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ABSTRACT

FORMATIONS AND RELATIVE
S NORMALIZERS

By

John David Gillam

In this thesis, G denotes a finite solvable group; J is
a formation locally defined by {J(p)} with S(p) € § for all
primes p, and w(3) = {p: J(p) ¥ ¢}.

Definition. Let N 4 G. A p-chief factor H/K of G
is N-3 central if N/(‘.N(H/K) € 3(p), and is N-§ eccentric
otherwise.

Definition. Let Sp be a Sylow p-complement of G, N <4 G,
and Cp(N) the intersection of the centralizers of the J§ central
p-chief factors of N. Let X(SP,N) = N, 6P n c,M)) if 3 #g,
and Xx(sP,N) =sP if §(p) = 9. Let T be a set of Sylow p-
complements of G. A relative § normalizer (with respect to N)
is the subgroup DNOZ) = ﬂ{X(Sp,N): sP ¢ r}. Also let
T, =n{xEPN): sPexs and pen@®l.

The following statements are the main results obtained in
this thesis.

Theorem. DN(Z) covers N-J central chief factors of G
and avoids N-J eccentric chief factors of G. TN ) avoids
N-3 eccentric mn(J)-chief factors of G and covers all other

chief factors of G.
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Theorem. If © 1is an epimorphism of G, then
(Dy (£))8 = Dy (20) and (T (£))0 = Ty, (£0).

Theorem. let N qG. Then N € J if and only if N is
a n(3) group and all uw(})-chief factors of G are N-J§ central.
Hence if ¥ is a set of Sylow p-complements of G, N € § 1if and
only if N is a w(3) group and 'I:N(z) = G.

Theorem. Let N be a normal n(j) subgroup of G. If
lt'l3 is complemented in N by an § projector of N, then N3
is complemented in G. Furthermore all complements of N3 in
G are conjugate and are precisely the various TN @).

Example. Let G be a solvable Frobenius group with
Frobenius Kernel K. Then K is complemented in any solvable
extension of G, and all such compleﬁaents are conjugate.

Theorem. let N 4 G; then N € J if and only if N is
a m(3y) group and N3(G)/2(@G) € 3.

Corollary. let D, M9 G with M a n(j) group and
Dc $G). If M/D €3, then M€ 3.

Theorem. Let N4 G. Then N € § if and only if N is
a mw(3) group and all w(})-chief factors of G between §(G)
and Fit(G) are N-J central.

Theorem. Let N4 G. Then N € § if and only if N is
a m(3) group and for p € n(3) with J(p) = §

M N N/Core(M)NN € J(p) for all p-maximal subgroups M of G.

Example. let NG and w a set of primes. Then N
is p-nilpotent for all p € nm if and only if M N N < Core(M)

for all m-maximal subgroups M of G.
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Theorem. Let T be a set of Sylow p-complements of G.

Then D = DGCZ) is an § projector of NGCZ n Gs).

Corollary. Let T be a set of Sylow p-complements of G.
Then DG(z) is an § projector and an J§ normalizer of

N, (Z A Gs). If G ¢ 3, then D,E)CN,(ENG and

)
3
G = <NG(Z N Gs)g: g € G>. Hence every finite solvable group is
generated by subgroups in which & projectors coincide with §

normalizers.
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Chapter 1

All groups in this thesis are finite and solvable. Unless
otherwise indicated, G will denote an arbitrary finite solvable
group. A chief series of G 1is a G-composition series. A chief
factor of G 1is a composition factor of some chief series of G.

If w 1is a set of primes, a mr-chief factor of G is a chief factor
whose order is a power of some prime belonging to m; a w-maximal
subgroup of G 1is a maximal subgroup whose index in G 1is a

power of some prime belonging to w. If H/K is a chief factor

of G and M 1is a subgroup of G, then

CM(%) = {m € M: th = hk for all h € H}; M complements H if

K
G=HM and HN M =K. A subgroup M of G covers a subgroup
% of % if AS MB (equivalently, A= (M N A)B); M avoids %

if MNACB. A subgroup M of G 1is a cover-avoid subgroup
if M covers or avoids every chief factor of G. Let
T = {SP: P |o(C)] be a set of Sylow p-complements of G. If M
is a subgroup of G, ¥ 1is reducible to M if sP A M is a Sylow
p-complement of M for all Sp € £. Throughout, the intersection
of a vacuous collection of subgroups of G will be interpreted
as G.

A formation J 1is a class of groups such that:
1). 1f G € §, then every epimorphic image of G is in §.

2). If G/N; and G/N, are in 3, then G/N,N, € J.



A non-empty formation & is saturated if G/$(G) in J implies
GEYJ. 1f 3 # ¢, the § residual of G 1is the unique minimal
normal subgroup G, such that G/G, € §. Note that if @ is an

3 3
epimorphism of G, (Gs)e = (GG)S. A subgroup F of a group G
is an § projector of G if F € J, and whenever F € U <€ G,
U = USF. Let J(p) be a formation for each prime p. We define

% by the following conditions: G € § if:

1). If () = ¢s P r o(G).

2). 1If J(p) ¥ ¢ and H/K is a p-chief factor of G, then

G/c, M/K) € 3(p).

If § is defined as above, we say § 1is locally defined by
{3(p)}. Gaschiitz and Lubeseder have shown [5; 7.5, 7.25 pp. 697,
7157 that a formation § of solvable groups is saturated if and
only if § can be locally defined. Carter and Hawkes [1, p. 177]
have shown that every saturated formation § can be locally
defined by {3(p)} with 3J(p) € § for all primes p. Throughout,
3 will denote a formation locally defined by J(p) with SJ(p) < J.
We denote by m(3) the set of primes {p: J(p) # ¢}.

The following three propositions are part of the folklore
of finite solvable groups; however, the exact statements and
proofs do not seem to appear in the literature.

Proposition 1.1. Let H/K be a chief factor of G and
MS G such that M covers H/K and G/CG(H/K). Then HNM/KNM
is a chief factor of M, CM(l-hM/mM) =MnN CG(%)’ and
G/C, M/K) = M/Cy, (HAM/RNM) .

Proof. Since H = (HM)K, HNM/KNM # <1>. Suppose

KIMe LcC HN\'M, where L 18 M invariant. Since G = CG(%)M,



LKg4G. If 1K =H, then L = L(MXK) = MNIK = MM\H. Therefore
LK =K and L = KWM. Clearly M N CG(H/K) c CM(HnM/KnM), and
since H = (HNM)K, we have equality. The last assertion is now
clear.
Proposition 1.2, Suppose M 1is a cover-avoid subgroup
of G and O 1is an epimorphism of G. Then MO is a cover-
avoid subgroup of G§. If M is such that M covers a chief
factor H/K of G if and only if M covers every chief factor
G-isomorphic to H/K, and H/K 1is a chief factor of G with
HO # K§, then MO covers HO/K® if and only if M covers H/K.
Proof. Let N = Ker(f) and H/N/K/N a chief factor of
G/N. If M avoids H/K, then MN/N N H/N = MNNH/N = (MNH)N/N
S K/N. If M covers %, HS KM S KIMN), and so MN/N covers
H/N/K/N. Assume the additional hypothesis on M, and let H/K
be a chief factor of G with HN ¥ KN. Then HN/KN is G-
isomorphic to H/K. Hence M covers H/K if and only if M
covers HN/KN, if and only if MN/N covers HN/N/KN/N.
Proposition 1.3. let © be an epimorphism of G, N a
normal subgroup of G, and H/K a chief factor of G such that
He # K8. Then (Cy(H/K))® = cNe(He/Ke), and N/C (H/K) = NG/CNG(HB/KG).
Proof. Let M = Ker(9). Since HM # KM, M does not cover
H/K. Hence (HM)K is a normal subgroup of G contained properly
in H. Therefore (HNM)K =K. Since [H,M] SHNM, M < CG(H/K).
Clearly CN(H/K)M/M < CNM/M(HM/M/KM/M). let C be the pre-image
of cNe(He/Ke). Then [C,H) S KM N H = KMH) = K, and so
C S Cyy®M/K) = C,(H/K) N NM = G (H/K)M. Hence (cy @/K))0
= Cyg(HO/K8). Also N/c G/K) = N/ QM) € (|/K) = NM/Cy (H/K)M
= Ne/ (g /K))e = N©/Cyq (HO/KO) .



Chapter I1I

Definition 2.1. Let N < G. A p-chief factor H/K of
G is N-§ central if N/CN(H/K) € 3(p), and is N-§ eccentric
otherwise. If N =G, we say J central and J eccentric,
respectively.
Carter and Hawkes [1, 2.2, p. 178] have shown that if §
is locally defined by {31(p)} and also by {32(p)}, then
#3,(p) = &3,(p) for all primes p. @3, (p) = {G: G/OP(G) €3,M},
i=1,2.) If NG and H/K is a chief factor of G, then
H/K 1is G-isomorphic to a chief factor HI/KI of G with N €K,
or H; €N, and H/K is N-J central if and only if H,/K, is
N-§ central. Hence to see that Definition 2.1 is independent of
the local formations defining &, we need consider only the chief
factors of G above and below N. Let § be locally defined by
{31(p)} and by {32(p)}. Then J,(P) = ¢ if and only if J,(p) = ¢.
Let 31(p) ¥ ¢ and H/K a p-chief factor of G above or below
N. If N €K, then N/CN(H/K) =<1> € 31(p) n 32(p). If HES N,
then Proposition 2.2 below and the well-known fact [5, 5.17, p.
485] that OP(G) = <1> for any group G possessing a faithful
irreducible representation over a field of characteristic »p
imply that N/G (H/K) € J,(p) if and only if N/C (H/K) € 3,(P).
Proposition 2.2. Let N4 G and H/K a p-chief factor

of G with H S N. Then:



i). H/K 1is N-3§ central if and only if all chief factors of
N between H and K are J§ central (in N).
ii). Chief factors of N between H and K are all J central
or all § eccentric.
iii). (‘.N(H/K) = ﬂ{CN(I;/M): L/M is a chief factor of N between
H and K]}.

Proof. 1i). Suppose H/K is N-§ central. Since
CN(H/K) c CN(L/M) for any chief factor L/M of N, between H
and K, N/CN(L/M) is an epimorphic image of N/CN(H/K). Hence
L/M is 3 central. Conversely, suppose all N chief factors
between H and K are § central. By Clifford's Theorem
(5, 17.3, p. 565], H/K =@ (}i) H,

factors of N. Then QN(H/KO = N CN(“i/K)’ and so
(1)

/K where the H1/K are chief

N/c:N (H/K) € S(p)-

ii) and iii). As in i), let H/K=@® £ H

i
(1)
all conjugate in G, and hence one H,/K is § central if and

/K. The Hi/l( are

only if all Hill( are § central. Also cN(H/K) = (T) C‘N(Hilx)‘
The Jordan-Holder Theorem applied to the N module H/K now
yields both ii) and iii).

The following definition is due to Carter and Hawkes
(1, p. 182]:

Definition 2.3. If S§(p) # ¢, let cp(c) =n{cG(H/K): H/K
is an § central p-chief factor of G].

We note that CP(G) is a characteristic subgroup of G
such that G/CP(G) € 3(p); hence G3(P) < CP(G)'

Proposition 2.4. Let N 4G and §(p) # ¢. Then

CP(N) =NN ﬂ[CG(H/K): H/K 1is an N-3 central p-chief factor of G}.



Proof. Let <]>.H°CH C...CHS'NC...CH':“G be

1
a chief series of G. (If N =<1> or G, the result is trivial.)
Refining <1> = H C Hl C...C Hs = N to a chief series of N, we

/8y

is an N-3 central p-chief factor}. Since N centralizes any

see from 2.2 that CP(N) = ”[Qu(“i-u/“i)‘ 0<is<s-1 and H

chief factor above N, C () = N{Cy®,,,/H): 0 <1i<t-1 and
H;,,/H, 1is an N-3 central p-chief factor}. The desired con-
clusion now follows from the Jordan-Holder Theorem.

Definition 2.5. Let SP be a Sylow p-complement of G
and N a normal subgroup of G. Let X(SP,N) = NG(SP n Cp(N))
if S(p) # ¢ and X(SP,N) =sP if J(P) = ¢. Let T be a set
of Sylow p-complements of G. A relative § normalizer (with
respect to N) is the subgroup DN(E) = n{x(sP,N): sP € zl}.
Also let T, () =n{x@sP,N): sPeg and pen@].

We note that the various DN(}:) form a conjugate class of
subgroups of G, and the same is true for the various 'TN(z).

If N =G, we write D) in place of DG(}:).

Proposition 2.6. Let S(p) # ¢, N 4 G, and sP a Sylow
p-complement of G. Then x(sp,N) covers the N-J central
p-chief factors of G and avoids the N-J eccentric p-chief
factors of G.

Proof. Since CP(N) 4G, NG(SP n CP(N)) is a cover-avoid
subgroup which covers the p-chief factor H/K if and only if
CP(N) c CG(H/K) (Appendix, Theorem A). Every chief factor of
G 1is G-isomorphic to a chief factor above or below N. Hence
it is sufficient to prove the statement for chief factors above

and below N. If H/K 1is a p-chief factor with K 2 N,



N/CN(H/K) = <1> € §(p); i.e. H/K is N-§ central. Since

Cp(N) SNE CG(H/K), NG(SP n CP(N)) covers H/K. Suppose H/K

is a p-chief factor of G with H S N. Then NG(SP n CPGN))
covers H/K 1if and only if cp(u) < CN(H/K). 1f cp(u) < CN(H/K),
H/K is N-3 central since u/cp(N) € §(p). If H/K is N-§
central, 2.2 implies CP(N) < CN(H/K)' Hence NG(SP n Cp(N))
covers the p-chief factor H/K 1if and only if H/K 1is N-§

central.
Corollary 2.6.1. With the same hypothesis as Proposition
P P
2.6, N_(S c =N (S N .
P Ng(67 0 c @) = N (57N Ny (1)

Proof. Since Ns(p) <4 G and Ns(p) < cp(N),

NG(SP N CP(N)) < NG(SP NN Each subgroup clearly covers

3’

all q-chief fact £ G with q# p, and N_(SP N N_.
q-chie ctors o W q ¥ p, an G( n S(p))

€ C (®/K), if and

covers
the p-chief factor H/K if and only if Ns(p)
only if H/K 1is N-J central. Hence the two subgroups have the
same order and are equal.

If J =7, the formation of nilpotent groups, then
3 = {3(p)} where §(p) = {<1>} for all primes p. Hence if

N 4G, then N =N. By 2.6.1 D () = n{uc(sp N N):

®)
plo@) and S:I;S € £} is the relative system normalizer as de-
fined by P. Hall in [3].
Proposition 2.7. let N4G, & = {Sp: plo@G)} a set of
Sylow p-complements of G, and m a set of primes. Then

S = ﬂ{X(SP,N): Sp €L and p € m} avoids N-J eccentric m-chief

factors of G, and covers all other chief factors of G.



Proof. If J(p) =¢ with p € m, S « X(8P,N) = sP, which
avoids all p-chief factors of G. (If J(p) = ¢, all p-chief
factors are N-3 eccentric.) If J(p) #¢ and p € m,

s c X(SP,N), which avoids all N-J eccentric p-chief factors

by 2.6. Therefore S avoids all N-§ eccentric m-chief factors.
Since [G: X(SP,N)] is a power of p and equals the product

of the orders of the N-§ eccentric p-chief factors in a given
chief series of G, [G:8] = n{(G: X(SP,N)j: p € n} equals the
product of the orders of the N-J eccentric m-chief factors in

a given chief series of G. By considering the order of S, we
see that S must cover all other chief factors of G.

Corollary 2.7.1. let N4 G and T a set of Sylow p-
complements of G. Then DN()?.) covers N-3 central chief factors
of G and avoids N-J eccentric chief factors of G. TN(Z)
avoids all N-§ eccentric w(J)-chief factors of G and covers
all other chief factors of G.

Proof. 1In Proposition 2.7, let 1w be the set of all
primes and m(J), respectively.

Proposition 2.8. lLet N4 G and © an epimorphism of
G. Then an N-J central (N-§ eccentric) chief factor of G
maps to an NO-J central (N©-3 eccentric) chief factor of Go
or <1>. Conversely, any N©6-3 central (NO-§ eccentric) chief
factor of GO is the image of an N-§ central (N-§ eccentric)
chief factor of G.

Proof. Both statements follow immediately from 1.3.

Proposition 2.9. let N4 G, L = {SP: p‘o(G)} a set of

Sylow p-complements of G, m a set of primes, and @ an



epimorphism of G. Then (n{x(sp,n): sP ¢y and p € nhe
= n{x(sPe,N0): sP € £ and p € n}.

Proof. Let S =n{X(S",N): SPex and pen} and
s; =n{x(Po,Ne): sP ez and penm). If pem and 3(p) =4,
then o c X(sP,N)0 = sPo = x(sPe,Ng). If pen and J(p) # ¢,
)8). Since

then So € X(sP,N)o = NG(sp AN Jes NGe((Sp AN

() S(p)

4 G, Sp AN is a Sylow p-complement of N3(P)' Hence

Ney (p) 3(p)
P = oP
P N Ny y)0 = sPon @

P
se < NGB(S e N e

= P
3(p))e sTenNn (Ne)s(p). Therefore

) = x(sPg,Ng), and Sg £ S,. But by 1.2,

1.
cover and avoid the same chief factors

I
2.7, and 2.8, Sp and S

1
of GO. Hence S¢ = Sl'

Corollary 2.9.1. lLet N4 G, ¥ a set of Sylow p-complements
of G, and © an epimorphism of G. Then (DN(Z))O -DNe()ZB)
and (T (£))® = Ty (£0) where o = {sPo: s° ¢ z}.

Proof. 1In Proposition 2.9, let w be the set of all
primes and m(%), respectively.

The cover-avoidance property of 2.7.1 does not in general
characterize DN €). If N=g and J is the formation of
nilpotent groups, T.0. Hawkes has given an example [5, 11.12,
pP. 730] of a group G and a subgroup S of G with the cover-
avoidance property, but S is not a system normalizer of G.

Proposition 2.10. Let N4 G and M S G such that M
covers all q-chief factors of G with q # p, all N-§ central
p-chief factors of G, and avoids all N-§ eccentric p-chief

factors of G. Then M contains a Sylow p-complement of G,

and if sP? 1is any such Sylow p-complement, then M = X(SP,N).
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Proof. It is clear that M contains a Sylow p-complement
of G. If G has no N-§ central p-chief factors, M is a
Sylow p-complement of G, and so the statement is true in this
case. Assume H/K 1is an N-3 central p-chief factor of G.
Since N/N1CG(H/K) € 3(p), any p-chief factor above CG(H/K)
is N-3 central. By hypothesis, M covers H/K and G/CG(H/K).
Hence by 1.1, NM/KNM is a p-chief factor of M and
MN CG(H/K) = cM(mM/mM). Intersecting the terms of a chief
series of G with M, we obtain
MN ﬂ{CG(H/K): H/K 1is an N-§ central p-chief factor of G}
= N{Cy,(MM/KNM): H/K 1is an N-J central p-chief factor of G
= n{CM(A/B: A/B 1is a p-chief factor of M}
= op,p(M) (5, 5.4, p. 686]. Now let SP be a Sylow p-complement
of G contained in M. Then MG NG(Sp n Op.p(M))
cN6Pno, N =N EPaMnc M) Gy 2.4) =xEPN).
Since M and X(SP,N) have the same order, M = X(sP,N).
Corollary 2.10.1. Suppose DN(E), a relative § normalizer
of G, has index a power of p in G. Then if M is any sub-
group of G which covers N-J central chief factors and avoids
N-3 eccentric chief factors, M 1is a relative & normalizer.
Proof. Since DN () has index a power of p in G,
DN(z) = x(Sp,N) where sP € L. By 2.7.1, all q-chief factors
of G, q # p, are N-§ central. Proposition 2.10 now implies
the statement.
Proposition 2.11. Let G be a group such that § nor-
malizers coincide with § projectors. Then if M is any sub-

group which covers J central chief factors and avoids §
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eccentric chief factors, M is an § normalizer of G.

Proof. Induct on o0(G) and let A be a minimal normal
subgroup of G. By 1.2 and 2.8, MA/A has the same cover-avoid
property in G/A. Also by 2.9.1 and Theorem B, Y projectors of
G/A coincide with § normalizers of G/A. Hence MA/A = FA/A
where F 1is an J projector of G. Suppose A is § central.
Then M2 A, F2A, and F =M. If A 1is J eccentric, F is
an ] projector of FA and F N A =<1>. Hence (F'A)3 = A,
and since A 1is abelian, F is conjugate to M in FA.
(Theorem E.) Therefore M is an § projector of G.

Proposition 2.12. Let N4 G. Then N € § if and only
if N is a w(3) group and all m(§)-chief factors of G are
N-3 central. Hence if T is a set of Sylow p-complements of
G, N€J 1if and only if N 1is a w(}) group and TN(E) = G.

Proof. Suppose N € J; then N 1is a w(Y) group. By
2.2, all chief factors of G below N are N-J central, and
clearly all mw(J)-chief factors above N are N-§ central.
Conversely, suppose N is a m(J) group and all m(})-chief
factors of G are N-§ central. Again by 2.2, all chief
factors of N are J§ central. Therefore N € §. The second
statement now follows readily from 2.7.1.

Corollary 2.12.1. Let N4 G and § a set of Sylow
p-complements of G. Then G = TN(Z)NS'
Proof. TN(E)NS/NS = Ty/n ():Nslns) = G/Nso
Proposition 2.13. Let ¢ = {Sp: p‘o(G)} be a set of Sylow

P

p-complements of G, and for each Sp €L, let sP ¢ T <G.

Then ¥ reduces to T = n{Tp: p‘o(G)}. In particular, ¥ reduces
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to DN():).

Proof. Let SP € ¥; then [T: sPn T] = (1P Sp], a power of
p. Hence X reduces to T. The second statement follows since
x(P,N) 2 sP for all primes p.

Proposition 2.14. Let ¥ be a set of Sylow p-complements
of G. If D@E)EM : G and T reduces to M, then
DE) €DE NM.

Proof. If J(p) = ¢, D(x) s SPnM for sPesx. 1f
() # ¢, let H/K be an 9§ central p-chief factor of G. Then
c/cG(u/x) € Y(p) €J. Since D(Z) € M, M covers c/cG(H/x) and
H/K. By 1.1, H\M/KNM is an § central p-chief factor of M,
and CM(WWM/HWH) =MnN CG(H/K). Therefore Cp(’M) SMN CP(G).
Since D(Z) S M, D(X) normalizes Cp(M) and sPn CP(G)’ where
sP ¢ ¥. Therefore D(X) € NM(Sp n cp(M)), and so D) EDEC N M.

The following proposition was proved by T.0. Hawkes [4, 3.3,
P. 244] in the case that Y 2 7, the formation of nilpotent groups.
Trivial modifications can easily be given to include the case
3 @ N; however, for completeness we give an alternate proof.

Proposition 2.15. Let D(Z) be an § normalizer of G.
Then there exists an 3 projector F of G such that D(£) € F
and ¥ reduces to F.

Proof. We may suppose G ¢ §. Let A be minimal normal
in G. Then by induction D(£)A/A = D(ZA/A) < Fl/A where FI/A
is an § projector of G/A and FA/A reduces to FI/A' Suppose
o(A) is a power of p. If q ¥ p and s e L, AC s9 and
(F,: s%n F,] = [F,/A: s%/a n F,/A], a power of q. For sP ¢ 5,

(Fy: PN r ] =(F: sPan P 0P n FA: SP 0 F ], a power of .
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Hence ¥ reduces to Fys and by 2.14 D) =« D N Fl)’ If
l“1 < G, by induction D(E N Fl) S F where F is an § pro-
jector of Fl and TN F1 reduces to F. Hence T reduces to
F, F is an § projector of G (Theorem B), and D(Z) & F.
Supéose F, =G. Since G ¢3 and G/A € §, every complement
of A in G 1is an J projector of G (Theorem E). But
G =AD(E) and A is J eccentric. Hence D(Z) N A =<1>
and D(f) 1is an J projector of G. T reduces to D(T) by
2.13.

Proposition 2.16. Suppose G

3

an § projector of G. Then J projectors of G coincide with

is complemented in G by

3 normalizers of G, and all complements of G, in G are

3

conjugate in G.

Proof. Suppose G = GsF. FN G3

projector of G. Let DS F be an § normalizer of G; then

=<]>, and F is an

G = GSD and D =F. Now suppose H 1is a complement of G3

in G. Let Ac(_";S be minimal normal in G. (If GS-<1>,

the statement is trivial.) Then HA/A complements G, /A in

3

G/A. By induction, HA = FA where F is an § projector of
G. If A is 3§ central, ACF and so HE F. Therefore

H =F since both are complements of G in G. Suppose A

3

is § eccentric, then as in the proof of 2.11, (FA)3 = A and
F 1is conjugate to H.
Proposition 2.17. Let N be a normal m(}) subgroup of

G. If N
3

is complemented in N by an 3§ projector of N,

then N, 18 complemented in G. Furthermore all complements of

3

N in G are conjugate and are precisely the various TN():).

R
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Proof. By 2.12.1, G = TN(E)N where ¥ 1is a set of

3

Sylow p-complements of G. Now DN(Z) n Ns 3

since N is a normal m(3§) subgroup, N € sP for a11 sP e

GTN(Z) N N., but

such that p € n(3)'. Therefore NN Ty(E) € D () and

TN(F_‘.) NN, = DN(}:) AN_=DE NN)NN_ =<1> by hypothesis

3 3 3

and 2.16. If H 1is a complement of N_. in G, N=N_(HN N),

3 3
and HN N 1is an § projector of N by 2.16. Clearly

N,(HNN) 2 H, and 50 N, (HNN) =HN HNN) =HEHN N)
(Theorem D) = H. Hence if Hl and HZ are complements of

N3 in G, Hl = NG(H1 N N) 1is conjugate to H2 = NG(H2 N N).

Since TN (Z) 1is a complement of N_ 1in G, and the various

TN () form a conjugate class, the ?tatemenc is proved.

Corollary 2.17.1. Let N4 G. 1If NS is an abelian
m(3) group, the conclusions of Proposition 2.17 hold.

Proof. Theorem E states that N3 is complemented in
N by an § projector of N.

Example 2.17.2. Let G be a solvable Frobenius group
with Frobenius Kernel K. Then K is complemented in any
solvable extension of G, and all such complements are conjugate.

Proof. Let w = {p: plo(K)} and § the saturated forma-
tion of groups which are p-nilpotent for all p€n. J Iis
locally defined by: J(p) = {<1>} 1if p€mn and J(p) = 9§ if
p ¢ n. Hence w(x) is the set of all primes. We now show that

if H 1is any solvable Frobenius group, and the Frobenius Kernel

L of H is a w Hall subgroup of H, then H_ = L. Since H/L

3
is a w' group, HS S L. 1If 1(1/1(2 is any chief factor of H
S =1, = L.
with K, €L, then c“(xllxz) L. Hence HS L. Now let M
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be a complement of K in G. We show that M 1is an J pro-
jector of G. M€ J since M 1is a n' group. Suppose MC U;
then U = (KN U)M, a solvable Frobenius group with kernel KN U.
Therefore IJ3 = KNU) and U = Usu. Proposition 2.17 now implies

the conclusion.

Proposition 2.18. Let N 4 G; then N € 3 if and only if
N is a mw(y) group and NE(G)/8(G) € 3.

Proof. Suppose N 1is a m(J) group and N2(G)/¢(G) € §.
Let T be a set of Sylow p-complements of G. Then

TN(ZZ)Q(G)/NG) = )(ZQ(G)/Q(G)) = G/$(G). Therefore

T™Ne ) /26
TN():)Q(G) = G, and so TN(z) = G. By 2.12, N € §. The converse
is clear.

The following corollary is due to Gaschiitz [5, 3.5, p. 270]
in the case that J§ = 71;_ furthermore, the solvability of G 1is
not necessary in Gaschiitz result. The case § the formation of
supersolvable groups, for example, does not seem to appear in the
literature.

Corollary 2.18.1. let D,Ma4G with M a n(%) group
and D& $(G). If M/D €S, then M€ .

Proof. Suppose M/D € §. Then M&(G)/&(G) = M2(G)/D2(G)
“M/DMEEG)) € 3. Hence M € § by 2.18.

Corollary 2.18.2. Suppose J 27, and § is normal sub-
group closed. If 3* is any non-empty formation,

:}3* ={G:I K<aG with K€Y and G/K € 3*} is a saturated
formation.

Proof. Since J is normal subgroup closed, G € Sﬂ* if

*
and only if G , € 3. Let GE€JY and N aG; (G/N) ,
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=G N/N€3Q. If c;/N1 and G/N2 € 33*, G *Ni/Ni €9, i =1,2.

Hence (G/NN)) , =G , 0N, N N2)M1 NN, =6 */(Nl N NG , €3
3 J 3
If G/8(G) € 33, then G ,8(G)/8(G) € 3. By 2.18, G , € 3.
3

Proposition 2.19. let N4 G. Then N € J if and only
if N is a w(}) group and all w(})-chief factors of G be-
tween $(G) and Fit(G) are N-J central.

Proof. Assume the criteria. By 2.8 and 2.18, we may
assume &(G) = <1>. Fit(G) 1is a completely reducible G-module
(5, 4.5, p. 279], say Fit(G) -@z{ﬂiz 1l < i <n} where the H,
are minimal normal subgroups of G. We may suppose

@z{H, :

{ l1<i<s};s21, is 2 n(y group and @z{ﬂi: s+l < i < n}

is a n(})' group, for if N = <1>, there is nothing to prove.
By hypothesis, N/CN (H,) €3(P) €3 for 1<1i<s and appropriate
primes p. Therefore N/n{CN(Hi): 1<i<s}€y. Since N is
a normal mw(Y) group, N centralizes &E{Hi: s+l < i € n}. Hence
n{cN(Hi): l<siss}eNN CG(Fit(G)) = NN Fit(G), and so
N/N N Fit(G) € §. Let H/K be a n.(s)-chief factor above Fit(G).
If HNN=KNN, N< CG('H/K) and H/K is N-§ central. If
HNN#KNN, H/K is G-isomorphic to HN N/KN N. By 2.2, H/K
is N-3 central if and 6n1y i1f every chief factor of N between
KNAN and HNN is J central. Since KN N22Fit(G) N N
and N/NN Fit(G) € §, H/K 1is N-§ central. Therefore all
m(})-chief factors of G are N-J central, and N € § by 2.12.
Also the converse is clear by 2.12.

Definition 2.20. Let N 4 G. A p-maximal subgroup M of
G is N-3 normal if M N N/CoreM) N N € §(p), and is N-§

abnormal otherwise.
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Proposition 2.21. Let N4G and M a p-maximal subgroup
of G. Then M is N-§ normal if and only if M complements an
N-§ central p-chief factor of G.

Proof. Suppose M is N-3 normal; then S(p) # ¢. Let
K = Core(M). Then G/K has a unique minimal normal subgroup H/K,
Co(H/K) = H, and M complements H/K (5, 3.2, p. 159]. 1If
NNHEM, NONHESK, and H/K is N-J central. Suppose
NNHEM, then G= (NN HM and N = (NN HYMN N). Therefore
N/CN(H/K) =NNANH“MNNMNHNN=MAONN/KNANE J(p). Suppose
M complements the N-§ central p-chief factor H/K. Let
C = C,(/K). Then Core() =CNM and C=H(CN M). Hence
c/cN M is G-isomorphic to H/K, and M complements C/C N M.
Therefore we may suppose CG(H/K) =H and K = Core(M). 1If
NNHESM then NN HESK, and s0 N & CG('H/K) = H. Therefore
N=NNHSEM and M N/Core(M) N N =<1>€ §(). (3(p) ¥ ¢
since H/K is N-3 central.) If NN H&M, G= (NN HM and
N=NNHMNONN). Hence MN NKNNSZ=N/NNH =N/CN(H/K) € 3(p) -

Proposition 2.22. let Nd4G. Then N € J if and only
if N is a m(}) group and for p € n(Y) with J(p) € § all
p-maximal subgroups of G are N-J normal.

Proof. Assume the criteria and induct on o0(G). We may
assume N # <1>. Let A be a minimal normal subgroup of G
contained in N. By 2.8, 2.21, and the induction hypothesis,

N/A € §. Then N, & A. Suppose N

3 3

factor of G. By 2.17.1, TN(E) is a p-maximal subgroup of G

= A and A is a p-chief

complementing A, where Y 1is a set of Sylow p-complements of G.

If Y)Y, TN(Z) is N-§ normal by hypothesis. If J(p) = 3,
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TN(E) NN=D@ENN) € (Theorem F). Hence, in any case TN(z)
is N-3 normal. By 2.21, A is an N-§ central m(J)-chief
factor. But AN TN(X) = <]1>, a contradiction to 2.7.1. Hence
N3 =<1> and N € J. Conversely, if N € J, all m(3)-chief
factors of G are N-J central. Hence all m(%)-maximal sub-
groups of G are N-J normal by 2.21.

Example 2.22.1. let N 4G and 7w a set of primes. Then
N 1is p-nilpotent for all p € m if and only if NN M & Core(M)
for all m-maximal subgroups M of G.

Proof. Let & be the formation of groups which are p-
nilpotent for all p € n. Using the local definition of
given in 2.17.2, we obtain the statement as an immediate consequence
of 2.22.

Proposition 2.23. Let T be a set of Sylow p-complements

).
3
B. Fischer has defined 3 normalizers of G to be §

of G. Then D =D(Z) is an J projector of NG(EOG

projectors of NG(Zn G,) in the case that =27 (2, 8.4, p. 63].

3

Proof. First note that D & NG(Z n GS): “If §(p) = ¢,

P P, . P
SN, (57N GS) for 7 € z; if J(p) ¥4, N (ST N GS(P))

3) since GSC Gs(p).

A be minimal normal in G. Then DA/A is an § projector of

SP

s NG(SP ne Now induct on o0(G) and let

P
NG/AOJA/A n GSA/A). But N (N GS)A/A SN /(67 N GS)A/A)
= N, /A(SPA/A n GsA/A) for all SP ¢ . Therefore DA/A 1is an

§ projector of NG(ZQG JA/A. 1f A is § central, then

3

D2A, and D is an J§ projector of NG(Z N G.) by Theorems

R

) avoids A, and the natural

3
JA/A to NG(zn G

B and F. 1If G3 ¢ CG(A). NG(): neG

isomorphism from NG(Z:n G ) maps DA/A onto

3 3
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D since D& NG(Z'. N G,). Hence we may assume A 1is § eccentric

3

and G, & CG(A). Therefore G = CG(A)D, and so A is minimal

3
normal in AD. Now G/CG(A) < AD/CAD(A) ¢ 3(p), but AD/A =D E Q.

Hence D is an § projector of AD. Again by Theorem B, we
conclude that D 1is an § projector of NG(Z n Gs).

Corollary 2.23.1. Let T be a set of Sylow p-complements
of G. Then D(Ef) is an J§ projector and an § normalizer of
N, (N G3)° 1f 6 ¢ 3, D(T) N.(Z N GS) and

G = <NG(E N 6E: g € G>. Hence every finite solvable group is

3

generated by subgroups in which § projectors coincide with J

normalizers.

).

Proof. By 2.23, D(X) is an § projector of NG(E n G3

By 2.13 £ reduces to NG(Zﬂ G.), and by 2.14 D(T)

3
SDEN NG(}: n Gs)). But since D(Z) 1is a maximal J subgroup,

we must have equality (Theorem F). Now if D(L) covers the p-

chief factor H/K of G, G, S G c CG(H/K), and so

3 3P

N;(E N Gy) covers H/K. 1f G ¢ J, <I>c G, and D(Z) avoids

3 R
Gslcéo Hence o(D(Z)) < oM (z N GS))' If N,CEN GS) is con-

tained in a proper normal subgroup M of G, we may suppose M

is maximal normal. But G3 €6 = CG(G/M), and so

G = MNG(Z n GS) = M, a contradiction, Hence G = <NG(}3 neG )g:

J
g € G>.

Corollary 2.23.2. let F be an § projector of G. Then
F is an § normalizer of G 1if and only if F normalizes a

Sylow p-complement of G, for all primes p.

3

Proof. Suppose F =D(Z); them F & NG(Z N G.). Conversely,

3

if Fea NG(Z N G,) for a set ¥ of Sylow p-complements, then F

3
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) and so is conjugate to D(T).

J
Proposition 2.24. let N1< 3. If G =NF, N4G, F4QG,

is an § projector of NG(E neG

N€E€EN and F €J, then G € J.

Proof. Induct on o(G). The hypothesis is preserved under
epimorphic images. Hence there exists a unique minimal normal
subgroup A and G/A€ 3. If G€ 3, A is complemented in G
by Theorem E. Hence A is self-centralizing. Since A &N,
ASZ(N) and s\o A=N. (N ¥ <> since G ¢ §.) Therefore
FAN=N and G=F€J,or FANN=<I> and G =N € J.

Proposition 2.25. Let 7N & J. Suppose G = AB = AC = BC
with A,B abelian subgroups of G and C € J, then G € J.

Proof. Induct on o0(G). The hypothesis is preserved under
epimorphic images; hence without loss of generality, there exists
a unique minimal normal subgroup M of G and G/M € §. 1If
G €3, M is complemented in G and is thus self-centralizing.
Since G = AB with A,B abelian, Core(A) ¥ <1> or Core(B) ¥ <1>
(7, 13.3.3, p. 384]. Hence we may suppose M & A. Therefore
M=A= Gs. If B and C are both proper subgroups of G, they
are complements of M = GS. Hence B 1is conjugate to C ('fheorem
E), but G = BC, a contradiction. Therefore G =B or G = C.

In either case, G € J.

0.H. Kegel proved the following proposition in [6] for the
case 3 the formation of supersolvable groups. The proof given
here is very similar to Kegel's proof.

Proposition 2.26. Llet 7N & J. Suppose G = AB = AC = BC

with A,B € 7, C a Sylow tower group, and C € §. Then G € J.
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Proof. Suppose not, and let G be a counterexample of

minimal order. As in 2.25 G, 1is the unique minimal normal sub-

3

group of G, and G_, 1is self-centralizing. Let p be a prime

3

such that C has a non-trivial normal Sylow p-subgroup. Let
Ap, Bp, and Cp be the normal Sylow p-subgroups of A, B, C,
respectively. Then P = APB =AC = chp is a normal Sylow

| 4 PP

p-subgroup of G (6, 1, p. 43]. Hence G3 & P. Since CG(G

=G, G, = P. Now A B &2(G and sSo A NB =P or
R p N By =260 P P

A B =<I>. 1If A B =P=g(
P n P P n P

3)

s G is an J central chief

J 3
factor, which is impossible. Hence AP n Bp = <1>. Suppose

A =<1>, then B =G_ and so B_ =B =G_. Since A, CCG,
P P 3 P 3

both A and C are complements of B =G By Theorem E, A

8.
is conjugate to C, an impossibility since G = AC. Therefore
Ap ¥ <>, and likewise Bp ¥ <1>. Let K be an A-invariant

complement of Ap in G,. Then there exists an A-invariant

3

subgroup T of G, of index p in G (T can be taken as

3 3
the product of K and a subgroup of index p in Ap.) Suppose

o(BP)ZPZ. Then TnBP"<1> and TanCG But

3.
(T N Bp)G = (T N BP)A STC Gs. Hence o(Bp) = p and likewise
o(Ap) = p, Let Ap, be the complement of Ap in A. Then

c

A (K) = <1>, for otherwise G
L

p 3

Hence AP' is represented faithfully on K, and so AP, is

= APK is not self-centralizing.

cyclic. Therefore A 1is cyclic, and likewise B 1is cyclic.

Hence G € § by 2.25.
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For the convenience of the reader, we state and prove a
well known result of P. Hall, which is contained in Theorem 7.2
of [3].

Theorem A. Let N 4 G, sP a Sylow p-complement of G,
and H/K a p-chief factor of G. Then:
i). if NG(SP) does not avoid H/K, CG(H/K) = G.
11). If N & C,(/K), N.(s® nN) avoids H/X.
i11). If NS C (/K), N,(S° N N) covers H/K.

Proof. 1i). Suppose NG(SP) does not avoid H/K. Then

in G/K, (SPK/K) does not avoid H/K. Hence we may assume

Ne/x
K=<1>. let heHqn NG(s"), then sPcc (). Let H, = [h,6)
and P a Sylow p-subgroup of G. Then H,4G and H, = [h,P] c H.
Therefore Hl = <1> and h € Z(G): Hence <h>=H € Z(G).

ii). Suppose NG(Sp N N) does not avoid H/K. Again we may
suppose K =<1>. If HN N = <1>, then [H,N] =<1> and

NE&S CG(H). Suppose H & N. Then HN NN(SP N N) # <1>, and so
NN(Sp N N) does not avoid some p-chief factor of N below H.

By i), this chief factor is central in N, and by Proposition 2.2

with §(p) = {<1>}), N & Co () -
111). Suppose N & C,(H/K).. lLet G, =HN. Then NG(SP AN) 2

Ng sPn G,), and H/K € Z(G,/K) S N

(s® n 6 K/K) =
1

cllx

N. P N G,)R/K. Therefore HeN. (S°n 6K e N. (sP n MK

G, 1 G, 1 G,

S nc(sp N NK.
23
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Theorem B [5, 7.9, p. 699]. a). If USG and F is
an § projector of G with F < U, then F is an § projector
of U.

b). If N4G and F 1is an J§ projector of G, then FN/N
is an § projector of G/N.

c). If FI/N is an § projector of G/N and F is an §
projector of Fl’ then F is an § projector of G.

Theorem C [5, 7.10-b, p. 700]. Every solvable group G
possesses § projectors, and all § projectors of G are
conjugate in G.

The following theorem is contained in the proof of [5,
7.11, p. 701]:

Theorem D. let G be a n(}) group. If F is an §
projector of G and F & U & G, then NG(U) = . 1In particular,
F 1is self normalizing in G.

Theorem E [5, 7.15, p. 703]. If G, is abelian, then the

3

Y projectors of G are precisely the complements of G3 in G.
The following theorem is contained in the proof of [1,
4.1, p. 185]:
Theorem F. Let Y be a set of Sylow p-complements of G

and D(Z) an 9§ normalizer of G. Then D() € 3.






