f IH‘WIII H“ \ IHHLIIW, Ilh V M DESfiGN 0? AN ANALOG COMPUTER Thesis for the Degree ef M. S. MiCHESAN STATE COLLEGE Nyia Eugane Sash 1:945 _ 3»- » 3» »3» 3»»»»3»333232 aw» 1 - »333'1» “is“, is ~ ’l,‘l' I . 1‘ ' 1 3" 3‘ t. ‘I l 7 ' ‘- 3 a ; ‘ , . . -. I \ ' \ \ . .le' 3‘13" » 1,33 Tuaflfii ‘ '”' V l I II » II' ‘3 3% " » " { 1‘.‘ I a ‘ ‘ 3' 1 V,“ 1 j » , ‘ F .l‘ U 3- a x i .‘ V ' ’.'\ 4 I 13': .l , 1 w I i 3.- 3‘ 3‘ I t: _ \ .I; ' . _- a I , l fi'u l 1' 3 , 3. . 3 a ‘t t ' VI .‘ 1 LI! if“ . ‘1 1 J , «(7» 3 1 ‘ " ' r v \‘ f ' I z lei-$.19. I? I r g I ‘f ‘3‘ F l ‘r‘, f“ r ‘ : ‘r . 3 ,J a “"_ . l ' M J ‘ f x f "L' j v I I L V I ( ‘ » - . ' a * ‘3 ‘ ~ 1 , ‘ ‘ 1 K‘ , H I x t r ‘ f ' Q d I I uh n 1, 4i. .. . \‘u‘ a. It ‘TV .. A v0.3 - .3 .I J .2~' -.c f‘-# a »- .A .. .9 .o I , 3- .' .3 . . . _o~. This is to certify that the . ‘lt - J. . a .- - 9 .G . "_..};1|: _ . , - . , - thesis entitled _. ‘f .f . .-' 'u 2”. Design of an Analog Computer presented by ;_ (. Nyle Eugene Bush 3 has been accepted towards fulfillment. f of the requirements for M.S. degree in EOE. Major fl) r WW3 P , , fl N Date May 223 1948 ”-795 ‘ r' f—Y—I _‘( r f T T‘ —‘V""‘".‘q '—”"—“ *1 M+W "' r'” i ,I l l ' 1 r0 I h l ‘ ‘ ‘ I" ~. ’ ll l "1‘ r i l “‘ 31‘ J . '3") ML r \ I t | ! E 'r' I 4' ll 1, i J l ,‘ J}. l ,3‘ ‘ 3f" , ‘ 3 .' r» ' -‘ fl »’ fl ., . J» 3 , , ' 'u wk 1 - r J' | H i 3 h l x l I I . 1, , 3 ‘ . J “ n 1 , 3 J» ,9 , ‘ A J r . f E » ,1 l x f x 1 1| ,- i ‘ l 3 [ l ' I K .— 11» ‘3 V 3 3 r” ‘ ».i V- »? .*- J? 313%: L‘ t. 334‘:- 1230.31.» MM}: 34‘ »;f',.».a’“-3;; H DESIGN or AN ANALOG 00333333 by Kyle Eugenepgueh A maesxe Submitted to the Graduate School of Michigan State College of Agriculture and Applied Science in Partial fulfilment of the requirements for the degree of MASTER or scramcn Department of Electrical Engineering 1948 THESlS ACKl-IOIEVGEQEITT The author wishes to express his appreciation to Dr. Strelzoff and other members of the Electrical Engineering Staff who assisted in the development of this TheSiSe 201340 TABLE OF COUTEHTS Analogs, Integrators and Differentiators Synthesis of Integrator and Differentiators into Dynamic Systems Design of an Operator Amplifier Solution of a Differential Equation Experimental Results Bibliography 10 15 28 35 I. Analogs, Integrators and Differentiators The ordinary differential equation may be interpreted as a mathematical model representing a physical system with lumped circuit parameters. This mathematical system.acts as a common denominator expressing the action of several wholly different types of natural phenomena by one equation. Such systems are said to be analogous,or analogs of each other.1 A common illustration of analogous systems is that of,a torsion.pendu1um.subjected to a driving force, and a series RLC circuit subjected to a voltage. Jé +Ré-+K6=7%fl%wf z " +4“; +13 :5. If» “’7‘ on this illustration it can be seen that electric charge and moment of inertia, resistance and friction, torsional stiffness and inverse capacitance, are analogous. Other analogies between electrical and ,~ mechanical systems may be made in.like manner and a table of these appears in the literature.2’3 The foregoing material suggests the possibility of exploring phenomena on either an enlarged or reduced scale by means of analogies from a different field. It is the object of this paper to explore such possibilities and to design an analog computer. 1. Murray F. Gardner and John L. Barnes, Transients in Li%a' systems. John Wiley and Sons, Inc., New”YorE, 19453'p. 2. Louis A. Pipes Applied Mathematics for ineers and physicists. Mcéraw Hill Taco c‘o'.","T9"'"4e.” p. i‘e“"""5 ""'"' 33 Gardner and Barnes, op. cit.’p. 6 If we add to our repertoire of analogs a unit called, for lack of a better name, an Operator unit, and later called Operational amplifier,4 we have an analog for the mathematical operator 9 = dAt. This operator also performs the Operation p'1 = dt. Such an Operator unit can be formed electro-mechandtalw' using a watt hour meter which performs the operation [P dt.5 ‘where‘P is power in watts. If voltage, V, is constant then the Operator becomes vy/i dt. Performance of the Operation IE‘Ly dx is accomplished by associating x with time, T, and causing current i to vary with time in the same way I varies with y. One disadvantage of this system is the slowness of Operation caused by inertia of the mechanical elements. Another disadvantage is lack of flexibility. These difficulties are overcome if electronic methods are utilized. A differentiating circuit, which forms the basis for an electronic differentiator is shown in fig. 3.6 Assume that the output circuit has a small impedance compared with R, (z.<>I Y represents admittances of the Laplacian transform type. This is a very general form and the admittances could consist of resistors, capacitors, and indictanees or networks formed from these elements. In the case of a differentiator: I’, (f! :7 Cf [fin/v) : 6; = l/R, Thus 92 : Rf C p 9' This equation is similar in form to eq. (1). However the R in eq. (1) is replaced by the input resistance of the amplifier,8 more R; z c" /(' Then fickle.- + flaws; = ( 6" -'-"- et/A ”(P/5“ 1" Knob/I4 6’; z: I. Rf 3' I Rf f’WP/L—HAJ I +A If A is large then R(' 3 Rf /A The frequency cut Off then becomes 2“ 2: .o/A /:77R,».c 8. D. J. Mynall, "Electrical Analogue Computing", Electronic Engineering l_9_ p. 178, 1947 h: .\ The cut off frequency is thus seen to be directly proportional to the amplifier gain while the Output voltage is directly preportional to the feedback resistance Rf. For a given gain, A, the output voltage is increased at the expense of decreased cut off frequency. There is also a lower limit on Rt which determines f0 maximum imposed by conditions for stability in feed back anplifiers.9 This will be treated in the study of «1.0. amplifiers. The basis for the electronic differentiator analogous to the Operator p is thus formed..Any number of such Operators may be connected in cascade to form.the operation pn. Equation 5 shows that the electronic Operator may also be used as an integrator. Let 50:) r: (/9 and If (,a/ = //R then 8.. = { //RC/b]€, The basic integrating circuit is shown in.gig. 4 Here the output voltage is taken across c. I: Ke/R scl‘et/R 631.: .2747 za-el/RC/a C” 7782.. 6.. a: Mac/ad)“ For sufficient accuracy of integration is is assumedé: >> etmeans that e, 2.. loo eghis, together with the R0 constant fixes a lower frequency belOW'Wthh the accuracy of integration fails. 9, Bode, op. cit., chap 8 Fla 4 -— PALM/E ”Yum/v.4 TING NET/Vaflh’ so" e. A e2. __ To [75. 5' ACTIVE //V7’£6/?AT//V6 NETWORK 6+2, 9. W» 82 6:6 6; 6-: r A ez=ae,+cez+re3 ._L._ c~ -—-‘ ¢ - F/é. 6 Jfl/‘ffl/Nc; AMPL/F/f/i’ This lower limit is determined frmm (R + (/wc 2" /oo ('/wc 64/2 :3 577h/CA?C: Again, this performance may be hmproved by use of a direct coupled amplifier. Using the same analysis made for the electronic diff- erentiator ff [/0/ .2: W5} Lu l{.(I'I-A) The capacitor in t 6 basic circuit is this:made longer by a factor of A.and the frequency cut off becomes for the electronic integrator, a/c :- 77/RCf/4 Although it is theoretically impossible to extend W0 to absolute zero, this ideal condition is approached with a large amplifier gain. A high amplifier gain also affords a reasonable output level. Thus the electronic ,integrator which performs the Operationzp'l, is formed. Its frequency gain characteristic decreases 20 loglo(2) or 6 DB per octave. Synthesis of electronic differentiators and integrators requires a summing operation.which can be performed by use of a d.c. amplifier connected as in fig. 6.10 The coefficients 096’, I are scale change coefficients determined by the raticjfgfl/g etc. ’3‘ ’3- 10. D. J.‘Mynall, Op. cit., p. 180, June 1947 The use of admittance notation implies that the use Of scale changing components is not limited to resistors. If capacitors are used for Y2, Y5, etc. , the Operation of differentiation is performed at the same time a scale change is accomplished. Another advantage of using an amplifier in this:manner is that it acts 7 as an isolator. The output circuit of the feedback amplifier does not reach back on the input circuit. An economy of amplifiers is effected by simultaneous performance of several functions by a single amplifiers, in synthesizing a dynamic systan. Sign changing of the dependent variable function may be needed frequently. This, of course, means there should be a 180° phase shift between the input and output of the electronic Operator and is accomplished byusing an odd number of stages in the electronic operator. 10 II. Synthesis of Integrators and Differentiators Into Dynamic Systems. The methods of synthesis considered here are the fin lined1 technique and the node method for electronic differentiatoral The node method is synonomous with the method known as "current Junetion"12technique but is preferred because of brevity. The node method is based on Kirchoff's current law and therefore corresponds tc>'current Junction" techniqueiz Ineline electronic differentiator synthesisl4 amounts to a summation of functions of the independent variable. The independent variable is the input voltage to a system of electronic operators each of which compute a function of the input and then are summed in a summing amplifier. lhe output voltage is the desired dependent variable. Such a system As demonstrated by the equation 3 (T) is the independent variable voltage input and x.(T) the dependent variable output. The constant coefficients can_be varied to give a desired.x(ll for a given y(l) ll. Bagazzini, Randall, Russell, op. cit., p. 446 12. Ibide. P0 447 13. Gardner and Barnes, op. cit., p. 58 14. Ragazzini, Randall, Russel, op. cit., p. 447 .LJ. Fig. 7 represents one possible combination of amplifiers which will solve for 1(T). The node method depends on summing a number of currents at a node in the system. ‘The simplest system of this type corresponds to a single electronic differentiator solving the equation/ 81. = K/a 6, This analysis may be extended so that ”We. = WM e ’ + I? 0-): e” ’2 Wu ‘3 Taking the example for "in line” technique and applying the node method, let erlbeIé’, By applying the proper scale changes at the summing amplifier A, and applying a preper sign to the input function the equation lq/bfigf/1t£%/>11V' f-Cafiar'1~17f"-)(:=C7 ,«rjcv/Vflf kahkteb N\<\ V - >\\ I x. 6 \K 15 th§0€§Qb WQO>\ I Q GNK £76. 9 - aAr/c o. c. AMPA/F/ER E. g 52. f 5 FIG. /0 -— fowl/AA E/Vf (mam 7' FOR 4 V/EJ‘CE/VT CONoI 7/0/Vf l4 15 III. Design of an Operator Amplifier An amplifier which is to serve as an Operator must meet the following requirements: (1) Uniform frequency response over operator range (2) Frequency response down to O c.p.s. (5) Stability (4) Freedom from drift (5) High gain (6) Low output inpedance The requirement of zero frequency response compels the use of a d.c. amplifierf’A.potentiometer type of coupling was selected. Fig. 9 shows the basic circuiti4ihe equivalen: circuit for quiescent conditions is shown in fig. 10. (:79 :3 lC/qub (9%: =:‘//6:Lz C" = I/R. 6: : HR: The node equations are: (7) /2;*e +1971F6Ez)£i.-é;1153 :=’€;115} (;Z, -‘;¥LAE9 ‘*‘(2;a.1FC§31L£i3 ::"€33 £52 am I) (7;) 2.1: GB; 15/156,46J] .1 fafiouwfazj (za) 6,, :: 61, 3;?— " .9 13. E. L. Ginzton, "D. G. Amplifier Techniques", Electronics, M3:., 1944, p. 98 l4. Artzt, Mhurice, "Survey of D. C. Ampfi, Electronics, Ange 1945, Fe 112 16- RI: F/6.//-— AMPL/F/ff? EQU/VAZE/W’ ClRCU/T R2 Pl 9 62 5’ R3 F/é - IZ. COUPL/IVG CIRCUIT 3+ 9| a. con/PENIA T" R a} F/G. l3 1? Solving (2a) for G3 and substituting the value of G2 from eq. (13). (3) 5,_ 51/19:.- -E.. )_ 613.5, E:(/+6,jél] Solving eq. (1)! for E6, (;7l(£;-4£%L) :: ’féafi»1L¢;1n)15c "C;1453 a, = _(4..c6.)£. 4.5 : §,£.+6z(5-£,) “£0 E,‘£° Substituting the value of 62 from eq. (2a). (4) 6/ :67 é'£2+éfi/—éLA—] 5,—5 Although the preceding equations were more conveniently derived be means of a node representation with equations in terms of conductances, a more useful form is in terms of resistances. Inversion of eqs. la to 5 will give this. Thus, (2;) /?é_-‘/?I“—4éELZAEéL-—-3 /? ,AE§;:J§:_ E’-£;(/*fihflfikJ IES‘N£;(/VLAmflfi}) 7 R =R ["5“- ( ‘) .3 I,” OflhfIRZ/OSbu, :1 lb (g) R: 7" R 'fi 5-5 ‘1 3 £3 “52+R3/Rffo (7) R2 1': R3 5‘5?- 11-2-5 Equations 6 through 9 are the design equations where either R1 and all supply voltages are knwon or R3 and all supply voltages are known. E0 is the potential at the chosen operating point and 10 the quiescent plate current at; this point andfizée , RF is not the same as the dynamic plate resistance. The equation for gain may be obtained in much the same :nanner as for R.—C. coupled amplifiers. Fig. 11 shows the equivalent circuit. includes the gr id coupling network as well as shunt capacitance. E0 = output voltage Eo -‘-’ If; £1: = IRR I=_flfj ~4IR5 r, + Rx +171. JEN/4R3 /(I;. +RK+Z..)] =xq59/KII;+RK+ i‘.) A" -"-‘-' 5/137 :: "f ”it This represents the expression for the complex gain. At low and middle frequencies 21 is simply R]. , which c3C>Iisists of the coupling networks as shown in fig. 11. The acillivalent circuit for R1 is shuwn in fig. 12. From fig. 12 R. _-_- LRL (R..+R,_Z_ Substituting for R1. 19 fl Rlfifia +Rll’ ’Vb '+'I?KF(kWW‘/) iL/RDIVQHSfJQ32:: Rp+RL +R3 :: ¢__ /¢”’Aaleb ~—*i_ (R: +Rt+R3){r/n +Rk(x4+/)]+R. lam.) Output voltage is derived across R3, therefore the gain becomes A=K Re . /az'*1?3 Z __ MRI R3 __ V (R, +R.+R3)[I;, +Rxm+ll} +Ra(Rz+Rz) Ifgt+g3,R' I R‘may be neglected and ,4 :: M41 # .12.... 1;. +RKIAI+U+R0 55+“? This result confirms that given in the literature,15 although the exact equation is the one which was used in computing the gain of the experimental amplifier. Steady state drift is one disadvantage of direct coupled amplifiers. The main causes of this drigt are variations in cathode temperature, and variations in plate voltage supply. Any variation of this type is amplified by each succeeding stage so that it is quite apparent a well regulated plate power supply is needed. 15. Artzt, op. cit., p. 112 The drift due to cathode temperature variation or filament voltage changes may be considerably reduced by use of a Iiller compensation circuit in at least the firs: 16 stage. This circuit works on the principle that two similar triodes may be so connected that changes in one conpensate change in the other. The circuit is shown in fiSe 13e The balancing action occurs when the voltage drop across R1, due to drift current causes a change in grid bias on t he compensator tube, T2 . The compensating current’-41'R']m’ causes a voltage dr0p of ‘(4 Ifijlptacross R2 . If the disturbing voltage, 41-3., is balanced by the drop across R :_due to change in current, AIR,- (AIR,j.../R.. == 0 and R1: l/ju, Voltage stabilization with the type of direct coupling euployed is extremely important. Any variations in voltage, or drift from the steady stage, is amplified from the input of the second stage to the output of the final stage. Batteries would provide the most stable voltage supply..A voltage regulator was choyen as the most practical as batteries would be costly to maintain. 16. Ginzton, op. Cite, Fe 98 21 In general, Voltage stabilizer circuits may be classified as amplification bridge circuigs, mutual conductance bridge circuits, degenerative amplifier circuits, or combinations of these.17 For power supply stabilization here, a degenerative amplifier with an additional pentode amplifier stage was chosen. The fundamental degenerative amplifier circuit is shown in £13. 14.18 The equation for effectiveness of regulation can be in terms of the differential plate voltage,aJZiladd the differential plate current 4/4 .19 d5. -.-. ail-.015 +25%. cap—alt“. 4.0/12 27£ii 512% /44 jinn AE‘ z 45¢. "" A5. 6705; 1="H/(4515} .IVV98713 /}’/' 13~£;’/423£5’ :: /;/gt>¢r Let 8 33—2.. [or large values of I, J“: K” The circuit used for the two regulators is shown in fig. 1’. The gain for the éfflamplifier is A =fmg‘ :4/3 Only a third of the output voltage variation appears at the grid of the 6.5277 so that K: 4/3/3 = [38 J‘ : 138x44. .2580 Negative feedback may be used.for many purposes in feedback amplifier design. One of the most important uses is in decreasing the sensitivity of the amplifier gain to changes in the tube characteristics. Feedback is used here, however, to improve the frequency response and output of an R0 differentiator or integrator. This type of feedback is known as shunt or voltage feedback. The other most common type is series of current feedbackfin It is necessary that there be no feedback voltage component in phase with the input of the anplifier or oscillations will occur. 20. Bode, op. cit., Chap. 3 q f“ .71 L {'3 |l £2. AE. R; L (/1 ran IVE Rféa -— géiNtA’Ar F l6. M 0 Grid of flexf ffajc 24 The middle frequency phase shift in a vacuum tube amplifier is 180° and would be the same at low frequencies for a ddrect coupled amplifier. However, at high frequencies interelectrode and wiring capacitance causes a falling off of the gain characteristic with an accompanying phase shift which approaches -90°. The same effect prevails in an RC coupled amplifier at high frequencies. The quuist criterion?1 for stability may be applied to determine whether the amplifier will escillate. However, the result which may by obtained from a quuist diagram for three identical stages is given in the literature .22 es A648 where A is the amplifier gain without feedback and 8 is the feedback factor. It is possible to use larger values of feedback provided the rate at which gain falls off at the high frequencies is not too rapid.23 Local feedback.may be applied to the individual stages to accomplish.this purpose. Interstage design also is of help and in this connection, two terminal networks are generally most useful since a four terminal network.produces excessive phase shift under 24 most conditions °£ “3" One type of two terminal interstage 21. BOdC, op. Oi‘e, Pe 151e 22. Terman, F. 3., Radio Eggineer's Handbook, MbGrew Hill Book.CO., 1943, p. 398 23. BOdC, Op. Ci‘e, i‘ 291 24. Ibid., p. 403 25 which might be used to shape the gain characteristic at high frequencies is shown in fig. 15. Fig. 1! is the circuit diagram of the complete amplifier. 26 teams waft tea (Rhos .. 3 6R . 93:4 0.34% F r w a z 7. rm... 2 w i w w / / N W /h / o o i w y y t .7 w w i..." w Iml k3e¢89 lllllt has 1‘ _ll<<<<<’\V\\/T ‘ #3. .w a. x i ,w "a -o o w a a w J I kitx w K09.“ . 54mm “Demos. 27 tot (when... kudos... kwkok I 5 6D. a w A“. mm “3“ w o < I“! h a. 0 0m \. M.“ m a W a o MNx (3 0 0 NXHESH on m ' / a m % .fl .. W 0 3 000h\ 0 o o o o m I]! m [\ llll'll NHHW / o w. o o W W U.§\.M.W M m < < Iml chm: ohm... \ {MW \ \«NKKAH. es s cow.» 2? IV. Solution of a Differential Equation A simple type of differential equation to which the technique of operator amplifiers might be applied would be of the form d dx + fix :: F77") a’f .As explained at the beginning a differential equation may represent the mathematical model of several widely different physical systems. The electrical analog of the chosen equation is that of an.inductance and resistance in series with an applied driving force or voltage, 1? (1-), as shown in fig. 18. A d/Va/r +29; =F(r/ The mechanical analog may be of two forms, translational and rotatinnal. The translational model is of the form?5 M a’V/a/r {wt/V = F/f/ where N: mass ,4/’: coefficient of friction or mechanical rectilineal resistance The rotational model is of the form J's/6%” +1449 = F/f’w where I 2 moment of inertia /60b is the coefficient of friction or mechanical Venture/resistance. F(f)ris the applied torque function. 25. H. F. Olson, Elgamical Analogies, D. Van Nostrand 00.. luck 1945, Fe 1080 29 Taking the mechanical translational model for the problem let it be required to find the velocity when a certain force function is applied to the mass M. A Whole series of solutions may be obtained by variation of the parameters H and,“ . Although this is a simple case which can be easily solved by mathematical methods the principle may be applied to more complicated systems. The general form of solution using operational °81°nlu826 is MV’H‘) +M ”fl = F/fl .1 [ MK’M +fl l’ffI] :— ,[ NH M; H!) -— f1 [70/ +M Hr} =F(.r) assuming y(o) :- a MJ‘V +/4V = Fr!) -, Fl!) _ V: f [7‘11444 The simplest form forF(f)is obtained whenFIfl=l from which FIJI: ’fi'by Laplacian transformation. The inverse Laplace transform then becomes f' V: WH-F’W") A somewhat more complicated function results if a sinusoidal function is substituted forF/i‘l. Then /[F(H} : («J/1‘19“)" —l w V : __ __ J [(I‘+w‘-}(M.r+.al } 26. Gardner and Barnes, op. cit., p. 127 30 Solution of this expression yields .. -nw . V '- [Mk ”"7" conur +__.."’ 1»? an“ ,a fsmut/‘1“ w If the force function is Foosut the result can be shown to be -1! V: F00 _ Mf/nwf-A/w/(Olwf"’c 4'17] M‘+w"M" In general, however, the force function may have any initial phase angle and the value of the transient portion of the solution will depend on the initial phase angle?7 The complete solution is V: F[f/h/wrfa-dl-I/‘nlg-f/F’A/"fl . Via '- 4- («NW ‘- wheree = initial phase angle ¢ : fan"{ 60%} F13. 19 shows the arrangement of amplifiers for solution of this problem. The scale factors may be chosen by relating the values of feedback.and input admittances to the system of units in.which the problem is to be solved. For example: 444:: J7awmg/Creuc. Then M7MI. = K Inlet M finest/lee. = M M40! 1 (T) volts :- 1! dynes The coefficients K, m, and n, have dimensions necesesyy 27, H. H. Skilling, Transient Electric Currents, Macraw 3111 Book 00., 1937, p. 189 bl FH) R Fla /6’ FIG. /9 32 to make them consistent with the quantities they represent. for Ag, 6¢'/5+ 3 ll“ 1‘3I'./42V, JP.:' 64% I 463;: ka' /?€7;: / The output conductance for A3, 6-: ll, will have an actual value in mhos of M times the input conductance of A1. For the sake of this problem is has been assumed that the initial conditions are such that the dependent variable and its derivatives are equal to zero at time T g 0. Initial conditions, for values greater than zero, could be applied by application of a constant voltage at the input of the desired amplifier. The complete sedition of the problem then.expends from time T‘: O ‘to T :.~D Several means may be used to indicate the desired solutions. If only the steady state solution is of interest, a high sensitivity vacuum tube voltmeter will suffice. .A cathode ray oscilloscope may be used to study the wave shape of the solution. unless some means, such as taking (a photograph,zais available, however, the transient portion of the solution will not appear. If the frequency is not too high (usually a few thousand cycles)29, an.oscillograph may be used to record the solution. so. Ibid., p. 342 29. Ibid., p. 342 ,‘Jt 33 V. Experimental Results A curve of E3 vs. ES is shown in fig. 20. This was obtained by varying the grid bias on the second stage of the amplifier and reading the corresponding output on a vacuum tube voltmeter. This curve covers the operating range of the amplifier and is linear. The gain at low frequencies is about 37. This provides an amplification of over 1000 over the last two stages, which is the amount by which variations in the power supply are amplified. These voltage variations amounted to as much as 10 volts at the output of the amplifier. This emphasizes the severity of requirements for voltage stabilization. Much difficulty with 60 cycle hum was encountered. Grounding the filament circuit of the amplifier and using a battery supply for the filament reduced the hum consid+ erably. The rest of the 60 cycle input seemed to be picked up on the leads to the amplifier, the laboratory being located in strong fields from nearby e. c. machinery. With the saplifier gain reduced to about 1000, the hum output was about 3 volts which means there was a hum input df approximately .003 volts. With much higher gain this is enough to overload the last amplifier stage. Although input voltage of about .04 volts were used the hum voltage was still noticeable when viewed on the oscilloscope. I A I I 4 , 4 q 4 I 4 . . _ 4 , I... . I .. I 4 I . 4 . . . . .4 4 . 4 4 .I . . . . . . ,. V . . . _ . .. .. . 4 4 I. 4. . 4 . . . . V.. . . . . . 4 O elele, IlIIII I I I 4 IIQIO I I III I o I OIIIIII I I IIIIeIIIIII I ‘‘‘‘‘ I e . OJIII? I I I VIfI I I ILIIII I o I I III I I IIOIIIII 0 I1. I. I III]. I .I I I o I I v I . IIIII . I . I 6 I o I I I Ilv I . III I I I . I I I I I II . I I I I I I II IIOII. 01 9‘ I i In : _ . ., 4 . . . . ,. . . ..4. . . I. I . s .. . 4 . . 4 o I.I . . _ . 4 ..4.... 4 I . . ,. . . . . , .4 I . . . . I 4. .. I . I . . .. I. . . . 4. . \_ . . . [IF I ,. I, , I +1 IJ I c . ,4 . .. 4.. . . ..., . . m I ., . . I . I . . ,4 . I . . . . I . I . . I . . . 4 . I 4 I . . V. . I I. . 41.4 . , 4 I . . IIIIIII IIir I 4 I .IIIIII?III. OII I Avila I .e YIIIIIIIOvIIi I 9 II . I i I III I v4 I I OtIfW I IIII .II I I IL I III|+ I I I .IeIIIIIOI. I YI$I IIIIII .4 4 I . . ,1 I 4 vN 4 I II. I. 4 In‘. II. I U .. . 4 II I . .. . I I. I . I . . . I v I I. I I . I III ’ , I .I. ,I I . .... 4 .AMAW , 4. . . "1 ... . ..DQII 4 4 AU I . I .I . I I . .. . I I . .I 4 . I . . I I . , V . .I 4 4 4 4 4 , 4 DI . I. .. .I .4 I ... .. 4I II. 4.. . ..4. .. 4. 4... ..,.I ,. . I . . I. I , . .4.I .. . I , 4 .... ,. . .. ,4 ..I . I . .. Iv,.,4 IAIII .. . . .. I . ,.. o .I . I. . 4 I , 4 4.. I 4. . . . . . ., I . .. , . I .. I. ,III. . . 4 .. 4 ,. . .. . _ . If I , I . . IIIII till IIIIIIOIIIYI I III . I ttlrI I I OIIII I vIJI . IIIII I I . . .4 I IIIlrQII III I I I I . I IIle I 9.1L III I I III. ...III I III III II I . vaIlI V . I I IIFIII} . I .II I .I9I1I4_ 0.6’ILIIIIII I wII.I IIIIi .4 . ... . 4. I .II I . . . II, . . .I . ._ .. . 4 I . 4 4 ... . 4- I 4 ...I.. 4 I .. II. .. . . . _. . . 4 . V. .. , I I. .3, ., . puma , . , 7+ , . , _ , 4 4 I? I1] II v r ¥II F > .4 . .I ... ... II+I ., 4 l . . . . A . 4 . . . . II . . I . , . I . 4 .. ., . 4, 4 . . 4 I I, .4: I “$54.1. ,xN: , . , I. . , . , . I . .4 . H. .4 . W 4 ,. . . . , I . . I I . . 4 . 4 4 . I ...I. . OIIIIIIA IVIIII.IIIIOII|' IIII .I.I.'.|II4IIII:III .IIIIIIYI 4IIII'|¢ I III. IIIIIIIIIIIIIIIAT . IIlelIII I4I1IIIIII|II ..4 III4 I. IIIIIITIIIII+T’- IIIIIlil 4. . . I T VI . . 4Iv . I . 4, 4 . .. . 4 . . I 4 .. . , ,.. . . ...IERIX I». It .. . . . . . I. . . . , .::. _ . ,HIII. . I II . I . III 4 . . . . . . I4 . 4 — . I V .. . , . . . .. II I, 4. 4 . . _ 4 4 , 4 . . I . fi 4 a . y I 4 I p I. . ,_ I . ..I. I. 4 . . n. 4 4 . . . 4 .. I. 4. 4 II. IIII4 . .I . ., I . . I .I . .4 . 4 .4 . I , I .. . 4. 4 . 4 I . . . . , I V, I I ,., a . 4 . 4 . 4 . . 4 . I . 4 .. . .III I . . .. I .4 . . . I .4 I I .4 I . I.4 . 4 . 4 4 . .. . II .. , Ill- 9 ITI‘II.+IIIIIIIV I. blIIlkl! I I I {IVIIIIIH I.lIlI9 I VIII. 0 IJITIIIIIV, . I I I VIII I . . I I .IQIIIITIIIlII I | I . I I . ITIIII + III I I ‘14 I I ‘IIIA III e v, I. II'4leIIII I & .IIIIII II 1I I bII I I II II . 4 I III I t {lI I 4 III IIIOII I I i I I I 9+ I I OI, v IIII I e I .M.. . II I4 4 4 . . , . 4 .I . ... . . . 4 4 . . 4 .. . . .,I. II ..I 4 . I . ._ I .. ,. . . . . 4 4 . . . .... . I I I. 4 . 4 4 . . .4 I 4 . _. I I . . 4 4 4 4 .I . . I .. . .4. . I4 . I . . . . .4 . ,. . u . . 4 _ _ _ l . , ,. I r I 1 I II II 4 I r 1 I. . L, III - T . 4 I I I a. II .I I I . . 4 . 4 . .... I 4 . _ .4 . I H I 4 4 4. I . 4 .4. . . II. 4.I 4. I. _ I V . . I 4 4,. . I I4 . 4 . .9 I . . 4 . . .I . .I I 4 4.. n: .4. . .I 4 .. 4, _ . 4. . .I . I4 4 . _ u . 4.. III . I .4 II. 4. . . . 4, _ 4 . . . I I. .. . 4 . . .. . . . . . 4 . _. . .. I. I H I y We a 4 VIIIV91V1¢II I+1¢|DI v.0v.4o.. .Itlf’I. 4 IIIVl . I I+IIIOI I 4 I. .. III.’I4 . I I IIIv IIIII IleIIIIII IUII’ -U'ITI IIVIelk Illlll IIIVIIIIII. r I I 4 VIII fII Ioe IIIIeIIIIoI IIITII .4 I I II Ii . 4 . I. ... . . y I 4 4 I . . . . h . . I 4.. . I. .. 4. . . . v 4 . I I I A! — .I. VI. . .4 . 4 I. . 4. . 4 4 . . . . V . .II . . ... I . I . . 4... III; I 4 . ,I .V .. 4 4 . 4 I l _. II. VI ...4II. 4 I I. .H I . 4 4 . 4. 4 I 4 . . I . , I .4 V Ii I I r F a b . . I 4 I 4 I 4 4 4 4 . . . _ . _ .I . 4.. . ., .. I I4 4 I . . . . . . . 4. 4 4 I. I . ,4... . I I c 4 , . .. . I . . . . . I . 4 4 . _ I .I I. I I. I . . I. I‘ll $990.11; I.IIIIII.I4 IIII I..II.|IIII|III LVI'III IF I ..I I . IIIIII IITII I . . I I III.-. I I . II I I . III|I I I III . I I I 114... I I I I IIJIIIII i I... 4 . I .4 IIIIII. . .IO . . I I 4.1 I . I I I 4 I 4 I; I, ... , 4 I4 ., 4 , .I . _ . 4 . .. I., m.-. . I . 4 I I . . 4 . 4 I 44 . I . . . m I. I II.IL . vIII . I I . . 4. I 4 4 . I .. . 4 I . _ I. . . .... . . 4 . I ,,4 _ . . . I .. 4 l 4 .. I I I .t FlIl I|1 I kw I r III. IIOIOIIIIIIIf f I fit . .. I l. .. . ..,.. . l . . . .IIII. «.II. . 4 I I .4 . 4 I . . I . I 4o v_I4 I . .. . 4 . I II. I ... . ... . . V. .. I .4. 4 I . 4. II .I .III 4. I I . I. .4 H . .. 4 . 4. 4 . 4 4 . . II. 4 IIMIiI‘ IIIITOII I I Il IOI?I I , III I I I I VJII I IIIlTIIQII . H I II I, .4 I I H I I II... o I I [.4 I TIII *6 o I I IIIle I o It) 4 o I f. . . I I 4 I IIIII I 4 I . . II III Tile I IIYIIIIIIIIIII . II .. . . . V . _ l a .. . 4 II . I .. 4I.I _ . . .4 . 4 I. . . .. v . . 4 . . .I 4- . .. Ii . I .. . . I. . 4 . .I . . . . 4 L .I . .4 I 4. I . I o . I 4. _ 4 4 . I. . . I _ . . . h II I, p f _ Il'r II 4 I 4 1 I I I I _ . . . . 4 . . . 4 . . I H WP; . o I 4 ,. . . 4 . .. . . 4I . 4 I 4. I .4I I I I . . 4.. _ 4. 0v 4 +I. . _ . 4 4 4.. 4 . . I . I. . . . . . . V . l . . . _ I ., Ir III4IIILIIITIII. . II rIIIIIIITlI .IIII.4.IIIII| .IIIIIILTIII..I+.IIIIIITII .II -[II.IIIlT-I.III,IIIII +IIIIIII II. VIIIIII III.+ II.ITIIII18II-II 4 I. I . 4 . I 4. . . I . h , . 4 ... . . . I . . . I , . 4 4 . . I. 4 . 4 4 I, ,. o .I 4 o 4,. I . ., 4 . . . . . 4 I I. 4 1 II 7 I I I 4 4 I 4 . 4 . 4 . . . . _ . . . . . 4 . 4 .. .I . . .. I .. I. . 4. . 4 . ._ 4 . . . 4 I . . 4 . . . ._ I a II . 4. . I 4. . . 4 . 4 . . I 4 . I 4 . . .. I .I . . v I . 4 .. 4 . 4 ... . . .I . I. . 4 II.» o I T VII. IIII'II I OII'IIIIo . I I I; .I’} It I I I I 0 LVII I. I|4 I I I I; I I I IJQOII IIIITIIVJ I + I I I‘LTIII I I oI I‘tII I I . Io I Yb'eIIII . e I Il’I ..l I . .I. I I I . o . I I I IIIII III l I . . .IIIIIII , . I I I I II I I 1.? .4,. .. . . . ,. V I I 4 4 Y. , I. I 4 . . . . III . 4 4. . I. I. ..4 I II 4 . . . . I . . . .. II. 4 I 4 I . . . . _ .. . i I . . . ...... .. 4. . .4 , . . I .4. . ... .4 Ir 4 _ . , .V ... .4 4 ,4. .. 4, I .I . . . . . . . . I. . . . . . _ _ 4 .I I w I I4] Iv I v .1 I I I V r , . I III 4 4.- ,..7. .4, .. I. ~I 4. . 4 4 . . r I . . 4 . I . . . .. 4 I . .40 .. I . .4 I. . 4,... .I .II .. .4 ... .. ... I. . .L. .,I 4 l . .4 _ . .I . .. . ..4 HI; .. I .4, .. o I VI. . I A . . ..4 I II 4 I 4 . I I P I ,. 4 II. Ilv I..I9I+IIII¢IIIIII .IIIIIATIIIIIIIIIIIIIVI IOIIIIIIOIIIIIII. IIIIIII. e .I. ..IIIILY III-...II IIII||£.I»IIII76]|IIIvIvIIVIoI114I|IIVIIIeII.IIo tileIII YIIIIIQIII I II1.III§I II I4IIII I IIIIvII IIIIIJIII O. IIIIOIIIIIIIL ... p .. . I . 4 4 . ... . .. .. 4 I. I 4. _ .w 4 4 I; II . . . .I I .I.. I H. . I 4 I 4 . I. . . I. .. . 4 . . . . I. I4 . I . .4 . 4 4 I . . . II I VI I4 . .. , I4 4 I 4 .4 . . . . . ... 4 . . I . .0 I 4 4 . . 4 I; . .4 . . I. .. I. .. . . . I . 4 . . F r , “I t 0 I. h w . II? I 'I I 4. L III; r I 4 A . , I 1 1 4. I . .. II 4 .I. I. . I 4. 4 . .. I4 4 . 4 I e . . 4 ow 4 4 . ., . .. ,4 . . oI... 4.I.. .. I . .4. I. I H 4 . I. . 4 4 . , ~I I . I . 4 . o. .4. . I . I . .. .4 . . II I . . .I .4 .I. . ~ . . . . V 4, . 4 s. 4 . .. 4 . . V I 4 . IA ,. . H 4 I . . III . . . ......I. I. .,I. . .I _ 4 . ... I. rI. . I . O4 4 . . I 4 . I 4 . . I I v I I OILIIIIII I I6I$II I o I‘leIQIY I I I eIIfII I I I IIIIIQII I 4' I I 9 v IIOIQIIo I I I IIIITIII1 . .4 I I I- I A; I III I I4IvlelfI§I I I I I Ilvlrll I IIIIL O I IIIIAYIIII I e IIII 94l|le OIIIe I I I I I V 1.! I . I VI It III I I I . elItII I . I III 1 III II .... , . 4 . . . . . . . . . I 4 I . 4. . I -..4 I ... .4. I . I. .. III . .V .. 4 . .. .4 4 . 4. 4 . . . 4 . I . 4. . 4 .. . . . I l. ..I .I. . I. .e _ _ o . 4 ._ I I 1 II I D u A u s - . 0 I I _ . I w P H II 4 s I H 4 I 4 4 r 4 Id '4 '41] A. , 1 J 1 I4 4 . ., II. . .4 ,I. 4 . 4 . .. I . I . .o . . 4 . 4 . I. . I . 4 I 4 4 . . . .. 4 4 I4 - . 4II . . 4 4 I h . .4 I . . v I . II 4 4i .. . 4 .. _ .. ,4 . 4 . . 4 V .. h 4 . .. . .o I . . . . . . h ... . I . , _ _V I . 4 . ... . o 4 . I IqurIVIIOITTIII IIIQIIIIIITIIIIII4 II*.4 .III+¢. I . . IIII .leIIII.u III IIIIIIIIII IIIIIIII4 .QIYIa IIIIlf4TJ .v .IIIlolv III III.II.I .lTIIIIII» I III+III I I I I I < I III. . A III .4IIIII .1 +I.III.I IIII 4. I . . . . .. .4 I. . . 4 .I 4, I 4 . 4 l I . . . , I v. . .... 4 4 M 4... . 4. . .I . 4 . 4 4,, 4 4 .. ..4. I I . 4 I . .... 4 4 4. . .. . 4 I . I . 4 . .4 4 I I. 4 . . I . . . F . . .. 4r . H. .. v 4 I . I I 4 I 4 4 I I . . 4 _ 4 4 4 $ . 41 I I 4 0 I LlPIV II‘ I eIIIIIYII I i|fl$IIIIIIIII +§‘+I.’1Lw I I'll!!!- gyrll. r V .I. . .4 I6 . .. W. .. . . . . . . .. . I . . I. . 4 4 4 . v _ 4 4... V. . I ., . .I. . I 4. I ... . 4 _ . , .4 .. I 4 I 4 . I I , .I .. .I . . .I 4 I I 4 . 4 . . 4 . . I . . . . 4 . . . . I. . 4 I . H _ H l . 4 4 . . .. .4 . I ¢IVIY + IIIIIIiYIIIO a e 4II$I I Av IIOIOIII I 9 II. I OIIID. IIII I I . I I I.,OII IIOI . I I I TI I I I Avis I I ,o I I IIJvIIIIQIIIo I I I I OIIIOIO I I . I iYIIr IIIIOIIII‘ . I I e I i I 04 III I VIII III 4 I O I I V I I I . III e I I III I I I I II?+¢ I I. Olelolole II I IIP4 4. I I5. 4 III 4 . .I .. . .. I. ., ,4 . 4, I 4. 4 4 . . . 4 . , . 4I .. 4 . ..II4 .. , . I ..I . . . . .4 .4. . ... . . .. 4 4 4 4 4 4 ,. I 4 4 .4 .I. . I. .I . . . . .. . I. . . I. ,.. .4 4 . .4 _ I .I w . 4 . I . . .4 _ ., . . . 4 . I. I V I . . . I , l a H 4 4 I , I 4 LI . , a a . _ . a . a 35 The gain of the last amplifier stage was reduced to nearly unit? by use of voltage feedback over the last stage. The sign changing property of the amplifier was thus retained while at the same time the output impedance was greatly reduced. Attempts at differentiation were preceded by determining the effects of 01 and Br shewn in fig. 2E. With the set-up shown in fig. 21 and a frequency input of 1000 G. p. s.‘A minimum value of .5 ufd. was Obtained for 01 without oscillation of the amplifier occuning. Fig. 22 shows the variation of output voltage and gain with change of Hi. The curve is relatively linear a only for fairly low values of Rf. This result is predictable from the equation e; = , 1 {r {f ”/0986 [I +M4[/+/7'/r//IMI] A larger linear range could be Obtained with larger values of A and smaller values of Y1(s). Differentiation accuracy of the amplifier may be determined by taking the gain characteristic as a differentiator. It is more easily determined whether the amplifier is functioning as a differentiator by use of a square wave input. Fig. 25 shows the perfectly differeniated square wave as it appears on the oscilloscope. With a square wave input of 1000 c. p. s. and Br out of the circuit, the wave shape appeared as in fig. 24. F/é. 2/ F/é. 23 Fla. 2 4 FIG. 25' 4 7. 7 4 4 . 4 .1 7 .4 . . M . 7 . 7 . A ... 7 . 7 . _ . . . .. I . . I . . . I . . . . . . A . H 7 . 7 . 7 7 . . .. . . .. . . .. . . . 7 7 . . . 7 _ . 7 7 . H 7 I 7 . . . _ . 7 . 7 7 7 . . .7. . 7. 7 7 . 7 7 . . .. II II. I I .I I I I? .. I...| .I l.I|IlA|I.‘I+.... I IEI. I. ...III. I-I I I . I I .6. .I'I I .I . III I I.’ I I ..-..I|I.I.I|'I.Illv IJII.II?III.I I I.I I...Il...II‘lelQ ..YII .I I .II I I 1.. l . I I I I I III I.¢ . . . . I ‘9‘. ..I7 . I I I I. lllIlI- -.lIlIi. .0 I I I I I I I . e I I O I I I .I r v v . e 5 I. . I y r ‘ 4 m . . _ i 4 e - 7v 7’ ..H n . . § . 4. v . . . a . . . 7 7 + . . I . . .7 .. . . . . 7 7 . . . . . . I ~ . I I. . 7 . m . I 7 ... fl . _ m . . ~ . 7 . 7 7 7 7 . 7.. . . . . 7 . . .. . 7 h o I A I I 7 . I 7 .I 7 7 4 7 7 7 14 77 4 4 . .7 . 7. . I 7 7 i I.. . . 7 . _ .. 7 . .. . .I ; . 7 . . ._ 7, {Efiwu sax. . . _ , . .. . . . . I 7 . . . . .. 7 7 _ . L I 7 . . h . . . I . 7 7 . .. . . . _ . . 7 . . . . . I7 . . . . 7 . . .. . . 7 .. . . .... .---.. ..II. I..... ..-.I ...7. 4.. . -.. ... 7 . 4! TTII].-. . ..-.III 7. IIIAIII.«.1.II§.¢.-IIIL..1.I-II-....I 7 IIIYILIIIIJi 77 7 . . . 7 7 \ . .. O . .. 0.. . 7 I O D . I O . J . . . 7... .. . .7 7 . 7 7 o _ 7 .. .. . . L 7 .- 7 . ... . . . . ... . . 7. I . . . .. .. _ . I . . .I . I . . 7 . . . . . 7 . . . 7 .. v . .. . . . . . . . . . . .. . 7 7 7 . 7 7 _ a 7 7 . 7 7 . . I 7 . .. . . 7 7 . . A _ . 7. . 7 . .-.. .-.. . . _ . W. . 7 7 . .7 f . . . 7 . 7.: 7 7 _ 7 . . .7 7 ,7 . . 7. . I _ . 7 + . . . .4 . . 7 . . 7 . 7 ~ . .7 . 7 . a 7.. % 7. .. . I .7 . . I I II . II I. a . I I .c I I u . I . II.I6|IIII¢I.IIII-I I I Ii- . . VI.-. I . I I o . . I I u. I 7 I I 77 I. ... «I I . . .I...II iijI I I w I.| IIIe .0 I I .I v. v.:‘\VI\. v III.I. *I-I.A 7 7 . « . 7 . . . —. . . .. M. 7 . 7 . 7 .7 . w . . w . i. .. ~ 7 . . 7 7 7 . . 7. .. 7 . . . . . . .. . . . . 7 . 7 . . . . . 7. . .. 7 . . . . 7 7 .7 7 . 7 . 7 7 . 7 7 A III-.!-III .I+IIII‘I. iv [I p 7 .If I llI’il.» I I . ...I .I.I.lIII.IIIIIIlI....l I . . 7 7 . . . 7 . . . 7 7 w. .. . . 7 . . . . .. _ . 7 7 . 7 .7 .0 ..ll . . . . 7 7 ,7 . 7 . . . £40.17. .. . . . . . .. h . h 7 7 . . . I . . .. . .. w 7 7 . _ A . .IIXIII. e.I I I I... I..l!|I\w} IIAIIIII I I +3.3 . I I I I o . . I .. .II I . I]!!! e I . . I I I I I‘II I I e i i O I Ill IE... I . III {11114-I I I . I . . . I I Y I.\ III I ..... . I.I I II4.I.I I I I. 7 .. . 7 . . 7, . .. I .7 7 . .7 I . . 7 7 . _. ._ _ . .. 7 22x79 fix. No.5... HQ... Swan we. 7 . . . .. . . .7 7 - . . . . i . . . . 7 .. . . . 7 7. . . . .... . 7 I 7 . l . . . m . I r 7 .r 7 7 I - I J 7 7 4 . + .7... . 7 e. . 7 . . I . 7 _ . . 7 . I. . . k . . I . . .4 . II I I. . . 7 ... . . . . o. . _ . ... 7. . . . .t . I.I I ... I . . . . i I....1II.- I . l . I I- I I Y- I4 .-III .IIIIII I I LIIIIIIIIIO I. . I I . . I I I I I .i I .II IiYI.-- I I I . . I I o . I I .IIIIIILII.1I O L I Y I I..el.-1+l‘ll I’l..- .}III\T§‘.II. I I I . . v .1. . I I . .. . I . I . a- 71 . . . . . . . . .. _ . 7 . . . . . .7 7 . .. a 7 . . .7 . - . .7 I _ . . . .. . 7 7 .. l .7 7 . _ . . 7 7 v. IIIlr I .I .77 . lollwIillIITIllIlIl L 6.11... [.30. II I .II.I- . l . .. I‘III .I. r u 7 . . 7 _ 7 _ .. . . . ... . . . . . V . . . . a . 7 7 I 7 7 . 7 . . . . . 7 . a . . . .. n 7 7 7 7 . I . I% . . . . . . .I 7 . . 7 7 . 7 . . . . . _ I I . . ... . 7 .1 .IXJIIIIII‘Y... . . I . .. .7 ..I .OIIII.I15.I+QII..II.I . .IIIVLI'II. . I.. II . . .-.4 .-. . . ...-.I.I. .. .II. +IIII. .I.I..-L||I1.|IIIIIII o . . .-II I- . . I .IIIIII ' I.1III.II.I . . 7 . . 7 I . . a I 7 _ 7 . . . . 1‘. .. I. _ 7 7 . - .. . 7 7 v 7 . . . .H 7 I ..-. 7 .7 d 7.... 7F . . . . 7 . . 7 7 a _ .4 I. . . II I 7 . . . . . . . _. . . .I . .. .. 7 7 . I 7 .7 D V . 4 . 4 l 11 . a . . . . . . . v . . . q 7. I. . . l 7 v ‘ . I . .. _ . 7 .. . . ... .L . I . . 7 7 _ . . I l . 7 . . g . .. .. . . 7.1 . . 7 . . . . 77 7 . _ H 7 . . a . . ’ ...--. .-.I- 7..--..7 -...I..-I.+.I-l. ---...7..-I . 7 -..-l- 141. ...I 7............ -. ..III . -... .I -I -I-r.-I.I$I1I. .... ....--Ilfic .I p a. . 7. . I . 7 . . . . a .. 7. . a o. I. I.fl. I ... - I . .. 7 . . n . . . . . . .. 7 . .. . . . .. .. I. . . ... . . . . . A . . . .. . . . 7 . 7 a . 7. I 7 . -I I I. I. .. . .. . 7 . . . I . . 7 . . 7 . I. .I I|4 .r w I livt . I O . I II1.+III"IYI]I.II. {lettIIIITIQI I e. I _ I Aw IIOIII'II. 'lleIllfl .II ..o I. I 1 .II I \V‘ 7f 7 . fl 7 . . . 7 .. . — .. _ . . . . . S. . 7 I . .. . . ,. . . . . . . .. . . . ... 7 . 7 . .. . . . . . . p . I . 7 . 7 7 . . ..w . . . . .. .I 7 . . w I- I. 7 .. . . . I . . . . 7 . . I ... . 7 I 7 7 . . I I. . . . ..H. I. ......-.- .--.-...-..I...D. ...Il... ..I..I....II.. .I....-. .IIIIII . . . ----7 .51-... . II.I...I .-.].HIIIIIIII»-9III'7I .. I . . I . .--}-.. ....... . . u . . IIIIIILIIIIIIIIIIIIII? IrJ.....III..J . ‘ . w 7 — . I n I . . p 7 c w t . O . I I H 7. . . y. . . . . ._ . . . w . . 7 . ' I 7 . . 7 I 7 .A. I 7 . 7 . 7 . . 7 A o I . H . _ . 7 . . .4 . . . .. . . . . . . ~ . . . . . 7 . . . .. I r a! 4 .P 4 1 I .1 z r . . _ 7 _ 7 . 7 . . . ...... . . 7 . . i 7 I .. . 7 . .. . I . u. . . II 7 7 . 7 7 . 7 7. . .. . H .. .d 7. . .. . .. . 7 . . . . 7 7 . n! .7 . 1.0.91... .II. I.- . II .I .. . I . I- ~.II . .. 4.. a III II. I .. 1| .. . . .. u . . . . . . .. .IIII. ... . II. III. - .' 1+ II. II. IOJVII.7 I I I I A. 4. .I I r .-.III$I|.\I .tIII II41I§|I ..l . . . . . . I . n _ . . _ . 7 .. I . a 7. . _. . . 7 . . . . . . . . .. 7 . J 7 . 77 . .. .. . . . . I . I . 7 . I . . I . ..v r V { lllev.l+l'l I»! [IV IIIII..|?IIII . IIEII$I . I . T . . I .I ...II I.9'.I.II.. ....... Av! III.I|OIII.’I§’I'DII. 47 .. . . v . 7 7 7 .. . 7 . .7 . . . . . .. . I. I ... . . c . .. . . I . . 7 . 7 7 . . . 7 7 7 . ) w. . I .I . I . . .I 7 fi . . 7 7 . . .. . . 7 . 7 .. . . . . . .. . . . . . 7. . 7 . . . . . 7 _ 7 H . . . .. . ..IIII.T¢|I.II.III-..I.I.II.....I I..+. IIIIIIIIJIl. -I-...I-+ -I.+ III.II - I-I..v I I I .7..-.AI.II-7I.IIOL. ...I ---... I. .l. .I.I|III-I.IIII'I.-I.. ... . -.. - .FIIOIIIIIQ. I?III.II.IIII'[!I. -I-+--II.IIL . . 7 .7 . . 7 . I . ._ . .. 7 . . . . . I4 . .k . 7. . . .. I . . 7 . . . .. . . . . .... . . . _ . . 7 . _ H . ... . 7 -I .7 . . . . 7 . 7 . .7 7 . . 7 . . 7 _ . . .... ... .... .. . 7 . . . I . . . ... . . 7 4 . 7 . 7... a I .r y I .P L r h r L . 4 i 47 4 I i J. 1 4 . 7 . . . . .7 7. . 7 . . . . I .. . .. . . . .. 7 . .7 . . . . . . 7 . .L I. I ... . l .. I . . . H 7 7. - 7 . . .7 . . I ., . . . 4. . 7 . a we. h. . f .. . . .. . . . H . . . . . _ . ... 7 . -I . . .. . e . 7 . . . . . .. . . . . [IIII'IIIQ r IIIIQAV It- % I.. I ILYIIII I I III... II; -.IIIIIIrl.\I|I--... II. . . I I . . . . , I » I I I I I I 7’4 I V. A I .IIlfIclIYIIIAIIIIIIlIII.-- . - I I I . I I r. . I I o-v II..- . I. I I|+I v I I ..- ..... L .I . I o I {I IIIIIIIIIQIIIIIII... rll. I I- I .7 . . 7 . .7. 7 7 i . I. . A . I . o . . . I! II . . . . . . . 7 .. . 7 . . 7 . 7 . 7 . 7 7 . . . . . 7 7. 7 7. . n .— . e I I . I 77 7 . _ «I . . .77 . . 7 7 . . . . . .. . I . v _ . 7 b .7 7 7 . 7 I I 1 4 Il.I.I .II ..A . III. 11.1.- Ll .-.. . . . l . . H A 7 . 7 . . . 7 .. .l H . 4 I I . . . . . . a . .7 I .7 . . . _ 7 . 7 I I. . . . I . . II . . II. . . . . . . . 7 . . . . 7 . .fi . 7 7 . . I I I. . I .. I . . . 7 _ . ..o I I . . o 7 . . .. . . . -. . A 7 . . .I.I.IIIII w.".oI.I.I VIIIII .I I I.I I .II . I.. IIII i - .. .I .. I I .. o .--.hIII .I’IIIQIlierIIIP.»l.I.IIIIL ..... 4.I.l . .. .VII. -.. ..I .. .. I.I . II III III IIIII. III . e . I.I I.II.I..I. IIII.+’I|TI-..--.I1‘.¢.IIIIIII7 . . 7 . I . .7 . . A. 7 . o . . . 7 . . 7 . . .. . I . .7 h. . . . . 7 . «... a 7 . 7 . 7 7 7 H . 7 I .. . . . .. . . . . .. . . i I . . . . . . . . . H I F r I [H I. 7 I p p . a 4 47 7 q I. . . 7 . . . . .. . 7 . . . . . .. . . . . I . w .I . .. I. . . . I I. .. . o. . . . H . . . . 7. .7. .0.» v . I . I .. . . . . I 7 7 . . . . . 7 . .. . . . .. . 7 . . . . . I. I . 7 I ... I I .. . I. . . . . 7 . I u I .I II .II. IlfI I. . III. III-.. . I.I II..I. . . .I II III.I.IIII .. IIII I . .I. III . ..I-- I 1: .lII. .. . . I. l.+. . . III ..I.. . . . «IIIII v. I! .rII; ..IlI.I.. ..IIi..IIJ‘.4J ....I . . . . . . . .. . . .. 7 .7 . «I . .. . .. . . .. .III... I. I I. I I .9. a 7 . .. . 7. . . . . I I . . .. t . - a .. _ 7 -I. . 7 . . . . . II . I . 7.. . . . . . I . 7 . . II. . .. . I . . . . 7 . . 7 . .. . . . .. . . a 7 .. ee. . . I I. 7. I. l v I I __ . . . u . .. I . R . 7 7 .. w . w. . Fl. . IL. I IF -.II III... ---. ..IIIILIII I. ..-.I . I r I I M.. . . . .. .7. 7 ., .7 . .. . a. . . . . ~ .. .. 7 . .... 7 . I7. .I o .. . . . .. . . . H. . 7. . . I V . . . o . .I .. .. 7 . . . 7. . .. 7 . . . . -.. . 7Iv. . . .7 .. . I 7.. . . .. .. . . .7 . . . . .I. . . 7 . . . I . . . . I 7 . . .7 . .. . . ._ ... . F. . I . 7. 7 . . . . _ . . . . 7 . . .. .. . 7 . ..... ...o. . . ..... v$.III O I I e I ' YOITI T+II.0 I I 7 01+1‘ I I l III I I e I I . . v I . I\I\YI 7* I I I I p . . . 7 . '. I.O . I v I o I . I I I.I.I Ire.-.rv4I 7.1 I I I I.I|I.iii’ v . I I I I v I I I . . . . I I ..I I I...1Il.1 I . . . I I I.- . I -.I.I.7 I.I P I 7 . . I . . .7 . .7 . . . .H .. . . . . . . . . . . ... H . 7 .. j. I . . . .. . .. .I . 7. . H 7 . 7.. . . . .7 . . . . . . ...- I I. . . .. 7. 7 . . .. . . .. .. . I 7.. . 7.W. . ..7. ...... .... .7. 7 .7 . .fi . .. ...... . . 7 . 7 . . . 7.. ... . 7 . . . . . .7 . . 7. . . . . . . . I H . . I . 7 p . I 7 . . - 7 . 7 7 . .r . . 7 7 with Rf connected the wave appeared as in fig. 25. As if Was decreased the wave became narrower finally appearing as in fig. 26. The oscillosc0pe horizontal amplifier gain was greatly increased to obtain the spread of the pulses. The small amplitude pulses and distortion of the main pulses are due to the 60 cycle component. with a sinusoidal input voltage or .04 volts an output or 2.75 volts was obtained at 1000 c. P. s. The inut Caycuiu7h78 was 1 ufd. and if has 74000 ohms. Ihe output voltage should be eg ‘3 74.900 x/o"x.‘277x loco 77/,“ ,6”, A. difference of 0", volts is noted which is not negligible. This indicates there may have been a lower frequency voltage superimposed on the input voltage. If the input voltage had been composed of two parts, namely, .03? volts at 1000 c. p. 8; input and .005 volts at 60 c. p. ss’fhe cupput components would be 1.72 volts and .8 volts respectively. Integration of a square wave produces a triangular wave. Attempts to do this failed because of oscillations in the amplifier when the feedback admittance was a capacitor. One feature of the differentiator is that the output is directly coupled to the input thru the feedback resistor. This practically eliminates drift due to variations in supply voltage. '1 a I Fl‘ 26 3? The output of the electronic integrator is net directly coupled to the input for direct currents so that the voltage supply stabilization must be much better than for the electronic differentiator. For this reason, it is advantageous to use diiferentiators in the syn- thesis of dynamic systems. Combination of the operator amplifiers into the dynamic system on page 28 was unsuccessful, partly because of the high a. 6. hum level, and partly because of instability. Thorough shielding of all leads to the amplifiers, and of the inbut circuit, should eliminate hum. Oscillations, or instability, may be elininated by redesigning the interstage nettorks, and feedback circuits. BIBLIOGRAPHY Books Bode, Hendrik W., Network Anal sis and Feedback Amplifier design, D. Van Nostran o., New“York, lglfi. Emery W.L., Ultra-Hi hpFre uenc Radio Engineering, the NaoMillan 50., New Yorfi I944. Gardner, Murray I; and Barnes, John 1., Transients in Linear systems, John Wiley and Sons, New Ybrk, 1942,'731. I. Olson, Harry 3., Dynamical Analogies, D. Yan.NOstrand Co., New York, 1943, Pipes, Louis A. A plied mathematics for En ineers and Physicists: Writ, e+F—Iw or, 91's: Skilling, Hugh Hildreth, Transient Electric Currents, MbGrssk Hill Book Co., New York, 1937 Terman, E. E., Radio Engineers Handbook, McGrawhHill book 00., New York, 1943 Magazine Articles Artzt, Maurice, 'D.C. Amplifier Techniques", Electronics, Vol. 18, p. aaz,(Nagus;,1945). Ginzton, E. L., "Survey of D. C. Amplifiers," Electronics, Vol. 17, p. 98, (March, 1944). Hunt, F. V. and Hickman, R. N., "Electronic voltage Stabilizers", Review 3; Scientific Instruments, Vol. 10, P. 9, (F‘b. 1959). Mynall, D. J., "Electrical Analogue Computing" Electronic Engineering, Vol. 19, p. 173, (June, 1947). Ragazxini, J. 3., Randall, R.H., Russell, E. A., "Analysisibt Problems in Dynamics by Electronic Circuits", Institute of Radio Engineers Proceedings, Vol. 36, p. 444, (May, 1947); Schmidt, Otto I}, and Tolles, W. E., "Electronic Differention" Reviewag£_Scientific Instruments, Vol. 13, p. 117, 1942. Varney, R. N., "An all Electric Integrator for Solving Differential Equations", Review 2: Scientific Instruments, Vol. 13, p. 115, 1942. Aug 29 '50 ?_ 1’: 31;!) i‘ ‘ ‘L. “\ ’I) W O .9, ‘l 1“”; [ "Wk ...... "'Tl’r‘u'llulfilflflifliflfilMtflffifljhfllflflijflmr“