A CHECK OF THE DESIGN OF A
 STANDARD HIGHWAY BRIDGE

> Thosis for the Darre of B. S. MCHGAN STATE COLHECE
> Richard Porter Cillospie 1948

$$
\begin{aligned}
& \text { WPbermery } \\
& \text { Whermbl. } \\
& \text { Werckofeoon }
\end{aligned}
$$

A CHECK OF THE DESIGN OF ASTANDARD HIGHWAY BRIDGE
A THESIS SUBMITTED TO
THE FACULTY OF
MICHIGAN STATE COLLEGE
OFAGRICULTUKE AND APPLIED SCIENCEBY
RICHARD POKTEK GILLESPIE
CaNDIDATE FOR THE DEGREA OF
BACHELOR OF SCIENCEMARCH 1949
C. 1

The author wishes to acknowledge his indebtedness to the personnel of the Bridge Division of the Michigan State Highway for the use of their reference books and their help in obtaining a complete set of Blue prints to use in my thesis. The author also wishes to thank Mr. W. A. Bradley, Department of Civil Engineering, Michigan State College for his help in checking the completed thesis.

I. Introduction

II. Bridge Railing
A. Loading

1. Live load
2. Dead load
B. Check Refnforcing Steel and concrete
III. Sidewalk and curb
A. Loading
3. Live load
4. Dead load
B. Check Reinforcing Steel and concrete
IV. Floor Slab
A. Loading
5. Live load
6. Dead load
B. Check Reinforcing Steel and concrete
V. Girder Design
A. Loading
7. Live load
8. Dead load
B. Size of Beams required
C. Size of Diaphragms required
D. Size of tieangles required
E. Spacing of rivets
VI. Abutment Design
A. Loading
9. Live load
10. Dead load
B. Footing
11. Toe reinforcing steel and concrete
12. Heel reinforcing steel and concrete
C. Wall
13. Stem reinforcing steel and concrete
VII. Summary and Conclusion

INTRODUCTION

The purpose of this thesis is to check the design of a simply supported single span highway bridge.

This bridge has been constructed in Sec. 10 and 11 T. 8 S R 3 E Fairfield township, Lenawee County. The bridge crosses the black creek 0.5 miles south of the town of Jasper, Michigan.

The existing structure has been removed because of the need for a new and larger bridge.

The span length of this bridge is 50' - $0^{\prime \prime}$ exact and the overall roadway width from curb to curb curb is 38' - $0^{\prime \prime}$ exact.

Stream Data: Black Creek is a very meandering stream and there is indications of scouring at the bends where there is no willow growth. The water has a very offensive odor due to refuse from a creamery located two miles upstream from the project.

The elevation of the water surface at the survey center line is 710.15300 ft . upstream measured at right angles to the survey line, it is 710.82 and 300 ft . downstream it is 709.58. High water elevation was 716.9 and the normal highwater elevation is 713.9'.

Soil Conditions: The soil in this vicinity is a heavy clay loam, but there is some indication of sand and gravel in the bed of the stream.

The specifications are those of the Michigan State Highway Department published in 1944 and from the specifications for highway design published by the American Association of State Highway Officials in 1944.

The maximum allowable unit stresses used are from the Bridge Division, Michigan State Highway Department specifications.

```
fs = 18,000 psi
fc = 3,000 psi
fc = \frac{1}{7},200 psi
j=\frac{17}{8}}=.86
k= + A00
n=10
K=209
V = 60 psi
v = 90 psi
U = 150 psi
u = 300 psi (special anchorage)
```

Loading H - 20 Sl6 - 44
Shear 13,500 psi power driven rivets
Shear 10,000 psi unfinished bolts

A	Area
b	Breath or width
d	Depth of beam to center of steel
	Eccentricity of application of load
f	Unit stress
I	Moment of inertia
j	Ratio of lever arm of resisting couple to depth, d
K	Ratio of depth of neutral axis to depth, d
L	Length in feet
1	Length in inches
M	Moment
n	Ratio of modulus of elasticity of steel to modulus of elasticity of concrete
R	Reaction
V	Total shear
v	Unit shear
W	Load per unit of length
\varnothing	Round
U	Bond

aBEREVIATIONS

A. A. S. H. O. American Association State Highway Officials
A. I. S. C. American Institution of Steel Construction
M. S. H. D. Michigan State Highway Department

Design of Railing:

Railings

Substantial railings shall be provided along each side of the bridge for the protection of traffic. The top of railing shall not be less than $3^{\prime}-O^{\prime \prime}$ above the top of the curb, and when on a sidewalk, not less than 31 - $0^{\prime \prime}$ above the top of the silewalk. Kailings shall contain no opening of greater width than (8) inches. Ample provision shall be made for inequality in the rate of movement of the railing and the supporting superstructure due to temperature or erection conditions. (M.S.H.D. Spec. 25, p. 10).

Forces on Kailings
Railings shall be designed to resist a horizontal force of not less than 150 pounds per lineal foot, applied at the top of the railing, and a vertical force of not less than 100 pounds per lineal foot.

For railing adjacent to the roadway, the bottom rail shall be designed for a horizontal force of 300\# lineal foot of rail, if the rail is properly reinforced the force of 300\# lineal foot may be used but if the rail is not properly reinforced use 500\# lineal foot. (M.S.H.D. Spec. 35, p. 14).

Design of Railing
Railings:
Bolts $\quad 3^{\prime \prime} \varnothing$ in single shear
$P=S$.A $P=10,000 \times .4418=4,420 \#$ Capacity
Load $\frac{300 \times 8.167}{2}=1225 \#$
Strap shear capacity (1 $\left.\begin{array}{c}3 \\ 4\end{array}-13\right) \frac{3}{4} \times 10,000=9360^{*}$
From the (M.S.H.D) Standard Design of Railing)
Use 50\# lineal foot for the dead weight of the railing.

Load

$$
\text { is } \frac{304 \times 8.167}{2}=1255 \#
$$

Bolts will control the design as they have the minimum capacity $(1)(\max)=18_{8}^{7} x_{8}^{3} n=2 \frac{1}{4} n$

$$
\begin{gathered}
f=\frac{\text { mic }}{I} \text { where } I=\frac{b h}{6} \\
f(\text { Horizontal })=\frac{1225 \times 2.25 \times 6}{.625 \times(1.75)}=8650 \mathrm{psi} \\
f(\text { vertical })=\frac{1225 \times 2.25 \times 6}{6 \times 1.75 \times(6.25)}=\frac{4050 \mathrm{psi}}{12,700 \mathrm{psi} \text { ok }<18,000 \mathrm{psi}}
\end{gathered}
$$

Design of Railing (cont.)
Rail:
Lower rail only considered (max case). For the first computation only, the two side channels are considered to simplify the computations.

Horizontal bending $8-167-\left(2 x 1 \begin{array}{l}5 \\ 8\end{array}\right)=7.90 \mathrm{ft}$. $M=W 12 / 8=\frac{300 \times(7.90)^{2} \times 12}{8}=28,100$ in lbs.
$A=2 \times 1.46=2.92$ sq. in. $e=2.06 \quad I g=2 x .25=50$. in. $I=A e^{2}+I g=2.92 \times(2.06)^{2}+50=12.89 \mathrm{in}$.
$\mathbf{P}=\frac{M C}{I}=\frac{28100 \times 2.5^{\prime \prime}}{12.89}=5450 \mathrm{psi}$
18,000 psi allowable
$\frac{18,000}{5450}=33190$ over designed we may neglect the design of the top channel of the lower railing in the design because the stresses are low. This top channel would increase the strength at the railing which is overdesigned already.

Posts

Rc 3 Intermediate Posts standard M.S.H.D.
b=1'-4":16"
d =
9굴 ${ }^{n}$

As = $2 x .44=0.88 \mathrm{sq}$. in.
(2 bars in compression)
(2 bars in tension)
$k=\frac{1}{f s / n f c}=\frac{1}{18000 / 10 \times 1200+1}$
$k=.400$
$j=\left(1-\frac{k}{3}\right)=\left(1-\frac{.400}{3}\right)=.867$

Bending moments:

$$
\begin{aligned}
& 150 \times 9.5 \times 32=45,300^{\prime \prime} \# \\
& 300 \times 9.5 \times 5=\frac{14,200^{\prime \prime} \#}{59,500^{\prime \prime} \#} \\
& \text { Totals }
\end{aligned}
$$

d

$$
=\sqrt{\frac{M}{R b}}=\sqrt{\frac{59,500}{209)(16)}}=4.2 \text { inches required }
$$

Is

$$
\begin{aligned}
& =\frac{M}{\text { As jd }}=59,500 / .88 \times .867 \times 9.5=8230 \mathrm{psi} . \\
& 18,000 \text { allowable } \\
& \frac{18,000}{8,230}=219 \% \text { over designed. }
\end{aligned}
$$

Posts:

The railing and posts are greatly over designed but part of this is due to the fact that large posts and railing produce a more balanced looking bridge in appearance.

Design of Sidewalk and Curb:

Curbs shall be designed to resist a force of not less than five hundred (500) pounds per lineal foot of curb applied at the top of the curb.
(M.S.H.D. Spec. 3b, p. 14)

The specified roadway loading shall apply to all sidewalks constructed without guard rails between the sidewalk and roadway to prevent encroachment of roadway loads.

As this sidewalk is fully supported the use of this part of the bridge serves only as an additional safety measure for pedestrians. The only steel required is temperature steel, the rest 1s put'nto bind the structure together.

Design of Concrete Slab:

Calculate bending moment by A.A.S.H.O. Art. 3.2.2, p. 138. Main reinforcing perpendicular to center line of roadway. Distribution of wheel loads.

For a span of 2 to 7 ft .
$E=0.65+2.5$
Bending moment for continuous span
$M=0.2 \times \mathrm{P} / \mathrm{E} \times \mathrm{S} \times(100+I+10 \%$ for longitudional forces)
Bending moment for freely supported span.
$M=0.25 \times P / E \times S \times(100+I+10 \%$ for longitudinal forces) Where,
$E=$ width of slab over which wheel load is distributed.
$P=$ maximum wheel load in pounds
$S=$ distance between flanges plus $\frac{1}{c}$ width of girder flanges.
$I=\frac{I+20}{6 L+20}$

Design of Concrete Slab:
The forces due to traction or sudden braking of vehicles shall be considered as longitudinal forces having a magnitude of 10% of the gross live load that can be placed in one traffic line. This load shall be assumed as acting in the direction of traffic movement and applied at the top of pavement.

$$
I=\frac{L+20}{6 L+20}=.22
$$

Design

$$
\begin{aligned}
& E=0.6 \times 5.14+2.5=5.59 \mathrm{ft} \\
& M=0.25 \times 16,000 / 5.59 \times 5.14 \times 1.32=4860 \mathrm{ft} \text { lbs. } \\
& d=\sqrt{\frac{M}{R b}}=\sqrt{4860 \times 12 / 209 \times 12}=4.82 \mathrm{in} .
\end{aligned}
$$

For slabs the distance from the surface of the concrete either top or bottom, to the center of the nearest bar shall be not less than one and one-half times the diameter of the bar nor less than one and one-half inches.

Thickness required: 4.82 1.5" $=0.32$ in
Actual

$$
7.00 \text { in. }
$$

$$
\begin{aligned}
\text { As }=\frac{m}{\text { fsjd }} & =(4860 \times 12) / 18000 \times \frac{7}{8} \times 5.59=.675 \text { in req. } \\
\text { Actual } & 1.000 \text { sq. in. }
\end{aligned}
$$

Steel at bottom of slab for lateral distribution
Percent of main steel required:

$$
\begin{aligned}
100 / \sqrt{5} 100 / 5.4 & =44.1 \% \\
& (\text { A.A.S.H.O.Art. 3. } 2.2 \mathrm{p} \cdot 140) \\
\text { As }=.075 \times .441 & =.298 \text { in/ft. required. }
\end{aligned}
$$

Design of Concrete Slab:
Slabs designed for bending moment in accordance with the foregoing shall be considered satisfactory in bond and shear.
(A.A.S.H.O. Art. S.2.2 (d) p. 140)

Diaphragm Design:
The forces due to wind and laterial vibrations shall consist of a horizontal moving load equal to 30 pounds per square foot on $\frac{l}{\frac{d}{2}}$ times the area of the structure as seen in elevation, including the floor system and railings and on one-half the area of all trusses and girders in excess of two in the span. (M.S.H.D.(Spec. 38, p. 15)
(a) Size of Rivets shall be of the size specified but generally shall be $3 / 4^{\prime \prime}$ or $7 / 8^{\prime \prime}$ in diameter.
(b) Pitch of Rivets, the minimum distance between centers of rivets shall be three times the diameter of the rivet but preferably shall be not less than the following, For 3/4" diameter rivets - 2 $\frac{1}{2}^{n}$. (M.S.H.D. Spec. 92, p.39-40) The end connections angles of floor beams and stringers shall be not less than $3 / 8$ inch in finished thickness. (M.S.H.D. Spec. 120, p. 47).
(a) Design, Lateral, longitudinal and transverse bracing shall be composed of angles or other shapes and shall have riveted connections. (M.S.H.D. Spec. 12S, p. 48) Diaphragms shall be provided at the third points of all I-beams spans of forty feet or more. (M.S.H.D. Spec. 124, p. 48).

Area of structure as seen in elevation:

7.89×50	400 sq. feet
400×1.5	600 sq. feet
$.5 \times 6 \times 3 \times 47.5$	$\frac{427}{}$ sq. feet
Total effective area	$1027 \mathrm{sq}$. feet

Moving load $30 \times 1027=30,800 \#$
Area required for diaphragm
$\frac{30,800}{18,000}=1.71 \mathrm{sq}$. inches

Area furnished
$4^{\prime \prime} \times 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ furnished 2.86 sq . inches.
The diaphragms placed at $1 / 3$ the width meet all of the necessary M. S. Highway standards they are used principally to keep the beams from turning and also to keep the I beams on the same level. The specifications provided by the M.S.H.D. for depth of web, size of angles, pitch of rivets, depth of tie angles and number of stiffeners place the use of these within the proper limit of design.

Girder Design:
For structures with concrete slab floors with out separate wearing surface, a minimum allowance of 20 pounds per square foot of roadway shall be made, in addition to the weight of any monolithically placed concrete wearing surface, to provide for future wearing surface. (M.S.H.D. Spec. 30 p. 12).

When provision is made for three or more lanes of traffic, the design shall provide for the following percentages of the simultaneous maximum loading of all lanes. For four or more traffic lanes 80%. (M.S.H.D. Spec. 33, p. 13-14).

Main trusses and girders shall be spaced a sufficient distance apart center to center to be secure against, overturning by the assumed lateral and other forces. (M.S.H.D. Spec. 7ó, p. 36).

Calculations of stresses, span lengths shall be assumed as follows:

Beams and girders, distance between centers of bearings. (M.S.H.D.Spec. 77, p. 36).

Rolled beams shall be proportioned by the moments of inertia of their net sections. (M.S.H.D. Spec. 80, p. 36)

Using H $20 \mathfrak{\$ 1 6 - 4 4}$ Loading from appendix A. (A.A.S.H.O. p. 229).

\therefore Total Span 50'

Check final design of Beams using H2OS16-44 loading: Assumptions 38' Rdwy, 2 walks @ 1'-6" 7"min slab. One span 501 between R. P. $90^{\circ} \mathrm{L}$ of crossing Try 33" WF 132\# stringers

C.G. Take moments about small wheel 8 , ULU\# load

32000×14	$=448,000$
32000×28	$=896,000$
8000×0	$=0$

$\begin{aligned} 72000 & =1,344,0001\end{aligned} \quad$ \# \quad. from 8,000\# load
Max moment occurs when $\&$ of Span is midway between
center of gravity of loads and nearest load.
18.66-14.00 $=4.661 \mathrm{c}$. g. to near load $\frac{4.66}{2}=2.331$ distance c.g. placed off centers
L. L. moments to determine L. L reactions $R A$ and $R B$

$$
\begin{aligned}
\text { RA } 32,000 \times 12.12 & =387,840 \\
3,000 \times 26.12 & =835,840 \\
8,000 \times 40.12 & =\frac{320,960}{1,544,640} \div 47.58=32,460 \text { K.A. }
\end{aligned}
$$

$\begin{aligned} & 8,000 \times 7.40 \\ \text { R } & =59,680 \\ 32,000 \times 21.46 & =686,720\end{aligned}$
$32,000 \times 35.46=\frac{1,134,720}{1,881,120} \div 47.58=39,540 \# \quad K_{B}$ 72,000\# total 0.K.

Check final design $\frac{L}{800}$
Max moment occurs under middle wheel.

$$
\begin{aligned}
\text { RA } 32,460 \times 21.46 & =696,590 \\
-8,000 \times 14 & =-112,000
\end{aligned}
$$

Max mom L.L $=584,590^{\prime} \#$ lane
Try 35' WF 132\# $=8$ spaces © $5^{\prime}-13 / 4^{\prime \prime}=41^{\prime}-2^{\prime \prime}$
Distribution L.L. Mom. $C . M . \div M=\frac{584,590 \times 5.15}{10}$
$=301,060^{\prime} \# /$ beam
Dead load
Conc. $150 \times .651 \times 5.15=503 \#$
Future wearing surface $20 \times 5.02=100$
Beam 10% for Diaphs. and $=145$
748\#/ ft of beam
D. L. Mom (under same wheel)

$$
-17-
$$

$$
\begin{aligned}
& R=\frac{748 \times 47.58}{2}=17,900 \text { \# } \\
& M_{0 L}=17,900 \times 21.46 \\
& 748 \times 21.46 \times 10.73=-\frac{384,000}{211,000} \#^{1} / \text { beam }
\end{aligned}
$$

$$
\text { Impact Factor } \frac{L+20}{6 L+20}=\frac{47.58+20}{6 \times 47.58+20}=\frac{67.58}{305.48}=0.221
$$

Total Moment

$$
\begin{aligned}
\text { L. L. }+ \text { Impact }=301,000 \times 1.221 & =367,590 \\
\text { Max. D. L. } & =\frac{211,000}{578,590}
\end{aligned}
$$

$S=\frac{578,590 \times 12}{18,000}=390^{\prime \prime}$ req'd.
A 331 WF l32\# gives $S=404: 8 \#^{3}$ provided

Check Deflection

Test Deflection by Lane Loading as per A.A.S.H.O. - 44. By Maxwell's Theorem $\Delta x=\frac{W X}{48 E I}\left(31^{2}-4 x^{2}\right)$

$$
D=.713^{\prime \prime} \text { allowed } \frac{\mathbf{L}}{800}=0.713^{\prime \prime}
$$

$\max \Delta x_{1}+\Delta x_{2}+\Delta x_{3}$
$\Delta x_{1}=\frac{32,000 \times(12 \cdot 12) \times 12}{48 \times 29,000,000 \times 6856.8}\left[\begin{array}{c}\left(3 \times(47.58)^{2}-4\right. \\ \left.(12.12)^{2} \times(12)^{2}\right]\end{array}\right.$
$\Delta \mathrm{x}_{1}=\frac{4,157,838,720,000}{48 \times 29 \times 106 \mathrm{x} 6856.8}=.436 / i$
$\Delta x_{2}=\frac{32,000 \times 21.46 \times 12}{48 \mathrm{EI}}\left[3 x(47.58)^{2} x(12)^{2}-4(21.46)^{2} x(12)^{2}\right]$
$\Delta \times 2=\frac{5,873,268,940,800}{9,544,065,000,000}=.615$
$\Delta x_{3}=\frac{8,000 \times 7.46 \times 12}{48 \mathrm{EI}}\left[3 x(47.58)^{2} x(12)^{2}-4(7.40)^{2} x(12)^{2}\right]$
$\begin{aligned} &=\frac{677,437,944,960}{9,544,665,600,000}=.071 \\ & I=\frac{L+20}{6 \mathrm{~L}+20}=\frac{47,58^{1}+20}{6 \times 47.581+20}=.221 \\ & \Delta \text { Total }=1.122 / l a n e\end{aligned}$
$D=1.121 \times 1.221 \times .515=.705^{\prime \prime} /$ Beam Load
Allowable $=.713^{\prime \prime}$
Use a 33^{n} WF © $132 \#$ this is the smallest beam which does not exceed the allowable deflection.
Abutment Design:
"Rankines" Theory of pressure distribution in noncohesive granular material, provides that no structure shall be designed for an equivalent fluid pressure of less than 30 pounds per square foot.
Retaining walls, abutments and structures built to retain fills shall be designed to resist pressure determined in accordance with the Rankin theory.

$$
-2 u-
$$

Abutment Design

Wing ht．$=13^{\prime}-23 / 4^{\prime \prime}=1583 / 4^{\prime \prime}$ （prelim plan）

Total batter $\left.=\left(2^{\prime}-4^{\prime \prime}\right)-1^{\prime \prime}-6^{\prime \prime}\right)$

$$
\frac{10^{\prime \prime}}{158.75} \times 6=-378^{\prime \prime}=3 / 8^{\prime \prime}
$$

Dist $\&$ to out of wing－

$$
\begin{aligned}
22^{\prime} & -6^{\prime \prime} \\
9^{\prime} & -9^{\prime \prime} \\
1^{\prime} & -6^{\prime \prime} \\
\frac{1}{\prime \prime}_{\prime \prime}-9378^{\prime \prime} & \text { use } 33^{\prime}-9 \frac{1}{2 \prime \prime}^{\prime \prime}
\end{aligned}
$$

$$
\left.0-0 \text { Wing walls } \quad\left(33^{\prime}-9 \frac{1}{2}{ }^{n}\right) \times 2=67^{\prime}-7^{\prime \prime}\right)
$$

$$
\begin{aligned}
& \text { 45' - O" O-O holders @ bridge from prelim. } \\
& \pm \text { to shoulder } 22^{\prime}-6^{\prime \prime} \\
& \text { Dist.from bridge seat to top of curb. } \\
& \text { 혈 Masonry Plate } \\
& 2^{\prime \prime} \text { Bearing Plate } \\
& \text { 33" Girder } \\
& \text { 7" Slab } \\
& \text { 10" Curb } \\
& \text { 52六" }=4^{\prime} \text { - 4咅" } \quad \text { seat to top curb. } \\
& \begin{array}{r}
41-4 \frac{1}{2} \\
6 \\
\hline
\end{array} \\
& \text { 4' - l0党 (hgt. from top of curb to inter. of ged. and } \\
& \text { back of wing). } \\
& \left(4^{\prime}-10 \frac{1}{2}\right) \times 2 \quad 9^{\prime}-9^{\prime \prime} \text { (from solder to back of wing) }
\end{aligned}
$$

Dead Load Superstructure Reaction on Each Abutment. Sidewalk $=2.71 \times .83 \times 50=112 c u . f t$. Slab $=43 \times .65 \times 46.75 \times .5=654 \mathrm{cu} . f t$. Backwall:

$$
\begin{aligned}
& \text { Length }=211-11 \frac{1}{2} \times 2=431-11^{\prime \prime} \\
& \text { AV. hgt. }=31-77 / 8=3.661 \\
& (43.92 \times 3.66 \times 1.62)-(.5 \times 38 \times 1.16)=\frac{238}{1004} \text { cu. ft. }
\end{aligned}
$$

$1004 \times 150=150,600 \#$ wat. conc.
Steel Rail $50 \times 150=7,500 \#$
F.W.S. $38 \times 20 \times 24.5=18,600 \#$

Str. Steel and Diaph
$48.5 \times 9 \times 125 \times 1.05 \times .5=28,650 \#$
Fillet Walls

$$
\begin{gathered}
\left(1.75 \times 10 \times 5 \times \frac{1}{2}\right) \times 2 \times 150=\frac{13,100 \#}{218,450 \#} \\
\text { Total D. L. } \\
\frac{218,450}{67.58}=3230 \# / \text { Lin. Ft. D.L. }
\end{gathered}
$$

Live Load Superstar. Reaction on Abut.

$$
\left.640 \times \frac{47.58}{2}+40,000\right) 4 \times .8=176,000 \#
$$

$$
176,000 \times \frac{1}{64.58}=2610 \# / 1
$$

Load	jrea	UnIt WE.	Total wt.	Arm	Mon Ft\# about toe
a	$9.75 \times 2.524 .4$	150	3670	4.88	17,850
b	$2.33 \times 13.2330 .8$	150	4620	4.67	21,600
c	$17 \times 3.9266 .6$	100	6660	7.79	51,900
	Totals Case I	W 1	14950	MI	91,350
	Deck D. L.		3230	4.62	14,900
	Totals Case IV	W IV	18180	MIV	106,250
d	$4 \times 3.9215 .7$	100	1570	7.79	12,200
	Totals Case II	W II	19750	M II	118,450
	Totals Case IV	W IV	18180	M IV	106,250
	Deck L. L.		2610	4.62	12,100
	Totals Case III	W III	20790	M III	118,350

$\approx \quad=$

Overturning Moments:
Case I and III
$126 \times 15.73 \times 7.87=15,600 \#$
$518 \times(15.73 \times .5) \times \frac{15.73}{3}=\frac{21,400 \#}{37,000 \#}$
MO_{1} and $\mathrm{MO}_{\mathrm{I}} \mathrm{II}$

Case II
$133 \times 15.73 \times 7.87 \times 16,500 \#$

$$
\text { MO II } 53,500 \#
$$

Earth Thrust

$$
\text { P } \quad \frac{259777}{2} \times 15.73=8150 \#
$$

Case I No superstr. Load or L.L. Surcharge.

$$
\begin{array}{ll}
\mathrm{M} I=91,350 & e=4.87-5.03=1.24 \\
\text { i } I=\frac{37,000}{54,350 \#} & s=\frac{P}{A}=\frac{14,950}{9.75}=1535
\end{array}
$$

$\operatorname{Arm}=\frac{54,350}{14,950}=3.63 \quad \frac{M c}{I}=\frac{6 W e}{1 Z}=\frac{6 \times 14950 \times 1.24}{9.75 \times 9.75}=1170$
Min

$$
\begin{array}{lll}
\text { Arm }=\frac{9.75}{3}=3+25 & \text { Toe pressure } & 2700 \# \\
& \text { Heel } & 365
\end{array}
$$

Case II Superstr. D.L. and L. L. Surch.

$M \mathrm{II}=118,450$	$e=4.87-3.28=1.59$
$M \mathrm{MI}=\frac{53,500}{64,950}$	$\frac{\mathrm{P}}{\mathrm{A}}=\frac{19750}{9.75}=2120 \#$
Arm $=\frac{64,950}{19,750}=3.28$	$\frac{\text { Mc }}{\mathrm{I}}=\frac{6 \times 19750 \times 1.59}{9.75 \times 9.75}=1980 \#$
Min. Arm $=3.25$	Toe Pressure $=4100 \#$
	Heel n
	Sliding $\frac{8150}{19750}=.41$

Case III Superstr. D. L. and L. L. No surcharge:
M 8 III $=118,350$
$e=4.87-392=0.95$
M III $=\frac{37,000}{81,350}$
$\frac{\mathrm{P}}{A}=\frac{20,790}{9.75}=2130 \%$
Arm $=\frac{81,350}{20,790}=3.92$
$\frac{\mathrm{Mc}}{\mathrm{I}}=\frac{6 \times 20790 \times 0.95}{9.75 \times 1245 \text { \# }}$
Min Arm $=3.25$
Toe Pressure 3375\#
Heel
$2 \frac{\frac{885 \#}{4260}}{2130 \#}$ ave. ft.

Case IV Superstr. D. L. (NO L.L. or Horiz. thrust) MsIV $\frac{100,250}{18,180}=5785$

Max arm $2 / 3 \times 9.75=6.5^{1}$
$c=5.85-4.87=0.98$
$\frac{P}{A}=\frac{18,180}{9.75}=1860 \#$
$\frac{\mathrm{Mc}}{2}=\frac{6 \times 18180 \times 0.98}{9.75 \times 9.75}=1,125$
Heel pressure 2985\#/a' Toe pressure 735\#/a'. Case IV assumes that the earth exerts no horizontal force against the abutment wall.

Footing Steel Case 11
-27-

Moments

$$
\begin{aligned}
\text { Earth up } & =2650 \times 0.5 \times \frac{0.5}{2} \\
& +1420 \times \frac{3.5}{2} \times 3.5 \times \frac{2}{3} \\
& =16,200+5,800=22,000^{\prime} \#
\end{aligned}
$$

Conc. down

$$
2.5 \times 3.5 \times 150 \times \frac{3.5}{2}=\frac{2,500}{19,700}
$$

$\frac{7}{8}^{\prime \prime} \quad$ @ $12^{n}=.60 a^{\prime \prime} 50=2.75$
Net Up
$A s=\frac{19,700 \times 12}{18,000 \times .875 . x}={ }_{27}^{5600^{\prime \prime}}$ req'd.
$P=\frac{A s}{b d}=\frac{0.60}{12 \times 27}=.00185$
$k=\sqrt{2 \operatorname{Pn}(\operatorname{Pn})^{2}}-\operatorname{Pn}=\sqrt{.037(.0185)^{2}}-.0185$
$k=0.174 \quad j=1-\frac{.174}{3}=0.942$

$$
f s=\frac{1}{A 8 J d}=\frac{19,700 \times 12}{.60 \times .942 \times 27}=15,500 \# / 0^{n}
$$

Use $\frac{7 "}{8} \phi$ at 12" run bond length
beyond face of wall.

$$
\begin{aligned}
& \mathrm{fc}=\frac{2 \mathrm{~m}}{\mathrm{~Kb} \mathrm{j}^{2}}=\frac{19,700 \times 12 \times 2}{0.174 \times 12 \times .942 \times 27} 2=330 / a^{n} \\
& V=\frac{2650+4100}{2} \times 3.5=11,760 \quad v=\frac{10,450}{12 \times .942 \times 27}=34.2 \# / \square^{\prime \prime} \\
& -3.5 \times 2.5 \times 150=\frac{1,310}{10,450} \\
& \text { 4. } \frac{V}{j d}=\frac{10,450}{2.75 \times .942 \times 27} \quad=\quad 150 \# / \text { n }^{n} \text { oik. (provide use }
\end{aligned}
$$

Heel Steel Case IV

εM about dowel steel
Earth up $\left(2018 \times 4.17 \times \frac{4.17}{2}\right)+\left(962 \times \frac{4.17}{2} \times \frac{4.17}{3} \times 2\right)$
$=17,680+5570=23,250$
Earth Down

$$
3.92 \times 17.0 \times 100 \times 2,08=13,850 \%
$$

Conc. Down

$$
4.17 \times 2.5 \times 150 \times 2.08=\frac{3250 \#}{\substack{\text { Mom. Down } \\ 17100 \#}}
$$

Net Mon up $=\quad$ ö,150\#
$A s=\frac{M}{f s j d}=\frac{6150 \times 12}{18,000 \times .875 \times 27}=.174 \mathrm{n}^{\mathrm{n}} \mathrm{req}{ }^{\prime} \mathrm{d}$
By running every other toe far into heel. $.30^{n}$ furnished.

Heel Steel Top

sill about dowels
Earth down $=(17 \times 3.92 \times 100 \times 2.08)+(9 \times 3.92 \times 100 \times 2.08)$

$$
=17,160
$$

Conc. down $2.5 \times 4.17 \times 150 \times 2.08=\frac{3,260}{20,420 \#}$
Earth up $\left(140 \times 4.17 \times \frac{4.17}{2}\right)+\left(1690 \times \frac{4.17}{2} \times \frac{4.17}{3}\right)=6030$
Net Mom down. $=14,390$
As $\frac{M}{f s j d}=\frac{14390 \times 12}{18000 \times .875 \times 27}=.41$ " req'd
$\frac{3}{4}^{n} \phi$ @ 12^{n} As $=.44 \quad$ Ko $=2.36 \quad \mathrm{p}=\frac{.44}{12 \times 27}=.00136$
$\mathrm{Ks}=\sqrt{2 \mathrm{pn}(\mathrm{pn})^{2}}-\mathrm{pn}=\sqrt{.0272(.000185)}-.0136=.152$
$j=1-\frac{K}{3}=1-\frac{152}{3}=.949$
$\mathrm{fs}_{s}=\frac{\mathrm{M}}{\text { ASJd }}=\frac{14390 \times 12}{.44 \times \cdot 949 \times 27}=15300 \# /$ "n n
$f_{c}=\frac{2 M}{\bar{K} J^{2} d^{2}}=\frac{2 \times 14390 \times 12}{.152 \times .949 \times 12 \times 27 \times 27}=\quad 274 \#^{\prime \prime}$

$$
\begin{aligned}
V= & (3.92 \times 21 \times 100)+(4.17 \times 2.5 \times 150)=9815 \# \\
& -(140 \times 4.18)+\left(1690 \times \frac{4.18)}{2}=\underline{4065 \#}\right. \\
V= & \frac{V}{b j d}=\frac{5750}{12 \times .949 \times 27}=18.7 \# / 0^{\prime \prime} \\
& 4=\frac{V}{20 j d}=\frac{5750}{2.36 \times .949 \times 27}=95 \# / a^{\prime \prime}
\end{aligned}
$$

Abutment Design (cont.)

Design of Wall Steel

Moment

$$
\begin{gathered}
126 \times 13.23 \times \frac{13.23}{2}+441 \times \frac{13.23}{2} \times \frac{13.23}{3} \\
11,000+12,900=23,900 \#^{\prime} \\
\text { As }=\frac{23,900 \times 12}{18,000 \times .875 \times 25}=0.73 \times \text { required } \\
\bullet \text { Use } 1^{\prime \prime} \phi \quad \text { © } 12^{\prime \prime} \text { area }=0.78 \\
\text { vO }=3.14
\end{gathered}
$$

$$
\begin{aligned}
& P=\frac{0.78}{12 x 25}=.0026 \\
& k=\sqrt{.52(.026)^{2}}-.020 \pi .228-.026=0.202
\end{aligned}
$$

$$
j=1-\frac{.202}{3}=0.933
$$

$$
\mathrm{fs}=\frac{23,900 \times 12}{0.78 \times 0.933 \times 25}=15,700 \# / a^{\prime \prime} 0 . \mathrm{k}
$$

Abutment Design (cont.)

Design of Wall Steel:

Cut-off of Wall Steel
Trial \# 1 it above top of Fig.

$$
\begin{gathered}
P=567-6 \times 331 / 3=367 \\
M=126 \times 7.23 \times \frac{7.23}{2}+241 \times \frac{7.23}{2} \times \frac{7.23}{3} \\
3300+2100=5400 \#
\end{gathered}
$$

Trial \# 2 31 above top of fig.

$$
P=567-3 \times 331 / 3=467
$$

$$
M=126 \times 10.23 \times \frac{10.23}{2}+341 \times \frac{10.23}{2} \times \frac{10.23}{3}
$$

$$
6000+6,000=12,600 \#
$$

$$
\text { As }=\frac{12,600 \times 12}{18,000 \times .845 \times 25}=0.384 \square^{\prime \prime}
$$

Furnished 0.390 if every and bar is cut off 3' 怘 bond or @ 41-6" above footing.

$$
\begin{aligned}
& f c=\frac{23,900 \times 12 \times 2}{.202 \times 0.933 \times 12} \times \frac{2}{25}=406 \# / \square " 0 . k . \\
& \mathbf{V}=\frac{126+567}{2} \times 13.123 \cdot 458 \mathrm{CH} \\
& V=\frac{V}{\text { bd }}=\frac{4580}{12 \times .933 \times 25}=16.4 \text { \#/a oik. } \\
& U=\frac{4580}{3.14 \times .0 .933 \times 25}=63 \text { \#/an 0.k. }
\end{aligned}
$$

Abutment Design:

Stabilization:

Load Totalwt. Mom. ent.
(a) $2.5 \times 9.75 \times 150 \quad 3670 \# \times 4.88=17,8501$ \#
(b) $1.5 \times 13.23 \times 150 \quad 2980 \# \times 4.25=12,680^{\prime}$ \#
(c) $13.23 \times .833 \times 150 \times \frac{1}{2}$ 826\# $\times 5.28=4,3601$ \#
(d) $14.23 \times 3.92 \times 100 \quad 5590 \# \times 7.83=43,500^{\prime} \#$
(e) $13.23 \times .833 \times 100 \times \frac{1}{2} 552 \# \times 5.55=3,060$ \#
(f) $3.5 \times 6.5 \times 100$
$2275 \# \times 1.75=3,980^{1} \#$
85,430
$W=15,893 \# M\left(S \mathcal{E}, I I^{\prime}\right) \quad M=85,430^{\circ} \#$

Overturning:

$593 \times 17 \times \frac{1}{2}$	$4950 \# \times 5.6^{\prime}=28,000^{\prime} \# M(O I)$
$122 \times 9.44 \times \frac{1}{2}$	$576 \# \times 5.15^{\prime}=18,150^{\prime} \# M(O I I)$

Abutment Design:
Wing wall Stability
Case I' No live load surcharge or superstr. L. $M\left(S I^{\prime}\right) \quad=\quad 85,430^{\prime} \#$ $M\left(O I^{\prime}\right)=28,000^{\prime}{ }^{\prime \prime}$

MI' $=57,430^{\prime} \# \quad R\left(I^{\prime}\right)=\frac{57,430^{1} \#}{15,893 \#}=3.62^{1} o_{0} k$. Min arm $=\frac{9.751}{3}=3.251$

Case II' Superstructure D. L. L.L. Surcharge.
$\left(M_{s} I I\right)=85,430{ }^{\prime} \#$
$M_{0} I I=\underline{18,130^{\circ}} \#$
M II' $=67,300^{\prime} \#$
(RII') $=\frac{67,300^{\prime} \#}{15,893 \#}=4.24^{1} 0 . k_{0}$.
Min arm $=\frac{9.75^{1}}{3}=3.25^{1}$

Case IV Superstructure D. L. (No L.L. or Horiz. thrust)

$W=15,893 \# \quad R^{\prime} \quad I^{\prime}=\frac{85,430^{\prime} \#}{15,893 \#}=5.38^{1} 0 . k_{0}$
Min arm $=\frac{9.751}{3}=3.25^{1}$
Wing wall Reinforcing Steel:
The main wall takes more loais on it than the wing wall does and the loads on the main wall are heavier than the loads on the wing wall. By inspecting the steel erection diagram it shows that the same steel is used for both the main wall and the wing wall, therefore, the stresses in the wing wall are below the allowable. It is therefore, not
necessary to check the steel in the wing wall.

CONCLUSION

Remarks have been placed in their related sections as the checks have been performed on the design of this bridge. The Bridge Division of the michigan State Highway accounts for the fact that such items as curbs, posts, railings and the concrete slab are overdesigned because it is cheaper to overdesign such items than it is to draw up plans for each individual bridge. The diaphragms are used to keep the bridge girders level and to keep them from twisting.

On the whole the structure is adequately designed and the standard items such as posts, etc., mentioned above are overdesigned.

BIBLIOGRAPHY

[^0]$$
1
$$

[^0]: "Reinforced Concrete Design Handbook"
 American Concrete Institute
 "Specifications for the Design of Highway Bridges"
 Michigan State Highway Department
 "Standard Specifications for Highway Bridges"
 American Association of State Highway Officials
 "Steel Construction Manual"
 American Institute of Steel Construction
 Sutherland and Reese,
 "Reinforced Concrete Design" - Second Edition.
 "Design of Concrete Structures"
 Urquhart and O'rourke - Fourth Edition

