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ABSTRACT
APPROXIMATION TO BAYES RISK IN SEQUENCES OF
NON-FINITE DECISION PROBLEMS

by Dennis Crippen Gilliland

Consider a statistical decision problem where X ~ PB’ 8 €Q,
and an action A € A is to be taken with A allowed to depend
upon the random variable X. A loss function L 2 0 is defined
on Q X A and a non-randomized procedure ¢ incurs a risk
R(8,p) = IL(9,¢)dPe. Suppose this decision problem occurs n

0 = (O n ~
times with 2 ( .,Gn) € Q" and X = (xl""’xn)

17°°

Py X...XPe . A strongly sequential compound rule ¢ = (¢1,¢2,...)
1 n

is such that for each i, ¢i is the means by which the i th
action is taken and L(9,¢i) is 51 measurable for each ©,
The compound risk up to stage n 1is taken to be the average of
the component risks, Rn(g,g) = n-lz? R(gi,wi) where

[ (61,92,...). The modified regret Dn(g,g) =R (8,9) - R(G))
with G the empirical distribution of gﬂ and R(G) the
Bayes risk at G in the component problem has been used as a
standard for compound procedures.

The results of the thesis show that |Dn(§Jg)| = O(n-%)
uniformly in 8 € waor squared error loss, certain discrete
exponential families including the Poisson and negative binomial,
and realizable sequential procedures ¢. Bounds like o(l) and

o(l) uniform in E are obtained for larger classes of discrete

exponential families. A problem involving normal N(®,1) dis-
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tributions is also investigated with a sequential compound pro-
cedure ¢ demonstrated such that IDH(E,E)I = O(n-(1/55 uniformly
in 2.

In the last chapter sequence strategies are exhibited which
at each stage 1 depend upon Gi-l and which achieve various
rates of modified regret depending upon the exact structure of
the component game. Sequence strategies were given by Hannan
((1957) . Contributions to the Theory of Games, 3, 97-139. Ann.
Math. Studies No. 39, Princeton University Press.) for various
M X N games with M finite. These procedures result in an
absolute modified regret O(n-%) uniform in player I move
sequences. We give a direct generalization to the countable

M case. Also a theorem is proved with applications in the

uncountable M case.
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CHAPTER I
INTRODUCTION TO SEQUENTIAL COMPOUND

DECISION PROBLEMS

The notation necessary to describe the mathematics of compound
decision theory is necessarily cumbersome. To reduce the complexity
we will. find it convenient to suppress the display of some dependen-
cies and to use operator notation. For example, PX, P(X) or
P(X(w)) denotes the integral IX(w) dP(w). Another reduction in
notation is accomplished by letting square brackets denote the

indicator function, [A] being the indicator function of the set A.

1. The Component Problem.

The component problem has the structure of the usual statistical
decision problem. Let Q denote a parameter space indexing a set
of probability measures {Pele € Q} and let A signify the action
space. A real valued loss function L 2 0 is defined on Q XA,
The action A is allowed to depend upon the realization x in the
measurable space (X;B)  of a random variable X distributed
according to PG' A randomized decision function ¢ 1is for each
x a probability measure vQ(x) over some O-field of subsets of A

such that L[(8,p(x)) =V x)(L(S,A)) is (X,B) measurable. Tte

9(

risk or risk function associated with ¢ is the expected loss

resulting from the use of ¢: R(8,p) = Pg (L(8,p(x))).

2. The Sequential Compound Decision Problem.

Suppose the decision problem described in §1 occurs n times

n _ .
..,Bn) €Q" and X = (xl,...,xn) distributed

with Qﬂ = (61,.

according to Eh = P1 X ... X Pn where we have made the identifi-

cation Pi = Pe . Using the terminology of Hannan (1957, p. 105)
i



we make a distinction between weak and strong sequence games. In
the weak sequence game n is known to player II at each component
but not in the strong sequence game. Throughout this paper only the
latter situation is considered. A strongly sequential compound rule
P = (wl,mz,...) is such that for each i, wi = ¢i(xi) is the means
by which the ith action is taken and L(e,wi) is x; measurable
for each ©. The risk in the ith component problem is R(gi,¢i) =
Ei(L(Gi,¢i)). The total risk in the sequential problem up to stage
n is taken to be the average of the component risks, Rn(g,¢) =
n! E? R(gi,¢i), where 0 denotes (91,92,33,...).

If L(0,¢i) is X, measurable for each i we say @ is
a simple rule. If in addition the ¢, are identical, 9, = ¢1,
we say ¢ 1is a simple symmetric rule. Simple symmetric rules are
traditional and result in Rn(g,w) = n-1 2? R(Bi,wl). This is the
same as the risk in the component problem resulting from the use of
the procedure wl if © 1is assumed to be the realization of a
random variable distributed according to Gn the empirical distri-
bution of gn' With R(G) denoting thé Bayes risk versus G in

the component problem the above observations lead to consideration of
(1) D.(&,9) =R (8,9) - R(G))

as a standard for evaluating compound procedures. Loosely speaking,
if Dn(ﬂ,w) < B =o(l) as n=—®, then in the limit @ incurs a
compound risk no greater than R(Gn)' Dn(g,¢) is called the
modified regret.

Later we will prove theorems concerning rates of convergence

of IDn(§’¢)I for particular families of distributions and



procedures. At this time we point out a necessary condition for
the existence of any compound procedure ¢ satisfying
E;;; sup {Dn(g,w)lg € QQ} < ®, It is the existence of a procedure
@1 in the component problem satisfying sup {PB(L(G,QI)) -
ianL(G,A)IG € Q} < ®», This follows from
sup {Dn(§,¢)|2_€ QQ} 2 sup {Dn(§,¢)L§ € diagonal Qw]

= sup {n-l E? P (LB.,9.)) - ianL(el,A)IE'E diagonal QQ}

i i’7i
2 0" sup {B(1(8,9))) - inf,L(8,A)|0 € Q.

3. A Useful Theorem.

Let {Pele € Q} be a family of probability measures on a

measurable space (X,B). Assume Q C E the real numbers, and

1)

Pe << n for all 6 where p is a O-finite measure. With squared

error loss and a priori G on {2, a Bayes response versus G is

provided by any determination of the conditional expectation of

@ given X = x. With ¢i generic for a Bayes responsSe versus

Gi’ the empirical distribution of gi’ ¢0 = 0, we are interested in

2(l¥, ) - ¥, D) and a7 EN R (l¥, (0 - ¥, ®]); partice-
it i i-1 1 7it i i-1 ’

larly, in conditions under which there is convergence to zero

@
uniform in parameter sequences © € Q . To simplify the notation

let ¥,(x) = ¥,(0) - ¥, (). N

In what follows Pg is a determination of e and any ratios

0/0 will be interpreted as 0. A Bayes response versus Gi is

tte p.v) .
@) ¥ = =" (g% 5 (») > 0].
' PR NN



The following example shows that for this response and a fixed

bounded sequence 8, n-l 8? Pi(IYi($)|) need not converge to zero.

Example 1. Let n be counting measure on {2,3,...} and
8 €Q={1/2, 2/3, 3/4,...} index Py degenerate on (1- 9)-1
Then with Oj = j(j + 1)-1, we compute Wi(x) = 2§+1 G - 1)j-1[x = j]
so Y0 =i+ D Ix=1+1] emd P (¥, @D =i+ DT

i 2 1. Hence, 1'1-1 2? Pi(lYi(x)I) -1 as n-— ®,

However, in Theorem 1 are given conditions sufficient for convergence
at the raﬁe 0(n§llog.n) uniform in 8.

Theorem 1. If Q C [-A,A], A< ® and M(x) = sup {pe'(x)la € Q}
is integrable (X,B,u), then ¢ given in (2) satisfies

-1 En P, (IY &) = o@” log n) uniformly in 8.

The foilowing lémma is needed.

2 i -1 -1
Lemma 1. S (a;,...,a ) = z‘l‘ a; @ a)’" s 2‘1‘ i =8 (1,...,1)

for all 0<a,=<1l,1sis<n,nzl.
* 3s_

_en 2 ,-1 -
Proof. Let A1 gl aj so that Sn = 21 a; A%, S;;
2

2. -
<
(2anAn_1 + an) An 2 0. Therefore, Sn(al,...,an) Sn(al""’an-l’l)

for all 0 < a; <1, 1<4i<n, Also, for 1 <k<n

asn 2 -2
S;;(al""’ak’l"° ,1) = (Zak K- 1 k) Ak k+1 (A + i- k)
2
3°S
n 2 3 n . -3
aaz (al,...,ak,l,...,l) 2A k-l K + 2 Ek+1 (Ak + i=k) 2
k

Since the second partial is non-negative and



k-1 2 . -1
Sn (al, ’ak-l’l 1) = E i + 2 (A + i-k + 1)
k-1 2 n . -1 _
2L & Al +E, B F 0T =8 (a),58,,0,1,.0,1)
we have Sn (al, ..,ak,l,...,l) s Sn (al, ..,ak_l,l,...,l) for all

0= a; <1, 1 <1i< k. The proof is completed by backward induction

on k.

Proof of Theorem 1. From (2) it follows that

pi(X) pi- (e - 91) pj(X)
gi- (x) E j(x)

i-1
[zl

(3 Y (x) = P, () > 0]

so if Q< [-A,A],

2A p,(x) . .
¥ ()] s —2— 25! b (x) > 0] +AlEI Y 5 (%) = 0, p.(x) > 0]
i zi p.(%) 1 j 1 ] Fi
3
and
P (X)
) p(lY, (X)I)SZAu( ()[il p,(x) > 0])
X

+ A np, () [E17 p 0 = 0, p,(0) > 0]

]

for i 2 1. Therefore,

(p, () M(x))°

1 )
i
b (pj(X) /M(x))

)  a Tty dY,m)) s 2 n™ o I

+an !l p@] p ol P () = 0, p;(®) > o).



Lemma 1 implies that the first term on the right hand side is bounded
by 2A p(M(x)) n-1 ET i-l. Since M(x) = 2? pi(x)fzi-l pj(x) =0, pi(x) > 0]
the second term is bounded by A p(M(x)) n.1 and the theorem is
proved.
We give an example to show that the bound on the rate of conver-

gence indicated in Theorem 1 is tight.

Example 2. Consider the family of geometric distributions with
densities pe(x) = 0*(1 - 8), x=0,1,2,... ; 8 €Q=1[0,5] with
respect to counting measure. At © = (0,%,0,%,...), WZi(x) =
(1/6)[x = 0] + 3[x > 0], ¥,, (¥ = (1 - DGi - D7 'x = 0] + 3{x > 0]
so ¥, (®) = (1/3)(31 - D 'x = o).

Hence,

2n n . -1
P e dY b 227 (/)i - 1)

> (1/18) T} i™1 > (1/18) 1log n = (1/36) log (2n)

for n 22,
The hypothesis of Theorem 1 need not imply Pi(IYi(x)l) - 0 as
i =+ *® uniformly in @ no matter what determination of the conditional

expectation ¢i is used.

Example 3. Consider the family of distributions of the preced-
ing example. For G degenerate on O, ¢G(x) = a(x)[x > 0] for
some function a. Let b €Q be any number such that b # 0 and
b # a(l). Define Q‘i) = (0{1), Ogi),...) where egi) =b or O

according as j =i or j # i. Then at g(i), ¢i(x) =



b(l - b)(i - b)-l[x = 0] + b[x > 0], ¢i_1(x) = a(x)[x > 0] so
.(l¥, ) > [b - a)] plx=1] = |b - a)] b - b).

The next proposition shows that there is convergence as i = ®
uniform in ©® for a family of normal distributions. This result
will be needed in Chapter III where a decision problem involving

this family is discussed.

Proposition 1. Consider the family of N(8,1) measures,
Qc [-A,A], A<®, Let Py be the continuous normal density with
respect to Lebesgue measure u. For the determination of ¢i
given in (2), Pi(IYi(x)l) = O(i-l) as i = ® uniformly in 8.

Proof. Inequality (4) implies
=1 2 -1
(6) B, (¥, ) = 28 17 H{upl, () py () [x < -AD)
+ @M -A < x < 4] + wE () P (x > A1)

where B = min {pe(x) | (x,0) € [-A,A]Z}. Since the factor of (6)
appearing in curly brackets is finite and does not depend upon 8

the proof is complete.

4. A Bound for the Modified Regret under Squared Error Loss.

The loss function L(0,A) = (SI-A)2 is continuous and convex
in A for each fixed ® so only non-randomized procedures need be
considered. For the component problem this follows from an appli-
cation of Jensen's inequglity as is well known. It is true for the
compound problem since the compound risk is monotone increasing in
each component risk. A non-randomized procedure ¢ has modified

regret



Q) D (8,9 = n ' IT P (v, - )% - R(C).

Inequalities (8.8) and (8.11) of Hannan (1957) show that

-1 «n 2
(8) n 21 Pi(QIi - Bi) < R(Gn)
and
-1 @n 2
(9) n 21 Pi(wi-l - Qi) 2 R(Gn)'

Inequalities (7) and (8) imply

‘ -1l en
(10) DnQ§:¢) Sn 21'21((¢i - Wi)(¢i + ¢i - 291))
while subtracting and adding n"1 E? Pi(dxi - 31)2 from the lower

bound resulting from applying (9) to (7) proves

(11) D (8,9) = ™"

n
2R (0, - ¥ )@, + ¥, - 20))
-1 an
oDy Ry Yy - 28D,

Assume Q C-[-A,A]. Then wi takes values in [-A,A] and, therefore,

if @i does, (10) and (11) imply
(12) antzhe Y, - antt s} R e, - v D s
-1

A corollary to Theorem 1 is immediate.

Corollary 1. Under the hypothesis of Theorem 1 if ¢ is a

procedure taking values in [-A,A], then



(13) |Dn@,<P)| < 4a o7t 2111 Ei(lwi - ¢i|) + 0(n"} log n)

where O(n-1 log n) is uniform in 8.



CHAPTER II
SEQUENTIAL COMPOUND ESTIMATION FOR SQUARED ERROR LOSS

AND SOME DISCRETE EXPONENTIAL FAMILIES

1l. Introduction.

Consider the discrete exponential family of probability measures

on the non-negative integers

Pg(x) = 8™ h(8) g(x), x =0, 1, 2,... ; 8 €Q
where g(x) > 0 and
(A1) Q=[0,8], 0<B<w®

with B assumed known. (The condition g(x) > 0 is assumed by
Samuel (1965) and is implied by assumptions of Swain (1963, p. 25).)
Throughout this chapter we will be concerned with the Bayes response

(1.2) which for this family takes the special form

i
1 Py

i -~ ol
g(x+) ) p,(x) g T py

g(x) T-i pj(x+1) gL

e v (0 =

where we have chosen to suppress the display of dependence upon x
and E is f evaluated at x+l1. Any ratios 0/0 should be
interpreted as O.

Since pe(x) < %%g% pe(x) for all x and 0 < © s B, .the
hypothesis of Theorem 1.1 is seen to be satisfied under (Al). There-

fore, Corollary 1.1 implies that for any procedure taking values in

(o,8]

@) o @@ =28 a"" 2] £, (o, - ¥,1) + 0(a” 10g n)

10.



11.

where the O(n-1 log n) is uniform in 6. 1In (2) we have made an
adjustment in constant appropriate to the situation Q Ci[O,B].
However, for the most part we will be content to obtain bounds in
terms of order and will not attempt to keep track of the constant.
We will be explicit enough so that a constant can be recovered if
anyone is so interested. In subsequent sections we introduce proce-
dures and use (2) to obtain a bound on the rate of convergence of the
absolute modified regret. Among other things it will be shown that
if the family satisfies conditions in addition to (Al) then a bound
of order O(n'%) exists. Poisson and negative binomial families
satisfy the conditions. Before doing this we review or reference

what has been accomplished by others who have attacked the problem.

2. Review of Known Results and an Example.

Essentially, Samuel (1965) imposed the assumption
+
(A1) Q = [a,8]
where @ > 0 and B are known and considered the procedure

wi(xi) where

g (-1 217 5 v a)
slca-nt et

3 ?,(x) = AB

j) v m}

with Gj = 5(Xj

min {pe(x)le € [o,8]}. (In Samuel (1965) the truncation at B

,X), the Kronecker delta function, and m(x) =

was not made explicit but we assume this was intended since the

indicated proof of Theorem 4 depends upon the boundedness of the
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procedure.) Samuel showed that under (A1+) there exists a null
sequence Kn(g) > 0 such that Dn(g,m) < Kn(g). (In §5 we point
out that under (A1+), IDn(§,¢)| = o(1) uniformly in 8 and under
(Al), IDn(g,w)l = o(1) af each fixed 8, for two procedures ¢.)

To motivate the introduction of other conditions in addition to (Al)
or (A1+) we give an example that illustrates that the null sequence
Kn(g) may be going to zero arbitrarily slowly. That is, given any
null sequence Hn.> 0, there exists an exponential family and a

sequence B € [G,B]Q such that Dn(§,¢) 2 H for all large n.

Example 1. Consider pe(x) = exh(e)g(x), Q = [o,8] with
< B =1 and where g(0) =1 and g(x) < x-3, x 21 is yet to be
specified. We first point out that m(x) = Ey(x) for x 2 2. The
function h(8) = (83 ng(x))-1 is differentiable on (0,1) with
h'(@) = E] x 0% La(x) h2(8) so Pg(X) = -8 h'(8)/h(8). For
fixed x, 5% pg(x) = 8 'g(x) [x h(8) + & h'(®)] = 0% 1g(x) h(8)
[x - Pe(X)]. Since Py(X) = 8: x 8°g(x) h(®) < h(0) E: x2 =
-2

(- -]
Zl X

Hence, m(x) = Ry(x) for x 2 2. We now consider the modified regret

= ﬂ2/6 we see that g% pe(x) >0 for all ® and x 2 2.

for the procedure ¢ at the fixed sequence © =1 = (1,1,1,...). Here
D (L) =n " E B(@, () - D)
n >’ 1=i*"i
-1 an 2 i-1
- § =
2n" I P ((9,(x) - 1) [B] j 0])
-l gn o g(x) m(x+1) 2 i-1
2 - § =
no g ,:0 pl(x){g(x-i—l) mx) NP 1} B (27 8y =0l

207l 2} ) p fe - 1J% g (5] 6 = 0]
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= @- D5 p,(® (- p G+

> % T p(2x+1) (1 - py2x2))™")

3

where we have taken o = %. Let g(x) =x , x=1, 3, 5,... and
-3
x~ 2g(x) =a(x), x=2, 4, 6,... with a(x) strictly decreasing.
Then
@ -3 n-1
D (1,9) =% 21 h(1l) (2x+1) ~ (1 - h(1l) a(2x+2))
2% 5, h() 1) (1 - 2Iyn-l
n n-1
o -1 © -3 -2
where An = m1n{x|a(2x+2) < (n-1)""}. Since Eb(2x+1) 2 ¥(2b+1)
and h(l) = (z: g(x))-1 implies B = (1 + 2: xn3)-1 < h(l) <1,
we can write
. B 1 \n-1 -2
Dn(i}cp) 2 16 (1 = n"l) (ZAn + 1) .

By choice of a(x), An can be made to increase arbitrarily slowly.
Since (1 _‘;%I)n-l ~ el the example is complete.

Samuel's procedure (3) depends upon a knowledge of a positive
lower bound for the parameter set 2 as well as an upper bound.
The procedures we will introduce do not depend upon knowledge of a
positive lower bound. In fact, the realizable procedures ¢ that
we will be introducing are such that Qi(x) =0 on [Ei-l 5j = 0]
so that the lower bound for Dn developed in Example 1 applies to
these procedures also.

Swain (1965, pp. 25-26) makes four assumptions concerning the
discrete exponential family. Under these conditions he demonstrates
a procedure ¢ ,guch that Dn(2,¢) < Bn for all 6 where O < B =

O(n-%log n). His assumptions are satisfied by the negative binomial
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family for B < 1 and the Poisson family for B < 1. (A trivial
modification of his assumption (iv) and a slight alteration of the
proof of his Lemma 6 extends his result to cover the Poisson family
for any B. However, this will not be detailed here since results
to follow, in particular the theorem at the end of §5, show that
assumption (iv) is not needed.) In the following sections we will
derive bounds for the absolute modified regret under various sets

of conditions on the underlying family of distributioms,

3. Bounds for n ! &P E(le! - ¥.]).
= ———— 1 i i
We first introduce a procedure ¢' which is not realizable

under the sequential problem as originally stated. Define ¢£(Xi) by

i-1 g .
{21 6j + Si}

(4) oi(x) - B - 8
~ roi- ;
g{}.."l 6j+6i}
= ' = 1 . (] . .
where éj 6(Xj,x) and 6i 6(Xi,x), Xi, Xi are identically
distributed Pi and Xi is independent of (Xl,...,Xi) for all

i 2 1. (Recall that all ratios 0/0 are to be interpreted as 0.)

For each fixed Xi = X write
¥, ()
(5) Ej(loi(x) - ¥, (0]) =(J)‘ Eslpl(0) - ¥, (0 < -tat

.
+ [ Eilol ) - ¥,(x) 2 tlat
0

where Ei is expectation with respect to the measure induced by

(xl""’xi-l’xi)' We use exponential bounds of Hoeffding (1963)

to approximate each integrand displayed on the right hand side of
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(5). Temporarily we completely suppress the display of dependence
on x and delete the primes on 6{ and Ei. Also dropping the

subscript from Ei we have for 0 < t<§

g It 5
EE¢£-¢12tJSE[T-;—1-(¢i+t)Zo]

g 16_1
=eEl vy =0] =Elgi(y, - EY,) 2 ' EY.]
1 =-~ - =-g- i i =
with Yj 6j Ri(t) Sj’ Ri(t) g(¢i + t). Since -81 EYj
1 i ° ]
tgzl Py 20 and -Ri(t)-EYjSYj-EYjSI-EYJ,, Hoeffding's

Theorem 2 (1963) yields

~2 i 2
2 g°Cp,)
(6) Elo] - ¥, 2 t] < exp [- —; e 23,
* ig" (4R (£))

Similarly, we treat the other tail writing for 0= t < ¢i

g i
Elg! -y, < -t] = El——1 - (¢, - ) < 0]
1 1 ~216 1
i

1

i
E[El(Zj - Ezj) < -z Ezj]

with Zj = 6j - ?i(t) )

~

3 5, () = -g(wi - t). The inequalities
i =t &3l < - -Ez <z, -EZ <1 -EZ, impl
-El EZj t . 21 pj 0 and Si(t) 3 3 3 3 imply

<l (2
2g2 @] P,y 21

(7) Ele! -y, s -t] < exp {-
o 18" (15, (0)

Noting upper bounds for Ri and Si we combine (6) and (7) obtaining

for all 0< t<2§8
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2 @)’ ,

(8) Ello! -¥.] 2 ¢] s2exp {- |
o1 i g2 (1+zifs§)2
Since f exp {-ct }dt < %(/c) , (5) and (8) imply
0
9) Bloy - ¥, D sBa+HE )T i

for a constant B not depending upon 8, i and x. Inequality
(9) provides a high rate of convergence at x = 0 because

Ei pj(O) 2 h(B) g(0) i; and, therefore,

(10) E(l9](0) - ¥,(0]) = ¢ 17

for a constant C not depending upon © and i.

Proposition 1. If the family of distributions satisfies (Ai+),

then

(11) PiE(Icpi - \pil) =o0(l) asi-®

uniformly in @; and, consequently,

(12) n-1 8? PiE(lwi - ¢i|) =o0(l) asn-—-®

uniformly in 8.

Proof. It follows from (9) and the fact that ¢i and ¢i

take values in [O,B] that for each fixed x, E(IQi(x) - ¢i(x)|) <

£ GOAB where £ (x) = B(L + —5327) o l(x) 17%, m(x) = inf {pg(x)|0 € 02}

g(x+l
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and m(x) > 0 under (A1+). Since Pe < %%g% PB’ PiE(|¢£~- Wil) <
E%g% PB(fi(x)AB). The right hand side does not depend upon 8
and goes to zero by the dominated convergence theorem.

We now use the Berry-Esseen normal approximation (Loeve, 1963,
p. 288) to bound the integrands displayed on the right hand side of
(5) for each x 2 1. The resulting upper bound for E(|¢i - Wil)
is more tractable than that provided by (9).

~

As before consider Y, =6, - R, (t) & and let W, =
378 T R(B) 0y j

(Y. - EY.)/(1 + R.(t)). Since |W.| <1, E(|w.]%) < E®W?) and
i b i ] j ]

it follows with ri(t) = Var(ﬁi Yj) that
-3 i 3
(13) L (t) = r;"(t) I E(IYj - EYjI )
< @l E(W?))-% - rzl(t)(l + R (D).

2 2 - 2
Explicitly, ri(t) Elfpj + Ri:(t)pj - (p, - Ri(t)gj) }. Note that
2

h| -

q = inf {1 - pa(x)|x 21, 6 €Q} >0, R{(t) < (285)2,;3 <plp

0 2 i g h| g8 ]
so with ? - B& + 45252, x21,

g

g
i~ 2 i 2 i

(14) ] by + ¢ Ky(£) T] p, S ri(0) < 125;1 Py
Hence,
(15) L0 s @E 57+ (@B p )R

The Berry-Esseen theorem implies that for a constant c

i
gL  p
(16) E[¢£ - *i 2 t] < ¢(- E—?izz§ t) + c Li(t)
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where ¢ denotes the distribution functlon of N(O, 1) We can

write for a> 0, j' o(-at)dt < a lj' o(tyar = 21 g7t IP[IXI 2 1]dT =
_ 0 B 0
2 1 a_ P(IXI) where X ~ N(0,1). Therefore, f d(-at)dt < (Zn)-%a-l.
0
Using this result and the upper bound in (14) yields

- el
B g p
(17) o(- —1_i t)dt < gL .
ARG @m* §@] p))*

We combine (15)- (17) to prove
P g P 15 y-%
(18) % Elo; - ¥, > elde < D{@ T+ DE] p)7* + &) 2,) 7"}

for a constant D.

Unfortunately, the problem is not symmetric and the other tail

~

must be treated separately. As before let 2, =6, - Si(t) 6,. For

170, 3
o<stsy,, s?(t) = Var@: Z ), and U2 =p &4 Bz E- ve have
i’ i 1 7] g g2

2 2 i
(19) q 21 p +qs? £ (0) z Py = s;(6) s U° I} Py

With Li(t) = (t) 2 E(Iz - Ezl ) we have Li(t) < s] Lty
(1 + Si(t)) so

~

(20) L' (t) < (q 21 3

)7+ (g2l p )7
j
and proceeding as in the derivation of (18)

@1 YiEfwi -, s -dlae s o{ U+ DE] ) 7F+ @] 57
0
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5 -
Since UST=< 5%‘ 32 + 2B g, (18) and (21) combine to yield
24

b, el s b
)+ (€ pj) }

3
(22) B(loy - v, D = o{& + DE]
g

for each fixed x 21 and a constant D.

Proposition 2. If the family of distributions satisfies (Al),

then at each 8 € Qm
(23) PiE(|¢i - Wil) =o0o(l) asi-=®;

and, consequently,

-1 an , _ -
(24) n I PiE(Icpi -¥. ) =o(1) asn-e.
Proof. We can write PiE(I¢£ - wil) < E(|¢i(0) - ¢i(0)|) +
B Pi[x >0]sc i-%‘+ B Pi[x > 0] wusing (10). Therefore, if 0 is
such that Gi - 0 as i = ® then PiE(|¢i - Wil) = 0(l). Otherwise,
E;;i ei > 0 and for each x, Ei pj(x) - @, Thus, (22) applied for
x 21 and (10) for x = 0 shows that at each fixed x,
h(0
' - - S_Ll s
E(|¢i(x) ¢i(x)|) 0. Noting Pi 1 (8) PB the proof is completed
by application of the dominated convergence theorem.
Under the assumption (A1+) the bound (22) takes the form
&gl )k
(25) Ele! - ¥ 1) s p(1 + &)@ p))
i i g% 173

~

where we have used the relation ;j 2o g pj and D is some
constant independent of O, £ and x 2 1. Writing ET PiE(|¢i - ¢il) =

£ 2] p, 0 Eclelt0) - ¥, 0], (10) and (25) yield
x=0 - '
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-1

n - -1 «n .'52
(26) z] PiE(Icpi - ¢i|) scn Il

-1 % i -
+pn 2 + _§4§L) 811‘ pi(x)(zi pj(X)) %,
x=1 g “(x+1) ,

Lemma 1. Ena(zla)-%sz(z?ai)}é for all aiZO,ISiSn,

S T L T
n=21,
i . . ¥ %
= . < -
Proof. Let Ai 21 aj The inequality O A, 2Ai A7 | %
5 ,% -% % %
< - < -
Ai-l implies a; 2(Ai Ai Ai-l) from which a; Ai 2(Ai Ai-l)'

Summing from 1 to n proves the lemma.
Let M(x) = sup {pe(x)IG € Q}. Dividing the pi(x) by M(x)
%

we use the lemma to bound the last term in (26) by 2D n

8“(1 + g%(x)/g}ﬁ(x+1)) M%(x). Since M(x) s %(Lg)l pB(x) (26) becomes
x=1

. 3
@) otz pEde! - v D) s cnf+pn® 201+ —gil‘)—) pg(x)
i t x=1 g%(x+1)

for appropriate constants C' and D'. This motivates the follow-

ing assumptions concerning the family of distributions:

% .
(A2) Z pa(x) <

and

80 20y

43) L @D

+
Proposition 3. If the family of distributions satisfies (Al ),

(A2) and (A3), then

(28) ot 2D e edle)y - v, = 0™
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uniformly in 6.

Proof. The proof follows directly from (27).

It follows from (2) that the bounds on the rates of convergence
indicated in Propositions 1, 2, and 3 also apply to |Dn(g,¢')|.
In §5 we will bound the absolute modified regret of realizable
procedures ¢ by bounding n-1 E? PiE(|¢' - ¢|) and applying a
triangle inequality. Before doing that we show that under (Al)
and assumptions stronger than (A2) and (A3) the bound O(n-%)

holds for a procedure o".

-1 n {1}
4. Bounds for n 21 E(I(pi - Wil).

We introduce the procedure w;(xi) where

g{Zi-l 6j +6' + 2; Cj}
(29) P (x) = e AB
b ]
g[zl 6j + 61}
Here Cl’ Cz,... is any sequence of independent random variables

satisfying |€j| <1, E gj = 0, with (Cl,...,gj) independent of

' 2 _
1o XX L=

the prime on éi is omitted and E denotes expectation with

(0:¢ for all j 21 and © Ei E C§ = ®, Henceforth,

respect to the measure induced by (Xi,...,Xi_l,Xi,Cl,...,Qi).

Bounds for n-1 2? PiE(|¢;(x)- ¢i(x)|) will be evolved by bounding for
fixed x and then completing the Cesaro expectation. The artificial
randomization makes the variance of a sum divergent and permits the

use of Survila's strengthening of the Berry-Esseen theorem (Survila,

1962) to develop the bound for fixed x 2 1.

Theorem (Survila). Let Ul’ U2"" be a sequence of independent

2
random variables with PUi =0 and §i = PIUi|3 < o, Define s =
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n -3 @n
Var (21 Ui) and Ln =8 21 §i. If Ln 0 as n—= % then
n 2,-1
|P[El Ui < tsn]-o(t)l Sc (l+¢t) Ln for all n and t where
C 1is a constant.
Let x21 and 0=t S.B be fixed and the display of de-

pendence upon x suppressed. Then we can write

" i - - i
(30) E[cpi -V, 2 t] < E[Zl(Yj EYj) < ZIEYJ,]
P = g' = s -
where Y_‘] f Gj + gj - Ri(t)éj, Ri(t) ‘g(wi‘l-t)’ EYJ Pj Ri(t)pj’ and
EiEYj = -~§ Eipj t. With fLi(t) and ri(t) defined as in (13)
it follows from |Yj - ijI < 2(14R (£)) that
-1
(31) Li(t) <2 r, (t) (1+Ri(t)).

2 2 ie. 2 ~ 2
Explicitly, r (t) = 0, + Ei{pj +'Ri(t)pj - (p, - Ri(t)pj) } so

3

2 2 i 2 2 i
(32) cri + q Ri(t) Elp < ri(t) < Gi + '1’2 319

] 3

2ok ik 2 2w i
= i - <
where B . + 48 - Since Oi ® and Ri(t) 28 2’

g
Li(t) - 0 as i—=® for fixed x21, 0< t< B, Survila's

theorem and (30) imply

g Lip g Iip 2.-
(33) E[cp'i' - ¢i 2 t] So(- -g-—l-.—i-z-ljt) + c Li(t) {1+ (g—;—idjt) } 1.

The inequality ri(t) < Ui + T(zi pj)% together with the technique

culminating in (17) imply

glo, + T(Ei pi)}é}

B e 2; P
j‘q&._(- —r-(_tg. t) dt < —
0 AR g Iy P,

and another application of (a + b)!E < al5 + b%, a, b>0 on T2 shows



23.

B ”gzip g o, 28
(34) [ o(- —==lt) ar < i— 4 + BBy}

B
-1 -
The inequalities 2m f(l + aztz) 1dt < a , (32), Li(t) <2

0
-1 i - .
{Ui + (q 21 pj) %} and an upper bound for T show that the 0 to

B t-integral of last term of (33) is bounded by

o, 8

3 %
i -3 i -1
(35) B{— (2 Py 2+ 6 % +DE; py)
% i -3
+ & +DE )T
g ]
for some constant B. (In deriving (35) we take O, =1 so that

1

0;1 <1 for all i.)

v The other tail can be treated analogously and the integral
i

f E[¢; - Wi < -t]dt has a bound with the same structure as the

0 _

bound (34) and (35) provide for the t-integral of the left hand

side of (33). Thérefore, the following inequality is proved:

(36) E(loy - ¥, = B{—--(= PPZ 4 (2

€ oyt e & + D@ p)H
1Pj ;¥ 1 Pj

for some constant B independent of 8, i and x 2 1.

Inequality (36) is analogous to (22). Recall that Lemma 1
and assumptions (A1+), (A2) and (A3) were needed to deduce the
consequence of Proposition 3 from (22). At this point we prove a
lemma which is useful in applying (36).

Let 0" ={8l0s08<= L 0%g(x) <=}. If B>0 isin the



24,

*
interior of Q  then each PO’ ® < B, has an exponential rate on

its tail probability. Write
+ *
a2) B € interior Q .

(It is clear that (A2+) implies (A2) and the exponential rate on

. | .
the tail probability. For if B <d, d€Q, then py(m) < PB[x 2 m) =

E:Bxh(ﬁ)g(x) s %{%%ﬁ%)m Pd[x 2 m] < %{%%(%)m for each m.)

Lemma 2. Let 1< Bi S i be an increasing sequence. If

(Al) and (A2+)gobtain, then
n i _
37 21 Pi[rl pj(x) < Bi] = O(Bn log n)

uniformly in 8.

n i
< <
Proof. For fixed x, 21 pi(x)[z1 p.(x) Bi] B so

h
: n
ET Pi[Zi pj(x):SBil < mB, +&; P.[x 2 m]. Since the family has monotone

increasing likelihood ratio and [x 2 m] is increasing in x,
Pi[x 2m s PB[x 2 m]. But under (A2V) PB[x 2m] <cr’ where

*
c = h%%%, r = % for some B <d, d€Q . Therefore, for any m 2 0

=

i
(38) 8'1‘ p,[z] pj(x) < Bi] <mB +cn .

B
Letting m be such that n = Bn’ it follows that m = (log ;B)llog r

< (log n)/log r-l; and, hence, the result follows from (38).
Before proceeding we digress to compare this lemma with Swain's

Lemma 6 (1965, p. 31) specialized to k = 1. To prove (37) for the

case Bi = ie, 0 <e <1, assumptions (i), (iii) and (iv) were used,

(iii) being
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X+

(1i1) g(x)g(y)

S M'<® for all x and .

*
Remark. (iii) implies Q is open on the right; consequently,
(iii) implies (A27).

Proof. We have psl(m) Pe[x 2] = h‘l(e) 2: g ™ h(®) g(x-m)

- *
X <h 1(B) M' =M for all ® €Q and every non-negative
g(m)g(x-m)
[ ol m-1 pa(j) . . m
integer m. Thus, Pe X 2 =T, (1 - §;E§EET) implies Pe[kaJ <r

where r =1 -‘% < 1. From the exponential rate on the tail probability

* *
it follows for any B € Q there exists a d > B such that d €Q .

For with 4. s > 1, h(B) ) dxg(x) =P (sx) =L ¥ pg (x) <
B 0 B 0 B
2“ X . . '1
0 (sr) and the last series converges with s < r .
Preparing (36) for application of Lemma 2 the trivial bound

|¢g - Wil < B and partitioning by [2; pj < i%] lead to

o]

o.i8g % . -
9 Edey - ¥, < BlE) p, < *1 4+ BiE— PE @y :

for some constant B and all x 2 1. On [x = 0] a bound like
(10) holds for ¢;. (The artificial randomization did not change
the expectation of the Y, and increased the range of Y

3 ]

by a factor of no more than three. Then Hoeffding's Theorem 2

- EY,
J,

(1963) implies the result for m; as it did for @i). Therefore,

(39) leads to

-1 @n " -3 -1 @n i X
(40) ™" I PiE(Icpi - wil) o) +Bn I Pi[El py < i ]

1
g, i"8 g(x) by
-1 &%, i g (%) n i -%
+ B.n ETS) + , + 1} 81 pi(x)(}:1 pj(x)) .

x=1 g (x+1)
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Write

' X -

Proposition 4. If the family of distributions satisfies (Al),

1
(A2+) and (A3 ) and mg is such that i =2 G? + ®, then

-1 an " _ -%
(41) n 2] PE(ley - v, D) = 0™

uniformly in 8.

Proof. The proof follows from application of Lemmas 1 and 2
to (40) and the fact (A2+) implies (A2) which together with (A3')
implies (A3).

In the next section we introduce some realizable procedures and

bound their corresponding modified regrets.

5. Bounds for Modified Regret.

* *k
Define two procedures ¢i(xi) and wi (Xi) by

i 1
(42) ?; (x) = —z—i-—-i
8 &) 63
‘ g Zi-l 31
(43) @) (x) = —— A8,
g{1+Z 6_1}
and abbreviate zi-l Gj = Si-l' Since ¢i = ¢: = ¢:* =B on

~ . : *
- = 2 1 ! - =
1-1=1[g Si_1 B g (Si-l + 1)] we can write |¢1 ¢i|
* Jek k% .
Iw' - ¢.|I; |¢' - I = |¢' - @, lI. It then follows by consideration
i i i i i i
of the values taken on by ¢i on [Xi = x], [Xi =x + 1], and

[x; ? %X £ x+ 1] that
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g S

* B
' o < = 1 = Xt =
|¢i mil B[Si_1 0] + EIjlei x][si_1 > 0] + —B—] ;X 1][8i

i-1

and

S

**k
|¢i - P, | < Bls, , =0l + { sg + L Jx;
%1 ®ia1

x + 1]ls,_, > o]

+_L[xg # x,X!' # x + 1][s, , > o).
Sija1 1 t i-1

From these two inequalities we have

Voo Vo oX _ B
(44) lo; - ol lo) -9 | <8ls, _, =0]+F—s . >0

i-1

+=2—TIx' = x+1][s. , > o0].
g Si-l i i-1

-1

Lemma 3. For each fixed x and i 2 2

(s,_, >0l i o1
—_— ) <
(45) By s 4 @) e
i-1 )
Proof. For each x, [S > 0] S-1 < 4 (S +6' + 1)-1
m—t—— ) i‘l i-l i'l i .

Since (Si_1 + Gi + 1)-1 is convex in Si- + 6{, Hoeffding's

1
Theorem 3 (Hoeffding, 1956) implies E((S, , +8) + 7)) =
i

1 Py
inequality implies E((Si-l +-5£ + 1)-1) <Si/((1+1) Ei pj) s

23 (3 + 1)-1(;) pj(l - p)i-j where i p =21 This last

(Zi pj)-l and completes the proof.

+
Proposition 5. If the family of distributions satisfies (A1),

then

(46) PECo - %) = o), P.E(0! -0 ]) = o(1)
i i i ’ i i i

1

> 0]
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uniformly in 8; and, consequently,

o(1l)

-1 «n * _ =1 «n , Sk
47) n"" Z] PE(9; - 9 ) = o), n7 I} PE(9} -9, |)

uniformly in 8.

Proof. For fixed x the E expectation of the right hand
side of (44) is bounded by B exp{- 21-1 pj] + 4B(Zi pj)-l +
i -1 _ g <
48 Py (21 pj) = g; vhere Lemma 3 and 3P Bpi have been
used. Weakening the bound to B exp{-(i-1) m} + 8B 1-1 m-1 = fi
where as before m(x) = inf{pe(x)le € Q} > 0, we have
* ok h(0)
v ' < :
PiE(lcpi cpil)\/ PiE(Icpi ? | h(g) Pe(fy A B). The right hand

side is independent of © and converges to zero by the dominated

convergence theorem.

Theorem 1. If the family of distributions satisfies (A1+), then
* *k
(48) Ip_@,9)] = o), D (8,9 )| = o(1)

uniformly in 8.

Proof. The proof follows directly from (2), Propositions

1 and 5, and a triangle inequality.

Proposition 6. If the family of distributions satisfies (Al),

(- -]
then at each fixed 0 € Q

* *k
(49) pEClp; - 9.1 = o)), BEUe; - ) = o();

and, consequently,
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-1 .k -1 K
(50) n"" L] P.E(lo; - 9 1) = o), n7" E] REde) - 9 ) = o(1).

Proof. Consider the bound 8; of the proof of Proposition 5.
If 6 1is such that limi Gi > 0 then Ei pj - ® and g 0 so
the dominated convergence theorem implies the result. Write
PEC9! - 9.0) < El91(0) - 9(®)]) + B P.[x > 0]. The term

i i i i i i ’
*

E(Iwi(o) - ¢i(0)|) = 0 at any © since m(0) > 0, and, therefore,
gi(O) - 0. For Qi - 0, Pi[x > 0] - 0 so the result is proved for

* ek
the procedure mi. The same proof works for ¢i .

Theorem 2. If the family of distributions satisfies (Al),

then at each fixed © € Q°°
' * *k
(51) Ip_&,0)] = o(1), |p_(8,9 )| = o(D).

Proof. The proof follows from (2) and Propositions 2 and 6.

Example 1 illustrates that in order to deduce rates of convergence
it will be necessary to examine the bound (44) in the case the family
satisfies conditions in addition to (Al) or (A1+).

One such condition is
]
(A2 ) PB(X) < @,

1
and notice that (A2+) implies (A2 ).

Lemma 4. (a) Under (Al) and (A2+), n-1 2? _Pi[si_1 = 0] =

O(n-1 log n) uniformly in 8.

(b) Under (A1) and (A2 ), n" " 8’1‘ Bls  =0]-= 0(n"%)

uniformly in 8.
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n n
. i = < =
Proof We write 21 gi[si-l o] xEmEI p; (%) Ei-l[si-l ol +
E? Pi[x 2 m]. The monotone likelihood ratio property and the fact
that the pi(x)_l_’_i_l[si_1 =0] = gi[xl # x,...,Xi_1 # x,Xi = xJ

are probabilities of disjoint events together imply
n
= < 2
(52) .‘:lgi[si_1 0] m+nPB[x m]

for any m 2 0. Under (A2+), PB[x 2m] <c r" for some constants
c, 0< r< 1. The choice m = - log n/log r proves part (a).
Under (AZ'), PB[x 2 m] < PB(X) m-1 and the choice m = n% proves (b).

This lemma allows us to treat the expectation of the Cesaro mean
of the leading term in the bound (44). The second and third terms

are now investigated,

-1 on [si_1>o] L
Lemma 5. Under (Al) and (A2), n 81'21( S ) = 0(n ?)
i-1
uniformly in 8.
Proof. From [S§ > 0] s7l < (s > 0] s7} )15 Jensen's
~Loot. i-1 i-1 i-1 i-17
inequality and Lemma 3 it follows that ‘gi_l([si_l > 0] S;il) <

2 (21 )-%. The proof is completed by application of Lemma 1.

1 Py
1en glx; = x+1lls,_, > 0]
Lemma 6. Under (Al), n = I, P_E( = ) =
- 171 g Si-l

O(n-1 log n) uniformly in 8.

. -1l @n *®
Proof. The left hand side can be writtem n 81 20 pi(x)
=l -1 -l e® an 2
> <
pi(x+1) g(x) g (x+ 1) 21_1([81_1 0] S;.1) =48 nm 20 21 p; (x)
(2; pj(x)).1 where use has been made of Lemma 3. The rate

O(n-l log n) follows from Lemma 1.1.

Proposition 7. If the family of distributions satisfies
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(Al), (A2) and (AZ'), then
- * - - -
53 o7 2] pEClo) - o)) = 0™, o712} 2EClo) - o)1) = 0a7H)

uniformly in .
Proof. The proof follows from (44) in view of Lemmas 4(b),

5 and 6,
Theorem 3. If the family of distributions satisfies (A1+),
]
(A2), (A2 ) and (A3), then

(54) o, @951 = 0™,  Ip €™ = 0™

uniformly in 8.

Proof. The proof follows from (2) and Propositions 3 and 7.
* Jok
In order to prove rates for ¢® and ¢ in the case (Al)
rather than (A1+) is assumed, we investigate n-l 2‘11 PiE(|cp; - qfi'l).

A straight forward computation shows

- " g|T I [N
(55) |<P;L <Pi| sBls, , + % ol + G 1 ) (s; 1 +8;>0]
1 B Gy 46
i
- i . - oMt
'where Ti 21 Cj. Since Icp;_ cpil < B we can partition by
[Ei P < i!‘] and weaken the bound of (55) to
2 g|t,|
1 X _ i N
B(z] Pj51.|+5[3i_1 0]+§(si-1+6i+1) ] P, i*].

The first two terms can be disposed of by Lemmas 2 and 4. As
indicated in the proof of Lemma 3, E(si-l + 6]!. + 1)-1 < (2; pj)-]'.
Hence, the independence of T, and (H,...Xi,xi)_ together
show that for each fixed Xi

with fact ElTil <0 X

i
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|, |

[ ]
Si-1+61+1

E(

i X i -%

. 8 . !
if Oi < i. Therefore, under (A3 ) the Cesaro mean of the overall
expectation of this term is O(n-%) in view of Lemma 1. We have

proved:

Proposition 8. If the family of distributions satisfies (Al),

8

|}
(A2+), (A3 ) and CI,C is such that o, =i, then

gres

-1 «n s - -%
(56) n" ] P E(log - i) = 0™
uniformly in 8.

Theorem 4. If the family of distributions satisfies (Al),

a2%) and (a3'), then
* ..!5 J%k -35
(57) Ip @9 = 0™, |p @9 ) = 0™

uniformly in 8.

Proof. The proof follows from (2) and the Propositions 4,
7 and 8.

Theorem 4 can be compared with another result. In view of
Lemma 2 and the remark that follows it, we can state a strengthened

version of Swain's Theorem 3 (Swain, 1965) specialized to k = 1.

Theorem. If the family of distributions satisfies (Al),

2%y and
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(A3-) (x) <>

X
E g(x + 1) pB

then sup [Dn(§,¢**)|§ € Qa} <B = O(n-% log n).
The higher rate of convergence indicated in Theorem 4 is obtained
under an assumption (A3') stronger than (A37).

The construction of the procedures w* and ¢** depends upon
knowledge of B. If B were not known, then the natural estimates
of ¢i could be truncated back to ai where ai + ®, It can be

shown that these procedures result in bounds of order O(ain-%)

replacing the O(n'%) given in both Theorem 3 and Theorem
4,

Example 1 demonstrates if all that is assumed is (Al) or (A1+)
then o(l) is the best available uniform bound on IDn(ng)I when
¢ 1is either ¢*,¢** or the procedure suggested by Samuel. 1In the
next section we give an example whiéh satisfies the hypothesis of

Theorem 3 and shows that the beund O(n-%) is fairly tight.

6. Examples.

Examples of exponential families which satisfy conditions
(Al), (A2+), (A3) and (A3') are provided by the Poisson family for
B €« ®» and the negative binomial family pe(x) = (a + : - 1)9x (1 - e)a,
8 <B<1, a>0 fixed. |

In §1.2 a necessary condition was stated for the existence of

a compound procedure ¢ satisfying
— @
lim  sup {Dn(2’¢)|§-€ Q} <o,

For squared error loss the necessary condition reduces to the
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existence of a non-randomized procedure wl in the component

problem satisfying
(58) sup {2, (0 - 9)%)|0 €q} <=,

With the negative binomial family all [O,l]-valued procedures

wl have risk functions uniformly bounded by unity. However, (58)
illustrates the necessity of assumption (Al) or (A1+) in the Theorems
1, 3 and 4 for the Poisson family. For with this family and unbounded
parameter set, (58) fails for any procedure ¢1 (Lehmann, 1950, p.
4-13). We sketch the proof. Letting PB( ¢1) = 0 + b(8) the
Cramer-Rao inequality proves Pe((e - ¢1)2) 2 {1+ b'(@))z/

Pe((§§ log pe)z)} + bz(e) =01 + b'(ﬁ))2 + bZ(O) from which it
follows that II;Q*Q P‘((Q - ¢1)2) = 4@,

As a matter of possible independent interest we give an example
which illustrates that this property exhibited by the Poisson family
need not hold for other exponential distributions on the non-negative
integers with unbounded natural parameter spaces. Consider pe(x) =
8*(x1) *h(6), 0< 8 <®, and @(x) = x’. Then Py(p) = 8 and
Pg((® - 92 = h(®) (] x 85D F - 87 w7 (®F = n(®) {0 + Llx (x)7F
((x-2)1)"%16%} = n(@){o + z5 (F(x-1)"F - 1)((x-2)1)"% 8¥}. 1t
is easy to verify that x%(x-l)-% -1 g (x(x-l))-}5 for x21 so
Pe((® - 9% < n(®){6 + T, (x1)7* 8%} = n(8)(n"'(®) - 1) <1 for
all ©.

The family of distributions in Example 1 satisfies the assump-
tions (A1+), (A2) and (AZ') and illustrates the necessity of adding

* sk
another condition in order that the procedures @ or © attain
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any rate O(an) uniformly in E, a a null sequence.
We now give an example of a family satisfying the hypothesis of
Theorem 3 which shows that the bound is fairly tight.
Example 2. Consider the exponential family with g(0) =
-4 -3 -a-1
g(l) = 1; g(x) =x , x=2,4,6,...; g(x) = x log X,

x=3,5,7,... and Q= [a,1], 0<a <1, where a> 0 is fixed

but otherwise arbitrary. It is not difficult to verify that (A2),
1
(A2 ) and (A3) are satisfied. Then at ® =1 with n 22 and

any procedure ¢ such that [¢i(x) <al 2 [Ei-l Ej = 0],
_ .=l en 2
D (A, =n "L P((1-9)7)

20"t 20 R (1 - 9 )%E]

-~

> (1 - a)? gn[ﬂ?-l 6j = 0]

2 (1 - )2 £] py(2x + (L - p,(2x + 2y)"-1

2 (1-a)® (1 -BLyn-1 g%

n-1 7% py(2x + 1)

where An = min [xI(Zx + 4)4 2 n-1} < %(n-l)k. Comparing the series
®
E: p;(2x + 1) with the integral f x~3 log-anlx dx shows via
A+l
integration by parts that for A 21, EA p1(2x + 1) 2 % h(1)

(a+3) 1A+ 1)72 10572 (28 + 1). Therefore,

Dn(l;¢) 2 K n-}i log 2 'n

for some constant K > 0 and all large n.



CHAPTER III
SEQUENTIAL COMPOUND ESTIMATION FOR SQUARED ERROR LOSS

AND A FAMILY OF NORMAL DISTRIBUTIONS

1. Introduction.

Let P be a family of probability measures on the measurable
space (X,B) where X 1is the reals and' B the Borel o-field.
With p denoting Lebesgue measure suppose that for each P € P,
P<<p and p = %ﬁ is a differentiable determination of the
Radon-Nikodym derivative. (Consequently, p 1is the ordinary deriv-
ative of the cumulative distribution function.) Let P= (PI’PZ"'°)

where Pi € P and let Xi ~ P, be a sequence of independent :

i

random variables. For each x € X we are interested in estimating
(1) v, (x) = $=(log £ p (%))
i dx 1% )

For example, when P = [Pele € Q}, QcX, and pe(x) = k(9)
£(x) eex, a Bayes response versus Gi the empirical distribution

of gi takes the form

(2) ¢i(x) = ui(x) - %T§§l'

Therefore, if ui(x) can be estimated then Wi(x) can be estimated

through (2).

2. Estimation of ui(x).

Define the distribution function
X
: -1 i
= i z d
(3) PG = iT [ 2] py(v) dv

where we have abbreviated du(v) to dv. Also for 12 hi + 0

36.
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and any distribution function F define

) €, (F)Gx) = h]" log —=

The mean value theorem for integrals implies that under suitable
conditions ti(Fi)(x) - ui(x) - 0 as i - %, This will be discussed
later after investigation of the problem of estimating ti(Fi)(x)
from the sample (Xl,...,Xi). We make the following assumption:

there exist functions Mi such that
®
(A1) sup {[e,FO| | BE€PY s M (x) <o,

Consider the estimator

* *
(5) £, = (¢,(F)) AM) V (M)
*
where we have no longer displayed the dependence on x and Fi
is the empirical distribution function of (xl,...,xi). In (5)

any undefined ratios are to be taken as zero. We use the method

of Chapter II in writing

| > = [ cler | 2] o
(6) R.( ti-ti(Fi))—‘g plle; - e, )l 2 9] av

and bounding the integrand by use of the Berry-Esseen theorem.

Let 0svs 2Mi and write

* i
[ti - ti(Fi) 2vy] < [21 Yj 2 0]

~

where Yj = 6j - 6j exp {hi(ti(Fi) + v)} with Gj =1lor 0 as

= 0 -
Xj € (x,x + hi] or not and éj 1 or0 as Xj € (x hi,x]
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or not. The Berry-Esseen theorem implies

N Ei[t: -t @) 2] < @(rzl(v) z! PY)) + e L (W)

2, . i -3 i 3
for r;(v) = Var@] Yj) and L (v) = r;"(v) £} Pj(IYj - Pj(Yj)l ).

We have

tip (v

x+ h h.,v X+ h
- i . - VY < s .
1 5 ) i Fin i(l - ei) i hi Fi]x iv

3

and by consideration of the variances of the three point distributions

of the Yj’

2 x+ h 2 6M x+h
. o <
¢ 1F ] T s siei R T hy

with
1l - qz = sup {P[x,x + hl] I x €X, P €P].

Since |Y - P (Y )| <1+ e3Mi implies L,(v) s (1 + e3Mi) rTl(v)
©® ] i 1 i

and I ® (-av) dv < (211).!5 a-l, we see that (7) implies
0

M, : M @)%t gyt
-t > < ;
(8) { gi[ti i(Fi) v] dv i

(2m i)* h, Fi]: +hy
M,
-

2c Mi (L +e

+
q @FIY By

To treat the other tail let 0 s v s 2Mi and write

* i
(e - e, (F) < -v] < (27 z, = 0]



39.

where Zj =06, -8, exp {hi(ti(Fi) - v)}. The Berry-Esseen theorem

yields

9) ple] -ty = vlsesiw iz ) + ¢ LI(v)

i3

with si(v) Var (Ei Zj) and L;(v) = S;B(V) zi Pj(lzj - Pj(zj)|3).

We note

P(Z) .F]X-i-h 1

3

i(1-eMYy 230 FI** Py, 0svshl
1 1 X 1

and that the variance satisfies

2 iF.]:+hi < si(v) <1 eMFp1Xthy

q - nt
1

Since L (v) S (l+e i) s (v), it follows from (9) that

M) A h. » M (Fi]x +hyy%
(10) [ Bl e @) s -] avs Y
0 1ot 17X + by

@am i.)}é hi Fi

oMy yAh; Lha + My

q (1% X+ bk

+

b

For any non-increasing function g and 0 < a < b, I g(v) dv =
a 0

a-1 b f g(v) dv. Applying this observation with g(v) =

0
* -1
- < - = 2 = d
Ble, -t (F)<-v],a=(2M) Ah; 21, b=2M and the boun
(10) we obtain
M

M x + h .}
M, ei (Fi]x - hi)

]x+hi

*

(11) Ip (e - ti(Fi) < -v)] dv <

P
=

|

o—N

@2m 1‘.)}511i Fi

2c Mi (1 + eMi)

q (L FIET Py’

+
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which when combined with (8) proves via (6) that

M x + h,. %
(L+4M) e>1 (F.] i)
a2 pdle] - e, @) s : Px-hy

N X+ h
2 mi) hi Fi]x i

b4e Mi 1+ eZMi)

e FINT hyys

Now we introduce conditions thatlwill ensure that ti(Fi) -
u; = 0 as i = ®, The conditions seem arbitrary but they are con-
venient for reducing the notation in the bounds and are easily

verified for a family of normal N(8,1) distributions. We introduce

the notation

£sy = sup e | |y - x| <83,

A basic assumption is that each p 1is twice differentiable at each

X. We also assume that there exist functions A and B such that

for all P

(A2) pil)(X) SA(x) <=
and

(a3) p'('l)(X) < B(x) < =,

As immediate consequences we have
(13) lp(x + 8) - p(x)| < A(x) |8]  for a11 p, |&] s 1

and
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(14) [p'(x+8) - p'0| < Bx) 8]  for a11 p, |a] < 1.
x+A x+4 2

Also, pr(v) dv = f {p(x) + (v - x) p'(x) + 5(v - x)° p"(2)]} dv
x- x-

for some z € {v,x} proves by way of (A3) that

x+A 2
1) le®™? [ pw) av - pwl s-‘iﬂ% for all p, 0<A < 1.
X
We write
(16) [, DG - v, @] = 1) + 3 + R
where
_ -1 x+ h,y _ , -1
I(x) = Ilog(hi Fi]x i) log Fi(x + %hi)l hi
J(x) = I1og(h'1 F.1* ) - log F'(x - kh.)| nol
i i'x - hi i i i
and

- -1 [ X+%h d_ [
K(x) = |h]"(log F))IT T inl G los Pl
The inequality Ilog a - log b| < (aA b)-lla - b| and the technique
used to prove (15) result in

B Ch,

1
1
24 Fi

(17) IVJs

where the display of dependence on x is suppressed and the function

C 1is defined by

inf{p(x + &) |a] = 1} = lé—(% .
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In order to put K in a more tractable form let € € (x,x + %hi)

- ' =
and 6 € (x %h,,x) be such that log Fi(x + %h.) = %h,

(Fg (ei)/Fi (61)) + log Fi(x) and - log Fi(x - %hi) =

%hi(F;(51)/Fi(5i)) - log Fi(x). It follows that

LA COTRNEFNCRIES HCOT RN HECR IR JTeb]

ey ep - Fp @l , lFy 6)) - Fiol
FiCp) Fi 8y

Assuming there exists a function D such that for all P, € P4,

i=z1
[Fy
—— <
(a4) oy S D) <@
i
we have
(AD + B) C hi
(18) K < T
i
Combining (16) - (18) yields
(AD + B) C hi
x+ h B(x) hi
. . . ]
Inequality (15) implies Fi]x _ h; < 2hi Fi(x) +—3
(12) can be weakened to
B35 C

3Mi {

* C
200 P.(lt. - £, (F)]) sk e +
=i\ i ivi 3/2,.,.% X .,
hi (Fi) hi Fi

and the bound

+ (h_igF—:'l)%}i-%

for some constant k' not depending on P, i and x. Combining
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(19) and (20) with the choice hi = 1‘1/5 shows that for each
fixed x,
* (AD + B + B e3MiL) cC (Cc+ c}i)emi -1/5
- ]
@y e e -ul) sk Fy + (Fi)!s }i

for some constant k.
The following observation is of use in finding the functions
Mi. Repeated application of the law of the mean proves that
€ (F () = (F) (B)/FI(B))(s, - 6,) h' for some B, € (5,,¢,),
6i € (x - hi,x) and ei (x,x + hi); hence, Iti(Fi)(x)I <2 D(Bi)
and we may take Mi = 2 D(l)' In the case of a family of probability
measures P = {Pe|9 €Q}, Q= [-a,a], where pe(x) = p(x - 8) we

may take A = pby +1) and B = pza + 1)

3. A Decision Problem.

Consider the family of normal distributions P = {Pele € Q},
Q= [-d,dj, o € ®, with Py denoting the N(8,1) 1law. Let
Xj ~ Pej
denote the usual N(O,1) density. The Bayes response (2) takes the

be a sequence of independent random variables and p

form
Wi(x) = ui(x) + X.
Theorem 1. The sequential compound procedure
*
(22) 0, (X)) = (£, (X)) +X) Aa) V()

is such that



- o(i-1/5
(23) B(le, - ¥,y = 0™
and

(24) Ib_@®| = 0™/

uniformly in 8.

Proof. For each fixed X = x the bound (21) applies to

i+1
B lei + x - v 0D vith A =Bl , 10, B = By, , 1),
C(x) < exp {le +a + 35}, D(x) = |x| + o and Mi(x) = 2(|x| +a+1).
If we weaken the bound with Fi(x) 2 pa(x) [x<o0] + P-a(x) [x> o]

() <p_(x) [x< <) + [|x| sl +p (x) [x>0l,
/5

and use P; 41

it follows that 21 + l(lcpi +1° #il) = O(i-l ) uniformly in 8.
Since Proposition 1.1 implies Pi + 1(”1 + l(x) - ¢i(x)|) = 0(1-1)
uniformly in O, (23) is proved. The bound (24) is now an immediate
consequence of Corollary 1.1.

Swain (1965) suggests a different sequential compound procedure

and proves that the modified regret is bounded from above by a bound

o(1l) uniform in parameter sequences.



CHAPTER IV

ON THE BAYES RESPONSE TQ THE EMPIRICAL DISTRIBUTION OF

OPPONENTS PAST IN SEQUENTIAL DECISION PROBLEMS

|

Introduction.

In the preceding chapters sequential compound procedures
were suggested naturally by the structure of a Bayes response
Wi versus Gi’ the empirical distribution of player I's
(nature's) past through present moves. The problem of bounding
the modified regret associated with certain natural procedures
¢® was reduced to bounding a Cesaro mean difference
n-1 22 Ei (l¢i - Wil). Inequalify (8.8) of Hannan (1957) shows
that the simple procedure ¢i(xi) achieves a non-positive
modified regret and illustrates why one would try procedures
that approximate Wi(xi) in order to obfain small modified
regrete In fact, with the sequence (set) compound problem
investigators have used procedures which at stage i are Bayes
versus estimates of G1 or Gi-l
the finite problem, or procedures which approximate ¢i or

(Gn) where estimable, as in

*1-1‘¢n) in case the distribution functions are not estimable
directly.

The question arises as to what can be achieved in the
sequential problem when an estimation problem is removed by

assuming that G is known at stage is Usable sequence

i-1
strategies were exhibited by Hannan (1956) and (1957) for
various M X N games (M finite) which achieve uniform rates

of 0 (n-%) in absolute modified regret. The strategy is to

play Bayes versus ﬁi-l + Z where ﬁi-l is an unbiased estimate

45.
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of Gi-l (possibly G itself) and Z is a suitable random

i-1
vectory Theorem 1 of Van Ryzin (1965) demonstrates that in the

at stage 1 results in

finite problem direct play against Ei-l

a uniform bound O(n'k) if there is a certain non-degeneracy in

the estimate.
In some finite problems a bound of the same order obtains
whether the procedure used is either Bayes versus an unperturbed

or an estimate h For consider a 2 X 2 statiétical

G i-1°

decision problem where player I's set of pure strategies is

o {0’1} with P, = N(8,1), and the loss matrix is (g 8),

8
a, b > 0. A Bayes rule versus (l-p, p) is

b Po(x)
bpy (x) + apl(x)

tp(x) = [ <pl=lx>%+ log (Bélgglol

where tp(x) = 1 means decide © = 1. Let O(p) denote the
Bayes risk vector. We claim that the Bayes response satisfies
a Lipschitz condition of order @ = 1, (8,13) of Hannan (1957).

Condition (8.13) reduces to showing Oo(p) - OO(TEE) = 0(t)

1(%%%) = 0(t) as t - 0 uniformly in p where

Gi(p) is the risk function O(p) evaluated at ® = i, These

and O,(p) - ©

orders can be verified and then via Hannan's Theorem 5, direct

play versus results in a non-negative modified regret

€5-1
of order O(n-llog n) uniform in player I move sequences. Van
Ryzin's Theorem 5 (1965) implies that a bound of the same order
obtains if the procedure plays Bayes versus any unbiased estimate
Ei-l that has a bounded kernel.

Throughout the remainder of this chapter we assume that
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Gi-l is available to player II at each stage i. In the next
section we point out some results which apply to statistical
decision problems having a certain structure. The problems of
Chapters II and III possess this structure. In subsequent

sections we exhibit 8Sequence strategies for non-finite games and

prove rates of convergence for the modified regret.

2. Games Involving Squared Error Loss.

For each ©® € 0 1let there correspond a probability
measure PO << B on the measurable space (X,B). Let the loss
‘function be squared error and consider the simple procedure
¢ where 51 - *i-l (Xi), Wi being the Bayes procedure (1.2).

Inequalities (1.9) and (1.10) imply
- -1lan
(1) 0D (8,8) = TN B, (b, ) - VOO, |+ ¥, -28)).

In view of Theerem 1.1 and (1) the following propositien is

immediate.

Proposition 1. If QC [-A; A], A<® and M(x) =

sup {pe(x)le € Q} is integrable (X,B,n), then
2) 05D (8,9) = o(n”! 1og n)

uniformly in ©.

Hannan (1957) uses symbolism O(x) to represent a risk
function Bayes versus x. Then € O(x) denotes that function
evaluated at €, a pure strategy for player I in the component

game. Specialization of Hannan's Theorem 5 to @ = 1 shows that
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(3) e[o(x) - o(xtte)] < L (sz

for a constant L, all €, all t> 0 and all probability
measures x with finite support, is sufficient for (2) to
obtain. We give an example to show that (3) is not a necessary

condition for (2) to obtain.

Example 1. Consider the discrete exponential family of
Chapter IT with Q = [a, b]. For squared error loss, and in
Hannan's notation, x degenerate on a and € a probability
measure degenerate on b,
ap_+bt p

a b 2
— - b)%)
P +tpy

elo(x) - o(xtte)] = Pb((a-b)z) - B, (
= (@02 g (o) ¢

where £ (t) = Pb((2pa P+t plz))/(pa + tpb)z). By Fatou's
lemma, lim - ollt) 22 Pb(pb/pa)' For the geometric family
and 0< as b2 <1, Pb(pb/pa) = +o; and, therefore, (3) fails.
Since the hypothesis of Proposition 1 is satisfied, (2) obtains,
Another application of Proposition 1 is now given. Consider
the problem where the component game has the following structure.
Player I picks an € € [0,1] and II picks a & € [0,1] with
loss (€ - 6)2. This is Hannan's Example 2 (1957) where it is
observed that the Lipschitz condition (3) is satisfied for
0(*) with € 0(x) = (¢ - 6(x))2, §(x) being the mean of the
distribution x. Therefore, 0 = n-IZ?eic(Gi_l) - R(Gn) -
O(n-llog n) uniformly in €. This result can be deduced from

Proposition 1 in the following way. Associate with each
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e € [0,1] the same probability measure P degenerate on 0.
= 9Py = [e =
If n= P, then p(c) = du(e) (e 0] and ¢i_1(€) =

(i-l)'lzi'lej[e = 0] = 8(G a.s. P, Since the hypothesis of

i-l)
Proposition 1 is satisfied, (2) obtains with Dn(EJ¢D =
-1l¢n
o -
n 21 €; (Gi-l) R(Gn)'
We now proceed to the main results of this chapter., An
effort will be made to keep the presentation self-contained

although the basis for the results is found in Hannan (1957).

3. Games With Countable M.

Let player I's set of pure strategies be M = {1, 2,...},
possibly finite. We identify each 8 of N, the set of pure
strategies for II, with the risk vector O = (01,02,...) where
L(j,0) = o) 2 0 is the loss to II when I's choice is j and
II's choice is 8. We identify each j € M with the vector
of O's and 1's with 0's in all but the jth position and let
€ be generic for such a vector. Then €0 denotes the inner
product of € and O for all € € M, 0 €N, For € ~

(€y5 €pyeee) €M and 8= (9, 9%,...) €N the following

identity ((6.5) of Hannan (1957)) is basic:

n n n
o, =EOC g, -0 €,(0, =0
(&) Zye0;= B0 ¥ B B0y - T) + B 650 - %)
where Ei = €1+...+€i =i Gi’ E0 = 0. We assume
(A1) N 1is sequentially compact under pointwise convergence

and

(A2) sup {llofl, | o €n}=B<=
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where || ”1 denotes the Zl sequence norm. It follows from
(A1) that for all w € m+, the set of bounded sequences with non-
negative components, inf {w O*IG* € N} 1is attained. For let
wO = inf {wo™|c™ € N} and for each i, Ui ~od a5 k-w
where O = (01,02,...) € N. By Fatou's lemma, wo = E: wiod <
llgk ST wjoik = limi wo, = inf {w G*IU* € N} so the infimum
is attained. Denote an infimizing O by O(w). We may take
0(*) to be positive homogeneous and such that each component
Oj(') is a measurable function. (Let Bi be the Borel subsets
of Xi = [0,1] and consider (X,8) where X = X Xi and B
is the product O-field. Then the Gj(-) may beltaken to be
measurable functions from (X,B) to the reals.)

Letting n denote the distribution of Z = (Zl,Zz,...)
where the Zk are independent and identically distributeéd

uniform [0,1] random variables, we investigate the randomized

sequential procedures

(5) o.=0(E

i -1 P8 D

with the sequence of constants Hi satisfying

(6) . 0< Hi 4 and i H;I 4 with respect to 1i.

Theorem 1. Assuming (Al) and (A2) and with H, = 15, the

i

procedure (5) results in

-1 n _ -%
(7 In™" n@] €0 - RGe| = 0™
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uniformly in €.

Proof. Writing E (9, - O, ) 2 (E, - (E; + H 2))(5, - O, )

we have

(8) )Gy =9 = EYH 2(0; -0, )
=My 20y - Hp 2oy m Ty - Hy )2
> -B HO - E:(Hi - Hi-l)B = -B Hn.

Also, E O ., -nR(G) =E (O . - d(En)) 2 0 so (4) yields

(9) 8: (O, -nRG) Z-BH.

In order to obtain an upper bound we note that En°n+1 -n R(Gn) <

-Hn Z(On+1 - O(En)); and, similarly, Ei_l(Ui - t+1) 1 1 (0

so that summation by parts and (4) imply

n
(10) £] €0, -nR@G) SBH +21

i( i 1+1)'
The expectation of the last term is bounded by a direct extension
of Hannan's Lemma 2 (1957). Here we state and prove the needed

specialization of that extension.

Lemma 1. Under the assumptions of Theorem 1,

(11) |u°i(w +2) - uc’i(W' +2)| = Bllw - "'”1

for each i and all w, w' in o.

(- -]
Proof. With X = [0,1] we write

- °1+1)



52.

uGi(w' +2) = g(ci(w' + z)dp(z) = f Qi(w + v)dv(v)
TX

where v = uI"! is the measure induced by the transformation

T defined by v = Tz

w' - w+ z, Therefore,
wolw +2) w ol +2) < [ olw+ 2yanz) - [  olw+ wavw
X XNTX
and, since the restrictions of p and VvV to X N TX are equal,

potew +2) - pol(w' +2) < B p(X- TY.

Since z € X - TX if and only if zj € [0,1] for all j and

23 - wd 4w ¢ [0,1] for some j, it follows that
n(X - TX) s E:u[zj <wd oW or 2> 1 4wd ]
s ti{wd - wht 4 ! - whT)
= |lw - w'“l.

The proof is completed by interchanging the roles of w and w'.
1

We apply the lemma with w = szl Ei-l and w' = H; Ei‘
With this specification
e wly = wh e B o s -t
i
=u;t e - H'i'fl)zifl +(d-1- Eifl) @l - uh
< Hj'_l + (i - 1)(11;}1 - H'i'l) <2 nzl.

, .
- <
Therefore, the lemma implies lu(ei(ci oi+1))| 2B Hi

which proves via (9) and (10) that
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(12) -BH < oo ) - nR@) < B{n +2 z }.

1 i i

The choice Hi = 13E proves the theorem.

4. A Theorem for Non-Finite Games.

Let L 20 be a loss function over the cartesian product
M X N* of arbitrary spaces M and Nf. In the component game
player I chooses an element € € M, II picks a O € N =
{L (‘,6)'6 € N*} and the loss to II is €0, €0 denoting ©
evaluated at ¢, If w is a discrete measure putting mass
w, on € M then wO denotes I, w,(€,9). Assume that for

i i it
all discrete measure w with finite support in M,

(A1'") inf {w clc € N} 1is attained.

As before we denote an infimizing O by O(w) and take
g(+) to be positive homogeneous. (If N* is a compact
topological space and each section L(g,+) is continuous
on N* then (Al') is satisfied.)

Consider the game where M = N = [0,1] and L(e,d) =
Ie - 5'. In the sequential version a strategy ¥ with
¢i = O(Ei_l), Ei =i Gi’ where Gi is the empirical dis-
tribution of (eq,...,€;), is such that sup{Dn(§J¢D|§_€ [0,1]0}
2 ¥ (Hannan, 1957, p. 130). This exemplifies the need for
artificial randomization as was the case in the preceding

section. However, here the measures have support changing

i1
with € and 1i; since the union of all possible supports is

M, uncountable, it is not clear how to add the randomization
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in order to perturb the measure E This difficulty will

i-1°

be overcome by embedding a countable set in M.

A basie assumption is that
(A2") supf{ec|ec €M, 0 € N} = B < =,
We define the real valued function
(13) d(e,e') = sup{|ec - e'c| | o € n].

Clearly (M,d) is a pseudo-metric space; and, if loss equivalent
player I moves are identified, it constitutes a metric space.

Let J, 2 1 be a non-decreasing integer valued sequence,

i
= [ =
A {al, az,...} M and Ai [al,...,aJi}. Corresponding to
.
each sequence ¢ = (el,ez,...) €M there is a sequence
] 1] L
g' = (€l,€2,...) where ei is an element of Ai closest to
'
€i in the metric d. We let Gi be the empirical distribution

L] )
of (el""’ei) and Z,, 2,, Z,,... be independent and identically
distributed wmiferm [0,1] random variables. We investigate

the sequential procedure

+ H Z )

L}
(14) oy =By *H 12,

where Hi satisfies (6) and Zi is to be interpreted as the

measure placing mass Z, on aj, j=1,...3

j
the distribution of (ZO’ZI’ZZ"")'

i Let p denote

Remark. Let [al,...,aJ} C M be fixed but otherwise

arbitrary and let W = [(wl,...,w3)| 0= W, <o, i=1,,..,5}
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be the set of finite measures with support in [al,...,aJ].

Then Oj(-) is a function from W, considered as a subset of
Euclidean J=-space, to the reals. If [(alc,...,aJG)IO € N}

is a gompact subset of Euclidean J-space, there is a determination
0(+) such that each component Gj(.) is measurable. In the

case of countably infinite support, we noted iﬁ the preceding
section that sequential compactness under coordinatewise

convergence and 11 boundedness for the set of risk vectors is

sufficient for measurability.

Theorem 2, Under assumptions (Al') and (A2'), and with

each component of o, measurable,
(15) Iu(tn €;0,)- n R(Gy) | < BH J_+J +2 81 11}
n '
+ 2 81 d(ei,ei).

Proof. A bound for the left hand side is provided by

anl + Icnl + anI where

_ n 1 ]
B = 11(21 €,9;) = nR(C)
= pEh ' ag.))
C, = BE (60, - €9
]
D = n(R(G) = R(G)).
n ] n 1 ] -
Clearly Zl(eic - €0 ) <z d(ei, € ) and n(R(Gn) - R(Gn))
n 1]
inf 21 €;9 = inf 21 eiG < inf; El(e o+ d(e;, €))) -

inf 21 €0 = 21 d(ei,ei) so
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(16) le, |V Ip | = 5] dce,, €.

The identity (4) yields

1
= - E®
(17) B = (B0 ) - E_ O(E!) + W@ E} (@, -0, 1))
+n(E] €T, - 0. 1))
1 7it i i+177°
Since
., > gn _
Ly EjCOy = 95) 2L B 2,(0;, - 0,.)
- - - n -
=B 201 ~ g 20y -5 2y - H 502, 0)0,
n
Z - - -
B HyJ, '421(}11.1jL Hi_IJi_l) B
= <BHJ
n n
[ - '
and En(cn+1 O(En)) 2 0, it follows that
n ] - ] S -
(18) 21 €0, - m R(Gn) BHJ .
As in the derivation of (10),
(199 £%¢'o, =nR(G)S<BHJI +L0¢'(0, -0, )
1 "ii n nn 1 it i i+1”°
= ! - ’ S
For those i such that Ji Ji-l we have |p.(ei(0i Oi+I))|
2B Hzl by application of the specialization (9.8) of Hanman's
= -1 ' |- -1 '
Lemma 2 (1957) with w = H Ei—l’ w H " E;. Therefore,
n n -1 n
(20)  [pEY e, -0, N| =T 2BH, +Z. B
1 it i i+l iIJ =3 i i|J > 3
i i-1 i i-1
< 28 £° 1!

1 i +BJn,
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and (17) - (20) combine to yield

- < < g0yl
(21) BHJ <B B{Han +J +2 I H }.

In view of (16) and (21) the theorem is proved.

If the set A 1is dense in the metric space (M,d) with
d(ei,ei) Y0 as J, + ® uniformly in ¢, then a balance in
the bound of (15) can be obtained by choice of the sequences
Hi and Ji' We note that in the finite M problem with Ji

% (15)

equal cardinality of M for large i and Hi =1i
shows that the expected modified regret resulting from the
procedure (14) is O(n-%) uniform in €. We now apply Theorem

2 to a problem involving uncountable M.

Example 2. Consider the game of absolute deviation on
the unit square. Here d(e, €') = sup(l |e - 6] - le' - 6| I |5 € [o,1]} =

le - e'|, and we let H = ia, Ji equal the greatest integer in

i, Iy = 1, where a, b € (0,1) are yet to be specified. For the
set A = {al,az,...} we take the points 1/2, 1/4, 3/4, 1/8,
3/8, 5/8, 7/8,...; that is, a, = bkj where 1i = k-1, j-1,
by = @3- 1) 27k 1< 3=<2% k=1, With this choice

1 -1

d(ei, ei) <2 J; < 2(ib - 1) 7; and, hence, it follows from

(15) that

n a+b b -a
- < =
|u(£1 eiUi) n R(Gn)l {n +n +2 1 1 }

+2 {: nb 1+ % nb 417
i|li°<2 i|i®=22

< c{na+b + nl-a + nl-b}

for some constant c¢. The choice a =b =1/3 results in an

-(1/3))

expected modified regret O(n uniform in g.
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