

FORMATIONS AND RELATIVE *G* NORMALIZERS

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY JOHN DAVID GILLAM 1970

This is to certify that the

thesis entitled

Formations and Relative \Im normalizers

presented by

John David Gillam

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Mathematics

Le manul

Lee M. Sonneborn

Major professor

Date_____

O-169

ABSTRACT

FORMATIONS AND RELATIVE

By

John David Gillam

In this thesis, G denotes a finite solvable group; \Im is a formation locally defined by $\{\Im(p)\}$ with $\Im(p) \subseteq \Im$ for all primes p, and $\pi(\Im) = \{p: \Im(p) \neq \phi\}$.

Definition. Let $N \triangleleft G$. A p-chief factor H/K of G is N-3 central if $N/C_N(H/K) \in \mathfrak{J}(p)$, and is N-3 eccentric otherwise.

Definition. Let S^{P} be a Sylow p-complement of G, N \triangleleft G, and $C_{p}(N)$ the intersection of the centralizers of the \Im central p-chief factors of N. Let $X(S^{P},N) = N_{G}(S^{P} \cap C_{p}(N))$ if $\Im(p) \neq \phi$, and $X(S^{P},N) = S^{P}$ if $\Im(p) = \phi$. Let Σ be a set of Sylow pcomplements of G. A relative \Im normalizer (with respect to N) is the subgroup $D_{N}(\Sigma) = \cap \{X(S^{P},N): S^{P} \in \Sigma\}$. Also let $T_{N}(\Sigma) = \cap \{X(S^{P},N): S^{P} \in \Sigma \text{ and } p \in \pi(\Im)\}$.

The following statements are the main results obtained in this thesis.

Theorem. $D_N(\Sigma)$ covers N-3 central chief factors of G and avoids N-3 eccentric chief factors of G. $T_N(\Sigma)$ avoids N-3 eccentric $\pi(3)$ -chief factors of G and covers all other chief factors of G. Theorem. If θ is an epimorphism of G, then $(D_N(\Sigma))\theta = D_{N\theta}(\Sigma\theta)$ and $(T_N(\Sigma))\theta = T_{N\theta}(\Sigma\theta)$.

Theorem. Let $N \triangleleft G$. Then $N \in \mathfrak{Z}$ if and only if N is a $\pi(\mathfrak{Z})$ group and all $\pi(\mathfrak{Z})$ -chief factors of G are N- \mathfrak{Z} central. Hence if Σ is a set of Sylow p-complements of G, $N \in \mathfrak{Z}$ if and only if N is a $\pi(\mathfrak{Z})$ group and $T_N(\Sigma) = G$.

Theorem. Let N be a normal $\pi(\mathfrak{Z})$ subgroup of G. If N₃ is complemented in N by an \mathfrak{Z} projector of N, then N₃ is complemented in G. Furthermore all complements of N₃ in G are conjugate and are precisely the various $T_N(\Sigma)$.

Example. Let G be a solvable Frobenius group with Frobenius Kernel K. Then K is complemented in any solvable extension of G, and all such complements are conjugate.

Theorem. Let $N \triangleleft G$; then $N \in \mathfrak{Z}$ if and only if N is a $\pi(\mathfrak{Z})$ group and $N\mathfrak{P}(G)/\mathfrak{P}(G) \in \mathfrak{Z}$.

Corollary. Let D, M \triangleleft G with M a $\pi(\mathfrak{Z})$ group and D $\subseteq \Phi(G)$. If M/D $\in \mathfrak{Z}$, then M $\in \mathfrak{Z}$.

Theorem. Let $N \triangleleft G$. Then $N \in \mathfrak{Z}$ if and only if N is a $\pi(\mathfrak{Z})$ group and all $\pi(\mathfrak{Z})$ -chief factors of G between $\Phi(G)$ and Fit(G) are N- \mathfrak{Z} central.

Theorem. Let $N \triangleleft G$. Then $N \in \mathfrak{J}$ if and only if N is a $\pi(\mathfrak{J})$ group and for $p \in \pi(\mathfrak{J})$ with $\mathfrak{J}(p) \subset \mathfrak{J}$ $M \cap N/Core(M) \cap N \in \mathfrak{J}(p)$ for all p-maximal subgroups M of G.

Example. Let $N \lhd G$ and π a set of primes. Then N is p-nilpotent for all $p \in \pi$ if and only if $M \cap N \subseteq Core(M)$ for all π -maximal subgroups M of G.

Theorem. Let Σ be a set of Sylow p-complements of G. Then $D = D_G(\Sigma)$ is an \Im projector of $N_G(\Sigma \cap G_{\Im})$.

Corollary. Let Σ be a set of Sylow p-complements of G. Then $D_G(\Sigma)$ is an \Im projector and an \Im normalizer of $N_G(\Sigma \cap G_{\Im})$. If $G \notin \Im$, then $D_G(\Sigma) \subset N_G(\Sigma \cap G_{\Im})$ and $G = \langle N_G(\Sigma \cap G_{\Im})^g : g \in G \rangle$. Hence every finite solvable group is generated by subgroups in which \Im projectors coincide with \Im normalizers.

FORMATIONS AND RELATIVE 3 NORMALIZERS

By

John David Gillam

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1970

662731 7-1-70

To Mary Lee, my wife.

ACKNOW LEDGEMENTS

I should like to express my appreciation to Professor Lee M. Sonneborn, without whose advice, encouragement, and friendship this thesis would not have been written. Also, I am grateful to Professor Ti Yen for his many helpful suggestions.

TABLE OF CONTENTS

CHAPTER I	1
CHAPTER II	4
BIBLIOGRAPHY	22
APPENDIX	23

Chapter I

All groups in this thesis are finite and solvable. Unless otherwise indicated, G will denote an arbitrary finite solvable group. A chief series of G is a G-composition series. A chief factor of G is a composition factor of some chief series of G. If π is a set of primes, a π -chief factor of G is a chief factor whose order is a power of some prime belonging to π ; a π -maximal subgroup of G is a maximal subgroup whose index in G is a power of some prime belonging to π . If H/K is a chief factor of G and M is a subgroup of G, then $C_{M}(\frac{H}{K}) = \{m \in M: h^{m}K = hK \text{ for all } h \in H\}; M \text{ complements } \frac{H}{K} \text{ if }$ G = HM and $H \cap M = K$. A subgroup M of G covers a subgroup $\frac{A}{B}$ of $\frac{G}{B}$ if $A \subseteq MB$ (equivalently, $A = (M \cap A)B$); M avoids $\frac{A}{B}$ if $M \cap A \subseteq B$. A subgroup M of G is a cover-avoid subgroup if M covers or avoids every chief factor of G. Let $\Sigma = \{S^{p}: p \mid o(G)\}$ be a set of Sylow p-complements of G. If M is a subgroup of G, Σ is reducible to M if S^P \cap M is a Sylow p-complement of M for all $S^p \in \Sigma$. Throughout, the intersection of a vacuous collection of subgroups of G will be interpreted as G.

A formation \Im is a class of groups such that: 1). If $G \in \Im$, then every epimorphic image of G is in \Im . 2). If G/N_1 and G/N_2 are in \Im , then $G/N_1 \cap N_2 \in \Im$.

1

A non-empty formation \Im is saturated if $G/\Phi(G)$ in \Im implies $G \in \Im$. If $\Im \neq \phi$, the \Im residual of G is the unique minimal normal subgroup G_{\Im} such that $G/G_{\Im} \in \Im$. Note that if θ is an epimorphism of G, $(G_{\Im})\theta = (G\theta)_{\Im}$. A subgroup F of a group Gis an \Im projector of G if $F \in \Im$, and whenever $F \subseteq U \subseteq G$, $U = U_{\Im}F$. Let $\Im(p)$ be a formation for each prime p. We define \Im by the following conditions: $G \in \Im$ if:

1). If $\Im(p) = \phi$, $p \not i \circ (G)$.

2). If $\Im(p) \neq \phi$ and H/K is a p-chief factor of G, then G/C_C(H/K) $\in \Im(p)$.

If \Im is defined as above, we say \Im is locally defined by { $\Im(p)$ }. Gaschütz and Lubeseder have shown [5; 7.5, 7.25 pp. 697, 715] that a formation \Im of solvable groups is saturated if and only if \Im can be locally defined. Carter and Hawkes [1, p. 177] have shown that every saturated formation \Im can be locally defined by { $\Im(p)$ } with $\Im(p) \subseteq \Im$ for all primes p. Throughout, \Im will denote a formation locally defined by $\Im(p)$ with $\Im(p) \subseteq \Im$. We denote by $\pi(\Im)$ the set of primes { $p: \Im(p) \neq \phi$ }.

The following three propositions are part of the folklore of finite solvable groups; however, the exact statements and proofs do not seem to appear in the literature.

Proposition 1.1. Let H/K be a chief factor of G and $M \subseteq G$ such that M covers H/K and $G/C_G(H/K)$. Then $H \cap M/K \cap M$ is a chief factor of M, $C_M(H \cap M/K \cap M) = M \cap C_G(\frac{H}{K})$, and $G/C_G(H/K) \cong M/C_M(H \cap M/K \cap M)$.

Proof. Since $H = (H \cap M)K$, $H \cap M/K \cap M \neq <1>$. Suppose $K \cap M \subseteq L \subset H \cap M$, where L is M invariant. Since $G = C_G(\frac{H}{K})M$, LK \triangleleft G. If LK = H, then L = L(M∩K) = M∩LK = M∩H. Therefore LK = K and L = K∩M. Clearly M ∩ C_G(H/K) ⊆ C_M(H∩M/K∩M), and since H = (H∩M)K, we have equality. The last assertion is now clear.

Proposition 1.2. Suppose M is a cover-avoid subgroup of G and θ is an epimorphism of G. Then M θ is a coveravoid subgroup of G θ . If M is such that M covers a chief factor H/K of G if and only if M covers every chief factor G-isomorphic to H/K, and H/K is a chief factor of G with H $\theta \neq K\theta$, then M θ covers H $\theta/K\theta$ if and only if M covers H/K.

Proof. Let $N = Ker(\theta)$ and H/N/K/N a chief factor of G/N. If M avoids H/K, then $MN/N \cap H/N = MN\cap H/N = (M\cap H)N/N \subseteq K/N$. If M covers $\frac{H}{K}$, $H \subseteq KM \subseteq K(MN)$, and so MN/N covers H/N/K/N. Assume the additional hypothesis on M, and let H/K be a chief factor of G with $HN \neq KN$. Then HN/KN is G-isomorphic to H/K. Hence M covers H/K if and only if M covers HN/N/KN/N.

Proposition 1.3. Let θ be an epimorphism of G, N a normal subgroup of G, and H/K a chief factor of G such that H $\theta \neq K\theta$. Then $(C_N(H/K))\theta = C_{N\Theta}(H\theta/K\theta)$, and $N/C_N(H/K) \stackrel{\sim}{\rightarrow} N\theta/C_{N\Theta}(H\theta/K\theta)$.

Proof. Let $M = Ker(\theta)$. Since $HM \neq KM$, M does not cover H/K. Hence $(H\cap M)K$ is a normal subgroup of G contained properly in H. Therefore $(H\cap M)K = K$. Since $[H,M] \subseteq H \cap M$, $M \subseteq C_G(H/K)$. Clearly $C_N(H/K)M/M \subseteq C_{NM/M}(HM/M/KM/M)$. Let C be the pre-image of $C_{N\theta}(H\theta/K\theta)$. Then $[C,H] \subseteq KM \cap H = K(M\cap H) = K$, and so $C \subseteq C_{NM}(H/K) = C_G(H/K) \cap NM = C_N(H/K)M$. Hence $(C_N(H/K))\theta$ $= C_{N\theta}(H\theta/K\theta)$. Also $N/C_N(H/K) = N/(N\cap M)C_N(H/K) \cong NM/C_N(H/K)M$ $\cong N\theta/(C_N(H/K))\theta = N\theta/C_{N\theta}(H\theta/K\theta)$.

3

Chapter II

Definition 2.1. Let $N \triangleleft G$. A p-chief factor H/K of G is N-3 central if $N/C_N(H/K) \in \mathfrak{J}(p)$, and is N-3 eccentric otherwise. If N = G, we say 3 central and 3 eccentric, respectively.

Carter and Hawkes [1, 2.2, p. 178] have shown that if 3 is locally defined by $\{\Im_1(p)\}$ and also by $\{\Im_2(p)\}$, then $\mathscr{O}_{1}(p) = \mathscr{O}_{2}(p) \text{ for all primes } p. (\mathscr{O}_{1}(p) = \{G: G/O_{p}(G) \in \mathfrak{I}_{1}(p)\},$ i = 1,2.) If $N \triangleleft G$ and H/K is a chief factor of G, then H/K is G-isomorphic to a chief factor H_1/K_1 of G with $N \subseteq K_1$ or $H_1 \subseteq N$, and H/K is N-3 central if and only if H_1/K_1 is N-3 central. Hence to see that Definition 2.1 is independent of the local formations defining 3, we need consider only the chief factors of G above and below N. Let 3 be locally defined by $\{\mathfrak{J}_1(p)\}\$ and by $\{\mathfrak{J}_2(p)\}$. Then $\mathfrak{J}_1(p) = \phi$ if and only if $\mathfrak{J}_2(p) = \phi$. Let $\mathfrak{I}_1(p) \neq \phi$ and H/K a p-chief factor of G above or below N. If $N \subseteq K$, then $N/C_N(H/K) = \langle 1 \rangle \in \mathfrak{Z}_1(p) \cap \mathfrak{Z}_2(p)$. If $H \subseteq N$, then Proposition 2.2 below and the well-known fact [5, 5.17, p. 485] that $O_n(G) = <1>$ for any group G possessing a faithful irreducible representation over a field of characteristic p imply that $N/C_N(H/K) \in \mathfrak{J}_1(p)$ if and only if $N/C_N(H/K) \in \mathfrak{J}_2(p)$.

Proposition 2.2. Let $N \triangleleft G$ and H/K a p-chief factor of G with $H \subseteq N$. Then: i). H/K is N-3 central if and only if all chief factors of N between H and K are 3 central (in N).

ii). Chief factors of N between H and K are all 3 central or all 3 eccentric.

iii). $C_N(H/K) = \bigcap \{C_N(L/M): L/M \text{ is a chief factor of } N \text{ between } H \text{ and } K\}.$

Proof. i). Suppose H/K is N-3 central. Since $C_N(H/K) \subseteq C_N(L/M)$ for any chief factor L/M of N between H and K, N/C_N(L/M) is an epimorphic image of N/C_N(H/K). Hence L/M is 3 central. Conversely, suppose all N chief factors between H and K are 3 central. By Clifford's Theorem [5, 17.3, p. 565], H/K = $\oplus \Sigma H_1/K$ where the H_1/K are chief factors of N. Then $C_N(H/K) = \bigcap C_N(H_1/K)$, and so (i) N/C_N(H/K) $\in \Im(p)$.

ii) and iii). As in i), let $H/K = \bigoplus \sum H_i/K$. The H_i/K are (i) all conjugate in G, and hence one H_i/K is \Im central if and only if all H_i/K are \Im central. Also $C_N(H/K) = \bigcap C_N(H_i/K)$. (i) The Jordan-Hölder Theorem applied to the N module H/K now yields both ii) and iii).

The following definition is due to Carter and Hawkes [1, p. 182]:

Definition 2.3. If $\Im(p) \neq \phi$, let $C_p(G) = \bigcap \{C_G(H/K) : H/K$ is an \Im central p-chief factor of G.

We note that $C_p(G)$ is a characteristic subgroup of G such that $G/C_p(G) \in \mathfrak{Z}(p)$; hence $G_{\mathfrak{Z}(p)} \subseteq C_p(G)$.

Proposition 2.4. Let $N \triangleleft G$ and $\Im(p) \neq \phi$. Then $C_p(N) = N \cap \bigcap \{C_G(H/K): H/K \text{ is an } N-\Im \text{ central } p\text{-chief factor of } G \}.$ Proof. Let $\langle 1 \rangle = H_0 \subset H_1 \subset ... \subset H_s = N \subset ... \subset H_t = G$ be a chief series of G. (If $N = \langle 1 \rangle$ or G, the result is trivial.) Refining $\langle 1 \rangle = H_0 \subset H_1 \subset ... \subset H_s = N$ to a chief series of N, we see from 2.2 that $C_p(N) = \cap \{C_N(H_{i+1}/H_i): 0 \leq i \leq s-1 \text{ and } H_{i+1}/H_i \text{ is an } N-\Im$ central p-chief factor}. Since N centralizes any chief factor above N, $C_p(N) = \cap \{C_N(H_{i+1}/H_i): 0 \leq i \leq t-1 \text{ and } H_{i+1}/H_i \text{ is an } N-\Im$ central p-chief factor}. The desired conclusion now follows from the Jordan-Hölder Theorem.

Definition 2.5. Let S^P be a Sylow p-complement of G and N a normal subgroup of G. Let $X(S^P,N) = N_G(S^P \cap C_P(N))$ if $\Im(P) \neq \phi$, and $X(S^P,N) = S^P$ if $\Im(P) = \phi$. Let Σ be a set of Sylow p-complements of G. A relative \Im normalizer (with respect to N) is the subgroup $D_N(\Sigma) = \bigcap\{X(S^P,N): S^P \in \Sigma\}$. Also let $T_N(\Sigma) = \bigcap\{X(S^P,N): S^P \in \Sigma \text{ and } p \in \pi(\Im)\}$.

We note that the various $D_N(\Sigma)$ form a conjugate class of subgroups of G, and the same is true for the various $T_N(\Sigma)$. If N = G, we write $D(\Sigma)$ in place of $D_C(\Sigma)$.

Proposition 2.6. Let $\Im(p) \neq \phi$, N \triangleleft G, and S^P a Sylow p-complement of G. Then X(S^P,N) covers the N- \Im central p-chief factors of G and avoids the N- \Im eccentric p-chief factors of G.

Proof. Since $C_p(N) \triangleleft G$, $N_G(S^p \cap C_p(N))$ is a cover-avoid subgroup which covers the p-chief factor H/K if and only if $C_p(N) \subseteq C_G(H/K)$ (Appendix, Theorem A). Every chief factor of G is G-isomorphic to a chief factor above or below N. Hence it is sufficient to prove the statement for chief factors above and below N. If H/K is a p-chief factor with $K \supseteq N$, $N/C_N(H/K) = \langle I \rangle \in \mathfrak{J}(p);$ i.e. H/K is N- \mathfrak{J} central. Since $C_p(N) \subseteq N \subseteq C_G(H/K), N_G(S^P \cap C_p(N))$ covers H/K. Suppose H/Kis a p-chief factor of G with $H \subseteq N$. Then $N_G(S^P \cap C_p(N))$ covers H/K if and only if $C_p(N) \subseteq C_N(H/K)$. If $C_p(N) \subseteq C_N(H/K)$, H/K is N- \mathfrak{J} central since $N/C_p(N) \in \mathfrak{J}(p)$. If H/K is N- \mathfrak{J} central, 2.2 implies $C_p(N) \subseteq C_N(H/K)$. Hence $N_G(S^P \cap C_p(N))$ covers the p-chief factor H/K if and only if H/K is N- \mathfrak{J} central.

Corollary 2.6.1. With the same hypothesis as Proposition 2.6, $N_{G}(S^{P} \cap C_{p}(N)) = N_{G}(S^{P} \cap N_{\mathfrak{T}(p)})$.

Proof. Since $N_{\mathfrak{J}(p)} \triangleleft G$ and $N_{\mathfrak{J}(p)} \subseteq C_p(N)$, $N_G(S^P \cap C_p(N)) \subseteq N_G(S^P \cap N_{\mathfrak{J}(p)})$. Each subgroup clearly covers all q-chief factors of G with $q \neq p$, and $N_G(S^P \cap N_{\mathfrak{J}(p)})$ covers the p-chief factor H/K if and only if $N_{\mathfrak{J}(p)} \subseteq C_N(H/K)$, if and only if H/K is N- \mathfrak{J} central. Hence the two subgroups have the same order and are equal.

If $\Im = \Re$, the formation of nilpotent groups, then $\Im = \{\Im(p)\}$ where $\Im(p) = \{<1>\}$ for all primes p. Hence if $N \triangleleft G$, then $N_{\Im(p)} = N$. By 2.6.1 $D_N(\Sigma) = \bigcap\{N_G(S^P \cap N):$ $p \mid o(G)$ and $S^P \in \Sigma\}$ is the relative system normalizer as defined by P. Hall in [3].

Proposition 2.7. Let $N \triangleleft G$, $\Sigma = \{S^{P}: p \mid o(G)\}$ a set of Sylow p-complements of G, and π a set of primes. Then $S = \cap \{X(S^{P},N): S^{P} \in \Sigma \text{ and } p \in \pi\}$ avoids N-3 eccentric π -chief factors of G, and covers all other chief factors of G. Proof. If $\Im(p) = \phi$ with $p \in \pi$, $S \subseteq X(S^{P},N) = S^{P}$, which avoids all p-chief factors of G. (If $\Im(p) = \phi$, all p-chief factors are N- \Im eccentric.) If $\Im(p) \neq \phi$ and $p \in \pi$, $S \subseteq X(S^{P},N)$, which avoids all N- \Im eccentric p-chief factors by 2.6. Therefore S avoids all N- \Im eccentric π -chief factors. Since [G: $X(S^{P},N)$] is a power of p and equals the product of the orders of the N- \Im eccentric p-chief factors in a given chief series of G, [G:S] = π {[G: $X(S^{P},N)$]: $p \in \pi$ } equals the product of the orders of the N- \Im eccentric π -chief factors in a given chief series of G. By considering the order of S, we see that S must cover all other chief factors of G.

Corollary 2.7.1. Let $N \triangleleft G$ and Σ a set of Sylow pcomplements of G. Then $D_N(\Sigma)$ covers N-3 central chief factors of G and avoids N-3 eccentric chief factors of G. $T_N(\Sigma)$ avoids all N-3 eccentric $\pi(3)$ -chief factors of G and covers all other chief factors of G.

Proof. In Proposition 2.7, let π be the set of all primes and $\pi(\mathfrak{Z})$, respectively.

Proposition 2.8. Let $N \triangleleft G$ and θ an epimorphism of G. Then an N-3 central (N-3 eccentric) chief factor of G maps to an N0-3 central (N0-3 eccentric) chief factor of G0 or <1>. Conversely, any N0-3 central (N0-3 eccentric) chief factor of G0 is the image of an N-3 central (N-3 eccentric) chief factor of G.

Proof. Both statements follow immediately from 1.3.

Proposition 2.9. Let $N \prec G$, $\Sigma = \{S^{P}: p \mid o(G)\}$ a set of Sylow p-complements of G, π a set of primes, and θ an epimorphism of G. Then $(\bigcap \{X(S^p, N): S^p \in \Sigma \text{ and } p \in \pi\})$ = $\cap \{X(S^p, N\theta): S^p \in \Sigma \text{ and } p \in \pi\}.$

Proof. Let $S = \cap \{X(S^{P},N): S^{P} \in \Sigma \text{ and } p \in \pi\}$ and $S_{1} = \cap \{X(S^{P}\theta,N\theta): S^{P} \in \Sigma \text{ and } p \in \pi\}$. If $p \in \pi$ and $\Im(p) = \phi$, then $S\theta \subseteq X(S^{P},N)\theta = S^{P}\theta = X(S^{P}\theta,N\theta)$. If $p \in \pi$ and $\Im(p) \neq \phi$, then $S\theta \subseteq X(S^{P},N)\theta = N_{G}(S^{P} \cap N_{\Im(p)})\theta \subseteq N_{G\theta}((S^{P} \cap N_{\Im(p)})\theta)$. Since $N_{\Im(p)} < G, S^{P} \cap N_{\Im(p)}$ is a Sylow p-complement of $N_{\Im(p)}$. Hence $(S^{P} \cap N_{\Im(p)})\theta = S^{P}\theta \cap (N_{\Im(p)})\theta = S^{P}\theta \cap (N\theta)_{\Im(p)}$. Therefore $S\theta \subseteq N_{G\theta}(S^{P}\theta \cap (N\theta)_{\Im(p)}) = X(S^{P}\theta,N\theta)$, and $S\theta \subseteq S_{1}$. But by 1.2, 2.7, and 2.8, S θ and S_{1} cover and avoid the same chief factors of G θ . Hence $S\theta = S_{1}$.

Corollary 2.9.1. Let $\mathbb{N} \triangleleft G$, Σ a set of Sylow p-complements of G, and θ an epimorphism of G. Then $(D_{\mathbb{N}}(\Sigma))\theta = D_{\mathbb{N}\theta}(\Sigma\theta)$ and $(T_{\mathbb{N}}(\Sigma))\theta = T_{\mathbb{N}\theta}(\Sigma\theta)$ where $\Sigma\theta = \{S^{\mathbb{P}}\theta: S^{\mathbb{P}} \in \Sigma\}$.

Proof. In Proposition 2.9, let π be the set of all primes and $\pi(\mathfrak{G})$, respectively.

The cover-avoidance property of 2.7.1 does not in general characterize $D_N(\Sigma)$. If N = G and \Im is the formation of nilpotent groups, T.O. Hawkes has given an example [5, 11.12, p. 730] of a group G and a subgroup S of G with the cover-avoidance property, but S is not a system normalizer of G.

Proposition 2.10. Let $N \triangleleft G$ and $M \subseteq G$ such that M covers all q-chief factors of G with $q \neq p$, all N-3 central p-chief factors of G, and avoids all N-3 eccentric p-chief factors of G. Then M contains a Sylow p-complement of G, and if S^P is any such Sylow p-complement, then $M = X(S^P, N)$.

Proof. It is clear that M contains a Sylow p-complement of G. If G has no N-3 central p-chief factors, M is a Sylow p-complement of G, and so the statement is true in this case. Assume H/K is an N-3 central p-chief factor of G. Since N/N∩C_C(H/K) $\in \mathfrak{J}(p)$, any p-chief factor above C_G(H/K) is N-3 central. By hypothesis, M covers H/K and $G/C_{G}(H/K)$. Hence by 1.1, $H \cap M/K \cap M$ is a p-chief factor of M and $M \cap C_{G}(H/K) = C_{M}(H \cap M/K \cap M)$. Intersecting the terms of a chief series of G with M, we obtain $M \cap \cap \{C_{C}(H/K): H/K \text{ is an } N-\Im \text{ central } p-chief \text{ factor of } G\}$ = $\bigcap \{C_{M}(H \cap M/K \cap M): H/K \text{ is an } N-\mathfrak{F} \text{ central p-chief factor of } G \}$ = $\bigcap \{ C_{M}(A/B: A/B \text{ is a p-chief factor of } M \}$ = $0_{p'p}(M)$ [5, 5.4, p. 686]. Now let S^P be a Sylow p-complement of G contained in M. Then $M \subseteq N_G(S^P \cap O_{p_p}(M))$ $= N_{G}(S^{P} \cap O_{p^{+}p}(M) \cap N) = N_{G}(S^{P} \cap M \cap C_{p}(N)) \quad (by 2.4) = X(S^{P},N).$ Since M and $X(S^{p},N)$ have the same order, $M = X(S^{p},N)$.

Corollary 2.10.1. Suppose $D_N(\Sigma)$, a relative \Im normalizer of G, has index a power of p in G. Then if M is any subgroup of G which covers N- \Im central chief factors and avoids N- \Im eccentric chief factors, M is a relative \Im normalizer.

Proof. Since $D_N(\Sigma)$ has index a power of p in G, $D_N(\Sigma) = X(S^P,N)$ where $S^P \in \Sigma$. By 2.7.1, all q-chief factors of G, q \neq p, are N-3 central. Proposition 2.10 now implies the statement.

Proposition 2.11. Let G be a group such that J normalizers coincide with J projectors. Then if M is any subgroup which covers J central chief factors and avoids J eccentric chief factors, M is an 3 normalizer of G.

Proof. Induct on o(G) and let A be a minimal normal subgroup of G. By 1.2 and 2.8, MA/A has the same cover-avoid property in G/A. Also by 2.9.1 and Theorem B, \Im projectors of G/A coincide with \Im normalizers of G/A. Hence MA/A = FA/A where F is an \Im projector of G. Suppose A is \Im central. Then $M \supseteq A$, $F \supseteq A$, and F = M. If A is \Im eccentric, F is an \Im projector of FA and $F \cap A = <1>$. Hence $(FA)_{\Im} = A$, and since A is abelian, F is conjugate to M in FA. (Theorem E.) Therefore M is an \Im projector of G.

Proposition 2.12. Let $N \triangleleft G$. Then $N \in \mathfrak{Z}$ if and only if N is a $\pi(\mathfrak{Z})$ group and all $\pi(\mathfrak{Z})$ -chief factors of G are N- \mathfrak{Z} central. Hence if Σ is a set of Sylow p-complements of G, $N \in \mathfrak{Z}$ if and only if N is a $\pi(\mathfrak{Z})$ group and $T_N(\Sigma) = G$.

Proof. Suppose $N \in \Im$; then N is a $\pi(\Im)$ group. By 2.2, all chief factors of G below N are N- \Im central, and clearly all $\pi(\Im)$ -chief factors above N are N- \Im central. Conversely, suppose N is a $\pi(\Im)$ group and all $\pi(\Im)$ -chief factors of G are N- \Im central. Again by 2.2, all chief factors of N are \Im central. Therefore $N \in \Im$. The second statement now follows readily from 2.7.1.

Corollary 2.12.1. Let $N \triangleleft G$ and Σ a set of Sylow p-complements of G. Then $G = T_N(\Sigma)N_Q$.

Proof. $T_N(\Sigma)N_{\mathcal{G}}/N_{\mathcal{G}} = T_{N/N_{\mathcal{G}}}(\Sigma N_{\mathcal{G}}/N_{\mathcal{G}}) = G/N_{\mathcal{G}}$. Proposition 2.13. Let $\Sigma = \{S^P: p \mid o(G)\}$ be a set of Sylow p-complements of G, and for each $S^P \in \Sigma$, let $S^P \subseteq T^P \subseteq G$. Then Σ reduces to $T = \cap \{T^P: p \mid o(G)\}$. In particular, Σ reduces to $D_{N}(\Sigma)$.

Proof. Let $S^{p} \in \Sigma$; then $[T: S^{p} \cap T] = [T^{p}: S^{p}]$, a power of p. Hence Σ reduces to T. The second statement follows since $X(S^{p},N) \supseteq S^{p}$ for all primes p.

Proposition 2.14. Let Σ be a set of Sylow p-complements of G. If $D(\Sigma) \subseteq M \subseteq G$ and Σ reduces to M, then $D(\Sigma) \subseteq D(\Sigma \cap M)$.

Proof. If $\Im(p) = \phi$, $D(\Sigma) \subseteq S^{P} \cap M$ for $S^{P} \in \Sigma$. If $\Im(p) \neq \phi$, let H/K be an \Im central p-chief factor of G. Then $G/C_{G}(H/K) \in \Im(p) \subseteq \Im$. Since $D(\Sigma) \subseteq M$, M covers $G/C_{G}(H/K)$ and H/K. By 1.1, $H\cap M/K\cap M$ is an \Im central p-chief factor of M, and $C_{M}(H\cap M/K\cap M) = M \cap C_{G}(H/K)$. Therefore $C_{p}(M) \subseteq M \cap C_{p}(G)$. Since $D(\Sigma) \subseteq M$, $D(\Sigma)$ normalizes $C_{p}(M)$ and $S^{P} \cap C_{p}(G)$, where $S^{P} \in \Sigma$. Therefore $D(\Sigma) \subseteq N_{M}(S^{P} \cap C_{p}(M))$, and so $D(\Sigma) \subseteq D(\Sigma \cap M)$.

The following proposition was proved by T.O. Hawkes [4, 3.3, p. 244] in the case that $\Im \supseteq \eta$, the formation of nilpotent groups. Trivial modifications can easily be given to include the case $\Im \not\supseteq \eta$; however, for completeness we give an alternate proof.

Proposition 2.15. Let $D(\Sigma)$ be an \Im normalizer of G. Then there exists an \Im projector F of G such that $D(\Sigma) \subseteq F$ and Σ reduces to F.

Proof. We may suppose $G \notin \Im$. Let A be minimal normal in G. Then by induction $D(\Sigma)A/A = D(\Sigma A/A) \subseteq F_1/A$ where F_1/A is an \Im projector of G/A and $\Sigma A/A$ reduces to F_1/A . Suppose o(A) is a power of p. If $q \neq p$ and $S^q \in \Sigma$, $A \subseteq S^q$ and $[F_1: S^q \cap F_1] = [F_1/A: S^q/A \cap F_1/A]$, a power of q. For $S^p \in \Sigma$, $[F_1: S^p \cap F_1] = [F_1: S^pA \cap F_1][(S^p \cap F_1)A: S^p \cap F_1]$, a power of p.

12

Hence Σ reduces to F_1 , and by 2.14 $D(\Sigma) \subseteq D(\Sigma \cap F_1)$. If $F_1 < G$, by induction $D(\Sigma \cap F_1) \subseteq F$ where F is an \Im projector of F_1 and $\Sigma \cap F_1$ reduces to F. Hence Σ reduces to F, F is an \Im projector of G (Theorem B), and $D(\Sigma) \subseteq F$. Suppose $F_1 = G$. Since $G \notin \Im$ and $G/A \in \Im$, every complement of A in G is an \Im projector of G (Theorem E). But $G = AD(\Sigma)$ and A is \Im eccentric. Hence $D(\Sigma) \cap A = <1>$ and $D(\Sigma)$ is an \Im projector of G. Σ reduces to $D(\Sigma)$ by 2.13.

Proposition 2.16. Suppose G_{j} is complemented in G by an J projector of G. Then J projectors of G coincide with J normalizers of G, and all complements of G_{j} in G are conjugate in G.

Proof. Suppose $G = G_3F$, $F \cap G_3 = \langle 1 \rangle$, and F is an \Im projector of G. Let $D \subseteq F$ be an \Im normalizer of G; then $G = G_3D$ and D = F. Now suppose H is a complement of G_3 in G. Let $A \subseteq G_3$ be minimal normal in G. (If $G_3 = \langle 1 \rangle$, the statement is trivial.) Then HA/A complements G_3/A in G/A. By induction, HA = FA where F is an \Im projector of G. If A is \Im central, $A \subseteq F$ and so $H \subseteq F$. Therefore H = F since both are complements of G_3 in G. Suppose A is \Im eccentric, then as in the proof of 2.11, $(FA)_3 = A$ and F is conjugate to H.

Proposition 2.17. Let N be a normal $\pi(\mathfrak{Z})$ subgroup of G. If N₃ is complemented in N by an \mathfrak{Z} projector of N, then N₃ is complemented in G. Furthermore all complements of N₃ in G are conjugate and are precisely the various $T_N(\Sigma)$.

13

Proof. By 2.12.1, $G = T_N(\Sigma)N_3$ where Σ is a set of Sylow p-complements of G. Now $D_N(\Sigma) \cap N_3 \subseteq T_N(\Sigma) \cap N_3$, but since N is a normal $\pi(3)$ subgroup, $N \subseteq S^P$ for all $S^P \in \Sigma$ such that $p \in \pi(3)^{\circ}$. Therefore $N \cap T_N(\Sigma) \subseteq D_N(\Sigma)$ and $T_N(\Sigma) \cap N_3 \equiv D_N(\Sigma) \cap N_3 \equiv D(\Sigma \cap N) \cap N_3 \equiv <1>$ by hypothesis and 2.16. If H is a complement of N_3 in G, $N = N_3(H \cap N)$, and $H \cap N$ is an \Im projector of N by 2.16. Clearly $N_G(H \cap N) \supseteq H$, and so $N_G(H \cap N) = HN_N(H \cap N) = H(H \cap N)$ (Theorem D) = H. Hence if H_1 and H_2 are complements of N_3 in G, $H_1 = N_G(H_1 \cap N)$ is conjugate to $H_2 = N_G(H_2 \cap N)$. Since $T_N(\Sigma)$ is a complement of N_3 in G, and the various $T_N(\Sigma)$ form a conjugate class, the statement is proved.

Corollary 2.17.1. Let $N \triangleleft G$. If N_{3} is an abelian \Im $\pi(\mathfrak{F})$ group, the conclusions of Proposition 2.17 hold.

Proof. Theorem E states that N is complemented in J N by an J projector of N.

Example 2.17.2. Let G be a solvable Frobenius group with Frobenius Kernel K. Then K is complemented in any solvable extension of G, and all such complements are conjugate.

Proof. Let $\pi = \{p: p \mid o(K)\}$ and \Im the saturated formation of groups which are p-nilpotent for all $p \in \pi$. \Im is locally defined by: $\Im(p) = \{<1>\}$ if $p \in \pi$ and $\Im(p) = \Im$ if $p \notin \pi$. Hence $\pi(\Im)$ is the set of all primes. We now show that if H is any solvable Frobenius group, and the Frobenius Kernel L of H is a π Hall subgroup of H, then $H_{\Im} = L$. Since H/L is a π' group, $H_{\Im} \subseteq L$. If K_1/K_2 is any chief factor of H with $K_1 \subseteq L$, then $C_H(K_1/K_2) = L$. Hence $H_{\Im} = L$. Now let M be a complement of K in G. We show that M is an \Im projector of G. $M \in \Im$ since M is a π ' group. Suppose $M \subset U$; then $U = (K \cap U)M$, a solvable Frobenius group with kernel $K \cap U$. Therefore $U_{\Im} = (K \cap U)$ and $U = U_{\Im}M$. Proposition 2.17 now implies the conclusion.

Proposition 2.18. Let $N \triangleleft G$; then $N \in \mathfrak{J}$ if and only if N is a $\pi(\mathfrak{J})$ group and $N\Phi(G)/\Phi(G) \in \mathfrak{J}$.

Proof. Suppose N is a $\pi(\mathfrak{Z})$ group and $N\Phi(G)/\Phi(G) \in \mathfrak{Z}$. Let Σ be a set of Sylow p-complements of G. Then $T_{N}(\Sigma)\Phi(G)/\Phi(G) = T_{N\Phi(G)}/\Phi(G)(\Sigma\Phi(G)/\Phi(G)) = G/\Phi(G)$. Therefore $T_{N}(\Sigma)\Phi(G) = G$, and so $T_{N}(\Sigma) = G$. By 2.12, $N \in \mathfrak{Z}$. The converse is clear.

The following corollary is due to Gaschütz [5, 3.5, p. 270] in the case that $\Im = \Re$; furthermore, the solvability of G is not necessary in Gaschütz result. The case \Im the formation of supersolvable groups, for example, does not seem to appear in the literature.

Corollary 2.18.1. Let $D, M \triangleleft G$ with M a $\pi(\mathfrak{Z})$ group and $D \subseteq \Phi(G)$. If $M/D \in \mathfrak{Z}$, then $M \in \mathfrak{Z}$.

Proof. Suppose $M/D \in \mathfrak{J}$. Then $M\Phi(G)/\Phi(G) = M\Phi(G)/D\Phi(G)$ ~ $M/D(M \cap \Phi(G)) \in \mathfrak{J}$. Hence $M \in \mathfrak{J}$ by 2.18.

Corollary 2.18.2. Suppose $\Im \supseteq \Re$, and \Im is normal subgroup closed. If \Im^* is any non-empty formation, $\Im^* = \{G: \exists K \triangleleft G \text{ with } K \in \Im$ and $G/K \in \Im^*\}$ is a saturated formation.

Proof. Since \Im is normal subgroup closed, $G \in \Im^*$ if and only if $G \in \Im$. Let $G \in \Im^*$ and $N \triangleleft G$; (G/N) = $G_{*}N/N \in \mathfrak{J}$. If G/N_1 and $G/N_2 \in \mathfrak{M}^*$, $G_{*}N_1/N_1 \in \mathfrak{J}$, i = 1, 2. Hence $(G/N_1 \cap N_2)_{*} = G_{*}(N_1 \cap N_2)/N_1 \cap N_2 = G_{*}/(N_1 \cap N_2) \cap G_{*} \in \mathfrak{J}$. If $G/\Phi(G) \in \mathfrak{M}^*$, then $G_{*}\Phi(G)/\Phi(G) \in \mathfrak{J}$. By 2.18, $G_{*} \in \mathfrak{J}$. \mathfrak{J} Proposition 2.19. Let $N \triangleleft G$. Then $N \in \mathfrak{J}$ if and only

if N is a $\pi(\mathfrak{Z})$ group and all $\pi(\mathfrak{Z})$ -chief factors of G between $\Phi(G)$ and Fit(G) are N- \mathfrak{Z} central.

Proof. Assume the criteria. By 2.8 and 2.18, we may assume $\Phi(G) = \langle 1 \rangle$. Fit(G) is a completely reducible G-module [5, 4.5, p. 279], say Fit(G) = $\bigoplus \{H_i: 1 \le i \le n\}$ where the H_i are minimal normal subgroups of G. We may suppose $\bigoplus \{H_i: 1 \le i \le s\}; s \ge 1, is a \pi(\mathfrak{Z}) \text{ group and } \bigoplus \{H_i: s+1 \le i \le n\}$ is a $\pi(\mathfrak{Z})$ ' group, for if N = <1>, there is nothing to prove. By hypothesis, $N/C_N(H_i) \in \mathfrak{J}(p) \subseteq \mathfrak{J}$ for $1 \le i \le s$ and appropriate primes p. Therefore $N/\cap \{C_N(H_i): 1 \le i \le s\} \in \mathfrak{J}$. Since N is a normal $\pi(\mathfrak{Z})$ group, N centralizes $\bigoplus \{H_i: s+1 \le i \le n\}$. Hence $\cap \{ C_{N}^{(H_{i})} : 1 \leq i \leq s \} \subseteq N \cap C_{G}^{(Fit(G))} = N \cap Fit(G), \text{ and so}$ $N/N \cap Fit(G) \in \mathcal{G}$. Let H/K be a $\pi(\mathcal{G})$ -chief factor above Fit(G). If $H \cap N = K \cap N$, $N \subseteq C_G(H/K)$ and H/K is N-3 central. If $H \cap N \neq K \cap N$, H/K is G-isomorphic to $H \cap N/K \cap N$. By 2.2, H/Kis N-3 central if and only if every chief factor of N between $K \cap N$ and $H \cap N$ is \Im central. Since $K \cap N \supseteq$ Fit(G) $\cap N$ and $N/N \cap Fit(G) \in \mathcal{G}$, H/K is N- \mathcal{G} central. Therefore all $\pi(\mathfrak{Z})$ -chief factors of G are N- \mathfrak{Z} central, and N $\in \mathfrak{Z}$ by 2.12. Also the converse is clear by 2.12.

Definition 2.20. Let $N \triangleleft G$. A p-maximal subgroup M of G is N-3 normal if $M \cap N/Core(M) \cap N \in \mathfrak{Z}(p)$, and is N-3 abnormal otherwise.

Proposition 2.21. Let $N \lhd G$ and M a p-maximal subgroup of G. Then M is N-3 normal if and only if M complements an N-3 central p-chief factor of G.

Proof. Suppose M is N-3 normal; then $\Im(p) \neq \phi$. Let K = Core(M). Then G/K has a unique minimal normal subgroup H/K, $C_G(H/K) = H$, and M complements H/K [5, 3.2, p. 159]. If $N \cap H \subseteq M$, $N \cap H \subseteq K$, and H/K is N-3 central. Suppose $N \cap H \notin M$, then $G = (N \cap H)M$ and $N = (N \cap H)(M \cap N)$. Therefore $N/C_N(H/K) = N/N \cap H \cong M \cap N/M \cap H \cap N = M \cap N/K \cap N \in \Im(p)$. Suppose M complements the N-3 central p-chief factor H/K. Let $C = C_G(H/K)$. Then Core(M) = $C \cap M$ and $C = H(C \cap M)$. Hence $C/C \cap M$ is G-isomorphic to H/K, and M complements C/C $\cap M$. Therefore we may suppose $C_G(H/K) = H$ and K = Core(M). If $N \cap H \subseteq M$, then $N \cap H \subseteq K$, and so $N \subseteq C_G(H/K) = H$. Therefore $N = N \cap H \subseteq M$ and $M \cap N/\text{Core}(M) \cap N = <1> \in \Im(p)$. $(\Im(p) \neq \phi$ since H/K is N-3 central.) If $N \cap H \notin M$, $G = (N \cap H)M$ and $N = (N \cap H)(M \cap N)$. Hence $M \cap N/K \cap N \cong N/N \cap H = N/C_N(H/K) \in \Im(p)$.

Proposition 2.22. Let $N \triangleleft G$. Then $N \in \mathfrak{J}$ if and only if N is a $\pi(\mathfrak{J})$ group and for $p \in \pi(\mathfrak{J})$ with $\mathfrak{J}(p) \subset \mathfrak{J}$ all p-maximal subgroups of G are N- \mathfrak{J} normal.

Proof. Assume the criteria and induct on o(G). We may assume $N \neq <1>$. Let A be a minimal normal subgroup of G contained in N. By 2.8, 2.21, and the induction hypothesis, $N/A \in \Im$. Then $N_{\Im} \subseteq A$. Suppose $N_{\Im} \equiv A$ and A is a p-chief factor of G. By 2.17.1, $T_N(\Sigma)$ is a p-maximal subgroup of G complementing A, where Σ is a set of Sylow p-complements of G. If $\Im(p) \subset \Im$, $T_N(\Sigma)$ is N- \Im normal by hypothesis. If $\Im(p) = \Im$, $T_N(\Sigma) \cap N = D(\Sigma \cap N) \in \mathfrak{Z}$ (Theorem F). Hence, in any case $T_N(\Sigma)$ is N-3 normal. By 2.21, A is an N-3 central $\pi(\mathfrak{Z})$ -chief factor. But $A \cap T_N(\Sigma) = \langle 1 \rangle$, a contradiction to 2.7.1. Hence $N_{\mathfrak{Z}} = \langle 1 \rangle$ and $N \in \mathfrak{Z}$. Conversely, if $N \in \mathfrak{Z}$, all $\pi(\mathfrak{Z})$ -chief factors of G are N-3 central. Hence all $\pi(\mathfrak{Z})$ -maximal subgroups of G are N-3 normal by 2.21.

Example 2.22.1. Let $N \triangleleft G$ and π a set of primes. Then N is p-nilpotent for all $p \in \pi$ if and only if $N \cap M \subseteq Core(M)$ for all π -maximal subgroups M of G.

Proof. Let \Im be the formation of groups which are pnilpotent for all $p \in \pi$. Using the local definition of \Im given in 2.17.2, we obtain the statement as an immediate consequence of 2.22.

Proposition 2.23. Let Σ be a set of Sylow p-complements of G. Then $D = D(\Sigma)$ is an \Im projector of $N_G(\Sigma \cap G_{\Im})$.

B. Fischer has defined \Im normalizers of G to be \Im projectors of $N_G(\Sigma \cap G_{\Im})$ in the case that $\Im \supseteq \Re$ [2, 8.4, p. 63].

Proof. First note that $D \subseteq N_{G}(\Sigma \cap G_{3})$: If $\Im(p) = \phi$, $S^{P} \subseteq N_{G}(S^{P} \cap G_{3})$ for $S^{P} \in \Sigma$; if $\Im(p) \neq \phi$, $N_{G}(S^{P} \cap G_{\Im(p)})$ $\subseteq N_{G}(S^{P} \cap G_{3})$ since $G_{\Im} \subseteq G_{\Im(p)}$. Now induct on o(G) and let A be minimal normal in G. Then DA/A is an \Im projector of $N_{G/A}(\Sigma A \land A \cap G_{3}A \land A)$. But $N_{G}(\Sigma \cap G_{3})A \land A \subseteq N_{G/A}((S^{P} \cap G_{3})A \land A)$ $= N_{G/A}(S^{P}A \land A \cap G_{3}A \land A)$ for all $S^{P} \in \Sigma$. Therefore DA/A is an \Im projector of $N_{G}(\Sigma \cap G_{3})A \land A$. If A is \Im central, then $D \supseteq A$, and D is an \Im projector of $N_{G}(\Sigma \cap G_{3})$ by Theorems B and F. If $G_{\Im} \notin C_{G}(A)$, $N_{G}(\Sigma \cap G_{3})$ avoids A, and the natural isomorphism from $N_{G}(\Sigma \cap G_{3})A \land A$ to $N_{G}(\Sigma \cap G_{3})$ maps DA/A onto D since $D \subseteq N_{G}(\Sigma \cap G_{\Im})$. Hence we may assume A is \Im eccentric and $G_{\Im} \subseteq C_{G}(A)$. Therefore $G = C_{G}(A)D$, and so A is minimal normal in AD. Now $G/C_{G}(A) \stackrel{\sim}{=} AD/C_{AD}(A) \notin \Im(p)$, but $AD/A \stackrel{\sim}{=} D \in \Im$. Hence D is an \Im projector of AD. Again by Theorem B, we conclude that D is an \Im projector of $N_{G}(\Sigma \cap G_{\Im})$.

Corollary 2.23.1. Let Σ be a set of Sylow p-complements of G. Then $D(\Sigma)$ is an \Im projector and an \Im normalizer of $N_G(\Sigma \cap G_{\Im})$. If $G \notin \Im$, $D(\Sigma) \subset N_G(\Sigma \cap G_{\Im})$ and $G = \langle N_G(\Sigma \cap G_{\Im})^g$: $g \in G$. Hence every finite solvable group is generated by subgroups in which \Im projectors coincide with \Im normalizers.

Proof. By 2.23, $D(\Sigma)$ is an \Im projector of $N_G(\Sigma \cap G_{\Im})$. By 2.13 Σ reduces to $N_G(\Sigma \cap G_{\Im})$, and by 2.14 $D(\Sigma)$ $\subseteq D(\Sigma \cap N_G(\Sigma \cap G_{\Im}))$. But since $D(\Sigma)$ is a maximal \Im subgroup, we must have equality (Theorem F). Now if $D(\Sigma)$ covers the pchief factor H/K of G, $G_{\Im} \subseteq G_{\Im(P)} \subseteq C_G(H/K)$, and so $N_G(\Sigma \cap G_{\Im})$ covers H/K. If $G \notin \Im$, $<1> \subset G_{\Im}$ and $D(\Sigma)$ avoids G_{\Im}/G_{\Im}' . Hence $o(D(\Sigma)) < o(N_G(\Sigma \cap G_{\Im}))$. If $N_G(\Sigma \cap G_{\Im})$ is contained in a proper normal subgroup M of G, we may suppose M is maximal normal. But $G_{\Im} \subseteq G = C_G(G/M)$, and so $G = MN_G(\Sigma \cap G_{\Im}) = M$, a contradiction, Hence $G = <N_G(\Sigma \cap G_{\Im})^{\Im}$: $g \in G>$.

Corollary 2.23.2. Let F be an \Im projector of G. Then F is an \Im normalizer of G if and only if F normalizes a Sylow p-complement of G_{\Im} for all primes p.

Proof. Suppose $F = D(\Sigma)$; then $F \subseteq N_G(\Sigma \cap G_S)$. Conversely, if $F \subseteq N_G(\Sigma \cap G_S)$ for a set Σ of Sylow p-complements, then F is an \Im projector of $N_G(\Sigma \cap G_{\Im})$ and so is conjugate to $D(\Sigma)$. Proposition 2.24. Let $\Im \subseteq \Im$. If G = NF, $N \triangleleft G$, $F \triangleleft G$, $N \in \Im$ and $F \in \Im$, then $G \in \Im$.

Proof. Induct on o(G). The hypothesis is preserved under epimorphic images. Hence there exists a unique minimal normal subgroup A and $G/A \in \mathcal{J}$. If $G \notin \mathcal{J}$, A is complemented in G by Theorem E. Hence A is self-centralizing. Since $A \subseteq N$, $A \subseteq Z(N)$ and so A = N. ($N \neq <1>$ since $G \notin \mathcal{J}$.) Therefore $F \cap N = N$ and $G = F \in \mathcal{J}$, or $F \cap N = <1>$ and $G = N \in \mathcal{J}$.

Proposition 2.25. Let $\mathcal{N} \subseteq \mathfrak{J}$. Suppose G = AB = AC = BCwith A,B abelian subgroups of G and $C \in \mathfrak{J}$, then $G \in \mathfrak{J}$.

Proof. Induct on o(G). The hypothesis is preserved under epimorphic images; hence without loss of generality, there exists a unique minimal normal subgroup M of G and $G/M \in \mathfrak{J}$. If $G \notin \mathfrak{J}$, M is complemented in G and is thus self-centralizing. Since G = AB with A,B abelian, Core(A) $\neq <1>$ or Core(B) $\neq <1>$ [7, 13.3.3, p. 384]. Hence we may suppose $M \subseteq A$. Therefore $M = A = G_{\mathfrak{J}}$. If B and C are both proper subgroups of G, they are complements of $M = G_{\mathfrak{J}}$. Hence B is conjugate to C (Theorem E), but G = BC, a contradiction. Therefore G = B or G = C. In either case, $G \in \mathfrak{J}$.

O.H. Kegel proved the following proposition in [6] for the case 3 the formation of supersolvable groups. The proof given here is very similar to Kegel's proof.

Proposition 2.26. Let $\mathcal{N} \subseteq \mathcal{J}$. Suppose G = AB = AC = BCwith A, B $\in \mathcal{N}$, C a Sylow tower group, and $C \in \mathcal{J}$. Then $G \in \mathcal{J}$.

Proof. Suppose not, and let G be a counterexample of minimal order. As in 2.25 G is the unique minimal normal subgroup of G, and G_{γ} is self-centralizing. Let p be a prime such that C has a non-trivial normal Sylow p-subgroup. Let $A_p, B_p, and C_p$ be the normal Sylow p-subgroups of A, B, C, respectively. Then P = A B = A C = B C is a normal Sylow p-subgroup of G [6, 1, p. 43]. Hence $G_{\mathcal{G}} \subseteq P$. Since $C_{\mathcal{G}}(G_{\mathcal{G}})$ = G_{γ} , G_{γ} = P. Now $A_p \cap B_p \subseteq Z(G)$ and so $A_p \cap B_p = P$ or $A_p \cap B_p = <1>$. If $A_p \cap B_p = P = G_3$, G_3 is an 3 central chief factor, which is impossible. Hence $A \cap B_p = <1>$. Suppose $A_p = <1>$, then $B_p = G_q$ and so $B_p = B = G_q$. Since A, $C \subset G$, both A and C are complements of $B = G_{S}$. By Theorem E, A is conjugate to C, an impossibility since G = AC. Therefore $A_p \neq <1>$, and likewise $B_p \neq <1>$. Let K be an A-invariant complement of A_p in G_q . Then there exists an A-invariant subgroup T of $G_{\mathfrak{F}}$ of index p in $G_{\mathfrak{F}}$. (T can be taken as the product of K and a subgroup of index p in A_p .) Suppose $o(B_p) \ge p^2$. Then $T \cap B_p \ne <1>$ and $T \cap B_p \subseteq G_3$. But $(T \cap B_p)^G = (T \cap B_p)^A \subseteq T \subseteq G_3$. Hence $o(B_p) = p$ and likewise $o(A_p) = p$. Let A_p , be the complement of A_p in A. Then $C_{A_1}(K) = <1>$, for otherwise $G_{3} = A_{p}K$ is not self-centralizing. Hence A_{p} , is represented faithfully on K, and so A_{p} , is cyclic. Therefore A is cyclic, and likewise B is cyclic. Hence $G \in \mathfrak{G}$ by 2.25.

BIBLIOGRAPHY

•

BIBLIOGRAPHY

- 1. R. W. Carter and T. O. Hawkes, The 3-normalizers of a finite soluble group, J. Algebra 5 (1967), 175-202.
- 2. B. Fischer, Classes of conjugate subgroups in finite solvable groups, Lecture Notes, Yale University, 1966.
- 3. P. Hall, On the system normalizers of a finite soluble group, Proc. London Math. Soc. 43 (1937), 316-323.
- 4. T. O. Hawkes, On formation subgroups of a finite soluble group, J. London Math. Soc. 44 (1969), 243-251.
- B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer-Verlag, Berlin • Heidelberg, 1967.
- 6. O. H. Kegel, Zur Struktur mehrfach faktorisierbarer endlicher Gruppen, Math. Z. 87 (1965), 42-48.
- 7. W.R. Scott, Group Theory, Prentice-Hall, Inc., Englewood Cliffs, 1964.

APPENDIX

.

APPENDIX

For the convenience of the reader, we state and prove a well known result of P. Hall, which is contained in Theorem 7.2 of [3].

Theorem A. Let $N \triangleleft G$, S^P a Sylow p-complement of G, and H/K a p-chief factor of G. Then: i). If $N_G(S^P)$ does not avoid H/K, $C_G(H/K) = G$. ii). If $N \not\in C_G(H/K)$, $N_G(S^P \cap N)$ avoids H/K. iii). If $N \subseteq C_G(H/K)$, $N_G(S^P \cap N)$ covers H/K.

Proof. i). Suppose $N_{G}(S^{P})$ does not avoid H/K. Then in G/K, $N_{G/K}(S^{P}K/K)$ does not avoid H/K. Hence we may assume K = <1>. Let $h \in H \cap N_{G}(S^{P})$, then $S^{P} \subseteq C_{G}(h)$. Let $H_{1} = [h,G]$ and P a Sylow p-subgroup of G. Then $H_{1} \triangleleft G$ and $H_{1} = [h,P] \subset H$. Therefore $H_{1} = <1>$ and $h \in Z(G)$. Hence $<h> = H \subseteq Z(G)$. ii). Suppose $N_{G}(S^{P} \cap N)$ does not avoid H/K. Again we may suppose K = <1>. If $H \cap N = <1>$, then [H,N] = <1> and $N \subseteq C_{G}(H)$. Suppose $H \subseteq N$. Then $H \cap N_{N}(S^{P} \cap N) \neq <1>$, and so $N_{N}(S^{P} \cap N)$ does not avoid some p-chief factor of N below H. By i), this chief factor is central in N, and by Proposition 2.2 (with $\Im(P) = \{<1>\}$), $N \subseteq C_{G}(H)$. iii). Suppose $N \subseteq C_{G}(H/K)$.. Let $G_{1} = HN$. Then $N_{G}(S^{P} \cap N) \supseteq$ $N_{G_{1}}(S^{P} \cap G_{1})$, and $H/K \subseteq Z(G_{1}/K) \subseteq N_{G_{1}}/K((S^{P} \cap G_{1})K/K) =$

 $N_{G_1}(S^P \cap G_1)K/K$. Therefore $H \subseteq N_{G_1}(S^P \cap G_1)K \subseteq N_{G_1}(S^P \cap N)K$ $\subseteq N_G(S^P \cap N)K$. Theorem B [5, 7.9, p. 699]. a). If $U \subseteq G$ and F is an \Im projector of G with $F \subseteq U$, then F is an \Im projector of U.

b). If $N \triangleleft G$ and F is an \Im projector of G, then FN/N is an \Im projector of G/N.

c). If F_1/N is an \Im projector of G/N and F is an \Im projector of F_1 , then F is an \Im projector of G.

Theorem C [5, 7.10-b, p. 700]. Every solvable group G possesses 3 projectors, and all 3 projectors of G are conjugate in G.

The following theorem is contained in the proof of [5, 7.11, p. 701]:

Theorem D. Let G be a $\pi(\mathfrak{Z})$ group. If F is an \mathfrak{Z} projector of G and $F \subseteq U \subseteq G$, then $N_G(U) = U$. In particular, F is self normalizing in G.

Theorem E [5, 7.15, p. 703]. If G_{3} is abelian, then the 3 projectors of G are precisely the complements of G_{3} in G. The following theorem is contained in the proof of [1,

4.1, p. 185]:

Theorem F. Let Σ be a set of Sylow p-complements of G and D(Σ) an \Im normalizer of G. Then D(Σ) $\in \Im$.

