree

greater than 2k - l we have

 

 

 

i=1 i 2

OS L(Gl) — 2 —=2 di—k.

' i=1

Therefore

k

k2<E d..

i=1

The reader may verify these inequalities for k = 2

in Appendix A.

The inequalities in Theorems 6.1 and 6.2 are best

possible. To see this, let G(G) ='G where q is a single

cycle. If the 2 degrees of the points of G are k and

3k - 1 then the type-sequence has k numbers, all equal

to k. So di = k for all i and
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On the other hand, if G is quasi-regular then di = 2k — l

for all i and

k

Ed.=2k2-k.
1

i=1

Suppose G': G has 4k points and r occurs r times in the

type-sequence of G. Then G has 2r points of degree r. Con-

sider the self-complementary subgraph of G induced by these

2r points and the 2r points of complementary degree 4k-r—l.

Since 2r2 lines join these sets, all lines from the points

of degree r must go to points of degree 4k-r—l. That is,

the 2r points of degree r are joined to none of the other

4k—4r points of the graph. Therefore, the 2r points of degree

4k-r-l are joined to 311 the other 4k-4r points of the graph.

The degrees of these 4k-4r points must then be at least

2r+l. Since r'g k (G has at least 4r points) we have

4k—r—l > 3r-l

and if r > 2 we have

3r—l > 2r+l.

That is,

2r+l < 4k-r—l

if 2 £.r, Thus we have proven

Theorem 6.3. Except for the case of P (r = k = 1), if

3

G a! G with 4k points has 2r points of degree r(r < 2k) then
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l) r is the minimum degree in G

and

2) the next higher degree in G is at least 2r+l.

For example, if G]: G has 100 points, G has at most 36 points

of degree 18 and if G has 36 points of degree 18, the next

higher degree of any point in G is at least 37.

'We have seen that, if G gI'G'has 4k points, then, for a

given r < 2k, G has an even number of points of degree r,

the maximum number being 2r. The following question then

arises. Is it possible, given a sufficient number of points,

to find a G 2‘5 having exactly 2t points of degree r where

O g_t S.r? The answer is affirmative, as will be shown in

the following theorem. First, observe that if G has points

of degree r where r is the smaller of the complementary

degrees, then the graph must have at least 2r + 2 points

if r is odd and at least 2r + 4 points if r is even. Also,

if there are 2t points of degree r, then G must have at

least 4t points. We may now state our theorem.

Theorem 6.4. Let t and r be given positive integers with

t S_r. Given any

k.2 max (t, l+[r/2])

there exists a self—complementary graph G having 4k points

with exactly 2t points of degree r.
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2399:: The proof proceeds by induction on k. We first

must prove the statement for k = max (t, l+[r/2]). There are

two cases:

gage 1) If k = t then

C S.r S'Zt - l

I:and by Theorem 4.1 we know there exists a G '5 having 4t

points, 2t of degree r and 2t of degree 4t-r-l.

gggg 2) If k = 1+[r/2] then let G be a permutation

consisting of two cycles, one of length 4t and one of length

4 + 4[r/2] - 4t. Construct a graph from the cycle of length

4t having the two degrees

x=r+2t-2-2[r/2]

and

4t - x - l = 2t + 2 + 2[r/2] - r - 1.

Note that if r is odd then x = 2t - l and if r is even then

x = 2t - 2. Since we must have x > O, we are excluding, for

the time being, the case t = 1 when r is even. For x > 0,

construct a graph from the (4 + 4[r/2] - 4t)-cycle with the

two degrees

d1 = l + [r/2] - t

and

d2 = 3 + 3[r/2] — 3t - 1.

Note that dl # r, since d1 = r means that r = l — 2t if r is

odd, or r = 2 - 2t if r is even, both of which are impossible.

Now, we construct the desired graph, from the Construction
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Algorithm, by joining all points of degree x in the first

cycle with the 2 + 2[r/2] - 2t points of degree d2 in the

second cycle. The points of degree 4t - x - 1 will therefore

also be joined to these same points. The graph thus con-

structed will have the 4 distinct degrees

r, 4 + 4[r/2] - r - 1 > r, dl # r

and d2 + 4t = 3 + 3[r/2] + t — 1.

There will then be at least 2t points of degree r. It only

remains to show that d2 + 4t #’r, in order to prove that there

are exactly 2t points of degree r. But, if d2 + 4t = r then

r = -2t - l < 0 if r is odd, or r = -4 - 2t < 0 if r is even,

both of which are absurd. We must finally consider the case

t = 1 when r is even. Here, if r > 2, we consider a three

cycle permutation consisting of two 4-cycles and one (2r - 4)—

cycle. We construct two four point graphs from the two 4-cycles,

and we construct a graph from the (2r — 4)-cyc1e having the

two degrees r/2 - l and 3r/2 - 4. Join the points of degree 2

in the first 4-cycle to the r — 2 points of degree 3r/2 - 4

in the (2r - 4)-cycle and to none of the points in the second

4-cycle. Join the points of degree 2 in the second 4-cycle

to all points of the (2r - 4)-cycle. Completing the con-

struction will yield a self—complementary graph with six

degrees of points, all distinct if r #’4. There will be 2

of degree r and 2 of degree r + 3 in the first 4-cycle, 2 of

degree 3 and 2 of degree 2r from the second 4-cycle and there

will be r - 2 of degree r/Q + l and r - 2 of degree 3r/2 + 2

from the (2r - 4)-cycle. Since r > 2, it is clear that we



56

have exactly 2 = 2t points of degree r. Lastly, if r = 2 and

t = l, a self-complementary graph having 8 points with type-

sequence 2,3 is a graph with exactly two points of degree 2.

This anchors the induction. To complete the proof we now

Show that if there is a graph on 4n points with exactly 2t

points of degree r then we can construct a graph having

4n + 4 points with exactly 2t points of degree r. Note that

we are assuming r < 2n. To construct the desired graph we

simply add a 4-cycle to the complementing permutation of the

graph on 4n points and join the points of the 4-cyc1e to all

2n points of degree > 2n of the graph having 4n points. This

will produce a self-complementary graph having 4nI+ 4 points

with exactly 2t points of degree r, since the points of the

4-cycle will have degrees 2n + l and 2n + 2, both > r, and

those of the initial complementing permutation have their

larger degrees (those 2.2n) increased by 2 while the smaller

degrees (those < 2n), including the 2t of degree r, remain

unchanged. Thus the induction is completed.

We conclude by remarking that the necessary conditions

on the type-sequence of a self-complementary graph given in

Theorems 6.1 and 6.2 are far from sufficient. For example,

it can be shown that pg type-sequence can contain the integers

2, 3, 4, 5

as a subset. The problem of determining necessary and

sufficient conditions for a collection of numbers to be a

type-sequence seems to be quite a difficult one.



BIBLIOGRAPHY



BIBLIOGRAPHY

D. T. Finkbeiner. Introduction to Matrices and Linear

Transformations. W. H. Freeman and Company, SanFrancisco
 

(1960).

F. Harary. Graph Theory. Addison-Wesley, Reading (1969).

E. M. Palmer. Asymptotic Formulas for the Number of

Self-Complementary Graphs and Digraphs. Mathematika,

to appear.

R. C. Read. On the Number of Self~Complementary Graphs

and Digraphs. Jour. London Math. Soc. 38(1963), 99-104.

G. Ringel. Selbstkomplementgre Graphen. Arch. Math. XIV

(1963), 354-358.

H. Sachs. fiber Selbstkgmplementgre Graphen. Publ. Math.

Debrecen. 9(1962), 270-288.

J. J. Seidel and J. M. Goethals. Orthogonal Matrices

with Zero Diagonal. Canadian Jour. Math. 12(1967),
 

57



APPENDICES



APPENDIX A

EIGHT POINT SELF-COMPLEMENTARY GRAPHS

In Figure A.1 we list the ten self-complementary graphs

having eight points as well as the eigenvalues of their

adjacency matrices, their type-sequences, and some complement—

ing permutations. Only graphs I, II, III and IV possess

8-cycle complementing permutations. Note that if ,A is an

eigenvalue and A2 is-an integer then )2 ‘5 1 (mod 4) as

proven in Theorem 5.6.

 

   

I. 7 Complementing permutations:

. (l 2 3 4 5 6 7 8)

2 8 (1652)(3478)

l 5 Type-sequence: 2,2

4 6 Eigenvalues: i.l, i.3: i.3: i.3

3

Figure A.1 Eight point self-complementary graphs.
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Figure A.1 (cont'd.)

 

   

 

   

 

II. 1

5

4 8

2 6

3

7

III.

1 5

8 2

6 4

3 7

IV. 1 5

8m 6

2 4   
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Complementing permutations:

(1 2 3 4 5 6 7 8)

(1234)(5678)

Type-sequence: 2,2

Eigenvalues: :_1, 1'1, :_3,

Complementing permutations:

(12345678)

(1238)(4567)

Type—sequence: 3,3

Eigenvalues: i_l, i_l, 1.1,

Complementing permutations:

(12345678)

(1458)(2763)

Type-sequence: 3,3

Eigenvalues: i_l, i_3, :_3,

i.

i.

5

3



Figure A.1 (cont'd.)

 

   

 

  

 

V.

l 5

4 6

2 8

3 7

VI.

1 5

4 6

2 8

7 3

VII.

1 3

5—— 7

8 6

   

6O

Complementing permutations:

(1234)(5678)

(1256)(3478)

Type-sequence: 3,3

Eigenvalues: 1,1, i_l, 1.3, ipv’l7

Complementing permutations:

(1234)(5678)

(1432)(5876)

Type-sequence: 3,3

 

Eigenvalues: -_I-_ l, i l, i\/ 13 i 4\/ 5

Complementing permutations:

(1234)(5678)

(1432)(5876)

Type-sequence: 2,3

Eigenvalues: iJ—g, :J 5, i\/ 5, i/ 3



 

  

Figure A.1 (cont'd.)

VIII.

1 3

5- / \

6

2 4

IX.

1 3

 

 

 

  

 

  

4 2

X.

l 3

5

8

2 4

61

Complementing permutations:

(1234)(5678)

(1432)(5876)

Type-sequence: 2,3

Eigenvalues: i./—5_, i\/—5_

1': (Mfg), I. (2 Hf?)

Complementing permutations:

(1234)(5678)

(1432)(5876)

Type-sequence: 2,3

Eigenvalues: i\/—5_, -I_-_\/—§

iv(2+./5), i (2 -./ 5)

Complementing permutations:

(1234)(5678)

(1234)(5876)

Type-sequence: 1,3

Eigenvalues: i\/—5-, -I_-\/_5_

i (2 +./'—"5'), i (2 -./—5')



APPENDIX B

COUNTS OF SELF-COMPLEMENTARY GRAPHS

We have seen that self—complementary graphs exist having

n points for all positive n E 0 or 1(mod 4). The exact number,

En’ of self—complementary graphs having n points was given in

1963 by Read [4].

If n = 4N then

 

s l S

N

where R = 2; kSISksrl) + 4 E kakB'dm3B),

s=l 1Sd<BSN

the summation is taken over all partitions (k) = (kl,k2,...,kN)

N

of k where E skS = N, and d(d,8) is the greatest common

5:

divisor of d and 8.

If n = 4N+l the formula is the same except that

N

R = §::Iks(23kS-l) + 4 §::: kakB°d(a,B)

s=l lSd<BSN

62
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In 1969 Palmer [3] found a simple asymptotic formula

for approximating the number En. It is the greatest integer

in the term in Read's formula corresponding to the partition

(k) = (N,0,0,...,O) and is denoted g; 0' For n = 4N we have

3

2

__ _ 22N -2N

gn,0 — N!

and for n = 4N+l we have

2

__ = 22N —N

gn,0 N! '

The first few values of n,gfi and 3] 0 are given below

’

in Table 8.1.

Table B.l Exact and asymptotic counts of self—

complementary graphs.

 

 

 

n 4 5 8 9 12 13 16 17

-§ 1 2 10 36 720 5,600 703,760 11,220,000
n

9; 0 1 2 8 32 682 5,465 699,050 11,184,811

3

Palmer proves that

It is of interest to note that, although the number of

self—complementary graphs having a given number of points may
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seem large, there are in fact relatively few. Let gn be the

number of graphs having n points. It can be shown that

fin
-—— ——9 O as n ——9 00.

L
0

I1

As an indication

g8 12,346

and

g9 274,668.

Moreover, if we restrict our attention to graphs having

n E 0 or 1(mod 4) points and %(3) lines it happens that,

even in this smaller set, self-complementary graphs are

scarce. Let gn,k be the number of graphs having n points

and k lines. It can be shown that, for n 3’0 or 1(mod 4)

l n

and k — 2(2),

 

As an indication

98,14 1,648

and

g9,18 : 34’040'
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