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ABSTRACT

GUARANTEED PERFORMANCE ROBUST GAIN-SCHEDULING CONTROL WITH
UNCERTAIN SCHEDULING PARAMETERS

By

Ali Khudhair Al-Jiboory

One of the main objectives in control theory is to develop control strategies and synthesis con-

ditions that not only guarantee closed-loop stability but also achieve guaranteed performance. In

this research, novel Robust Gain-Scheduling (RGS) control synthesis conditions are developed for

Linear Parameter-Varying (LPV) systems. In contrast to the conventional gain-scheduling synthe-

sis methods, the scheduling parameters are assumed to be inexactly measured. This is a practical

assumption since measurement noise is unavoidable in practical engineering applications.

The contributions of this dissertation are the characterization of novel synthesis conditions

in terms of Parametrized Linear Matrix Inequalities (PLMIs) and Parametrized Bilinear Matrix

Inequalities (PBMIs) for designing RGS controllers with guaranteed stability and performance.

Multi-simplex modeling approach is utilized to model the scheduling parameters and their un-

certainties in a convex domain. Synthesis conditions for RGS State-Feedback (SF), full-order

Dynamic Output-Feedback (DOF), and Static Output-Feedback (SOF) controllers are developed

in a unified framework. Matrix coefficient check approach is used to relax the PLMIs conditions

into finite dimensional set of Linear Matrix Inequalities (LMIs) to obtain the optimal or subopti-

mal controller. The resulting controller not only ensures robustness against scheduling parameters

uncertainties but also guarantees closed-loop performance under these uncertainties in terms of

H2 and H∞ performance. By the virtue of introducing extra slack variables, controller synthe-

sis is independent of Lyapunov variables, that assures improved performance and viability for

multi-objective controller synthesis without introducing additional conservativeness. Since PB-

MIs problems are non-tractable in general, numerical algorithm is developed to solve the PBMIs

conditions. Numerical illustrative examples and comparisons with the existing approaches confirm

that the developed control approach outperforms the existing ones.



Furthermore, experimental validation of the developed RGS controllers has been conducted on

the test bench of the Electric Variable Valve Timing (EVVT) actuator of automotive engines. En-

gine speed and vehicle battery voltage are used as noisy scheduling parameters. The experiments

are performed at MSU Automotive Controls Lab at a room temperature of 25◦. Experimental

results demonstrate the effectiveness of the developed approach.
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CHAPTER 1

INTRODUCTION

"In the black-and-white robust versus gain-scheduled control world, a gray area should be

created that allows to trade-off closed-loop performance with robustness against uncertainty in

the scheduling parameter." Jan De Caigny

1.1 Background

Linear Parameter-Varying (LPV) systems are a large class of dynamical systems for which the

future evolution of the states depends on the current states of the system plus some additional

(time-varying) parameters called scheduling parameters. These systems emerged from non-linear

system theory and became one of the most successful directions in the post-modern control era.

In the past few decades, classical (or conventional) gain-scheduling control approach had been

successfully applied to wide variety control applications for nonlinear and time-varying systems.

The classical approaches can be generally described as divide and conquer techniques, where the

control problem of nonlinear systems is decomposed into a finite number of linear subproblems

[4]. The major difficulty, at that time, was the lack of general theory for analyzing stability of LPV

systems and for efficiently designing gain-scheduled control laws. Due to the absence of a concrete

theory for analysis and synthesis, the classical gain-scheduled control methods come with no guar-

antees on stability, performance or robustness, as pointed out in the pioneering work of Shamma

and Athans [5, 6, 7]. As a result of these shortcomings, analysis and synthesis theories have been

persistently considered and revisited by the control community over the past twenty-five years, and

a continuing effort is evident to develop solid theory that guarantee stability and performance of

1



Gain-Scheduling Control

Modern Gain-Scheduling Classical Gain-Scheduling

Linearisation-based ApproachPolytopic Approach LFT Approach

Figure 1.1: Classification of Gain-scheduling control.

LPV systems. Consequently, clear differences are made in the literatures between classical and the

so-called modern gain-scheduling approach (see Figure 1.1). In the classical approach, the design

procedure to obtain gain-scheduling controller consists of the following ad hoc steps. Initially, a

family of local Linear Time-Invariant (LTI) models is determined by selecting different operating

points of the dynamical system that cover the entire range of parameters variations. Then, local LTI

controllers are designed for each LTI model individually. Next, based on the values of the param-

eters (measured or estimated on-line), schedule the local controllers using some interpolation (or

switching) methods. Finally, extensive simulations are conducted to check and verify closed-loop

stability and performance. Thus, the classical gain-scheduling approach has the following critical

drawbacks

• Exhaustive and costly simulations and validations are mandatory because ad hoc steps are

used in the design procedure.

• It is a challenging task to guarantee stability and performance globally when interpolating

(or switching) over a finite family of separately designed (local) controllers.

• Since classical approaches rely on local griding of the operating domain, such approaches

imply a sever risk to miss critical system configurations.

• More importantly, these techniques implicitly assume that the scheduling parameters are

2



frozen in time and ignore the non-stationary nature of parameter variations. In other words,

the designed controller does not provide any guarantees in the face of rapid changes in the

scheduling parameters. These phenomena represent a major source of failure and may de-

stroy the overall control scheme.

In response to these shortcomings, modern gain-scheduling approaches emerged as a promis-

ing alternative and received a considerable attention in control community. Generally, they offer

capabilities to handle the whole operating domain without recourse to grid the parameter space.

Furthermore, robust stability and performance are guaranteed against parameter variations. And

as a key ingredient, they offer an indisputable degree of computational and operational simplicity

since the controller can be synthesized directly without using any sort of griding scheme. More

concretely, modern LPV problems are convex and amenable to LMI computations, the latter being

supported by efficient and reliable software tools. Altogether, this makes these (modern) tech-

niques an excellent candidates for practical engineering applications.

Modern GS approaches can be classified further into two distinct categories. Linear Fractional

Transformation (LFT) based structure that use small-gain theory approach, and polytopic structure

that based on Lyapunov theory approach. The following overview gives a short survey on the main

developments in literature for both the LFT and polytopic structure, without an in-depth discussion.

Polytopic LPV structure (see Figure 1.2) starts from state-space representation of the system

and applies Lyapunov’s direct method (see Khalil [8]) to derive analysis and synthesis conditions.

One of the most critical issues in the polytopic approach is the parametrization of the Lyapunov

function (as a function of scheduling parameters) used to establish stability and performance. Ini-

tially, many of the researchers adopted the concept of quadratic stability where constant Lyapunov

matrix is considered because this choice results in numerically tempting and tractable optimization

problems [9, 10]. In [9], sufficient conditions were derived for the existence of output-feedback

controller that stabilizes closed-loop system exponentially for arbitrarily fast parameter variations.

The existence conditions were in the form of a feasibility problem with infinite constraints. Al-

3
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Figure 1.2: LPV system in polytopic structure.

though there is, in general, no systematic method to solve this problem, simplifications can be

made for some specific classes of LPV models. For affine LPV models with parameter values

belonging to a convex polytope, the solvability conditions reduce to a feasibility problem with a

finite number of LMI constraints. Specifically, it is sufficient to evaluate the constraints associated

with the vertices of the polytope of parameter values since this ensures that the constraints hold for

every parameter value within the polytope [11]. However, as pointed out in [12], quadratic stability

approach leads to conservative results since it assumes that the rate of changes of the scheduling

parameters are infinite. Consequently, many researchers studied Parameter-Dependent Lyapunov

Functions (PDLF) to alleviate the conservatism associated with the quadratic stability-based ap-

proach [13, 14, 15].

On the other hand, Packard [16] developed the first LPV control design via LFT structure (see

Figure 1.3) using small-gain theory [17] for discrete-time systems. Then, Apkarian and Gahinet
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Figure 1.3: LPV system in LFT structure.

extend the work by developing a unifying LMI approach for synthesizing dynamic output-feedback

GS controllers for both continuous- and discrete-time LPV systems with H∞ performance [18].

For plant models with parameter-dependent LFT structure, the scaled small-gain solvability condi-

tions can be reformulated equivalently as a numerically tractable convex feasibility problem with a

finite number of LMIs. Although the approach prescribed in these papers ([16, 18]) is very attrac-

tive and fully characterized in terms of a finite number of LMIs, it suffers from conservativeness

due to structured scaling matrices. However, such conservativeness can be reduced by the new

method based on non-structured (full-block) scaling matrices developed by Scherer [19].

To conclude, this dissertation is concerned with polytopic structure GS synthesis methods. In

direct contrast to the literatures mentioned above, the scheduling parameters are assumed to be

polluted by noise, which is relatively new topic in the field of GS control as will be illustrated

shortly in Section 1.3 and Section 1.4.

1.2 LPV, LTV, and LTI Systems

The terminology linear parameter-varying was first introduced in [20] to distinguish LPV systems

from both Linear Time-Invariant (LTI) and Linear Time-Varying (LTV) systems. Generally, an
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LPV system is a system that can be governed by the following state-space representation

ẋ(t) = A(θ(t))x(t)+B(θ(t))u(t)

y(t) =C(θ(t))x(t)+D(θ(t))u(t),
(1.1)

where θ(t) is a time-varying vector of plant parameters belong to a known set, and the matrices

A(θ(t)), B(θ(t)), C(θ(t)), D(θ(t)) are functions of θ(t). A common assumption in the LPV sys-

tem theory is that scheduling parameters are unknown during controller synthesis stage, however,

they are available in real-time (by measurement or estimation) for gain-scheduling. Clearly, for a

frozen parameters (θ(t) = constant), the LPV system in (1.1) turns into an LTI system, i.e.

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t).
(1.2)

Thus, the distinction between LTI and LPV is clear since LPV systems are non-stationary systems.

On the other hand, the distinction between LPV and LTV is less apparent. Recall that LTV

plant is any linear system governed by state equations of the form

ẋ(t) = A(t)x(t)+B(t)u(t)

y(t) =C(t)x(t)+D(t)u(t),
(1.3)

where the state-space matrices A(t),B(t),C(t),D(t) are time-varying matrices. It is worth noting

that for any given scheduling parameter trajectory, θ(t), the dynamic (1.1) represents LTV sys-

tem but the reverse is not true, since the LTV system in (1.3) is completely known in advance.

Thus, theoretical treatment of LPV and LTV systems is not the same from analysis and synthesis

perspective.

In the same context, this dissertation provide synthesis conditions for gain-scheduling con-

trollers with guaranteed performance in terms of H2 and H∞ norms. Since H2 and H∞ norms are

well defined for LTI systems, special care need to be taken when dealing with these performance

indices in the LPV framework. However, we use H2 and H∞ norms here with slightly abused

terminology so that the reader can easily grasp our problem setting by simple analogy to LTI sys-
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tems. The strict definition of the control problem will be given later in Chapter 3 since necessary

definitions and notations need to be introduced in the next chapter.

It is worth mentioning that the terms LPV and parameter-dependent systems (and gain-scheduling

in the case of controller) are used interchangeably in this dissertation to refer to a system in the

structure of (1.1).

1.3 Motivation of the Work

The main motivation behind Gain-Scheduling (GS) control is the direct extension of the well es-

tablished linear control design tools to nonlinear and time-varying systems. The field of linear

parameter-varying systems has evolved rapidly in the last two decades and became one of the

most promising framework for modern industrial control with a growing number of applications

(see [21] for a recent survey). Although scheduling parameters are unknown during controller

design stage, it is implicitly assumed that they are available for on-line measurement to be used

for control adaptation. The significance of this control strategy is attributed to the fact that the

dynamics of many physical systems can be efficiently modeled as a function of a time-varying

parameters. Moreover, a wide class of nonlinear systems can be represented as quasi-LPV (qLPV)

systems [22] that exploit the simplicity of linear control theory instead of sophisticated nonlinear

design methodologies. Practical examples that proved the effectiveness of gain scheduling control

include spacecrafts [23], Hypersonic vehicles [24], wind turbines [25], automotive engines [26],

robotic manipulators [27], active magnetic bearings [28], and miscellaneous mechatronic systems

[29, 30, 31].

A common assumption considered in the vast majority of the existing works is that an exact

measurement of scheduling parameters is available in real-time for controller scheduling. Gener-

ally, this assumption is not true for practical applications. Since uncertainties in scheduling pa-

rameters are unavoidable, perfect measurement is impossible to obtain. Due to this measurement

noise, discrepancy always exist between the Actual Scheduling Parameters (ASPs) and the Mea-

7



Robust control

LPV systems

LMIs

Figure 1.4: Topic of the dissertation.

sured Scheduling Parameters (MSPs). This discrepancy not only leads to performance degradation

but could also lead to instability problems. In other words, when applying the controller designed

using traditional techniques to a practical application, the closed-loop performance will be worse

than the expected theoretical performance since measurement noise in the scheduling parameters

had not been considered during controller synthesis stage. Furthermore, the overall stability of

the system could be lost because the mismatch between the ASPs and the MSPs. Therefore, this

control problem is one of the most important control design problems in the community of gain-

scheduling control and LPV systems.

Motivated by the importance of this problem, this dissertation deals with gain-scheduling con-

trol with guaranteed performance subject to uncertain scheduling parameters. Thus, the topic of

this dissertation is well illustrated by the Venn diagram shown in Figure 1.4 that represents the

intersection of the following areas, LPV systems, robust control, and LMIs. As a result of this

intersection, Robust Gain-Scheduling (RGS) techniques arise in order to not only cope with this

type of uncertainty but also to guarantee closed-loop performance.
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1.4 Literature Survey

The vast majority of the available work in gain-scheduling control literature assume perfect knowl-

edge of scheduling parameters [9, 10, 32, 11, 13, 14, 33, 15, 34]. Although there are many attempts

in literature to address uncertainties in scheduling parameters theoretically, this problem is still

undisclosed and barely investigated. In [35], output-feedback synthesis conditions are derived

with the assumption that only some of the scheduling parameters are available for feedback con-

trol without considering uncertainties in the scheduling parameters. The first work that address

uncertainties in the scheduling parameters explicitly is proposed by Daafouz et al. [2]. In this

paper, gain-scheduling synthesis conditions that guarantee a prescribed performance level in the

presence of uncertainties in the scheduling parameters are derived. However, the whole approach

presented in [2] is impractical since uncertainties are modeled to be proportional to the values of

the scheduling parameters, which is not common to any measurement system. Furthermore, the

synthesis conditions are very sensitive to the uncertainty bound. After [2], several papers that ad-

dressed the same control problem have been published by Sato et al. [36, 37, 1, 38]. Synthesis

conditions for state-feedback [36] and dynamic output-feedback controllers [37] are derived with

noisy scheduling parameters. However, in [36, 37] quadratic stability (constant Lyapunov matrix)

approach is used for controller synthesis. As pointed out in [12], such approach are extremely

conservative and certain systems are not even quadratically stabilizable. To alleviate this problem,

parameter-dependent Lyapunov function approach was used to synthesize scheduling controllers

in [1] for state-feedback, and in [38] for dynamic output-feedback as a remedy for quadratic sta-

bility approach. While PDLF approach reduce conservativeness associated with quadratic stability

approach, but it introduces a serious implementation drawback. Thus, the developed controller

requires not only the real-time measurement of the scheduling parameters, but also requires their

derivatives to be available on-line as well. Hence, the synthesized controller is not practically valid

[13]. From practical view point, the derivatives of the scheduling parameters cannot be obtained in

real-time due to the fact that derivative is very sensitive to measurement noise. Furthermore, some
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of the system matrices are restricted to be independent on the varying parameters in [38] in order

to synthesize a controller.

Considering the exist literature, the objectives of this research is to overcome the drawbacks

associated with the existing results by developing novel synthesis conditions to synthesize RGS

controllers with guaranteed performance under noisy scheduling parameters.

1.5 Specific Contributions

The contributions of this dissertation can be summarized as follow:

1. Characterization of PLMIs synthesis conditions for synthesizing RGS state-feedback con-

troller with guaranteed H2 performance in Chapter 4.

2. In the same chapter, RGS state-feedback synthesis conditions with guaranteed H∞ perfor-

mance are developed.

3. In Chapter 5, novel conditions in terms of Parametrized Bilinear Matrix Inequalities (PB-

MIs) have been derived to synthesize RGS Dynamic Output-Feedback (DOF) controller with

guaranteed H2.

4. Similarly, synthesis conditions in terms of PBMIs has been characterized to synthesize RGS

DOF controller with guaranteed H∞ in Chapter 5. It is worth mentioning that the synthesis

conditions of the RGS DOF can handle the case where the time-varying parameters affect-

ing both the state matrix and the control input matrix. This is one of the contributions of

Chapter 5 since in literature only state matrix was allowed to be affected by the time-varying

parameters.

5. Development of an efficient numerical algorithm to solve the PBMIs conditions iteratively.

6. Novel conditions in terms of PLMIs has been derived in Chapter 6 to synthesize RGS Static

Output-Feedback (SOF) controller with guaranteed H2. These conditions are utilize the two-
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stage design approach to synthesize state-feedback scheduling controller in the first stage,

then, using this controller in the second stage to synthesize the RGS SOF controller. The

RGS SOF controller is synthesized independently of any of the open-loop matrices or Lya-

punov matrix, therefore, with this novel design the time-varying parameters could affect all

the open-loop matrices without any restrictions.

7. Characterizations of synthesis conditions to synthesize RGS Static Output-Feedback (SOF)

controller with guaranteed H∞ performance. Similarly, these conditions utilize the two-

stage design approach mentioned above to synthesize RGS SOF controller.

8. Experimental validation of the RGS controllers on the test bench of Electric Variable Valve

Timing (EVVT) actuator is given in Chapter 7. Engine speed and vehicle battery voltage are

used as noisy scheduling parameters.

1.6 Organization

Figure 1.5 shows a road map of the dissertation’s chapters. This dissertation is organized as fol-

lows: notations, definitions, and multi-simplex modeling approach are given in Chapter 2. Readers

are recommended to read Chapter 2 before proceeding to other chapters since it represents the

basic building block for modeling the time-varying parameters. Mathematical formulations of the

RGS control problem and the proposed solution approach are outlined in Chapter 3. In this chap-

ter, a general framework is presented to handle uncertainties in the scheduling parameters. RGS

State-Feedback (SF) PLMIs synthesis conditions are presented in Chapter 4 with H2 and H∞

performances. Numerical examples, simulations, and comparisons with other approaches from

literature are presented at the end of Chapter 4. In Chapter 5, PBMIs synthesis conditions for RGS

DOF controllers with H2 and H∞ performances are developed along with the numerical algorithm

necessary to solve the PBMIs conditions. Then, the RGS SOF synthesis conditions are developed

in Chapter 6. The synthesis approach of the SOF utilizes the two-stage design approach, where in

the first stage SF scheduling controller is designed to be used in the second stage for synthesizing
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Figure 1.5: Dissertation’s chapters road map.

SOF controller. Chapter 7 presents the experimental study of applying RGS controller on Electric

Variable Valve Timing (EVVT) system test bench of automotive engine with validation. Finally,

Chapter 8 presents conclusions and recommendations for future research. Fundamentals of LMIs

for LTI systems are given in the appendix.
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CHAPTER 2

PRELIMINARIES OF MULTI-SIMPLEX MODELING

The aim of this chapter is to briefly introduce necessary notations associated with the multi-simplex

modeling approach that represents the foundation of this dissertation. This chapter does not present

any theoretical contributions but it is included here to present notations, terminologies, and defini-

tions that are used throughout this dissertation. Most of the definitions and terminologies used in

this chapter can be found in [39, 40, 41].

2.1 Notations

Notations used in this dissertation are fairly standard. The positive definiteness of a matrix A is

denoted by A > 0. R and N denote the set of real and natural numbers, respectively. The symbol

? is used to represents the transpose of the off-diagonal matrix block. trace(A) denotes the trace

of the matrix A, which represents the sum of diagonal elements of the matrix A. In is used to refer

to identity matrix of size n×n. Zero matrix of size n× p is referred to as 000n×p. These subscripts

will be omitted when the size of the corresponding matrix can be inferred from the context. The

transpose of matrix A is refereed to as A′; and A+(•)′ = A+A′. Other notations will be explained

in due course.

2.2 Definitions and Terminologies

Definition 2.1. Unit-simplex[39]: a unit-simplex is defined as follows

Λ` :=

{
α(t) ∈ R` :

`

∑
i=1

αi(t) = 1, αi(t)≥ 0, i = 1,2, · · · , `
}
,

where the variable αi(t) varies in the unit-simplex Λ` that has ` vertices.

Definition 2.2. Multi-simplex[40]: a multi-simplex Λ is the Cartesian product of a finite number
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of q simplexes, where

ΛN1
×ΛN2

×·· ·×ΛNq =
q

∏
i=1

ΛNi
:= Λ.

The dimension of the multi-simplex Λ is defined as the index N =(N1,N2, · · · ,Nq) and for simplicity

of notation, RN denotes for the space RN1+N2+···+Nq . Thus, any variable α(t) in the multi-

simplex domain Λ can be decomposed as (α1(t),α2(t), · · · ,αq(t)), and each αi(t), belonging to a

unit-simplex ΛNi
, can be further decomposed as (αi1(t),αi2(t), · · · ,αiNi

(t)) for i = 1,2, · · · ,q.

Definition 2.3. Homogeneous Polynomial: Given a unit-simplex ΛN of dimension N ∈ N, a poly-

nomial p(α) defined on RN of degree g ∈N is called homogeneous if all of its monomials have the

same total degree g.

Example 2.1. Let α ∈Λ3, then the following polynomial p(α)= 5α4
1 +α2

1 α2
3−2α3

2 α3+6α1α2α2
3

is a homogeneous polynomial of degree g = 4.

Definition 2.4. Λ-Homogeneous Polynomial: Given a multi-simplex Λ of dimension N ∈ Nq, a

polynomial p(α) defined on RN of degree g∈Nq is called Λ-homogeneous if, for any given integer

i0, with 1 ≤ i0 ≤ q, and for any given αi ∈ RNi , for 1 ≤ i 6= i0 ≤ q, the partial application αi0
∈

R
Ni0 7−→ P(α) is a homogeneous polynomial in αi0

.

Example 2.2. Let α ∈ Λ, with Λ = Λ2×Λ3, then the following polynomial p(α) = α3
11α22−

3α11α2
12α23−α3

12α21+6α2
11α12α22 is a Λ-homogeneous polynomial of partial degree g = (3,1).

Definition 2.5. Partial degree is the degree of a parameter-dependent matrix that depends on

multi-simplex parameters which is used to define the individual degree of each unit-simplex inside

the multi-simplex domain. For a unit-simplex, g is scalar; while in the multi-simplex domain, g is

a vector representing the degrees of each unit-simplex inside the multi-simplex. Thus, the number

of elements of vector g is the same as the number of individual simplexes inside the multi-simplex.
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Lemma 2.1. (Binomial Expansion) For a given nonnegative integer g ∈N and two given numbers

a and b

(a+b)g =
g

∑
j=0

g!
j!(g− j)!

ag− j b j

Lemma 2.2. (Expansion of powers of sums of N numbers) For a given nonnegative integer g and

a given vector x of N numbers (
N

∑
i=1

xi

)g

= ∑
k∈Q(N,g)

g!
π(k)

xk (2.1)

where Q(N,g) is the set of N-tuples obtained from all possible combinations of N nonnegative

integers ki, i = 1,2, · · · ,N, with sum k1 + k2 + · · ·+ kN = g and π(k) = (k1!)(k2!) · · ·(kN!), such

that

Q(N,g) =

{
k ∈ NN :

N

∑
i=1

ki = g

}
.

The number of elements in Q(N,g) is given by

R(N,g) := card Q(N,g) =
(N +g−1)!
g!(N−1)!

,

with card Q(N,g) refers to the cardinality of Q(N,g).

2.3 Polynomial Completion and Homogenization

Definition 2.6. (ΛN-completion of a polynomial) Given a unit-simplex ΛN of dimension N ∈ N

and a polynomial p(α) defined on RN , the ΛN-completion of p(α), denoted comp
ΛN

(p(α)), is

the (unique) homogeneous polynomial of minimal degree equal to p(α) on ΛN .

The ΛN-completion of p(α) can be easily constructed using ΛN-homogenization procedure.

Definition 2.7. (ΛN-homogenization) For α ∈ ΛN and a given monomial m(α) of degree d ∈ N,

the ΛN-homogenization of degree g ∈ N of m(α) is obtained by multiplying m(α) with(
N

∑
i=1

αi

)g

= 1,
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then, using Lemma 2.2, can be written as homogeneous polynomial

1 =

(
N

∑
i=1

αi

)g

= ∑
k∈Q(N,g)

g!
π(k)

α
k.

Now, the ΛN-completion of p(α) can be easily constructed as follows. Let p(α) consist of M

monomials of respective degree d`, for ` = 1,2, · · · ,M, and let g = max
`

d`. Then, the minimal

degree ΛN-completion of p(α) is obtained by applying a ΛN-homogenization of degree g−d` to

each monomial of p(α).

Example 2.3. For α ∈ Λ3 the ΛN completion of p(α) = α3
1 +2α1α2−5 is obtained as

comp
ΛN

(p(α)) = α
3
1 +2α1α2(α1 +α2 +α3)−5(α1 +α2 +α3)

3.

Naturally, the definitions of completion and homogenization can be easily extended to the

multi-simplex case, as shown in the following definitions.

Definition 2.8. (Λ-completion of a polynomial) Given a multi-simplex Λ of dimension N ∈ NN

and a polynomial p(α) defined on RN , the Λ-completion of p(α), denoted comp
Λ
(p(α)), is the

(unique) Λ-homogeneous polynomial of minimal degree equal to p(α) on Λ.

As in the unit-simplex case, the Λ-completion of p(α) can be constructed using Λ-homogenization.

Definition 2.9. (Λ-homogenization) For α ∈ Λ and a given monomial m(α) of degree d ∈ Nq, the

Λ-homogenization of degree g ∈ Nq of m(α) is obtained by multiplying m(α) with

q

∏
i=1

 Ni
∑
j=1

αi, j

gi

= 1

using Lemma 2.2, this equation is equal to Λ-homogeneous polynomial

1 =
q

∏
i=1

 Ni
∑
j=1

αi, j

gi

= ∑
k∈Q(N,g)

π(g)
π(k)

α
k.

Now, the Λ-completion of p(α) can be easily constructed as follows. Let p(α) consist of M

monomials of respective degree d` ∈ Nq, for ` = 1,2, · · · ,M, and let g be the minimal vector of q

natural numbers such that g � d`, for ` = 1,2, · · · ,M. Then, the minimal degree Λ-completion of

p(α) is obtained by applying a Λ-homogenization of degree g−d` to each monomial of p(α).
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Example 2.4. Consider the Λ-completion of the polynomial

p(α) =−9α
2
1,1−5α1,2α2,1α2,2 +2α

3
2,3

where α ∈ Λ = Λ2×Λ3. Since the polynomial degree of the three monomials is d1 = (2,0),d2 =

(1,2) and d3 = (0,3), the degree of the Λ-homogenization is obtained as g = (2,3) and conse-

quently

comp
Λ
(p(α))=−9α

2
1,1(α2,1+α2,2+α2,3)

3−5α1,2α2,1α2,2(α1,1+α1,2)(α2,1+α2,2+α2,3)+

2α
3
2,3(α1,1 +α1,2)

2 (2.2)

2.4 Homogeneous Polynomial Lyapunov Matrix

In order to provide a systematic procedure to generate sufficient LMI conditions of increased pre-

cision, a quadratic Lyapunov function v(x(t)) = x(t)′P(α(t))x(t) is defined, with 1

P(α) = ∑
k∈Q(N,g)

α
k1
1 α

k2
2 · · ·α

kN
N Pk1k2···kN

= ∑
k∈Q(N,g)

α
kPk , k = k1k2 · · ·kN , (2.3)

where Pk ∈Rn×n is a matrix-valued coefficient and αk is the corresponding monomial with homo-

geneous of degree g ∈ N.

Example 2.5. Consider a homogeneous polynomial matrix of degree g = 3 with two vertices (N =

2), then the possible combinations of the partial degrees are Q(N,g) =Q(2,3) = {03,12,21,30},

so R(2,3) = 4 corresponding to the generic polynomial form

P(α) = α
3
2 P03 +α1α

2
2 P12 +α

2
1 α2P21 +α

3
1 P30.

for g = 0 =⇒ P(α) = P0,

for g = 1, N = 2 =⇒Q(N,g) =

 0 1

1 0

 =⇒ P(α) = α1P01 +α2P10

1Sometimes the dependency on t will be omitted for notational simplicity.
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g = 2, N = 2, =⇒Q(N,g) =


0 2

1 1

2 0

 =⇒ P(α) = α2
1 P02 +α1α2P11 +α2

2 P20

g = 3, N = 2, =⇒Q(N,g) =



0 3

1 2

2 1

3 0


=⇒ P(α) = α3

2 P03 +α1α2
2 P12 +α2

1 α1
2 P21 +α3

1 P30

2.5 Generality of the Modeling Approach

This section illustrates the generality of the multi-simplex Λ and the corresponding Λ-homogeneous

polynomial parameterization. It is shown that polytopic, affine, and polynomial parameterizations

can be recovered as special cases of the homogeneous polynomial parameterization.

2.5.1 Scheduling variables parameterization

1. Polytopic parametrization It is easy to note that a matrix with the following representation

A(α(t)) =
N

∑
i=1

αiAi,

with α(t) in the unit-simplex ΛN of dimension N ∈N is a special case of the general parame-

terization (2.3) by choosing the multi-simplex Λ=ΛN and the degree of the Λ-homogeneous

polynomial g = 1.

2. Affine parametrization A matrix with the following affine structure on q bounded variables

−θ̄i ≤ θi(t)≤ θ̄i for i = 1,2, · · ·q,

A(θ) = A0 +
q

∑
i=1

θiAi,
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can be written as a Λ-homogeneous matrix-valued polynomial by defining

αi1(t) =
θi(t)+ θ̄i

2θ̄i
, αi2(t) = 1−αi1(t)

αi(t) = (αi1(t),αi2(t)) =

(
θi(t)+ θ̄i

2θ̄i
,
θ̄i−θi(t)

2θ̄i

)
f or i = 1,2, · · · ,q,

such that αi1 ≥ 0,αi2 ≥ 0, and αi1 +αi2 = 1. Consequently, α =
(

α1,α2, · · · ,αq

)
takes

values inside the multi-simplex Λ of dimension (2,2, · · · ,2) ∈ Nq. A Λ-homogeneous poly-

nomial Â(α), defined over this multi-simplex, equal to A(θ) can be constructed as follows

A(θ) = A0−
q

∑
i=1

θ̄iAi +
q

∑
i=1

2θ̄iAiαi1 = Ã(α)

Obviously, Ã(α) has a degree one for each variable αi1. Therefore, the Λ-completion Â(α)=

comp
Λ
(Ã(α)) is a homogeneous polynomial of degree g = (1,1, · · · ,1) ∈ Nq, defined over

the multi-simplex Λ of dimension N = (2,2, · · · ,2) ∈ Nq equal to A(θ).

3. Polynomial parametrization A matrix with the following polynomial structure of degree g

on a bounded variable −θ̄ ≤ θ(t)≤ θ̄

A(θ) =
g

∑
k=0

θ
kAk

can be rewritten as a homogeneous matrix-valued polynomial as follows. First, define α ∈Λ

as

α(t) = (α1(t),α2(t)) =
(

θ(t)+ θ̄

2θ̄
,
θ̄ −θ(t)

2θ̄

)
such that α1(t)≥ 0,α2(t)≥ 0, and α1(t)+α2(t) = 1. Since θ(t) = 2θ̄α1(t)− θ̄ , it is clear

that

A(θ(t)) =
g

∑
k=0

(
2θ̄α1(t)− θ̄

)k Ak

Using Lemma 2.1, it can be written as

A(θ(t)) =
g

∑
k=0

(
k

∑
j=0

k!
j!(k− j)!

(2θ̄) j
α

j
1(t)

(
−θ̄
)k− j

)
Ak,
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which yields, after reordering the terms,

A(θ(t)) =
g

∑
j=0

(2θ̄) j
α1(t)

j

(
g

∑
k= j

k!
j!(k− j)!

(
−θ̄
)k− j Ak

)
= Ã(α(t))

It is clear that the g + 1 monomial terms of Ã(α) respectively have degree j in α1, for

j = 0,1, · · · ,g. Consequently, the Λ2-completion Â(α(t)) = comp
Λ2

(̃A(α(t))) can be ob-

tained by applying a Λ2-homogenization of degree g− j to each monomial term j, for

j = 0,1, · · · ,g. This yields a Λ2-homogeneous polynomial Â(α(t)) of degree g ∈ N, de-

fined over the unit-simplex Λ2, that is equal to A(θ(t)).

Example 2.6. Consider the following LPV system with polynomial dynamic matrix

ẋ(t) =

 0 1−θ2(t)

θ2(t)θ3(t)−1 θ 2
1 (t)−2

x(t) (2.4)

with the following bounds,

−1≤ θ1(t)≤ 1, −1≤ θ2(t)≤ 1, −0.5≤ θ3(t)≤ 0.5

This system can be modeled using multi-simplex approach with three simplexes

• Simplex#1 to model θ1(t) with two vertices N1 = 2 and g1 = 2, Q(N1,g1) =


0 2

1 1

2 0

,

thus, α̃(t) = (α̃1(t), α̃2(t)) ∈ Λ2 .

• Simplex#2 to model θ2(t) with 2-vertices N2 = 2 and g2 = 1, Q(N2,g2) =

 0 1

1 0

 , thus,

α̂(t) = (α̂1(t), α̂2(t)) ∈ Λ2.

• Simplex#3 to model θ3(t) with 2-vertices N3 = 2 with g3 = 1, Q(N3,g3) =

 0 1

1 0

, thus,

α̌(t) = (α̌1(t), α̌2(t)) ∈ Λ2.
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The matrix A(θ) can be written as

A(θ(t)) =

 0 1

−1 −2

+
 0 0

0 −1

θ
2
1 (t)+

 0 −1

0 0

θ2(t)+

 0 0

1 0

θ2(t)θ3(t) (2.5)

Now express scheduling variables in terms of the multi-simplex variables to obtain Ã(α(t)) by

substituting the following relationships in (2.5)

θ1(t) = 2θ̄1α̃1(t)− θ̄1 = 2α̃1(t)−1, with α̃1(t)+ α̃2(t) = 1

θ2(t) = 2θ̄2α̂1(t)− θ̄2 = 2α̂1(t)−1, with α̂1(t)+ α̂2(t) = 1

θ3(t) = 2θ̄3α̌1(t)− θ̄3 = α̌1(t)−0.5, with α̌1(t)+ α̌2(t) = 1

and simplifying to get

A(θ) = A(α̃, α̂, α̌) =

 0 2

−0.5 −1

+
 0 0

0 −4

 α̃1(t)+

 0 0

0 4

 α̃
2
1 (t)

+

 0 −2

−1 0

 α̂1(t)+

 0 0

−1 0

 α̌1(t)+

 0 0

2 0

 α̂1(t)α̌1(t).

(2.6)

Now Λ-completion of (2.6) can be easily constructed using Λ-homogenization procedure such that

Λ = Λ2×Λ2×Λ2,

Term#1: The 1st term should be multiplied by

(α̃2
1+α̃1α̃2 + α̃

2
2 )(α̂1 + α̂2)(α̌1 + α̌2) = α̃

2
1 α̂1α̌1 + α̃

2
1 α̂1α̌2 + α̃

2
1 α̂2α̌1 + α̃

2
1 α̂2α̌2 + α̃1α̃2α̂1α̌1

+ α̃1α̃2α̂1α̌2 + α̃1α̃2α̂2α̌1 + α̃1α̃2α̂2α̌2 + α̃
2
2 α̂1α̌1 + α̃

2
2 α̂1α̌2 + α̃

2
2 α̂2α̌1 + α̃

2
2 α̂2α̌2

Term#2: The second term should be homogenized as

α̃1(α̃1 + α̃2)(α̂1 + α̂2)(α̌1 + α̌2) = α̃
2
1 α̂1α̌1 + α̃

2
1 α̂1α̌2 + α̃

2
1 α̂2α̌1 +α

2
1 α̂2α̌2 + α̃1α̃2α̂1α̌1

+ α̃1α̃2α̂1α̌2 + α̃1α̃2α̂2α̌1 + α̃1α̃2α̂2α̌2

Term#3: The 3rd term should be homogenized as

α̃
2
1 (α̂1 + α̂2)(α̌1 + α̌2) = α̃

2
1 α̂1α̌1 + α̃

2
1 α̂1α̌2 + α̃

2
1 α̂2α̌1 + α̃

2
1 α̂2α̌2
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Term#4: The 4th term will be homogenized

α̂1(α̃
2
1 + α̃1α̃2 + α̃

2
2 )(α̌1 + α̌2) = α̃

2
1 α̂1α̌1 + α̃

2
1 α̂1α̌2+α̃1α̃2α̂1α̌1 + α̃1α̃2α̂1α̌2

+ α̃
2
2 α̂1α̌1 +α

2
2 α̂1α̌2

Term#5: The 5th term will be homogenized

α̌1(α̃
2
1 + α̃1α̃2 + α̃

2
2 )(α̂1 + α̂2) = α̃

2
1 α̂1α̌1 + α̃

2
1 α̂2α̌1+α̃1α̃2α̂1α̌1 + α̃1α̃2α̂2α̌1

+ α̃
2
2 α̂1α̌1 + α̃

2
2 α̂2α̌1

Term#6: The 6th term will be homogenized

α̂1α̌1(α̃
2
1 + α̃1α̃2 + α̃

2
2 ) = α̃

2
1 α̂1α̌1 + α̃1α̃2α̂1α̌1 + α̃

2
2 α̂1α̌1

and so on. Now, the matrix A(θ(t)) in system (2.4), can be written in the homogenized multi-

simplex variables α(t) = (α̃(t), α̂(t), α̌(t)) as follow

A(θ) = A(α̃, α̂, α̌) = α̃
2
1 α̂1α̌1A1 + α̃

2
1 α̂1α̌2A2 + α̃

2
1 α̂2α̌1A3 + α̃

2
1 α̂2α̌2A4

+ α̃1α̃2α̂1α̌1A5 + α̃1α̃2α̂1α̌2A6 + α̃1α̃2α̂2α̌1A7 + α̃1α̃2α̂2α̌2A8

+ α̃
2
2 α̂1α̌1A9 + α̃

2
2 α̂1α̌2A10 + α̃

2
2 α̂2α̌1A11 + α̃

2
2 α̂2α̌2A12 = A(α)

with the following vertix matrices (of the multi-simplex):

A1 =

 0 0

−0.5 −1

 , A2 =

 0 0

−1.5 −1

 , A3 =

 0 2

−1.5 −1

 ,
A4 =

 0 2

−0.5 −1

 , A5 =

 0 0

−1 −6

 , A6 =

 0 0

−3 −6

 ,
A7 =

 0 4

−3 −6

 , A8 =

 0 4

−1 −6

 , A9 =

 0 0

−0.5 −1

 ,
A10 =

 0 0

−1.5 −1

 , A11 =

 0 2

−1.5 −1

 , A12 =

 0 2

−0.5 −1


Note that the number of vertices of the multi-simplex is given by

R(N,g) = R((2,2,2),(2,1,1)) =
3

∏
i=1

R(Ni,gi) = 3×2×2 = 12
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2.5.2 Scheduling variables dependency

Modeling uncertainty domain when one scheduling parameter depends on another scheduling pa-

rameter can be easily done via multi-simplex modeling approach. The following example is bor-

rowed from [42] to illustrate this idea. Consider a system depending on two scheduling parameters

θ1(t) and θ2(t) that take values in the region indicated by Figure 2.1a with the gray-shaded area.

Depending on the available information, this region can be modeled in a different way. Consider

the two following situations:

1. The scheduling parameters are bounded by

1≤ θ1(t)≤ 4, 0≤ θ2(t)≤ 5.

2. The second scheduling parameter depends on the first one such that,

1≤ θ1(t)≤ 4, θ 2(θ1(t))≤ θ2(t)≤ θ̄2(θ1(t))

with

θ 2(θ1(t)) =


−0.5θ1(t)+2.5, i f 1≤ θ1(t)≤ 2

−1.5θ1(t)+4.5, i f 2≤ θ1(t)≤ 3

3θ1(t)−9, i f 3≤ θ1(t)≤ 4

θ̄2(θ1(t)) =


−0.5θ 2

1 (t)−θ1(t)+3.5, i f 1≤ θ1(t)≤ 3

−θ1(t)+8, i f 3≤ θ1(t)≤ 4

(2.7)

In the first case, the multi-simplex can be modeled by treating both scheduling parameters

independently as in the approach presented in Example 2.6, yielding

α(t) = ((α1,1,α1,2),(α2,1,α2,2)) =

((
θ1(t)−1

3
,
4−θ1(t)

3

)
,

(
θ2(t)

5
,
5−θ2(t)

5

))
by taking values in the multi-simplex of dimension N = (2,2), where α1,2 = 1−α1,1, α2,2 =

1−α2,1, and α(t)∈Λ. The boundary of the resulting region can be represented in the (α1,1,α2,1)-

space, as shown in the red dashed lines in Figure 2.1b. Since only the bounds of the scheduling
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Figure 2.1: Comparison between different modeling approach

parameter are used, all points inside this (red-dashed) box are being considered in this model. This

leads to conservativeness since the gray-shaded area is the actual region where (α1,1,α2,1) can

assume values based on the bounds (2.7).

In the second case , an exact representation of the region in the multi-simplex can be obtained

by observing that the lower and upper bound on θ2(t) are functions of θ1(t), as given in (2.7).

Using these bounds, the parameter β (t) (where β (t) ∈ Λ) can be defined as

β (t) = ((β1,1,β1,2),(β2,1,β2,2)) =((
θ1(t)−1

3
,
4−θ1(t)

3

)
,

(
θ2(t)−θ 2(θ1(t))

θ̄2(θ1(t))−θ 2(θ1(t))
,

θ̄2(θ1(t))−θ2(t)
θ̄2(θ1(t))−θ 2(θ1(t))

))

taking values in the multi-simplex of dimension N = (2,2). The red-dashed square in Figure 2.1c

shows the boundary of the region in the (β1,1,β2,1)-space. In this case, the square coincides with

the actual region (the gray shaded area).

This example shows the effectiveness of the multi-simplex modeling approach to utilize all the

available information about scheduling parameters to reduce conservativeness as much as possible

[42].
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2.6 Summary

This chapter introduced the notations and definitions of the multi-simplex modeling and homo-

geneous polynomials parametrization used throughout this dissertation. It is well-known that the

multi-simplex domain is a generalized representation of the unit-simplex. These notations and defi-

nitions will be utilized in the next chapters to model the time-varying parameters and the associated

uncertainties.

25



CHAPTER 3

PROBLEM FORMULATION AND SOLUTION APPROACH

In this chapter, problem formulation of gain-scheduling controller synthesis with uncertain schedul-

ing parameters is presented in a unified framework. Then, based on the concepts given in Chapter 2,

steps of the solution approach are given in this chapter as well. Generally, the solution approach

consists of six stages. First, a convex change of variables is to be performed to convert the schedul-

ing parameters and the associated uncertainties from their original parameter domain into (convex)

multi-simplex domain. Then, the rates of variation of the scheduling parameters and uncertainties

are modeled in a convex set in the second stage as well. The third stage includes derivation of the

PLMIs/PBMIs synthesis conditions. The proofs of the PLMIs/PBMIs synthesis conditions will be

given in the next three chapters. However, short description of PLMIs will be given in this chap-

ter. Then, a relaxation scheme is used to relax the infinite dimensional constraints into finite set of

LMIs constraints. Matrix coefficient check relaxation method will be illustrated in this chapter as it

is used to relax the PLMIs conditions in this dissertation. Once a feasible solution is obtained, the

controller coefficients recovered via inverse transformation. Finally, the controller is implemented

using these coefficients by utilizing the Measured Scheduling Parameters (MSPs).

3.1 Problem Formulation

Consider the following LPV system

SOL :=


ẋ(t) = A(θ(t))x(t)+Bu(θ(t))u(t)+Bw(θ(t))w(t)

z(t) =Cz(θ(t))x(t)+Dzu(θ(t))u(t)+Dzw(θ(t))w(t)

y(t) =Cy(θ(t))x(t)+Dyw(θ(t))w(t),

(3.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu is the control input, w(t) ∈ Rnw is the disturbance input,

z(t) ∈ Rnz is the controlled output, and y(t) ∈ Rny is the measured output. The system matri-

ces have the following compatible dimensions A(θ(t)) ∈ Rn×n, Bu(θ(t)) ∈ Rn×nu , Bw(θ(t)) ∈
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Rn×nw , Cz(θ(t)) ∈ Rnz×n, Dzu(θ(t)) ∈ Rnz×nu , Dzw(θ(t)) ∈ Rnz×nw , Cy(θ(t)) ∈ Rny×n, and

Dyw(θ(t)) ∈ Rny×nw . θ(t) is a real vector containing the time-varying scheduling parameters,

where

θ(t) =
[
θ1(t),θ2(t), · · · ,θq(t)

]′
, (3.2)

and q represents the number of scheduling parameters. The system matrices in (3.1) are assumed to

be affine parameter-dependent, i.e., each of the system matrices can be represented by the following

parametrization

A(θ(t)) = A0 +
q

∑
i=1

θi(t)Ai.

The scheduling parameters in (3.2) are assumed to be inexactly measured (corrupted with noise)

denoted by θ̃(t), such that

θ̃(t) =
[
θ̃1(t), θ̃2(t), · · · , θ̃q(t)

]′
,

δ (t) =
[
δ1(t),δ2(t), · · · ,δq(t)

]′
,

θ̃(t) = θ(t)+δ (t),

or in the scalar form,

θ̃i(t) = (θi(t)+δi(t)), i = 1,2, · · · ,q, (3.3)

where δi(t) represents uncertainty of the i-th scheduling parameter and θi(t) is the true value.

These scheduling parameters and its uncertainties are assumed to be independent on each other

and they varies within the following known bounds (see Figure 3.1)

−θ̄i ≤ θi(t)≤ θ̄i, −δ̄i ≤ δi(t)≤ δ̄i, i = 1,2, · · · ,q. (3.4)

Furthermore, these parameters are assumed to have bounded rates of variation

−bθi ≤ θ̇i(t)≤ bθi , −bδi
≤ δ̇i(t)≤ bδi

, i = 1,2, · · · ,q. (3.5)

Without loss of generality, these bounds are assumed to be symmetric. Note that (3.4) and (3.5) are

not restrictive, since (3.4) can always be achieved by change of variables; while (3.5) represents a

realistic hypothesis because the rates of variation of the parameters are naturally limited in practical

engineering applications.
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Figure 3.1: Uncertainty domain for measured scheduling parameter.
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z(t) w(t)

y(t) u(t)

1

Figure 3.2: Closed-loop system with output-feedback gain-scheduling control.

The goal is to synthesize

1. RGS state-feedback controller of the form

u(t) = K(θ̃(t))x(t), (3.6)

to robustly stabilize the closed-loop system

SCL :=


ẋ(t) = A (θ(t), θ̃(t))x(t)+B(θ(t), θ̃(t))w(t),

z(t) = C (θ(t), θ̃(t))x(t)+D(θ(t), θ̃(t))w(t).
(3.7)
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with
A (θ(t), θ̃(t)) = A(θ(t))+Bu(θ(t))K(θ̃(t)),

B(θ(t), θ̃(t)) = Bw(θ(t)),

C (θ(t), θ̃(t)) =Cz(θ(t))+Dzu(θ(t))K(θ̃(t)),

D(θ(t), θ̃(t)) = Dzw(θ(t)),

Cy(θ(t)) = I,

Dyw(θ(t)) = 000,

(3.8)

or

2. Dynamic Output-Feedback controller of the form

KDOF :=


ẋc(t) = Ac(θ̃(t))xc(t)+Bc(θ̃(t))y(t),

u(t) =Cc(θ̃(t))x(t),
(3.9)

to robustly stabilize the closed-loop system (see Figure 3.2)

SCL :=


ξ̇ (t) = A (θ(t), θ̃(t))ξ (t)+B(θ(t), θ̃(t))w(t),

z(t) = C (θ(t), θ̃(t))ξ (t)+D(θ(t), θ̃(t))w(t).
(3.10)

with ξ (t) =
[
x(t)′ xc(t)′

]′, and

 A (θ(t), θ̃(t)) B(θ(t), θ̃(t))

C (θ(t), θ̃(t)) D(θ(t), θ̃(t))

=


A(θ(t)) 000 Bw(θ(t))

000 000 000

Cz(θ(t)) 000 000



+


0 Bu(θ(t))

In 000

000 Dzu(θ)


 Ac(θ̃(t)) Bc(θ̃(t))

Cc(θ̃(t)) 000


 000 In 000

Cy(θ(t)) 000 Dyw(θ(t))

 .
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with

A (θ(t), θ̃(t)) =

 A(θ(t)) Bu(θ(t))Cc(θ̃(t))

Bc(θ̃(t))Cy(θ(t)) Ac(θ̃(t))

 ,
B(θ(t), θ̃(t)) =

 Bw(θ(t))

Bc(θ̃(t))Dyw(θ(t))

 ,
C (θ(t), θ̃(t)) =

[
Cz(θ(t)) Dzu(θ(t))Cc(θ̃(t))

]
,

D(θ(t), θ̃(t)) = Dzw(θ(t)).

(3.11)

or

3. Static Output-Feedback controller of the form

u(t) = K (θ̃(t))y(t) (3.12)

to robustly stabilizes the closed-loop system

ẋ(t) = A(θ , θ̃)x(t)+B(θ , θ̃)w(t)

z(t) = C(θ , θ̃)x(t)+D(θ , θ̃)w(t)

A(θ , θ̃) := A(θ)+Bu(θ)K (θ̃)Cy(θ)

B(θ , θ̃) := Bw(θ)+Bu(θ)K (θ̃)Dyw(θ)

C(θ , θ̃) :=Cz(θ)+Dzu(θ)K (θ̃)Cy(θ)

D(θ , θ̃) := Dzw(θ)+Dzu(θ)K (θ̃)Dyw(θ)

(3.13)

Note that the controller matrices in (3.6), (3.9), and (3.12) are assumed to have affine parametriza-

tion with respect to the Measured Scheduling Parameters (MSPs). In other words, those matrices
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K(θ̃(t)), Ac(θ̃(t)), Bc(θ̃(t)), Cc(θ̃(t)), and K (θ̃(t)) are parameterized as follows

K(θ̃(t)) = K0 +
q

∑
i=1

θ̃i(t)Ki,

Ac(θ̃(t)) = Ac0 +
q

∑
i=1

θ̃i(t)Aci ,

Bc(θ̃(t)) = Bc0 +
q

∑
i=1

θ̃i(t)Bci ,

Cc(θ̃(t)) =Cc0 +
q

∑
i=1

θ̃i(t)Cci ,

K (θ̃(t)) = K0 +
q

∑
i=1

θ̃i(t)Ki.

(3.14)

Therefore, the goal is to obtain the controller coefficient matrices Ki, (Aci ,Bci,Cci), and Ki for

i = 0,1, · · · ,q, such that the RGS controller can be implemented using only the MSPs θ̃i.

3.2 Solution Approach

The six stages of the solution approach of RGS synthesis problem is presented in Figure 3.3. Ap-

propriate transformation is used in the first stage to convert the scheduling parameters and the

uncertainties from their original parameter domain into a (convex) multi-simplex domain. Then,

the rates of variations of the scheduling parameters and uncertainties are modeled in a convex

set in the second stage. The third stage consists derivation of the PLMIs/PBMIs synthesis con-

ditions. Matrix coefficient check relaxation scheme [39] is used to relax the infinite dimensional

constraints into finite-dimensional constraints to solve the optimization problem. Once a feasible

solution is obtained, inverse transformation (multi-simplex-to-affine) is used to obtain controller

implementation coefficients that utilize the noisy scheduling parameters.

3.2.1 Affine to Multi-Simplex Transformation

The goal of this subsection is to develop a suitable change of variables to transform all the time-

varying parameters (scheduling and uncertainties) from their original space into a convex multi-
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Affine to multi-simplex transformation

Rate of variation modeling

PLMI/PBMI synthesis conditions

PLMI/PBMI relaxation & algorithm

Inverse transformation

Controller implementation

Figure 3.3: Six stages solution approach.

simplex domain. Suppose that the Actual Scheduling Parameters (ASPs) θ(t) are affected by

time-varying measurement noise δ (t) as given by (3.3); and suppose further that θ(t), δ (t), θ̇(t),

and δ̇ (t) are bounded as defined in (3.4) and (3.5). Since δi(t) associated with each θi(t) needs

to be modeled in a convex domain, two unit-simplexes for each MSP are used. Each unit-simplex

has two vertices due to the fact that each parameter has upper and lower bounds as defined in (3.4).

Thus, each of those (time-varying) parameters (θi(t) and δi(t)) will be modeled independently in

their own unit-simplexes. Following the approach depicted in [43], the ASP and their uncertainties

can be modeled as follow:

1. Actual scheduling parameters (θi(t)⇒ α̌i(t)),

α̌i1(t) =
θi(t)+ θ̄i

2θ̄i
⇒ θi(t) = 2θ̄iα̌i1(t)− θ̄i, (3.15)

then,

α̌i2(t) = 1− α̌i1(t) = 1− θi(t)+ θ̄i
2θ̄i

=
θ̄i−θi(t)

2θ̄i
,
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where,

α̌i(t) = (α̌i1(t), α̌i2(t)) ∈ Λ2, ∀i = 1,2, · · · ,q,

α̌(t) = (α̌1(t), α̌2(t), · · · , α̌q(t)).

2. Uncertainties (δi(t)⇒ α̂i(t)),

α̂i1(t) =
δi(t)+ δ̄i

2δ̄i
⇒ δi(t) = 2δ̄iα̂i1(t)− δ̄i, (3.16)

then,

α̂i2(t) = 1− α̂i1(t) = 1− δi(t)+ δ̄i

2δ̄i
=

δ̄i−δi(t)
2δ̄i

,

where,

α̂i(t) = (α̂i1(t), α̂i2(t)) ∈ Λ2, ∀i = 1,2, · · · ,q,

α̂(t) = (α̂1(t), α̂2(t), · · · , α̂q(t)).

Thus, using this change of variables, the original affine parameter-dependent system (3.1) as well

as the gain-scheduling controllers (3.6), (3.9), and (3.12) can be converted from θ(t) and θ̃(t) into

new multi-simplex variables α̌(t) and α̂(t), respectively. Therefore, the multi-simplex variables

α(t) can be defined as,

α̃(t) = (α̌i(t), α̂i(t)), i = 1,2, · · · ,q, α(t) ∈ Λ, where Λ = Λ2×Λ2×·· ·×Λ2︸ ︷︷ ︸
2q simplexes

. (3.17)

Considering the case that q = 1 (one scheduling parameter), α̌1(t) = (α̌11(t), α̌12(t)) and

α̂1(t) = (α̂11(t), α̂12(t)), the homogeneous terms in the multi-simplex variables can be written

in terms of the new variables α̃(t) = (α̌11(t), α̌12(t), α̂11(t), α̂12(t)).

For illustration purposes, the details of such transformation will be given for two cases, single

(measured) scheduling parameter and two (measured) scheduling parameters. Then, a generaliza-

tion for any number of scheduling parameters will be given as well.
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3.2.1.1 Single scheduling parameter

For instance, let Z(θ̃(t)) be any matrix of the controller variables given in (3.14). This matrix can

be expressed affinely in terms of the MSPs as

Z(θ̃(t)) = Z0 + θ̃1(t)Z1 = Z0 +(θ1(t)+δ1(t))Z1. (3.18)

Substituting for θ1(t) and δ1(t) from (3.15) and (3.16) yields1,

Z(θ̃(t)) = Z0 +(2θ̄1α̌11− θ̄1 +2δ̄1α̂11− δ̄1)Z1 = Z(α̃(t)),

and applying homogenization procedure [39] leads to

Z(α̃(t)) = Z0

1︷ ︸︸ ︷
(α̌11 + α̌12)

1︷ ︸︸ ︷
(α̂11 + α̂12)+[2θ̄1α̌11

1︷ ︸︸ ︷
(α̂11 + α̂12)

− (θ̄1 + δ̄1)(α̌11 + α̌12)︸ ︷︷ ︸
1

(α̂11 + α̂12)︸ ︷︷ ︸
1

+2δ̄1α̂11 (α̌11 + α̌12)︸ ︷︷ ︸
1

]Z1.

As a result, Z(α̃(t)) is a parameter-dependent matrix that depends on time varying parameters

inside the multi-simplex domain Λ [43]. In other words, the parameters bounds θ̄ and δ̄ are used

to convert Z(θ̃(t)) into Z(α̃(t)). Thus, the matrix can be written in the homogenized terms as

Z(α̃(t)) = α̌11α̂11Z1,1 + α̌11α̂12Z1,2 + α̌21α̂11Z2,1 + α̌21α̂21Z2,2 , (3.19)

where the coefficients Z1,1,Z1,2,Z2,1 and Z2,2 can be generated using the bounds as

Z1,1 = Z0 +(θ̄1 + δ̄1)Z1,

Z1,2 = Z0 +(θ̄1− δ̄1)Z1,

Z2,1 = Z0 +(−θ̄1 + δ̄1)Z1,

Z2,2 = Z0 +(−θ̄1− δ̄1)Z1.

(3.20)

3.2.1.2 Two scheduling parameters

Z(θ̃(t)) = Z0 + θ̃1(t)Z1 + θ̃2(t)Z2 = Z0 +(θ1(t)+δ1(t))Z1 +(θ2(t)+δ2(t))Z2.

1Sometimes the dependency on t will be omitted for notational simplicity.
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then,

Z(θ̃) = Z0 +(2θ̄1α̌11− θ̄1)Z1 +(2δ̄1α̂11− δ̄1)Z1 +(2θ̄2α̌21− θ̄2)Z2

+(2δ̄2α̂21− δ̄2)Z2 = Z(α̃).

Homogenizing this equation,

Z(α̃) = Z0 (α̌11 + α̌12)︸ ︷︷ ︸
1

(α̂11 + α̂12)︸ ︷︷ ︸
1

(α̌21 + α̌22)︸ ︷︷ ︸
1

(α̂21 + α̂22)︸ ︷︷ ︸
1

+

[2θ̄1α̌11 (α̂11 + α̂12)︸ ︷︷ ︸
1

(α̌21 + α̌22)︸ ︷︷ ︸
1

(α̂21 + α̂22)︸ ︷︷ ︸
1

]Z1

− (θ̄1Z1 + δ̄1Z1 + θ̄2Z2 + δ̄2Z2)(α̌11 + α̌12)︸ ︷︷ ︸
1

(α̂11 + α̂12)︸ ︷︷ ︸
1

(α̌21 + α̌22)︸ ︷︷ ︸
1

(α̂21 + α̂22)︸ ︷︷ ︸
1

+[2δ̄1α̌11 (α̂11 + α̂12)︸ ︷︷ ︸
1

(α̌21 + α̌22)︸ ︷︷ ︸
1

(α̂21 + α̂22)︸ ︷︷ ︸
1

]Z1

+[2θ̄2α̌11 (α̂11 + α̂12)︸ ︷︷ ︸
1

(α̌21 + α̌22)︸ ︷︷ ︸
1

(α̂21 + α̂22)︸ ︷︷ ︸
1

]Z2

+[2δ̄2α̌11 (α̂11 + α̂12)︸ ︷︷ ︸
1

(α̌21 + α̌22)︸ ︷︷ ︸
1

(α̂21 + α̂22)︸ ︷︷ ︸
1

]Z2. (3.21)

As a result, Z(α̃) is a parameter-dependent matrix with parameters in the multi-simplex Λ,

Z(α̃) = α̌11α̂11α̌21α̂21Z1,1,1,1 + α̌11α̂11α̌21α̂22Z1,1,1,2 + α̌11α̂11α̌22α̂21Z1,1,2,1

+ α̌11α̂11α̌22α̂22Z1,1,2,2 + α̌11α̂12α̌21α̂21Z1,2,1,1 + α̌11α̂12α̌21α̂22Z1,2,1,2

+ α̌11α̂12α̌22α̂21Z1,2,2,1 + α̌11α̂12α̌22α̂22Z1,2,2,2 + α̌12α̂11α̌21α̂21Z2,1,1,1

+ α̌12α̂11α̌21α̂22Z2,1,1,2 + α̌12α̂11α̌22α̂21Z2,1,2,1 + α̌12α̂11α̌22α̂22Z2,1,2,2

+ α̌12α̂12α̌21α̂21Z2,2,1,1 + α̌12α̂12α̌21α̂12Z2,2,1,2 + α̌12α̂12α̌22α̂21Z2,2,2,1

+ α̌12α̂12α̌22α̂22Z2,2,2,2 (3.22)

where the matrices Z1,1,1,1, Z1,1,1,2, Z1,1,2,1, Z1,1,2,2, Z1,2,1,1, Z1,2,1,2, Z1,2,2,1, Z1,2,2,1,

Z1,2,2,2, Z2,1,1,1, Z2,1,1,2, Z2,1,2,1, Z2,1,2,2, Z2,2,1,1, Z2,2,1,2, Z2,2,2,1, Z2,2,2,1, and Z2,2,2,2
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can be generated as,

Z1,1,1,1 = Z0 + θ̄1Z1 + δ̄1Z1 + θ̄2Z2 + δ̄2Z2,

Z1,1,1,2 = Z0 + θ̄1Z1 + δ̄1Z1 + θ̄2Z2− δ̄2Z2,

Z1,1,2,1 = Z0 + θ̄1Z1 + δ̄1Z1− θ̄2Z2 + δ̄2Z2,

Z1,1,2,2 = Z0 + θ̄1Z1 + δ̄1Z1− θ̄2Z2− δ̄2Z2,

Z1,2,1,1 = Z0 + θ̄1Z1− δ̄1Z1 + θ̄2Z2 + δ̄2Z2,

Z1,2,1,2 = Z0 + θ̄1Z1− δ̄1Z1 + θ̄2Z2− δ̄2Z2,

Z1,2,2,1 = Z0 + θ̄1Z1− δ̄1Z1− θ̄2Z2 + δ̄2Z2,

Z1,2,2,2 = Z0 + θ̄1Z1− δ̄1Z1− θ̄2Z2− δ̄2Z2,

Z2,1,1,1 = Z0− θ̄1Z1 + δ̄1Z1 + θ̄2Z2 + δ̄2Z2,

Z2,1,1,2 = Z0− θ̄1Z1 + δ̄1Z1 + θ̄2Z2− δ̄2Z2,

Z2,1,2,1 = Z0− θ̄1Z1 + δ̄1Z1− θ̄2Z2 + δ̄2Z2,

Z2,1,2,2 = Z0− θ̄1Z1 + δ̄1Z1− θ̄2Z2− δ̄2Z2,

Z2,2,1,1 = Z0− θ̄1Z1− δ̄1Z1 + θ̄2Z2 + δ̄2Z2,

Z2,2,1,2 = Z0− θ̄1Z1− δ̄1Z1 + θ̄2Z2− δ̄2Z2,

Z2,2,2,1 = Z0− θ̄1Z1− δ̄1Z1− θ̄2Z2 + δ̄2Z2,

Z2,2,2,2 = Z0− θ̄1Z1− δ̄1Z1− θ̄2Z2− δ̄2Z2.

(3.23)

3.2.1.3 Multiple numbers of scheduling parameters

This procedure can be systematically extended to handle all the system matrices in (3.1) and con-

troller matrices in (3.6), (3.9), and (3.12) to convert them into the multi-simplex variables α̃(t) =

(α̌(t), α̂(t)) for any number of scheduling parameters q≥ 1. The matrices Z j1, j2,··· , jq,k1,k2,··· ,kq

in (3.23) for j1, j2, · · · , jq,k1,k2, · · · ,kq = 1,2, can be written in a generalized form as

Z j1, j2,··· , jq,k1,k2,··· ,kq = Z0 +
q

∑
i=1

{
(−1) ji+1

θ̄i +(−1)ki+1
δ̄i

}
Zi. (3.24)
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Thus, it is worth mentioning that the synthesis variables that used to construct controller matrices

in (3.6), (3.9), and (3.12) should be converted into the multi-simplex domain using the procedure

described above. Therefore, the controller matrices can be written in terms of the multi-simplex

parameters as K(α̃(t)),Ac(α̃(t)),Bc(α̃(t)),Cc(α̃(t)), and K (α̃(t)).

Remark 3.1. Note that the open-loop system matrices in (3.1) are independent of the uncertainties

δi(t). They are only depend on the ASPs θ(t). However, the same procedure described above can

be used to transform them from the original parameter space θ(t) into multi-simplex space α(t) by

imposing δ̄i = 0 in (3.24). In this case, for notational simplicity, new the multi-simplex variables

α(t) is used instead of α̃(t) to distinguish variables that depend on ASPs from variables that

depend on MSPs. Thus, the open-loop system matrices will be written in terms of the multi-simplex

variables as

A(α(t)),Bw(α(t)),Bu(α(t)),Cz(α(t)), Dzu(α(t)), Dzw(α(t)),Cy(α(t)), and Dyw(α(t)).

3.2.2 Rate of Variation Modeling

The objective of this subsection is to construct a new convex parameter space η(t) to model the

derivatives of the varying parameters in the convex domain. The rates of change of each parameter

and uncertainty are assumed to be bounded as defined in (3.5) for all t ≥ 0. Since each varying

parameter belongs to a unit-simplex, it is clear that the following relation is satisfied

α̇i1(t)+ α̇i2(t) = 0 i = 1,2, · · · ,q. (3.25)

Since αi(t) ∈ Λ2, the time derivatives of the parameters αi can assume values that modeled by a

convex polytope Ωi [44, 45]

Ωi =

{
φ ∈ R2 : φ =

2

∑
k=1

ηikH(k)
i ,

2

∑
k=1

Hi(k, j) = 0, ηi ∈ Λ2

}
, j = 1,2, i = 1,2, · · · ,2q. (3.26)

Given the bounds bθi and bδi
in (3.5), H(k)

i represents the k-th column of matrix Hi. Since sim-

plexes with two vertices have been considered for each varying parameter, as a direct consequence,

37



the matrices Hi will have size of 2×2. Notice that, due to (3.25), the sum of the elements of each

column of H(k)
i is zero. Consequently,

α̇(t) ∈Ω = Ω1×Ω2×·· ·×Ω2q =
2q

∏
i=1

Ωi. (3.27)

Note that the relationship between the bounds of the rates of variations of the varying parameters

θ̇ and δ̇ , and the rates of changes of multi-simplex variables α̇ can be obtained using (3.5) and

(3.15) as follows
−bθi
2θ̄i
≤ α̇i1(t)≤

bθi
2θ̄i

,

with α̇i2(t) = −α̇i1(t) as the consequence of (3.25). Therefore, the transformation of the rates of

variations from θ̇(t) and δ̇ (t) into α̇i(t) is exact as well. As an example consider one scheduling

parameter (q = 1) with the following bounds

−1≤ θ(t)≤ 1, −1≤ θ̇(t)≤ 1,

the multi-simplex variables rate bounds are −0.5 ≤ α̇11(t) ≤ 0.5; and considering (3.25) at the

bounds of α̇11(t) and α̇12(t), one can easily construct the columns of the matrix H1. Taking the

convex combination of these columns [40], yields −0.5

0.5

η11 +

 0.5

−0.5

η12 =

 −0.5 0.5

0.5 −0.5


︸ ︷︷ ︸

H1

 η11

η12

 .

Thus, the derivative of the parametric Lyapunov matrix that depend on a time-varying parameters

in multi-simplex can be computed through this procedure as

Ṗ(α) =
∂P(α)

∂α
α̇ =

2q

∑
i=1

2

∑
j=1

∂P(α)

∂αi j
α̇i j =

2q

∑
i=1

2

∑
j=1

∂P(α)

∂αi j

2

∑
k=1

ηikHi( j,k)

=
∂P(α)

∂αi j
(ηi1Hi( j,1)+ηi2Hi( j,2)) := Π(α,η), ηi ∈ Λ2. (3.28)
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3.2.3 PLMIs Conditions

It is known that synthesis problems of RGS and robust controllers with parametric uncertainties

are frequently arise as optimization problem with PLMIs constraints. A PLMIs is an extension

of an ordinary Linear Matrix Inequalities (LMIs) with the difference is that it is dependent on a

time-varying parameter vector. Generally speaking, the solution to this type of LPV control prob-

lems is formulated as PLMIs, which is a special type of convex optimization problem. PLMIs

are equivalent to infinite number of LMI constraints and, consequently, require infinite numeri-

cal computations to be solved directly. Consider, for example, the stability problem of finding a

continuously differentiable parameter-dependent symmetric matrix P(α(t)) for the following non-

autonomous system ẋ(t) = A(α(t))x(t) with (α, α̇) ∈ Λ×Ω

A(α(t))′P(α(t))+P(α(t))A(α(t))+
2q

∑
i=1

2

∑
j

∂P(α(t))
∂αi j(t)

α̇i j(t)< 0

P(α(t))> 0.

(3.29)

Clearly, inequality (3.29) is a PLMI with infinite dimensional space. For every value of the varying

parameter (α, α̇) ∈ Λ×Ω, the inequality (3.29) represents ordinary LMI.

Therefore, synthesis conditions of the RGS controllers presented in this dissertation are for-

mulated as a convex optimization problem with PLMIs constraints. After all scheduling parame-

ters and their uncertainties (with their rates of variations) are modeled to vary within convex sets

(Λ,Ω), as illustrated by the procedure given in the previous two sub-sections, the detailed proofs

and derivation of the synthesis PLMIs conditions will be the core of the next two chapters for H2

and H∞ performance, respectively.

3.2.4 PLMIs Relaxation

As mentioned, the synthesis conditions of RGS state-feedback and the static output-feedback with

H2 and H∞ performance are formulated in terms of PLMIs while RGS dynamic output-feedback

are formulated as PBMIs. Although such conditions represents convex optimization problem (for
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PLMIs) with infinite dimensional constraints, modern robust optimization techniques considerably

strengthened this framework by providing rigorous ways for dealing with parameter-dependent

LMIs [46, 47, 48]. In [12], brutal force griding method developed to divide parameter space to

relax the infinite-dimensional optimization problem into a finite-dimensional problem. However,

using this method, the number of the resulting LMI constraints grows rapidly as the number of

scheduling parameters increases. Moreover, this method only provides an approximated solution

which satisfies the LMI constraints at gridding points in the parameter space. Thus, the result from

finite gridding points is unreliable. On the other hand, alternative approaches have been actively

sought to turn PLMIs into a standard LMI problem by constructing their relaxation forms. In the

case of LPV systems depending affinely on the scheduling parameter, vertex method was con-

sidered in [49] to determine constant Lyapunov functions satisfying affine parameter-dependent

LMI. The solution is exact but it prevents the possibility of using parameter-dependent Lyapunov

functions which lead to a conservative solution. In [50], convex covering techniques were applied

to PLMIs to obtain parameter-dependent solutions. However, these methods often require large

division numbers to achieve accurate results. Multi-convexity properties was imposed in [51] to

provide a finite set of LMIs to solve PLMIs problems. More recently, many powerful theoreti-

cal and computational tools have been developed and applied successfully (by several researchers

independently) to relax PLMIs problems into finite set of LMIs. Thus, the notion of Sum-Of-

Square (SOS)-convexity has been proposed as a tractable approach for convexfing PLMIs based

on SOS-decomposition [52]. Slack Variable (SV) approach [53], dilated LMI approach [54], and

coefficient check approach using Pólya’s theorem [41] are other powerful techniques that applied

successfully in literature to relax PLMIs. The promising results of these relaxation methods over-

comes the difficulty of solving PLMIs to synthesize gain-scheduling controllers as demonstrated

in [55].

Therefore, the relaxation approach that was developed in [39] is adopted in this dissertation to

relax the PLMIs conditions in Chapter 4, Chapter 5, and Chapter 6 since it supports PLMIs that

depends on multi-simplex parameters. In [41], Oliveira et al. developed a systematic procedure
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to construct a family of finite-dimensional LMI relaxations for uncertain LTI systems in polytopic

domain modeled by unit-simplex. Then, they extend the work in [39] for multi-simplex domain

with time-varying parameters. For completeness, PLMIs relaxation procedure for the stability test

of the time-varying system in (3.29) will be illustrated here. For convenience, the PLMIs are

rewritten again here

A(α(t))′P(α(t))+P(α(t))A(α(t))+
2q

∑
i=1

2

∑
j

∂P(α(t))
∂αi j(t)

α̇i j(t)< 0, (3.30)

P(α(t))> 0, (3.31)

with (α, α̇) ∈ Λ×Ω. For Λ-homogeneous matrices P(α(t)) and A(α(t)) of partial degrees g =

(g1,g2, . . . ,gq) and r = (r1,r2, . . . ,rm) respectively, the total degree of the first two terms of in-

equality (3.30) is ḡ = (g1 + r1,g2 + r2, . . . ,gq + rq). Thus, the main task is to homogenize accord-

ingly the third term, i.e.
2q

∑
i=1

2

∑
j

∂P(α(t))
∂αi j(t)

α̇i j(t).

The general expression for the derivative of the Lyapunov matrix P(α(t)) with respect to the

i-th component of the multi-simplex, i = 1,2, . . . ,q and then with respect to its j-th component,

j = 1,2 is given by

∂P(α(t))
∂αi j(t)

= ∑
k∈Q(N,g)

ki jα
k1
1 · · ·α

ki1
i1 · · ·α

ki j−1
i j · · ·αki2

i2 · · ·α
kq
q Pk

= ∑
k∈Q(N,g−ei|q)

α
k
(
(k+ ei|q⊗ e j|2)i jPk+ei|q⊗e j|2

)
where by definition ei|q is the vector of dimension q with zero components, except 1 in the i-th

position. To fit (on α) with the partial degrees ḡ, the following homogenization is necessary
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q

∑
i=1

(αi1 + · · ·+αi2)
ri+1

2

∑
j=1

∂P(α(t))
∂αi j(t)

=

q

∑
i=1

2

∑
j=1

∑
k∈Q(N,g−ei|q)

α
k

 ∑
k̂∈Q(r+ei|q)

k̂�k

(ri +1)!
π(k̂i)

(
(k− k̂+ ei|q⊗ e j|2)i jPk−k̂+ei|q⊗e j|2

)
(3.32)

where π(ki) = (ki1!)(ki2!). Now the third term of (3.30) should be homogenized to become multi-

affine on η . This is done as follows

q

∏
p=1
p 6=i

(ηp1 +ηp2)
2

∑
`=1

ηi`Hi( j, `) =
2

∑
p1=1

· · ·
2

∑
pi=1
· · ·

2

∑
pq=1

η1p1 · · ·ηipi · · ·ηqpqHi( j, pi). (3.33)

Considering (3.32) and (3.33), the third term in the left-hand side of (3.30) can be equivalently

written as

q

∑
i=1

2

∑
j=1

∂P(α)

∂αi j

2

∑
`=1

ηi`Hi( j, `) =
2

∑
p1=1

· · ·
2

∑
pi=1
· · ·

2

∑
pq=1

η1p1 · · ·ηipi · · ·ηqpq × ∑
k∈Q(N,g+r)

α
k

q

∑
i=1

2

∑
j=1

∑
k̂∈Q(r+ei|q)

k̂�k

(ri +1)!
π(k̂i)

(
(k− k̂+ ei|q⊗ e j|2)i jPk−k̂+ei|q⊗e j|2

)
Hi( j, pi)

 .

Now, note that

q

∏
p=1

(ηp1 +ηp2)
(
A(α)′P(α)+P(α)A(α)

)
=

2

∑
p1=1

· · ·
2

∑
pi=1
· · ·

2

∑
pq=1

η1p1 · · ·ηipi · · ·ηqpq
(
A(α)′P(α)+P(α)A(α)

)
, (3.34)

and finally, (3.30) can be tested since all terms have the same partial degrees for both α and η . The

next lemma presents LMI relaxations for the robust stability (analysis) problem of the parameter-

varying matrix A(α(t)) for any pair (α, α̇) ∈ Λ×Ω.

42



Lemma 3.1. [39] Let Λ be a multi-simplex of dimension N = (2,2, . . . ,2). The Λ-homogeneous

polynomial matrix A(α(t)) of partial degrees r = (r1,r2, . . . ,rq) is robustly stable for any pair

(α, α̇) ∈ Λ×Ω, if there exists g = (g1,g2, . . . ,gq), k ∈Q(N,g) and matrices Pk = P′k ∈Rn×n such

that for all (i1, i2, . . . , iq) ∈ {1,2}×{1,2}× ·· ·×{1,2} the following LMIs are satisfied

Pk > 000n,

Φk = ∑
k̃∈Q(N,r)

k̃�k

(
A′k̃Pk−k̃ +Pk−k̃Ak̃

)
+Ψk < 000n, ∀k ∈Q(N,g+ r)

where

Ψk =
q

∑
i=1

2

∑
j=1

∑
k̂∈Q(r+ei|q)

k̂�k

(ri +1)!
π(k̂i)

(
(k− k̂+ ei|q⊗ e j|2)i jPk−k̂+ei|q⊗e j|2

)
Hi( j, pi).

Proof. See [39].

It is clear from the previous example that the algebraic manipulation of the relaxed condi-

tions requires a priori knowledge on the formation law of the monomials, which depends on the

number of scheduling parameters and on the degree of the parametrization of the Lyapunov ma-

trix P(α(t)). As can be easily observed, the previous procedure deals with products between

two parameter-dependent matrices. However, When the LMIs to be solved are more complex

and have products involving three or more parameter-dependent matrices, the rules to compose

the monomials become much more complicated. Moreover, each PLMI demands manipulation

of different polynomials. Such task, as well as programming the resulting LMIs, is sophisticated,

time-demanding and can be a source of programming errors. Therefore, a specialized RObust LMI

Parser (ROLMIP)2 [56] has been recently developed as a tool to perform such manipulation and

LMI relaxation of the PLMIs. This package works jointly with the LMI parser YALMIP [57]

and the LMI solver SeDuMi [58] that is used in this dissertation to obtain the optimal solution of

2Available for download at http://www.dt.fee.unicamp.br/~agulhari/rolmip/

rolmip.htm
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the convex optimization problems of the synthesis conditions that will be given in the next three

chapters.

3.2.5 PBMI Algorithm

Since only the synthesis conditions of RGS DOF controller are formulated as PBMIs, it will be

covered in Chapter 5.

3.2.6 Inverse Transformation

Once a feasible solution is obtained using the PLMIs conditions or the PBMI algorithm, inverse

transformation is required to map the solution from multi-simplex domain α̃ into original parame-

ter space θ̃ . Since real-time implementation of the gain-scheduling controllers follows the structure

of (3.18) that can be generalizes for a q-scheduling parameters as

Z(θ̃(t)) = Z0 +
q

∑
i=1

θ̃i(t)Zi. (3.35)

In other words, the key is to calculate Z j, for j = 0,1,2, · · · ,q, that required in real-time for

controller implementations.

• One scheduling parameter:

Z1,1 = Z0 +(θ̄1 + δ̄1)Z1, (3.36)

Z1,2 = Z0 +(θ̄1− δ̄1)Z1, (3.37)

Z2,1 = Z0 +(−θ̄1 + δ̄1)Z1, (3.38)

Z2,2 = Z0 +(−θ̄1− δ̄1)Z1. (3.39)

To obtain Z0 and Z1from the multi-simplex variables (after a feasible solution is found),

adding (3.36), (3.37), (3.38) and (3.39) to obtain

Z0 =
1
4
[Z1,1 +Z1,2 +Z2,1 +Z2,2].
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Then, (3.36)+ (3.37)− (3.38)− (3.39) to obtain

Z1 =
1

4θ̄
[Z1,1 +Z1,2−Z2,1−Z2,2].

• Two scheduling parameters: Equation (3.35) can be written as

Z(θ̃(t)) = Z0 + θ̃1(t)Z1 + θ̃2(t)Z2.

To obtain Z0, Z1, and Z2 from the multi-simplex variables (after a feasible solution is found),

adding all equations in (3.23) to obtain

Z0 =
1

16
[Z1,1,1,1 +Z1,1,1,2 +Z1,1,2,1 +Z1,1,2,2 +Z1,2,1,1

+Z1,2,1,2 +Z1,2,2,1 +Z1,2,2,2 +Z2,1,1,1 +Z2,1,1,2

+Z2,1,2,1 +Z2,1,2,2 +Z2,2,1,1 +Z2,2,1,2 +Z2,2,2,1 +Z2,2,2,2].

Then, (the 1st 8 equations)-minus-(the last 8 equations) to obtain

Z1 =
1

16θ̄1
[Z1,1,1,1 +Z1,1,1,2 +Z1,1,2,1 +Z1,1,2,2 +Z1,2,1,1

+Z1,2,1,2 +Z1,2,2,1 +Z1,2,2,2−Z2,1,1,1−Z2,1,1,2

−Z2,1,2,1−Z2,1,2,2−Z2,2,1,1−Z2,2,1,2−Z2,2,2,1−Z2,2,2,2].

Then, (the 1st 2 eqs)-minus-(the 2nd 2 eqs)-plus-(the 3rd 2 eqs)-minus-(the 4th 2 eqs)-plus-

... to obtain

Z2 =
1

16θ̄2
[Z1,1,1,1 +Z1,1,1,2−Z1,1,2,1−Z1,1,2,2 +Z1,2,1,1

+Z1,2,1,2−Z1,2,2,1−Z1,2,2,2 +Z2,1,1,1 +Z2,1,1,2

−Z2,1,2,1−Z2,1,2,2 +Z2,2,1,1 +Z2,2,1,2−Z2,2,2,1−Z2,2,2,2].

• Any number of scheduling parameters i = 1,2, · · · ,q :

Z0 =
1

22q

2

∑
j1=1

2

∑
j2=1
· · ·

2

∑
jq=1

2

∑
ki=1

2

∑
k2=1

· · ·
2

∑
kq=1

Z j1, j2,··· , jq,k1,k2,··· ,kq. (3.40)
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Zi =
1

22qθ̄i

2

∑
j1=1

2

∑
j2=1
· · ·

2

∑
jq=1

2

∑
ki=1

2

∑
k2=1

· · ·
2

∑
kq=1

(−1) ji+iZ j1, j2,··· , jq,k1,k2,··· ,kq. (3.41)

3.3 Summary

This chapter presented mathematical formulation of the RGS controller synthesis problem with

uncertain scheduling parameters. Then, a systematic solution procedure was given as well. The

next three chapters deal with the synthesis conditions of RGS SF, DOF, and SOF controllers with

guaranteed H2 and H∞ performance, respectively. Based on the procedure presented in this chap-

ter, numerical examples, simulations, and comparisons with other work from literature are given

in the next three chapters to demonstrate the effectiveness of the developed conditions.
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CHAPTER 4

RGS STATE-FEEDBACK CONTROL

In this chapter, characterizations of synthesis conditions for RGS State-Feedback (SF) control

with guaranteed H2 and H∞ performance subject to noisy scheduling parameters are developed.

The organization of this chapter is as follows. First, RGS synthesis problem formulation with

guaranteed H2 and H∞ performance are presented and then, PLMIs conditions for the synthesis

of H2 and H∞ controllers are developed. Numerical examples, simulations, and comparisons

with other approaches from literature is given to demonstrate the effectiveness of the developed

conditions. Finally, a short summary is given in the last section.

4.1 SF Synthesis Problem

Consider the following LPV system

SOL :=


ẋ(t) = A(θ(t))x(t)+Bu(θ(t))u(t)+Bw(θ(t))w(t),

z(t) =Cz(θ(t))x(t)+Dzu(θ(t))u(t)+Dzw(θ(t))w(t),
(4.1)

where x(t)∈Rn is the state, u(t)∈Rnu is the control input, w(t)∈Rnw is the disturbance input, and

z(t)∈Rnz is the controlled output. The system matrices have the following compatible dimensions

A(θ(t)) ∈ Rn×n, Bu(θ(t)) ∈ Rn×nu , Bw(θ(t)) ∈ Rn×nw , Cz(θ(t)) ∈ Rnz×n, Dzu(θ(t)) ∈ Rnz×nu ,

and Dzw(θ(t)) ∈ Rnz×nw .

The goal is to synthesize a RGS state-feedback controller of the form

u(t) = K(θ̃(t))x(t), (4.2)

to stabilize the closed-loop system (see Figure 3.2)

SCL :=


ẋ(t) = A (θ(t), θ̃(t))x(t)+B(θ(t), θ̃(t))w(t),

z(t) = C (θ(t), θ̃(t))x(t)+D(θ(t), θ̃(t))w(t).
(4.3)
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where
A (θ(t), θ̃(t)) = A(θ(t))+Bu(θ(t))K(θ̃(t)),

B(θ(t), θ̃(t)) = Bw(θ(t)),

C (θ(t), θ̃(t)) =Cz(θ(t))+Dzu(θ(t))K(θ̃(t)),

D(θ(t), θ̃(t)) = Dzw(θ(t)).

(4.4)

Furthermore, performance bounds in terms of H2 and H∞ should be guaranteed as well.

The controller matrix in (4.2) is assumed to have affine parametrization with respect to the

Measured Scheduling Parameters (MSPs). In other words, the controller matrix, K(θ̃(t)), is pa-

rameterized as

K(θ̃(t)) = K0 +
q

∑
i=1

θ̃i(t)Ki. (4.5)

Therefore, the goal is to obtain the controller coefficients Ki for i = 0,1,2, · · · ,q, to implement the

RGS controller by using only the MSPs θ̃i.

4.2 RGS H2 Control

Since LPV systems is the topic of this dissertation, the term "H2 norm" for LPV systems should

be treated with care since the standard H2 control theory is originally developed for LTI systems.

However, several definitions of H2 norm for LPV systems have been proposed in literature [59].

These definitions can essentially be divided into the following two groups,

• Deterministic interpretation where the exogenous input is modeled as unknown disturbance

belongs to a bounded L2 energy set [60], and

• Stochastic interpretation based on the covariance of the output due to Gaussian white noise

[61].

It is well-known that these definitions coincide for LTI systems, but not for the LPV case. In pursu-

ing the extension of the second definition to the LPV case, care must be exercised since the output

to stationary noise may no longer be stationary. This leads to two different interpretations based
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on whether the average or worst-case output variance are considered [59]. In this dissertation, the

stationary white noise interpretation is used and the worst-case output variance is defined as the

squared H2 norm for LPV systems. Since this norm can be calculated in terms of the Lyapunov

matrix, such a choice of H2 norm interpretation appears to be most appropriate for the synthesis

approach developed in this dissertation.

Problem 4.1. Suppose that the scheduling parameters θ(t) are provided as θ̃(t) with uncertainty

δ (t) as defined in (3.3). Suppose further that D(θ(t), θ̃(t)) = 0 in (4.3). Converting all the open-

loop system matrices and synthesis variables to the multi-simplex variables α or α̃ instead of θ and

θ̃ , respectively, using (3.15) and (3.16). For a given positive scalar ν , find a RGS state-feedback

controller in the form of (4.2) to stabilize the closed-loop system (4.3) for any pair (α̃(t), ˙̃α(t)) ∈

Λ×Ω and satisfy

sup
(α̃(t), ˙̃α(t))∈Λ×Ω

EEE
{∫ T

0
z(t)′z(t)dt

}
< ν

2, (4.6)

for the disturbance input w(t) given by

w(t) = w0δ (t)

where δ (t) is the Dirac’s delta function and w0 is a random variable satisfying

E
{

w0w′0
}
= Ik

and E{·} denotes the mathematical expectation.

Lemma 4.1. [62] Let D(θ(t), θ̃(t)) = 0 in (4.3). For a given positive scalar ν , if there exist a con-

tinuously differentiable positive-definite matrix P(α) = P(α)′ ∈ Rn×n and parameter-dependent

matrix W (α) =W (α)′ ∈ Rnz×nz such that the following PLMIs are satisfied
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 A (α, α̃)P(α)+P(α)A (α, α̃)′− Ṗ(α) ?

B(α, α̃)′ −I

< 000, (4.7)

 P(α) ?

C (α, α̃)P(α) W (α)

> 000, (4.8)

trace(W (α))< ν
2, (4.9)

then the closed-loop system defined in (4.3) is asymptotically stable for any pairs (α̃, ˙̃α) ∈ Λ×

Ω and (4.6) is satisfied, where A (α, α̃), B(α, α̃), and C (α, α̃) are the closed system matrices

defined in (4.3) with θ and θ̃ replaced by α and α̃ using (3.15) and (3.16).

In view of Lemma 4.1 and equation (4.6), ν represents an upper bound of the H2 norm of the

closed-loop system (4.3). Before presenting PLMIs synthesis conditions Finsler’s lemma will be

given since it is used in the derivation of the synthesis conditions [63, 64].

Lemma 4.2. Let ζ ∈ Rn, Ψ ∈ Rn×n and V ∈ Rm×n with rank(V ) < n, V⊥ such that VV⊥ = 0.

Then, the following conditions are equivalent:

i) ζ ′Ψζ < 0,∀ ζ 6= 0 : V ζ = 0;

ii) V⊥
′

Ψ V⊥ < 0;

iii) ∃ µ ∈ R : Ψ−µV ′V < 0;

iv) ∃ X ∈ Rn×m : Ψ+XV +V ′X ′ < 0.

Theorem 4.1. Let D(θ(t), θ̃(t)) = 0 in (4.3). Given a scalar ν > 0 and a sufficiently small scalar

ε > 0. If there exist a continuously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈

Rn×n, parameter-dependent matrices W (α) =W (α)′ ∈Rnz×nz , Z(α̃)∈Rnu×n, G(α̃)∈Rn×n for
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any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that the following PLMIs are satisfied
A(α)G(α̃)+Bu(α)Z(α̃)+(•)′− Ṗ(α) ? ?

P(α)−G(α̃)+ ε(A(α)G(α̃)+Bu(α)Z(α̃))′ −ε(G(α̃)+G(α̃)′) ?

Bw(α)′ 000nw×n −Inw

 < 0002n+nw,(4.10)

 G(α̃)+G(α̃)′−P(α) ?

Cz(α)G(α̃)+Dzu(α)Z(α̃) W (α)

 > 000n+nz ,(4.11)

trace(W (α)) < ν
2. (4.12)

Then, the gain-scheduling controller

K(α̃) = Z(α̃)G(α̃)−1, (4.13)

stabilizes the closed-loop system with guaranteed H2 performance bound ν satisfying (4.6).

Proof. Using slack variable approach, additional optimization variable U(α̃) can be introduced via

Finsler’s lemma to decouple the dynamic matrix A(α) from Lyapunov matrix P(α), hence using

iv) in Lemma 4.2, inequality (4.7) can be written

Ξ(α)+U(α̃)V (α)+V (α)′U(α̃)′ < 000, (4.14)

where,

Ξ(α) :=


−Ṗ(α) P(α) 000

P(α) 000 000

000 000 I

 , U(α̃) :=


G(α̃)′ 000

Y (α̃)′ 000

000 I

 , V (α) :=

 A(α)′ −I 000

Bw(α)′ 000 −I

 ,

such that V (α)⊥
′

Ξ(α) V (α)⊥ < 000, with V (α)⊥
′
= [I A(α) Bw(α)]. Therefore, substituting
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these relations into (4.14),
−Ṗ(α) P(α) 000

P(α) 000 000

000 000 I

+


G(α̃)′ 000

Y (α̃)′ 000

000 I


 A(α)′ −I 0

Bw(α)′ 000 −I



+


A(α) Bw(α)

−I 000

000 −I


 G(α̃) Y (α̃) 000

000 000 I

< 000. (4.15)

At this end, it is important to impose particular structure to the slack variable U(α̃) to maintain

convex parametrization. Therefore, setting Y (α̃) = εG(α̃) is sufficient to keep convexity of (4.15),

where ε is a scalar used as an extra degree of freedom to perform line search for performance

improvement [65]. Substituting for A(α) as closed-loop matrix A (α, α̃) given by (4.4) with α

and α̃ replacing θ and θ̃ , respectively, and the change of variable Z(α̃) = K(α̃)G(α̃) yields
−Ṗ(α) P(α) 000

P(α) 000 000

000 000 I

+


G(α̃)′A (α, α̃)′ −G(α̃)′ 000

εG(α̃)′A (α, α̃)′ −εG(α̃)′ 000

Bw(α)′ 000 −I



+


A (α, α̃)G(α̃) εA (α, α̃)G(α̃) Bw(α)

−G(α̃) −εG(α̃) 000

000 000 −I

< 000,

that directly lead to (4.10). Multiplying (4.11) from left by [C (α, α̃) − I] and by its transpose

from right with C (α, α̃) in (4.4) to obtain

W (α)> C (α, α̃)P(α)C (α, α̃)′

with Schur complement, (4.8) can be recovered. The PLMI (4.12) ensures that ν is the guaranteed

cost (upper bound) of the H2 norm of the closed-loop system.
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4.3 RGS H∞ Control

Problem 4.2. Suppose that the scheduling parameters θ(t) are provided as θ̃(t) with uncertainty

δ (t). Converting all the open-loop system matrices and synthesis variables to the multi-simplex

variables α or α̃ instead of θ and θ̃ , respectively, using (3.15) and (3.16). For a given positive

scalar γ∞, find a RGS state-feedback controller in the form of (4.2) to stabilize the closed-loop

system (4.3) for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω and satisfy

sup
(α̃(t), ˙̃α(t))∈Λ×Ω

sup
w∈L2,w6=0

‖z(t)‖2
‖w(t)‖2

< γ∞. (4.16)

The next lemma will be used in the derivations of the PLMIs synthesis conditions.

Lemma 4.3. [66] If there exists a continuously differentiable parameter-dependent symmetric

positive-definite matrix P(α) ∈ Rn×n for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that the following

PLMI satisfied 
A (α, α̃)P(α)+(•)′− Ṗ(α) ? ?

C (α, α̃)P(α) −Inz ?

B(α, α̃)′ D(α, α̃)′ −γ2
∞Inw

< 000, (4.17)

the closed-loop system (4.3) is asymptotically stable with (4.16) satisfied, where A (α, α̃), B(α, α̃),

C (α, α̃) and D(α, α̃) are the closed system matrices defined in (4.3) with θ and θ̃ replaced by α

and α̃ using (3.15) and (3.16).

Theorem 4.2. Given a scalar γ∞ > 0 and a sufficiently small scalar ε > 0. If there exist a continu-

ously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈Rn×n, parameter-dependent

matrices Z(α̃) ∈ Rnu×n, G(α̃) ∈ Rn×n for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that the following

PLMI satisfied

A(α)G(α̃)+Bu(α)Z(α̃)+(•)′− Ṗ(α) ? ? ?

P(α)−G(α̃)+ ε(A(α)G(α̃)+Bu(α)Z(α̃))′ −ε(G(α̃)+G(α̃)′) ? ?

C(α)G(α̃)+Du(α)Z(α̃) εC(α)G(α̃)+ εDu(α)Z(α̃) −Inz ?

Bw(α)′ 000nw×n Dw(α)′ −γ2
∞ Inw


< 000.

(4.18)
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Then, the gain-scheduling controller

K(α̃) = Z(α̃)G(α̃)−1,

stabilizes the closed-loop system with guaranteed H∞ performance bound γ∞ satisfying (4.16).

Proof. Additional slack variable U(α̃) can be introduced to inequality (4.17) using Lemma 4.2 to

decouple the dynamic matrix from Lyapunov matrix P(α). With A (α, α̃) and C (α, α̃) are the

closed-loop matrices, inequality (4.17) can be written

Ξ(α)+Φ(α̃)< 0

with

Ξ(α) = diag


 −Ṗ(α) P(α)

P(α) 0

 ,
 −Inz Dw(α)

Dw(α)′ −γ2
∞Inw




=



−Ṗ(α) P(α) 0 0

P(α) 0 0 0

0 0 −Inz Dw(α)

0 0 Dw(α)′ −γ2
∞Inw


(4.19)

and

Φ(α̃) =U(α̃)V (α)+V (α)′U(α̃)′ (4.20)

where

U(α̃) =



G(α̃)′ I

εG(α̃)′ 0

0 0

0 0


, V (α) =

 A (α, α̃)′ −I C (α, α̃)′ 0

0 0 0 Bw(α)


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such that V (α)⊥
′
Ξ(α)V (α)⊥ < 0, with

V (α)⊥ =



I 0

A (α, α̃)′ C (α, α̃)′

0 I

0 0


.

Substituting U(α̃) and V (α) in (4.20),

Φ(α̃) =U(α̃)V (α)+V (α)′U(α̃)′ =

G(α̃)′ I

εG(α̃)′ 0

0 0

0 0


 A (α, α̃)′ −I C (α, α̃)′ 0

0 0 0 Bw(α)



+



A (α, α̃) 0

−I 0

C (α, α̃) 0

0 Bw(α)′


 G(α̃) εG(α̃) 0 0

I 0 0 0

 ,

Φ(α̃) =



G(α̃)′A (α, α̃)′ −G(α̃)′ G(α̃)′C (α, α̃)′ Bw(α)

εG(α̃)′A (α, α̃)′ −εG(α̃)′ εG(α̃)′C (α, α̃)′ 0

0 0 0 0

0 0 0 0



+



A (α, α̃)G(α̃) εA (α, α̃)G(α̃) 0 0

−G(α̃) −εG(α̃) 0 0

C (α, α̃)G(α̃) εC (α, α̃)G(α̃) 0 0

Bw(α)′ 0 0 0


,
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Φ(α̃) =



G(α̃)′A (α, α̃)′+A (α, α̃)G(α̃) −G(α̃)′+ εA (α, α̃)G(α̃) G(α̃)′C (α, α̃)′ Bw(α)

εG(α̃)′A (α, α̃)′−G(α̃) −εG(α̃)′− εG(α̃) εG(α̃)′C (α, α̃)′ 0

C (α, α̃)G(α̃) εC (α, α̃)G(α̃) 0 0

Bw(α)′ 0 0 0


, (4.21)

then, adding (4.19) and (4.21) and substituting for closed-loop matrices with the change of vari-

ables K(α̃) = Z(α̃)G(α̃)−1, inequality (4.18) can be obtained.

4.4 Extension to Unmeasurable Parameters

Theorem 4.1 and Theorem 4.2 address the design problem of RGS state-feedback controllers in

which all the time-varying parameters of the plant are measurable on-line. However, there are

many cases where some of the parameters are available for real-time measurement and others are

not. In such a case, the unmeasurable parameters can be treated as plant uncertainties, then the

synthesized gain-scheduling controller will be independent of these parameters and the resulting

closed-loop system should be robust against these parameters as well.

To illustrate, the following notation should be defined for partial degrees in the multi-simplex

domain: (i) g = (g1,g2, · · · ,g2q) is a vector representing the partial degrees associated with Lya-

punov matrix P(α) [40]. Thus, gi represents the degree of Lyapunov matrix associated with the

i-th unit-simplex. (ii) s = (s1,s2, · · · ,s2q) is a vector representing the partial degrees associated

with the synthesis matrices G(α̃) and Z(α̃) in Theorem 4.1. Therefore, choosing s = (1,1, · · · ,1),

rational controller can be synthesized since the synthesis matrices have affine dependence on the

varying parameters. On the other hand, a robust controller (i.e., parameter-independent) can be

designed by setting s = (0,0, · · · ,0). Thus, proper selection of partial degrees of Lyapunov matrix

and synthesis variables has significant influence not only on the achieved performance but also on

the parametrization of the synthesized controller (robust, affine, or rational) [40].
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As a rule of thumb, all the partial degrees of the synthesis variables (s) should be chosen

the same for gain-scheduling control, however, setting some of these degrees to zero results in

a partially scheduled controller. This remarkable feature could be exploited efficiently to handle

the case of unmeasurable scheduling parameters. In other words, the synthesis variables G(α̃)

and Z(α̃) will be independent of these parameters (corresponding to the zero-degree simplexes),

leading to the notion of selective gain-scheduling controllers that was addressed for the first time

in [40]. Suppose for example an LPV system that depends on two time-varying parameters, one

of them is measurable (the first one) and the second one is not (uncertain). Then by setting the

partial degrees of the synthesis variable as s = (1,0) results in a controller that is dependent on

the first parameter and independent on the second one. This selectivity feature can also be used

to investigate the impact of each of the scheduling parameter independently on the achievable

performance [40].

Due to presence of the additional slack variable G(α̃) in Theorem 4.1, the controller will be

synthesized using this variable instead of Lyapunov matrix P(α). Therefore, the partial degrees

of the synthesis variable s and Lyapunov matrix g could be different. Thus, robust controllers can

be designed with parameter-dependent Lyapunov matrix that improves the controller performance

considerably. Corollary 4.1 will utilize this feature to synthesize robust controllers that will be

used in Section 4.5 for performance comparison with gain-scheduling controllers.

Therefore, suppose that all scheduling parameters are unavailable for real-time measurement.

By setting the partial degrees of the synthesis variables G(α̃) and Z(α̃) to be a zero vector, i.e. s =

(0,0, · · · ,0), robust controller (parameter-independent) is synthesized since in this case G(α̃) = G

and Z(α̃) = Z. In other words, Theorem 4.1 treats robust controller synthesis as a special case.

Corollary 4.1. Given a scalar ν > 0 and a sufficiently small positive scalar ε > 0. If there exist

a continuously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈ Rn×n, parameter-

dependent matrix W (α) =W (α)′ ∈ Rnz×nz , constant matrices Z ∈ Rnu×n and G ∈ Rn×n for any
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pairs (α(t), α̇(t)) ∈ Λ×Ω such that the following PLMIs are satisfied
A(α)G+Bu(α)Z +(•)′ ? ?

P(α)−G+ ε(A(α)G+Bu(α)Z)′ −ε(G+G′) ?

Bw(α)′ 000nw×n −Inw

< 02n+nw,

 G+G′−P(α) ?

Cz(α)G+Dzu(α)Z W (α)

> 000n+nz,

trace(W (α))< ν
2,

Then, the robust controller

K = ZG−1,

stabilizes the closed-loop system with guaranteed H2 performance bounded ν satisfying (4.6).

Proof. The proof can be done in a similar way to that of Theorem 4.1.

Corollary 4.2. Given a scalar γ∞ > 0 and a sufficiently small scalar ε > 0. If there exist a contin-

uously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈ Rn×n, constant matrices

Z ∈ Rnu×n, G ∈ Rn×n for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that the following PLMI satisfied

A(α)G+Bu(α)Z +(•)′ ? ? ?

P(α)−G+ ε(A(α)G+Bu(α)Z)′ −ε(G+G′) ? ?

C(α)G+Du(α)Z εC(α)G+ εDu(α)Z −Inz ?

Bw(α)′ 000nw×n Dw(α)′ −γ2
∞ Inw


< 0002n+nz+nw .

Then, the robust controller

K = ZG−1,

stabilizes the closed-loop system with guaranteed H∞ performance bound γ∞ satisfying (4.16).

Proof. The proof can be done in a similar way to that of Theorem 4.2

Remark 4.1. As have been mentioned in Subsection 3.2.4, matrix coefficient check relaxation

method [41, 39] with ROLMIP [56] is used solve the conditions of Theorem 4.1 and Theorem 4.2

to obtain the optimal controller.
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4.5 Numerical Examples

The objective of the numerical examples presented in this section is to illustrate the effectiveness of

the developed conditions. To facilitate comparisons with other methods, two illustrative examples

have been borrowed from literature, one for state-feedback and the other is for dynamic output-

feedback controller. The routines for theses examples are implemented in MATLAB R© (R2013a)

using a computer equipped with Intel Quad Core i5 (2.4 GHz) processor, 4 GB RAM and Windows

7 (64-bit) operating system.

Example 4.1: Consider the following LPV system [67],[1]. It represents the dynamics of the

mechanical system with two-masses and two-springs,

 A(θ) Bu(θ) Bw(θ)

Cz(θ) Dzu(θ)

=



0 0 1 0 0 0

0 0 0 1 0 0

−2 1 −θ1(t) 0 0 1

2 −2 0 −2θ1(t) 1 0

0 1 0 0 θ2(t)


,

with the following bounds,

0.5≤ θ1(t)≤ 3.5, 0.5≤ θ2(t)≤ 1.5, |θ̇q(t)|≤ κ,

|δq(t)|≤ ζ , |δ̇q(t)|≤ 10×ζ , q = 1,2.

After applying the procedure developed in Section 3.2 to convert the system matrices into

multi-simplex domain, Theorem 4.1 is used to synthesize gain-scheduling controller for this sys-

tem with the given bounds. Table 4.1 illustrates the guaranteed H2 performance bound ν with

different uncertainty bounds (ζ ). As expected, ν is influenced by the uncertainty bound ζ associ-

ated with the scheduling parameters θq(t) for q = 1,2. Corollary 4.1 is used to synthesize robust

state-feedback controllers which achieves closed-loop performance presented in the last row of the

Table 4.1.
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Table 4.1: Guaranteed H2 performance: Theorem 4.1.

ζ
κ

0.001 0.01 0.1 1
0.1 0.092 0.093 0.097 0.129
0.2 0.173 0.173 0.178 0.157
0.5 0.276 0.276 0.278 0.285
1 0.278 0.279 0.280 0.287
2 0.282 0.283 0.286 0.295

Robust 0.282 0.283 0.286 0.295

Table 4.2: Guaranteed H2 performance: method of [1].

ζ
κ

0.001 0.01 0.1 1
0.1 0.070 0.077 0.139 0.147
0.2 0.132 0.141 0.192 0.201
0.5 0.258 0.263 0.299 0.300
1 0.284 0.289 0.300 0.300
2 0.300 0.300 0.300 0.300

Robust 0.300 0.300 0.300 0.300

Note that, as the uncertainty bound (measurement noise) increases, the achieved H2 perfor-

mance of the gain-scheduling controller deteriorates and approaches the performance provided by

the robust controller. For example, when ζ = 2 the achieved performance is the same as the per-

formance provided by the robust controller. This is a logical observation since as the uncertainty

of the scheduling parameter increases, the measurement will be unreliable for scheduling the con-

troller anymore. In this case, there is no benefit for the gain-scheduling controller over the robust

one since the achievable performance of the two designs is the same. Table 4.2 from [1] is given

here to facilitate comparison with our controllers. Although the two methods achieve competitive

results, it can be noted that the controllers synthesized via Theorem 4.1 achieve better performance

than the controllers of method [1] for large uncertainty bound ζ and rates of variations of the pa-

rameters κ . Figure 4.1 illustrates the achieved performance as function of ζ and κ . This figure

demonstrates that as ζ and κ increase, the performance of gain-scheduling controllers approach the

performance of the robust controller. A line search for ε with a linear-grid of 200 points between
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Figure 4.1: H2 guaranteed cost.

10−3 and 10−1 has been conducted and is shown in Figure 4.2.

Example 4.2: Consider the following LPV system [1],

A(θ(t)) =

 25.9−60θ(t) 1

20−40θ(t) 34−64θ(t)

 , Bu =

 3

2

 ,
Bw =

 −0.03

−0.47

 , Cz =

 1 1

0 0

 , Dzw =

 0

0

 , Dzu =

 0

1

 .
The varying parameter θ(t) has the following bounds 0≤ θ(t)≤ 1, |θ̇(t)|≤ κ , with measurement

uncertainty bound |δ (t)|≤ ζ , and |δ̇ (t)|≤ 10×ζ .

Theorem 4.2 is used to synthesize state-feedback RGS H∞ controller for this example. The

guaranteed H∞ performance is shown in Table 4.3, as expected, the performance deteriorates as

the uncertainty bound δ and the rates of change of the parameters κ increase. Robust controller

has been synthesized as well to study the achieved performance compared to the performance of

gain-scheduling controllers for different noise bounds. The performance of the robust controller is
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Figure 4.2: Line search for ε to obtain the optimal controller for ζ = 0.5 and κ = 0.01.

shown in the last row of Table 4.3. While the gain-scheduling controller shows better performance

for low range of uncertainty size, it provides no improvement over the robust controller for ζ ≥ 0.5.

Thus, for ζ ≥ 0.5, there is no point to implement gain-scheduling controller as demonstrated in

Figure 4.3 that shows the guaranteed H∞ performance as function of ζ and κ . This is a natural

expectation, since for a larger noise bounds the measurement would be unreliable for controller

scheduling. Table 4.4 shows the results of [1] for the same example. Comparing these two tables,

it can be observed that our approach achieves very competitive results with those associated with

[1]. A line search for ε with a linear-grid of 350 points between 10−4 and 10−1 has been conducted

and is shown in Figure 4.4 for ζ = 0.2 with different rates of change (κ).

Simulation study has been conducted for this example to illustrate robustness of the synthesized

controller against the mismatch between the ASPs and MSPs. A scheduling parameter that is

defined as θ(t) = 0.5+ 0.5sin(0.2t) and a noisy version of this signal (θ̃(t)) are both shown in

Figure 4.5A. A random noise with bounds |δ (t)|≤ 0.075 and |δ̇ (t)|≤ 1 has been intentionally added
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Table 4.3: H∞ Guaranteed cost γ∞ using Theorem 4.2.

ζ
κ

0.001 0.01 0.1 1
0.01 0.583 0.584 0.589 0.652
0.1 0.718 0.718 0.727 0.793
0.2 0.791 0.791 0.792 0.795
0.5 0.795 0.795 0.795 0.795

Robust 0.795 0.795 0.795 0.795

Table 4.4: H∞ Guaranteed cost γ∞ using method of [1].

ζ
κ

0.001 0.01 0.1 1
0.01 0.480 0.489 0.594 0.795
0.1 0.612 0.622 0.732 0.795
0.2 0.752 0.763 0.795 0.795
0.5 0.795 0.795 0.795 0.795

Robust 0.795 0.795 0.795 0.795
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Figure 4.3: H∞ guaranteed performance.
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Figure 4.4: H∞ performance vs. ε with ζ = 0.2.

to the ASP to imitate measurement noise. Then, Theorem 4.2 is used to synthesize controller (with

ε = 0.001) at the vertices of the multi-simplex domain. Then equation (3.24) is utilized to compute

the coefficient matrices of the controller in (4.5) as

K0 =[1.5940 −258.245] , K1 = [1.0760 −11.5690] ,

which is used to implement the controller in real-time. To simulate the closed-loop system, an L2

disturbance signal defined by w(t) = exp(−0.4t) is generated as disturbance input. The responses

to this disturbance for both cases are shown in Figure 4.5B. Clearly, the noise amplitude in the

response (associated with the noisy scheduling parameter) is much less than the noise amplitude

in the MSP. This simulation result not only shows good robustness against measurement noise but

also good disturbance attenuation.
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Figure 4.5: Simulation : A) Measured and exact scheduling parameters, B) Disturbance attenuation
responses associated with exact and noisy scheduling parameter.

4.6 Summary

RGS State-feedback controller synthesis conditions for LPV systems were developed in this chap-

ter. These conditions guarantee H2 and H∞ performance subject to uncertain scheduling param-

eters. Synthesis conditions are formulated in terms of PLMIs with a single line search parameter
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ε . By the virtue of slack variable approach, the formulation of both controllers, H2 and H∞ ,

are independent of Lyapunov matrix. Therefore, considerable performance achievement can be

attained with the developed conditions. Numerical examples and simulation results are given as

well. Therefore, the synthesis conditions encompass robust (parameter-independent) controller

synthesis as a special case. Comparison study is conducted with the existing approaches from lit-

erature as well. Simulations and comparison results show that the synthesized controllers not only

show robustness against uncertainties in the scheduling parameters, but also achieve improved

performance.
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CHAPTER 5

RGS DYNAMIC OUTPUT-FEEDBACK CONTROL

In this chapter, characterization of synthesis conditions in terms of PBMIs are derived for continuous-

time polytopic LPV systems with noisy scheduling parameters. Both, H2 and H∞ full-order dy-

namic output-feedback controllers are investigated. Since the synthesis conditions are formulated

as PBMIs, numerical algorithm has been developed to solve these conditions iteratively. Illustrative

examples, simulations, and comparisons with other approaches from literature are also included.

A short summary is given in the last section.

5.1 DOF Synthesis Problem

Consider the following open-loop system

SOL :=


ẋ(t) = A(θ(t))x(t)+Bu(θ(t))u(t)+Bw(θ(t))w(t)

z(t) =Cz(θ(t))x(t)+Dzu(θ(t))u(t)+Dzw(θ(t))w(t)

y(t) =Cy(θ(t))x(t)+Dyw(θ(t))w(t),

(5.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu is the control input, w(t) ∈ Rnw is the disturbance input,

z(t) ∈ Rnz is the controlled output, and y(t) ∈ Rny is the measured output. The system matri-

ces have the following compatible dimensions A(θ(t)) ∈ Rn×n, Bu(θ(t)) ∈ Rn×nu , Bw(θ(t)) ∈

Rn×nw , Cz(θ(t)) ∈ Rnz×n, Dzu(θ(t)) ∈ Rnz×nu , Dzw(θ(t)) ∈ Rnz×nw , Cy(θ(t)) ∈ Rny×n, and

Dyw(θ(t)) ∈ Rny×nw .

The goal is to synthesize full-order dynamic output-feedback controller of the form

KDOF :=


ẋc(t) = Ac(θ̃(t))xc(t)+Bc(θ̃(t))y(t)

u(t) =Cc(θ̃(t))x(t)
(5.2)
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to stabilize the closed-loop system

SCL :=


ξ̇ (t) = A (θ(t), θ̃(t))ξ (t)+B(θ(t), θ̃(t))w(t)

z(t) = C (θ(t), θ̃(t))ξ (t)+D(θ(t), θ̃(t))w(t)
(5.3)

with ξ (t) =
[
x(t)′ xc(t)′

]′ and

 A (θ(t), θ̃(t)) B(θ(t), θ̃(t))

C (θ(t), θ̃(t)) D(θ(t), θ̃(t))

=


A(θ(t)) 000 Bw(θ(t))

000 000 000

Cz(θ(t)) 000 000



+


0 Bu(θ(t))

In 000

000 Dzu(θ)


 Ac(θ̃(t)) Bc(θ̃(t))

Cc(θ̃(t)) 000


 000 In 000

Cy(θ(t)) 000 Dyw(θ(t))

 .
where

A (θ(t), θ̃(t)) =

 A(θ(t)) Bu(θ(t))Cc(θ̃(t))

Bc(θ̃(t))Cy(θ(t)) Ac(θ̃(t))

 ,
B(θ(t), θ̃(t)) =

 Bw(θ(t))

Bc(θ̃(t))Dyw(θ(t))

 ,
C (θ(t), θ̃(t)) =

[
Cz(θ(t)) Dzu(θ(t))Cc(θ̃(t))

]
,

D(θ(t), θ̃(t)) = Dzw(θ(t)).

(5.4)

Furthermore, performance1 bounds in terms of H2 and H∞ norms are guaranteed.

Lemma 5.1. For a given parameter-dependent symmetric matrix Π(α) and matrices Ψ1(α) and

Ψ2(α) with compatible dimensions. If one of the two following conditions holds Π(α) ?

[Ψ1(α) H(α)Ψ2(α)] −H(α)

< 000, (5.5)

1Note that in the H2 control problem, the feed-through matrix of the closed-loop system should
be zero, i.e. D(θ , θ̃) = 000.
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 Π(α) ?

[H(α)Ψ1(α) Ψ2(α)] −H(α)

< 000 (5.6)

for some parameter-dependent symmetric positive-definite matrix H(α), the condition

Π(α)+

 000 ?

Ψ2(α)′Ψ1(α) 000

< 000, (5.7)

holds.

Proof. Applying Schur compliment to (5.5) yields

Π(α)+

 Ψ1(α)′

Ψ2(α)′H(α)′

H(α)−1
[

Ψ1(α) H(α)Ψ2(α)

]
< 000

that can be written as

Π(α)+

 000 ?

Ψ2(α)′Ψ1(α) 000

 <−

 Ψ1(α)′H(α)−1Ψ1(α) 000

000 Ψ2(α)′H(α)Ψ2(α)

 . (5.8)

Since the RHS is negative-definite, (5.7) holds. The proof for (5.6) can be done in a similar

manner.

5.2 DOF H2 Control

Problem 5.1. Suppose that the scheduling parameters θ(t) are provided as θ̃(t) with uncertainty

δ (t) as defined in (3.3). Suppose further that D(θ(t), θ̃(t)) = 0 in (5.3). Converting all the open-

loop system matrices and synthesis variables to the multi-simplex variables α or α̃ instead of θ

and θ̃ , respectively, using (3.15) and (3.16). For a given positive scalar ν , find a RGS dynamic

output-feedback controller in the form of (5.2) to stabilize the closed-loop system (5.3) for any pair

(α̃(t), ˙̃α(t)) ∈ Λ×Ω such that

sup
(α̃(t), ˙̃α(t))∈Λ×Ω

EEE
{∫ T

0
z(t)′z(t)dt

}
< ν

2, (5.9)
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for the disturbance input w(t) given by

w(t) = w0δ (t)

where δ (t) is the Dirac’s delta function and w0 is a random variable satisfying

E
{

w0w′0
}
= Ik

and E{·} denotes the mathematical expectation.

The next theorem provides PLMIs conditions for synthesizing RGS dynamic output-feedback

controller of the form (5.2) that is robust to the measurement uncertainties with a guaranteed H2

performance.

Assumption 5.1. The measurement matrix in (5.1) is constant matrix, i.e. Cy(θ) =Cy.

Theorem 5.1. Consider the system defined in (5.1). Given a scalar ν > 0 and a sufficiently small

scalar ε > 0, there exists a gain-scheduling dynamic output-feedback controller KDOF in the form

of (5.2) such that the closed-loop system SCL in (5.3) is asymptotically stable with a guaranteed

H2 performance bound ν satisfying (5.9), if there exist continuously differentiable parameter-

dependent matrices 0<P11(α)=P11(α)′ ∈Rn×n, 0<P22(α)=P22(α)′ ∈Rn×n, P21(α)∈

Rn×n, and parameter-dependent matrices W (α) =W (α)′ ∈Rnz×nz , R(α̃)∈Rn×n, S(α̃)∈Rn×n,

T (α̃) ∈ Rn×n, K1(α̃) ∈ Rn×n, K2(α̃) ∈ Rn×ny , K3(α̃) ∈ Rnu×n, and positive-definite parameter-

dependent matrix H(α̃) ∈ Rn×n satisfying the following PLMIs Π2(α, α̃) ?

[Ψ1(α̃) H(α̃)Ψ2(α̃)] −H(α̃)

< 0005n+nw (5.10)

or  Π2(α, α̃) ?

[H(α̃)Ψ1(α̃) Ψ2(α̃)] −H(α̃)

< 0005n+nw (5.11)
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with

Ψ1(α̃) = [∆A(α, α̃)R(α̃)+∆Bu(α, α̃)K3(α̃) 000n×n] ,

Ψ2(α̃) =

[
S(α̃)′ 000n×n 000n×nw

]
,

∆A(α, α̃) := A(α̃)−A(α), ∆Bu(α, α̃) := Bu(α̃)−Bu(α)

(5.12)

and

trace(W (α))< ν
2 (5.13) P11(α) ?

P21(α) P22(α)

> 000n×n, (5.14)


R(α̃)+R(α̃)′−P11(α) ? ?

In +T (α̃)−P21(α) S(α̃)+S(α̃)′−P22(α) ?

Cz(α)R(α̃)+Dzu(α)K3(α̃) Cz(α) W (α)

> 0002n+nz (5.15)

Π2(α, α̃) =:



A(α)R(α̃)+Bu(α)K3(α̃)+(•)′−Ṗ11(α) ?

A(α)′+K1(α̃)−Ṗ21(α) S(α̃)A(α)+K2(α̃)Cy +(•)′−Ṗ22(α)

P11(α)−R(α̃)+ ε(R(α̃)′A(α)′+K3(α̃)′Bu(α)′) P21(α)′− In + εK1(α̃)′

P21(α)−T (α̃)+ εA(α)′ P22(α)−S(α̃)+ ε(A(α)′S(α̃)′+C′yK2(α̃)′)

Bw(α)′ Bw(α)′S(α̃)′+Dyw(α)′K2(α̃)′

? ? ?

? ? ?

−ε(R(α̃)+R(α̃)′) ? ?

−ε(T (α̃)+ In) −ε(S(α̃)+S(α̃)′) ?

000nw×n 000nw×n −Inw


,

(5.16)

for any pairs (α̃(t), ˙̃α(t)) ∈ Λ×Ω. Then, the matrices of the gain-scheduling dynamic output-
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feedback controller KDOF in (5.2) can be obtained as follows

Cc(α̃) = K3(α̃)F(α̃)−1,

Bc(α̃) = X(α̃)−1K2(α̃),

Ac(α̃) = X(α̃)−1[K1(α̃)−S(α̃)A(α̃)R(α̃)−S(α̃)Bu(α̃)K3(α̃)F(α̃)

−X(α̃)K2(α̃)CyR(α̃)]F(α̃)−1,

(5.17)

where F(α̃)∈Rn×n and X(α̃)∈Rn×n can be obtained by taking any full-rank matrix factorization

of X(α̃)F(α̃) = T (α̃)−S(α̃)R(α̃).

Proof. To simplify notations in the proof, closed-loop system matrices A (α, α̃), B(α, α̃), and

C (α, α̃) in Lemma 4.1 will be denoted as A , B, and C , respectively. Using slack variable ap-

proach, additional optimization variables U(α̃) can be introduced to inequality (4.7) via Finsler’s

Lemma [64] to decouple the dynamic matrix A from Lyapunov matrix P(α). This leads to the

following sufficient condition of (4.7)

Ξ(α)+U(α̃)V (α̃)+V (α̃)′U(α̃)′ < 000, (5.18)

where,

Ξ(α) :=


−Ṗ(α) P(α) 000

P(α) 000 000

000 000 I

 , U(α̃) :=


G(α̃)′ 000

Y (α̃)′ 000

000 I

 , V (α) :=

 A ′ −I 000

B′ 000 −I

 ,
such that V (α̃)⊥

′
Ξ(α) V (α̃)⊥ < 000 and V (α̃)⊥

′
= [I A B]. Therefore, substituting these

relations into (5.18) leads to,
−Ṗ(α) P(α) 000

P(α) 000 000

000 000 I

+


G(α̃)′ 000

Y (α̃)′ 000

000 I


 A ′ −I 000

B′ 000 −I

+


A B

−I 000

000 −I


 G(α̃) Y (α̃) 000

000 000 I

< 000.

(5.19)

Note that it is important to impose particular structure to the slack variable U(α̃) to maintain

convex parametrization. Therefore, setting Y (α̃) = εG(α̃) is sufficient to keep (5.19) convex,
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where ε > 0 is a scalar used as an extra degree of freedom to perform line search for reducing

conservativeness [65]. This yields
−Ṗ(α) P(α) 000

P(α) 000 000

000 000 I

+


G(α̃)′A ′ −G(α̃)′ 000

εG(α̃)′A ′ −εG(α̃)′ 000

B′ 000 −I

+


A G(α̃) εA G(α̃) B

−G(α̃) −εG(α̃) 000

000 000 −I

< 000,

that can be written as
A G(α̃)+(•)′− Ṗ(α) ? ?

P(α)−G(α̃)+ ε(G(α̃)′A ′) −ε(G(α̃)+G(α̃)T ) ?

B′ 000nw×n −Inw

< 0002n+nw. (5.20)

Since block(2,2) of (5.20) implies G(α̃)+G(α̃)′ > 0, the matrix G(α̃) is invertible and can be

partitioned as,

G(α̃) =

 R(α̃) G1(α̃)

F(α̃) G2(α̃)

 ,
J(α̃) := G(α̃)−1 =

 S(α̃)′ J1(α̃)

X(α̃)′ J2(α̃)

 .
Define the following non-singular congruence transformation matrices,

Qg(α̃) :=

 R(α̃) I

F(α̃) 000

 ,
Qv(α̃) :=

 I S(α̃)′

000 X(α̃)′

 ,
(5.21)

such that,

G(α̃)Qv(α̃) = Qg(α̃),

J(α̃)Qg(α̃) = Qv(α̃).

(5.22)

In order to guarantee that congruence transformations in (5.21) have full-rank, block matrices

F(α̃) and X(α̃) should be non-singular. If this is not the case, small perturbation of F(α̃) and X(α̃)

in terms of norms can always be done such that F(α̃)+∆F(α̃) and X(α̃)+∆X(α̃) are invertible.
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The Lyapunov matrix can be partitioned as

P(α) :=

 P11(α) ?

P21(α) P22(α)

> 000,

and

Qv(α̃)′P(α)Qv(α̃) := P(α) =

 P11(α) ?

P21(α) P22(α)

> 000. (5.23)

Let

T1(α̃) =


Qv(α̃) 000 000

000 Qv(α̃) 000

000 000 Inw

 ,
Multiplying (5.20) by T1(α̃) from right and by T1(α̃)′ from left and using (5.22) lead to

Q′v(α̃)A Qg(α̃)+(•)′−Ṗ(α) ? ?

P(α̃)−Q′v(α̃)Qg(α̃)+ ε(Q′v(α̃)A Qg(α̃))′ −ε(Q′v(α̃)Qg(α̃)+(•)′) 000

B′Qv(α̃) 000 −Inw

< 000,

(5.24)

Then, substituting closed-loop matrices (5.4) into (5.24) and considering (5.21) and (5.23) with the

following relationships,

Qv(α̃)′Qg(α̃) =

 R(α̃) I

T (α̃) S(α̃)

 , T (α̃) := S(α̃)R(α̃)+X(α̃)F(α̃),

Qv(α̃)′A Qg(α̃) =

 A(α)R(α̃)+Bu(α)K3(α̃) A(α)

K1(α̃) S(α̃)A(α)+K2(α̃)Cy

 := Φ(α̃),

Qv(α̃)′B =

 Bw(α)

S(α̃)Bw(α)+K2(α̃)Dyw(α)

 ,
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inequality (5.24) can be written as

Φ(α̃)+Φ(α̃)′−

 Ṗ11(α) Ṗ21(α)′

Ṗ21(α) Ṗ22(α)

 ? ?

P(α)−

 R(α̃) In

T (α̃) S(α̃)

+ εΦ(α̃)′ −ε


 R(α̃) In

T (α̃) S(α̃)

+(•)′

 ?

[
Bw(α)′ Bw(α)′S(α̃)′+Dyw(α)′K2(α̃)′

]
0nw×2n −Inw


< 04n+nw,

(5.25)

where K1(α̃), K2(α̃), and K3(α̃) are intermediate controller variables defined as K1(α̃) K2(α̃)

K3(α̃) 000

 :=

 X(α̃) S(α̃)Bu(α̃)

000 I


 Ac(α̃) Bc(α̃)

Cc(α̃) 000


 F(α̃) 000

CyR(α̃) I

+
 S(α̃)

000

A(α̃)

[
R(α̃) 000

]
.

(5.26)

Since controller matrices should only depend on the MSPs, the open-loop matrices in (5.26)

are allowed to depend on the multi-simplex variables α̃ not α . However, A(α̃) and Bu(α̃) can be

written as
A(α̃) = A(α̃)+A(α)−A(α) = A(α)+∆A(α, α̃)

Bu(α̃) = Bu(α̃)+Bu(α)−Bu(α) = Bu(α)+∆Bu(α, α̃),

(5.27)

where ∆A(α, α̃) := A(α̃)− A(α), and ∆Bu(α̃,α) := Bu(α̃)− Bu(α). Hence, this substitution

allows us to construct controller matrices based only on the MSPs. Therefore, Substituting (5.27)

into (5.26) to obtain  K1(α̃) K2(α̃)

K3(α̃) 000

=

 K̄1(α̃) K̄2(α̃)

K̄3(α̃) 000

+Σ (5.28)

where

Σ :=

 S(α̃)∆A(α, α̃)R(α̃)+S(α̃)∆Bu(α, α̃)Cc(α̃)F(α̃) 000

000 000

 ,
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and K̄1(α̃) K̄2(α̃)

K̄3(α̃) 000

 :=

 X(α̃) S(α̃)Bu(α)

000 I


 Ac(α̃) Bc(α̃)

Cc(α̃) 000


 F(α̃) 000

CyR(α̃) I


+

 S(α̃)A(α)R(α̃) 000

000 000

 .
Substituting Cc(α̃) = K̄3(α̃)F(α̃)−1 = K3(α̃)F(α̃)−1 into Σ yields

Σ =

 S(α̃)∆A(α, α̃)R(α̃)+S(α̃)∆Bu(α, α̃)K3(α̃) 000

000 000

 . (5.29)

Substituting (5.29) into (5.28), and then into (5.25) and noting that K̄2 = K2 and K̄3 = K3 leads to

Φ(α̃)+Φ(α̃)′−

 Ṗ11(α) Ṗ21(α)′

Ṗ21(α) Ṗ22(α)

 ? ?

P(α)−

 R(α̃) In

T (α̃) S(α̃)

+ εΦ(α̃)′ −ε


 R(α̃) In

T (α̃) S(α̃)

+(•)′

 ?

[
Bw(α)′ Bw(α)′S(α̃)′+Dyw(α)′K2(α̃)′

]
000nw×2n −Inw


+

 0002n×2n ?

Ψ2(α̃)′Ψ1(α̃) 0002n+nw×2n

< 0004n+nw.

Note that the above inequality is in the form of (5.7) of Lemma 5.1 with

Ψ2(α̃)′Ψ1(α̃) =


S(α̃)∆A(α, α̃)R(α̃)+S(α̃)∆Bu(α, α̃)K3(α̃) 000n×n

000n×n 000n×n

000nw×n 000nw×n


that can be factorized into

Ψ1(α̃) = [∆A(α, α̃)R(α̃)+∆Bu(α, α̃)K3(α̃) 000n×n] ,

Ψ2(α̃) =

[
S(α̃)′ 000n×n 000n×nw

]
.
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that directly leads to (5.10) or (5.11). Since (4.8) can be written as G(α̃)+(•)′−P(α) ?

C (α̃)G(α̃) W (α)

> 0002n+nz , (5.30)

multiplying (5.30) by T2(α̃) from the right and by T2(α̃)′ from the left with

T2(α̃) =

 Qv(α̃) 000

000 Inz

 ,
leads to  Qv(α̃)′Qg(α̃)+(•)′−Qv(α̃)′P(α)Qv(α̃) ?

C (α̃)Qg(α̃) W (α)

> 0002n+nz .

Considering (5.21) and (5.22) and substituting

C (α̃)Qg(α̃) =

[
Cz(α)R(α̃)+Dzu(α)K3(α̃) Cz(α)

]
,

result 

 R(α̃) I

T (α̃) S(α̃)

+(•)′−

 P11(α) P21(α)′

P21(α) P22(α)

 ?

[
Cz(α)R(α̃)+Dzu(α)K3(α̃) Cz(α)

]
W (α)

> 0002n+nz,

which leads to (5.15). On the other hand, solving (5.26) for the variables K1(α̃), K2(α̃), and K3(α̃)

yields the following relations

K1(α̃) = X(α̃)Ac(α̃)F(α̃)+S(α̃)A(α̃)R(α̃)+S(α̃)Bu(α̃)Cc(α̃)F(α̃)+K2(α̃)CyR(α̃),

K2(α̃) = X(α̃)Bc(α̃),

K3(α̃) =Cc(α̃)F(α̃).

Controller matrices can be solved in the following order Cc(α̃), Bc(α̃), and Ac(α̃), leading to

(5.17).
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Remark 5.1. Theorem 5.1 addresses the general case when the uncertain terms ∆A(α, α̃) and

∆Bu(α, α̃) are both included (for a fixed Cy)2. To my best knowledge, this is a more general theory

that handles this problem since only ∆A(α, α̃) was considered in literature [2, 38, 3, 37]. The next

two corollaries are special cases of Theorem 5.1.

Corollary 5.1. Suppose that the input matrix in (5.1) is constant, i.e. Bu(θ) = Bu. Given a

scalar ν > 0 and a sufficiently small scalar ε > 0, there exists a gain-scheduling dynamic output-

feedback controller KDOF in the form of (5.2) such that the closed-loop system SCL in (5.3) is

asymptotically stable with a guaranteed H2 performance bound ν satisfying (4.6), if there ex-

ist continuously differentiable parameter-dependent matrices 0 < P11(α) = P11(α)′ ∈ Rn×n,

0 < P22(α) = P22(α)′ ∈ Rn×n, P21(α) ∈ Rn×n, and parameter-dependent matrices W (α) =

W (α)′ ∈ Rnz×nz , R(α̃) ∈ Rn×n, S(α̃) ∈ Rn×n, T (α̃) ∈ Rn×n, K1(α̃) ∈ Rn×n, K2(α̃) ∈ Rn×ny ,

K3(α̃) ∈Rnu×n, and positive-definite parameter-dependent matrix H(α̃) ∈Rn×n satisfying (5.10)

or (5.11) with

Ψ1(α̃) = [R(α̃) 000n×n] ,

Ψ2(α̃) =

[
∆A(α, α̃)′S(α̃)′+∆Cy(α, α̃)′K2(α̃)′ 000n×n 000n×nw

]
,

∆A(α, α̃) := A(α̃)−A(α), ∆Cy(α, α̃) :=Cy(α̃)−Cy(α)

(5.31)

and the conditions (5.13), (5.14), and (5.15) are satisfied with Π2(α, α̃) given by (5.16) for any

pairs (α̃(t), ˙̃α(t)) ∈ Λ×Ω. Then, the matrices of the gain-scheduling dynamic output-feedback

controller KDOF in (5.2) can be obtained using (5.17) by replacing Bu(α̃) and Cy with Bu and

Cy(α̃), respectively.

Remark 5.2. The parameter-dependent matrix H(α̃) in Theorem 5.2 can be viewed as a scaling

matrix to over-bound the uncertain terms ∆A(α, α̃) and ∆Bu(α, α̃) (or ∆A(α, α̃) and ∆Cy(α, α̃)

2Ideally, the general problem with all uncertain terms including ∆A(α, α̃), ∆Bu(α, α̃), and
∆Cy(α, α̃) should be solved, but unfortunately, it ends up with a highly nonlinear term in the syn-
thesis conditions such that no existing algorithm can be used to solve this problem with guaranteed
convergence. Therefore, the case with either constant Cy or Bu are solved in this chapter.
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in Corollary 5.1). The introduction of this weighting matrix improves the achieved performance

significantly.

Remark 5.3. Again, based on (5.10), (5.11), and (5.12), two different formulations of Theorem 5.2

can be obtained (similarly, based on (5.10), (5.11), and (5.31), two different formulations of Corol-

lary 5.1 can be obtained). At this stage, it is not clear which formulation achieves better perfor-

mance. Therefore, for a given design problem, these two formulations should be tried to obtain the

best possible performance.

Corollary 5.2. Suppose that Bu(θ) and Cy(θ) are constant matrices in (5.1). Given a scalar ν > 0

and a sufficiently small scalar ε > 0, there exists a gain-scheduling dynamic output-feedback con-

troller KDOF in the form of (5.2) such that the closed-loop system SCL in (5.3) is asymptotically

stable with a guaranteed H2 performance bound ν satisfying (5.9), if there exist continuously

differentiable parameter-dependent matrices 0 < P11(α) = P11(α)′ ∈ Rn×n, 0 < P22(α) =

P22(α)′ ∈Rn×n, P21(α)∈Rn×n, and parameter-dependent matrices W (α) =W (α)′ ∈Rnz×nz ,

R(α̃) ∈Rn×n, S(α̃) ∈Rn×n, T (α̃) ∈Rn×n, K1(α̃) ∈Rn×n, K2(α̃) ∈Rn×ny , K3(α̃) ∈Rnu×n and

positive-definite parameter-dependent matrix H(α̃)∈Rn×n satisfying (5.10) or (5.11) with Ψ1(α̃)

and Ψ2(α̃) given by

Ψ1(α̃) = [R(α̃) 000n×n] ,

Ψ2(α̃) =

[
∆A(α, α̃)′S(α̃)′ 000n×n 000n×nw

]
.

(5.32)

or

Ψ1(α̃) = [∆A(α, α̃)R(α̃) 000n×n] ,

Ψ2(α̃) =

[
S(α̃)′ 000n×n 000n×nw

]
,

(5.33)

and the conditions (5.13), (5.14), and (5.15) are satisfied with Π2(α, α̃) given by (5.16) for any

pairs (α̃(t), ˙̃α(t)) ∈ Λ×Ω. Then, the matrices of the RGS dynamic output-feedback controller

KDOF in (5.2) can be obtained using (5.17) by replacing Bu(α̃) with Bu.

Proof. The proof will be omitted here since it can be shown in a similar way to the proof of

Theorem 5.1.

79



Table 5.1: Possible formulations for Corollary 5.2.

Formulation A Formulation B Formulation C Formulation D
(5.10), (5.32) (5.10),(5.33) (5.11),(5.32) (5.11),(5.33)

Remark 5.4. Based on (5.10), (5.11), (5.32), and (5.33), four different formulations of Corol-

lary 5.2 can be obtained as illustrated in Table 5.1. Similarly, it is not clear which formulation

achieves the best performance. Therefore, for a given design problem, all formulations should be

tried to obtain the best possible performance.

5.3 DOF H∞ Control

Problem 5.2. Suppose that the scheduling parameters θ(t) are provided as θ̃(t) with uncertainty

δ (t). Converting all the open-loop system matrices and synthesis variables to depend on the multi-

simplex variables α or α̃ instead of θ and θ̃ , respectively, using (3.15) and (3.16). For a given

positive scalar γ∞, find a RGS dynamic output-feedback controller in the form of (5.2) to stabilize

the closed-loop system (5.3) for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that

sup
(α̃(t), ˙̃α(t))∈Λ×Ω

sup
w∈L2,w6=0

‖z(t)‖2
‖w(t)‖2

< γ∞. (5.34)

Assumption 5.2. The measurement matrix in (5.1) is constant matrix, i.e. Cy(θ) =Cy.

Theorem 5.2. Consider the system defined in (5.1). Given a scalar γ∞ > 0 and a sufficiently small

scalar ε > 0, there exists a gain-scheduling dynamic output-feedback controller KDOF in the form

of (5.2) such that the closed-loop system SCL in (5.3) is asymptotically stable with a guaranteed

H∞ performance bound γ∞ satisfying (5.34), if there exist continuously differentiable parameter-

dependent matrices 0<P11(α)=P11(α)′ ∈Rn×n, 0<P22(α)=P22(α)′ ∈Rn×n, P21(α)∈

Rn×n, and parameter-dependent matrices R(α̃) ∈ Rn×n, S(α̃) ∈ Rn×n, T (α̃) ∈ Rn×n, K1(α̃) ∈

Rn×n, K2(α̃)∈Rn×ny , K3(α̃)∈Rnu×n, and positive-definite parameter-dependent matrix H(α̃)∈
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Rn×n satisfying the following PLMIs Π∞(α, α̃) ?

[Ψ1(α̃) H(α̃)Ψ2(α̃)] −H(α̃)

< 0005n+nz+nw (5.35)

or  Π∞(α, α̃) ?

[H(α̃)Ψ1(α̃) Ψ2(α̃)] −H(α̃)

< 0005n+nz+nw (5.36)

with

Ψ1(α̃) = [∆A(α, α̃)R(α̃)+∆Bu(α, α̃)K3(α̃) 000n×n] ,

Ψ2(α̃) =

[
S(α̃)′ 000n×n 000n×nz 000n×nw

]
,

∆A(α, α̃) := A(α̃)−A(α), ∆Bu(α, α̃) := Bu(α̃)−Bu(α)

(5.37)

 P11(α) ?

P21(α) P22(α)

> 000n×n,

Π∞(α, α̃) :=



A(α)R(α)+Bu(α)K3(α)+(•)′−Ṗ11(α) ?

K1(α)+A(α)′−Ṗ21(α) S(α)A(α)+K2(α)Cy +(•)′−Ṗ22(α)

P11(α)−R(α)+ ε(R(α)′A(α)′+K3(α)′Bu(α)′) P21(α)′− In + εK1(α)′

P21(α)−T (α)+ εA(α)′ P22(α)−S(α)+ ε(A(α)′S(α)′+C′yK2(α)′)

Cz(α)R(α)+Dzu(α)K3(α) Cz(α)

Bw(α)′ Bw(α)′S(α)′+Dyw(α)′K2(α)′

? ? ? ?

? ? ? ?

−ε(R(α)+R(α)′) ? ? ?

−ε(T (α)+ In) −ε(S(α)+S(α)′) ? ?

ε(Cz(α)R(α)+Dzu(α)K3(α)) εCz(α) −Inz ?

0nw×n 0nw×n Dzw(α)′ −γ2
∞Inw


,

(5.38)
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for any pairs (α̃(t), ˙̃α(t)) ∈ Λ×Ω. Then, the matrices of the gain-scheduling dynamic output-

feedback controller KDOF in (5.2) can be obtained as follows

Cc(α̃) = K3(α̃)F(α̃)−1,

Bc(α̃) = X(α̃)−1K2(α̃),

Ac(α̃) = X(α̃)−1[K1(α̃)−S(α̃)A(α̃)R(α̃)−S(α̃)Bu(α̃)K3(α̃)F(α̃)

−X(α̃)K2(α̃)CyR(α̃)]F(α̃)−1,

(5.39)

where F(α̃)∈Rn×n and X(α̃)∈Rn×n can be obtained by taking any full-rank matrix factorization

of X(α̃)F(α̃) = T (α̃)−S(α̃)R(α̃).

Proof. Following the proof of Theorem 4.2, inequality (4.18) can be written in terms of the closed-

loop matrices as

A G(α̃)+(•)′− Ṗ(α) ? ? ?

P(α)−G(α̃)+ ε(G(α̃)′A ′) −ε(G(α̃)+G(α̃)′) ? ?

C G(α̃) εC G(α̃) −Inz ?

B′ 000nw×n D ′ −γ2
∞Inw


< 0002n+nw , (5.40)

where for notations simplicity in the proof, closed-loop system matrices A (α, α̃), B(α, α̃), C (α, α̃)

and D(α, α̃) in Lemma 4.3 will be denoted as A , B, C and D , respectively.

Define

P(α) :=

 P11(α) ?

P21(α) P22(α)

> 000.

Block(2,2) of (5.40) implies G(α̃)+G(α̃)′ > 0. Therefore, the matrix G(α̃) is invertible and can

be partitioned as,

G(α) =

 R(α̃) G1(α)

F(α̃) G2(α)

 , V (α̃) := G(α̃)−1 =

 S(α̃)′ V1(α)

X(α̃)′ V2(α)

 .
Define the following non-singular congruence transformation matrices,
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Qg(α̃) =

 R(α̃) I

F(α̃) 000

 , Qv(α̃) =

 I S(α̃)′

000 X(α̃)′

 , (5.41)

such that,

G(α̃)Qv(α̃) = Qg(α̃), V (α̃)Qg(α̃) = Qv(α̃). (5.42)

In order to guarantee that congruence transformations in (5.41) have full-rank, block matrices

F(α̃) and X(α̃) should be non-singular. If this is not the case, small perturb of F(α̃) and X(α̃)

with sufficiently small matrices in terms of norms can always be done such that F(α̃)+∆F(α̃)

and X(α̃)+∆X(α̃) are invertible. Define also

Qv(α̃)′P(α)Qv(α̃) := P(α) =

 P11(α) ?

P21(α) P22(α)

> 000. (5.43)

Multiplying (5.40) by T1(α̃) from right and by T1(α̃)′ from left with,

T1(α̃) =



Qv(α̃) 000 000 000

000 Qv(α̃) 000 000

000 000 Inz 000

000 000 000 Inw


,

and considering (5.42) and (5.43) yields

Q′v(α̃)A Qg(α̃)+(•)′−Ṗ(α) ? ? ?

P(α)−Q′v(α̃)Qg(α̃)+ ε(Q′v(α̃)A Qg(α̃))′ −ε(Q′v(α̃)Qg(α̃)+(•)′) 000 ?

C Qg(α̃) εC Qg(α̃) −Inz ?

B′Qv(α̃) 000 D ′ −γ2
∞Inw


< 000,

(5.44)

Then, substituting closed-loop matrices (5.4) and considering (5.41) with the following relations,

Qv(α̃)′Qg(α̃) =

 R(α̃) I

T (α̃) S(α̃)

 ,
T (α̃) := S(α̃)R(α̃)+X(α̃)F(α̃),
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Qv(α̃)′A Qg(α̃) =

 A(α)R(α̃)+Bu(α)K3(α̃) A(α)

K1(α̃) S(α̃)A(α)+K2(α̃)Cy

 := Φ(α̃),

Qv(α̃)′B =

 Bw(α)

S(α̃)Bw(α)+K2(α̃)Dyw(α)

 ,
C Qg(α̃) =

[
Cz(α)R(α̃)+Dzu(α)K3(α̃) Cz(α)

]
,

D = Dzw(α),

inequality (5.44) can be written as



Φ(α̃)+Φ(α̃)′−

 Ṗ11(α) Ṗ21(α)′

Ṗ21(α) Ṗ22(α)

 ? ? ?

P(α)−

 R(α̃) In

T (α̃) S(α̃)

+ εΦ(α̃)′ −ε


 R(α̃) In

T (α̃) S(α̃)

+(•)′

 ? ?

[
Cz(α)R(α̃)+Dzu(α)K3(α̃) Cz(α)

]
Φ1(α̃) −Inz ?[

Bw(α)′ Bw(α)′S(α̃)′+Dyw(α)′K2(α̃)′
]

000nw×2n Dzw(α)′ −γ2
∞Inw


< 0004n+nz+nw ,

(5.45)

with

Φ1(α̃) = ε

[
Cz(α)R(α̃)+Dzu(α)K̄3(α̃) Cz(α)

]
,

where K1(α̃), K2(α̃), and K3(α̃) are intermediate controller variables defined as K1(α̃) K2(α̃)

K3(α̃) 000

 :=

 X(α̃) S(α̃)Bu(α̃)

000 I


 Ac(α̃) Bc(α̃)

Cc(α̃) 000


 F(α̃) 000

CyR(α̃) I

+
 S(α̃)

000

A(α̃)

[
R(α̃) 000

]
.

(5.46)

Since controller matrices should only depend on the Measured Sheduling Parameters (MSPs),

open-loop matrices in (5.46) need to depend on the multi-simplex variables α̃ not α . However,

A(α̃) and Bu(α̃) can be written as

A(α̃) = A(α̃)+A(α)−A(α) = A(α)+∆A(α, α̃)

Bu(α̃) = Bu(α̃)+Bu(α)−Bu(α) = Bu(α)+∆Bu(α, α̃),

(5.47)
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where ∆A(α, α̃) := A(α̃)− A(α), and ∆Bu(α̃,α) := Bu(α̃)− Bu(α). Hence, this substitution

allows us to construct controller matrices based only on the MSPs. Therefore, substituting (5.47)

into (5.46) to obtain  K1(α̃) K2(α̃)

K3(α̃) 000

=

 K̄1(α̃) K̄2(α̃)

K̄3(α̃) 000

+Σ (5.48)

where

Σ :=

 S(α̃)∆A(α, α̃)R(α̃)+S(α̃)∆Bu(α, α̃)Cc(α̃)F(α̃) 000

000 000

 ,
and K̄1(α̃) K̄2(α̃)

K̄3(α̃) 000

=

 X(α̃) S(α̃)Bu(α)

000 I


 Ac(α̃) Bc(α̃)

Cc(α̃) 000


 F(α̃) 000

CyR(α̃) I


+

 S(α̃)A(α)R(α̃) 000

000 000

 .
Substituting Cc(α̃) = K̄3(α̃)F(α̃)−1 = K3(α̃)F(α̃)−1 into Σ yields

Σ =

 S(α̃)∆A(α, α̃)R(α̃)+S(α̃)∆Bu(α, α̃)K3(α̃) 000

000 000

 . (5.49)

Substituting (5.49) into (5.48), and then into (5.45) and noting that K̄2 = K2 and K̄3 = K3 leads to

Φ(α̃)+(•)′−

 Ṗ11(α) Ṗ21(α)′

Ṗ21(α) Ṗ22(α)

 ? ? ?

P(α)−

 R(α̃) In

T (α̃) S(α̃)

+ εΦ(α̃)′ −ε


 R(α̃) In

T (α̃) S(α̃)

+(•)′

 ? ?

[
Cz(α)R(α̃)+Dzu(α)K3(α̃) Cz(α)

]
Φ1(α̃) −Inz ?[

Bw(α)′ Bw(α)′S(α̃)′+Dyw(α)′K2(α̃)′
]

000nw×2n Dzw(α)′ −γ2
∞Inw


+

 0002n×2n ?

Ψ2(α̃)′Ψ1(α̃) 0002n+nz+nw×2n

< 0004n+nz+nw,
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Note that the above equation is in the form of (5.7) of Lemma 5.1 with

Ψ2(α̃)′Ψ1(α̃) =



S(α̃)∆A(α, α̃)R(α̃)+S(α̃)∆Bu(α, α̃)K3(α̃) 000n×n

000n×n 000n×n

000nz×n 000nz×n

000nw×n 000nw×n


which can be factorized into

Ψ1(α̃) = [∆A(α, α̃)R(α̃)+∆Bu(α, α̃)K3(α̃) 000n×n] ,

Ψ2(α̃) =

[
S(α̃)′ 000n×n 000n×nz 000n×nw

]
.

that directly leads to (5.35) or (5.36).

On the other hand, solving (5.46) for the variables K1(α̃), K2(α̃), and K3(α̃) yields the follow-

ing relationships

K1(α̃) = X(α̃)Ac(α̃)F(α̃)+S(α̃)A(α̃)R(α̃)+S(α̃)Bu(α̃)Cc(α̃)F(α̃)+K2(α̃)CyR(α̃),

K2(α̃) = X(α̃)Bc(α̃),

K3(α̃) =Cc(α̃)F(α̃).

Controller matrices can be solved in the following order Cc(α̃), Bc(α̃), and Ac(α̃), which leads to

(5.39).

The next two corollaries are special cases of Theorem 5.2. The proofs of these corollaries are

omitted since it follows same steps as the proof of Theorem 5.2.

Corollary 5.3. Suppose that the input matrix in (5.1) is constant, i.e. Bu(θ) = Bu. Given a

scalar γ∞ > 0 and a sufficiently small scalar ε > 0, there exists a gain-scheduling dynamic output-

feedback controller KDOF in the form of (5.2) such that the closed-loop system SCL in (5.3) is

asymptotically stable with a guaranteed H∞ performance bound γ∞ satisfying (5.34), if there exist

continuously differentiable parameter-dependent matrices 0 < P11(α) = P11(α)′ ∈ Rn×n, 0 <

P22(α) = P22(α)′ ∈Rn×n, P21(α) ∈Rn×n, and parameter-dependent matrices R(α̃) ∈Rn×n,
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S(α̃) ∈ Rn×n, T (α̃) ∈ Rn×n, K1(α̃) ∈ Rn×n, K2(α̃) ∈ Rn×ny , K3(α̃) ∈ Rnu×n, and positive-

definite parameter-dependent matrix H(α̃) ∈ Rn×n satisfying (5.35) or (5.36) with

Ψ1(α̃) = [R(α̃) 000n×n] ,

Ψ2(α̃) =

[
∆A(α, α̃)′S(α̃)′+∆Cy(α, α̃)′K2(α̃)′ 000n×n 000n×nz 000n×nw

]
,

∆A(α, α̃) := A(α̃)−A(α), ∆Cy(α, α̃) :=Cy(α̃)−Cy(α),

and Π∞(α, α̃) given by (5.38) for any pairs (α̃(t), ˙̃α(t)) ∈ Λ×Ω. Then, the matrices of the gain-

scheduling dynamic output-feedback controller KDOF in (5.2) can be obtained as in (5.39) by

replacing Bu(α̃) and Cy with Bu and Cy(α̃), respectively.

Corollary 5.4. Suppose that the input and measurement matrices in (5.1) are constant, i.e. Bu(θ)=

Bu and Cy(θ) = Cy. Given a scalar γ∞ > 0 and a sufficiently small scalar ε > 0, there exists

a gain-scheduling dynamic output-feedback controller KDOF in the form of (5.2) such that the

closed-loop system SCL in (5.3) is asymptotically stable with a guaranteed H∞ performance

bound γ∞ satisfying (5.34), if there exist continuously differentiable parameter-dependent ma-

trices 0 < P11(α) = P11(α)′ ∈ Rn×n, 0 < P22(α) = P22(α)′ ∈ Rn×n, P21(α) ∈ Rn×n,

and parameter-dependent matrices R(α̃) ∈ Rn×n, S(α̃) ∈ Rn×n, T (α̃) ∈ Rn×n, K1(α̃) ∈ Rn×n,

K2(α̃)∈Rn×ny , K3(α̃)∈Rnu×n, and positive-definite parameter-dependent matrix H(α̃)∈Rn×n

satisfying (5.35) or (5.36) with

Ψ1(α̃) = [R(α̃) 000n×n] ,

Ψ2(α̃) =

[
∆A(α, α̃)′S(α̃)′ 000n×n 000n×nz 000n×nw

]
,

(5.50)

or

Ψ1(α̃) = [∆A(α, α̃)R(α̃) 000n×n] ,

Ψ2(α̃) =

[
S(α̃)′ 000n×n 000n×nz 000n×nw

]
,

∆A(α, α̃) := A(α̃)−A(α),

(5.51)
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Table 5.2: Possible formulations for Corollary 5.4.

Formulation A Formulation B Formulation C Formulation D
(5.35), (5.50) (5.35),(5.51) (5.36),(5.50) (5.36),(5.51)

and Π∞(α, α̃) given by (5.38) for any pairs (α̃(t), ˙̃α(t)) ∈ Λ×Ω. Then, the matrices of the gain-

scheduling dynamic output-feedback controller KDOF in (5.2) can be obtained using (5.39) by

replacing Bu(α̃) with Bu.

Remark 5.5. Similarly, based on (5.35), (5.36), (5.50), and (5.51), four different formulations of

Corollary 5.4 can be obtained as illustrated in Table 5.2. Similarly, it is not clear which formula-

tion achieves the best performance. Therefore, for a given design problem, all formulations should

be tried to obtain the best possible performance.

5.4 PBMI Algorithm

Due to the multiplications between decision variables (H(α̃)R(α̃) or H(α̃)S(α̃) in the synthesis

conditions), Theorem 5.1 and Theorem 5.2 are formulated as PBMIs in terms of time-varying pa-

rameters inside multi-simplex domain. This type of synthesis problem can be viewed as a special

type of non-convex optimization problem. In other words, PBMIs are equivalent to infinite di-

mensional BMI constraints which is numerically non-tractable. To solve this problem, numerical

algorithm (Algorithm 1) is developed to solve this type of optimization problem. This algorithm

assumes the possibility of solving PLMIs (for fixed ε) which is indeed possible with the advent

of powerful theoretical and computational tools [41, 68, 69]. Therefore, ROLMIP [56] is used to

implement the PBMI algorithm (Algorithm 1) to obtain the sub-optimal controller. Although this

algorithm does not guarantee the convergence to the global optima, significant conservativeness

reduction with a few iterations can be expected since ν (or γ∞) is monotonically non-increasing as

will be illustrated in the next section.

88



Algorithm 1: Parameter-Dependent Bilinear Matrix Inequality Algorithm
Initialization:

• Set i = 0, H0(α̃) = In.

• Given H0(α̃), minimize ν under the PLMI conditions to obtain S(α̃) and ν .

• Set S0(α̃) = S(α̃) and ν0 = ν .

• Set imax and Tolarance.

• Set i = i+1.

while i < imax OR |νi−νi−1|> Tolarance do

• Given Si−1(α̃), minimize ν under the PLMI conditions to obtain H(α̃) and ν .

• Set Hi(α̃) = H(α̃) and νi = ν .

• Set i = i+1.

• Given Hi−1(α̃), minimize ν under the PLMI conditions to obtain S(α̃) and ν .

• Set Si(α̃) = S(α̃) and νi = ν .

end

5.5 Numerical Examples

The following LPV system has been studied many times in literature [70, 71, 72, 46, 73, 2, 37, 38].

It is representative example to show the advantages of the synthesis conditions developed in this

chapter and to make comparisons with the existing methods.

Example 5.1: The state-space model that represents the dynamics of the pitch-axis motion for a

missile system is given by


A(θ) Bu(θ) Bw(θ)

Cz(θ) Dzu(θ)

Cy(θ) Dyw(θ)

=



−0.89−0.89θ(t) 1 −0.119 0.01

−142.6−178.25θ(t) 0 −130.8 0

0 1 1

−1.52 0 0.01


,
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Figure 5.1: Algorithm convergence for different bounds of measurement noise (with ε = 0.02).

with the bounds

|θ(t)|≤ 1, |θ̇(t)|≤ 1.

The uncertainty δ (t) of the MSP is bounded by

|δ (t)|≤ ζ , |δ̇ (t)|≤ 10×ζ .

DOF H2 control: This example is used to synthesize RGS DOF control with guaranteed H2

performance. The four formulations of Corollary 5.2 are solved for this example with Algorithm 1

and the results are shown in Table 5.3. To reduce numerical burdens, few points linearly gridded

over a logarithmic scale in the interval [10−1 , 10−4] are used for ε for this example. As have been

mentioned earlier in Remark 5.3, it is difficult to judge a priori which formulation achieves best

performance, however, from Table 5.3 it is clear that Formulation C achieves the best performance

among the four formulations for this design example.
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Table 5.3: Comparison of the guaranteed H2 bound ν for Corollary 5.2. ε is the number given in
parentheses (·). Actual closed-loop H2-norm is given by the number between the square brackets
[·].

ζ Formulation A Formulation B Formulation C Formulation D
0 0.213 0.232 0.214 0.387

(0.02) [0.165] (0.0013) [0.184] (0.02) [0.165] (0.08) [0.238]
0.01 0.910 1.025 0.895 0.917

(0.06) [0.354] (0.013) [0.558] (0.05) [0.372] (0.05) [0.366]
0.05 1.613 1.995 1.613 1.636

(0.02) [0.744] (0.07) [0.435] (0.02) [0.745] (0.04) [0.534]
0.1 2.068 2.511 2.068 2.159

(0.02) [0.888] (0.07) [0.428] (0.02) [0.892] (0.04) [0.604]
0.2 2.669 3.760 2.669 3.558

(0.02) [1.040] (0.01) [1.022] (0.02) [1.048] (0.005) [1.166]
0.3 3.112 4.396 3.110 3.986

(0.02) [1.127] (0.04) [1.427] (0.02) [1.139] (0.005) [1.382]
0.4 3.478 5.559 3.476 4.467

(0.02) [1.196] (0.08) [1.647] (0.02) [1.219] (0.005) [1.463]
0.5 3.803 6.380 3.837 4.879

(0.02) [1.233] (0.08) [1.712] (0.02) [1.684] (0.005) [1.521]
1 5.052 6.810 4.910 5.970

(0.02) [1.397] (0.008) [2.855] (0.02) [1.956] (0.005) [1.910]
2 6.819 7.127 6.319 7.757

(0.02) [1.470] (0.008) [1.925] (0.02) [2.221] (0.005) [2.017]

The algorithm convergence is shown in Figure 5.1 for different bounds on measurement noise.

It demonstrates the effectiveness of the iterative procedure developed in Algorithm 1. Clearly, even

with a few iterations, significant performance improvement can be achieved.

To demonstrate the advantage of the synthesized controllers (KDOF), comparisons with other

existing methods are conducted. Figure 5.2 and Table 5.4 show the guaranteed H2 performance

bounds for the synthesized controllers (KDOF) and other controllers from literature. As ζ in-

creases, the controller provided by [2] shows considerable sensitivity to the uncertainty bounds

with its H2 performance deteriorating exponentially. The maximum uncertainty size for which

method [2] provide a feasible solution is ζ = 0.48. When ζ > 0.48 no stabilizing controller can

be found using the conditions in [2] while the conditions of Theorem 5.2 provide controllers for
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Figure 5.2: Comparison of H2 guaranteed performance vs. uncertainty size between the developed
conditions and the method of [2].

a much wider range of ζ with improved performance bounds. Figure 5.2 illustrates the H2 per-

formance of both controllers over the feasible range of [2] on a log-log scale. This comparison

demonstrates the good improvement of the proposed method over that of [2].

Another comparison between KDOF versus controllers synthesized using method in [3] (see

Figure 5.3) for a specified range of uncertainty bounds. For small uncertainty size (ζ < 0.35),

the proposed method achieves a little worse performance, but as ζ increases, the proposed method

outperforms the method in [3]. For instance, when ζ = 2, the achieved H2 performance bound is

ν = 6.319 for KDOF while the controller associated with [3] achieves ν = 36.918.

Furthermore, closed-loop simulations are carried out with Actual Scheduling Parameter (ASP)

defined by θ(t) = sin(0.25t) and their bounds |θ(t)|≤ 1, and |θ̇(t)|≤ 1. Measurement noise with

bounds given by |δ (t)|≤ 0.2, and |δ̇ (t)|≤ 2 are added intentionally to the scheduling parameter. The

synthesized dynamic output-feedback controller achieves ν = 2.669 with ε = 0.001. Figure 5.4A
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Theorem 5.1

Method of [3]
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Figure 5.3: Comparison of the guaranteed H2 performance vs. uncertainty bound between the
developed conditions and method of [3].

Table 5.4: Comparison of guaranteed H2 performance with other methods from literature.

ζ

0 0.01 0.2 0.5 1 1.5 2
Corollary 5.2 0.214 0.895 2.669 3.837 4.910 5.691 6.319

Method of [2] 0.484 1.436 230.240 − − − −
Method of [3] 0.434 0.459 1.669 5.177 13.941 24.500 36.918

− means no feasible solution.

shows the Measured Scheduling Parameter (MSP) and the ASP, respectively. L2 disturbance

signal given by w(t) = 15exp(−0.3t)sin(0.3t) is generated as disturbance input to the closed-

loop system. Figure 5.4B illustrates system response to the disturbance input corresponds to the

MSP. These simulations show not only good robustness to the measurement noise in scheduling

parameter but also robustness against external disturbance.

DOF H∞ control: The same example is used to synthesize RGS DOF controller with guaranteed

H∞ performance. The four formulations of Corollary 5.4 are solved with Algorithm 1 and the
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Figure 5.4: Simulation: A) Measured and actual scheduling parameters, B) Disturbance attenua-
tion.

results are shown in Table 5.5. Similarly, to reduce numerical burdens, few points linearly gridded

over a logarithmic scale in the interval [10−1 , 10−4] are used for ε . Again, it is not clear to
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Table 5.5: Comparison of the guaranteed H∞ bound γ∞ for Corollary 5.2. ε is the number given in
parentheses (·). Actual closed-loop H∞-norm is given by the number between the square brackets
[·].

ζ Formulation A Formulation B Formulation C Formulation D
0 0.116 0.116 0.116 0.116

(0.00207) [0.115] (0.005) [0.115] (0.005) [0.115] (0.005) [0.114]
0.01 0.135 0.118 0.118 0.118

(0.00207) [0.113] (0.005) [0.114] (0.005) [0.113] (0.005) [0.114]
0.05 0.157 0.124 0.124 0.125

(0.00207) [0.120] (0.005) [0.114] (0.005) [0.114] (0.005) [0.113]
0.1 0.178 0.138 0.139 0.139

(0.00207) [ 0.117] (0.005) [0.116] (0.005) [0.115] (0.005) [0.115]
0.2 0.213 0.165 0.165 0.170

(0.00207) [0.130] (0.005) [0.117] (0.005) [0.130] (0.005) [0.120]
0.3 0.245 0.193 0.194 0.196

(0.00207) [0.157] (0.005) [0.119] (0.005) [0.146] (0.007) [0.143]
0.4 0.276 0.220 0.221 0.229

(0.00207) [0.188] (0.005) [0.164] (0.002) [0.172] (0.007) [0.169]
0.5 0.306 0.246 0.248 0.303

(0.00207) [0.219] (0.005) [0.187] (0.005) [0.196] (0.007) [0.207]
1 0.466 0.395 0.375 0.408

(0.00207) [0.368] (0.008) [0.288] (0.005) [0.286] (0.009) [0.296]
2 0.853 0.844 0.712 0.801

(0.00207) [0.685] (0.006) [0.691] (0.05) [0.117] (0.07) [0.189]

identify which formulation achieves best performance, therefore all formulations should be tried

to achieve the best possible performance.

Additionally, these controllers are compared with controllers synthesized via the conditions

of [37]. Figure 5.5 illustrates this comparison that demonstrate good performance improvement

of the controllers synthesized using Theorem 5.2 over the controllers of method [37]. For small

uncertainty size (ζ < 0.1), competitive results can be obtained, but as ζ increases, our controllers

outperform the controllers in [37].

Another comparison between controllers synthesized via Theorem 5.2 (with ε = 0.001) and

controllers based on the conditions in [2] in Table 5.6. Similarly, as ζ increases, the synthesized

controllers shows good performance improvement over controllers provided by [2].
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Figure 5.5: Comparison of guaranteed H∞ performance between Theorem 5.2 and [3].

Table 5.6: Comparison of guaranteed H∞ performance with method of [2].

ζ Theorem 5.2 Method of [2]

0.01 0.118 0.063
0.1 0.139 0.569
0.2 0.165 1.577
0.3 0.194 3.922
0.4 0.221 11.30

0.48 0.242 339.88
1 0.375 −
2 0.712 −
− means no feasible solution.

Closed-loop simulation are conducted with ASP defined by θ(t) = cos(0.25t) and their bounds

|θ(t)|≤ 1, and |θ̇(t)|≤ 1. Measurement noise with bounds given by |δ (t)|≤ 0.2, and |δ̇ (t)|≤ 2 are

added intentionally to the scheduling parameter. Figure 5.6A shows the MSP and the ASP, respec-

tively. L2 disturbance signal given by w(t) = 15exp(−0.3t)sin(0.3t) is generated as disturbance

input to the closed-loop system. Figure 5.6B shows system response to the disturbance input cor-

96



A

0 5 10 15 20 25 30 35
−1.5

−1

−0.5

0

0.5

1

1.5

Measured scheduling parameter
Actual scheduling parameter

50
-0.15

0.1

B

0 5 10 15 20 25 30 35
−1

0

1

2

3

4

5

Time (sec.)

Disturbance Input
Performance Output

1Figure 5.6: Simulation: A) Measured and actual scheduling parameters, B) Disturbance attenua-
tion.

responds to the MSP. These simulations show not only achieved robustness to measurement noise

in scheduling parameter but also good robustness to disturbance attenuation.
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5.6 Summary

New synthesis conditions are derived to synthesize RGS DOF controllers with guaranteed H2

and H∞ performance in this chapter. The conditions are formulated in terms of PBMIs with

scalar search. The synthesized controllers guarantee not only robust stability but also closed-loop

performance against scheduling parameters uncertainties. The performance of the synthesized

controllers are compared with existing design methods from literature via a realistic LPV system

of a missile model. Comparisons results demonstrate the effectiveness of the developed conditions.
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CHAPTER 6

RGS STATIC OUTPUT-FEEDBACK CONTROL

This chapter, characterizes novel synthesis conditions for RGS Static Output-Feedback (SOF) con-

trol with guaranteed performance. Both H2 and H∞ performances are investigated. Two-stage

design procedure is adopted to solve this control problem. The State-Feedback (SF) controller

is designed first, then it is used as input to the second stage to synthesize RGS SOF controller.

Numerical examples, simulations, and comparisons with other approaches from literature are in-

cluded. A summary is given in the last section.

6.1 SOF Synthesis Problem

Consider the following open-loop system :

G (θ(t)) :=


ẋ(t) = A(θ(t))x(t)+Bu(θ(t))u(t)+Bw(θ(t))w(t)

z(t) =Cz(θ(t))x(t)+Dzu(θ(t))u(t)

y(t) =Cy(θ(t))x(t)+Dyw(θ(t))w(t),

(6.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu is the control input, w(t) ∈ Rnw is the disturbance input,

z(t) ∈ Rnz is the controlled output and y(t) ∈ Rny is the measured output. The system matrices

have the following dimensions A(θ(t))∈Rn×n, Bu(θ(t))∈Rn×nu , Bw(θ(t))∈Rn×nw , Cz(θ(t))∈

Rnz×n, Dzu(θ(t)) ∈ Rnz×nu , Cy(θ(t)) ∈ Rny×n, and Dyw(θ(t)) ∈ Rny×nw .

The aim is to synthesize a static output-feedback gain-scheduling controller of the form,

u(t) = K (θ̃(t))y(t) (6.2)
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Figure 6.1: Closed-loop system with RGS control.

that robustly stabilizes the closed-loop system

ẋ(t) = A(θ , θ̃)x(t)+B(θ , θ̃)w(t)

z(t) = C(θ , θ̃)x(t)+D(θ , θ̃)w(t)

A(θ , θ̃) := A(θ)+Bu(θ)K (θ̃)Cy(θ)

B(θ , θ̃) := Bw(θ)+Bu(θ)K (θ̃)Dyw(θ)

C(θ , θ̃) :=Cz(θ)+Dzu(θ)K (θ̃)Cy(θ)

D(θ , θ̃) := Dzw(θ)+Dzu(θ)K (θ̃)Dyw(θ)

(6.3)

and guarantees a prescribed level of H2 and H∞ performances1. Furthermore, the synthesized

controller should be robust to measurement uncertainties of the scheduling parameters. More

specifically, the controller utilizes the measured (noisy) scheduling parameters for feedback con-

trol.

The controller matrix in (6.2) is assumed to have affine parametrization with respect to the

MSPs. In other words, this matrix K (θ̃(t)) is parameterized as

K (θ̃(t)) = K0 +
q

∑
i=1

θ̃i(t)Ki. (6.4)

1Note that in the H2 control problem, the feedthrough matrix of the closed-loop system should
be zero, i.e. D(θ , θ̃) = 000.
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Figure 6.2: The developed synthesis approach.

Therefore, the goal is to obtain the controller coefficient matrices Ki for i = 0,1,2, · · · ,q, to im-

plement the RGS controller by using only the MSPs θ̃i.

Following the lines given in [74, 75, 76, 77], two-stage design method has been adopted to

solve this control problem. Gain-scheduling state-feedback controller should be designed in the

first step, then, this controller is used as input parameter matrix at the second stage to synthesize

RGS SOF controller in the form of (6.2) such that (6.10) satisfied.

6.2 Modeling Approach

The overall synthesis approach for RGS SOF design can be illustrated by Figure 6.2. It is a slightly

modified version of Figure 3.3. An iterative procedure is developed for the two-stage design pro-

cedure.

Lemma 6.1. [62] Let u(t) = 0 in (6.1), for a given positive scalar ν , if there exist a continu-

ously differentiable positive-definite matrix P(α) = P(α)′ ∈ Rn×n and parameter-dependent ma-

trix W (α) =W (α)′ ∈ Rnz×nz such that the following PLMIs are satisfied
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 A(α, α̃)′P(α)+P(α)A(α, α̃)+ Ṗ(α) ?

C(α, α̃) −Inz

< 000, (6.5)

 W (α) ?

P(α)B(α, α̃) P(α)

> 000, (6.6)

trace(W (α))< ν
2, (6.7)

the open-loop system defined in (6.1) is asymptotically stable for any pairs (α, α̇) ∈ Λ×Ω and

(6.10) is satisfied, where A(α, α̃), B(α, α̃), and C(α, α̃) are the closed-loop system matrices de-

fined in (6.3) with θ and θ̃ replaced by α and α̃ using (3.15) and (3.16).

Lemma 6.2. [78] (Projection Lemma) Given a symmetric matrix Ψ ∈ Rn×n and two matrices U

and V of column dimensions n, there exists an unstructured matrix Z satisfying

Ψ+V Z U +(V Z U )′ < 0 (6.8)

if and only if the following projection inequalities with respect to Z are satisfied

NvΨN ′
v < 0, (6.9a)

N ′
u ΨNu < 0 (6.9b)

where Nu and Nv any matrices whose columns form a bases of the null spaces of U and V ,

respectively, such that NvV = 0 and U Nu = 0.

6.3 PLMIs Synthesis Conditions with H2 performance

Problem 6.1. Suppose that the scheduling parameters θ(t) are provided as θ̃(t) with uncertainty

δ (t) as defined in (3.3). Suppose further that D(θ(t), θ̃(t)) = 0 in (6.3). Converting all the open-

loop system matrices and controller variables to the multi-simplex variables α and α̃ instead of

θ and θ̃ , respectively, using (3.15) and (3.16). For a given positive scalar ν , find a RGS static
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output-feedback controller in the form of (6.11) to stabilize the closed-loop system (6.3) for any

pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that

sup
(α̃(t), ˙̃α(t))∈Λ×Ω

EEE
{∫ T

0
z(t)′z(t)dt

}
< ν

2, (6.10)

for the disturbance input w(t) given by

w(t) = w0δ (t)

where δ (t) is the Dirac’s delta function and w0 is a random variable satisfying

E
{

w0w′0
}
= Inw

and E{·} denotes the mathematical expectation.

Two stage design procedure is presented in this section. In the the first stage, SF controller is

designed. Then, this controller is used in the second stage to synthesize RGS SOF controller.

6.3.1 State-Feedback control

Theorem 6.1. Let K (α̃) = 000. Given a scalar ν > 0 and a sufficiently small scalar ε > 0. If

there exist a continuously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈ Rn×n,

parameter-dependent matrices W (α) = W (α)′ ∈ Rnz×nz , Z(α) ∈ Rnu×n, G(α) ∈ Rn×n for any

pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that the following PLMIs satisfied
A(α, α̃)G(α)+Bu(α)Z(α)+(•)′− Ṗ(α) ? ?

P(α)−G(α)+ ε(A(α, α̃)G(α)+Bu(α)Z(α))′ −ε(G(α)+G(α)′) ?

B(α, α̃)′ 000nw×n −Inw

< 0002n+nw,

 G(α)+G(α)′−P(α) ?

C(α, α̃)G(α)+Dzu(α)Z(α) W (α)

> 000n+nz,

trace(W (α))< ν
2,
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Then, the gain-scheduling controller

K(α) = Z(α)G(α)−1,

stabilizes the closed-loop system with guaranteed H2 bound ν defined in (6.10).

Proof. The proof is given in Chapter 4.

Remark 6.1. The state-feedback controller K(α̃), obtained from Theorem 6.1, is used as input to

Theorem 6.2 to synthesize the static output-feedback controller (6.2).

6.3.2 Static Output-Feedback Control

Theorem 6.2. Given K(α̃), sufficiently small positive scalar η , and positive scalar ν > 0. If

there exist a continuously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈ Rn×n,

parameter-dependent matrices V (α) ∈ Rn×n, F(α) ∈ Rn×n, Q(α) ∈ Rnz×nz , R(α̃) ∈ Rnu×nu ,

and L(α̃) ∈ Rnu×ny for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that the following PLMI satisfied

F(α)A (α, α̃)+(•)′+ Ṗ(α) ? ? ?

P(α)−F(α)′+ηV (α)A (α, α̃) −η(V (α)+V (α)′) ? ?

Bu(α)′F(α)′+L(α̃)Cy(α)−R(α̃)K(α̃) ηBu(α)′V (α)′ −R(α̃)−R(α̃)′ ?

Q(α)′C (α, α̃) 000nz×n Q(α)′Dzu(α) Inz−Q(α)−Q(α)′


< 000 (6.11)

 W (α) ?

P(α)Bw(α) P(α)

> 000, (6.12)

trace(W (α))< ν
2, (6.13)

with

A (α, α̃) := A(α)+Bu(α)K(α̃)

C (α, α̃) :=Cz(α)+Dzu(α)K(α̃),

then, the static output-feedback gain-scheduling controller

K (α̃) = R(α̃)−1L(α̃), (6.14)

robustly stabilizes the closed-loop system (6.3) and satisfies (4.6).
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Proof. Inequality (6.11) holds if (6.8) in Lemma 6.2 is satisfied with the following definitions

V =



000

000

I

000


, Z = R(α̃), U = [X (α, α̃) 000 − I 000] ,

Ψ=



A (α, α̃)′F(α)′+F(α)A (α, α̃)+ Ṗ(α) ? ? ?

P(α)−F(α)′+ηV (α)A (α, α̃) −η(V (α)+V (α)′) ? ?

Bu(α)′F(α)′ ηBu(α)′V (α)′ 000nu×nw ?

Q(α)′C (α, α̃) 000nz×n Q(α)′Dzu(α) −Q(α)′Q(α)


2,

(6.15)

with the following null spaces of V and U , i.e.

Nv =

 I 000 000 000

000 I 000 000

 , Nu =



I 000 000

000 I 000

X (α, α̃) 000 000

000 000 I


and

A (α, α̃) := A(α)+Bu(α)K(α̃)

C (α, α̃) :=Cz(α)+Dzu(α)K(α̃)

X (α, α̃) := R(α̃)−1L(α̃)Cy(α)−K(α̃).

(6.16)

Thus,

U Nu = [X (α, α̃) 000 − I 000]



I 000 000

000 I 000

X (α, α̃) 000 000

000 000 I


= 000,

2This is because (Inz −Q(α))′(Inz −Q(α)) > 0 implies −Q(α)′Q(α) < Inz −Q(α)−Q(α)′.
The same idea was used in [74].
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NvV =

 I 000 000 000

000 I 000 000




000

000

I

000


= 000,

V Z U =



000 000 000 000

000 000 000 000

L(α̃)Cy(α)−R(α̃)K(α̃) 000 −R(α̃) 000

000 000 000 000


Consider now (6.9a),

NvΨN ′
v =

 A (α, α̃)′F(α)′+F(α)A (α, α̃)+ Ṗ(α) ?

P(α)−F(α)′+ εV (α)A (α, α̃) −ε(V (α)+V (α)′)

< 0. (6.17)

Multiplying (6.17) by
[
In A (α, α̃)′

]
from left and by its transpose from right to obtain

A (α, α̃)′P(α)+P(α)A (α, α̃)+ Ṗ(α)< 0. (6.18)

In addition to P(α)> 0, (6.18) represents Lyapunov stability condition for A (α, α̃). Thus, (6.9a)

is verified. On the other hand, (6.9b) is

N ′
u ΨNu =


I 000 X (α, α̃)′ 000

000 I 000 000

000 000 000 I

×


Ψ11 ? ? ?

P(α)−F(α)′+ηV (α)A (α, α̃) Ψ22 ? ?

Bu(α)′F(α)′ ηBu(α)′V (α)′ Ψ33 ?

Q(α)′C (α, α̃) 000nz×n Q(α)′Dzu(α) Ψ44





I 000 000

000 I 000

X (α, α̃) 000 000

000 000 I


.
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with
Ψ11 = A (α, α̃)′F(α)′+F(α)A (α, α̃)+ Ṗ(α),

Ψ22 =−η(V (α)+V (α)′),

Ψ33 = 000nu×nw,

Ψ44 =−Q(α)′Q(α).

Therefore,

N ′
u ΨNu =


Ψ11 +X (α, α̃)′Bu(α)′F(α)′ Ψ̄12 F(α)Bu(α) Ψ̄14

P(α)−F(α)′+ηV (α)A (α, α̃) Ψ22 ηV (α)Bu(α) 000n×nz

Q(α)′C (α, α̃) 000nz×n Q(α)′Dzu(α) Ψ44



×



I 000 000

000 I 000

X (α, α̃) 000 000

000 000 I


,

with
Ψ̄12 = P(α)−F(α)+ηA (α, α̃)′V (α)′+ηX (α, α̃)′Bu(α)′V (α)′,

Ψ̄14 = C (α, α̃)′Q(α)+X (α, α̃)′Dzu(α)′Q(α̃),

leads to

N ′
u ΨNu =


F(α) [A (α, α̃)+Bu(α)X (α, α̃)]+(•)′+ Ṗ(α) ? ?

P(α)−F(α)′+ηV (α) [A (α, α̃)+Bu(α)X (α, α̃)] −η(V (α)+V (α)′) ?

Q(α)′ [C (α, α̃)+Dzu(α)X (α, α̃)] 000nz×n −Q(α)′Q(α)

 .

Considering (6.16) with

A(α, α̃) := A (α, α̃)+Bu(α)X (α, α̃) = A(α)+Bu(α)K (α̃)Cy(α),

C(α, α̃) := C (α, α̃)+Dzu(α)X (α, α̃) =Cz(α)+Dzu(α)K (α̃)Cy(α),

K (α̃) := R(α̃)−1L(α̃),
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yields

N ′
u ΨNu =


F(α)A(α, α̃)+(•)′+ Ṗ(α) P(α)−F(α)+ηA(α, α̃)′V (α)′ C(α, α̃)′Q(α̃)

P(α)−F(α)′+ηV (α)A(α, α̃) −η(V (α)+V (α)′) 000n×nz

Q(α)′C(α, α̃) 000nz×n −Q(α)′Q(α)

 .
(6.19)

Multiplying (6.19) by T2 from left and by its transpose from right with

T2 =

 I A(α, α̃)′ 000

000 000 (Q(α)−1)′


leads to (6.5), i.e.

T2 (6.19) T ′2 =

 A(α, α̃)′P(α)+P(α)A(α, α̃)+ Ṗ(α) C(α, α̃)′

C(α, α̃) −Inz

< 0.

6.4 Synthesis Conditions with H∞ Performance

Problem 6.2. Suppose that the scheduling parameters θ(t) are provided as θ̃(t) with uncertainty

δ (t). Converting all the open-loop system matrices and synthesis variables to the multi-simplex

variables α or α̃ instead of θ and θ̃ , respectively, using (3.15) and (3.16). For a given positive

scalar γ∞, find a RGS static output-feedback controller in the form of (6.2) to stabilize the closed-

loop system (6.3) for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that

sup
(α̃(t), ˙̃α(t))∈Λ×Ω

sup
w∈L2,w6=0

‖z(t)‖2
‖w(t)‖2

< γ∞. (6.20)

Similarly, the SF controller is synthesized first, and then it is used in the second stage to syn-

thesize RGS SOF controller.

6.4.1 State-Feedback H∞ control

Theorem 6.3. Given a scalar γ∞ > 0 and a sufficiently small scalar ε > 0. If there exist a continu-

ously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈Rn×n, parameter-dependent
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matrices Z(α) ∈ Rnu×n, G(α) ∈ Rn×n for any pair (α(t), α̇(t)) ∈ Λ×Ω such that the following

PLMI satisfied

A(α)G(α)+Bu(α)Z(α)+(•)′− Ṗ(α) ? ? ?

P(α)−G(α)+ ε(A(α)G(α)+Bu(α)Z(α))′ −ε(G(α)+G(α)′) ? ?

C(α)G(α)+Dzu(α)Z(α) εC(α)G(α̃)+ εDzu(α)Z(α) −Inz ?

B(α)′ 000nw×n D(α)′ −γ2
∞ Inw


< 000,

then, the gain-scheduling controller

K(α) = Z(α)G(α)−1,

stabilizes the closed-loop system with guaranteed H∞ performance bound γ∞ satisfying (6.20).

Proof. The proof can be found in Chapter 5

6.4.2 Static Output-Feedback H∞ control

Theorem 6.4. Given K(α), sufficiently small positive scalar η , and positive scalar γ∞ > 0. If

there exist a continuously differentiable parameter-dependent matrix 0 < P(α) = P(α)′ ∈ Rn×n,

parameter-dependent matrices V (α̃) ∈ Rn×n, F(α̃) ∈ Rn×n, Q(α̃) ∈ Rnz×nz , R(α̃) ∈ Rnu×nu ,

and L(α̃) ∈ Rnu×ny for any pair (α̃(t), ˙̃α(t)) ∈ Λ×Ω such that the following PLMI satisfied

A (α)′F(α)′+F(α)A (α)+ Ṗ(α) ? ? ? ?

P(α)−F(α)′+ηV (α)A (α) −η(V (α)+V (α)′) ? ? ?

Bw(α)′F(α)′ ηBw(α)′V (α)′ −γ2
∞Inw ? ?

Q(α)′C (α) 000nz×n Q(α)′Dzw(α) Inz−Q(α)−Q(α)′ ?

Bu(α)′F(α)′+L(α̃)Cy(α)−R(α̃)K(α) ηBu(α)′V (α)′ L(α̃)Dyw(α) Dzu(α)′Q(α) −R(α̃)−R(α̃)′


< 000

(6.21)

with

A (α) := A(α)+Bu(α)K(α)

C (α) :=Cz(α)+Dzu(α)K(α).

Then, the static output-feedback gain-scheduling controller

K (α̃) = R(α̃)−1L(α̃) (6.22)
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is the stabilizing controller for the closed-loop system (6.3) satisfying (6.20).

Proof. Inequality (6.21) holds if (6.8) in Lemma 6.2 is satisfied with the following definitions

V =



000

000

000

000

I


, Z = R(α̃), U = [X (α̃) 000 Y (α̃) 000 − I] ,

Ψ =



A (α)′F(α)′+F(α)A (α)+ Ṗ(α) ? ? ? ?

P(α)−F(α)′+ηV (α)A (α̃) −η(V (α)+V (α)′) ? ? ?

Bw(α)′F(α)′ ηBw(α)′V (α)′ −γ2
∞Inw ? ?

Q(α)′C (α) 000nz×n Q(α)′Dzw(α) −Q(α)′Q(α) ?

Bu(α)′F(α)′ ηBu(α)′V (α)′ 000nu×nw Dzu(α)′Q(α) 000nu


,

with the following null spaces

Nv =

 I 000 000 000 000

000 I 000 000 000

 , Nu =



I 000 000 000

000 I 000 000

000 000 I 000

000 000 000 I

X (α̃) 000 Y (α̃) 000


and

A (α) := A(α)+Bu(α)K(α̃)

C (α) :=Cz(α)+Dzu(α)K(α̃)

X (α̃) := R(α̃)−1L(α̃)Cy(α)−K(α̃)

Y (α̃) := R(α̃)−1L(α̃)Dyw(α).
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Thus,

V Z U =



000 000 000 000 000

000 000 000 000 000

000 000 000 000 000

000 000 000 000 000

L(α̃)Cy(α)−R(α̃)K(α) 000 L(α̃)Dyw(α) 000 −R(α̃)


.

Consider now (6.9a),

NvΨN ′
v =

 A (α)′F(α)′+F(α)A (α)+ Ṗ(α) ?

P(α)−F(α)′+ εV (α)A (α) −ε(V (α)+V (α)′)

< 0. (6.23)

Multiplying (6.23) by
[
In A (α)′

]
from left and its transpose from right to obtain

A (α)′P(α)+P(α)A (α)+ Ṗ(α)< 0,

which is in addition to P(α) > 0, represents Lyapunov stability condition for A (α). This proves

(6.9a). On the other hand, (6.9b) is

N ′
u ΨNu =



I 000 000 000 X (α̃)′

000 I 000 000 000

000 000 I 000 Y (α̃)′

000 000 000 I 000


×



A (α)′F(α)′+F(α)A (α)+ Ṗ(α) P(α)−F(α)+ εA (α)′V (α)′ F(α)Bw(α̃) C (α)′Q(α) F(α)Bu(α)

P(α)−F(α)′+ηV (α)A (α) −η(V (α)+V (α)′) ηV (α)Bw(α) 000n×nz ηV (α)Bu(α)

Bw(α)′F(α)′ ηBw(α)′V (α)′ −γ2
∞Inw Dzw(α)′Q(α) 000nw×nu

Q(α)′C (α) 000nz×n Q(α)′Dzw(α) −Q(α)′Q(α) Q(α)′Dzu(α)

Bu(α)′F(α)′ ηBu(α)′V (α)′ 000nu×nw Dzu(α)′Q(α) 000nu



×



I 000 000 000

000 I 000 000

000 000 I 000

000 000 000 I

X (α̃) 000 Y (α̃) 000


.
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results

N ′
u ΨNu =

F(α)A (α)+F(α)Bu(α)X (α̃)+(•)′+ Ṗ(α) ? ? ?

P(α)−F(α)′+ηV (α)A (α)+ηV (α)Bu(α)X (α) −η(V (α)+V (α)′) ? ?

Bw(α)′F(α)′+Y (α̃)′Bu(α)′F(α)′ ηBw(α)′V (α)′+ηY (α)′Bu(α)′V (α)′ −γ2
∞Inw ?

Q(α)′C (α)+Q(α)′Dzu(α)X (α̃) 000nz×n Q(α)′Dzw(α)+Q(α)′Dzu(α)Y (α̃) −Q(α)′Q(α)


.

and

N ′
u ΨNu =



F(α)A(α, α̃)+A(α, α̃)′F(α)′+ Ṗ(α) ? ? ?

P(α)−F(α)′+ηV (α)A(α, α̃) −η(V (α)+V (α)′) ? ?

B(α, α̃)′F(α)′ ηB(α, α̃)′V (α)′ −γ2
∞Inw ?

Q(α)′C(α, α̃) 000nz×n Q(α)′D(α, α̃) −Q(α)′Q(α)


.

(6.24)

with the following closed-loop system relationships

A(α, α̃) = A(α)+Bu(α)K (α̃)Cy(α)

B(α, α̃) = Bw(α)+Bu(α)K (α̃)Dyw(α)

C(α, α̃) =Cz(α)+Dzu(α)K (α̃)Cy(α)

D(α, α̃) = Dzw(α)+Dzu(α)K (α̃)Dyw(α)

where K (α̃) is defined in (6.14).

In order to show the negative definiteness of (6.24), the steps depicted in [74] is followed and

may produce some conservativeness to the conditions. Note that if inequality (6.21) is negative-

definite, then it is also satisfied with −Q(α)′Q(α) replacing Inz −Q(α)−Q(α)′, since (Inz −

Q(α))′(Inz−Q(α))> 0 implies −Q(α)′Q(α)< Inz−Q(α)−Q(α)′. In other words,

N ′
u ΨNu <



F(α)A(α, α̃)+A(α, α̃)′F(α)′+ Ṗ(α) ? ? ?

P(α)−F(α)′+ηV (α)A(α, α̃) −η(V (α)+V (α)′) ? ?

B(α, α̃)′F(α)′ ηB(α, α̃)′V (α)′ −γ2
∞Inw ?

Q(α)′C(α, α̃) 000nz×n Q(α)′D(α, α̃) Inz−Q(α)−Q(α)′


< 0

(6.25)

Setting ηV (α) := U(α) and multiplying the middle term of (6.25) by T (α̃)′ on the left and by
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T (α̃) on the right, with

T (α, α̃) =



I 000 000

A(α, α̃) B(α, α̃) 000

000 I 000

000 000 Q′(α)−1


to obtain


I A(α, α̃)′ 000 000

000 B(α, α̃)′ I 000

000 000 000 Q′(α)−1





F(α)A(α, α̃)+A(α, α̃)′F(α)′+ Ṗ(α) ? ? ?

P(α)−F(α)′+U(α)A(α, α̃) −U(α)−U(α)′ ? ?

B(α, α̃)′F(α)′ B(α, α̃)′U(α)′ −γ2
∞Inw ?

Q(α)′C(α, α̃) 000nz×n Q(α)′D(α, α̃) −Q(α)′Q(α)′


×



I 000 000

A(α, α̃) B(α, α̃) 000

000 I 000

000 000 Q(α)−1


< 0

that leads to
F(α)A(α, α̃)+ Ṗ(α)+A(α, α̃)′P(α)+A(α, α̃)′U(α)A(α, α̃) P(α)−F(α)−A(α, α̃)′U(α) F(α)B(α, α̃)+A(α, α̃)′U(α)B(α, α̃) C(α, α̃)′Q(α)

B(α, α̃)′P(α)+B(α, α̃)′U(α)A(α, α̃) −B(α, α̃)′U(α) B(α, α̃)′U(α)B(α, α̃)− γ2
∞Inw D(α, α̃)′Q(α)

C(α, α̃) 000 D(α, α̃) −Q(α)



×



I 000 000

A(α, α̃) B(α, α̃) 000

000 I 000

000 000 Q(α)−1


< 0

and 
A(α, α̃)′P(α)+P(α)A(α, α̃)+ Ṗ(α) P(α)B(α, α̃) C(α, α̃)′

B(α, α̃)′P(α) −γ2
∞Inw D(α, α̃)′

C(α, α̃) D(α, α̃) −Inz

< 0

which represents a parameter-dependent version of the bounded-real lemma for LPV systems [79].

Thus, (6.9b) is verified.

Remark 6.2. Once a feasible solution exists for Theorem 6.2 and Theorem 6.4, the controller

coefficients Ki for i = 0,1, · · · ,q in (6.4) can be obtained from the multi-simplex coefficients of
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the controller matrix K j1, j2,··· , jq,k1,k2,··· ,kq in (6.14) and (6.22) using the inverse transformation

(multi-simplex to affine transformation) (3.40) and (3.41).

Remark 6.3. In contrast to the existing literature of RGS control [2, 36, 80, 38] that only allows the

state matrix A(θ) to be affected by the varying parameters, the synthesis conditions of Theorem 6.2

and Theorem 6.4 deal with the general case that all the open-loop matrices are functions of varying

parameters. This is the main advantage of the developed conditions over the existing ones.

Remark 6.4. The conditions of Theorem 6.2 and Theorem 6.4 associated with some conservative-

ness due to over-bounding the (4,4) block of (6.15) and (6.24). Therefore, Iterative Static Output-

Feedback Design (ISOFD) algorithm was developed to reduce conservativeness. This algorithm is

shown for the H2 performance but it applies for H∞ performance as well. Initially, SF controller

K(α) is obtained via Theorem 6.1 or Theorem 6.3. This controller is used in Theorem 6.2 or The-

orem 6.4 to synthesize the RGS SOF controller. Each iteration of the ISOFD algorithm assures a

feasible solution with at least νi ≤ νi−1. Note that the algorithm convergence is guaranteed since

ν is monotonically decreasing and bounded from below.

Remark 6.5. As a special case of Theorem 6.2 and Theorem 6.4, robust SOF controller can also be

synthesized. More specifically, constraining the synthesis variables R(α̃) and L(α̃) to be parameter

independent (i.e. constant matrices) leads to a robust SOF controller.

Remark 6.6. As shown above, the synthesis conditions of Theorem 6.2 and Theorem 6.4 are formu-

lated as PLMIs (for a fixed ε and η) in terms of time-varying parameters inside the multi-simplex

domain. ROLMIP [56] is used to implement the ISOFD algorithm to obtain the RGS SOF optimal

controller.

6.5 Illustrative Examples

In this section, two examples are presented to demonstrate the effectiveness of the developed ap-

proach. First, an academic example is given to illustrate the achieved performance with different
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Algorithm 2: Iterative Static Output-Feedback Design (ISOFD) Algorithm.
Initialization:

• Set i = 0, K0(α̃) = 000.

• Using Theorem 6.1, compute initial state-feedback controller K0(α).

• Set imax and Tolarance.

repeat

• Set i = i+1.

• Given Ki−1(α), solve the conditions of Theorem 6.2 to obtain SOF controller Ki (α̃)
with a minimal achievable bound νi.

• Given Ki(α̃), solve the conditions of Theorem 6.1 to obtain Ki(α).

until i > imax OR |νi−νi−1|< Tolarance;

bounds of measurement noise level using Algorithm 2. Second, the developed method is applied to

a realistic EVVT actuator obtained from experimental study [81]. This example serves to validate

the developed synthesis approach through realistic LPV model from engineering application point

of view. The synthesis conditions are implemented in MATLAB environment (R2013a). The com-

puter used for control design is an Intel Core i7 (2.4 GHz) processor, 6GB RAM with Windows

10.

6.5.1 Academic Example

Consider the following LPV system [1],


A(θ) Bu(θ) Bw(θ)

Cz(θ) Dzu(θ)

Cy(θ) Dyw(θ)

=



25.9−60θ(t) 1 3 −0.03

20−40θ(t) 34−64θ(t) 2 −0.47

1 1 0

0 0 1

1 0 0


.
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The varying parameter θ(t) has the following bounds 0≤θ(t)≤ 1, |θ̇(t)|≤ 1 , with measurement

uncertainty bound |δ (t)|≤ ζ and |δ̇ (t)|≤ 10× ζ . The scalars ε and η in Theorem 6.1 and The-

orem 6.2 are introduced to provide additional degrees of freedom in the synthesis conditions. To

reduce computational burdens, these scalars are chosen (in a logarithmic scale) between 10−1 and

10−5. In this example, ε = 0.01 and η = 0.1 are found to achieve best performance bound. For

the iterative algorithm, a tolerance and maximum number of iterations are set to 10−4 and four,

respectively.

Table 6.1 shows the guaranteed bound ν for the conditions of Theorem 6.1 and Theorem 6.2

with the iterative algorithm. In the first stage, the conditions of Theorem 6.1 is used to obtain

GS state-feedback controller, and then, this controller is fed to the second stage to synthesize the

RGS SOF controller. Note that the achievable performance using the first stage is slightly lower

than the one associated with the second stage (as expected) since in the case of state-feedback full

state measurement is assumed to be available in real-time for controller implementation while in

the SOF case only the output feedback is used. Algorithm 2 is used to reduce conservativeness

gradually as shown in Table 6.1 for the first four iterations. Figure 6.3 illustrates the convergence

of the iterative algorithm with ζ = 0.1. To the best authors’ knowledge there is no SOF synthesis

method that is able to handle the measurement noises in scheduling parameters. Comparing with

full-order dynamic output-feedback results in [2], it is clear that the method in [2] is very sensitive

to small values of ζ , while the developed synthesis conditions presented in Table 6.1 shows good

robustness against uncertainties in scheduling parameters.

6.5.2 EVVT Actuator

To validate the result of the developed approach for practical engineering applications, the Electric

Variable Valve Timing (EVVT) cam phaser system is investigated in this section. The EVVT ac-

tuator consists of two main components: an electric motor and a planetary gear set. The planetary

gear set consists of an outer ring gear, a planet gear carrier with planet gears attached, and a sun
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Table 6.1: H2 performance with different bounds of measurement noise. ε = 0.01, η = 0.1.

ζ

0 0.001 0.01 0.1 0.2 0.5 1
Method of [2] 9.087 9.15 9.706 39.57 75.406 173.92 324.33

1st stage 3.120 3.131 3.230 3.423 3.738 4.053 4.081
2nd stage 3.481 3.495 3.490 3.512 3.962 4.213 4.311

Iterations

1 3.463 3.474 3.480 3.500 3.732 3.816 4.115
2 3.438 3.458 3.450 3.480 3.609 3.775 3.979
3 3.380 3.402 3.424 3.462 3.588 3.649 3.888
4 3.356 3.371 3.391 3.437 3.502 3.620 3.820

0 10 20 30 40 50 60 70 80 90 100
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Iteration

ν

1

Figure 6.3: Algorithm Convergence

gear. The ring gear, that is running at the half speed of the crankshaft, is driven by the crankshaft

through the engine timing belt. Details of the EVVT modeling work can be found in [82]. The

ring gear, which is running at the half speed of the crankshaft, is driven by the crankshaft through

the engine timing belt (see Figure 6.4). The planetary gear carrier is driven by an electric motor
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Figure 6.4: EVVT cam-phase actuator schematic diagram.

and four planet gears engaging both ring and sun gears at the same time, where the sun gear is

connected to the camshaft. The speed of the camshaft is determined by the ring gear speed to-

gether with the EVVT motor speed, which provides the engine with flexible valve opening timing.

Therefore, the cam-phase can be adjusted by controlling the EVVT motor speed with respect to

the engine speed.

A series of system identification experimental tests were conducted at a range of fixed values

of engine speed (N) and battery voltage (V ) at the Energy and Automotive Research Lab of the

Michigan State University (see [81] for the authors). It was found that the identified model of the

EVVT actuator is in the following form,

G(N(t),V (t),s) =
θ1(N(t),V (t))

s(s+θ2(N(t),V (t)))
, (6.26)

where θ1(N(t),V (t)) and θ2(N(t),V (t)) are time-varying coefficients as functions of engine speed

and battery voltage. For notational simplicity, θ1(t) and θ2(t) are used to refer to θ1(N(t),V (t))

and θ2(N(t),V (t)), respectively. Note that θ1(t) is associated with the DC gain of the transfer

function (6.26), and θ2(t) is the location of the open-loop pole of the 2nd order system. In other
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Table 6.2: Range of the time-varying parameters.

θ1(t) ∈ [0.2529 0.6472]

θ2(t) ∈ [6.975 14.540]

words, the DC gain and pole location of the transfer function (6.26) are time-varying coefficients

and functions of engine speed and battery voltage. It is worth mentioning that the values of θ1(t)

and θ2(t) were obtained experimentally over specified fixed values of battery voltage and engine

speed that cover the entire range of engine operating conditions. The ranges of the varying co-

efficients θ1(t) and θ2(t) are given in Table 6.2. In order to perform controller design using the

conditions developed in Section 6.4, the EVVT plant model (6.26) needs to be realized in the

state-space form as follows: ẋ1

ẋ2

=

 0 1

0 −θ2(t)


 x1

x2

+
 0

θ1(t)

u,

y =
[

1 0

] x1

x2

 ,
where x1 represents the cam-phase angle and u is the EVVT motor speed command. In order to

accommodate for performance output, control energy, and disturbance input,

Cz(θ) =

 1 0

0 0

 , Dzu(θ) =

 0

1

 , Bw(θ) =

 0.1

0

 ,
are defined and the state-space realization of the overall LPV system corresponding to the matrices

defined in (6.1) are


A(θ) Bu(θ) Bw(θ)

Cz(θ) Dzu(θ)

Cy(θ) Dyw(θ)

=



0 1 0 0.1

0 −θ2(t) θ1(t) 0

1 0 0

0 0 1

1 0 0


.

119



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.2

0.4

0.6

0.8

1

θ 1
(t
)

Measured scheduling parameter

Actual scheduling parameter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6
8
10
12
14

θ 2
(t
)

Measured scheduling parameter

Actual scheduling parameter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6
Performance output

Disturbance input

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

y
(t
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−4

−3

−2

−1

0

Time (sec)

u
(t
)

1

Figure 6.5: Time-domain simulations for the EVVT actuator (piecewise-constant scheduling sig-
nals).

First, the open-loop system matrices are converted from the θ(t)-space into the α(t)-space using

the procedure presented in Section 6.2. Then, the conditions of Theorem 6.1 and Theorem 6.2

are used to synthesize RGS SOF controller. Table 6.3 shows the achieved H2 bound ν for both

controllers (state-feedback and static output-feedback) as well as the number of LMI variables and

LMI constraints associated with each theorem. After a feasible solution is obtained, the controller

matrix in (6.14) is calculated, than the inverse transformation (3.40) and (3.41) is used to calculate

controller coefficients in the original parameter space, i.e. the coefficient in (6.4) to implement the

controller in real-time using the MSPs. These coefficients are obtained as

K0 =−0.7126, K1 =−0.5879, K2 =−0.6736.
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Figure 6.6: Time-domain simulations for the EVVT actuator (sinusoidal scheduling signals).

Table 6.3: H2 performance for stage 1 and stage 2. ε = 10−5, η = 0.01.

# LMI variables # LMI constraints ν

1st stage 25 60 0.759
2nd stage 68 487 0.767

It is clear from Table 6.3 that the guaranteed performance using SOF controller is very close to the

performance of the state-feedback one.

Time-domain simulation results of the EVVT actuator are shown in Figure 6.5 and Figure 6.6

with different scheduling trajectories. Table look-up method is used to map the engine speed and

battery voltage into the varying parameters θ1(t) and θ2(t). The simulation results demonstrate

not only robustness of the synthesized controller against uncertainties in scheduling parameters
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but also the ability to attenuate disturbance torque on the cam-phase angle (performance output).

6.6 Summary

PLMIs conditions for synthesizing RGS SOF controller subject to inexactly MSPs are developed

in this chapter. The foundation of the approach is based on a two-stage design method by designing

state-feedback controller in the first stage and using the resulting controller for synthesizing RGS

SOF controller in the second stage. Both performances, H2 and H∞, are considered. An iterative

procedure (Iterative Static Output-Feedback Design (ISOFD) algorithm) is developed to reduce the

upper bounds of the H2 or H∞ performances. The main novelty of the developed method is that it

can handle the most general Linear Parameter-Varying (LPV) systems, where the varying param-

eters affect all the open-loop system matrices. Note that robust SOF controller can be handled as

a special case of developed conditions. Two examples are presented, one is an academic example

and the second is a practical Electric Variable Valve Timing (EVVT) actuator. Numerical results

and simulations of these examples illustrate the effectiveness of the developed approach.
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CHAPTER 7

EXPERIMENTAL VALIDATION ON EVVT ACTUATOR

This chapter presents experimental demonstration of the developed synthesis conditions for the

Electric Variable Valve Timing (EVVT) actuator. The fuel economy, emissions, and performance

of an internal combustion (IC) engine are heavily influenced by the intake and exhaust valve tim-

ings. With a conventional valve-train system, the intake and exhaust valve timing can only be opti-

mized for a single operating condition. That is, the optimized valve timing can either improve fuel

economy and reduce emissions at low engine speeds or maximize engine power and torque out-

puts at high engine speeds. Due to the growing fuel economy demands and emission regulations,

electric variable valve timing (EVVT) systems [83] were developed. The challenging problem of

improving fuel economy and reducing emissions at low engine speed while maintaining engine

performance at high engine speed can be addressed with the help of EVVT systems. The EVVT

system is an excellent candidate to verify the effectiveness of the RGS control approach developed

in this dissertation. Since engine speed and vehicle battery voltage have significant impact on the

engine performance, these two time-varying parameters have been selected for feedback control as

noisy scheduling parameters.

Therefore, the goal is to design and implement RGS Static Output-Feedback (SOF) controller

experimentally on EVVT actuator subject to noisy scheduling parameter. To do this, the procedure

described in Fig. 7.1 is followed. First, a series of standard system identification tests are conducted

on the EVVT system bench to obtain a family of Linear Time-Invariant (LTI) models. Using en-

gine speed and battery voltage as time-varying parameters, a family of linear models of the EVVT

system are obtained by performing multiple tests while maintaining engine speed and battery volt-

age at fixed predefined values. With the family of local LTI models, the LPV model of the EVVT

system is formulated. Since the obtained LPV model has affine parametrization structure in terms

of the varying parameters, this model is converted into a polytopic (multi-simplex) domain so that

the H∞ RGS control synthesis method presented in Chapter 5 can be applied to obtain the RGS
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Figure 7.1: Flow chart for the design and implementation of a RGS controller on EVVT system.

controller. Once a controller is obtained, its performance is experimentally evaluated on the same

test bench that was used to perform the system identification tests. If the performance and stability

requirements of the EVVT system are not satisfied, another controller can be synthesized again by

tuning design parameters in the synthesis conditions. This loop is performed until the stability and

satisfactory performance are obtained on the test bench.

7.1 EVVT Engine Cam-Phasing Actuator

The EVVT system components are illustrated first and then experimental results of the system

identification tests are given for fixed values of engine speed and battery voltage that cover the

entire range of the parameters variations. In the third subsection, LPV modeling in the state-space

representation will be explained for the EVVT actuator.
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Figure 7.2: Electric planetary gear EVVT system.

7.1.1 Actuator Components

The EVVT system studied in this chapter operates with two main components: an electric motor

and a planetary gear set (see Figure 7.2). The planetary gear set consists of an outer ring gear, a

planet gear carrier with planet gears attached, and a sun gear. The ring gear, that is running at the

half speed of the crankshaft, is driven by the crankshaft through the engine timing belt. Details

of the modeling work for the EVVT can be found in [82]. Note that for the traditional valve-train

system the ring gear is connected to the camshaft directly, resulting in a fixed valve timing, while

for the EVVT system the ring gear and the camshaft is connected through the planetary gear set.

The planetary gear carrier is driven by an electric motor and four planet gears engaging both

ring and sun gears at the same time, where the sun gear is connected to the camshaft. The speed

of the camshaft is determined by the ring gear speed together with the EVVT motor speed, which

provides the engine with flexible valve opening timing. The cam-phase angle can be expressed as

the integration of the speed difference between the EVVT motor and ring gear. Therefore, the cam-

phase can be adjusted by controlling the EVVT motor speed with respect to the engine speed. To
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hold the cam-phase at a constant value, the EVVT motor speed should match the ring gear speed.

To advance the cam-phase, the EVVT motor speed should be faster than the ring gear speed; and

to retard the cam-phase, the EVVT motor speed should be slower than the ring gear speed.

7.1.2 Test bench set-up

The EVVT experimental test bench is shown in Fig. 7.3. This bench is used for both system identi-

fication tests and control validation. Figure 7.3 shows the engine body, the EVVT actuator, and the

cam-phase position sensor. A Ford 5.4L V8 engine head is used in these experiments. The cylinder

head has a single camshaft driving two intake valves and one exhaust valve. An electric motor is

used to simulate the motion of the engine crankshaft. Due to speed limitation of this electric motor,

the maximum engine speed that can be achieved on the test bench is 1750 rpm. An encoder is in-

stalled on the motor shaft that generates crank angle signal with 1/64 crank degree resolution and

a gate signal (one pulse per revolution). Both encoder signals are used to obtain engine position

and speed. A cam position sensor with four pulses per engine cycle, is installed on the back of the

camshaft to detect the engine firing Top Dead Center (TDC) and to calculate the cam phase angle.

Thus, the cam-phase angle is updated four times every engine cycle. An electrical oil pump is used

to supply pressurized oil for lubricating both EVVT actuator and cylinder head assembly. Intake

and exhaust valves are installed to provide the cyclic camshaft torque load. Opal-RT real-time

engine prototype controller is used to control the EVVT and collect the experimental data for the

test bench. The cam-phase position sensor signal is sampled by the Opal-RT prototype controller

and the corresponding cam-phase angle is calculated within the Opal-RT real-time controller. The

experiments are performed at MSU Automotive Controls Lab at a room temperature of 25◦.

7.2 System Identification and LPV Modeling

This section presents detailed work of the system identification tests, construction of the LPV

model, and state-space representation of the EVVT actuator.
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Engine bodyEVVT Position sensor

Figure 7.3: Engine Experiment setup.

Table 7.1: Fixed values of engine speed and battery voltage used in the system ID tests.

Engine speed = [800 , 1100 , 1400](rpm)

Battery voltage = [9.5 , 11.5 , 14](volt)

7.2.1 System Identification Tests of EVVT Actuator

Using the test bench described above, a series of tests at fixed values of engine speeds and battery

voltage have been conducted. Standard tests [84, 85] are carried out to investigate step response

deviations under various values of engine speed and vehicle battery voltage. These tests showed

that when the vehicle battery voltage, supplied to the EVVT motor, drops from 14V to 9.5V at

800 rpm engine speed, the settling time of step response is almost doubled due to the reduced

torque available for the EVVT motor to drive the ring gear. However, when the engine speed

is reduced from 1400 rpm down to 800 rpm with a fixed battery voltage at 9.5V , the settling

time is cut by half because at low motor speed the available motor torque increases. Thus, these

tests showed that the response time of the EVVT is strongly dependent on both engine speed and

battery voltage. Therefore, these two varying parameters have been selected to be the time-varying

parameters of the LPV EVVT model. Table 7.1 shows the fixed values of engine speed (N) and

battery voltage (V ) that have been used in the system identification tests. Therefore, to obtain a

family of local LTI models, closed-loop system identification tests have been conducted at the fixed

values of engine speed and battery voltage shown in Table 7.1 and nine LTI models are obtained

(see the conference version for the authors [86]).
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Figure 7.4: Bode plot of the 9 local LTI models.

7.2.2 LPV model construction

In this subsection the identified local LTI models are used to construct a single LPV model with

engine speed and vehicle battery voltage as the time-varying parameters. It is found that the LPV
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Table 7.2: Identified Coefficients θ1(t) & θ2(t)

Battery voltage Engine Speed θ1(t) θ2(t)
V (volt) N (rpm)

9.5 800 0.2529 6.975
1100 0.3371 7.809
1400 0.2441 6.233

11.5 800 0.3835 8.470
1100 0.4533 10.710
1400 0.4520 10.780

14 800 0.5304 10.260
1100 0.5390 12.420
1400 0.6472 14.540

model of the EVVT actuator is in the following second order form,

G(N(t),V (t),s) =
θ1(N(t),V (t))

s(s+θ2(N(t),V (t)))
, (7.1)

where θ1(N(t),V (t)) and θ2(N(t),V (t)) are time-varying coefficients functions of engine speed

and battery voltage. For notational simplicity, θ1(t) and θ2(t) will be used to refer to θ1(N(t),V (t))

and θ2(N(t),V (t))1, respectively. Table 7.2 shows the values of θ1 and θ2 that have been identified

experimentally at the nine fixed operating conditions. Based on these identified values, the Bode

plot corresponding to the nine local LTI models is shown in Fig. 7.4.

Note that θ1(t) is associated with the DC gain of the transfer function (7.1), while θ2(t) is the

location of the open-loop pole of the 2nd order system. In other words, the DC gain and pole

location of the transfer function (7.1) are time-varying coefficients and functions of engine speed

and battery voltage. The range of the varying coefficients θ1(t) and θ2(t) are given in Table 7.3

corresponding to the entire range of the scheduling parameters (engine speeds and battery voltage).

θ1 and θ2 are plotted as function of engine speed and battery voltage in Fig. 7.5. From this

figure, it can be observed that the vehicle battery voltage has substantial influence on both coef-

ficients θ1 and θ2. The higher the battery voltage is, the larger both θ1 and θ2. This is mainly

due to the fact that motor torque increases as the battery voltage increases. On the other hand, the

1Sometimes the time dependency will be ignored for simplified notations.
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effects of the engine speed to both coefficients (for a given voltage) are mixed due to the following

facts. At high voltage (14 volt), the motor torque is saturated and as the engine speed increases

the output power increases leading to increased values of θ1 and θ2. However, when the battery

voltage drops to (9.5 volt), the motor output power saturates at high engine speed leading to slower

response (small value of θ2) and reduced DC gain θ1. To sum up, the engine speed has less in-

fluence on θ1 and θ2 than the vehicle battery voltage. It is worth mentioning that table look-up

method has been used to interpolate the values of θ1 and θ2 in real-time implementation.

7.2.3 State-Space Representation

The state-space representation of any LPV systems can be given by

ẋ(t) = A(θ(t))x(t)+Bu(θ(t))u(t)+Bw(θ(t))w(t)

z(t) =Cz(θ(t))x(t)+Dzu(θ(t))u(t)

y(t) =Cyx(t)+Dyw(θ(t))w(t),

(7.2)

where x(t) ∈ Rn is the state, u(t) ∈ Rnu is the control input, w(t) ∈ Rnw is the disturbance input,

z(t) ∈ Rnz is the controlled output, and y(t) ∈ Rny is the measured output. The system matri-

ces have the following compatible dimensions A(θ(t)) ∈ Rn×n, Bu(θ(t)) ∈ Rn×nu , Bw(θ(t)) ∈

Rn×nw , Cz(θ(t)) ∈ Rnz×n, Dzu(θ(t)) ∈ Rnz×nu , Cy ∈ Rny×n, and Dyw(θ(t)) ∈ Rny×nw . θ(t) is a

real vector containing the time-varying scheduling parameters defined as

θ(t) =
[
θ1(t),θ2(t), · · · ,θq(t)

]′
,

where q represents the number of scheduling parameters.

Therefore, the EVVT plant model (7.1) can be realized in state-space form as ẋ1(t)

ẋ2(t)

=

 0 1

0 −θ2(t)


 x1(t)

x2(t)

+
 0

θ1(t)

u(t),

y(t) =
[

1 0

] x1(t)

x2(t)

 ,
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Figure 7.5: The varying parameters as function of engine speed and battery voltage. (a) θ1(N,V );
(b) θ2(N,V )
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Table 7.3: Range of the time-varying parameters.

θ1(t) ∈ [0.2529 0.6472]

θ2(t) ∈ [6.975 14.540]

where x1(t) represents the cam-phase angle and u(t) is the EVVT motor speed command. In order

to accommodate for disturbance input, measurement noise, and control signal,

Bw(θ) =

 0.2 0

0 0

 , Dyw(θ) =

[
0 0.01

]
,

Cz(θ) =

 1 0

0 0

 , Dzu(θ) =

 0

0.01

 .
are defined, thus, the state-space realization of the overall system corresponding to the matrices

defined in (7.2) are


A(θ) Bu(θ) Bw(θ)

Cz(θ) Dzu(θ)

Cy Dyw(θ)

=



0 1 0 0.2 0

0 −θ2(t) θ1(t) 0 0

1 0 0

0 0 0.01

1 0 0 0.01


.

7.3 RGS Controller Design

The objective of the control problem is to regulate the cam phase angle to a reference phase us-

ing RGS dynamic output-feedback control for any trajectories of engine speed and battery volt-

age. More specifically, the goal is to guarantee the robust stability and H∞ performance of the

closed-loop system against uncertainties in scheduling parameters. Following the lines presented

in Chapter 5, the RGS synthesis approach for the EVVT model is summarized by the following

points,
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1. Set the bounds on scheduling parameters and measurement noises associated with each

scheduling parameter, N ∈ [800 ,1400]rpm, V ∈ [9.5 ,14]volt, |δ1(t)|6 10 rpm, and |δ2(t)|6

1.2 volt.

2. Set the bounds on the rates of change of the time-varying parameters, i.e. |Ṅ|6 100, |V̇ |6 12,

|δ̇1(t)|6 10×δ1(t), and |δ̇2(t)|6 10×δ2(t).

3. Convert the LPV model of the EVVT actuator from the original (affine) parameter space into

multi-simplex parameters [39, 87] to define the multi-simplex domain Λ.

4. Model the rate of change of the scheduling parameters in a convex set Ω [45].

5. Solve the conditions of Theorem 5.2 using the iterative algorithm presented in Section 5.4

to obtain controller matrices Ac(θ̃), Bc(θ̃), and Cc(θ̃). With ε = 0.05, the achieved upper

bound on the H∞ performance is γ∞ = 0.1312 and the obtained controller matrices at the

vertices of the multi-simplex domain are given by,

A(11)
c =

 −28.998 37.356

−12.157 13.487

 , A(12)
c =

 −30.446 40.085

−12.795 15.079

 ,
A(21)

c =

 −31.049 40.249

−12.828 14.462

 , A(22)
c =

 −32.032 42.508

−13.246 15.817

 ,

B(11)
c =

 16.245

7.0632

 , B(12)
c =

 16.992

7.3396


B(21)

c =

 17.435

7.459

 , B(22)
c =

 17.887

7.5975

 ,
C(11)

c =

[
122.27 −384.5

]
, C(12)

c =

[
19.087 −53.672

]
,

C(21)
c =

[
124.09 −394.94

]
, C(22)

c =

[
19.336 −55.089

]
,
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6. The controller coefficients in (3.14) are obtained by applying the inverse transformation

(3.40) and (3.40). Thus, these coefficients have been obtained

Ac0 =

 −122.52 160.2

−51.026 58.845

 , Ac1 =

 3.6366 −5.3166

1.1223 −1.7136


Ac2 =

 2.4315 −4.9883

1.0547 −2.9481

 ,
Bc0 =

 68.558

29.459

 , Bc1 =

 −2.0852

−0.65373

 , Bc2 =

 −1.1992

−0.41481

 ,
Cc0 =

[
284.78 −888.21

]
, Cc1 =

[
−2.0693 11.863

]
,

Cc2 =

[
207.93 −670.68

]
.

7.4 Experimental Results

This section presents the experimental implementation of the RGS controller, obtained in the pre-

vious chapters, to the EVVT test bench. Note that the same test bench used to perform the system

identification experiments are also used for controller validation. Euler’s forward (rectangular)

method that is given in [88] has been utilized to discretize the controller with a sampling period of

5ms on the Opal-RT prototype controller.

For the purpose of experimental demonstration, different operational conditions are investi-

gated in this experiment with various engine speed and battery voltage profiles. Figure 7.6 shows

one of these trajectories that are used in the experimental study. It is worth mentioning that this tra-

jectory is corresponding to the best possible measurements that can be obtained on the test bench.

It is clear from Figure 7.6 that perfect measurement is very difficult to obtain experimentally. This

supports the core idea that noisy scheduling parameter is a reasonable assumption in practice.

Figure 7.7 illustrates the cam-phase angle tracking to a reference step input of 40◦. During this

experiment, engine speed and battery voltage are varying to cover the entire parameter space and

134



700 800 900 1000 1100 1200 1300 1400 1500
8

9

10

11

12

13

14

15

16

B
a
tt
er
y
v
o
lt
a
g
e
(V

)

Engine speed (rpm)

1

Figure 7.6: Engine experimental operating trajectory in parameter space.

to encompass various vehicle operating conditions. It is clear from this figure that, although sever

variations are considered with engine speed and battery voltage, fairly good tracking response is

achieved for the cam-phase angle. Again, note that the measured battery voltage is quite noisy

indicating the need for gain-scheduling controllers to be robust against these measurement noises.

Thus, the controlled response is robust against measurement noise associated with the battery

voltage signal.

In Figure 7.8, step-change from 40◦ to 5◦ and then back to 40◦ is applied as a reference input

for the cam-phase angle. This figure demonstrates very good tracking performance of the synthe-

sized controllers for a step-change reference. Similarly, since the battery voltage trajectory is not

perfect, the synthesized controller shows robustness to measurement inaccuracies in scheduling

parameters.

Furthermore, measurement noises are intentionally inserted into the measured battery voltage

and engine speed to illustrate robustness of the designed RGS controller. bounds of the noise are
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Figure 7.7: Measured engine speed and battery voltage, and cam-phasing angle tracking with step
reference of 40 degree.

given by±100 rpm and±1.2 Volt, respectively. In terms of the measurement noise bounds defined

earlier in (3.4), these noise bounds can be expressed as |δ̄1|≤ 100 rpm (for engine speed) and |δ̄2|≤

1.2 Volt (for battery voltage). Extensive experimental tests are conducted for various measurement

error bounds but only tests for the above mentioned bounds are presented here since the results of

other tests are quite similar. Figure 7.9, Figure 7.10 and Figure 7.11 illustrate experimental results

for the noisy scheduling parameters (right-side of the figures). Again, these figures demonstrate

robustness of the synthesized controller.

7.5 Summary

Experimental study of Robust Gain Scheduling (RGS) controller synthesis for the Electric Vari-

able Valve Timing (EVVT) actuator is considered in this chapter. Since engine speed and battery

voltage have substantial impact on engine performance, fuel economy, and emissions; these two
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Figure 7.8: Measured engine speed and battery voltage, and cam-phasing angle tracking with step
change reference.

time-varying parameters are chosen as scheduling parameters to model the EVVT system in LPV

framework. First, a series of system identification tests were conducted to obtain a family of

local Linear Time-Invariant (LTI) models. Then, these models were grouped together through

linear interpolation to obtain the LPV model for the EVVT actuator for the entire range of op-

erational conditions. Following the theoretical approach presented in Chapter 5, RGS controller

was designed to regulate the cam-phasing angle to a specified reference trajectory. The designed

controller was implemented and validated experimentally on the test bench utilizing the measured

(noisy) scheduling signals. Experimental results confirmed robustness of the developed controller

against measurement noises in the scheduling parameters.
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Figure 7.9: Speed and voltage variations with perfect measurement (left) and noisy measurement
(right) and corresponding cam-phase responses.
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Figure 7.10: Speed and voltage variations with perfect measurement (left) and noisy measurement
(right) and corresponding cam-phase responses.
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Figure 7.11: Speed and voltage variations with perfect measurement (left) and noisy measurement
(right) and corresponding cam-phase responses.
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CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, a unifying approach for synthesizing Robust Gain-Scheduling (RGS) con-

trollers of Linear Parameter-Varying (LPV) systems subject to noisy scheduling parameters was

developed. This chapter provides concluding remarks and suggestions for future research direc-

tions.

8.1 Conclusions

Since stability and performance of dynamical systems are of most importance for a successful

control design, significant efforts have been made by researchers to develop new control strategies

to achieve these two objectives. In this dissertation, a general approach has been developed to

improve these objectives in the LPV framework when the time-varying parameters are polluted by

measurement noise.

In the first chapter, different LPV control methods were reviewed and the overall organization

of the dissertation was given. Multi-simplex modeling approach was used throughout this disser-

tation to model the time-varying scheduling parameters and associated uncertainties in a convex

domain. Chapter 2 introduces the necessary notations, definitions of the multi-simplex model-

ing approach, the homogeneous polynomials, and the technical machinery used throughout this

dissertation.

In Chapter 3, the control problem formulation of the RGS controller synthesis was presented.

Then, the general solution approach for this synthesis problem was introduced in the same chap-

ter. This solution approach includes transformation of the affine LPV systems into multi-simplex

domain first. Then, the rates of change of the scheduling parameters and associated uncertainties

were modeled in a convex domain as well. Third, the controller synthesis conditions were derived

in terms of Parametrized Linear/Bilinear Matrix Inequalities (PLMIs/PBMIs). Finally, matrix co-
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efficient check method was utilized to relax the PLMIs/PBMIs at the vertices of the multi-simplex

domain to obtain the optimal controller.

Synthesis conditions of RGS state-feedback controller with guaranteed H2 and H∞ perfor-

mances were presented in Chapter 4. These conditions were formulated in terms of PLMIs with

scalar search as a tuning parameter. Numerical examples and comparisons with other existing

methods were given in this chapter. The comparison results show that the developed approach

achieve a better performance in the presence of measurement noises. As a special case of the these

synthesis conditions, robust state-feedback controller can be synthesized by constraining synthesis

variables to be parameter independent.

Chapter 5 introduces synthesis conditions for RGS Dynamic Output Feedback (DOF) con-

troller with guaranteed H2 and H∞ performances. These conditions were formulated in terms of

PBMIs with scalar search for both performances. Since PBMIs are non-tractable, a numerical al-

gorithm was developed to solve these conditions. Demonstrating examples and comparisons were

presented to illustrate the effectiveness of the developed approach.

Synthesis conditions for Static Output-Feedback (SOF) robust gain-scheduling controller were

developed in Chapter 6. Two-stage design method was used to synthesize the SOF RGS controller.

In the first stage, state-feedback gain-scheduling controller was synthesized. Then, this controller

was used as input to the second stage to synthesize the SOF RGS controller. Numerical algorithm

was developed to reduce conservativeness iteratively. Simulation results of the SOF RGS controller

for Electric Variable Valve Timing (EVVT) actuator was presented to demonstrate the effectiveness

of the designed controller.

Experimental validation of the developed approach was demonstrated in Chapter 7 on the

EVVT bench. Engine speed and battery voltage were chosen as time-varying (noisy) schedul-

ing parameters. RGS controller has been designed and implemented experimentally on the test

bench of the EVVT actuator. Experimental results showed very satisfactory tracking performance

of the cam-phasing angle.
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8.2 Recommendations for Future Research

This section presents recommended directions for future research.

1. In view of the developed synthesis conditions, it would also be interesting to study the mixed

H2/H∞ synthesis problem. Since the developed conditions utilize slack variable approach

and the controller construction was independent on Lyapunov variables, the developed syn-

thesis conditions lend itself as an excellent candidate to achieve multi-objective control. In

other words, each performance objective has its own Lyapunov matrix allowing to achieve

multiple objectives without introducing additional conservativeness.

2. In the RGS state-feedback conditions, it would also be interesting to avoid line search by

replacing the scalar (ε) with a full matrix and solving the resulting conditions iteratively as

PBMIs problem. In this case, considerable performance improvement can be expected on

the expense of additional numerical burden.

3. Since matrix coefficient check relaxation method [41] was used to solve the developed syn-

thesis conditions, it is interesting to use different relaxation method such as matrix Sum-Of-

Squares (SOS) [52] to solve these conditions and performing comparative study in terms of

the achieved performance and numerical complexity.

4. An interesting topic to study is to extend the developed approach to design gain-scheduling

observers subject to noisy scheduling parameters. By using duality of the RGS state-feedback

synthesis conditions it is not difficult to derive PLMI conditions to synthesize observer gain

that guarantees asymptotic convergence of the estimation error while achieving robustness

against scheduling parameters uncertainties.

5. In this dissertation H2 and H∞ performances have been considered. It is very encouraging

to study other performance such as L2-to-L∞ performance in the RGS framework. With

the L2-to-L∞ performance, the control objective is to minimize the control energy while
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satisfying predefined constraints on the performance output. This performance is very pow-

erful for many practical control problems in automotive and aerospace applications when

hard constraints are imposed on the performance outputs.

6. It would also be interesting to extend the developed approach to handle RGS controllers that

minimize the output performance while satisfying constraints on the available control en-

ergy. This is a very interesting problem in practice when certain constraints on the available

actuators should be met while achieving optimal output performance.
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APPENDIX

FUNDAMENTALS OF LINEAR MATRIX INEQUALITIES

This appendix provides an introduction to the application of Linear Matrix Inequalities (LMIs) in

control systems. Basic concepts of LMI problems with essential manipulation tools are introduced.

LMI Basics

The central notion to understand matrix inequalities is definiteness. In particular, a matrix Q is

defined to be positive definite if

x′Qx > 0, ∀x 6= 0 (.1)

Likewise, Q is said to be positive semi-definite if

x′Qx≥ 0, ∀x (.2)

It is common to write Q> 0 (Q≥ 0) to indicating positive (semi-) definite matrix. In particular,

the interest is to find positive definite matrices that are also symmetric, i.e., Q = Q′. A symmetric,

positive definite matrix has two key features: it is square and all of its eigenvalues are positive real.

A symmetric, positive semi-definite matrix shares the first attribute, but the last is relaxed to the

requirement that all of its eigenvalues are positive real or zero. A matrix P = −Q is said to be

negative (semi-) definite if Q is positive (semi-) definite. P < 0 (P≤ 0) is used to indicate negative

(semi-) definiteness.

The most general form of an LMI is

F(x) = F0 + x1F1 + x2F2 + · · ·+ xmFm = F0 +
m

∑
i=1

xiFi > 0 (.3)

where xi are real, scalar optimization variables, x = [x1 x2 · · ·xm]
′ ∈ Rm and F0,Fi ∈ Rn×n are

given constant symmetric matrices. The above LMI is feasible, if a vector x exists which satisfies

(.3). Note that F(x)> 0 describes an affine relationship in terms of optimization variables x.
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In most control problem, it is more convenient to be formulated as the following LMI:

F(X1,X2, · · · ,Xk) = F0 +
k

∑
i=1

GiXiHi > 0 (.4)

where Xi ∈ Rpi×qi are matrix variables to be obtained and Gi ∈ Rn×pi and Hi ∈ Rqi×n are known

matrices. It is easy to see that the vector variable x in (.3) can be formed by stacking the columns

of Xi in (.4).

Mathematical Tools for LMI Manipulation

Althoough many control problem can be formulated as LMI problems, a substantial number of

these need to be manipulated before they are in a suitable LMI framework. Fortunately, there are a

number of common mathematical tools that can be used to transform problems into suitable LMI

forms. Some of these useful tools are described below.

Schur Complement

The usefulness of the Schur complement is to transform quadratic matrix inequalities into linear

matrix inequalities, or at least as a step in this direction. Schur’s formula states that the following

two statments are equivalent

•  Q S

S′ R

> 0⇐⇒


Q > 0

R > 0

Q−SR−1S′ > 0

(.5)

•  Q S

S′ R

> 0⇐⇒


Q > 0

R > 0

R−S′Q−1S > 0

(.6)
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For non-strict inequalities, the Moore-Penrose pseudo inverse of constant matrix will be used [89].

Congruence Transformation

For a given positive definite matrix Q ∈ Rn×n, the following inequality holds

WQW ′ > 0, (.7)

for a (real) full rank matrix W ∈ Rn×n. Therefore, definiteness of a matrix is invariant under pre-

and post-multiplication by a full rank real matrix, and its transpose, respectively. The process of

transforming Q > 0 into (.7) using a real full rank matrix is called a congruence transformation.

It is very useful for linearizing nonlinear matrix inequalities with a suitable change of variables.

Often, the congruence transformation matrix W is chosen to be diagonal.

The S-Procedure

The S-procedure is essentially a method used to combine several quadratic inequalities into a single

one (generally with some conservatism). More specifically, It is preferred to guarantee that a single

quadratic function of x ∈ Rn such that

F0(x)≤ 0, F0(x) := x′A0x+2b0x+ c0

whenever certain other quadratic functions are positive semi-definite

Fi(x)≥ 0, Fi(x) := x′Aix+2b0x+ c0, i ∈ {1,2, · · · ,q}

To illustrate, consider i = 1, if there exist a scalar constant τ > 0, such that

Faug(x) := F0(x)+ τF1(x)≤ 0, ∀x, s.t. F1(x)≥ 0

then F0(x)≤ 0. In other words, Faug(x)≤ 0 implies that F0(x)≤ 0 if τF1(x)≥ 0 because F0(x)≤

Faug(x) if F1(x)≥ 0. Extending the idea to q inequalities constraint

F0(x)≤ 0, whenever Fi(x)≥ 0 (.8)
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hold if

F0(x)+
q

∑
i=1

τi Fi(x)≤ 0, τi ≥ 0. (.9)

Thus, the S-procedure is a method of verifying (.8) using (.9). This is quit useful when F0(x) is

not a convex function. It is worth noting that these conditions are sufficient for i > 1, it provides

sufficient and necessary conditions only when i = 1. Usually, τi’s are considered as additional LMI

optimization variables.

Projection Lemma

The projection Lemma is useful for eliminating decision variables from LMIs.It is also has a con-

vexifying effect on certain nonlinear matrix inequalities [90] .

Lemma .1. Let Ψ = Ψ′ ∈ Rn×n be a symmetric matrix and R ∈ Rp×n, Q ∈ Rm×n be given matri-

ces. Then, the following statements are equivalent

1. There exists a matrix Ω ∈ Rp×m such that

Ψ+R′ΩQ+Q′Ω′R < 0. (.10)

2. The LMIs

R′⊥ΨR⊥ < 0

Q′⊥ΨQ⊥ < 0

hold, where R⊥ and P⊥ are bases of the null-space of P and Q, respectively.

3. There exists scalars τ1, τ2 ∈ R such that the LMIs

Ψ− τ1 R′R < 0

Ψ− τ2 Q′Q < 0

hold.
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Common LMI control Problem

This section presents common control problems that uses LMI formulations.

Lyapunov Stability Criteria

Consider the continuous-time linear system

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t),
(.11)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control (input) vector, and y(t) ∈ Rp the output

(measured) vector, the system is asymptotically stable if the following feasibility problem satisfied P > 0,

A′P+PA < 0.
(.12)

Stabilization by State-Feedback

Assuming that the system (.11) is not asymptotically stable, state-feedback controller K, that is

u = w+Kx, may be sought to form the following closed-loop system

ẋ = (A+BK)x(t)+Bw(t),

y(t) =Cx(t)+Dw(t),
(.13)

where w(t) denotes the external input. In order to stabilize the closed-loop system, the state-

feedback matrix K required to satisfy (.12), P > 0,

(A+BK)′P+P(A+BF)< 0
(.14)

or  P > 0,

A′P+PA+K′B′P+PBK < 0
(.15)
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The second inequality in (.15) is bilinear. It can be converted back to a linear inequality by

simple change of variables. Pre- and post-multiply (.15) by P−1 to get

P−1A′+AP−1 +P−1K′B′+BKP−1 < 0. (.16)

Letting Q := P−1 and defining L = KQ,

QA′+AQ+L′B′+BL < 0. (.17)

Hence, inequality (.17) is linear with respect to the new variables Q and L. Once these variables

are obtained, the original variables P and K can be easily recovered.

H∞ Norm

Consider the problem of obtaining the H∞ norm for the following system

ẋ(t) = Ax(t)+Bw(t),

y(t) =Cx(t)+Dw(t).
(.18)

The L2 gain (γ∞) is defined by

∫
∞

0
y(t)′y(t)dt ≤ γ

2
∞

∫
∞

0
w(t)′w(t)dt. (.19)

Let’s define quadratic Lyapunov function V (x) = x(t)′Px(t), where P > 0, then

T := V̇ (t)+ y(t)′y(t)− γ
2
∞w(t)′w(t)≤ 0. (.20)

Substituting for V̇ (t) and y(t), (.20) can be written as

T = x′PAx+ x′A′Px+ x′PBw+w′B′Px+(Cx+Dw)′(Cx+Dw)− γ
2
∞w(t)′w(t)≤ 0, (.21)

that can also be written in the following form,

T =

[
x′ w′

] A′P+PA+C′C PB+C′D

B′P+D′C D′D− γ2
∞I


 x

w

≤ 0. (.22)
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A sufficient condition of (.20) is A′P+PA+C′C PB+C′D

B′P+D′C D′D− γ2
∞I

< 0. (.23)

Inequality (.23) can be written in different (equivalent) ways, A′P+PA PB

B′P −γ2
∞I

+
 C′

D′

 I
[

C D

]
< 0, (.24)

or 
A′P+PA PB C′

B′P −γ2
∞I D′

C D −I

< 0. (.25)

Pre- and post-multiply the previous inequality by
1√
γ∞

0 0

0 1√
γ∞

0

0 0
√

γ∞


to obtain 

A′P̂+ P̂A P̂B C′

B′P̂ −γ∞I D′

C D −γ∞I

< 0, (.26)

with P̂=P/γ∞. There is another form that is usually used in synthesis problem that can be obtained

by multiplying (.26) from left and right by
Q 0 0

0 I 0

0 0 I


with Q = P−1, to obtain 

AQ+QA′ B QC′

B′ −γ∞I D′

CQ D −γ∞I

< 0. (.27)

151



Thus, the bounded real lemma [91] could be any of the above inequalities (.25), (.26), and (.27). In

all of the previous inequalities, the goal is to seek a positive definite matrix (P or Q) that minimizes

the H∞ bound γ∞.
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