1".“ a a .. v Michigan State University This is to certify that the thesis entitled Analysis of Infrared Spectra of Asymmetric Rotor Molecules with Application to HDSe, 325' and HZSe presented by James Ridgeway Gillis has been accepted towards fulfillment of the requirements for Major professor Date October 10, 1979 0-7639 OVERDUE FINES: 25¢ per day per item RETURNING LIBRARY MATERIALS: Place in book return to remove charge from circulation records ANALYSIS OF INFRARED SPECTRA OF ASYMMETRIC ROTOR MOLECULES WITH APPLICATION TO HDSe, H S, AND H Se 2 2 by James Ridgeway Gillis A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics T979 .ABSTRACT ANALYSIS OF INFRARED SPECTRA OF ASYMMETRIC ROTOR MOLECULES WITH APPLICATION TO HDSe, H23, AND HZSe by James Ridgeway Gillis The infrared vibration-rotation spectra of the 2v1 band of HDSe in the 2.2 um region, the 202, v],and v3 bands of H25 in the 4 pm region and the 202, v], and 03 bands of H25e in the 4.5 um region were run on the Michigan State University high resolution near-infrared spectro- photometer at resolution limits near 0.05 cm']. Data were recorded on magnetic tape with the aid of an on-line PDP-lZ minicomputer. The spectra were digitally smoothed before calibration and line position measurement. Well resolved lines are believed to be measured to a precision of :0.002 cm"1 relative to the calibration standards. The analysis of the type B 2v1 band (Se-H stretch) of HDSe is the first reported high resolution study of any vibration band of this molecule. Since there are no nearby vibrational bands with which 201 can interact, the band is apparently unperturbed. Three hundred five weighted transitions belonging to the five most abundant isotopes of selenium (atomic weights 76, 77,78, 80, and 82 amu) have been assigned and analyzed simultaneously using Typke's reduced Hamiltonian. Ground state constants were obtained from a simultaneous least squares fit of our ground state combination differences and published microwave data. Upper state constants were obtained from a least squares fit of our spectral lines with the ground state constants held fixed. The standard deviation of observed minus calculated frequencies is 0.0044 cm‘]. The bands v1 and v3 of H25 and HZSe are coupled by a Coriolis interaction,and the bands 202 and v] are coupled by a Fermi resonance. Our analyses of H25 and HZSe have included the Coriolis interaction, but because the band centers of 202 and v] are separated by over 250 cm‘1 for H25 and for HZSe, the effects of the Fermi interaction do not vary in such a way that they can be determined from our data. Therefore, 202 was treated as an unperturbed band and v1 and 03 were treated as being perturbed only by the Coriolis interaction. All rotational analyses were done using Typke's reduced Hamiltonian. As with HDSe, ground state constants were obtained from a simultaneous least squares fit of ground state combination differences and microwave transitions. Upper state constants were obtained from a least squares fit with upper state con- stants allowed to vary and ground state constants fixed. Three hundred fifty weighted transitions of 202 of H25, including 343 have been identified and fitted with a stan- dard deviation of observed minus calculated frequencies of 0.0040 cm-]. 45 transitions from H2 Approximately 260 transitions from v1 and l30 transitions from 03 were simultaneously fit with a standard deviation of 0.0052 cm'1. Five hundred thirty-seven weighted transitions from all five isotopic species of 2v2 of HZSe were fit with a standard deviation of 0.0038 cm']. Approximately 900 transitions from all five isotopic species of v] of HZSe and 600 transitions from all five isotopic species of 03 were simultaneously fit with a standard deviation of 0.0082 cm‘]. TO MY PARENTS ANN S. AND WILL M. GILLIS ii ACKNOWLEDGMENTS I wish to express my appreciation to Professor T. H. Edwards for his guidance, support, and encouragement throughout the course of this research. I thank Professor P. M. Parker for an excellent molecular spectroscopy course and for many helpful discussions. My fellow graduate student Mr. D. E. Bardin has given me much help with the spectrometer and has contributed to many useful discussions. The Michigan State University Physics Department has supported me with teaching assistantships throughout my graduate study. A special thanks goes to Professor J. S. Kovacs for giving me teaching assignments which have been both enjoyable and educational and have allowed me to budget my time efficiently for doing research. Scientific Gas Products, Inc. has generously donated the sample of high-purity H25 used for the spectrum analyzed in this work. Mrs. Delores Sullivan is responsible for the competent manner in which this dissertation has been typed. All errors, of course, are the responsibility of the author. TABLE OF CONTENTS Page LIST OF TABLES . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . ix INTRODUCTION . . . . . . . . . . . . . . . . . . l CHAPTER I. ASYMMETRIC ROTOR MOLECULE VIBRATION-ROTATION HAMILTONIANS 3 The Second Order Hamiltonian . . . . . . . . . . 3 Fourth Order Hamiltonians . . . . . . . . . . . 7 Coriolis Coupling . . . . . . . . . . . . . . ll Fermi Coupling . . . . . . . . . . . . . . . 12 II. APPLYING THE HAMILTONIAN . . . . . . . . . . . 14 Evaluation of the Hamiltonian for Unperturbed Vibrational States . . . . . . . . . . . . l4 Coriolis and Fermi Interactions . . . . . . . . . 2l Isotopic Substitution . . . . . . . . . . . . 26 Fitting Observed Spectra: Computer Programs . . . . . 27 III. CALCULATION OF INTENSITIES . . . . . . . . . . . 30 Selection Rules . . . . . . . . . . . . . . 3O Dipole Transition Intensities . . . . . . . . . . 3l IV. DATA COLLECTION AND EXPERIMENTAL DETAILS . . . . . . 38 Experimental . . . . . . . . . . . . . . . 38 Data Processing . . . . . . . . . . . . . . 42 Calibration . . . . . . . . _. . . . . . . . 44 iv CHAPTER Page V. ANALYSIS OF 2V OF HDSe . . . . . . . . . . . . 52 1 General Comments about the Systematic Analysis of Asymmetric Rotor Molecule Spectra . . . . . . . 69 VI. ANALYSIS OF 2v2, 0], AND 03 OF H23 . . . . . . . . 75 VII. ANALYSIS OF 202, 0], AND 03 OF H25e . . . . . . . . l06 VIII. CONCLUSION . . . . . . . . . . . . . . . . l26 REFERENCES . . . . . . . . . . . . . .1 . . . . l28 APPENDICES A. NONVANISHING ANGULAR MOMENTUM MATRIX ELEMENTS . . . . 131 B. COMPUTER PROGRAM INTCALl . . . . . . . . . . . l35 C. ASSIGNED TRANSITIONS OF 201 OF HDSe . . . . . . . . l8O D. ASSIGNED TRANSITIONS OF 202, 0], AND v3 0F H25 . . . . 188 E. ASSIGNED TRANSITIONS OF 20 AND 0 OF H Se . . . . 205 2’ Vi’ 3 2 Table TO IT l2 l3 l4 l5 16 LIST OF TABLES Molecular Axes Identification Wang Symmetrized Basis Functions +, and 0- Classification of the Submatrices E+, E', 0 Selection Rules by Parity Change of K_ and K+ . Symmetric Top Direction Cosine Matrix Elements HDSe 201 Experimental Conditions HZSe 202, v], and 03 Experimental Conditions H25 202, v], and 03 Experimental Conditions Molecular Constants for 2v1 of HDSe for Typke's Reduced Hamiltonian Partial Correlation Coefficients of HDSe Ground State Constants for Typke's Reduced Hamiltonian Partial Correlation Coefficients of HDSe 2v1 Constants for Typke's Reduced Hamiltonian . . . . . Molecular Constants for 201 of HDSe for the Planar Form of the Hamiltonian Partial Correlation Coefficients of HDSe Ground State Constants for the Planar Form of the Hamiltonian . Partial Correlation Coefficients of HDSe 20] Constants for the Planar Form of the Hamiltonian . . . Molecular Constants for 2v1 of HDSe for Watson's Reduced Hamiltonian Partial Correlation Coefficients of HDSe Ground State Constants for Watson's Reduced Hamiltonian . vi Page l7 19 BI 34 49 50 ST 6O 61 62 63 64 65 66 67 Table Page l7 Partial Correlation Coefficients of HDSe 2v1 Constants for Watson's Hamiltonian . 68 l8 Transitions to High J, High K_ Levels of 03 of H25. . . . 79 T9 Molecular Ground State Constants for H25. . . . . . . 83 20 Partial Correlation Coefficients for the Ground State 84 of H25. . . . . . . . . . . . . . . . . . 2l Molecular Constants for 2v2 of H25. . . . . . . . . 86 22 Partial Correlation Coefficients for 202 of H28. . . . . 87 23 Molecular Constants for v] and v3 of H28. . . . . . . 9O 24 Partial Correlation Coefficients for v] and v3 of H28. . . 9l 25 Molecular Constants for 202, v], and v3 of H25 with FER = l5. . . . . . . . . . . . . 95 26 Partial Correlation Coefficients for 202, v1, and v3 of H23 with FER = l5. . . . . . . 96 27 Molecular Constants for 202, v], and v3 of H25 with FER = 30. . . . . . . . . . 98 28 Partial Correlation Coefficients for 202, v], and 03 of H25 with FER = 30. . . . . . . . . 99 29 Molecular Constants for 2v2, v], and 03 of H23 with FER = 45. . . . . . . . . . . . . . 101 30 Partial Correlation Coefficients for 202, v], and 03 of H25 with FER = 45. . . . . . . . l02 3l Calculated Energy Levels in cm-1 and Wave Function Mixing for H25 for J = 9 and FER = 30. . . . . . . . l04 32 Calculated Energy Levels in cm.1 and Wave Function Mixing for H20a for J = 9. . . . . . . . . . . . lOS 33 Molecular Ground State Constants for HZSe. . . . . . . ll3 34 Partial Correlation Coefficients for the Ground State of H Se. . . . . . ll4 2 35 Molecular Constants for 202 of HZSe. . . . . . . . . ll6 vii Table Page 36 Partial Correlation Coefficients for 202 of HZSe. . . . ll7 37 Molecular Constants for v] and 03 of HZSe. . . . . . . 120 38 Partial Correlation Coefficients for v] and v3 of HZSe . . lZl viii Figure TO. ll. LIST OF FIGURES Energy Level Diagram . The Total Hamiltonian for a Given J for Fermi and Coriolis Coupled Bands 0 , v , and 20 of H S 0r 1 3 2 2 HZSe . . . . . . . . . . . . . . . The Form of the Hang transformed total Hamiltonian for Fermi and Coriolis coupled bands 0], v3 and 202 of H25 or H25e . . . . . . . . . . . . The Form of the E3 E F Wang Submatrix for J = 4 . . . . F E202 Spectrometer Signal Processing Electronics Schematic representation of a typical spectrum with calibration gases and fringes. Fringe spacing exaggerated . . . . . . . . Observed-calculated values for a linear calibration fit of H Se run l9. Standard deviation of fit = 0.004l cm‘1 2 Observed-calculated values for a quadratic fit of HZSe run 19. Standard deviation of fit = 0.0017 cm-l. l I to 4750 cm- . The spectrum of HDSe from 4500 cm' Molecular geometry and principal axes of HDSe as inferred from HZSe geometry Absorption lines of the isotopic species of HDSe for the unresolved doublet 9 7 3 - 8 6 2 and 9 7 2 - 8 6 3 near 47l4 cm' . . . . . . . . . . . . ix Page 20 22 23 24 41 45 46 46 53 55 58 Figure 12 T3 T4 15 T6 The 6 3 4 - 5 3 2 ground state combination difference from some type 8 band transitions The spectrum of 202, v], and 03 of H23 from 2220 cm- to 2830 cm']. Impurities in the sample are identified as CO 0, 002 A, and HCl ' . The form of the Hamiltonian matrix for 03, v1 and 202 . The spectrum of 202, v], and 03 of HZSe from I930 cm’] to 2620 cm'l. . . . . . . . . . . . . . Absorption lines of the isotopic species of 5 O 5 - 6 l 6 of 202 of HZSe near 2009 cm' . . . . .l. Page 71 77 81 107 Ill INTRODUCTION The infrared spectra of bent triatomic asymmetric rotor molecules have been of interest for many years. Analysis of these spectra allows determination of much useful information, including a positive identifi- cation standard for the molecules studied, values of molecular energy levels, and fundamental physical information about the molecule such as molecular geometry, dipole moment, potential functions, and force con- stants. Practical application of this information ranges from con- struction of gas lasers to atmospheric pollution monitoring to identifi- cation of molecules in interstellar space. However, only for the last fifteen or so years have experimenters been able to carry out detailed and precise analysis of the vibration-rotation bands of these molecules. During this period Hamiltonians have been developed which permit the precise and accurate prediction of energy levels and high speed digital computers necessary to do the extensive calculations necessary have come into widespread use. In this dissertation the vibration-rotation spectra of the 2v1 band of HDSe in the 2.2 pm region, the 202, v], and 03 bands of H28 in the 4 pm region, and the 202, v1 and 03 bands of HZSe in the 4.4 pm region are analyzed. The analysis of 201 of HDSe is the first high-resolution study of any vibration-rotation band of HDSe. The band is not affected by any resonance-type perturbations, which somewhat simplifies its analysis. 2 However, since selenium has five stable isotopes with abundances ranging from 8 to 50 percent, each transition in the spectrum has five components. A sufficient number of these components have been measured to allow simultaneous analysis of the transitions of all five isotopic species. The 01 and 03 bands of both H25 and H28e are coupled by a Coriolis resonance and 202 and 01 are coupled by a Fermi resonance. The effect of these resonances is to shift vibration-rotation energy levels and, hence, spectral line positions, thus complicating the analysis. In addition, because selenium has five isotopes, the H25e spectrum has a great many lines. The steps needed for the analysis of the spectra in this disserta- tion start with an outline of the development of suitable Hamiltonians in Chapter I. The procedure for using these Hamiltonians is described in Chapter II. The method for calculating spectral transition intensi- ties for unperturbed vibration-rotation bands is developed in Chapter III. Chapter IV contains the particulars of experimental detail and data collection. The analysis of the spectra of HDSe, H25, and H2Se and the molecular constants determined from the analysis are given in Chapters V thru VII. CHAPTER I ASYMMETRIC ROTOR MOLECULE VIBRATION-ROTATION HAMILTONIANS In order to analyze the vibration rotation spectra of the bent triatomic molecules studied in this dissertation, Hamiltonians capable of predicting ground and excited state energies to a few thousandths of a wavenumber are necessary. The development of such Hamiltonians is sketched in this chapter. The Second Order Hamiltonian (1) Darling and Dennison showed that the vibration-rotation Hamiltonian for a general polyatomic molecule may be given by l NI" H: NI ale WPa-paiuasu‘ (PB-paini + ;- g nipgoui + v (1-1) where a,8 correspond to the x, y, or z axes of the equilibrium inertia tensor of the molecule with the origin at the center of the mass of the molecule; P is an operator corresponding to the a component of the total angular momentum vector of the molecule; is an operator corresponding to the a component of the vibra- tional angular momentum of the molecule; 3 pgc is an operator for the component of linear momentum conjugate to the normal coordinate 050 such that p50 = 2%T'gfiggf; pas are certain functions of the instantaneous moments and products of inertia; p is the determinant of the “d8 ; V is the vibrational potential energy of the molecule. Since Schroedinger‘s equation Hw = Ew can not be solved analytically for any Hamiltonian for asymmetric rotors, the Hamiltonian is normally expanded in orders of magnitude: _ 2 H - H0 + AH] + x H2 + . . . (1-2) where HO approximately represents the rigid-rotor, harmonic-oscillator Hamiltonian, 2 2 P P 1 0t 1 i so 2 H =— Z _+—hx2 X -—+q (1-3) 0 2 a=x,y,z la 2 s so ‘fiZ so] where the A: are the normal frequencies of the molecule. The Hamiltonian is then subjected to one or more unitary contact transformations of the MSHe'mswo transform successive orders of the expansion of the form e Hamiltonian such that the matrix elements of that order are vibrationally diagonal in a harmonic oscillator basis. Goldsmith et al.(2’3) have shown in detail how this procedure can be carried out. It is found that one transformation is necessary to transform the rotational Hamiltonian through order two (terms through fourth power in angular momentum com— ponents), but a second transformation is necessary to transform the rotational Hamiltonian through order four (terms through sixth power in angular momentum components). 4) Chung and Parker( have shown that the asymmetric rotor Hamiltonian through order two may be expressed as H = HV + xpi + YP$ + 2P3 + 4'Txxxxpi + 4'Tyyyypg + 4'TzzzzP: + it ‘yyzz + i Txxzz + 211. Txxyy(PiP32/+Pyzlp>2<) + % Tyzyz(Psz+PzPy)2 + ‘4’WL-xzxzwxpzwsz)2 + 4'Txyxy(PXPy+PYPX)2 (1.4) where H is the pure vibrational Hamiltonian, considered to be constant for a given vibrational state; X,Y, and Z are inversely proportional to the principal moments of inertia of the molecule; i.e. X== 3 , etc.; 8n CIX and the T's are equilibrium second order centrifugal distortion constants. For planar asymmetric rotors only seven of the nine taus are non-zero, and of these, only four are linearly independent. To facilitate reduc- tion of (1-4), a set of body-fixed axes (a,b,c) is conventionally associated with the molecular (x,y,z) axes such that A:>B>>C where A = g1 , etc. For planar molecules, fiL-+ éL-= éL-where the subscript e e e 8n CIa e refers to the equilibrium configuration of the molecule and the mole- cule lies in the ab plane. Evaluating momentum operators in the rigid rotor wave function basis wJK and applying the commutation relation 6 [Px’Py] = - iPz and the planarity relations of Dowling(5) and Oka and (6) Morino leads to the planar form of the second order Hamiltonian described by Moncur,(7) viz., - 2 2 2 H - Hv + APa + BPb + CPc + Taaaaoaaaa + Tbbbbobbbb + Taabboaabb + Tababoabab (175) where aaaa = 4'[P4+FZP4+T(P§PE+ PEPETJ Obbbb =‘% [P4+52P4+s(p§p% nggi] 0aabb=i£2rspfifip§P§P PPE PEWPEE PP: innpfipiwipin Oabab =‘% [2(PEP6+PEP§)‘2P2+5PE] and = cg/A: S = 62/3: When working with this Hamiltonian, the momentum operators must be identified in terms of (x,y,z) with the appropriate permutation of (a,b,c). Thus, the momentum operators will have a different form depending on whether the molecule is oblate (K = g%§%§E-> l) or prolate (K < l). Now, (a,b,c) may be associated with (x,y,z) in six possible ways as shown in Table l. Conventionally, the Ir representation is chosen for prolate molecules and the IIIr representation for oblate molecules because they yield right hand coordinate systems and diagonal Hamiltonian matrices in the prolate and oblate symmetric top limits, Table 1 Molecular Axes Identification Body-Fixed Axis Molecular Axis x b c c a a b y c b a c b a z a a b b c c Representation 1" IP IIP 119' In" 1111 respectively. This is an advantage because the more nearly diagonal the Hamiltonian matrix is, the more quickly and accurately it may be diago- nalized numerically. Unfortunately, when applying the planar Hamiltonian, A , B , and Ce usually are not known so most workers use ground state e e values for calculating r and 5. Fourth Order Hamiltonians Kneizys, Freedman, and Clough(8) showed that the asymmetric rotor Hamiltonian for the orthorhombic point groups (02v, 02, and 02h) through sixth power in angular momentum can be written in the form H = xpi + vpi + ZPE (1-6) + TXXP: + Tny3 + TZZP: + Txy(PiP§+P§Pi) + < + opinion + ¢xxx g + ¢yny$ + $222 2 + ¢xxy(P:P§+P§P:) + ¢XXZ(P:P§+P§Pfi) + a yx(P3Pi+PiP§) + dyyZ(P:P§+P§P§) waxwipiwipfi) + thaw + Mindanao . Watson(9) later showed that this Hamiltonian may be used for asym- metric rotors of any point group. However, not all the constants in (1-6) are linearly independent of one another; only five of the six T's and seven of the ten o's are linearly independent. Using two contact transformations, Watson(]0) reduced (1-6) to a Hamiltonian containing the requisite five P4 terms and seven P6 terms: _ ~ 2 ~ 2 ~ 2 H - XPX + YPy + sz (1-7) 4 2 2 4 2 2 2 AJP - AJKP PZ - AKPZ - 26JP (PX-Py) 2 2 2 0K[PZ(Px-Py) + (P 6 HJP + HJK 4 2 4 2 P Pz + H PZP + HKP 6 + KO 4 2 2 2 2 2 2 2 2 2 ZhJP (PX-Py) + hJKP [Pz(Px-Py) + (PX-Py)PZ] + 4 2 2 hK[PZ(PX-P ) + 2 2 4 + (PX-Py)PZ] . This reduction is, however, not unique and several other versions have appeared in the literature. The Hamiltonian (I-7) has nonzero matrix elements and in the symmetric top basis function set wJK‘ The symmetric form of (1-7) and the fact that it involves only diagonal and second off diagonal matrix elements have given it widespread popu- larity. However, Watson(10) points out that this reduced Hamiltonian may not converge to a stable set of coefficients for molecules in which (i-Y) is approximately equal to or less than the magnitude of the coef- ficients of the P4 terms. This condition corresponds to near symmetric rotor molecules. For such molecules, Watson suggests that another reduction be used. In fact, we have found that it converges very slowly in other cases, too. (ll) Recently, Typke has given a different reduction of (1-6) which is especially suitable for fitting near-symmetric rotor molecules: H = X'Pi + Y'Pi + Z'Pi (1—8) - 05R4 - oprzpi - DkP: - 205P2(Pi P3) + 2R60 + HJP6 + HJKP4P2 + HKJP2P4 + HKP6 + H5P4(P2- P5) +JZ-H6 HP 20 + H10(Pi- P3,)3 where 0 = P: + pfi - 3(PX Mi pipi) . Since this Hamiltonian involves nonzero matrix elements of the type , , , and , numerical diagonalization of the TO Hamiltonian matrix is not quite as rapid as for Watson's Hamiltonian. However, we have found that Typke's Hamiltonian converges to a stable set of parameters more quickly than does Watson's for the molecules H23 (oblate, K==0.5), HZSe (oblate, K==0.8) and HDSe (prolate, :=-O.5). A few comments about the determinability of Hamiltonian parameters when fitting bent triatomic molecules are in order. Necessarily, such molecules have planar equilibrium configurations. In that case, (5) Dowling and Oka and Morino(6) showed that three planarity conditions can be given to reduce the number of tau coefficients in the Hamiltonian from seven to four. While such relations are exact for the second-order Hamiltonian, they are only approximate for the Hamiltonians which include 6 4 terms then include a P terms(]2) because the coefficients of the P number of fourth-order contributions. Thus, the errors in the P4 terms when introducing the planarity conditions may be of the order of magni- tude of the coefficients of the P6 terms. Even though the P6 coefficients are usually much smaller than the P4 coefficients, the planarity relations lead to significant errors and should not be used in general. The fact that these errors are usually small means that one of the coefficients of the P4 terms is nearly a linear combination of the other P4 coef- ficients. This leads to high correlations among the centrifugal dis- tortion coefficients when fitting the spectra of bent triatomic molecules even when a wide variety of transitions is assigned. These high corre- lations would not be expected for molecules which are not planar. For planar rigid rotors IA + IB = IC or %-+ %-= %-. For real bent triatomic molecules with centrifugal distortion, the Hamiltonian para- meters A,l3,and C include contributions from the centrifugal distortion l l l terms in the Hamiltonian and A'+‘§ z-E . The difference from equality IT is on the order of 0.00l of the rotational constants (as can be seen, for example, from the rotational constants for HDSe, H25, or HZSe given in this thesis). As in the case of the centrifugal distortion para- meters, the three rotational constants are nearly dependent upon one another and high correlations among them result. Coriolis Coupling For molecules like H25 and HZSe, the rotational levels of two vibrational bands with vibrational quantum numbers (V],V2,V3) and (VliT,V2,V3iT) may be coupled by a Coriolis perturbation. Snyder and (13) Edwards have derived the operator form of the Coriolis interaction term of the Hamiltonian as HC = 1G2(qlq3-q3qlwz + nyqlq3(PxPy+Pny) (1-9) which has matrix elements of the form l l _ = (I-TO) . l % [TGZPZ + 2 ny(PxPy+Pny)][(V]+l)V3] and ' _ : (1-11) I 1- % [-lePZ + 2 ny(PXPy+PyPX)][VT(V3+])] . The total Hamiltonian for two Coriolis coupled vibration rotation bands is H = H + H + H 1 3 C (1-12) 12 where H1 and H3 are the vibration rotation Hamiltonians of the type described earlier for the two interacting vibrational states. The presence of the Coriolis perturbation has three effects on the observed infrared spectrum of interacting levels. First, levels with appropriate symmetry which would be close together if there were no perturbation will "repel" one another. Second, the value of the effective rotational constant C in each of the interacting vibrational bands is altered slightly from its unperturbed value.(]3) Third, intensities are altered due to the mixing of wavefunctions so a transi- tion from the weaker band may ”borrow" intensity from the stronger. The stronger transitions will then be weakened. Fermi Coupling Two vibration-rotation bands with vibrational quantum numbers (Vl’VZ’VB) l 2 and Overend(]4) give the matrix element of this interaction as and (V -l,V +2,V3) may be coupled by Fermi resonance. Smith k V +2,V > = 122 i _ __l_ i - are nonzero) and are also diagonal in the total angular momentum quantum number J. However, the Hamiltonians are not diagonal in the projection of the total angular momentum along any set of orthogonal molecular axes; that is, for asymmetric top molecules K is not a good quantum number. Therefore, it is necessary to diagonalize the Hamiltonian numerically for each value of J. Since Schroedinger's equation Her = EOJT cannot be solved analytically in general for these Hamiltonians, the wave functions are expanded in the basis of symmetric J top wave functions wJK = lJK> such that th = 2: CT JKPJK and T=-J J Z (CJKIZ = l and the Hamiltonian matrix is formed in terms of sym- T=-J metric top matrix elements . Only elements of the type , , ... are nonzero. These matrix elements are listed in Appendix A. The matrix elements are evaluated (15) using the phase conventions of King, Hainer, and Cross, viz. = J(J+l) (II-l) = K ~1— (%)[J(J+l) - K(K+l)] (%)[J(J+l) - K(K+l)]P . Here, the matrix elements are taken to be dimensionless and all . . . . -l Hamiltonian constants are expressed in cm . 16 Since the values of K range in integer steps from -J to J, the resulting matrix is (2J+l)x(2J+l) and has only diagonal, second off diagonal, fourth off diagonal, ... nonzero matrix elements. Such a matrix rapidly becomes large and difficult to diagonalize numerically as J increases. Since = and the Hamiltonian matrix has a ”checkerboard" pattern, Wang(]6) observed that the Hamiltonian matrix could be block diagonalized by forming suitable linear combinations of the symmetric top wave functions. The wave functions in the Wang symmetrized basis set are is : - Y - TJKY aivJK + ( i) tJ_K) (II 2) where 2'% for K f 0 5 = 1 ‘2— TOVK=O Y = 0, l . These wave functions are of four types; and when the Hamiltonian matrix is formed from matrix elements of these wave functions, four submatrices of approximately equal size result. The overall Hamiltonian matrix is block diagonal. Table 2 lists the wave functions, their designation, and the dimension of the submatrices. The designations E and 0 refer to the evenness or oddness of K. A direct calculation shows that the matrix elements of the Hamiltonian S H in the Wang basis can be calculated from the matrix elements of the Hamiltonian H in the symmetric top basis as follows: ‘5 S l = 6' .. Y .- . For vibrationally diagonal Hamiltonians JKK' containing only even powers of components of angular momentum, E = EJ-K-K' = EJK'K = EJ-K'-K' , and (II-3) reduces to JKK' .s ‘s = . _ r _ |H 'PJK'Y> 206 [E + ( l) E (II 4) S (PJKY JKK' JK-K'] ' Thus, for such Hamiltonians, K and K' are either both even or both odd. As is the full (2J+1)x(2J+l) Hamiltonian matrix, each Wang block is Hermitian (in fact for noninteracting vibrational bands, each block is a real symmetric matrix). The eigenvalues of the Wang blocks are identical to those of the full Hamiltonian matrix. Each Wang block 18 EJKY may be diagonalized separately by applying a unitary similarity . _ -l . . transformation such that EJT - SJTEJKYSJT . When such an Operation 15 performed, the elements of the diagonal matrix EJT are the energy eigenvalues and the columns of the similarity transform S are the Jr eigenvectors of the energy eigenvalues in the space of the Wang trans- formed basis; that is, HSISJT> = EJTISJT> (11-5) and (SJIlHSISJt> = EJT ' Since K is not a good quantum number for asymmetric rotors, the energy eigenvalues may be identified by an index T. By convention, the eigenvalues of all four Wang blocks for a given J are arranged in descending magnitude. The index 1 takes the values from +J to -J in integer steps and is associated with the eigenvalues such that the highest energy eigenvalue has the highest T index and the lowest eigen- value has the lowest T index. A more common indexing scheme is to use the indices K_ and K+. K_ and K+ refer to the K quantum numbers in prolate and oblate symmetric top limits, respectively. K_ and K+ are related to r by r = K_ - K+. King, Hainer, and Cross(15) have given the identification of the energy eigenvalues with the various Wang blocks. This ordering is shown in Table 3. As the asymmetry of a hypothetical molecule is varied from the prolate to the oblate limit, the energy levels for a given J vary smoothly and without crossing from the prolate to the oblate symmetric top energy levels, respectively, as shown in Figure 1. Although no level crossing occurs for levels with the same J, levels involving different J may be interleaved with one another. .x_cpm5n:m mew c. smcmcm ummcmp; mg» cow +¥ use x co mmzpm> may mm>wm steam ccoomm mg» . +x use x to on mmmcuco co Amy mmmccm>o ego mmumo_ucp scucm pmc_c use .acoumconmp Lao cw com: msmcmoca cmuzaeoo mcwuu_w m—zomFOE copoc u_cumesxmm mg» cw chmenzm xoopn mam: comm new: umomwoommm xmc:_ co m_ Oman 3 19 _ a _ a o a F ..a N\A_+sv N\s Ame -o o o o w m o o o _ _iw _ Fig P a N Fig N\l_+qv N\e New +0 o m o o o o m o N _-w N Fig N Fifi F a N\A_,sv N\s lav -m m m w o m m o m o a o a _ Pia o a N\A_+sv _ + N\s APV +m m o m o o m m m +¥ -¥ +¥ -x +¥ -¥ +¥ -x a two a co>m w coo a :m>m a uno a cm>m «Aomav chumsnzm co mem Ac A y .mum—nov Ao v y .momFOLQV chumsnzm :o_umu:mmmcawm LHHH co_pmocmmmcamm CH -o see .+o .-m .+m mae_eee22=m age to colonele_mme_u m wpamp 20 J K=K Ir J ”Ir K=K J - Submatrix K_K+ Submatrix + 3 E+ _________.O -1 O-/ 30/0- 1— __. ae—-3 -—~* 7“ :::: ...3___2 0+-—* 3l + 3 . 21 - 2 “ E E+/3 /+7- + ___.____3— 2 2 11 07/ E- ”—2—; e—i--—”-/—o+* 212/E+ L._O—-—“""'E+/202 E‘“'-—-"""""'0 i 0_ ‘——"——__’110 _————""Cr- ===______']:] i—-—-'=0+ *— “11176' 1 [: +/l .L i l i i K -1.0 -O.5 0.0 0.5 1.0 Prolate Oblate Limit Limit 8 = C B = A Figure 1. Energy Level Diagram 21 Coriolis and Fermi Interactions The H25 and H25e vibrational bands 202 and v] are coupled by a Fermi resonance as shown in Equation (I-l3) and v] and 03 are coupled by a Coriolis resonance as shown in Equation (I-10) and (I-ll). Flaud and Camy-Peyret(]7) also report a Coriolis resonance between 202 and 03. We believe that this interaction is small enough to be neg— lected for H23 and HZSe, and, therefore do not include it in our analysis. Because both the Fermi and Coriolis interactions have matrix elements which are diagonal in total angular momentum, the total Hamiltonian matrix in the symmetric top basis for a given J is as shown in Figure 2. This matrix is a 3(2J+l)x3(2J+l) square matrix. As in the case of the unperturbed Hamiltonian, it is convenient to transform this Hamiltonian matrix from the symmetric top basis to the Wang symmetrized basis. An examination of the matrix elements in the Wang basis shows that the Coriolis interaction couples only Wang submatrices E+ to E' and 0+ to 0‘ where in each coupled pair of submatrices one belongs to v] and one to 03. The Fermi interaction couples only submatrices of the same sym- metry for v1 and 202; i.e., E+ to E+, E' to E‘, 0+ to 0+, and 0‘ to 0‘. Therefore, the total Hamiltonian becomes block diagonal as shown in Figure 3. The dimension of each of these triple Wang blocks is the sum of the dimensions of each individual vibrational band Wang block. For example, the dimension of the E:3 + 5;] + E202 block is the ' dimension of E: plus the dimension of E; plus the dimension of 3 1 Figure 4 shows the form of one of the triple Wang submatrices EZVZ' for J = 4. If no perturbations are present, the three vibrational blocks in each Wang submatrix are uncoupled and each vibrational block has the same form as in the unperturbed case. 22 v3 0] 202 v H H O 3 v3 C .f. 0] HC H01 HF 2v2 0 HF szz i = Hermitian conjugate. Figure 2. The Total Hamiltonian for a Given J for Fermi and Coriolis Coupled Bands 01,03, and 202 of H25 or HZSe. 23 EU 3 + +E “i + +E2V2 0.? 3 i + +00] + +0 202 + 0 P3 +0: ’1 +0 Figure 3. The form of the Wang transformed total Hamiltonian for Fermi and Coriolis coupled bands 0], v3, and 202 of H25 or H2Se. 24 + + + E E E E 0 0300 V302 0304 C02 + + + E E E E E 0320 0322 0324 022 024 + + + E E E E E 0340 0342 0344 C42 C4 i i i - - EC20 E022 E(:24 E0122 E0124 F 0 +1. .- 0 EC42 EC44 E0124 E0144 0 F F 0 E' E' 20222 20224 0 F E' E‘ 20242 2v244 + _ S S S Ev3KK' - (wJKOIHv3leK'O> " _, S S S E01KK' ‘ (wJKlIHvlleK'l> ' _ S S EZvZKK' ' (PdKilHszlwdk'i > = ..S 1 S S ECKK' (P3PJK0'HC'PiPdK'i> S S S T i = <0 0 1H Iv w . > ECKK l JKl c 3 JK 0 S S F = <011HF103> = + EV3 EC Figure 4. The form of the E: E; F Wang submatrix for J=4. i F E2v2 25 As in the unperturbed case, the triple Wang submatrices EJir'i' may be diagonalized to yield energy eigenvalues by applying a unitary similarity transformation SJ . . such that TT T S - H ISJii'r'> _ EJtr't‘lsJii'i'> (11-6) and Jit'i Jti'i' Jtr't' The columns of S.J . r r T. form the eigenvectors associated with the energy eigenvalues E Each of the three vibrational states in the triple Jit'i" Wang block contributes one component to the eigenvectors: (SJir'i') = SVBJT (II-7) vlJr 520 Ji 2 where the SvJ are (nvxl) column vectors, and nv is the dimension of T the Wang vibrational subblock and v is 0], v3, or 202. Since the SJTT'T' are normalized such that 2 2 2 l JT'i (s = [s + |s )2 + is = l (II-8) . .I . Jii T V3JT V1JT 202 the fractional contribution to the total wavefunction from one of the vibrational states 0 is iSVJle- This provides a convenient method of classifying the energy eigenvalues. Each eigenvalue EJir'r' is associated with the vibrational state which makes the largest contri- bution to its eigenvector. For states whose eigenvectors have a majority contribution from one vibrational state, this scheme associates 26 exactly nv eigenvalues with each of the three vibrational states 0. When a state is so mixed that none of the three vibrational states has a majority contribution to its eigenvector, assignment to a vibrational block becomes more arbitrary. In this case, all other eigenvalues must be assigned and the remaining state is associated with the vibrational state to which nv-l other eigenvalues have been assigned. When several badly mixed levels are present, assignments become still more arbitrary. The above method of assigning eigenvalues was employed in our three band fitting computer program SPFT3 but was discarded because of dif- ficulties with properly assigning badly mixed levels. A method which seems to assign energy eigenvalues consistently to the proper vibrational block results when it is assumed that the presence of a perturbation does run: move an eigenvalue from the vibrational block in which it would be if no perturbation were present. Examination of the eigen- vectors for a large number of states confirmed that the method gives meaningful results. Once the eigenvalues are assigned to the correct vibrational states, rotational levels are assigned in the same manner as for unperturbed states. That is, the eigenvalues of each vibrational subblock are arranged in descending order and T or K_ and K+ are associated with the levels as previously described. Isotopic Substitution When several isotopic species of a molecule are present as in the case of HZSe and HDSe, each isotopic species produces a separate absorp- tion line for a given transition. If a large enough number of transi- tions can be observed from each isotopic species, individual fits of 27 the spectrum of each species may be made. An alternative to this is to express the Hamiltonian parameters of the less abundant species in terms of the most abundant species as a function of the mass difference (18) and us.(19) of the various isotopes, as was done by Willson et al. Both linear and quadratic mass dependent terms are assumed for the band center 00, and nonzero linear mass dependencies are assumed for the rotational terms A', B', and C'. With these assumptions, the frequency of a transition is given by = m mm 2 i i i _ F 00 + EOAM + E0 (AM) + 12(xa+€ AM)a (I17) Z +E AM) 1 b where for HZSe and HDSe a and b refer to the upper and ground states, respectively. AM = (BO-M), where M is the mass of the selenium isotope involved in the particular transition and xi and are respectively the Hamiltonian parameters and the expectation values of the associated momentum operators in the Hamiltonian space of the 80 isotope. Fitting Observed Spectra: Computer Programs A number of computer programs for fitting and predicting observed spectra have been inherited from previous graduate students in this lab and several others have been written by me. The general method of operation of these programs and of the least squares procedure for determining Hamiltonian constants has been described in detail by (20) Willson. Basically, all of these programs calculate energy levels using the methods described in this chapter and calculate transitions 28 as the difference between two energy levels. Two major differences in these programs from those described by Willson are that all of the programs now incorporate Equation (II-7) to allow several isotopes to be fitted simultaneously, and all of the programs incorporate Typke's Hamiltonian Equation (I-8) as an option. The following paragraphs briefly describe the function of our major asymmetric rotor computer programs. Program ICDFIT. Estimated ground state molecular constants and observed ground state combination differences are input. A weighted least squares fit of the difference between the observed and calculated ground state combination differences in performed and the molecular constants which have been selected to vary are adjusted to improve the fit. These constants are then used as starting values and the fit is repeated. This process continues until the fit converges to stable values or until the number of least squares fits specified by the operator has been performed.. Program CDCALC. Ground state constants and either a range of ground state combination differences to be formed or quantum numbers of ground state combination differences are input. The values of the ground state combination differences are calculated and may be punched in a format usable by ICDFIT. Program USEN. Ground state constants and observed transitions are input. Upper state energy levels are calculated by adding the calcu- 1 to the observed transition frequency. lated ground state energy in cm- All transitions involving the same upper state are grouped together for comparison and the average observed upper state energy is calculated. USEN will handle up to six isotopic species and transitions from bands 29 v], 202, and v3 simultaneously. If desired, the average upper state energies may be punched in a format usable by other asymmetric rotor fitting programs. Program ISPECFIT. Ground and upper state constants and observed transitions from a single unperturbed vibrational band are input. The operator selects which molecular constants are to be varied. As in ICDFIT, a weighted least squares fit of the observed transitions is performed and the molecular constants are adjusted to improve the fit. Any combination of ground and upper state constants may be varied. Program SPFTZ. Ground and upper state constants and observed transitions from two vibrational bands coupled by Coriolis resonance are input. Least squares fits of the observed transitions are performed to improve the estimates of the constants selected to be varied by the operator. Any combination of ground and upper state constants may be varied. Program SPFT3. Ground and upper state constants and observed transitions from three vibrational bands coupled by Coriolis and Fermi resonances are input. Least squares fits of the observed transitions are performed to improve estimates of the constants selected to be varied. As with the other fitting programs any combination of constants may be varied. CHAPTER III CALCULATION OF INTENSITIES Knowledge of upper and lower state energy levels alone is not sufficient to allow the analysis of complex asymmetric rotor spectra. One must also know the selection rules for transitions; that is, which upper state energy levels can be reached from a particular lower state level. In addition, it is useful to be able to predict the intensity of the transitions because several possible transitions may have simi- lar frequencies. The correct assignment of a such spectral lines thus also depends upon knowledge of the transition intensities. The following discussion of selection rules and intensities follows the presentation of Cross, Hainer, and King.(2]) Selection Rules As is the case for symmetric top molecules, for asymmetric top molecules the selection rule for the change in total angular momentum quantum number during an electric dipole transition is AJ = 0,:1. The selection rules for changes in K_ and K+ are given in Table 4. It follows that for transitions involving no parity change in one of the K's, AK = O,:2,:4, ... and for transitions involving a parity change in one of the K's, AK = :l,:3,:5.... An additional restriction placed on K_ and K+ is that for any level with total angular momentum quantum number J, K_ + K+ = J or J + l. 30 31 Table 4 Selection Rules by Parity Change of K_ and K+ m I B d Axis Parallel Allowed Transitions The Parity Tan t0 DTPOIE K K +,, K K Change is ype Moment Change - + - + In e e + + e o A a K Dipole Transition Intensities The intensity of a spectral absorption transition from state n to state n' is given by 3 8n N En/kT -E )kT vgn (l-e'hV/kT)e lfwgfiwn.dv|2 (III-l) 3thgne where En is the energy of the lower state; gn is the lower state statistical weight factor; v is the transition frequency; 3 8n N -E /kT is a constant involving the gas density N in 3thgne n -E /kT molecules/cm3 and the partition function Zgne n ; fpgfiwn.dv is the electric dipole transition matrix element. 32 Because only transitions between vibrationally diagonal (unperturbed) vibrational states are considered in this treatment, the total wave function p may be expressed as the product of a rotational wave function PR and a vibration-electronic wave function wVe w = vRvVe . (111-2) Then, the transition matrix element may be factored as fwguvn.dv = g TwaingR.dvIvgeung€dv (III-3) where waeugPVedv represents the contribution of the vibration-electronic dipole transition element. This is considered to be a constant for a given vibration-electronic band and must be nonzero if the band is to be infrared active. ¢Fg are the direction cosines between the space-fixed F(X,Y,Z) axes and the body-fixed rotating g(x,y,z) axes. Conventionally, the axis system (x,y,z) is associated with the principal axes of inertia (a,b,c). For a symmetric rotor molecule, the rotational part of the dipole matrix element may be factored into three parts: f¢§¢Fg¢RidV = = (III-4) . . The first factor is independent of M and K and is constant for given AJ. The second depends on J and M, the projection of the total angular 33 momentum on the space—fixed Z axis. The symmetric top line strength is then 2 2 I |Iv*¢ w .dvl == 2 || (III-5) F M M' R F9 R FMM' F9 9 9 I2 iiz II2 = 3|l KK.II I1 . The factor of 3 in the right hand side occurs because the X, Y, and Z axes are equivalent in the absence of external fields. The nonzero matrix elements used in (III-5) are tabulated in Table 5. For an asymmetric top the line strength is g M' ||2 = 3||2 (III-6) ~MTK' ||2|lz Because the asymmetric top wave functions are linear combinations of the symmetric top wave functions, the first two factors on the right hand side of (III-6) are identical to the corresponding factors in the symmetric top line strength expression (III-5). The asymmetric rota- tional wave functions |Jr> = Z S lJKv> (III-7) K T S _ T JKY Pde ‘ E SJKy are the eigenvectors of the rotational Hamiltonian in the Wang sym- metrized basis. Because lJr> is a function of the Wang symmetrized + wave functions from only one of the Wang blocks E+, E', O , or 0', 34 XNU NNU XHD Nun Nflfl XHM cowueucmmmcamc ca mm: mmpzompoe mumpoca com cowumucmmmcqmc LHHH mm: mm_:om_oe mumpno com D .22 N_x_z.s_ Ne_2sVA w .hww _+o aN_ _+n NP , mN .AB—e—dv— F ~+qN _ N xenzs_mxe_zevln u m nfll_-2nsvaznsvgn «HA_+2nsVA2nqu mflfim+2nsVA_+2nsvgn x_nz.s_ >e_2sv mN «mm: mega 2N «Hm: ~A_+evum xz.e_ e_st a _-flml_-msevseg F-fll_+svseg _-immlm+sNVA_+smvgl_+svec x.s_ ae_sv Apn¥s_xae_xsv_n u a «HAP-¥nsVA¥nevgn mflfl_+¥neVA¥nevu «HAN+¥neVA_+xnsan Apn¥.s_ ae_¥sv . i . Na name mega em «may Nap+qvg~ x¥.e_ e_¥sv Pia a _+w .q mo m=_e> cocoon acm5m_m xweuez mucmsmpm chumz mcwmou cowuomc_o gob owcuwssam m o—nmh 35 K ranges from O or 1 to J-l or J in steps of two. The ij are given by Equation (II-2). A simple calculation shows that i . i i = T T i i I _ i , , 3i: sdkst.K.Y. ad [+( l) [J K >] i . i T T i i I _ Y I_ I 2K. SJKYSJ'K'y' 65 {+( l) +(-l)Y+(-l)YTY'} where |JK> are the symmetric top wave functions. The amount of calcu- lation necessary to evaluate may be reduced by observing that the only nonzero matrix elements are those for which AJ = 0,:1 and AK = 0 if g==z or AK = :l if g = x or y where AK = K-K' or K+K'. For unperturbed vibrational bands, all SOKY are real. If mixed bands (bands in which the change in dipole moment is not parallel to one of the molecule fixed principal axes) are not considered, com- plex arithmetic is not needed to evaluate the line strength (III-6) because, even though some elements in Table 5 are imaginary, the matrix elements will be either pure real or pure imaginary and the line strength depends onl|2 which is necessarily real. The assignment of the molecule-fixed axis 9 to x, y, or 2 may be determined from the band type and the representation in which the Hamiltonian has been evaluated. As shown in Table 4, the molecular axis along which the dipole moment changes determines the band type. 36 For example, for a prolate molecule (Ir representation) with a type A vibrational band, 9 = a = 2. For bent triatomic molecules type C transitions, which correspond to out of plane vibrations, cannot occur. However, type A and type 8 transitions are allowed. For molecules like “25 and HZSe, type A bands occur only for transitions to or from vibra- tional levels (V],V2,V3) when V3 is odd. All other bands for these molecules are type B. If a molecule contains two equivalent nuclei, for example, the two hydrogen nuclei in H25, nuclear spins and nuclear Spin statistics affect the population of the ground state, and, hence, the transition inten- sities. Townes and Schawlow<22) show that for H25 or HZSe there are three times as many asymmetric or odd levels (K_+K+ = odd integer) as symmetric or even levels (K_+K+ = even integer). Thus, for H S and 2 H25e the statistical weight factor gn is three for odd levels and one for even levels. The observed spectra of H25 and H25e Show this 3:l intensity ratio for transitions originating from odd and even levels. For example, the H25 0] transition 4 l 4 - 5 O 5 may be observed to have three times the intensity of 4 O 4 - 5 l 5. Molecules with no equivalent nuclei, such as HDSe, have gn equal one for all levels. Because one is usually interested only in relative transition intensities within an asymmetric rotor vibrational band, both the vibration- lectrgnjfiTdipole matrix element fwveungedv and the partition function Z gne are set to arbitrary constant values, giving the relative intensity -E /kT _e‘hV/kT)e n EiM.'I2 (III-9) 37 where Z l|2 is defined by (III-6) and (III-8). FMM' A description and listing of computer program INTCALl, which calculates absorption transition intensities and frequencies for type A and type B bands, is given in Appendix B. CHAPTER IV DATA COLLECTION AND EXPERIMENTAL DETAILS During the past two years we have run spectra of HDSe 201, HZSe 202, v1, and v3 and H25 202, v], and 03 on the Michigan State University high resolution spectrometer. This chapter describes the data collection and experimental details. Since the procedure for acquiring spectra is similar for all three molecules, the general pro- cedure is described and specific comments for the individual molecules are made as required. The process of acquiring spectra comprises sample preparation, spectrometer setting and computer assisted data acquisition, data processing, line measurement, and calibration of the spectra. Experimental Samples of HZSe and DZSe were purchased from the Matheson Company, Inc. HDSe was prepared by mixing HZSe and 025e in the sample cell. Such a mixture rapidly reaches an equilibrium mixture of HZSe, 025e, and HDSe. The proportions of each component of the mixture may be calculated as follows. Consider a mixture containing fraction x of HZSe and fraction (l-x) of DZSe. Then, the probability that an individual atom attached to a selenium is H or D is respectively x or (l-x). 2 Therefore, the probability that a molecule is HZSe is x , HDSe is 2x(l-x), and DZSe is (l-x)2. We used a mixture of one part H25e to nine parts 38 39 DZSe which yields an equilibrium mixture of 8l percent 025e, 18 percent HDSe, and l percent H2Se. This ratio was chosen because it gives rea- sonable HDSe absorption in the 2v1 region, while giving absorption by only a few of the strongest lines of the HZSe bands 201, 01+v3, and 203 which are in the same region. There are no interfering 025e bands in this region. An impurity present in the sample of DZSe obscured a small number of HDSe lines in the low frequency region of the spectrum. How- ever, this impurity caused little difficulty during analysis of the spectrum. The sample used for the H2Se 202, v],and v3 spectrum showed no evidence of any impurities in the region of interest. After several attempts to obtain a spectrum of H28 202, v] and 03 free from contamination from strongly absorbing CO2 bands in the 4.3 pm region, Scientific Gas Products, Inc. donated to us a 35 gm sample of electronic grade H25 (99.99 percent purity, less than 50 ppm C02). In our spectra of their sample, a small amount of C02 contamination was still present but, was sufficiently small so that only a few H25 lines were obscured. Ultimately, the CO2 contamination served one useful purpose. The recent analysis of (00°l) of C02 by Baldacci et al.(23) allowed us to use this band as a calibration standard. All spectra were run on the Michigan State University high resolu- tion near infrared grating spectrometer. The spectrometer, which has (24) (25) uses a l-m focal been described in detail by Aubel and Keck, length Littrow—Pfund monochromater with 300 line/mm and 600 line/mm gratings mounted back to back on a turntable. Infrared radiation was provided by a carbon rod source. The radiation was mechanically chopped at 90 Hz. 40 The samples were contained in a White type multiple traverse cell maintained at room temperature (22 to 26°C). A liquid nitrogen cooled InSb photovoltaic detector was used to detect the HZSe and “25 spectra and a dry ice cooled PbS photoconductive detector was used to detect the HDSe spectrum. Visible light from a 100 W Zr arc lamp chopped at 450 Hz was used to produce Edser-Butler fringes used for calibration. The white light fringes were detected by a dry ice cooled RCA 7265 photomultiplier tube (PMT). Dry ice cooling provides two benefits: First, improved signal to noise ratio (which was, however, not needed for most of the runs most of the time); and, second, cooling prevents intermittent spikes from appearing on the output signal of the PMT. The PMT was usually operated in the neighborhood of 1500 V applied bias and 60 dB gain on the Keithley 823 amplifier. These conditions seem to give the best overall signal to noise ratio. The signal processing electronics of the spectrometer are shown schematically in Figure 5. The infrared dectector output was fed to a Princeton Applied Research HR-8 lock-in amplifier. The lock—in output was fed through an adjustable gain amplifier to a chart recorder and to an analog to digital converter on a POP-12 minicomputer. The PMT output was routed through a Keithley 823 amplifier and a Keithley 822 phase sensitive detector before being fed through an adjustable gain amplifier to a second analog to digital converter on the PDP-l2. Time constants on both the HR-8 and 822 were set at 0.3 sec, about one-tenth the time required to sweep through a line or fringe in a typical run. 41 ".58.: as: e disc - 325° . 5:392 - as > N. S N- 53;; um. I): A A F 32:: Sign 22.. 5525...: «TE 22 a > ~+ ah ~-. figs: 6:33 a disc :5 53; «58.». < @234 as: >33... 5533 9:535 35.... N9 gate. .mu—zozhqum gimmmuoxm ..(zm-m cmhgxhuumm .m wean—m 3:332 mum >533. 829.53.... .255 BEE 8:22.55“ .255 5 >33: «8.5:... Hag—EH. 23.8.. mix: :5 ~28 32%: «WE. «Bach—8w ac 5.3 m5: 92 35th S 42 Data Processing Alternate samples of spectral data and visible light fringe signals are stored on magnetic tape under the control of program SYSTEM.(20) SYSTEM is an interactive program to sample data and manipulate them. As recommended by Willson and Edwards,(26) the data sampling rate was set to provide 30 to 60 points per full width at half height of a line. To improve signal to noise ratio and prevent aliasing of high frequen- cies, groups of 32 instantaneous samples of the spectral data and of the fringes were averaged to provide each point stored on magnetic tape. SYSTEM displays the data as they are being acquired. At the start of each run, the offset on the infrared variable gain amplifier was set to provide a suitable zero transmission baseline. Usually the zero transmission level was set to correspond to near the analog to digital converter maximum value of 20008. For the weakly absorbing HDSe spectrum, the zero transmission level was set at about twice the maximum of the analog to digital converter. After initial setting, the zero transmission level was not varied during a run. The zero absorption baseline was adjusted throughout a run to be approxi- mately lOO8 on the analog to digital converter. Because the gain and offset of the variable gain amplifiers do not interact with each other, this adjustment did not alter the position of the zero transmission baseline. The fringe variable gain amplifier was adjusted during each run to keep the fringe amplitude approximately constant at 12008 on the analog to digital converter. After spectral data had been recorded, the spectral data and white light finges were copied onto separate magnetic tapes. The data and fringes were smoothed using a four times quartic smoothing function. 43 For this function, Willson and Edwards(26) recommend a smoothing range equal to the full width at half height of a single well-resolved line. Because of some misunderstanding of the conditions necessary for reli— able deconvolution, our spectra were run at too high a noise level for reliable deconvolution; and, therefore, the spectra were not deconvoluted. Fringes and spectral lines were measured using the interactive line measurement program CENTER.(27) Since a detailed account of the opera- tion of CENTER and the line measuring process is given by Hurlock and Hanratty,(27) only a brief description is given here. CENTER displays the spectrum or fringes on the PDP-l2 CRT display. The operator may move the spectrum forward or backward on the display. The displayed portion of the Spectrum can be reflected about a cursor displayed on the CRT. The center of a line is determined by minimizing the difference between the displayed portion of the spectrum and its reflection. The vertical and horizontal coordinates of this point on the spectrum tape are recorded on magnetic tape. Fringe positions are measured automatically. The operator measures the first three fringe positions manually and CENTER measures and records the remaining fringe positions on the tape. Actually, a bug in CENTER causes it to crash after measuring anywhere between 10 and lOOO fringes so frequent restarts are necessary when measuring fringes. The usual routine for measuring line positions is to first record fringe positions. Then, line positions are measured manually by the operator and the fringe number of the line is interpolated by CENTER. Conversion of the tape position of spectral lines to fringe numbers is necessary because the spectrum is recorded linearly in time, but not linearly in frequency. 44 Calibration Calibration of the spectra presented some problems. The normal procedure is to put a calibration gas in the sample cell at the begin- ning of a run and another calibration gas in the sample cell at the end of the run. The spectrometer is run continuously while gases are changed. The spectra of the calibration gases and fringes are recorded along with the spectrum and fringes of the sample. This is shown sche- matically in Figure 6. Ideally, the Edser-Butler visible light fringes Should be equally spaced in frequency, so they could be calibrated with the calibration gases with the frequency of any spectral line given by the linear relation v = A + Bf where v = frequency, f = fringe number, and A and B are constants deter- mined from a least squares fit of observed fringe numbers of calibration gas lines to their accepted frequencies. Upon attempting to calibrate in this manner, we discovered systematic errors between the observed and accepted values of the calibration gases (Figure 7). Also, an discovered inconsistencies in line frequencies measured in overlapping regions of different runs. The nature of these errors suggested that rather than being equally spaced in frequency, the fringe spacing was increasing with time. We conjecture that this is because of thermal expansion of the Fabry-Perot etalon used to generate the fringe. Because our air conditioner does not have the capacity to keep the spectrometer room and equipment at constant temperature, temperature usually increased 2 to 4°C during the course of a run. A test run showed a fringe shift of 0.0l cm'1 during a four hour run. This Shift is consistent with the Shifts predicted by 45 .uoumgmmmmxm mcpomam mmcpgm .mmmcpcw can momma :owumca_pmu saw: Escuumqm quwaau a to :o_umucmmmcamc uwamsmsom mmozfimm hzmum upwzz .o weaned mvom~z an: we. .m>~.—>Vom .nn.....o-..ou ~.co.c -oo.c -oo.o a—oo.c =¢.... .n c:¢..m. z .m. ea...w. AN: can —>.om z . -no. ... =o....a...u be eo.u..,oa ecaueaum .mn.....°-..ou .mn.....o-..°u .Nm.....c-...ummz .oueoco.u¢ N fix:g?a.~ ~ 1:395:3223w ..n..n..o-~._u= .ofi..~....c~.c 2 on .N. ..N..o z ..n.....o.~..o z 4.4.8 co.u......u NM «n mm ~n Na u:.o. ...; to. “0.3:.m Ann. .223..— . c c n m oc..asam ....u.a A—-Iuv :o.u:—omu¢ an m. an m~ m~ .33. g.u.: ...m a a a . . canto one... can cm” can own own .<. aeoccau cog =oa..u n.o m... m..m m..n m..o ... gage». .... moo.» cu o~ omwz om-c~ m~-m.n m-q.. mm-. ...o.. «cannot. a.as.m .oo. concau use access no omaauun a. can c. suns ac.mm_n 5o co_oo. ugogm so>ou o» vow: oup< ..oguoao» cox_s cu can o_asam .na¢._ co.uaca._ou omN: ov—>osa ca can: mucaaaau m-~-ono~ n~.~-m.m. omm~-n~.~ o..~-owm~ ~mm~-c..~ ..-au. eo.a~¢ .n a. a. .. m. =3. m:¢.u—vcou .aucas—Loaxu n: we. .—> .~>~ omw: n upon» 51 upacpp a can conga um._$ cw m:_un.a ss\m:.— can as» oc.m= as. «so: mu: mo menuoam ammgh .couumumv one. umpoou =mmo.».= .muoz Aquu. awn :cpuagnwpmu m.co.o .Noo.o m.oc.o o =o.»a.>ua ceaueaum .mm ==¢.....m>.~>~..>.m~: .-.......oo.~ou .am..~....~..c~z ....._...°~.o~z .m......o-.._omm= . ......o.... N ..mcgo acwuaguVAucum. .mm.....°-..oo .mm.....o-..ou ..m.....o.~..o z mama. =o..a.a..uu mm mm mm u:.oa mama so. mo—asom Ame. pu>couc. m m m oe..asam .a..m.o mo.o mo.o mo.o ..-su. =o..:.0m~¢ an ac on .51. euu.= u..m m m . gouge one... com com omm .<. oeoeeau no. can... m..m. m..m. m..m. .s. :umea. so“. on ow m.-m ...oa. mgammoga o.asom om--.e.~ ¢.¢~-o¢m~ oqmw-e.¢~ ..-su. =o.mm¢ mm mm .— cam m=o_u_u:ou paucos..quu m: use ..> .~>~ mm: CHAPTER V ANALYSIS 0F 20 0F HDSe 1 Little previous work has been done in analyzing the vibrational or rotational spectrum of HDSe. In 1939 Cameron, Sears, and Nielsen(35) ran low resolution spectra to determine the values of the three normal modes of vibration. Some 20 years later Veselago(36) observed ten microwave transitions each for most of the stable isotopes of selenium, but was not able to observe enough different types of transitions to determine a complete set of rotational constants. We believe this analysis of the 201 band (Se-H stretch) in the 2.2 pm region is the first published high resolution study of any vibration band of HDSe. 1 to 4750 cm.1 is shown The spectrum of 20] of HDSe from 4500 cm- in Figure 9. The spectrum is a horizontally compressed plot of our digitally smoothed data. An impurity at the low frequency end of the spectrum obscures some lines below 4500 cm']. This impurity has not seriously hindered analysis of the band because the spectrum of 20] becomes quite weak below 4500 cm']. Nevertheless,e1even transitions 1 and 4500 cm". were identified between 4470 cm' A quick examination of Figure 9 shows that the spectrum of 20] has the characteristics of a type 8 band: P and R branches and a gap at the band center (the small group of lines near the band center is due to HZSe). 52 53 I -3 8: 3 ...8 8.... .8... 3.... .3 5:8... 2: ... 95.... ...-... ‘1 54 Our analysis of any vibrational mode of HDSe began with an exami- nation of the molecular geometry. Since isotopic substitution causes at most small changes to the molecular equilibrium geometry, the structure of HDSe (Figure 10) is, to very good approximation, the same as that of H28e(37) with a deuterium atom substituted for one of the hydrogen atoms. Because of the large mass of selenium compared to the masses of hydrogen and deuterium, and because of the near right angle between the Se-H and Se-D bonds, the principal axes of the molecule lie essentially along the bonds. As a result, the Se-H stretching mode of v] and its over- tones result in essentially pure type 8 bands. After completing line assignment of the spectrum, we predicted frequencies and intensities for strong type A band lines. A search of the observed spectrum for these predicted lines failed to show any evidence for the presence of type A band transitions, thus confirming our assumption of a pure type 8 band. In addition, there are apparently no nearby levels with which 201 interacts, so perturbations are not a problem. Veselago's microwave 1ines(36) do not include enough types of transitions to determine A, B, and C individually, but can be used to determine the difference A-C and Ray's asymmetry parameter K = (ZB-A-C)/(A-C). To get initial estimates of A, B, and C in the ground and upper states, we assumed that HDSe has the same structure as H25e in its ground state except that deuterium is substituted for one of the hydrogens. Since A m 1/IA, B a 1/13, and C a 1/IC and since the principal moments of inertia I are proportional to mr2 where m is approximately the mass of H or D and r is approximately the Se-H or Se-D distance, it follows that B x A A x 1/2 BHZSe’ and HDSe HZSe’ HDSe %- %~+-% . These crude estimates of the HDSe rotational constants were 55 .xguwsomm mmm: so.» uocgmwcw mm «me: we mmxm .ma.u=_.g ucm agnosomm .mpaum—oz . . Gm 000 \ . om... mm .c— ogzmwm 56 further adjusted so that A-C and K were equal to Vesalago's microwave values. Examination of the molecular geometry shows that HDSe is a near-prolate (A: B and K<0 and A>B>C) asymmetric rotor; that is, x = b, y = c, z = a. This choice of association of the a, b, and c principal axes with the x,y,z body fixed axes defines the Ir representa- tion. All Hamiltonians were evaluated in this representation. Most of the analysis was done by using Typke's reduced Hamiltonian. A11 Hamiltonians were evaluated through terms of the fourth power in angu- lar momentum. Higher order terms were neither needed to fit the observed spectrum, not were they found to be statistically significant. The estimated values of A, B, and C, were used in our computer pro- 80$e. With this gram INTCALl to predict and plot the spectrum for HD predicted spectrum, we were able to identify the strong "zero" series (Ad = AK+ = :1 and J = K+) lines as well as a few other strong lines. Ground state combination differences were formed from these lines, which, combined with the microwave lines, allowed us to improve our estimates of the ground state constants. Keeping these ground state constants fixed we then made a weighted least squares fit of the assigned transi- tions to determine better upper state constants and predicted the spectrum again. Several iterations of this procedure were necessary to assign most of the HD8OSe 1ines. Because of the density of the spectrum, many observed lines were found to be made up of several unre- solved transitions. Such lines, although assignable, were not used in fitting the spectrum. In particular, lines from the "first" series (AJ = AK = :1 and J = K+ + 1) are often so close to lines from the zero series that the lines can not be resolved. Also the even and odd 57 components of lines in a series1 are often split by small amounts. If the splitting was greater than a few thousandths of a wavenumber but too small to be resolved, the lines were not used in the fit. Because HDSe has no symmetry axis, even and odd components of a transition have equal intensities, so measurement of such an unresolved transition will give the average of the two transition frequencies. When most of the H0805e lines had been assigned, the assignments of lines from the other four isotopic species of selenium was straightfor- ward because of their characteristic spacing and intensity. Figure 11 shows an example of this for comparison with the natural abundances of the Se isotopes. The ratio of intensities is seen to be roughly pro- portional to the abundance of the Se isotopes. As a side comment, the presence of a large amount of foreign gas (in this case the DZSe pressure was approximately five times the HDSe pressure) seems to cause weak lines to have less observed intensity than expected relative to stronger lines. We found that,as did Willson et al.518) assuming a linear mass dependence in the rotational constants A, B, and C, and linear plus quadratic mass dependences of the band center allowed us to fit all five isotopes simultaneously. This method uses fewer parameters than do separate fits of each isotope, i.e. 11 parameters vs. 5 sets of 8 para- meters for the ground state and 13 parameters vs. 5 sets of 9 parameters for the upper state. Further, the parameters we have chosen are physi- cally significant and much better determined than many of the parameters would have been if each isotope were fit individually. 1Evenness or oddness is defined by the evenness or oddness of K_ + K+. An example of an even and odd pair of zero series lines is 2 0 2 - 3 l 3 and 2 l 2 - 3 0 3. 58 m: ..-Eu epse gum: - N a new N o m - m u m umpnaou um>pomogcs . u .om mm“: mw mowuoam o_gouom_ «ca mo mo:__ :o_uacoma< .. m.=m_. ..z<.z=m< 3N om m .2..... m. cm mm m.o.cm. m x mm R . . ..\/\ . ,. << <2 , 3.. 59 For our final determinations of molecular constants, we formed all possible ground state combination differences from observed transitions. These ground state combination differences were fit simultaneously with Veselago's microwave lines. The microwave lines were weighted 400 times the weight of the combination differences (relatively lightly in compari- son to their precision relative to the infrared combination differences) in order to reduce highly correlated and poorly determined individual ground state constants. Our final ground state constants were determined from a least squares fit of the microwave lines and ground state combi- nation differences, with all ground state constants varied simultaneously. The standard deviation of the infrared ground state combination dif- ferences is 0.007 cm'1 and the standard deviation of the microwave lines is 0.001 cm']. Our final upper state constants were obtained from a least squares fit of all observed 201 transitions, with ground state constants fixed and all upper state constants varied simultaneously. Most fits of the spectrum were done using Typke's reduced Hamiltonian which we have found causes the fits to converge quickly to stable values. Table 9 lists the final set of constants obtained for the assigned transitions determined from our fitting procedure using Equation (II-7) with Equation (I-8). Tables 10 and 11 list partial correlation coefficients for the ground and upper state constants. Tables 12 thru 17 list the sets of constants obtained for the assigned transitions and correlation coefficients for the constants for planar and Watson's forms of the Hamiltonian. All constants are listed to two figures beyond the 96 percent simultaneous confidence interval to reproduce our predicted frequencies. By using linear mass dependencies for A, B, and C and both a linear and quadratic 60 Table 9 Molecular Constants for 20] of HDSe for Typke's Reduced Hamiltonian Ground 95% Upper 95% State (cm‘l) 501° (cm-1) State (cm-l) 5013 (cm-1) A' 7.953039 20.00103 7.50341] 20.00021 0' 4.017408 20.00050 4.016749 20.00030 C' 2.532836 20.00047 2.585322 20.00015 05 0.00002227 20.0000035 0.00001736 20.0000015 05K 0.000949] 20.000023 0.00096662 20.0000060 “k -0.0005859 20.000022 -0.00061178 :0.0000055 55 0.00001796 20.0000012 0.00001812 20.0000011 R6 -0.000017200 20.00000069 0000019280 20.00000047 0.001268 20.00065 0.0011777 20.000056 53 0.00108, 20.00053 0.001075 20.00013 5C -0.000607 20.00060 0.000659 20.00017 )0 4617.8923o 20.0038 :3 0.32757 20.0043 :3” 0.00387 20.0016 ;tandard deviation of fit of 305 weighted transitions = 0.0044 cm" l95% SCI (simultaneous confidence intervals), here 1 * 6 standard deviations. 61 moo.oi moo.o- moo.c ooo.o mom.o opm.oi mp¢.o1 mom.ou mmm.o1 omm.o o «u ow mw m :a_:ou—_Eo: vwozvmm m.m.axp to. mucmumcou macaw vczoeu mmo: we mucmwo_mmmou :o_uo_mggou _a_ucma moc.O1 omm.o cmm.o mmm.¢1 mun.ou eoo.o mmp.on mmo.oi mop.o mm~.o omw.o1 moo.o —mm.oi com.O1 c_~.o mmm.o com.oi mom.o xw o. m—nmp Noo.o qpo.Ou coo.oi ooo.oi mo—.o- mm¢.ou mwm.o Pvm.o moo.oi ovm.o mm~.o m-.o- ~m¢.oi mme.o mum.ou mpm.ou —m~.oi .< moo.ou ~ve.o -¢.o ¢m¢.ou No~.ou vm~.o mo~.o- omv.ou m—m.o- mw¢.o .u coo.o mm¢.o1 upm.01 mmm.o mpm.o ~m~.oi Pmp.o o~¢.o omo.o1 mme.ou emw.o- .m u4 moo.o- epo.oi moo.o- Noo.o —m—.c- ~——.Ou Nm—.oi N—o.On soo.o ~_o.o e—o.o coo.o mmo.o eP~.o- om~.o ooo.o ¢N~.o om~.o mow.o «mo.o mp_.o pom.o m—~.c o_o.o noo.o oo~.o mm~.o mpm.o mmp.o c.~.o e~¢.o mm—.o moo.o- msm.o m—o.c wm—.o -_.o Nm—.o ~o~.o —v~.o euv.o own.o- ~0m.o- m—m.o mme.c coo.o vom.o oov.o Nam.o an_.o m-.o eom.o mm..o moo.Ou m_m.o Ncm.o mmm.o ~.o.o ccp.o sv—.o ohc.o ~—~.o pm—.o Nae.o o—m.o- mom.o- o~o.o mm..o mmm.o Nm—.o co_cou..Eo: m.c0maoz Lo. mucoumcou .>~ mmox we mucm.o_..oou :o_uo_oeeou —o_u.um N. m—noh moo.o com.o omm.o m-.o cov.o vom.o on~.o N—m.o- —m_.o- om~.o pan.o NNm.o .ov.o omv.o 8.2. 8...... no «u 8. mu 0.) .... xdd .... 7L.) 7< 69 mass dependence for 00, all three Hamiltonians gave similarly excellent fits of the data for all isotopes with standard deviations of less than 0.005 cm“. Whereas the planar form of the Hamiltonian and Typke's Hamiltonian converged to stable values well before final assignments were completed, this form of Watson's Hamiltonian converged only after nearly all assignments were correct. Appendix C lists the observed transitions and their differences from values calculated using Typke's Hamiltonian. The weights listed are those used in determining the constants by the least squares fitting procedure. We believe that for HDSe a simultaneous analysis of five isot0pic species, including linear mass dependencies for A, B, and C and linear and quadratic mass dependencies for V0’ leads to a more significant set of molecular parameters than would individual fits of each isotopic species. We note that the Typke, Watson, and planar Hamiltonians all predict the spectrum equally well. Further, all three Hamiltonians pre- dict very similar mass dependencies for the molecular parameters, thus confirming their significance. General Comments about the Systematic Analysis of Asymmetric Rotor Molecule Spectra In the course of fitting the molecules analyzed in this thesis, a systematic procedure has been developed for analysis of asymmetric rotor spectra. This procedure is discussed below. 1. First, ground state molecular constants should be used if available. Often ground state constants are available from microwave spectra or from infrared analysis of other bands of the molecule. If other bands have been analyzed, it is useful to form or calculate ground 70 state combination differences. Ground state combination differences are formed by taking the difference between two transition frequencies to the same upper level. This difference is the difference between the two ground state energy levels involved. The same ground state com- bination difference may be formed from transitions to more than one upper state level. Figure 12 shows an example of this. The ground state combination differences and the observed transition frequencies of the band to be analyzed can be used with our computer program LINESRT to assign transitions. LINESRT compares the differences between all possible pairs of observed transition frequencies to the calculated or observed ground state combination difference frequencies. Pairs of lines whose frequency differences match a combination difference fre- quency are presumed to have the same upper state and the same ground states as the combination difference. When one line is involved in several different combination differences, the upper state can be deter- mined. If good values for the ground state combination differences are available, many lines can be assigned by this procedure. The lines assigned by LINESRT should be examined carefully before an attempt is made to fit them. If the spectrum contains many lines, some lines may be incorrectly assigned because the frequency difference between two lines may accidentally be the same as a ground state combination dif- ference. Inspection of the assignments (for example, checking that a transition assigned to a frequency in the R-branch of the spectrum actually has quantum numbers corresponding to an R-branch transition) will enable one to eliminate many misassigned lines. If LINESRT yields a number of probable line assignments, these lines may be fit to give estimates of upper state constants. The next paragraph suggests methods for estimating starting values of upper state constants. 71 K K 5 0 5 L A 6 3 4 Figure 12. The 6 3 4 - 5 3 2 ground state combination difference from some type B band transitions 72 2. Estimate upper state Hamiltonian constants. This may be done initially by examination of available constants for other bands of the molecule, by examination of constants of similar molecules (e.g., one would expect similar variations between upper state and ground state constants for 201 of HDTe and HDSe), or; if neither of these options is available, by assuming equal upper and ground state constants. 3. Using the estimated Hamiltonian constants, predict the spectrum of the band. For unperturbed bands, program INTCALl is very useful. It plots both calculated line position and calculated line intensities. For initial assignments of perturbed bands, INTCALl may be of some use. It is best to arrange predicted transitions by series. (20) Cross et 81. give a good discussion of intensities of asymmetric rotor transitions. For both type A and type B bands the zero series (AJ = 21, K; = J', K = J) is usually one of the strongest series in + both the P and R branches of the band for both prolate and oblate mole- cules. This series also is usually one of the least perturbed series in perturbed bands. Although the inverse zero series (AJ = 21, K: = J', K_ = J) has large line strengths for oblate type A and 8 bands, transi- tion intensities fall off rapidly for high J values because of the Boltzmann factor (e-Eg/kT, E9 = ground state energy) in the intensity formula. As a general rule, upper state energies in perturbed bands are more strongly perturbed as J and K_ increase, making the high J, high K_ levels the most difficult to predict accurately. As the molecular constants are improved and energy levels are calcu- lated more accurately, Q branch transitions and other series of transi- tions should be predicted. It is often most fruitful to add transitions in order of decreasing expected intensity, especially at early stages of the analysis. 73 4. Using the predicted spectrum, identify transitions in the spectrum to be analyzed. Lines within a series may often be identified, even if they are poorly predicted,by looking for systematic intensity variations and systematic differences between observed and calculated lines. The spectra of molecules with several abundant isot0pic species (for example, selenides and tellurides) often have clusters of lines showing systematic structure for each transition, each line in the cluster due to a different isotopic species. When analyzing such spec- tra, care should be taken to make sure that transitions are assigned to the proper isotopic species. Lines which do not show the proper isotopic signature can often be attributed to impurities in the sample or spectrometer. 5. Fit the assigned lines to improve the estimation of upper state constants. Delete obviously incorrectly assigned lines from the fit. 6. Form ground state combination differences from the assigned transitions. Combine these with other ground state combination differ- ences and microwave lines if available. Fit these data to improve the estimation of the ground state constants. An observed ground state combination difference which is not equal to other observed ground state combination differences between the same levels usually indicates that one or both lines are misassigned. Moreover, ground state combination differences which fit poorly often indicate incorrectly assigned lines. Because the ground state levels are unperturbed, fits of correct ground state combination differences usually converge to stable values of Hamiltonian parameters which predict ground state levels accurately. A line which is used to form several ground state combination differences which do not fit is almost surely misassigned. 74 7. Using the ground state constants, use computer program USEN to form upper state energies for all assigned transitions. Program USEN calculates upper state energies by adding the calculated ground state energy to the observed transition frequency. All lines involving the same upper state are grouped together. Examine the upper state energies. If accurate ground state constants are available and the lines are cor- rectly assigned, all lines involving the same upper state should have the same upper state energy within measurement error. When used with ground state combination differences, this provides a powerful tool for detecting incorrect assignments. 8. Refit the assigned transitions to improve the estimates of the upper state constants. 9. Iterate steps 3 thru 8 until all lines are assigned and a good fit of the spectrum is obtained. CHAPTER VI ANALYSIS OF 202, 0 AND 0 OF H S 1’ 3 2 In 1956 Allen et al.(38) identified and analyzed about 35 strong lines of the v] and 202 bands of H25, identified some lines as being due to 03, and estimated the position of the v3 band center. In 1969, Edwards et al.(39) reported values for the band centers of v], 202, and 03 based on a partial analysis of these three bands. The spectra run by Edwards et al. were not used in the present investigation. Examina- tion of their data showed systematic calibration errors of approximately 0.01 cm"1 from run to run. It is conjectured that these errors were due in part to the lesser accuracy of frequency measurement of calibra- tion gases then available and in part to the fringe shift problems discussed in Chapter IV. In any event, the spectra of 202, v], and 03 were rerun for the present investigation. The Coriolis coupled bands 0] and 03 were analyzed simultaneously, while 202 was analyzed as a single band by ignoring its Fermi interaction with v]. This work is the completion of that investigation. In a manner similar to the analysis Of 292, v1 and 03 of H20 by Flaud and Camy-Peyret(40) , we have investigated the effects of the Fermi interaction between 202 and 0]. However, unlike them, we have not been able to determine a value for the Fermi interaction term for H25. 75 76 The spectrum of 202, v1, and v3 of HZS is shown in Figure 13. This figure is a horizontally compressed plot of our digitally smoothed data. Because several runs at various pressures were necessary to record the complete spectrum, the absorption intensities shown in Figure 13 do not necessarily reflect the true absorption intensities from region to region for these bands of H25. In general, 202 is a less strongly absorbing band than 01 and the actual absorption inten- sities at the high and low frequency ends of the spectrum are smaller relative to the absorption in the center region of the spectrum than shown in Figure 13. The band v3 is weakly absorbing compared to v]. A number of the observed 03 transitions have borrowed their intensity from 0] through the Coriolis interaction between the two bands. This is particularly true of transitions to high J high K_ levels of 03. For example, Table 18 lists a few transitions to the highest J and K_ levels of 03 together with their relative intensities and the contri- bution from v] to the v3 wave functions. Generally, lines to less perturbed levels of 03 with similar J and K_ either are not observed or are weaker than those listed in Table 18. Since the Coriolis inter- action couples levels of the type J K_ K+ in one band to levels of the type J K_+l K+ in the other band where K_+K+ = J, the complementary levels in 01 should be weaker than would be expected if no perturbation were present. It has not been possible to make a good check of this because only four 0] transitions ending on two upper state levels com- plementary to those listed in Table 18 have been observed. They are 8 8 l - 7 7 O, 8 6 3 - 7 3 4, 8 6 3 - 7 5 2 - 7 5 2, and 8 6 3 - 8 5 4. Of these transitions, two, 8 8 l - 7 7 0 and 8 6 3 - 7 5 2, are quite strong and the upper state wavefunctions include 6 and 13 percent 77 d 5.. 28 .4 NS .0 8 .3 8:55.: 2.; 8.9.3. 25 E 332...»... ......5 8mm 3 7.5 owmw .3: mm: .3 m: E; ..., .~>~ mo ...:bumam 8..» .m. 0.53.. 7:5 Ome _ ...... ~ END. 7&0 Omnm 1 7.5 09% 7.5 OmNN 78 ...u.oeoo. .m. 2222.. .-Eu OOmN .-Eu omnm .-Eu CONN .-Eu ommm — I I ‘ :00. .0 o _. 7...... 00mm b ’bitbt‘r IL J1 _1 ... «41—2.. __. q .-Eu Ommm 7.5 00mm 79 Table 18 Transitions to High J, High K_ Levels of 03 of H25 . . Observed Relative % Contribution from Trans1t1on Frequency (cm' ) Intensitya v1 Wavefunction 871 - 770 2741.512 40 7 862 - 761 2746.957 60 15 963 - 862 2761.469 45 47 1073 - 972 2774.893 40 24 853 - 734 2799.285 30 11 981 - 862 2815.404 15 8 6Height of the strongest observed lines in the spectrum of v] and 03 is approximately 100. Line height is taken to be proportional to intensity. 80 contributions from the 03 wavefunctions, respectively. The other two transitions are of moderate intensity. Without detailed knowledge of the predicted intensity for these lines, the amount of intensity donated to the v3 transitions cannot be determined. The bands 202, v] and 03 are coupled by Fermi (Eq.I-l3) and (40) The form of the Hamiltonian matrix Coriolis (Eq.I-ll) interactions. for these interacting states is shown in Figure 14. In their analysis of 202, v1 and 03 of H20, Flaud and Camy-Peyret found that their Coriolis interaction coefficient between 202 and 03 was about one-fourth that of the Coriolis interaction coefficient between 01 and 03. Because 202 and 03 are separated much more than 01 and 03, the interaction between 202 and 03 will be much weaker than between 0] and v3. Since the band centers of 03 and 202 of H25 are separated by x260 cm'1 compared to 03 - 01 z 14 cm'], we have assumed that the Coriolis perturbation between 202 and 03 may be neglected. Many of the observed transitions in 2v2, v1 and v of H23 had been 3 (39) . Therefore, fa1rly good start- previously assigned by Edwards et a1. ing values for the Hamiltonian parameters were available. In our initial analysis of these bands, we assumed the type B band 202 could be treated as a single unperturbed band and that the type 8 band 01 and the type A band v3 could be treated as being affected only by the Coriolis interaction between them. This treatment assumed that the only effect of the Fermi interaction is to move the observed positions of the band centers of v] and 202 from the positions they would have if no perturbation were present. All analysis were done using Typke's Hamiltonian Eq.(I-8) and Eq.(I-ll) for the Coriolis interaction. Since H2S is an oblate asymmetric rotor molecule, the rotational Hamiltonian 81 H H H 03 C C .1- HC Hv HF 1 i i “0 HF ”202 Figure 14. The form of the Hamiltonian matrix 03, v] and 202. 82 is evaluated in the IIIr representation (a = x, b = y, c = z) with the molecule in the xy plane. We obtained ground state constants from a simultaneous least squares fit of the 39 H25 microwave transitions of Helminger et al.(41) together with our ground state combination differences combined with (42) The microwave lines were those obtained by Snyder and Edwards. weighted approximately 60 times the weight of the ground state combina- tion differences (relatively lightly in comparison to their precision relative to the infrared combination differences) in order to reduce high correlations among ground state constants and to better determine them. Our final ground state constants were determined from a least squares fit of the combined ground state combination differences and microwave transitions, with all ground state constants varied simulta- neously. These constants and their partial correlation coefficient matrix are shown in Tables 19 and 20, respectively. The standard devia- tion for the fit of the infrared ground state combination differences is 0.003 cm"1 and for the microwave lines is 0.0001 cm']. The fits for ground state constants rapidly converged to a stable set of values. As discussed in Chapter 1, several of the centrifugal distortion parameters, v12. DJ, DJK’ and DK’ are highly correlated. Our initial analysis of 2v2 was done by treating it as an unper- 2325 and H2345 isotopic species were fit simultaneously turbed band. The H using Eq.(II-7) with 52m set to zero. Because only two sulphur isotopes are present, the band center does not involve the quadratic dependence on mass difference. Our fit of 202, considering it as a single unperturbed band, quickly converged to a stable set of constants and fit with a standard 83 Table 19 Molecular Ground State Constants for H25 Constant (cm'l) $6125%cm-1) A' 10.361528 0.00031 8' 9.016079 0.00029 0' 4.731214 0.00013 05 1.10011210“3 0.0079210"3 05K -l.9652x10'3 0.013x10‘3 ”k 0.92695x10'3 0.0081x10'3 65 0.20845210‘3 0.00482210'3 R6 -0.2779]x10'3 0.0069210'3 H5 0.4244x10’5 0.093x10‘5 ij 4.536210“6 0.2800"6 k0 1.865x10‘5 0.35210'6 Hk -0.755x10'5 0.15210'6 Hg 0.325210'6 0.13210'6 H6 0.885x10’5 0.16210'6 H50 0.2412210"6 0.070x10‘5 5A 19.16x10'3 3.2210'3 53 0.697210'3 0.56210'3 15C 3.674x10'3 0.57210'3 m Standard deviation of 353 ground state combination differences = 0.0030 cm']. Standard deviation of 39 microwave transitions = 0.0001 cm']. a95% SCI (simultaneous confidence intervals), here 5 6 standard deviations. 84 as... 2...... 2...... .8... us... 3......- 8.....- m3... 8.....- 48...- 3.....- 8o... 3...- 8.....- 5...- .3... m3... .8... 2o... 82... 3.... 3...- 3.....- m......- 2.....- 8.....- .8...- 3..... .3... 8.... ...... .8...- .aa.o ~ma.° .No.a ..o.o- 82... NS... 8.... as... .8... .2... ...... ...: 3.... ...... ...: o.. ...2 N m cm o—nuh avo.01 coo.o nmo.ou m—o.o mnm.oi www.ci www.c- pcm.o- ovo.o omo.o x mvo.O1 eno.c mmc.oi _mo.o mw~.91 pma.01 swo.o- ovm.oi wmo.c1 pno.o omm.° 2d omo.cc ~oo.oi voo.o- oo—.o ¢m~.c- mam.c- pww.91 oom.o1 ouc.o- owo.oi vom.o ~mm.° : ... 33m v.59... 05 ..8 3:32:08 532883 2.3.3.. ppo.o nvc.ci moo.o noo.oi omn.o mme.o msv.o ovv.o omo.o mvo.oi —-.o- o—m.oi mmo.o- .u moo.o- mo—.o1 mo~.o mco.o- ~o°.o- so—.o- so—.c1 ovo.o- oo~.c mon.o mon.o oo~.o mac.c ovc.c- ~oo.o c-.o o—v.o- nom.o ovo.o- mmo.co ooc.o- o_c.oi Nov.o- op~.01 ow—.° map.o ooc.c —mm.o- _wm.c- 85 l deviation of observed minus calculated values of 0.004 cm- . In this fit, all upper state constants for 202 were allowed to vary simulta- 32 neously. The fit includes over 300 observed transitions for H2 5 and 45 observed transitions for H2345. The H2345 transitions were fitted 32 simultaneously with the H2 S transitions using linear mass dependencies 34 for N, 0, cu and v . Because of the limited number of H2 5 transitions 0 observed, ground state combination difference were not used to deter- mine isotopic mass effects; instead both upper and ground state EA, EB, 34 and EC were varied independently in the line fit. The H2 5 transi- 325 transitions. tions fit with about the same precision as do the H2 The Hamiltonian parameters and partial correlation coefficients for 2v2 are shown in Tables 2l and 22, respectively. All assigned transitions and frequencies for 202, v1, and 03 of H25 are listed in Appendix 0. Most of the effective centrifugal distortion constants for 202 are larger in magnitude than those of the ground state. This is to be expected because of the relatively large deformations from equilibrium in the bending mode. In contrast, the distortion constants for v1 and 03 are much closer to the ground state values. We initially fit 01 and v3 considering only the Coriolis perturba- tion between them. The fit converges to stable values for most transi- tions for which we were able to form ground state combination differences. However, levels involving high 0 or moderate to high J and high K_ are very sensitive to small changes in Hamiltonian parameters. This occurs because these levels are most strongly perturbed by the Coriolis inter— action; thus, what would be a small change in energy if the levels were unperturbed becomes a large change in energy because of the perturbation. Obtaining a stable fit for u] and 03 is further complicated because a 536 Table 21 Molecular Constants for 2v of H S 2 Constant (cuf‘) 95: -1 SCIa (cm ) A' 11.1161] 0.0014 3' 9.442,, 0.0012 0' 4.500067 0.00036 05 1.05.53003 0.018x10‘3 05K -3.2789x10'3 0.037;:10‘3 ”k 1.692x10-3 0.025x10'3 55 0.:1886x10"3 0.0215x10‘3 Ré 4.3999110“3 0.010x10‘3 H5 0.849x10'6 0.19x1o‘5 H3K -3.229x10'5 0.57x10'6 Hid 4.2051110“6 0.69x10‘5 Hk -1.826x10'6 0.29:00‘6 H5 1.1:”;110'6 0.50::10'6 Hg 2.285x10'6 0.72;:10‘6 Hi0 0.443xl0'6 0.27x10'5 5‘ 19.8x10‘3 5.1x10'3 53 1.3]xlo'3 2.7x10'3 ac 3.545x10'3 1.211103 00 2353.90710 0.00075 5” 1.0646 0.014 Isotope Standard Deviation Number of of Fit (cm ) Weighted Lines A11 .0040 335 H2325 .0040 291 112345 .0038 45 aoss SCI (simultaneous confidence intervals) here § 7 standard deviations. 87 000.0- 000.0- 000.0- 000.0- .00.0- 000.0 000.0- 000.0 000.0- .00.0- 000.0- 000.0- 000.0- 000.0- 000.0 000.0- 000.0 000.0- 000.0 0x 000.0- 000.0- ..0.0- .00.0- 000.0- 0.0.0 000.0 000.0 000.0- 000.0 000.0 ...... 0.0.0- 000.0- 0.0.0- ..0.0- .00.0- 0.0.0 000.0 000.0 000.0- 000.0 ..0.0 000.0 000.0 000.0- 000.0- 000.0- .00.0- 000.0- 000.0- 0.0.0 00..0- 000.0 000.0 000.0 00..0 000.0- 000.0 ..0.0- ..0.0 .0..0 000.0 000.0 00..0 000.0- 00..0 0.0.0 000.0 0.0.0 00..0 0.0.0 0.0.0 000.0 0.0.0 000.0 0.0.0- .00.0 .00.0- 000.0 000.0- 0m0.0- 000.0- 000.0- .00.0- 000.0- ...5 0.0.0 0.0.0 000.0 0.0.0 000.0 .00.0- 0.0.0- 0.0.0- 000.0 000.0- 000.0- 000.0- 000.0- 000.0- 000.0- 000.0 x0 00 0.00. 000.0 000.0 000.0 .00.0 000.0 000.0- 000.0- .00.0- 000.0 000.0- 000.0- .00.0- .00.0- .0..0- .00.0- 000.0 000.0 .00.0- 000.0- ..0.0- 000.0- 000.0- 000.0 000.0 000.0 .00.0- 00..0 0.0.0 000.0 000.0 000.0 0.0.0 ..0.0- 000.0- 000.0- .0 000.0- 000.0- 000.0- 0.0.0- 000.0- 00..0 000.0 00..0- ..0.0- 00..0 00..0 000.0 000.0 0.0.0- 000.0 000.0- 000.0- .00.0- 0.0.0 mN: mo NDN ..0.0 mucmmuw&wmou comuu—egou .0wugan— 0.0.0- 00..0- .00.0- 000.0- 00..0- 000.0 00..0 00..0- .0..0- .0..0 00..0 00..0 000.0 0.0.0- 000.0- .00.0- 000.0- 000.0- 000.0 000.0 0.0.0- 00..0- 000.0- 000.0- 000.0- 000.0 .00.0- 0.0.0 ..0.0- 000.0 000.0 0.0.0 ..0.0 0.0.0 0.0.0 000.0- 000.0- 000.0- 0.0.0 000.0 000.0 MU w‘ ..0.0- 00..0- .00.0- 000.0- .00.0- ....0 000.0- 000.0 000.0 000.0 000.0 000.0 ..0.0 000.0 000.0- 0.0.0- 0.0.0- .00.0- 000.0 000.0 000.0 000.0 .... ..0.0- 00..0- 000.0- .00.0- 000.0- .0..0 .00.0- 0.0.0 000.0 000.0 000.0 000.0 000.0 000.0 00..0- .00.0- 000.0- 000.0- 000.0 000.0 00..0 000.0 000.0 ... a. 3.... .... 0 .... 0 ...: .... ...5 .5 ... ... w... .... 88 m 0 ..0.0 0.0.0 ..0.0 0.0.0 00..0 000.0 0.0.0 000.0 000.0 000.0 x .o N». La. m.=o.u...~o. co..u.at.ou ......m .....eoa. NN 0.... q. 0.0.0- 00..0- 000.0- 0...0- 00..0- 0 000.0- 000.0 000.0 000.0 000.0 000.0 0. 000.0 ..0.0- 0.0.0- 000.0- 0.0.0- 000.0 000.0- 0.0.0 0.0.0- 0.0.0 000.0- .00.0- .00.0- 000.0- .00.0- 00<0 89 number of additional Hamiltonian constants are highly correlated. Most of these new high correlations occur because we are not able to observe and identify enough different upper state levels (about 160 for v] and about 80 for 03) to determine all the individual constants well. In particular, more high 0 energy levels are needed, especially for 03, to determine a unique set of Hamiltonian constants. Because of this, the constants shown for v] and v3 are principally effective constants which accurately predict transitions of similar upper and lower state 0'5 and T'S (T = K_ - K+) to those observed and reported here. Tables 23 and 24 show Hamiltonian parameters and their partial correlation coef- ficient matrix for v] and 03, respectively. In an attempt to determine the size of the Fermi coupling constant between 01 and 202, we made several simultaneous three-band fits of the spectrum, starting with four different trial values for the Fermi inter- 1 action constant: FER = 0, l5, 30, and 45 cm' (FER = 0 corresponds to treating 202 as an unperturbed band). Kuchitsu and Morino(43) l 1 give k for H20 and H28 as 255.4:3.4 cm' and 102.7:l3.2 cm' (40) 122 , respectively. Flaud and Camy-Peyret give their Fermi interaction term 1 FER = (3/2)”2 k = 47.87 +0.70 cm-1 or their k122 = 39.088i0.57 cm' 122 3' is approximately l5 percent of the value of Kuchitsua and Morino. If we assume the ratio of k122 determined by the Fermi interaction for H25 to that given by Kuchitsu and Morino is the same as for water, we estimate kl22 ~ l5.7 cm"1 and, hence, FER z l9 cm'1. Our trial values bracketed this value. Upon fitting our observed transitions, we found that, if we fix FER and allow A', B', C', and 00 to vary from their FER = 0 values for all three bands and allow the P4 coefficients to vary from their 90 Table 23 Molecular Constants for v] and v3 of H25 -1 95: -1 _] 95: _. Constant (cm ) SCIa (cm ) Constant (cm ) SCIa (cm ) N 10.200119 00015 10.14577 0.0053 0' 8.393784 0.00099 3.93949 0.0031 0' 4.662438 0.00046 4.678863 0.00032 03 1.000248-00‘3 0.00093 1.1685x10'3 0.013--10'3 °3x -1.936]x10'3 0.015x10'3 4.9572-00'3 00:32:003 ”i 0.920831110'3 0.000631-10‘3 0.8792x10'3 0039-003 55 0.1972x10‘3 0.015-110'3 0.2318-‘10‘3 0015-003 06 -0.27992x10‘3 0.0072x10'3 -0.2830x10‘3 0.023-110‘3 H5 03581-00”6 0.016x10‘3 1.4204-‘10'6 0.052x10'5 H5K -l.47l]ox]0-6 0.0067x10‘5 086-00“6 1.8x10'6 HkJ 1.8792x10’6 0.031x10'6 -0.3490x10'6 0.24x10'5 Hi -0.7550x10‘5 -0.755x10'5 Hg 01065-006 0.021--10'6 1.873xl0'6 0.13x10'6 Hg 0.9763x10'5 0.003-110‘6 1.82:10'5 1.5x10’6 Hi0 0.2412-110'6 0.2412x10‘5 0° 2614.40990 0.0066 2628.44020 0.0072 02 0.13885 0.0040 xy -0.306240 0.00087 Band Standard Devia ion Number of of Fit (cm‘ ) Heighted Lines All 0.0052 368 v1 0.0041 233 03 0.0070 13s 695% SCI (simultaneous confidence intervals) here . 8 standard deviations. the constant was fixed to the ground state value. If no value is listed, c. CALC 0.855 0.517 -0.810 -0.444 ~0.284 0.403 -0.176 0.593 0.377 0.249 -0.343 -0.100 .829 .124 .059 .203 .104 .027 -0.102 -0.023 -0.012 -0.116 .002 .086 .020 .012 .111 .038 .108 00000000 .014 0 -0. .0_ 00000 0000000 .482 849 413 .250 .788 .217 .738 .348 .218 .690 .269 .800 .128 .170 .147 .091 .021 .071 .016 .006 .041 .097 .052 .012 .005 .030 .059 .095 .003 91 Tab1e 24 Partial Correlation Coefficients for 01 and 03 of H25 ”3 0.1K ”1': 5.1 -0.776 -0.943 0.787 -0.885 0.644 0.957 0.269 -0.632 -0.255 -0.145 0.097 -0.152 -0.104 -0.080 0.622 0.750 -0.971 -0.816 -0.689 0.597 0.875 -0.749 -0.984 -0.956 0.227 0.820 -0.620 -0.937 -0.988 0.132 -0.238 0.585 0.242 0.144 -0.965 0.109 -0.202 -0.122 -0.091 0.682 0.633 -0.685 -O.465 -0.349 0.424 0.182 -0.161 -0.159 -0.150 0.147 0.052 -0.104 -0.041 -0.028 0.323 0.039 -0.174 -0.042 -0.018 -0.006 0.033 -0.105 -0.038 -0.020 0.048 0.029 ~0.040 -0.040 -0.039 0.006 .110 .039 -0.036 .049 0.035 0.003 0 0 -0.028 0 0.041 0.040 -0.001 -0.026 0.026 0.038 0.041 0.007 -0.001 0.087 0.001 -0.006 0.122 0 0.006 -0.002 -0.237 0.031 -0.098 -0.046 -0.034 -0.020 -0.010 .031 0.026 -0.036 -0.040 -0.039 -0.004 0.025 -0.027 -0.039 o0.041 -0.009 0.000 -0.087 -0.001 0.006 -0.139 -0.004 -0.008 -0.001 -0.003 -0.226 0.032 -0.089 -0.C32 -0.020 0.031 0.026 -0.010 -0.029 -0.009 -0.001 .185 .102 .075 .612 .955 .009 .180 .001 .047 .074 .017 .011 .015 .005 .189 .280 .003 .012 .004 .187 .270 .012 .008 0 -0. OOOOOOO 0030000 -0, .809 .685 576 .229 .547 .138 .061 .210 .118 .052 .147 .055 .038 .134 .011 .140 .055 .041 .142 .058 .092 001 -0 0000000 00000000 ”0K .962 .226 .121 .366 .135 .031 .048 .043 .051 .064 .056 .051 .002 .001 .064 .058 .054 .002 .008 .034 .021 -0. 0000000 "-2.- 137 .089 .282 .130 .024 .021 .024 .049 .046 .053 .053 .009 .004 .047 .054 .054 .009 .006 .023 .001 R6 ”3 ”5K ”k0 “5 ”6 v0 CALC -0.723 -0.341 -0.183 -0.389 0.062 -0.046 -0.001 -0.029 -0.006 -0.012 -0.210 0.309 0.049 0.011 0.016 0.232 0.322 -0.014 0.009 53 -0.501 0.055 0.235 0.177 -0.974 -0.628 0.129 0.001 0.056 -0.111 -0.090 0.093 0.022 0.005 -0.020 -0.006 0.315 -0.413 -0.026 0.017 0.005 -0.329 -0.427 0.017 0.016 0.229 0.115 0.114 0.570 0.963 0.053 0.023 S92 Table 24 (cont'd.) Partial Correlation Coefficients for v1 and 03 of H25 “1 0° 62 ny A' B' c' 05 03K 0* 0.128 0.077 0.518 0.108 -0.433 -0.314 0.059 -0.490 0.112 0.747 0.017 -0.673 0.101 0.419 0.553 -0.044 0.625 0.027 -0.746 -0.782 -0.836 -0.013 0.641 -0.092 -0.390 -0.509 -0.963 0.866 -0.007 0.620 -0.059 -0.266 -0.345 -0.942 0.742 0.962 -0 032 -0.103 0.599 -0.298 0.355 0.238 -0.101 -0.240 -0.167 -0.040 -0.190 -0.426 0.232 -0.019 0.110 -0.186 -0.115 -0.115 0.030 -0.666 -0.045 0.662 0.665 0.779 -0 970 -0.861 -0.732 0.010 -0.590 0.082 0.361 0.467 0.891 -0.852 50.977 -0.920 0.006 -0.591 0.058 0.268 0.345 0.901 -0 762 -0.967 -0.981 0.021 0.069 -0.572 0.330 -0.251 -0.210 0.053 0.230 0.166 -0.021 -0.l78 -0.464 0.336 0.003 0.111 -0.245 -0.124 -0.118 0.085 -0.513 -0.026 0.698 0.768 0 597 -0.623 -0.484 -0 409 -0.000 0.001 -0.027 -0.031 -0.001 -0.065 0.064 0.075 0.073 11 “5 ”ix ”la ”5 ”6 8° 0.891 0.787 0.966 -0 024 -0.240 -0 185 0.295 0.129 0.123 0.701 0.496 0.409 0.368 -0.074 0.070 -0.o78 -0 085 -0.082 0.020 0.009 -0.014 93 FER = 0 values for v] and 202, all four trial values of FER fit the spectrum approximately equally well. For FER = 45 cm'1 , A' and B' for v] and 202 are changed about 0.3 percent from the FER = 0 values. Tables 25 thru 30 show Hamiltonian parameters and their partial correla- tion coefficients for 202, 0,, and 03 with FER = 15, 30, and 45 cm“. Because our fitting program deletes from the fit lines whose observed minus calculated deviations are greater than 3.5 standard deviations of the fit, slightly different numbers of lines are included in the fits with the various values of FER. An examination of the predicted energy levels and the fractional contributions of each of the three bands to the total wave functions gives some indication why we can fit the spectrum using arbitrary values of FER. Both mixing of the v] and 202 wave functions for a given level and the shifts of the v] and 202 band centers due to the Fermi interaction are observed to increase as FERZ. More importantly for any of our trial values of FER, the mixing increases smoothly as the upper state J increases, and for given J the mixing increases smoothly as T = K_ - K+ increases for all levels which we assigned. We refer to this as smooth mixing. This may be contrasted with the non- smooth mixing calculated for H20 by Flaud and Camy-Peyret. For exam- ple, Tables 31 and 32 show the calculated energy levels and wavefunc- tion mixing for J = 9 for H25e and H20. Smooth mixing of wavefunctions mostly results in a uniform shift of the band centers of u] and 202 because of the Fermi interaction, whereas nonsmooth mixing indicates strong accidental resonances between individual rotational levels. In the case of smooth mixing, 0], 202 and FER are linearly dependent and cannot be determined uniquely. However, when individual rotational 94 levels are perturbed in a nonsmooth manner, 0], 202 and FER become determinable. Since we have identified no such levels, we are unable to determine a value for the Fermi interaction constant. 95 Table 25 Molecular Constants for 202. v], and v3 of H25 with FER = 15 20 2 ”3 _, a95: _‘ -1 a95% -1 -1 a95: _, Constant (cm ) SCI (cm ) Constant (cm ) SCI (cm ) Constant (cm ) SCI (cm ) A' 11.117656 0.00088 10.197776 0.00075 10.146279 0.00091 8' 9.444445 0 00075 8.89126 0.00082 8.938856 0.00069 0' 4.607906 0.00020 4.662157 0.00038 4.679392 0.00052 05 1.61887x10°3 0.0055x10'3 1.08686x10'3 0.0029x10‘3 1.1635,..10'3 03K -3.20Hx10'3 0.0121210'3 -1.94904x10'3 0.0065x10'3 -.1.9572xio‘3 0k 1.6437xio‘3 0.00741110‘3 0.9279,..10'3 0.00431210'3 0.8792x10°3 65 0.36422x10'3 0.00731210‘3 0.19843x10'3 0.00251‘10'3 0.2318100‘3 96 .0.39108x10‘3 0.0028x10’3 -0.27833x10'3 0.00221110‘3 0283;210‘3 H5 0.5246100“6 0.3581x10'6 1.42;.10'6 85K 2061.106 1471.10“6 -1.86x10‘5 HRJ 2.627x10'6 1.879x10'5 0.849x10'6 Hk 4.241.10‘6 -0.755x10‘6 -0.755x10'6 Hg 0.63x10'5 0.10651210'6 1.873.210‘6 Hg 1.6mx10‘6 0.97531210'6 1.82x10'5 Hi0 0528;210“6 0.24123210'6 0.2412,;210'6 6° 2354.83620 0.0061 2613.54280 0.0054 2628.44140 0.0099 02 0.1085 0 027 xy -0.30117 0.0051 Band Standard Deviation Number of of Fit (cm'l) Weighted Lines All 0.0055 701 61 0.0044 264 v3 0.0066 132 .62 0.0061 305 a95% SCI (simultaneous confidence intervals) here ; 7 standard deviations. constant was fixed to the value detennined in the FER = 0 fit. If no value is listed. the CALC 0 Partial Correlation .853 0.514 .831 .070 .063 .192 .098 .018 .042 .012 .009 .106 .001 .102 0.002 .001 .000 .000 .000 .000 .002 0.000 -0 .001 .003 0000000 ”3 Bl .478 .078 .175 .143 .089 .012 .029 .007 .004 .036 .098 .091 .001 .001 .000 .000 .000 .000 .001 .001 .000 .011 000000 CI .633 .033 .053 .048 .044 .085 .091 .092 .093 .011 .007 .050 .001 .001 .000 .001 .001 .001 .000 .001 .000 .005 96 Table 26 Coefficients for 202. v], and 03 of H25 with FER = 15 "1 00 62 ny A' 8' C' 03 DJK 0.069 0.079 0.354 0.104 -0.403 -0.284 0.056 -0.449 0.119 0.771 0.013 -0.848 0.079 0.367 0.453 -0.021 0.833 -0.029 -0.454 -0.500 -0.958 -0.009 0.823 -0.055 -0.271 -0.328 -0.955 0.973 -0.008 0.809 -0.042 -0.216 -0.259 -0.931 0.946 0.993 -0.028 -0.184 0.579 -0.194 0.415 0.275 -0.229 -0.229 -0.039 -0.290 -0.393 0.263 0.044 0.252 -0.278 -0.244 .081 -0.518 -0.013 0.713 0.778 0.531 -0.492 -0.389 .001 ~0.002 -0.002 0.011 0.008 0.003 -0.004 -0.002 .000 -0.003 0.001 0.008 0.009 0.004 -0.004 -0.003 0 0 .000 -0.004 0.001 0.003 .004 .008 -0.007 0.006 .000 0.006 0.000 -0 006 -0.006 -0.009 0.009 0.009 .000 0.006 -0.001 -0.003 -0.004 -0.009 0.009 0.009 0000000 .000 0.006 0.000 -0.002 -0.003 -0.009 0.008 0.009 -0.001 -0.001 0.010 -0.007 0.005 .004 -0.002 -0.003 0.000 -0.002 -0.005 0.002 -0.001 .002 -0.002 -0.002 0.000 -0.002 0.000 0.006 0.006 .004 -0.003 -0.002 0000 -0.005 -0.017 -0.042 -0.010 -0.040 .008 0.001 -0.007 CALC Partional Correlation Coefficients for 299. v]. and v3 of H25 with FER = 15 -0.190 -0.236 -0.348 -0.002 -0.002 -0.006 0.008 0.009 0.009 -0.002 -0.002 -0.002 -0.013 -0.046 -0.005 .404 .190 .003 .003 .002 .002 .002 .002 .019 .006 .001 .021 .007 .118 .002 .001 .002 .003 .002 .002 .009 .013 .000 .013 .008 .008 .005 .006 .004 .004 .002 .000 .008 .010 97 Table 26 (c0nt'd.) Bl .474 .542 .346 .266 .513 .222 .785 .019 -0 -0 0000 .943 .940 .912 .383 .246 .589 .018 0.969 0.936 -0.391 -0.149 -0.537 -0.027 0.992 -0.325 -0.248 -0.424 -0.018 -0.262 -0.250 -0.377 -0.015 ()7 0.131 0.219 0.032 Holecular Constants for 202. v], and v3 98 Table 27 of H S with FER - 30 2 262 v] 03 Constant (cm'I) SC1251cm-l) Constant (cm-1) SCIa ?2;']) Constant (cm'I) 5C1251cm'l) A' 11.126940 0.00092 10.188617 0.00058 10.146169 0.00093 8' 9.449938 0.00082 8.885926 0.00055 8.938893 0.00066 c' 4.6073758 0.000085 4.662744 0.00041 4.679350 0.00055 05 1.59352500'3 0.0056x10'3 1.1132,):10‘3 0.00331110‘3 1.1685x10'3 05K -3.1504x10'3 0.011x10'3 -2.00092x10'3 0.0071xio’3 -1.9s7x10'3 0k 1.61827x10'3 0.0070x10'3 0.953475210'3 0.0043100"3 0.8792x10'3 65 0.359551210'3 0.00771210'3 0.20:1981110'3 0.0028x10'3 0.2318x10-3 96 -0.39187x10'3 0.00315210‘3 -0.27812x10'3 0.00231210’3 -0.283x10'3 85 0.52461210’6 0.3581x10'6 1.42.2106 HjK 4.055.10‘6 -l.47x10'6 -1.86x10‘5 ”k0 2.767.210‘6 1.879x10'6 0.849x10'6 Hi 4.241.10‘6 -0.755x10‘5 07553110"6 85 0.531(10'6 0.10651410'6 1.873x10°6 Hg 1.601x10'6 0.9763x10'5 1.82.210'6 Hi0 0.5281210‘6 0.2412x10'6 0.24121210'6 .0 2357.4737o 0.0059 2610.90350 0.0062 2628.4415 0.011 5; 0.11159 0.0042 xy -0.30376 0.0042 Band Standard Deviation Number of of Fit (cm ) weighted Lines 411 0.0056 680 v1 0.0045 252 63 0.0057 124 262 0.0065 304 a95% SCI (simultaneous confidence intervals) here 3‘7 standard deviations. constant was fixed to the value determined in the FER ' 0 fit. If no value is listed. the €99 0P0.0 ~00.0 ~00.0- ~_0.0 m-0.01 0—0.01 000.01 000.0 ~00.0 0~0.0 «00.0 .00.01 —00.0 000.0 ~—0.0- ~—0.01 000.01 0—0.0 000.0- 000.01 «00.0 000.0- 0—0.0 000.0 000.0 ~_0.01 0.0.0- 000.0- 0—0.0 000.0 000.0 n~v.0 000.0 n~o.o m_o.o ooc.o- aoo.o- o_o.o- m_o.o- Noo.o- ~oo.o- mo¢.o- o.o.o- ~_o.o- m_o.o- .mo.o eno.o mmo.o m2; m8... Rod .mo.o mmo.o “mo.c mmc.o- owo.o- “No.c- moo.o- ..c.o- ~_o.o- ~oo.c- moo.o- q_o.o- nmm.o- nam.o- .o..°- o.n.o- n~n.o- mm~.o- a_m.o- mam.o- «53.0- nam.o —mm.o m~o.o do em as —> on. x02 g._z WN: .6 000.0- 0.0.0 000.0 0.0.0 000.01 “00.0- 000.0- —00.0 0.0.0 n_0.0 «00.0 000.0 000.0 000.0- 000.0- 000.0- .0 000.0 000.0 000.0- m~0.0 ——0.01 m—0.01 000.01 0—0.0 000.0 000.0 000.0 000.0 mvm.0 «00.0- 000.01 000.0- 000.0 .0 000.0 000.0 000.01 000.0 ——0.01 0—0.01 000.01 m—o.0 000.0 000.0 mmm.0 000.0- 000.0 000.01 m—n.01 000.0- mwv.0 000.0 .< 00 m—nah 000.0 000.0 000.0- ~_0.0 000.0- 000.0- 000.0- 000.0 000.0 ~00.0 000.0 .0—.0- 000.0 ~00.01 000.0- 000.0- 000.0 0~_.0 000.01 xx 000.0 000.01 000.01 000.01 ~00.0 000.0 v~0.0 0—0.01 —p0.01 000.0- m~m.0- 000.01 000.0- o_0.0 ~00.0 ~00.0 ~00.0a pov.01 000.01 000.0 a use ..9 .~s~ c30 mu:a_u_0goo0 co_~c_mgcou «00.0 ~00.0 ~00.01 .00.01 000.0 000.0 —00.0- 000.0 000.0 000.0 000.0 ~00.01 000.0- 000.01 0—0.0- 000.0- n-0.0 000.0 ~0—.0 ~00.0 000.0 ...3288 _00.0 _00.0 000.01 000.0- 000.0 000.0- 000.01 ~00.0 ~00.0 000.0 000.0 000.0 000.0 N00.01 ~00.0- 000.0- 000.0 000.0 —mo.0 000.0 000.0 000.0 000.0 000.0 000.0- —00.01 000.0 000.0 ~00.0u 000.0 ~00.0 000.0 ~00.0 00..0- -0.0- «00.0- 000.0- 000.0- ~—0.0 000.0 Pv—.0 00—.0 000.0 000.0 000.0 000.0 000.0 000.0- _00.01 000.0 000.0 —00.01 000.0 000.0 000.0 v00.0 000.0- 000.0- 0p0.01 0—0.0- 000.0- 0_0.0 ~00.0 50—.0 00..0 p~0.0 000.0 m~m.0 000.0 .< 00 60 x x0 0 .0 .0 .0 .0 .< 0 0 > .0 .0 100 000.0- 000.0- 000.01 000.0 .m00.0i o—N.0 000.0- 00..0 pm~.01 _0~.01 000.0 000.01 oc~.0u n~m.0i 000.0 x0 0—0.0- 000.0- .0..0- 000.0- 000.0 000.0 ~>~ on . mum =3_z mm: 06 ms use ..6 .~>~ 26. mo=8_uw2.mou =o_ua_gttou _a_3caa A.u.u=oov mm m_gap 000.0- 000.0 ~v~.0 000.0 ~—0.01 0v0.0- mv0.0- 000.0- 000.0 .00.01 n—m.0 mo~.01 000.0- 000.0- 000.0 ~00.0- 005.0 —0~.0- —00.01 00N.0- vo~.0- 000.0- p00.0 000.0 .< x0 .0 .0 101 Table 29 Molecular Constants for 202. v1. and 03 of H25 with FER - 45 262 6, v3 -1 95: _, . _, 35: _, _] 95: _, Constant (Cl ) SCI' (c- ) (Constant (c- ) SCI (0- ) Constant (cm ) SCI' (0- 1 N 11.14402 0.0010 10.17188 0.0011 l0.l46” 0.0010 3' 9.460523 0.00089 8.87558, 0.00098 8.988488 0.00074 0 4.6053 0.00021 4.6636“ 0.0041 4.679485 0. 00054 05 1.551381210'3 0.0074x10'3 1.1604‘x10'3 0.00541210'3 1.116%:110‘3 03K -3.07mx10‘3 0.016.:10‘3 -2.09‘6x10'3 0.011,:10‘3 4.9572100'3 0k 1.57959xio‘3 0.0097x10'3 1.000351110'3 0.0061100'3 0.8792x10'3 65 0.34755x10'3 0.0082x10‘3 0.213‘5x10'3 0.0067x10‘3 0.2318x10'3 26 -0.39422x10‘3 0.00:111210‘3 -0.27508x10‘3 0.032;:10'3 -0.283x10°3 83 0.5646x10'6 0.3581x10'6 1.42x10'6 "5‘ -2.06x1o'° mum“6 4.86100"6 Hid 2.767x10'6 1.879x10°6 0.849x10'6 Hi 4.24.110'6 07551.10"6 -0 755x10 5 a; 0.63x10“ 0.10651110'6 l.873x10'6 Hg 1.601x10'6 0.9763xl0'6 1.82x10" Hi0 0.528x10“ 0.2412x10'6 0.2412x10'6 6° 2361.98960 0.0010 2606.38580 0.0089 2628.4422 0.010 5; 0.1028 0.028 Bx, -o.30548 0.0054 .. 59:28.53: 1°" .011-.5211. All 0.0057 661 ”1 0.0051 247 v3 0.0062 125 262 0.0058 289 '95: SCI (simultaneous confidence intervals) here ; 7 standard deviations. constant was fixed to the value determined in the FER - 0 fit. If no value is listed. the CALC Partial Correlation Coefficients for sz. v]. and v A. 0.870 0.531 0.843 0.072 0.136 0.158 0.092 0.017 -0.030 -0.011 -0.008 -0.021 -0.113 0.090 0.009 0.006 0.001 -0.003 -0.001 -0.001 -0.003 -0.008 0.004 0.012 “3 Bl 0.487 0.806 0.058 0.176 0.135 0.069 0.010 ~0.019 -0.005 -0.004 -0.035 -0.129 0.080 0.007 0.005 0.001 -0.002 0.000 0.000 -0.003 -0.008 0.004 0.020 c' 0.634 0.036 0.065 0.049 0.041 0.084 -0.091 -0.091 -0.092 0.026 0.005 0.047 0.006 0.005 0.004 -0.006 -0.006‘ -0.006 -0.001 -0.007 0.003 0.005 0.065 0.093 0.110 0.052 0.012 -0.018 -0.009 -0.008 -0.026 -0.066 0.077 0.006 0.004 0.001 -0.002 -0.001 0.000 -0.003 -0.006 0.004 0.009 102 Table 30 0.370 -0.447 -0.461 -0.854 0.845 0.825 0.810 90.421 -0.303 -0.515 -0.019 -0.025 -0.038 0.053 0.052 0.050 -0.024 -0.011 -0.019 0.034 -0.050 0.127 0.088 -0.072 -0.059 -0.045 0.279 0.038 0.036 0.005 0.014 0.007 -0.009 -0.006 -0.004 0.018 -0.002 0.006 0.043 3 2 A' 8' 0.874 0.416 0.431 -0.448 -0.458 -0.293 -0.296 -0.234 .-0.232 0.456 0.789 ~0.116 0.056 0.782 0.778 0.089 0.066 0.083 0.087 0.035 0.036 -0.051 -0.050 -0.031 -0.031 -0.024 -0.024 0.016 0.055 -0.022 -0.009 0.062 0.055 -0.019 -0.011 of H S with FER ' 45 CI -0.962 -0.951 -0.929 0.444 0.355 0.522 0.028 0.037 0.071 -0.086 -0.085 -0.082 0.037 0.021 0.035 -0.032 ”1 ”5 0.981 0.958 -0.475 -0.312 -0.468 -0.029 -0.037 -0.061 0.082 0.080 0.077 -0.035 -0.014 -0.029 0.034 0.1K 0.994 -0.353 -0.338 -0.371 -0.017 -0.023 -0.058 0.078 0.080 0.079 -0.028 -0.018 -0.021 0.028 V 0 CALC 103 Table 30 (cont'd.) Partial Correlation Coefficients for 2v . \l'. and 1)., of H25 with FER - 45 -0.292 -0.329 -0.333 -0.013 -0.017 -0.056 0.074 0.078 0.078 -0.024 -0.017 -0.018 0.015 R6 -0.029 0.024 0.371 0.467 0.016 0.058 0.033 -0.044 -0.033 -0.027 0.087 0.021 0.024 o0.022 -0.015 0.093 -0.020 -0.009 0.024 -0.023 -0.030 -0.029 0.029 0.093 -0.001 -0.085 0.065 0.073 0.046 -0.052 -0.039 -0.034 0.031 -0.002 0.075 -0.017 AI 0.797 0.363 ~0.444 -0.265 -0.206 -0.069 -0.249 0.752 -0.015 0.478 ~0.532 -0.347 -0.269 0.504 -0.179 0.791 -0.021 c. ~0.946 -0.940 -0.912 0.388 0.272 0.589 -0.032 2"2 DJ 0.972 0.941 -0.385 -0.196 -0.534 0.028 0.1K 0.992 -0.328 —0.273 -0.423 0.025 -0.267 -0.272 -0.376 0.026 0.175 0.219 o0.027 1(311 5.55 5.55 5.55 5.55. 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 > a 0.0 0.0 0.0 0.0 5.0— 0.0— —.0v —.0 p.— 0.— 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.— FDR 0.0 0.0 0.0 0.0 0.0 0.0 ..— 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ..0 0.0 0.0 ~>~ 5 555.5555 555.5555 .555.5555 555.5555 555.5555 555.5555 5555,5555 555.5555 5...5555 555.5555 555.5555 555.5555 555.5555 5.55.5555 555.5555 5555.5555 5.5.55.5 ..55..555 5..55..555 5; 0.0 0.0 5.0— 0.0— 0.5 0.00 0.0 0.0 0.— 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 «.0 0.0 09 a 0.—o —.—0 0.50 5.00 0.00 0.00 0.00 5.00 0.00 0.50 0.50 5.50 5.50 0.50 0.50 0.50 5.00 0.00 0.00 —> a 0.0 0.0 —.0 0.0 0.0 0.— 0.0 0.0 0.0 0.— 0.— 0.— 0.— 5.— 5.— 5.— 0.— v.— 0.. ~55 5 .00 n 000 0:5 0 u 0 go» 00: 555 0:55.: co55ucau o>53 use 555.5555 555.5555 5.55.5555 555.5555 5555,5555 555.5555 .55..5555 55.5.5555 5.55.5555 55.5..555 5555.5555 5555.5555 5.55.5555 5.55.5555 .555.5-5 5.55.5555 .55.55.5 5.55.5555 5.55.5555 .5 _ —0 0—055 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0: a 0.0 0.0 0.0 0.0 0.0 0.0 —.0 0.0 0.0 0.— 0.— 0.— 0.— 5.— 5.— 0.— 0.— v.— v.— _> 0 05555555 .0505 55:5 55 55.5.55555 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.00 0.00 —.00 p.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ~>~ 5 -50 :. 555>55 5055eu 0555.55.50 555.5555 5.5.5555 55.5.5555 555.5555 5555.5555 5555.5.55 555.5555 .555.~5.5 .555.55.5 .5.5.55.5 5555.525 55.5.5555 5555.5555 5.55.5555 5555.5555 5.55.5555 5.55.5.55 5555.5555 5555.5.55 090 MMNN— OGQQKNOOMMC' vt X 00004 NNMMQQOEDOONN QOGGOOOOGGGGGOOGOOO '3 105 .000 500555555 5055 50505 5.55 5.5 5.5 555.5555 5.5 5.55 5.5. 555.5555 5 5 5 5.55 5.5 5.5 555.5555 5.5 5.55 5.5. 555.5555 . 5 5 5.55 5.. 5.5 555.5555 5.5 5..5 5.5 555.5555 5.5 5.5 5.55 555.5555 . 5 5 5.55 5.. 5.5 555.5555 5.5 5..5 5.5 555.5555 5.5 5.5 5.55 555.5555 5 5 5 5.55 5.5 5.5 555.5555 5.5 ..55 5.5 55..5555 5.5 5.5 5.55 555.5555 5 5 5 5.55 5.5 5.5 555.5555 5.5 ..55 5.5 55..5555 5.5 5.5 5.55 555.5555 5 5 5 5.55 5.5 ..5 555.5555 5.5 5.55 5.5 555.5555 5.. ..55 5.55 555.5555 5 5 5 5.55 5.5 ..5 555.5555 5.5 5.55 5.5 .55.5555 ..5 5.5 5.55 555.5555 5 5 5 5.55 5.5 ..5 555.55.5 5.5 5.55 5.. 555.55.5 5.5 5.. 5.55 555.5555 5 5 5 5.55 ..5 ..5 555.55.5 5.55 5.55 5.. 555.55.5 5.5 5.. ..55 555.5555 5 5 5 5.55 5.55 5.5 555.5555 5.5 5.55 5.55 55..5555 5.5 5.. 5.55 555...55 5 5 5 5..5 . 5.5 ..5 555.5555 5.. 5.55 5.5 555..555 5.5 5.. 5.55 .55.5555 5 5 5 5.55 5.. ..5 555.5555 5.5 5.55 5.. 555.5.55 5.5 5.. 5.55 555.5555 5 5 5 ..55 5.5 5.5 555.5555 5.5 5.55 5.. 555.5555 5.5 5.. 5.55 555.5555 5 5 5 5.55 5.5 5.5 555.5555 ..5 5.55 ... 555.5555 5.5 ... 5.55 555.5555 5 5 5 5.55 5.5 5.5 555 5.55 5.5 5.55 ... 55..5.55 5.5 5.. 5.55 555.5555 5 5 5 5.55 ..5 5.5 555.5.55 5.5 5.55 ... 555 5.55 5.5 5.. 5.55 55..5555 5 . 5 5.55 ..5 5.5 555..555 5.5 ..55 5.5 555.5555 5.5 5.5 ..55 555.5555 5 . 5 5.55. 5.5 . 5.5 555..555 5.5 ..55 5.5 ..5.5555 5.5 5.5 ..55 .55.5555 5 5 5 55 5 .5 5 555 5 55 55 5 .5 5 555 5 .5 55 5 .5 5 555 5 555 .5 -5 5 .0 a 0 500 505: 555 0:55.: co50ucau o>52 0:5 -50 0. 5.5550 505500 0505.00.50 . 00 0.5.0.. CHAPTER VII AND v OF H Se ANALYSIS OF 2v2, v 3 2 ‘l’ (35) In l939 Cameron et al. determined the frequencies of the three fundamental modes of vibration of HZSe. Twenty years later Palik(44) analyzed the rotational structure of the three fundamental vibrational bands of HZSe. Their analysis was hampered by low resolution and inability to include the Coriolis interaction between v] and v3. In the mid-l960's Hill(45) , then with this laboratory, started an analysis of the high resolution infrared spectra of v], 2oz, and v3 and con- siderably extended the line assignment of Palik. This provided a con- venient starting point for our analysis. The spectrum of 2oz, v], and v3 of H23e is shown in Figure l5. This figure is a horizontally compressed plot of our digitally smoothed spectral data. As was the case with H25 discussed in the previous chapter, several runs at different sample path lengths and pressures were necessary to record the complete spectrum. Because of this, the absorption intensities shown in Figure l5 do not reflect the true absorption intensities from region to region of the spectrum. In general, the true relative absorption intensities are less than de- picted at the high and low frequency ends of the spectrum. Just as with H25, the bands 2v2,v], and v3 of HZSe are coupled by 40) Fermi and Coriolis interactions.( The results of our analysis of l06 107 p ..5 88 cu p-5u ommp Seem mmu: do m> new ._> .N>~ mo Ezguumam as» .m_ mg=m_u ..Eo oo_~ .dev TEo omON I 7:8 OOON J 4 .-..5 Onm. l08 .A.e.a=oov 2.0.9 750 00mm 8.0.: 4 u 4 IR. OO¢N ..Eu CONN _.Eu 405 .m. aa=o_a 109 .A.u.b=ouv .m. ae=m_a 13 00mm ..5 comm ‘ 7.5 on ¢N ll0 H25 led us to assume that the Fermi interaction between sz and v] and the Coriolis interaction between 2V2 and v3 could be neglected. Our excellent fit of 2oz supports this assumption. Under this assumption, we have analyzed 2V2 by treating it as a single, unperturbed band and have analyzed v] and v3 simultaneously. We have not attempted to analyze 2oz, v], and v3 simultaneously. All analysis was done using Typke's Hamiltonian Eq.(I-8) and Eq.(I-ll) for the Coriolis interaction. Since H25e is an oblate asym- metric rotor molecule, the rotational Hamiltonian is evaluated in the IIIr representation (a = x, b = y, c = z) with the molecule in the xy plane. As noted in the discussion of 2v1 of HDSe, six stable isotopes of selenium exist naturally, but the absorption lines of only the five most abundant isotopic species of H25e could be identified and analyzed. Figure l6 shows the characteristic splitting of the isotopic species of HZSe. Equation (II-7) was used to analyze all isotopic species simultaneously. Although this expression is strictly applicable only to unperturbed bands, we have successfully used it in our analysis of v] and v3. More will be said later about the conditions under which Eq.(II-7) may be used in the analysis of perturbed bands. Approximately 500 transitions in 2V2 from all isotopic species of HZSe and approximately 300 transitions in v] and v3 from HZBOSe had (44) and Hill(45). previously been assigned by Palik Consequently, fairly good starting values for the Hamiltonian parameters were avail- able for all three bands. We obtained ground state constants for H25e from a simultaneous least squares fit of the lO9 microwave transitions of Helminger and lll l l W V ISOTOPE 82 80 78 77 76 Kfifififififice 9 SO 24 8 9 Figure 16. Absorption lines of the isotopic species of 5 0 5 - 6 l 6 of 2V2 of HZSe near 2009 cm' . 112 (46) De Lucia and the 879 distinct ground state combination differences for all selenium isotopes formed from the assigned lines of sz, v1, and v3. The microwave lines were weighted approximately 250 times the weight of the ground state combination differences (rather lightly in comparison to their precision relative to the infrared combination dif- ferences) in order to reduce high correlations among ground state con- stants and to better determine them. All ground state constants were varied simultaneously. To account for isotopic mass differences, the ground state rota- tional levels were modified using Eq.(II-7) by the introduction of 5A and 5C. Since the selenium is located on the b axis of the molecule, EB was fixed to zero. A later fit in which 58 was allowed to vary yielded a statistically insignificant value for it, supporting the validity of setting 58 to zero. The ground state constants and their partial correlation coefficient matrix are shown in Tables 33 and 34, respectively. The standard deviation for the fit of the infrared ground state combination differences is 0.0059 cm'1 and for the micro- wave lines it is 0.0008 cm']. The fits for ground state constants rapidly converged to a stable set of values. The standard deviation of the fit of the microwave lines is somewhat larger than was expected on the basis of our analyses of the ground states of HDSe and H25. In both of these cases the simultaneous fit of microwave lines and ground state combination differences yielded standard deviations of the micro- wave lines of approximately 0.000l cm']. We have no explanation for our inability to fit the H25e microwave lines as well as we fit the H25 or HDSe microwave lines. Nonetheless, we believe that our ground state constants perdict all H25e rotational levels through J = l0 for 113 Table 33 Molecular Ground State Constants for HZSe Constant (cm-1) SCIgS%cm'1) A' 8.170982 0.00026 3' 7.725612 0.00028 0' 3.901885 0.00021 05 0.76341x10'3 0.0040x10'3 05K -l.38l]3xl0'3 0.0095x10'3 DR 0.66107x10‘3 0.0060003 53 0.07556x10'3 0.0017x10'3 R5 -0.196384x10’3 0.00070x10'3 H5 0.1484x10'6 0.027x10'6 HjK -0.4926x10'6 0.0623x10‘6 de 0.5364x10‘6 0.044x10‘6 Hk -0.igox10'6 0.16x10'6 Hg 0.0955xio‘6 0.030x10‘6 Hé 0.5342x10’6 0.039x10'6 Hi0 «0.062x10'6 0.070x10'6 5A 2.5425x10’3 0.015x10'3 £0 0.574700"3 0.054x10“3 l Standard deviation of 879 ground state combination differences = 0.0059 cm- . Standard deviation of l09 microwave transitions = 0.0008 cm']. a95% SCI (simultaneous confidence intervals), here 5 6 standard deviations. .904 .298 .051 .060 .042 .900 .132 .005 .025 .028 .031 .781 .185 .284 .483 .186 .007 .027 .019 .002 .000 .020 .044 .069 .069 .008 .047 .917 .086 .009 .019 .034 .814 .152 .262 .444 .081 .004 .341 .492 .313 .089 .012 CC -0.490 -0.658 -0.619 .152 .140 0 0 0.502 0.518 0.503 0.490 -0.121 0.134 0.110 -0.142 0.437 0.028 0.874 -0.199 .112 0 DJ 0.877 0.779 -0.019 -0.007 -0.912 -0.812 -0.754 -0.722 0.040 -0.028 -0.014 -0.024 -0.078 -0.035 ”10 -0.212 0.094 114 Table 34 Partial Correlation Coefficients for the Ground State of HZSe ”ix ”x 50 R5 ”3 0.977 -0.034 0.007 -0.04l -0.007 0.226 -0.962 -0.93l 0.004 0.005 -0.963 -0.973 0.00l 0.010 0.974 -0.942 —0.973 -0.008 0.003 0.946 -0.925 -0.967 -0.009 0.003 0.927 0.028 -0.020 -0.966 -0.295 -0.008 -0.057 -0.024 0.277 0.982 0.026 -0.033 -0.004 0.407 0.823 0.011 0.017 0.004 -0.396 -0.l66 0.0ll -0.l04 -0.07l 0.l09 0.l26 0.036 -0.044 -0.04l -0.005 0.038 0.048 5:“ ac -0.382 -0.00l 0.001 O .046 0.039 OOOOOOOO "0K .994 .986 .009 .027 .007 .000 .031 .047 “k0 0.998 0.023 0.020 0.002 0.000 0.024 0.046 115 for all isotopes to an accuracy of :0.0l cm.1 or better. We believe that our constants predict rotational levels for J = ll through 20 and K_ less than approximately J/2 to similar accuracy. The high correlations among the sextic distortion constants H for the ground state of H2Se suggest that they are effective constants, that is, ones which allow us to predict our spectral data rather than constants which can be related to more fundamental molecular parameters. To a somewhat lesser extent, the remaining ground state constants are also effective ones, as are the constants for 202, v], and v3. To reduce the number of highly correlated constants, only the upper state H's which differed significantly from the ground state values in pre- liminary fits were allowed to vary in the final fits. All other H's were held fixed to the ground state values. All molecular constants are quoted to two digits beyond their 95 percent simultaneous confidence intervals in order to reproduce our calculated values. Our fit of all isotopic species of the type 8 band 202 of H23e quickly converged to a stable set of constants with a standard devia- tion of observed minus calculated frequencies of 0.0038 cm']. In this fit the ground state constants were fixed and all upper state constants (except H', HjK’ HkJ and Hk which were fixed to ground state values) were allowed to vary simultaneously. Isotopic mass differences were accounted for by using Eq.(II-7) and allowing £2, 53m, EA, and ac to vary. The constants determined from this fit and their partial correlation coefficients are given in Tables 35 and 36. Assigned transitions of 202 are listed in Appendix E. The standard deviation of the fit of 202 is somewhat smaller than the standard deviations of 1'16 Table 35 Molecular Constants for 202 of HZSe 95% Constant (cm‘l) SCI“ (cm']) A' 8.585143 0.00054 8' 8.100205 0.00058 0' 3.809932 0.00012 05 1.09894x10'3 0.0038x10'3 05K -2.20958x10'3 0.0084x10'3 ”k 1.1525900“3 0.0047x10'3 85 0.12mx1o'3 0.011x10'3 R6 -0.25969x10‘3 0.0080x10‘3 H3 0.1356x10‘6 HJK -0.461x1o'6 de 0.5162mo'6 Hk -0.190x10'6 Hg 0.069x10'6 0.2ox1o‘6 Hé 0.650x10'6 0.59x10'6 Hi0 0.233700'6 0.30x1o'6 5A 2.754x10'3 0.11x10'3 ac 0.5496x10‘3 0.023x10'3 00 2059.96580 0.0027 52 0.l6497 0.0013 83” 2.0631(10‘3 0.36x10'3 Isotope Standard Deviation Number of of Fit (cm‘l) Weighted Lines All 0.0038 516 75 0.0042 52 77 0.0041 50 78 0.0030 117 80 0.0039 220 82 0.0033 57 695% SCI (simultaneous confidence intervals), here 6 standard deviations. If no value is given, constant was held fixed at ground state value. 8' o c' 0 05 -0 05K -0 ”k -0 85 -0 R5 0 H5 -0 H5 0 Hi0 0. v0 0 5A 0 EC 0 a: 0 :g"' 0 CALC -0 , 0 5C 0 a: 0 :2” 0 CALC -0. AI .851 .428 .494 .337 .282 .002 .052 .085 .169 .742 .476 .210 .324 .316 .007 .432 .329 .530 .568 004 COCO BI .444 .347 .288 .481 .129 .447 .211 .092 .748 .405 .217 .319 .319 .006 .494 .740 .641 .008 00000000 Partial Correlation Coefficients for Zv Cl .943 .943 .924 .218 .424 .345 .687 .008 .562 .240 .523 .282 .302 .000 .622 .549 .008 0.979 0.955 -0.234 -0.394 -0.710 -0.032 -0.490 -0.227 -0.443 -0.208 -0.197 0.003 «515 0.870 0.001 11 7 -0. Table 36 03x .994 .193 .411 .348 .739 .003 .408 .164 .451 .180 .170 .002 ° 3 003 DI -0.164 -O.409 0.309 -O.741 0.001 -O.376 -0.140 -0.450 -0.168 -0.157 0.002 I O 0 00000000 .174 .908 .157 .000 .195 .004 .092 .069 .075 .005 ofHSe 2 2 -0.168 0.880 -0.254 0.154 0.031 0.218 0.069 0.089 0.003 -0.199 -0.004 -0.213 -0.041 -O.130 -0.070 -0.071 -0.008 -0.211 0.260 0.077 0.328 0.111 0.108 0.002 ”10 0.037 0.128 0.011 0.049 0.037 -0.024 118 the fits of the ground state combination differences and of the line fit of v] and v3 for several related reasons. First, the absorption of 2v2 is less intense than that of v1 and 03. This gives fewer (and, therefore, a larger proportion of well-resolved) lines than are present in the spectrum of v] and 03. As a consequence,the measurement preci- sion of these lines is estimated to be somewhat better than for the more densely packed lines in v] and v3. Also, because 2v2 is less strongly absorbing there are fewer lines involving high J, high K_ levels. These levels are the most difficult to calculate accurately. And, last, 202 has no detectable Coriolis perturbations. This makes accurate prediction of energy levels and transition frequencies more reliable than for perturbed bands. We were able to assign virtually all of the observed lines in the 202 region of the spectrum. However, only unblended lines were used in the fit of 202. Starting with the approximately 300 H280 (44) 45) Se transitions of v] and and Hill( 80 v3 assigned by Palik we were able to assign approxi- mately 400 more lines from H2 Se. In addition, we assigned approxi- mately 850 lines to the other four isotopic species. In the initial fitting process only the HZSOSe lines were fit. When most of the H2805e lines had been assigned, Eq.(II-7) was used to predict the transition frequencies for the other four isotopic species of these lines. Before a line for any of the five isotopic species was included in the final fit, its intensity was checked for consistency with other isotopic lines for that transition. In addition, all "observed" values for upper state energies were calculated by adding calculated ground state energies to observed transition frequencies. All transitions terminating on the same upper energy level were grouped together. Transitions were 119 eliminated from the fit if their "observed" upper state energies dis- agreed with upper state energies formed from other transitions to the same level. In this manner many incorrect assignments were avoided. The final fit of the data included lines from all isotopic species. Equation (II-7) was used to make a simultaneous fit of all isotopic species. As in the fit of 202, g3, 22m, a“, and 5C for both v1 and 03 were varied to account for selenium isotopic mass differences. All isotopic species for assigned lines of v] and 03 of HZSe were fit with a standard deviation of observed minus calculated frequencies of 0.0084 cm']. The molecular constants determined from this fit and their partial correlation coefficients are given in Tables 37 and 38. Assigned transitions of v] and 03 are listed in Appendix E. All iso- topic species fit approximately equally well. Individual test fits of H28OSe and H278 Se have standard deviations which are approximately the same as the standard deviations for these isotopic species when all species are fit simultaneously. In the fit 78 2 Se, 0 , A; C: and the five centrifugal distortion terms for each of H 0 band were varied; all other constants were fixed to the values deter- 80Se fit. The results of these fits indicate that the mined in the H2 use of Eq.(II-7) is valid for predicting energy levels and transition frequencies for the isotopic species of v] and 03 of HZSe. The Coriolis interaction most strongly perturbs pairs of levels of the type J K_ K+ and J K_+l K+ with one of the levels belonging to v1 and the other to 03. A check of a number of observed transitions to pairs of levels of this type for several different J values reveals that the 03 levels lie approximately l3 cm'1 or more above the 0] levels and that the sepa- ration of most of the pairs of 03 and 01 energy levels increases 1220 Table 37 Molecular Constants for v] and 03 of HZSe ,1 g3 _] 9s: _, _] 95: _] Constant (cm ) SCIa (cm ) Constant (cm SCIa (cm ) 4' 8.058028 0.00093 7.9949] 0.0015 8' 7.512833 0.00075 7.5575 0.0014 C' 3.845509 0.00075 3.857799 0.00078 05 0.75179x10‘3 0.0049x10‘3 0.73316x10'3 0.0042x10'3 05K -1.3786x10'3 0.0059x10'3 -1.33479x10'3 0.0051x10‘3 0k 0.55104x10'3 0.0042x10‘3 0.5450710“3 0.003.4x10'3 55 0.08120x10’3 0.0034x10‘3 0.04758x10’3 0.0052x10'3 R5 -0.19827x10'3 0.0053x10’3 -0.33945x10‘6 0.0084x10’3 H3 0.1466100”6 0.018x10’6 0.1251x10'6 0.011;:10'6 85K -0.49]0x10'6 0.022x10'6 -0.4575x10‘6 0.0141(10‘6 HkJ 0.5364x10'6 0.5364x10'6 HR -0.190x10‘6 -0.190x10‘5 Hg 0.0955x10‘6 0.0955100'6 Hé 0.7647(10’6 0.18x1o'6 0.744x10'6 0.241(10'6 Hi0 -0.062x10'7 -0.062x10'6 ~:A 2.490x10‘3 0.11x10'3 2.484.00‘3 0.12x10'3 :5 0.5520100'3 0.049;:10'3 0.5358100“3 0.0411(10‘3 vo 2344.35240 0.0079 2357.5519 0.011 a: 0.1528] 0.0032 0'17915 0 0044 :5” 2.086x10'3 0.85x10‘3 1.52x10‘3 1.1x1o'3 oz 0.1857 0.024 ny -0.199820 0.0012 Standard deviation of fit of 1540 weighted transitions = 0.0084 cm.]. . J1 3’3 . Standard Deviation Number of Standard Deviation Nunber of Isotope of Fit (cm-l) Weighted Lines of Fit (cnr‘) Weighted Lines All 0.0075 925 0.0095 514 75 0.0058 87 0.0111 58 77 0.0068 89 0.0088 54 78 0.0081 241 0.0095 150 80 0.0078 411 0.0095 284 82 0.0054 98 0.0102 58 6957. SCI (simultaneous confidence intervals), here = 8 standard deviations. If no value is given. constant was held fixed at ground state value. 121 Table 38 Partial Correlation Coefficients for v] and 03 of HZSe "3 A' 8' C‘ 05 DJK 0k 05 R5 H3 0.959 0 504 0 509 -0.S96 -0.600 -0.915 -0.348 -0.349 -0.922 0.947 ~0.246 -0.243 -0.889 0.893 0.987 0.240 0.480 0.222 -0.301 -0.179 —0.124 0.285 0.245 0.266 -0.319 -0.245 -0.216 -0.070 0.397 0.399 0 833 -0.958 -0.963 -0.930 0.234 0.277 0.254 0.253 0.825 -0.904 -0.977 -0.975 0.145 0.217 0.975 0.363 0.315 0.394 -0.505 -0.422 -0.387 «0.013 0.942 0.481 0.781 0.793 0.604 -0.509 -0.377 -0.314 0.236 0.198 0.330 0.304 0.287 0.658 -0.573 -0.592 -0.573 0.036 0.230 0.519 0.226 0.314 0.113 -0.159 -0.072 -0.043 0.356 -0.043 0.101 0.360 0.374 0.229 -0.180 -0.128 -0.091 0.074 —0.014 0.091 0.245 0.247 0.470 -0.337 -0.332 -0.313 0.079 0.107 0.255 0.345 0.370 0.303 -0.192 -0 147 -0.121 0.108 0.071 0.095 0.415 0.449 0.326 -0.228 —0.157 -0.126 0.171 0.117 0.119 0.119 0.091 0.019 -0.042 -0.015 -0.010 -0.078 -0.028 0.025 0.080 0.057 0.022 -0.035 -0.017 -0.012 -0.059 0.074 0.023 0.018 0.025 0.051 -0.050 -0.051 -0.050 0.044 0.020 0.048 -0.052 -0.044 -0.054 0.066 0 059 0.055 -0.002 -0.041 -0.063 -0.017 -0.023 -0.059 0.062 0.066 0.065 -0.044 -0.020 -0.066 -0.014 -0 018 -0.061 0.064 0.070 0.070 -0.038 —0.017 -0.068 -0.030 -0.024 0.032 -0.022 -0.030 -0.023 0.054 0.253 0 027 -0.019 0.071 0.017 -0.023 -0.014 -0.010 0.415 —0.495 0.018 0.033 0.031 0.055 -0.067 -0.066 -0.063 O 019 0.035 0.071 0.015 0.019 0.057 -0.065 -0.069 -0.068 0.040 0.018 0.072 -0.022 0.087 0.026 -0.038 -0.026 -0.019 0.506 -0.524 0.035 0.054 0.048 0.020 -0.025 -D.015 -0.012 -0.012 0.000 0.016 0.041 0.044 0.008 -0.015 -0.006 -0.005 0.021 -0.075 0.008 0.009 0.015 0.024 -0.024 -0.023 -0.022 0.034 0.011 0.024 0.021 0.023 0.008 -0.009 -0.005 -0.004 0.012 -0.017 0.005 0.024 0.025 0.009 -0.010 -0.005 -0.004 0.010 -0.014 0.006 0.047 0.047 0.093 -0.115 —0.111 -0.101 0.027 0.034 0.125 00000000000 1 u o O O 0 0000000000 0 HJK .407 .265 .523 .048 .079 .247 .080 .087 .012 .013 .048 .058 .066 .070 .027 .011 .068 .073 .023 .011 .005 .023 .004 .004 .116 -0. -0. -0. -0. 000000 H3 122 Table 38 (cont'd.) Partial Correlation Coefficients for v] and 93 of HZSe 00 52 ny 5‘ 5c 52 2:” A' 8' c' 03 0.399 0.159 -0.105 0.394 0.150 0.057 0.370 0.325 0.050 0.529 0.550 0.215 0 072 0.792 0.555 0.598 0.227 0.099 0.558 0.513 0.865 0 070 -0.347 -0.001 0.047 0.010 0.033 0.032 0.045 -0 285 0.043 0.025 0.011 0.019 0.022 0.917 0.024 -0.687 0.072 0 008 0.022 0.010 0 010 0.555 0.527 -0.034 0.592 -0.057 -0.015 -0.024 -0.013 -0.013 -0.540 -0.515 -0.915 -0.021 0.508 -0.051 -0.008 -0.025 -0.008 -0.007 -0 410 -0 375 -0.912 0.951 -0.020 0.580 -0.038 -0.007 -0.024 -0.007 -0.005 -0.307 -0 277 -0.874 0.895 -0.012 -0.055 0.045 -0.022 0.014 -0.012 -0.003 0.333 0.555 0.241 -0.338 0 018 -0.105 0.075 0.024 0 004 0.015 0.024 0.100 0.230 0.153 -0.175 0.023 -0.503 0.044 0.010 0.025 0.008 0.008 0.403 0.377 0.785 -0.929 0.017 -0.493 0.035 0.007 0.025 0 005 0.005 0.284 0.257 0.750 -0.878 0.020 -0.171 0.115 0.005 0.005 0.008 0.023 0.121 0.220 0.228 -0.259 0 048 -0.350 0 022 0 024 0 010 0.023 0.025 0.809 0.791 0.550 -0.502 0 033 -0.201 -0.024 0.081 0 015 0.054 0.045 0 514 0.553 0.323 -0 375 0.013 -0.373 0.054 0.017 0.043 0.021 0.018 0.427 0.400 0.549 -0.589 0 023 «0.174 0.014 0.044 0 017 0.041 0 034 0.489 0.482 0.275 -0.255 0 025 -0.157 0.009 0 038 0.015 0.035 0.041 0.505 0.511 0.270 -0.255 0.035 0 057 0 040 0 014 0.037 0.010 0.010 0.003 -0.005 -0.015 0.015 0.3x .985 .194 .141 .954 .953 .246 .359 .235 .540 .168 .149 .016 .145 .127 .928 .952 .234 .297 .168 .479 .122 .104 .013 Partial Correlation Coefficients for v 0000000 .007 00000000 1 O .132 .115 .957 .097 .155 .091 .087 .103 .002 123 Tabie 38 (cont‘d.) -0. 0000000 0.231 0.230 0.174 0.519 0.111 0.089 -0.016 0.123 0.164 0.143 0.101 0.112 -0.004 1 and u 3 00000 of H .494 .004 2Se ‘3» 0.643 0.819 0.738 -0.011 C m mm 5 £0 £0 0.578 0.481 0.872 0.002 -0.003 -0.004 124 smoothly as isotopic mass decreases. For most of the pairs of Coriolis 76Se levels interacting levels checked, the separation of the pairs of H2 is larger than the separation of the pairs of H2825e levels by less than 0.1 cm']. Because the levels of 01 and 03 for all isotopes of selenium are shifted by approximately equal amounts by the Coriolis interaction, Eq.(II-7) may be used to evaluate the transition frequencies for all isotopic species. Since Eq.(II-7) is satisfactory in this case, its use in a simultaneous fit of all isotopic species is prefer- able to individual fits of each isotopic species because eight additional constants (8:, 52m, 5A, and 5C for each band) predict the transitions for all isotopic species rather than 16 additional constants for each species (as in the fit of H278 Se, five sets of V0’ A', C', and five quartic centrifugal distortion terms). Despite our successful use of Eq.(II-7) to evaluate transitions from all isotopic species of u] and 03 of HZSe, Eq.(II-7) cannot be used successfully to evaluate all isotopic species in all perturbed bands. This expression would be expected to give inaccurate predictions if the perturbed energy levels are in close resonance (that is, if they would be separated by only small amounts in the absence of perturbations) or are otherwise strongly perturbed. In such cases, the isotopic species of a particular level will probably not be shifted in a smooth manner. The 0, transition 13 12 l - 12 ll 2 near 2528 cm'1 apparently shows evidence of this breakdown. The observed minus calculated value is -0.004 cm'] for the 80 isotope, -0.074 cm—1 1 for the 78 isotope, and approximately -0.04 cm' for the other three isotopes. Approximately 150 lines from H28OSe in the v] and v3 region of the spectrum, most of them strong and well resolved, could not be assigned. 125 Since we are able to accurately predict most 0] and 03 energy levels through J = 10 and most low K_ energy levels for J = 11 through 20, we believe most of these lines may be transitions ending on high J, high K_ levels. These levels tend to be strongly perturbed by the Coriolis interaction. Predicted values of these energy levels are very sensitive to small changes in the Hamiltonian constants. As an example of this sensitivity, in one fit with a standard deviation of approximately 1 80 0.01 cm' the H2 Se v3 transition 15 14 2 - 14 14 l was assigned to 1 the line at 2536.441 cm' . On a subsequent fit with some new lines added and a standard deviation of approximately 0.03 cm'], this transi- 1, a shift of over 28.6 cm']. tion was predicted to be at 2565.096 cm- 0n the next iteration of the fit of this set of data, the predicted transition frequency returned to within 0.1 cm of its assigned value. While this is an extreme example, it illustrates the difficulty in assigning and fitting very strongly perturbed levels. In less extreme cases, shifts of several tenths to several cm'1 from fitting iteration to fitting iteration are common. Because this is usually much larger than the spacing between lines on the observed spectrum, we were unable to assign these lines. This is unfortunate because knowledge of these high J, high K transitions would help to determine higher order distor- tion constants (the H's) well. Although it would be complicated to develop, a computer program to predict the intensities of the lines of v] and 93 including the effects of the Coriolis interaction would be very useful. It would predict frequencies and intensities, both of which may be very different from the non-interacting cases. At present we have no feel for which high J, high K‘ levels should be strong and which should be too weak to be observed. CHAPTER VIII CONCLUSION The development of Hamiltonians suitable for predicting the energy levels of asymmetric rotor molecules has been sketched. A procedure has been given for applying the Hamiltonians to predict the energy levels and transition frequencies of vibration rotation bands which are unperturbed and which are perturbed by Fermi and Coriolis interactions. In addition, a systematic procedure has been developed to assign observed transitions in such bands. We obtained the high resolution infrared spectra of 201 of HDSe, 202, v] and 03 of H25 and 202, v1, and 03 of H2Se. The analysis of the 201 band of HDSe<19> (accepted for publication in J. Mol. Spectrosc.) is the first published high resolution study of any vibration rotation band of this molecule. Molecular constants were obtained from simul- taneous least squares fits of transitions from all five observed isotopic species of selenium. The bands 202 and 01 of H25 and H25e are coupled by a Fermi resonance interaction and the bands 0] and 03 of H25 and HZSe are coupled by a Coriolis interaction. We were unable to determine the size of the Fermi interaction from our attempted three- S and treated 20 band analysis of H 2 of H25 and 202 of HZSe as unper- 2 turbed bands. We analyzed the Coriolis interacting bands 0] and v3 simultaneously for H S and also for HZSe. Using our analysis procedure, 2 126 127 we were able to determine molecular constants which can be used to accurately predict most of the observed transitions in our spectra S and H Se. of H2 2 10. 11. 12. 13. 14. 15. 16. 17. B. T. REFERENCES Darling and D. M. Dennison, Phys. Rev. g], 128 (1940). M. Goldsmith, G. Amat, and H. H. Nielsen, J. Chem. Phys. 24, 1178 (1956). G. Amat, M. Goldsmith, and H. H. Nielsen, J. Chem. Phys. 21, 838 (1957). K. T. J. M. Chung and P. M. Parker, J. Chem. Phys. §§, 8 (1963). Dowling, J. Mol. Spectrosc. g, 550 (1961). T. Oka and Y. Morino, J. Phys. Soc. Japan 14, 1235 (1961). N. K. Moncur, Thesis, Michigan State University (1967). F. X. Kneizys, J. N. Freedman, and S. A. Clough, J. Chem. Phys. 44, 2252 (1955). J.K.G. Watson, J. Chem. Phys. 44, 1935 (1967). J.K.G. Watson, J. Chem. Phys. 48, 4517 (1968). V. Tykpe, J. Mol. Spectrosc. 44, 170 (1976). K. K. L. E. Yallabandi and P. M. Parker, J. Chem. Phys. 42, 410 (1968). Snyder and T. H. Edwards, J. Mol. Spectrosc. 31, 347 (1969). D. F. Smith, Jr. and J. Overend, Spectrochim. Acta 484, 471 (1972). G. W. King, R. M. Hainer, and P. C. Cross, J. Chem. Phys. 14, 27 (1943). S. C. Wang, Phys. Rev. 44, 243 (1929). J. M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc. 41, 142 (1974). 128 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 129 P. D. Willson, N. K. Moncur, and T. H. Edwards, J. Mol. Spectrosc. '82, 196 (1974). J. R. Gillis and T.H. Edwards, J. Mol. Spectrosc. (in press). P. D. Willson, Thesis, Michigan State University (1973). P. C. Cross, R. M. Hainer, and G. W. King, J. Chem. Phys. 12, 210 (1944). C. H. Townes and A. H. Schawlow, Microwave Spectroscopy, McGraw- Hil1, New York, 1955, pp. 102-105. A. Baldacci, V. M. Devi, D-W.Chen, and K. N. Rao, J. Mol. Spectrosc. 19, 143 (1978). J. L. Aubel, Thesis, Michigan State University (1964). D. B. Keck, Thesis, Michigan State University (1967). P. D. Willson and T. H. Edwards, Sampling and Smoothing of Spectra, Applied Spectroscopy Reviews, 12(1)(Marcel Dekker, Inc.)(l976), p. l. S. C. Hurlock and J. R. Hanratty, Applied Spectroscopy 28, 362 (1974). G. Guelachvili, Opt. Comm. 8, 3 (1973). D. H. Rank, U. Fink, and T. A. Wiggins, J. Mol. Spectrosc. 18, 170 (1965). C. Amiot and G. Guelachvili, J. Mol. Spectrosc. 81, 475 (1974). C. Amiot and G. Guelachvili, J. Mol. Spectrosc. 88, 171 (1976). K. N. Rao, C. J. Humphreys, and D. H. Rank, Wavelength Standards in the Infrared, Academic Press, New York, (1966) p. 118. G. Guelachvili, J. Mol. Spectrosc. 28, 251 (1979). G. Guelachvili, Opt. Comm. 18, 150 (1976). D. M. Cameron, W. C. Sears, and H. H. Nielsen, J. Chem. Phys. 2, 944 (1939). 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 130 V. G. Veselago, Opt. Spectrosc. VI, 286 (1959). R. A. Hill and T. H. Edwards, J. Chem. Phys. 42, 1391 (1965). H. C. Allen Jr., L. R. Blaine, E. K. Plyler, and P. C. Cross, J. Chem. Phys. 24, 35 (1956). T. H. Edwards, P. D. Willson, and W. H. Degler, J. Opt. Soc. Am. 88, 496 (1968). J. M. Flaud and C. Camy-Peyret, J. Mol. Spectrosc. 81, 142 (1974). P. Helminger, R. L. Cook, and F. C. DeLucia, J. Chem. Phys. 88_ 4581 (1972). L. E. Snyder and T. H. Edwards, J. Mol. Spectrosc. 81, 347 (1969). K. Kuchitsu and Y. Morino, Bull. Chem. Soc. Japan 88, 814 (1965). E. D. Palik, J. Mol. Spectrosc. 8, 259 (1959). R. A. Hill (private communication). P. Helminger and F. C. DeLucia, J. Mol. Spectrosc. 88, 375 (1975). APPENDICES APPENDIX A NONVANISHING ANGULAR MOMENTUM MATRIX ELEMENTS Listed below are the nonvanishing matrix elements for the angular momentum operators of the various Hamiltonians evaluated in the symmetric top basis 0(J,K). = 51/2 [f-x1x51113 = 1/2 [f-K(z<.+.1)]ls 1'3 11 J(J+1) j = f-K 9+: [(Jxx—1)(J;K)(th+1)(J3K+2)17 m = [(J¥K~2)(Jt}<+3)(J;K-3)(J1K+4)1!59+ . . - i , i . Tne diagonal terms, where x is equal to: P = K Z 2 2 . Py = PX = .153 P2 = f 2 2 P = K ' .. 1 '3 s) a (PHP: + pfr;) = (ngf + 939;) = jK4 J 4 I ‘- a 131 132 4 _ 4 _ 4.2_ . 2 PY - Px — (3] 23+3K )/8 p4 = £2 4 _ 4 22 — K 2292 = sz 2 (P2P2 + P2 P2) = (P2P 2 + P2 22) = sz x z PX y z PPz y 2 2 2 2 _ .2 . 2 (Pxp y + PyP x) — (3 +23—3K )/4 4 P4_ 2P 2 + 2P 2 g _ .+ K2 PX+P y 3(2)?y exp y1 23 3 p; = P: = (Sj3-10j2+25jK2+8j-20K2)/16 26 = £3 96 = x6 2 2422 = 22x2 2 2 4 _ 4 2 P2 - fK 2 4 4 P2 2P 2 . 2 + - P: + P = -2 +3K ) 2 [ex 9y 3( xPy y Px)] f( 3 2 4 4 2 _ 2P 4 4 2 _ 2 .2_ . 2 (pzpy + pypz) — (222 x + 9x22) — K (33 23+3K )/4 2 4 4 2 _ 2P 4 4 2 _ .3 .2_ ."2_ . ,2 (PxPy + Pny) (PyP x + Px:y) — (j +6] 193A 83+208 )/8 2 2 2 2 2P _ lP.2,2_ 2 2 , (PXPZPY + PyP 2P :1 - ,3 h [(x+2) g+ + (1-21231/8 The off-diagonal terms, where x1 is equal to: 133 4 4 P2 P2 3 px + Py 3(P? xy+ P: PX) % mi 4 4 . - PY =—Px = 8(3-2+2K)93 2P 2 P2 P2 _ 2P 2 2 2 _ 2 . (PyP 2 P2 Py) — (PXP Z + PZPX) — 8(K 2.214219i P2 2 (P: - Py) =-8fgt [P2(P2 - 22) + (P2 - P21P2] =-(xz+2x+2) z x y x y z ' gt 5 5 .2_ . . Py =-Px = [153 +503x-703+105K(K:1) 1125K+136]g+/64 2P 4 4P 2 _ 2P 4 4 2 _ .2 . ._ 2- (PXP y + PYP x) - ~(PYP x + PxPy)- (3 $43K+63 4114,102x-7219 /32 2P 4 4P 2 _ _ 2P 4 P4 2 (FY? z + PZP y1 - (PX? z + Psz1= 81K 4+(K+2) 19. 2P 4 4P 2 _ _ 2P 4 4P 2 _ 2 , (pzp y + PyP z) — (sz x + Px Pz)- L(x2 +2K+2)[f—( x 324+21192 4 2 2 _ 2 P (Px - Py) - -8f 93 2 2 2 2 2 2 2 __ 2 P [P 2(Px - Py) + (Px- Py)Pz] — (x 12k+2)£gi 4 2 2 2 2 P4 - 4 4 [Pz(Px - Py) + (Px- Py) P2] —-[x +(K22) lei/2 The off-diagonal terms, where x1 is equal to: P; = P: = mi/l6 (Pip p; + Pipi) =-mt/8 P3 = Px 6=(3j 4128-201m /32 (Pi? P; 4 P3P') = (P2P 2 + Pi? :)= (K 214K+8)mi/8 (Pip :P p; + 93930 I: =-(K22)2m1/8 (Pip: + PSPi) = (P3P: + 9:25: = (-j+4K+4)mt/16 P2[P; + P; - 3(PiP; + P3P21] = 8 fmt 134 The off-diagonal terms, where x1 is equal to: P: =-P: = [(J;K-5)(J:x-4)(J:x+5) (J1K+6)]%mi/64 2 4 4 2 _ 2 4 4 2 __ _ _ _ (PxPy + Pny —-(Pny + PxPy) — EJ;K_5)(J+K 4)(JiK+S) (J1K+6)]%m+/32 2 (P: - Pj)3 = - %{[J2- J [J2- are Wang transformed by subroutine NANGCOS. INTCALl then calculates the asymmetric top line strength (II-6) using (III-8). The line strength, statistical weight 9”, temperature, transition frequency, and ground state energy are substituted into (III-9) to give the rela- tive transition intensity. This procedure for calculating energy levels and intensities con- tinues until all transitions have been calculated. After all transitions are calculated, subroutine OUT and PRINTO print or plot the spectrum in the form selected by the operator. Intensities may be printed in order by quantum number or by frequency, or in order of input. Or, intensities may be plotted. For plotting the operator selects the frequency range, minimum intensity, and percent absorption to be plotted. All lines not plotted are listed at the end of the plot of the spectrum. Finally, if desired, predicted transitions may be punched in order of frequency. nnnnnnnnnnnnnnnnnnnn n 138 PROGRAM INTCAL1(INPUT,OUTPUT,PUNCH=STS) CONNONIRLPR/ PRS(2) COMMON/8LKP/P(19,4,13),PI(2,13),NP(3),PH(4,13) COMMONIBLKEVIA(13,13),S(13,13),JIN(4,51),IHDEX,NVAR(24,2),IBN COMMON NAP,NAI,IAN,AP(408,4), 1SE(26,26,4),FRE0(1000),10N(1000), 25TREN<1000>,C(51,3),ABSN,IBAND OMMON /PMAK/HAM,VIDZ,VIDXY,HSPM,LPS DIMENSION IHEAD(10),NGU(2),LUPS(2),GL(2) CHECK DIMENSIONS IN THE FOLLOUING THREE CARDS UHEN CHANGING ANY ONE OF THEM DINENSION PAR1<19),PAR2<19),PGD1(19),PGDZ(19),NPAR1(48),NPAR2(43) COMMON/5LK1/ PAR(19,4),voc3),NPAR<24,4) EGUIVALENCE (PAR(1,1),PAR1(1)),(PAR(1,2),PGD1(1)), 1(PAR(1,3),PAR2(1)),(PAR(1,4),PGDZ(1)),(NPAR(1,1),NPAR1(1)), 2(NPAR(1,3),NPAR2<1)) ' DIMENSION JLPREV(4),IJPREV(4),IJDEL(4),JDEL(4),ISTDP<6),ABUN(6) INTEGER HAM CONSTANTS HHICH DEPENT ON THE MAXIMUM ARRAY IN COMMON DATA VIBZ,VIBXY/2*0.0I,V0/3*0.0/,PAR/76*0.0/,NPAR/96*0/ DATA NISO/1/,ISTOP(1)l32/,A8UN(1)l1.0/ DATA JEOU,JEOLI2*1I CALL NOBLANK NAP=408 NMAx=13 JMAXA=25 IP=24 100 CONTINUE READ 500, IFHEAD,IFHAM,IFISO,IFRA1,IFPDT,IFPA2,IFP02,IFDATA, 11PRT,IFPAv,IFRINT,IFSE,IFORD,IFTRAN,IOUT 500 FORNAT (2012) IF(EOF(SLINPUT).NE.O) GO TO 101 IFHEAD=O READ HEADING CARD IFHAM=O READ HAMILTONIAN CARD IFISD=0 READ ISOTOPE CARD IFPA1=O READ THREE GROUND STATE PARAMETER CARDS IFPDT=0 READ THREE ISOTOPE GRD STATE PAR) CARDS IFPA2=O READ THREE UPPER STATE PARAMETER CARDS IFPDZ=O READ THREE ISOTOPE UPR STATE PAR) CARDS IFDATA=0 READ FREQUENCY CARDS UNTIL END DATA IS FOUND IPRT=1 PRINT THE ENERGY MATRICES IFPAv=0,1,2,3 SEE COMMENTS IN FDRMPI1 IRINT = 1 PRINT LINE STRENGTHS IF IFSE=1 PRINT SE EIGENVECTOR MATRICES IFOR0=1 PRINT FREQUENCY CARDS AFTER ORDERING BY 0N IFTRAN=1 PRINT EIGENVECTORS AND HANG TRANSFORMED DIRECTION Cos MATRIX IOUT= 1 PRINT INTENSITIES ARRANGED EY DUANTUM NUHBER 0,2 PRINT INTENSITIES IN ORDER OF INPUT 3 PLOT STRONG LINES 4 PLOT SPECTRUM NITH ADDED INTENSITIES OF OVERLAPPING LINES S PRINT INTENSITIES OF STRONG LINES IN ORDER OF FREQUENCY 6 PUNCH DECK CF STRONG LINES IF (IFHEAD.NE.0) GO To 608 l39 READ 525, (IHEAD(N),N=1,10) 525 FORMAT(10A8) 608 CONTINUE IF (IFHAM.NE.O) GO TO 610 READ 530,HAM,ISO,JTYPE,T,PRS(1),PRS(2),GL<1),GL(2),RESO,ARSN, 1T0PFRE,eOTFRE,NKSTREN,IRAND 530 FDRMATCZIs,AXA1,3F10.0,2F5.0,2F10.0/3F10.0,A5) NGU(1)=NGU(2)=1 IFPRS=0 IF((RRS(1).ED.0.D).AND. IF(VO(3).NE.0) PRINT 199,Vo(3> 197 FORMAT(/3X* V0 = *F11.4,27X*8AND CENTER*) 198 FORMAT(*+*29XE12.S) 199 FORMAT(2X*CDVO = *21XE12.5) PRINT 202,(ISTOP(I),ABUN(I),I=1,NISO) 202 FORMAT(///* INTENSITIES ARE CALCULATED FOR THE FOLLONING ISOTOPES* 1/l8x*ISDTOPE AaUNDANCE*//(Sx11o,r1o.3/)) START CALCULATION OF INTENSITY SEARCH QUANTUU NUNBERS FDR LEVELS UITN SAME JU. REMEMBER THE ARRAV INDEX OF LEVELS OF THIS JU, LAST TVO JU, AND NEXT TVO JU FOR USE RNEN es LEVELS ARE CALCULATED NLINE=NISO IUPREZ=IUPREV=IUTHIS=IUNEXT=IUNEX2=NISO CALL INDOUT(IQN(NLINE),INDU,INDL,LIST) JUPRE2=JUPREv=JUTNIs=JUNEXT=JUNEx2=SORTCFLOATCINou-T)) IUEN=NISO DO 29 L=2,A JLPREV(L)=-2 29 IJPREV(L)=L 300 CONTINUE CALL INDOUTCION(NLINE),INDU,INDL,LIST) J=SDRTCTLOAT.E0.JOEL<4)))GO TO 415 IJDEL(L)=IJPREV(LL) JLPREV(LL)=JDEL(L) IF(JDEL(L).LT.O) GO TO 403 GO TO 403 415 CONTINUE 408 00 407 LL=1,51 407 JIN(IJDEL(L),LL)=O DO 410 I=IUPRE2,IULAST,NISO CALL INDOUT 550 CONTINUE FORM SYNHETRIC TOP JK PART OF DIRECTION COSINE NATRIX ELEMENTS (JU,KU/DIR COSIJL,KL) IF(JL.EQ.JLL) GO TO 555 JLL=JL CALL LSTR(JU,JL,JTYPE,CAPPL,CJM) SSS CALL 0N(INDU,JU,KNU,KPU,JEOU,CAPPL) CALL 0N(INDL,JL,KNL,KPL,JEOL,CAPPL) HANG TRANSFORN THE DIRECTION COSINE NATRIX ELEMENTS AND STORE IN A CALL VANGCOSCJEOU,JEOL,JU,JL) LOCATE THE PROPER EIGENVECTOR MATRIX CALL HANGDIHCJU,JEOU,NPU,IRONU,ICOLU,CAPPU,KTU) CALL HANGDIHCJL,JEOL,NPL,IRONL,ICOLL,CAPPL,KTL) DO 480 MI=1,NPU . IFCKTU.NE.Kuu-KPU> GO TO 480 IU=NI+ICOLU GO TO 482 480 KTU=KTu-4 nnn 145 482 D0 484 NI=1,NPL IF 3 165 SUBRCUTINE FORMPI1(IFPAV,NMAX,JEO,PAR,P,NP,CAPP,IJDEL) COMMON/BLKEV/A(13,13),S(13,13),JIN(4,S1),INDEX,NVAR(24,2),IBN COMMON NAP,NAI,IAN,AP(408,4) DIMENSION P(19,4,NMAX),PAR(19),AVEP(19),NP(3) *ttttttttiti‘ktiiiti’fiiitii'kt'kt******* THIS ROUTINE SORTS THE EIGENVALUES AND DETERMINES THE QUANTUM NUM EACH STATE. THE DIAGONAL ENERGIES FROM A ARE STORED IN AP AT LOCATION (JIN(J+KN+1'KP9,IJDEL)' THE AVERAGE VALUES ARE CALCULATED BY USING THE TRANSFORMA MATIX AND APPLYING IT TO THE UNDIAGONALIZED OPERATOR VALU OPTIONS ARE IFPAV =0,1 THE DIAGONAL AND AVERAGE ENERGIES ARE PRINTED ONLY IF EXPECTATION VALUE OF THE ENERGY IS DIFFERENT FROM THE ENERGY BY MORE THAN E-9. IFPAV=2,>4 THE DIAGONAL AND AVERAGE ENERGIES ARE PRINTED THE NORMALIZED EXPECTATION VALUES OF EACH OPERATOR IS *********************************A* EXPECT=1.0E-9 RT2=1.414213562 NT =0 MT=0 J=NP(1) NL=NP(3) IF (NL.GT.0) GO TO 10 IF ((J.NE.0).OR.(JEO.NE.1)) RETURN IND=JIN.OR.(IFPAV.GE.4)) GO TO 48 IF (DIFF.LE.EXPECT) GO TO 64 48 VSOSUM=VSQSUM-1 IF GO TO 40 1-R A-TYPE MATRIX ELEMENTS IF) KT=J-1 RETURN 6 N=IZ IROH=13 s ICOL=o KT=J-1 IFIz IRCN=ICOL=13 KT=J-2 IF(CAPP.GT.0) RETURN KT=J-3 IF S TSTR=STREN(MII) FREGPRINT 625 625 FORMAT (*1 JU KN KP JL KN KP ISOTOPE*12X*FREQUENCY* 7X*INTENSITY*AX*LINE*/) 620 PRINT 630,JU,KNU,KPU,JL,KNL,KPL,ISTOP(L),FREO(M),STREN(M),M FDRMAT(2(6X3I3),6XI3.SX2F16.3,4XIA) PLOT STRONG LINES IN SPECTRUM HITH DELTA FUNCTION LINE SHAPE 174 RETURN C SORT DATA INTC ORDER OF INCREASING FREQUENCY :00 DO 380 M=2,MVAR MV=M~1 DO 375 I=1,MV RI=N-I WII=RI+1 TF(FREG MI).LT.FPEO(“II)) GO TO 373 ITENF= GNiNIL) S'ION(MII)=IOM(HI) S ICN(NI)=ITENP TFRE=FREO S TSTR=STREN€NII) FREQ 1L KN KP ISCTGP I'l “12X 1*FREQUERCY*77*INTEHSITY‘NK*LINE*/) CALL INDOUT(IGN(L),INDU,INDL,LIST) JISO=HOD(LISF,NISD) IFCJI$3.EQ.O) JI$O=NISO CALL 0NOF‘N-PN--8U1mLIIJt—A—fil‘di‘dL-JNJTU-J ..5.) ..5—8 VVUT‘VWU’IChO‘O-OOWWO‘OVVGDCXWWV ...—b 1 1 1s 1 1:. 1 13 1 14 14 ..5 T‘JNJNOULAINOLDTMLN-*OGeo-hat.)0&0 4.3.. .. ..A - A ...-5 \rT‘TATV‘flUL'TN-‘CDU‘OS-bS‘F-P‘C‘L‘C't-5‘0 J‘U'i LNL-lO‘UJlALHO-‘Ntflblbkt'bbb3'b3‘1MUJON-DONOL‘S‘UTJ-‘L'JI‘JUTKJTUTwN-‘UTO‘O‘OO‘O‘O‘VVN a... .6.) OGOOO OOC‘O‘VVVVV‘O‘OVVOCTXOO‘O‘OL‘O 1O 4.8—3») ()0 NON-fiOUJN-J‘JVUTUTWMWU'TUTUTUT‘J ab upVblua..oNlebummmMUIUTUIUTbN—A-Oo...a-bmmomb-‘O‘ODOdOOV‘JVVVVOOmm ...; byawamam-¢NO-OJ‘ODN-¢WN-‘~AO ...... aa—b—naa-s AMMWOJ‘O A...) (NWQR'OT‘JUJ-‘YOJ‘S‘CJ-‘O"OO-A-‘L‘J 180 OBSERVED (CM-1) 4474.553 4467.335 4467.950 4482.186 4482.186 4488.767 4488.767 4495.436 4496.071 4496.383 4498.605 4505.496 4509.396 4509.396 4510.019 4510.019 4512.358 4512.682 4515.492 4516.099 4516.727 4517.374 4519.132 4519.132 4519.748 4525.816 4525.816 4526.437 4526.746 4532.891 4535.290 4535.910 4535.910 4536.546 4536.546 4536.872 4536.872 4537.220 4537.220 4537.382 4538.015 4538.314 4538.931 4539.537 4540.759 4540.962 4541.395 4542.154 4542.403 4543.043 OBS'CALC (CM-1) -0.013 -0001 5 '0.019 0.002 -00008 -0.013 0.010 0.015 -00013 -0.022 0.001 ‘0.004 0.006 -0.015 0.004 0.005 '0.002 0.016 0.009 0.000 “0.038 0.011 -0.012 “0.019 0.020 0.014 -0 .002 0.006 0.014 0.007 '0.002 “0.001 -0 .009 -00002 0.006 0.003 -0000? 0.013 0.002 ’0.006 0.005 0.002 -0.00Z '0.010 '0.002 ‘0.007 WEIGHT 0.00 0.40 0.00 0.01 0.01 0.00 0.00 0.40 0.00 0.01 0.00 0.10 0.01 0.01 0.01 0.01 0.01 0.10 0.40 0.00 0.00 0.01 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.04 0.04 0.0‘ 0.04 0.01 0.04 0.01 0.01 0.50 0.04 0.04 0.10 0.00 0.20 0.20 1.00 0.40 0.40 0.04 157 78 80 78 80 80 80 8O 80 78 80 80 80 80 80 78 78 80 80 80 80 50 78 8O 80 78 80 80 78 80 80 82 80 80 78 78 77 77 76 76 80 78 80 80 78 80 90 78 80 80 '7’! 'u ID J K- K+ J K- K+ «J an. ..5 N J N A .-A O ..5 .8 O .... ... -§ N an. N ..5 O ..5 ..h ..a O ... O can) .3 «a. w. .b O .4 .6 .a ..I 0 ..5 O O I .4 ‘I‘O‘OCBO'AAW-‘VVP‘OUIYOOOOO «DhJOA-aa-‘UJJOdU-JOJW-‘TU-J-‘OJONS‘ObL‘o&-&N¥‘l\1bJANONO-OI‘JfiJOI‘UO-I-‘O4C) .8 an... ...) ... PUT4"flAOQ'sN‘JTUTMJ‘kn\AbN'WIQNLNQO'AOOS‘WJO‘O‘U'TUT—DOCJOUOONOWO'Ob“O@OOO¢Od d ....) ...L A... -—i ét‘dOOOOUTOOROOVV—P OW-bl‘.‘NNN¥‘O-DO¥‘-.ObNtNNN-‘OdumdmmNNLI-IMLNUTT‘JNLN‘u-‘Olflw-‘d-HDON—ON—I .3 u-b .h «A... '4!!meNV‘INNOOOKNO‘O‘WWObb‘JVV-‘UJWUTUTOAONNNNNVWObOOU‘W U10 anuououowyoooooomenLnquwmmoo-UNP 5‘0-me‘JONOML‘TMO‘U‘IMO‘LdO"C‘J‘OO(PNLD 181 OBSERVED (CM‘1) 4545.321 4545.321 4545.953 4546.276 4551.638 4551.638 4551.929 4552.268 4554.525 4555.181 4557.882 4557.882 4558.055 4558.855 4562.211 4563.191 4563.834 4567.019 4567.242 4567.659 4567.889 4568.259 4568.911 4569.687 4570.330 4570.711 4572.760 4573.183 4575.971 4576.153 4576.622 4577.485 4577.834 4579.603 4581.015 4581.267 4581.545 4581.702 4581.935 4582.166 4582.365 4582.825 4584.817 4585.661 4586.327 4586.327 4586.492 4587.197 4587.477 4587.638 OBS-CALC (CM'1) 0.015 0.000 “0.025 0.002 0.005 -0.002 -0.017 -0.019 0.003 0.012 ‘0.010 “0.006 0.001 0.005 '0.002 0.018 0.003 '0.002 “0.003 -0000} 0.001 0.002 0.009 “0.001 0.001 0.001 0.004 -00012 0.001 0.002 ‘0.011 0.005 ‘0.003 '0.005 0.000 0.004 “0.005 0.012 0.002 0.007 0.000 “0.004 -0.002 HEIGHT 0.00 0.04 0.00 0.01 0.10 0.10 0.10 0.01 0.00 0.10 0.00 0.00 0.10 0.00 0.10 1.00 0.10 0.10 0.40 1.00 0.20 0.20 1.00 0.04 0.04 0.00 0.00 0.10 0.40 1.00 0.20 0.10 0.01 0.10 0.10 0.10 0.10 0.01 0.50 0.40 0.40 0.10 0.40 0.40 0.01 0.01 0.20 0.04 0.20 0.04 ISC 80 80 78 77 80 80 20 78 80 78 80 80 80 77 30 80 78 80 80 78 78 80 78 80 78 78 80 80 80 80 78 78 77 80 80 80 82 50 78 80 78 78 30 80 80 7. 80 80 80 RE \- UPPER (... 7‘ I 7‘ ... TuNu).....ALNUl"(ul““f‘)\fl\fl\fll>J‘NI‘JO‘O‘NUIONVWBJUITVU‘ICDF’J‘WLNLHVWKNKNkflk-‘mwmo«1%va (DOQU-J—booaa-fiuida—‘doO-‘J—‘NN8‘I‘JPJNO[\DOON").JJJJ'JOONONJNT‘JWO-fi-Ad r‘JNl’UmfiQWKHWNWW-‘I-"bb?NNUT“UTNPMWNIANUTOKNl-‘WLNLA’OWMNUWO‘P‘bWO‘AS‘4‘ NNNNNUJUJ-bwbbNUTUTVIJ‘t‘WNOON00 NwTMLnummt-bbbtth‘WS-kmmmooommm dd-‘OOd-‘NNNNNNNN-fi-fioNNMMMWWW—‘Lfl-l-JQNWKIOOONddUJ-IwNumb—bmoo dAdNNNNNdNNOWWHMMlfl-‘FMbMWJ‘NMNWl‘UT-‘mbb4‘UTbnracpc-b-atn»1>:~bwnLnUTbLnunuc:—-0LNDI:u>J>wa;~mhac>nuNL~uwawu-a~ho K+ at... ”6.4 ...—i... c—I—J-A J... ..l-hut O—Ab-OOIVL’JLH”M‘AUTDNJ‘IUC‘RIWLA'Od-‘UI'¢OOO'JJUIU~I\I\I°*N—b..s0:aONNmUYNN‘OF‘vO LOWER J K- K+ 10 1 10 10 0 10 9 2 8 5 2 3 9 2 8 4 2 3 4 2 3 6 2 4 9 3 7 11 1 11 11 0 11 10 1 9 4 3 2 10 4 7 4 3 2 4 3 2 4 3 1 4 3 2 8 2 6 8 2 6 12 1 12 12 0 12 12 1 12 9 2 7 4 4 1 4 4 0 5 3 2 4 4 0 4 4 0 4 4 1 5 3 2 5 3 2 5 3 3 13 0 13 5 3 3 13 0 13 5 3 3 6 3 3 14 1 14 13 2 12 13 1 12 6 3 3 6 3 4 6 3 4 13 3 11 5 5 1 S 5 0 5 1 5 5 5 0 5 5 1 185 OBSERVED (CM-1) 4671.553 4671.553 4671.785 4672.035 4672.478 4672.784 4673.472 4674.270 4674.471 4675.585 4675.585 4676.101 4676.282 4676.976 4676.976 4677.318 4677.318 4677.682 4678.412 4679.109 4679.520 4680.218 4680.396 4681.339 4681.339 4681.830 4682.027 4682.386 4682.386 4682.530 4682.873 4683.260 4683.357 4683.951 4684.063 4684.687 4686.892 4687.097 4687.371 4687.371 4687.587 4690.965 4691.672 4691.785 4692.150 4692.150 4692.411 4692.839 4692.839 CBS-CALC (CM-1) 0.005 0.001 -00004 0.001 -0 .015 -0000? -0000? -0.009 0.001 -00001 0.004 0.001 '0 .013 0.004 -0 .012 -0.016 “0.013 0.002 0.003 0.000 '0.001 '0.022 -0.003 0.003 -00001 0.000 0.002 -00004 0.004 -0.011 0.004 0.000 ‘0.019 0.007 ’0.004 0.003 0.010 -0.00Z '0.005 '0.004 0.001 0.003 0.004 ‘0.005 -0.001 '0.002 HEIGHT 0.05 0.05 0.40 0.20 0.00 0.20 0.40 0.20 0.10 0.40 0.40 0.00 0.10 0.01 0.01 0.00 0.00 0.00 0.20 0.10 1.00 1.00 0.00 0.20 0.10 0.10 1.00 0.40 0.04 0.04 1.00 0.01 0.10 0.10 0.01 0.00 0.01 1.00 0.50 0.00 0.00 0.01 0.00 0.01 0.00 1.00 1.00 0.00 1.00 1.00 ISO 80 80 80 78 78 80 78 80 80 80 80 80 80 80 78 77 76 76 80 78 80 80 78 80 80 80 80 78 77 77 78 77 80 80 78 78 76 80 80 8 80 78 30 78 80 80 80 80 78 78 ID ummmmmflflflflfldflflwflfluoo OOVVVVVVVVVVODMCFU‘OOO00WVVVV‘.HUIVVVV\1VU1\AUI\A(‘OOO‘O‘Ol‘VIMMWU'IU‘OO .“\)W C 4 Cor-JN-v-bUVm—‘O JOJLVLNILN‘F“fihJéf‘II‘J—INLNFJR’LN i-gl‘JIQIDulwu-l bObaOLq-‘O nil-J .a\)' osacmuJmammyxcnamw~q~Jm-u~qawv-q\rV-v~qmcmo~ow>o~oc>\rv-uxrflc>o~oc>o~o<>o~o<>o~oxn01 VOOUOOO‘O000~VVMVNUIVVO~O~OO~D50000003‘bbbumMMUMU-bbk559mm “ital"Jthl‘NPJKMI’VMRJOAWOfl-‘bo-‘T‘J—JJI‘J-P‘l‘O—‘O—IOJ5‘PWWK'1-bNd4NNNULNNUIN—bo 186 OBSERVED (CM-1) 4693.201 4693.201 4694.048 4694.317 4694.747 4695.010 4695.384 4695.462 4696.132 4698.508 4698.508 4699.199 4699.559 4699.559 4700.025 4700.025 4700.734 4701.012 4701.705 4702.002 4702.002 4702.699 4702.699 4703.070 4703.070 4705.348 4708.252 4708.252 4708.950 4708.950 4710.907 4710.907 4711.180 (0711.604 4711.604 4711.716 4712.336 4712.336 4713.799 4713.799 4714.471 4714.471 4715.175 4715.175 4715.528 4715.528 4715.914 4715.914 4717.028 08$‘CALC (CM-1) 0.002 0.002 0.001 -00001 0.001 “0.007 0.006 ‘00014 0.003 0.002 0.009 0.001 “0.006 0.001 -00008 0.002 0.009 0.010 ‘0.001 “0.001 '0.001 -00001 0.010 0.010 '0.006 “0.006 -00002 “0.001 ‘0.005 “0.005 0.006 0.006 “0.007 0.004 0.0010 0.004 0.006 0.006 0.006 0.001 0.004 0.002 ‘0.003 -0.009 -0.015 0.005 -0.001 ‘0.005 HEIGHT 0.20 0.20 1.00 0.10 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.10 0.01 0.01 0.01 0.01 1.00 0.01 0.10 1.00 1.00 1.00 1.00 0.10 0.10 0.10 0.10 0.20 0.20 0.10 0.10 0.10 0.10 0.04 0.10 0.10 0.10 0.01 0.01 0.01 0.01 0.20 0.20 0.10 0.10 0.01 0.01 0.02 0.02 0.40 150 77 77 80 80 78 78 77 76 80 80 80 78 77 77 80 80 78 80 78 30 80 78 78 77 77 80 78 80 80 78 78 80 80 8O 78 78 78 76 74 5‘1 22 82 80 80 78 78 77 77 76 76 80 ID UPPER J K- K+ 9 8 1 9 9 0 9 9 1 9 9 0 9 9 1 9 9 O 9 9 0 11 6 6 10 8 2 10 8 2 10 9 1 10 9 1 10 10 O 10 1O 1 10 10 1 10 10 O 11 7 5 11 7 5 11 O 11 0 LOHER J K- K+ 8 7 2 8 8 1 8 8 0 8 8 1 8 8 0 8 8 1 8 8 1 10 5 5 9 ‘7 3 9 7 3 9 8 2 9 8 2 9 9 1 9 9 O 9 9 0 9 9 1 10 6 4 10 6 4 1O 10 1 1O 10 1 187 OBSERVED (CM-1) 4717.730 4718.833 4718.833 4719.536 4719.536 4719.901 4720.273 4722.548 4723.133 4723.835 4724.839 4725.542 4725.795 4725.795 4726.494 4726.494 4726.745 4727.447 4731.782 4732.486 OBS'CALC (CM-1) -0.001 ”0.001 0.001 0.001 0.003 0.005 0.003 -0.003 0.005 0.003 -00001 “0.001 ‘0.005 -00005 0.007 '0.005 0.002 0.002 HEIGHT 0.04 0.04 0.04 0.10 0.10 0.01 0.01 0.00 0.40 0.20 1.00 0.10 0.40 0.40 0.20 0.20 0.00 0.01 0.20 0.10 ISO 78 80 80 78 77 76 80 80 78 80 78 80 80 78 78 80 78 80 78 IO APPENDIX D ASSIGNED TRANSITIONS OF 202, v AND 03 OF H S 1 2 UPPER J K- K+ 14 14 13 13 13 12 12 12 12 11 12 1O 12 10 12 7 7 11 1 11 11 4...) “A «Juan-41s“) c~4-1 \INOOOOpouobUIUOOI.mO'II‘OO'OknOJ-“OOCBOOVKP- b (7. (4150-3.(NJN'NJ‘bL‘U'IL-JN—‘A'4MbPkflUIf‘erdtdo«“WNLHNOO-‘LHWKNN-‘O‘VbNWN-‘JO—h ...wVVNo‘mug)...pwp-qwmoN-Amwbxl—stoo-0NCouo~ooaoNN00~OOdO© LOWER (... 7\ I 7< ... — a.) $‘U1 ..qu-oh—A-fi-b COCfiWWUJUJLNP A \nwmmuoom-qmmoomcxmooo01.110‘0‘000m boa-ac:bmwbmmwbb—amomewbtwo-4bammubawwooobwmqoomwN-nom—so J-J—DJHJ-)JHJ dO-bdNLNWbm c-h—I DJDOOINUJVO‘b—OOU‘bUIOOm‘CV—ANCFOMOOO‘OVOAOPJVO-"DC4461-5004“) 188 OBSERVED (CM-1) 2192.478 2204.404 2212.446 2216.121 2222.652 2227.115 2227.115 2229.744 2230.158 2230.300 2232.670 2235.777 2237.130 2237.196 2238.767 2238.939 2240.634 2241.008 2242.502 2242.811 2243.794 2244.254 2248.071 2250.027 2251.198 2252.137 2252.517 2252.517 2255.332 2257.764 2258.120 2258.549 2259.548 2260.588 2260.894 2261.569 2261.569 2263.641 2263.876 2265.047 2265.621 2267.342 2268.057 2268.384 2270.788 2271.031 2271.539 2271.539 2272.865 2275.160 CBS'CALC (CM-1) 0.018 0.015 0.009 0.008 0.010 -0000? '0.006 0.004 -0 .003 0.006 -0.001 0.007 -00001 -0000} 0.006 0.008 0.010 0.006 0.006 -0.009 0.006 0.015 0 .006 -0.006 0.005 0.004 0.000 0.002 ’0.004 0.001 0.005 0.009 -00003 0.003 0.005 0.005 0.003 -00001 0.004 0.006 0.006 0.002 0.003 0.003 0.004 0.001 3.001 0.000 0.006 HEIGHT 0.10 1.20 0.10 0.50 0.10 0.10 0.01 0.04 0.10 0.01 0.50 0.25 0.00 0.00 0.01 0.50 0.10 0.05 1.50 0.25 0.01 0.01 0.01 2.50 0.01 2.50 0.25 0.25 0.00 0.01 0.30 0.50 0.05 0.75 1.50 0.25 2.50 0.30 0.01 0.01 1.50 0.30 0.06 0.10 1.25 1.50 0.05 1.50 1.50 0.40 ISC 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 73 JL- 32 32 2 7 3. 32 32 32 32 32 32 7? a- '2? db 32 32 32 32 32 32 32 32 32 32 ‘) 1.. b 32 32 32 32 32 32 .u.’. ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 023 020 L. F~)#“»J‘OO'flwwwul4\-+Nmbl~RIwaOW-l LOWER FI;U1‘\]UJ(£@N©CUCO\JI\JO‘\JO33‘$ VN‘JJL‘OI‘ON1N‘J‘JU'10"QL‘iC‘DKNO‘O‘ml-‘CANO‘U‘NOQVIUI L. K I 7" 4. F'Cm1‘~ a Vt-\fl-‘UI-bo-bOI‘UuN-‘bO‘bON-J'ON‘N—iN—DOOO-NLNLAII‘JU‘IO-‘b-‘bNI‘Jmm-JWU‘IbCcard-9N“ NJwOONVP\I-‘O‘ONU'IIAUIV-‘O'Nwwwo~“(NH'OUI-AWUIUIO‘#NbNWNthhJWW—ibAl‘N 191 OBSERVED (CH-1) 2398.261 2398.861 2400.864 2401.806 2403.437 2403.785 2404.478 2405.005 2405.596 2405.917 2407.452 2409.761 2410.095 2410.744 2410.913 2412.486 2413.773 2414.199 2414.583 2415.225 2416.040 2416.758 2417.202 2418.259 2419.991 2420.168 2420.365 2421.328 2421.710 2422.062 2422.226 2422.569 2422.999 2423.631 2424.310 2425.306 2427.644 2427.967 2428.457 2429.002 2429.305 2429.506 2431.164 2431.924 2432.503 2433.644 2434.172 2434.536 2434.733 OBs-CALC (CM-1) 0.007 0.005 0.001 0.000 0.001 0.002 '0.006 '0.005 “0.003 -00002 0.006 '0.010 '0.001 0.000 '0.004 0.000 '0.001 “0.005 -0.002 '0.002 0.005 '0 .017 0.000 0.000 0.036 -00002 0.000 0.002 0.000 ‘0.006 0.002 “0.001 0.001 0.000 '0.002 0.011 0.000 0.000 ’0.005 '0.002 -0.002 '0.007 0.003 0.002 0.001 0.020 0.000 HEIGHT 0.25 0.25 0.25 0.25 0.25 0.01 0.25 1.25 1.25 0.05 0.01 .25 0.25 1.25 0.10 0.25 0.25 0.05 1.25 0.05 1.25 0.01 0.25 1.25 0.01 0.05 0.25 0.04 1.25 1.25 0.01 0.01 1.25 0.10 0.50 1.25 0.01 0.05 1.25 0.01 0.05 0.25 1.25 0.04 1.25 0.25 0.05 0.01 0.05 0.01 ID 020 020 020 023 020 020 020 020 020 020 020 023 020 020 020 023 020 020 020 023 020 020 020 023 020 020 020 023 023 020 020 020 020 020 020 020 020 020 020 020 020 ’ 020 020 023 020 023 020 020 023 020 A A AC. -.. .I UPPER J K- K+ 9 8 1 9 4 s 9 s s 3 3 1 s 3 3 9 0 9 9 z. 6 7 1 6 9 3 7 9 2 7 9 1 s z. z. 1 o 7 4 0 0 10 6 2 4 o 6 s 4 4 3 6 3 z. 4 3 1 s 6 8 2 7 3 a 011 6 3 3 o 9 2 1 a 4 s 4 2 7 2 s 7 3 s 9 1 3 - 112 110 3 9 2 9 z. a. 3 s r. 3 2 6 4 3 4 4 1 3 o 13 7 s 2 a 3 6 o 2 9 2 211 7 3 4 s 4 1 s s 1 s 5 0 4 114 2 s 6 -.O a.) A ..5 7... ~54 Cl0‘04>~§OkflC>O'VCDUHflUHown!)OtflihO‘OO‘CWhC‘NHOV)O ... a -‘4 LOWER L K I K + ‘flt‘bHA\nLdfiJC\OOK\HULN~3O£fl<3U1O‘OOOaHfl~anMf0050flv “(3;>;~U‘§.a-§h;osAHAINCDPULM—bhlc>OIQIU4NLN‘JGJ#deU-¢$‘thJUHflLN-§O\UICH¢IU[VFU*’hJCL§IN‘J 11 11 1O 10 9 3 5 3 2 1 6 7 q 2 1 6 4 L 4 3 1 ‘0LA-‘QIULHRJUWfl—AAHVTUUJO 192 OBSERVED (CM-1) 2436.408 2436.923 2437.898 2438.610 2438.783 2439.084 2441.248 2441.679 2443.353 2443.353 2443.782 2444.903 2445.089 2446.758 2446.944 2447.201 2448.101 2448.356 2449.866 2450.668 2451.225 2453.939 2454.186 2455.620 2456.376 2456.955 2457.294 2458.530 2458.834 2460.534 2461.370 2462.281 2464.268 2464.268 2464.579 2465.448 2467.237 2468.305 2468.644 2469.517 2469.607 2471.183 2472.150 2472.458 2472.557 2474.253 2475.003 2475.582 OBS-CALC (CM-1) 0.014 '0.004 0.012 '0.002 -00001 '0.001 0.002 '0.006 “0.001 0.002 0.064 0.003 -00002 0.038 0.001 0.002 -00002 0.008 -0 .006 0.009 0.002 0.020 ‘0.017 -00003 '0.002 -0.003 0.001 0.018 0.002 '0.006 -00006 0.000 0.004 “0.004 -0 .003 0.000 0.025 -0.010 “0.010 0.000 O .011 -0.004 ‘0.004 0.004 0.042 0.032 WEIGHT 0.01 0.01 0.05 0.01 0.25 1.25 0.10 0.25 0.25 0.25 1.25 1.25 0.01 0.25 0.25 0.05 1.25 0.05 0.10 0.05 1.25 0.25 1.25 0.01 0.01 0.25 1.25 1.25 1.25 0.05 1.25 0.40 0.01 0.25 0.00 0.01 0.25 1.25 0.25 0.25 0.25 0.04 0.10 0.10 0.25 0.20 0.10 1.29 1.25 0.00 ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 023 020 020 020 023 020 020 020 020 020 020 020 020 020 ’ 020 020 023 . 023 ..x .o ...)...1. \JI‘O-OSJNN I1 \ .... U] ......L 1ON0004W ...-uh VN(D\Jm-‘N‘OON‘JVOOOONO-V-JIJ-KJOONOOWCROéVO‘O ‘sJO‘~LN\flU|U Obflt/JNUIPWOPVVOU1“U|UIO‘MPGWxflLNML‘OONb‘Nknm-‘MNC‘WNFM‘NWUON-it‘8‘04 .6 an. f‘Jl‘r-C‘fi.JVLib-'OO-JLNO‘O [\Jb-‘COWPJWMO#NO#000WaNL4UNOO-OU1NU1-3NU1VO3"O‘O cub O 0~Vorwowcomaoaw~o~oomoouxomooawmmmooowOthbe—aflm Q. .4 ...—t OO-NN ...» a VW‘“¥‘00 LOWER K- K+ W-‘O‘NOJ‘UJUIMLNO‘OV‘J‘mt‘OmeMNL‘BJPWMkflHW-bbbNO—h-‘N-OLNJNl‘NN-bUJNLdDIN ..5-L Lqmwmaos‘wruoaaoNmmmeVb-avbbound-JoOommNN-hbbuNOb-aJ-‘NmboowOO 193 OBSERVED (CM-1) 2475.793 2475.793 2476.220 2478.458 2480.074 2481.454 2481.977 2484.183 2485.623 2486.506 2486.725 2487.080 2490.424 2491.804 2493.431 2494.941 2495.476 2496.705 2497.005 2497.775 2498.036 2500.539 2500.978 2501.807 2503.557 2505.953 2510.444 2515.856 2516.462 2516.704 2520.514 2520.712 2522.880 2525.354 2525.865 2526.396 2527.278 2528.515 2530.066 2530.446 2531.765 2533.923 2537.597 2538.863 2539.285 2547.439 2549.914 2550.844 2551.141 2552.081 OBS-CALC (CM-1) 0.015 0.014 .00005 0.008 0.002 0.058 0.001 “0.005 “0.007 -00002 0.014 '0.004 ‘0.001 ‘0.001 “0.007 0.016 “0.007 “0.007 '0.011 ‘0.008 “0.006 0.000 0.007 0.000 '0.001 0.004 0.007 0.003 ’0.004 '0.014 0.008 “0.002 ‘0.001 0.001 0.012 0.014 0.008 0.001 0.001 0.008 3.006 0.022 0.018 0.000 “0.004 0.004 ‘0.005 0.000 HEIGHT 0.00 0.10 0.10 0.40 1.25 0.01 1.25 0.01 0.05 1.25 1.25 1.00 0.05 0.01 0.25 0.06 0.25 0.25 0.05 0.05 0.25 0.25 1.25 0.25 0.05 1.25 0.25 0.01 0.01 1.25 0.01 1.25 0.25 0.05 0.25 0.01 0.05 1.25 1.25 1.25 0.10 0.05 0.01 0.25 0.01 0.25 0.25 1.25 0.00 0.05 ID 020 020 020 020 020 023 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 L. -jWU10030~NU1§be 1‘1J'JI‘J\.Nkrl..JL,-5‘-Nb PUIMOO‘ \JVfin‘O‘C‘OfflmmCflCDOOJOCV o~60604>3~wkn03r A1'~J1‘~.!1:44‘4\wilf‘JNL‘loPJ-‘AJV-JMNQNNWO—DNI‘UO404700-3~OI\)O-*-¢O(hl‘~n1JJI‘Q-IO‘fiflmmfl’ 00V! a)“C—OO‘UJO‘R"J¥‘I‘O*VI$‘NW?LQ-‘FJL'JNAJQNLNJ‘MVIJ‘O'NJUVOCX"UO\bO-WWKA4‘11NWOU1 O~NU1UJ¢44‘N-JLN4N-JUJJ‘V1U1CJ‘O"Q‘JOCOO‘UOOGW‘Q‘JV‘VV1'DVVO‘ LOWER g N I K + 0c 1.) w w w w o 43 on L4 0‘ 4* #2 1440‘ NLN-JNWWNUJ-éN-h—DNCJONde-i-‘N-‘O“DJ-#N-‘O-fi—JNQ-‘w-DNCdNfiC-‘NLNLNO‘b'VJ \l1‘0VJ-‘OWTUV—AOLNLNWO‘MUIbL-JbOMN-‘NQO~0bmb‘0kflVO-WNOONWNOOb‘Lan-‘O- 194 OBSERVED (CM‘1) 2555.737 2559.905 2561.076 2574.399 2576.391 2581.936 2582.254 2586.028 2597.946 2613.165 2248.071 2258.916 2268.791 2269.546 2277.781 2279.944 2286.501 2290.127 2295.271 2300.067 2309.739 2343.281 2346.547 2347.389 2369.561 2377.013 2385.506 2386.212 2390.798 2391.166 2394.832 2395.245 2395.736 2407.878 2411.944 2412.356 2419.479 2419.801 2420.763 2427.123 2430.241 2431.504 2439.400 2442.452 2445.723 2446.014 2448.934 2456.227 2458.230 OBS“CALC (CM-1) 0.003 -0.020 0.005 0.031 ‘0.008 0.007 '0.008 ‘0.002 “0.003 0.001 '0.009 0.010 0.004 “0.002 0.004 -00009 -00003 -0.007 0.005 -0 .009 -0.005 -0.006 '0.008 0.005 “0.007 0.007 “0.003 -00001 0.005 “0.001 0.011 '0.004 0.005 0.005 0.013 ‘0.003 -OIOOS 0.004 “0.003 0.001 ‘0.004 0.017 0.006 “0.002 0.002 -0.002 0.302 ‘0.002 '0.006 0.001 HEIGHT 0.10 0.01 0.01 0.05 0.01 1.25 0.10 0.25 0.25 0.05 0.01 0.00 0.05 0.01 0.10 0.01 0.01 0.01 0.10 0.01 0.25 0.01 0.01 0.10 0.00 0.01 0.05 0.05 0.01 0.01 0.02 0.01 0.05 0.01 0.01 0.25 0.01 0.10 0.01 0.25 0.00 0.01 0.01 0.05 0.25 0.01 0.04 0.10 0.10 0.02 180 32 32 27 J5 32 32 32 32 32 32 32 32 34 34 34 34 9 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 , J 34 34 7. J 34 34 34 ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 023 020 020 020 023 020 023 020 020 020 020 020 ‘— m7VC>OH7~OLG UPPER K- 14+ 'fl‘dowrknhum NC)O-¢N\IO ‘- \umnnunm4»s~ LOUER K- K+ OW)\AUWDQN£‘ 195 OBSERVED (CM-1) 2471.774 2477.729 2483.888 2498.356 2499.231 2527.764 2544.653 OBs-CALC (CM-1) 0.000 0.001 ‘0.002 0.009 0.000 0.013 wEIGHT 0.25 0.01 0.05 0.25 0.02 0.05 0.01 ISO 34 34 34 34 34 34 34 ID 020 020 020 020 020 020 020 14J-ALNK‘Q‘..HO~\I(7‘£‘0N1Uk.’1\1M-€‘O~l;lb‘00~00'- [\IUNI1UC‘C) b1N1‘r-aknm03 :-b-A~J;\\J‘J01\)rubb-bm0~0~ UPPER J K- K+ ..Nrgzuowmbabmtsam—aobmunnao0......N1-1N—ao-aommbr4-4NNooN;~.4m;~..wau1 ...) .24Nh:CArum—IdLNtNNWdfifikdfdtdi‘Jh)b4‘C’ t‘fib-JJW-ikflkanIl‘O‘OdWVd-i’)oQONO-J .... —b I‘del‘dl‘abtdo NMWC‘bbNNJ$‘-\JO’JL~1(AJ>4‘FJV‘IO 0WN9LMUTO~\IUJUJOMUJOVJ‘MNéMG‘J-JN LOVER J K- K+ T‘)Ud-*U!-¢$‘UJMOUIW“¥‘N-‘UTLNO‘O‘O—8~3NNNWP-IN-’N-¢MWU10h.'LNU~l—$-5WL~|O“MOJ>OO~ A a} CJO«JJ-JO~19“thNDJJNNNNdf‘JWHLNkN-J'WWWNOJ‘N’t‘b#‘J‘WU‘I—‘OO‘ONN-J-‘OOL’I—DN 196 OBSERVED (CM-1) 2476.516 2497.373 2508.068 2508.229 2509.660 2534.557 2540.007 2542.597 2546.255 2546.606 2550.338 2551.323 2556.626 2557.381 2560.551 2563.154 2565.872 2566.698 2568.063 2568.414 2570.603 2570.909 2573.671 2575.373 2578.036 2578.178 2578.344 2578.480 2578.739 2580.414 2580.710 2585.462 2586.249 2586.657 2588.869 2589.660 2590.046 2590.046 2590.341 2590.475 2591.143 2591.256 2592.543 2594.016 2597.629 2599.313 2599.641 2600.723 2602.831 2606.442 OBS’CALC (CH-1) 0.004 “0.005 0.005 0.003 -0 .001 0.002 '0.002 0.011 -0000? 0.006 0.006 -00003 -0.004 “0.004 ’0.009 ’0.005 0.000 0.008 0.001 -00001 0.001 0.003 0.001 -0.013 0.008 ‘0.002 0.007 0.002 -00002 0.004 0.000 0.003 0.001 0.002 0.007 0.005 ‘0.001 '0.007 0.000 '0.001 0.000 HEIGHT 0.25 0.10 0.04 1.25 0.01 0.01 0.01 1.25 0.05 0.25 0.01 0.01 0.01 0.01 1.25 0.10 0.01 0.05 0.10 0.01 0.25 1.25 0.05 0.25 0.01 0.01 0.05 0.01 0.05 1.25 1.25 0.05 0.25 1.25 1.25 0.01 0.10 0.10 0.01 0.25 0.01 0.01 1.25 0.01 0.25 0.05 0.25 0.10 1.25 0.05 ID 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 103 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 8 0144'CDNNertNLNJ‘mm05001'xJOONt-IO~\lI‘RJUJO‘OI‘OkmOOuJUIhJ‘Jlu—JINO‘ONbflo‘ldoob-NN-Aa UPPER 11.. 7‘ I K + 14.41:»bwmmao-aumbmmooamowwoamoomobmwwwNm-aObo-akmmwowwN—‘o beUIbb-i'S-‘LNLNLNLAUWI‘WI‘v'NIUIU-JOPJN‘NNd-I‘UOdw~bdNJO-l-¥N(N~.Ol\lv‘-§NdoOil—‘3 LOVER G- 75 I 7‘ + \IOO-JUJO‘NJ-‘dL/QO‘CFC)bCEUOUIU‘NVION00N4‘N0‘w003‘INN-3-4 .... owvtaxru—smruanxnuwo~oo NNk'ILNN—i8‘CAOI‘J-ALN-PNUIUIO-‘L'IO‘N-‘Ob‘fl-‘MWJ‘O'NNé’OWUMOUbb-‘MNN-écd LII-JO-UIU‘OU‘INN“4““9U!“UIb-‘WN-‘W-‘WWNW—DNhNk’UlU-JONUI‘PN-‘DJNNWI‘J-‘d-‘O 197 OBSERVED (CM-1) 2608.582 2619.753 2620.820 2622.859 2624.086 2624.864 2625.168 2625.432 2625.666 2625.975 2626.794 2627.756 2627.911 2628.121 2629.268 2629.861 2630.427 2631.001 2631.524 2631.665 2632.099 2632.370 2633.876 2634.148 2635.285 2635.936 2636.662 2636.769 2637.292 2637.424 2637.767 2637.884 2638.387 2639.317 2639.432 2640.857 2641.721 2643.181 2643.993 2644.880 2646.203 2646.468 2646.799 2648.079 2649.352 2650.120 2650.729 2651.873 2652.937 2653.136 OBS‘CALC (CM-1) -0.003 0.000 0.003 0.001 0.000 0.006 0.005 '0.001 -0 .018 0.003 0.008 ”0.002 0.001 '0.001 0.000 -0.00Z 0.006 0.005 0.003 '0.006 -0.001 0.002 ‘0.004 -03011 “0.002 “0.003 “0.002 -0 .002 -00003 ‘0.014 0.006 0.003 -0000} -0.003 -0.001 ’0.005 ‘0.002 '0.014 “0.001 ‘0.001 0.002 0.004 -0.009 0.008 '0.003 HEIGHT 1.25 1.25 1 .25 1.25 1.25 0.25 1.25 1.25 0.05 1.25 1.25 0.25 1.25 1.25 1.25 0.25 1.25 1.25 0.25 0.01 0.01 1.25 0.01 1.25 0.01 0.25 0.10 0.05 0.25 0.01 0.01 0.01 1.25 0.05 0.01 0.25 0.10 1.25 1.25 1.25 0.25 0.25 1.25 1.25 1.25 0.25 1.25 0.05 .25 1.25 ISO ID 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1C3 UPPER B 7‘ I 7‘ + A .... ..5 a.) ..55.) «Aw-'0 00.;~._.r_).o.-\Joo(‘ooomL-10~—6V\J(XIoomutbO‘OmC)OMVIOOVVJUJbOmeOOVdmmmmb‘o .3 JL‘JJ‘NLQPJ—S-‘O(NNLNNPJLAJO-oéhJ—ONUUJPJWW“(NNvd-JOJNbWNIflNO-‘h’mwo.kaNN-os.§ ()wOObvooowuzoow-Jsmccxl \JVNKNNNNVO"~1~J&\4~O~O~O~OM-¢N0~wmmmomommmobu‘. 4.. LDHER J K- K+ A «b -‘4 ..b OmuJ—¢V”1U.0~V‘\IOOJ-‘flJUl—o.o~o\mMbPantoOIVOObmeIVV-J'NWOLNbO‘O‘OV-AUODJN-ALN‘O A #4 A ..a Ol‘J-301AL4U1VV‘O‘ONN3‘OO‘O-Ot-CCN-l-vJ-OOOOAOOOOWUJMVININODO—‘NDJfiO‘O‘NO‘NO‘O-fi-‘WO‘ 03‘w—‘NINNO—Oiv—lN-fiu‘N-‘O‘OMFN—DNIULQNJNOdOJWNWNJ-JC-‘b-AMWNQ-‘OU’ -.. —-h 198 OBSERVED (CM-1) 2654.962 2655.458 2656.871 2658.212 2658.464 2658.593 2658.811 2661.414 2662.776 2663.899 2663.899 2664.114 2665.566 2666.355 2666.952 2669.561 2669.992 2672.431 2672.431 2672.632 2672.632 2673.104 2673.421 2673.979 2673.979 2675.063 2677.574 2677.574 2678.354 2678.680 2680.246 2680.798 2680.798 2680.998 2680.998 2681.377 26 1.623 26 1.921 2684.810 2685.373 2685.373 2689.218 2689.218 2689.801 2690.157 2691.398 2692.985 2693.283 2694.669 2697.040 OBS-CALC (CM-1) 0.006 -00015 0.002 0.001 0.007 0.001 0.000 0.010 0.001 -00005 0.001 0.002 -0 .003 0.006 0.003 0.011 0.005 '0.003 ‘0.003 '0.003 0.004 '0.001 0.000 -0.003 “0.002 0.010 0.002 -0.004 ‘0.004 ‘0.004 -0 .004 '0.007 -0 .008 -0 .005 -0.004 -0.003 '0.003 -00003 0.001 “0.001 0.001 -0.009 “0.001 0.003 -0 .008 HEIGHT 0.25 0.05 1.25 0.25 0.01 0.05 0.01 1.25 0.10 0.25 0.05 1.25 1.25 0.05 1.25 0.05 0.01 0.01 0.05 0.05 0.25 0.05 1.25 0.05 .25 1.25 0.01 0.05 0.25 0.25 1.25 0.05 0.25 0.05 0.25 0.05 0.25 0.25 0.25 0.05 0.25 0.25 1.25 1.25 1.25 1.25 0.25 1.25 1.25 0.01 ID 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 103 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 103 100 100 100 100 100 100 (— ... ...) ONVVDOOO~OO .3 n. da‘ uvn~q~quwu~oc>o 2.54.... 00d ... No.m00~0m .3 ..5 3...; )O A 4.3 . ~O~O~OQO~UAO~WNU~I~A JOOL -& UPPER 7‘ I K ... UNA—6.6mm»bmogNOUuNoL/dtflbwt’JPv-a-fimwabN—bomxnbdeLJN-‘Odbwwmmmo«N —A —D—I—. 4.4 A ~2‘)N£‘U14\U1*\J«IO‘O-AJ‘JWNUJOO‘CU‘CUCDNNMU‘IV-‘O‘OéfJ-flbwo‘fiOJOOOWOKAW-aV‘O‘OO .1.“ G- .8 -I «a. buNkA-ODOCOO‘OWWOU'I‘JHNVO‘OOOOO<)O‘UlflfiNb‘O‘OOJ‘POO‘VO‘ql‘O‘O-OmNO‘OWNOUUIO cub ...-3.3 A LOWER 7‘ I 7‘ + I‘QNNOJ-‘O\HLNJ‘UILle-‘d—‘NS‘WbNWNOPNPWMaNdb-FMWNJ‘flO—JOUNNWN-‘flo-fl «.3 A .4 N04046‘0-1bOPJ-aooowomthmm-JVO—A—bt~bONOr'OooaowNmuJVoo.aN-s;~¢.mo~cumo d 4.3 199 OBSERVED (CM-1) 2697.040 2697.286 2697.286 2697.853 2698.040 2698.594 2698.870 2700.418 2704.589 2704.915 2705.198 2705.198 2705.752 2706.232 2706.599 2706.741 2709.739 2710.248 2711.536 2712.956 2713.506 2713.506 2713.854 2714.294 2715.079 2716.009 2717.969 2720.554 2721.100 2721.856 2721.856 2722.883 2723.094 2724.654 2725.923 2728.003 2728.524 2728.728 2728.975 2729.260 2729.668 2729.749 2730.335 2730.725 2733.123 2733.353 2735.287 2735.802 2736.514 2736.721 OBs-CALC (CM-1) “0.008 -00001 ’0.001 “0.004 0.000 -0 .015 -00002 ’0.011 -00010 -00002 '0.002 -0.005 0.005 -00014 0.002 -00003 -00001 -0.003 0.002 O .002 0.001 0.002 0.002 0.000 -00001 '0.008 0.004 -0.001 “0.003 0.003 0.000 ‘0.004 -0000} “0.006 ‘0.009 0.002 '0.006 O .002 -00002 0.005 '0.001 0.001 -00009 “0.010 -C.OO4 3.004 WEIGHT 0.05 0.25 1.25 0.25 0.05 0.05 1.25 0.05 0.25 0.25 0.25 1.25 0.01 1.25 0.05 0.05 1.25 1.25 1.25 0.25 0.25 1.25 1.25 1.25 1.25 1.25 1.25 0.25 0.25 0.25 1.25 1.25 1.25 1.25 0.25 1.25 1.25 1.25 1.25 1.25 0.10 0.05 0.25 1.25 0.01 1.25 1.25 1.25 1.25 1.25 ISO 32 ID 100 100 100 100 100 100 100 100 100 100 100 100 103 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 103 100 100 103 103 100 "J‘O‘OV‘JO‘VO‘ LNNWO‘knbt‘w-QUIO‘UIWOCUIJ-QOJ‘C‘JN001AU1WMWOMJJCINVO‘hmt‘tfiNNOO‘t‘Nmt‘8‘00 ‘da -54.; doumwouommom 4...... 045000 --b t~N.4iJuHNLN:~b<»h)O J 10 .3 O\ntHOVDOHV‘QGWNC3130VO‘JOCD‘WV‘QITO(f9‘0 Utt‘J-‘bNWJ‘LflU’INO‘bmWJ‘mO‘vL‘mO‘MWWObombO‘ONVVmo—DOb-‘NW‘O‘O—IOONU‘MN-J N-ONt‘O“JMONdN-I-‘OOh—JUJNMONbudwwaNN-bNN-bbNAMOU‘U‘OdOVLMI‘me 201 OBSERVED (CM-1) 2784.655 2786.043 2792.163 2793.411 2794.925 2795.464 2795.808 2798.314 2798.314 2798.610 2800.480 2811.543 2811.697 2814.254 2823.111 2407.120 2416.860 2432.890 2433.457 2452.750 2454.694 2457.907 2461.697 2467.620 2472.330 2476.516 2478.343 2479.336 2480.788 2481.331 2484.308 2490.557 2493.147 2497.255 2497.373 2501.326 2501.643 2503.201 2503.671 2511.105 2512.362 2512.930 2516.292 2519.423 2522.571 2522.977 2523.577 2525.729 2527.635 2531.296 OBS'CALC (CM-1) -00006 0.024 -0.013 -00014 0.060 -0 .003 -0 .008 0.020 -00006 “0.004 0.005 '0.005 0.000 -0.004 -0 .018 0.006 '0.005 '0.010 0.006 -00005 0.004 0.000 '0.005 0.007 -0.003 0.001 “0.011 -0 .001 '0.006 '0.003 -0 .010 -00008 '0.001 0.002 ‘0.002 0.002 -0.005 '0.012 0.013 '0.003 0.011 '0.005 0.003 0.011 -0.002 G .003 0.005 0.004 HEIGHT 0.01 0.05 0.05 0.01 0.05 0.05 0.05 0.01 0.05 0.01 0.25 0.01 0.05 1.20 0.01 0.10 0.05 0.25 0.25 0.01 0.05 0.05 1.25 0.25 0.05 0.25 0.01 0.05 0.25 0.25 0.05 0.05 0.25 0.01 0.10 0.01 0.01 0.05 0.25 0.05 0.00 0.01 0.01 0.25 1.25 0.01 0.00 0.01 0.05 0.05 ID 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 C.- ‘xlOdL‘J-‘UI-f‘lkn4‘0 :‘JS‘KN’LBUlt‘UJUJO‘V‘I‘ I‘WVIO‘O‘O‘N‘NI'}m'.N$“-NN\I-I‘N‘Obb¥‘bJ-‘U'IML-JKAQ‘JI UPPER K- K+ t‘t‘NJkabNb—AWNJ‘WNJOUl-k 3OaANFJdNNOI‘JW—bf‘J-AJNOLNUJNJ‘UJJ‘UI'JNbNLN 4“£‘~UJ‘.NKNUIL~JvaN-IAIUWINWLQWRJJ‘P‘3‘4‘U1-5‘UIUIU1BJU‘OJMJJ‘JWNNNN-fi-‘OWU—DNFN L. “1008“bmo"JULPO-NJ-‘LdO‘UIJ‘tNMVVb-I‘UIWO-O‘O~\JJ‘O‘GJJ‘UIPLNVDM‘OMWWWMO‘O‘;‘O~\IOI LOWER n I x + [\18‘0JJNLQNNJ‘JUN8‘WNANUJdeu-‘I‘NUJbNPJ-I‘MJNUJ-‘OhILNWN6‘LNJ-‘WNI‘3‘IVLN WUIAC‘b5"3‘3‘WWWNNdI‘JNNNNWMlNLJWbWbbfilflWMNbNOOP—‘O‘WWNN-‘I‘bowmw 202 OBSERVED (CM-1) 2532.745 2533.463 2535.556 2537.822 2543.666 2544.073 2544.502 2545.868 2549.490 2553.420 2555.098 2558.004 2558.646 2660.609 2561.485 2561.630 564.293 2564.402 2567.756 2568.885 2572.043 2574.871 2579.596 2581.180 2581.409 2589.568 2582.541 2591.468 2592.797 2593.078 2593.272 2594.147 2602.575 2603.951 2604.452 2605.478 2606.811 2615.932 2635.634 2640.728 2641.116 2648.353 2651.583 2656.045 2657.327 2659.004 2660.446 2660.609 2661.086 2665.033 OBS-CALC (CM-1) 0.001 0.008 0.005 -0.001 “-0.002 ‘0.002 -0 .003 '0.003 0.015 -00002 0.001 -0.001 0.009 '0.008 0.042 0.007 0.004 -00005 ‘0.001 0.005 0.011 -00002 0.010 0.006 0 000‘ 0.002 '0.013 ’0.002 -0 .005 .00005 ’0.006 0.019 -0 .019 -0.001 '0.005 “0.006 0.009 '0.009 0.012 0.003 0.005 0.008 -0.006 -00004 ‘0.001 ”0.008 -0 .022 -0000} HEIGHT 0.05 0.05 o .25 0.01 0.01 0.05 1.25 1.25 0.25 1.25 0.01 0.00 0.25 0.01 0.00 0.05 0.01 0.01 0.10 0.05 0.25 0.01 0.01 1.25 0.01 0.01 0.25 0.05 .25 0.01 0.05 0.05 0.05 0.25 0.01 0.25 0.05 1.25 1.25 0.01 0.05 0.25 0.01 0.25 0.01 0.25 0.25 0.05 0.01 1.25 ISO 32 32 32 32 32 32 32 32 32 32 32 32 n) ‘- 32 32 32 32 32 32 32 32 32 32 32 32 32 32 a, I. ‘3 1‘. 32 32 ‘5 L 32 32 32 32 32 32 32 32 32 32 32 3 L 32 32 32 32 32 ID 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 ‘— (XJOCCK)U(D-\J\JLD'\IVVC)OO ~00~Q~moommmVV uOOObVO0006001s11m~0bb~xjooms~xjmmo~o UPPER 7‘ I K ... bwonr.bwwmmpowasmoovuObmwmommwwwm-aovwmbkwwwwgwmwwwmwm UiUICr 49mmk/JWLNNWINN1NCJNWNNQIUN1‘1MW-AUJ-fimC(JLNNJ‘JNLNV-‘NO‘DONU1ON3‘b monomwo‘o-Naocrewmoowuarwrbbooooommuococombmbbbowu-qoooom-uumoo C... LOWER 75 \nOOr'J-hOlNLdN-bV-ALN03‘PP—hoNw—émommmw-‘w-‘OPWth‘wdwN-A-‘NLd-l-fih'dh) I 7‘ + : br~01~amo~0~t~s~bwmt~wmawt Aumtud-ANNONNpmmm-auodNOoo-wa-v-aou-Amm 203 OBSERVED (CM-1) 2667.328 2667.455 2668.129 2672.431 2675.934 2684.145 2684.276 2684.276 2687.091 2689.394 2692.220 2692.483 2695.255 2699.260 2704.364 2705.598 2706.599 2711.144 2712.486 2712.486 2713.127 2714.548 2716.710 2717.307 2720.820 2726.041 2727.144 2734.088 2741.113 2745.229 2746.507 2746.957 2755.039 2757.140 2760.408 2761.469 2765.288 2770.234 2774.893 2784.353 2784.985 2788.764 2799.285 2810.334 2810.334 2813.493 2815.417 2533.923 2577.589 2579.849 OBS‘CALC (CM-1) '0.002 0.004 0.000 0.006 0.012 -0 .004 0.008 0.005 0.009 -00004 0.002 0.003 0.000 0.003 0.009 0.009 -0.012 0.002 -0000? “0.007 0.000 -00006 0.001 0.009 0.012 -0 .005 0.004 0.001 “0.006 0.019 0.007 0.004 '0.005 0.004 ‘0.024 '0.019 0.030 0.003 -00011 0.003 0.009 ‘0.020 0.000 0.023 0.005 ‘0.019 0.062 “0.058 -0.015 0.010 HEIGHT 0.25 0.01 1.25 0.01 0.01 0.05 0.25 0.05 0.25 0.05 1.25 1.25 0.05 1.25 0.05 0.01 0.05 0.05 0.05 0.25 0.01 0.01 0.25 1.25 0.01 0.05 1.25 1.25 0.01 0.01 0.05 1.25 0.01 1.25 0.05 0.10 0.01 0.05 0.10 0.00 0.01 0.01 1.25 0.01 0.05 0.10 0.00 0.00 0.00 0.01 188 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 a) ‘- 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 ID 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 LOWER J K- K+ 9 0 9 7 6 2 7 7 O 7 4 3 204 OBSERVED (CM-1) 2720.554 2740.032 2741.512 2741.747 OBS-CALC (CH-1) 0.025 -0.020 -0 .038 -0000? HEIGHT 0.00 0.00 0.25 0.05 158 32 32 32 32 ID 001 001 001 001 APPENDIX E ASSIGNED TRANSITIONS OF 202, 0], AND 03 0F H25e J UPPER K- K+ NVUNmOA-fi-J-‘LNLHO‘O‘I‘N—J-4*‘-JU1‘\I‘\I1D¢3OOOININNNhJN‘Dm—t-IJV—bfiLDOCNN-$400 1O A-JdJ-‘NOOOO#‘J-‘NVUIWNNNNO‘WCOJ—A—hd—fiNN—i-bub-“O‘OOOOCDNNmi—i—D-fi-N‘OO'44 12 ..5 N ..5 h) N «ha-*NNNRJN—b-fi ...; A—JI 205 OBSERVED (CM-1) 1918.253 1918.549 1928.051 1928.340 1934.796 1935.083 1937.698 1937.995 1938.309 1943.278 1943.566 1943.346 1947.189 1947.487 1947.803 1948.953 1949.251 1951.611 1951.911 1952.079 1952.235 1954.565 1954.869 1956.218 1956.521 1956.822 1956.980 1957.145 1958.496 1958.775 1959.211 1959.810 1960.111 1960.283 1960.438 1961.713 1961.826 1961.991 1962.247 1962.361 1962.678 1965.398 1965.694 1966.003 1966.160 1966.273 1966.889 1967.566 1967.862 1968.173 OBS'CALC (CM-1) “0.002 0.003 -0.003 ‘0.009 0.010 ‘0.002 -D.002 -00003 ‘0.005 0.014 0.000 0.004 “0.001 '0.005 -0.007 0.014 0.017 0.005 0.001 0.010 0.003 '0.022 '0.025 ‘0.015 -0.001 -0.005 “0.004 -0000“ '0.002 -0.005 0.004 0.010 0.001 -0.017 0.005 0.006 -0.005 0.000 0.000 '0.003 “0.010 '0.006 ‘0.001 0.001 0.002 HEIGHT 0.05 0.05 0.05 0.01 0.05 0.01 0.25 0.25 0.05 0.05 0.05 0.05 0.25 0.01 0.01 0.05 0.01 1.25 0.05 0.01 0.01 0.01 0.01 0.01 1.25 1.25 0.01 0.01 0.25 0.25 0.10 1.25 0.05 0.05 0.01 0.01 0.01 0.00 0.05 0.05 0.01 0.25 1.25 0.05 0.05 0.01 0.01 0.01 1.25 0.05 80 78 80 78 80 78 80 78 76 80 78 80 80 78 76 80 78 80 78 77 76 80 78 82 80 78 77 76 80 78 80 8O 78 77 76 80 80 80 78 80 78 82 80 78 77 8O 80 q (- 80 78 ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 qwmmbb p.b-xpnwxjmm..hm'bmm-q-xjm-qmtnanxnb1700000\J1'0~O~O~O~O~O~O~O‘O‘O~O~O~O‘JO\J 'J'JmU‘F-I‘bkl'lbbWJ-‘(db‘flid “Jim/8‘4‘8‘JFUIUIMLNUIKAbk}!AN-aN-JOOOIAJOINO'.AOMLN1.NLM ”1UINNnb-A—A—515-‘bfi-JUNNO‘D‘mfifiwm‘fiwmkDOQNbeJ’OVMV‘DO‘OOQ‘Ofb‘001NFJOO1n-‘Xi 11 H. 11 1O 10 10 10 10 1O 1O ‘0 10 1O 1O 1O {1.0-"0\jN\H\nU'IU10)-7~mm0\~0‘4\050‘0‘Om~D~OOO~OO‘O~O-U1‘OO LOuER J K- K+ {MLN4‘4‘\flU‘IwMDUtINPUINmNI‘QNNAbWUJUILNO‘0‘018‘3‘1-‘U10‘NLNNLNN—Bd-‘P—bb-5DWONNN C‘.. nr‘rwwoooommwmruumVN-sjwbbobov-s-A—a-smmmoomcmOOOONo-uowbwoo‘o 206 OBSERVED (CM-1) 1968.723 1969.037 1969.366 1971.412 1973.034 1974.235 1974.409 1974.557 1974.703 1974.876 1975.014 1975.177 1975.338 1975.471 1975.588 1975.770 1975.897 1976.078 1976.163 1976.244 1976.569 1976.888 1978.543 1978.762 1979.028 1979.308 1979.931 1980.188 1980.255 1980.799 1981.498 1981.997 1982.296 1982.612 1982.768 1982.832 1982.944 1985.329 1985.394 1985.489 1985.617 1985.708 1986.612 1986.912 1987.231 1987.394 1987.509 1987.858 1988.539 1988.839 OBS'CALC (CM-1) ‘0.009 '0.008 ‘0.006 0.003 “0.009 0.000 '0.001 “0.001 ‘0.002 ‘0.001 '0.006 0.001 '0.005 0.005 '0.001 -0.010 ‘0.034 '0.001 0.002 ”0.001 '0.001 “0.004 -0.014 ‘0.005 -0 .005 '0.008 -O.D10 '0.003 '0.003 -00003 ‘0.011 '0.013 '0.003 -00005 ‘0.004 -0.010 0.003 '0.004 0.003 0.000 ‘0.002 “0.005 “0.002 -0.002 ‘0.003 ‘0.004 HEIGHT 1.25 0.25 0.01 0.25 0.01 0.25 0.25 0.05 1.25 0.01 1.25 0.05 0.05 0.25 0.25 0.25 0.25 0.00 0.00 0.25 0.05 0.05 0.01 1.25 0.10 0.01 0.01 0.01 0.05 0.05 0.25 1.25 1.25 0.05 0.05 0.25 0.05 0.05 0.05 0.25 0.25 0.05 1.25 0.25 0.05 0.01 0.25 0.25 1.25 ISO 80 78 76 80 8O 80 82 78 80 76 78 77 82 80 80 78 78 80 80 80 80 82 80 78 8O 80 78 76 80 82 80 78 77 80 76 80 80 8O 78 78 82 80 78 77 80 78 82 9"} ID 020 0.30 020 026 626 620 020 020 026 626 020 026 626 026 020 620 626 020 020 020 026 020 020 020 626 620 620 020 026 020 026 020 020 020 026 023 626 620 020 020 023 620 026 626 020 020 020 329 020 ‘50. iv anxru-JV-0\Hm~do-vn~b~00~b~00-u\rfl L I."‘ \nmmmp01011.11»:mmmo~mo~o~oo~o~o~o~oOnwanmoo- UPPER 7‘ I K 4. ...)..sakungutuummkuarJaa...gNrerNTULNb-L"JJUJWUJOOOOO-abuibw—bt‘8"hbatflf‘d'dN pabbuoomoowwrmwo-o(has'.n\nvvu1\.n~‘-t~.‘mbbNNNVVMNOHOMOWOOWOO‘N‘0WV' O‘OO‘O\nb$‘4\t‘$‘OO‘“~JOV \J‘JNV‘JVNNUIU‘O \rqoxocoma;oooocowoa-vmwmoonQo-xlmmoo 'vNNrQ‘qbkphbun.OU(y(-)QoAdug—bbngmyvppAa-AA-ANUJIVLNNUJUINLNU'II‘JJ‘UJUJUJ anmxnmagg-...g~b-jpVNNVooooonuuwmmwmmmmoomflb-ubxlh-a-qbdw>000 207 OBSERVED (CH-1) 1989.158 1989.322 1989.492 1990.487 1990.807 1990.930 1991.024 1991.112 1991.214 1991.344 1991.427 1991.517 1991.590 1991.679 1991.763 1991.926 1992.226 1992.544 1992.708 1992.877 1994.370 1994.652 1995.717 1995.887 1997.092 1997.409 1998.132 1998.238 1998.544 1998.862 1999.026 1999.201 200004337 2000.737 2001.053 2001.221 2001.328 2001.396 2001.510 2001.645 2003.586 2003.871 2004.169 2004.330 2004.478 2005.314 2005.500 2005.805 2006.127 2006.29? CBS‘CALC (CM-1) “0.002 -0000} -00002 0.001 0.003 '0.002 0.000 -0.003 ’0.004 0.002 ‘0.004 ‘0.007 0.000 ‘0.001 -0.002 -0.001 '0.002 “0.005 “0.005 -0.00S -0.005 0.004 -0 .015 -0.003 ‘0.001 0.001 -00001 '0.003 0.002 '0.001 0.0C0 “0.005 ‘0.003 0.000 0.002 ‘0.001 '0.002 0.000 0.002 0.000 0.005 “0.007 ‘0.001 0.003 0.002 0.302 0.005 HEIGHT 0.25 0.05 0.05 0.05 0.01 0.25 0.10 0.25 0.01 0.05 0.25 0.05 0.05 0.05 0.25 0.01 0.25 1.25 1.25 1.25 0.05 0.25 0.05 0.05 0.25 0.05 0.01 0.10 1.25 0.25 0.25 0.25 0.25 1.25 0.25 0.05 0.05 0.01 0.25 0.10 0.01 1.25 1.25 0.25 0.25 0.25 0.05 0.05 0.05 0.05 180 78 77 76 8O 82 80 80 80 78 78 78 77 77 76 76 82 80 78 77 76 82 50 77 76 80 78 80 82 80 78 77 76 82 80 73 77 80 76 8O 78 82 80 78 77 76 80 83 80 78 -,-9 1 ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 023 023 (— ”0101.11,; a m dun m Hummus ~14 1,»: MN 0‘ r) b b 0‘ mm (N O- 0 041-11.» '01er)an Nmmmmuub b 4‘ b b 4‘ U1 ......ooo—sc.aoo-zhan)N—s-b.awm-¢N—>JamwwnamammwwmmrvmfliooooOL-ILNLNLMTON-A __‘_._.(J..(}.a..3-;.).A—a.~b.aAmmMWMNNNNNN§ -041.404144LN-‘k’1WO‘U~NNIU1\J1U(DC) 4‘ (UPI-‘8‘ LOWER g 7‘ I 7‘ '0' l-ILNI‘4‘J.‘NI-‘I‘JU'ILD'Q‘JC‘bbbl‘LNL-Jknkukflkl‘lkflt‘J‘JFO‘O‘J‘bPL-JJ‘LdJ-‘UJLNONO‘O‘O‘O‘kflmmmkflmo I'QN—‘O-th~JN—4—8NPJ—a—IKJK‘hJL'JWOLNOOONN'JNthNWU1WWMkr-‘L4Wd—fiafid-‘NNNNWU‘N rumbbboborbmmwwwwwaaw-‘mmmmNmmmmmmoNoNOoooooowwwwtumm 208 OBSERVED (CM-1) 2006.466 2006.883 2007.205 2007.644 2007.955 2008.285 2008.448 2008.768 2009.076 2009.398 2009.564 2009.735 2010.825 2011.131 2011.299 2011.460 2011.594 2011.801 2011.900 2012.057 2012.229 2015.057 2015.378 2015.718 2016.073 2016.245 2016.932 2017.239 2017.564 2017.740 2017.904 2018.060 2018.241 2019.312 2019.623 2020.110 2020.488 2020.646 2021.436 2021.764 2023.644 2023.974 2024.755 2024.917 2025.080 2025.229 2025.553 2025.397 1 2026.001 2026.171 DBS’CALC (CM-1) 0.002 '0.003 0.005 0.004 0.001 0 .001 -0 .007 ’0.001 0.000 0.000 -00002 -0000} 0.005 0.000 ‘0.003 0.002 0.000 0.000 ’0.001 “0.005 0.003 '0.004 “0.007 -0000} 0.000 “0.010 0.000 ‘0.002 ’0.012 ‘0.004 ‘0.003 0.017 “0.005 0.006 ‘0.010 0.002 0.003 '0.002 0.301 ‘0.001 0.003 -0.005 0.004 0.000 0.000 0.002 0.006 HEIGHT 0.25 0.05 0.01 0.25 0.25 0.25 0.05 1.25 1.25 1 .25 1.25 1.25 0.05 1.25 0.05 1.25 0.05 0.05 0.25 0.05 0.05 0.05 0.01 0.25 0.05 0.05 1.25 1.25 1.25 0.00 1.25 0.05 0.01 0.25 0.25 0.25 0.01 0.05 0.25 0.01 0.01 0.05 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.01 ISO 76 80 78 82 80 78 77 82 80 77 76 82 80 82 78 80 76 73 77 76 80 73 80 78 77 82 78 8O 76 78 77 82 80 77 77 76 80 73 80 78 80 ' L. 78 80 78 76 78 77 ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 €- ‘- -A;J‘O\n\n[\JV")L‘OI-‘O‘d—l‘é'". ‘L‘JU‘U’IUIUWU‘U‘NI‘J!\)|\)IJI‘JNI\’IU~3‘5bO‘OWU-WNFJIUIQNI‘J t.~anUl~0Un\n!\JVN-“~ObO-IQNNruR'U1m\I1mm\n\J1\wawuxtuwtuqurumbpooooooogngwugggu; bh)WNLflUJW-¢L‘P\J\HUJWFOOAfldNNFJNU‘NWkUOAOJO‘OaNNNNkMLfl’WJ‘A-‘dd—‘hl b (N! ‘N :. UJ«bl‘i..§b1UfUO1N-31’JNNL‘J-‘u-IOC)O—i-J«9JIU-‘N’XI-O’DJ0-30‘044-54NNL‘JRI1NNI‘JNNNd Nmrummwmmbl‘UUJOLNb-h-aJambwbPbbbbquNNNNNNI-uoO-b-bmmomov-b-i4.4-*4 AVA-Jabruw—bw-JNONUHJNNmrumwuduhfllALflbwwwtuwwxqaug—awuqbbmmeNNNNN 209 OBSERVED (CM'1) 2026.327 2027.331 2027.649 2027.988 2028.168 2028.346 2028.555 2028.764 2028.878 2029.074 2029.402 2031.742 2032.057 2032.147 2032.458 2033.004 2033.076 2033.330 2033.405 2033.493 2033.571 2033.676 2033.747 2035.648 2036.536 2036.628 2036.862 2036.963 2037.137 2037.298 2040.207 2040.372 2040.701 2040.876 2041.007 2041.339 2041.776 2043.637 2043.738 2043.960 2047.697 2048.354 2048.965 2049.065 2049.416 2050.040 2051.705 2049.717 2052.031 2052.418 OBs-CALC (CM-1) -00008 0.005 -0 .001 '0.003 0.001 -0.002 0.006 3.008 0.005 0.004 0.003 0.005 ‘0.006 0.000 0.001 0.002 '0.002 0.000 '0.010 “0.005 '0.002 “0.005 “0.001 0.008 0.003 0.002 0.004 0.005 -0.011 '0 .007 -00003 -0.004 0.000 0.002 '0.002 -00001 0.002 0.000 0.004 0.005 ‘0.001 0.022 0.002 0.000 -00001 -0.001 HEIGHT 0.01 0.10 1.25 1.25 0.05 0.10 0.25 0.01 0.05 0.01 0.01 0.01 0.01 0.10 0.25 0.01 0.25 0.01 0.25 0.01 0.10 0.01 0.25 0.01 0.01 1.25 0.05 0.25 0.05 0.01 0.05 0.05 0.10 0.05 0.01 0.10 0.25 0.25 0.25 0.25 0.25 0.05 0.25 1.25 0.25 0.01 0.10 0.25 1.25 0.00 ID 020 020 023 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020. 020 020 020 020 020 020 C... “‘1 N IJ N r») n) O. —* a a ...x fr \n \r. cr- UT 0'1"; N b b \J p kn \fl U1 0 m 0s U10 w w Id (,5 4:4 1".) “J N _. .. -4 .. b .4- u 00 0. b1). U1Unh)Nh)l‘Im-’—D-5—i$‘¥‘$‘0*~3‘“(“b41404DWWINUU‘LMU‘LMMNNR’NNJ-J—DOOOCJNCthknl-‘b-l“ --~C)k.)OONM-Jkr.'4ALdeé-hLfldFUNfQIVNNNIU-‘oJ-Jd'4-’-¢-3-‘~3-*°4N-3LHJ>UINUJ )0 C.) 2.) O l u C... .64-...ommoomm-qwbbfibmmmomowoawtdmwwmwm-h-J-J—b«baquOOJ-‘w \J M Ix: N ru r0 (:9 LOWER 75 I K ... ()-0...:o-b-fiv-fiO‘OQOOMkfl\HVMU1\'-\flb4‘-\’ibbP-PO‘#015O-WL‘JUJUQKNFUI’OI’D‘dad-3.1.19"l‘O-MJ‘kfl QNOQNNQOruo—‘dé-a-fié-Jo-boooo0000000CdorouJN-am ‘-A"~.A~C’QOJQ~¢~;A(J 210 OBSERVED (CM-1) 2052.524 2052.735 2053.188 2054.264 2054.795 2055.664 2055.817 2055.980 2056.314 2056.662 2056.825 2057.140 2057.463 2058.508 2058.817 2059.137 2059.300 2059.473 2059.649 2059.798 2059.925 2060.126 2060.361 2060.474 2060.833 2060.949 2061.275 2061.409 2061.572 2061.654 2061.839 2063.247 2063.516 2063.706 2063.809 2064.110 2064.780 2065.123 2065.466 2065.642 2065.829 2066.553 2067.059 2067.384 2067.730 2067.914 2069.330 2069.633 OBS'CALC (CM-1) 0.004 0.006 0.003 '0.005 '0.008 0.001 '0.004 0.002 ‘0.004 '0.003 0.000 -00001 '0.005 0.001 0.002 “0.001 0.002 “0.000 ‘0 .002 0.000 '0.001 0.000 0.003 0.004 0.002 ‘0.004 '0.012 ‘0.007 ‘0.007 0.000 -00004 ‘0.005 -0.005 0.006 0.003 0.002 0.007 0.000 0.000 '0.001 0.004 0.002 0.003 0.000 -0.003 0.000 0.004 0.004 HEIGHT 0.25 1.25 0.01 0.25 0.25 0.10 0.01 1.25 1.25 0.05 0.10 0.01 1.25 0.25 0.25 1.25 1.25 0.25 1.25 0.01 0.05 0.25 1.25 0.01 0.25 0.05 0.25 1.25 0.00 0.05 0.01 0.25 0.05 0.10 1.25 0.05 1.25 0.05 0.25 0.25 1.25 1.25 0.25 0.25 0.01 1.2.5 1.25 0.01 0.05 1.25 ID 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 023 020 020 <— p O >0 1" bbLJt‘UJW’J‘IU‘LhU‘ItflUI1".)N|\"\)r\1NIJf\!l~Jbud$~ p 8* bad mullurom Nun—4.49101.» (5000\1‘4'»: UPPER K- K+ UIWLflknlNDJb-bb-fi5u‘11‘l‘bWUZ—é-‘JO-JC-JOMWWLNMbk‘rflNNh’f‘Jg-a-h.s—\UJ&~ILNUJNU1C>\D a4—ha-a.A—b..a.a.aoc;) (,5 UI’UI‘J..3 [\3 N-aN-«Q'dl‘J-‘N-‘N-‘O«3440)CL‘I‘ONNhJIUNI‘JPJ-J-‘J-i-aoC 0-‘0~b0;‘«5““lN-bLNU'IUT\N\DLJ1\H\J:A—3—l—A.a—J-J_&UJbarbb{\Lq‘vLNVquhJNooowwlflwm~‘uqfl IUDN~PPJAWOWOLN¢WWLNFJ~C>OO-‘O-‘OéNNNNNWLNw’d-‘d’éoooooNR’NNWO‘“V0 L-Jn)LNN1N(Nl\)l_-JI\DLNN—3FJNNéJ-A-J"iv-5d49*-3rUNNI'QPJ-‘-*NNNFJNI'\DNOO04-O—0—0-4a0a 211 OBSERVED (CM-1) 2069.949 2070.158 2070.290 2070.411 2070.859 2071.220 2071.405 2071.598 2072.135 2072.460 2072.806 2073.390 2073.724 2074.745 2075.091 2075.336 2075.442 2075.837 2076.199 2076.392 2078.129 2078.462 2078.579 2078.812 2078.940 2079.847 2080.029 2080.189 2080.363 2080.553 2080.708 2080.888 2081.075 2081.301 2081.688 2081.925 2082.267 2082.437 2082.514 2082.615 2082.745 2082.816 2083.063 2083.178 2086.063 2086.669 2086.863 2087.006 2087.217 GBs-CALC (CM-1) 0.001 0.005 0.006 0.005 0.001 0.000 ‘0.002 0.000 0.004 0.000 0.001 0.002 0.000 -00008 0.003 0.001 0.002 '0.004 0.005 '0.003 '0.002 ‘0.002 0.003 ‘0.001 0.002 “0.003 ‘0.003 '0.002 0.000 0.005 '0.001 0.002 0.003 -0.001 0.001 0.005 -00001 '0.006 '0.002 0.008 “0.001 0.000 0.002 0.003 0.004 ‘0.001 0.007 0.001 ‘0.002 HEIGHT 0.25 0.25 0.05 0.05 1.25 1.25 0.25 0.25 0.10 1.25 0.05 0.10 0.05 0.05 0.05 1.25 0.05 0.05 0.05 0.05 1.25 0.25 0.10 0.05 0.01 1.25 0.05 0.25 1.25 0.05 1.25 0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.05 0.05 0.01 0.01 0.05 0.25 0.25 0.05 0.25 1.25 0.25 1.25 ISO 78 80 76 80 80 78 77 76 82 80 78 30 78 82 80 80 78 77 77 76 80 78 80 76 78 80 82 78 80 76 73 77 76 82 80 80 78 77 76 76 82 82 80 80 80 30 80 78 78 ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 2 020 020 023 020 020 G— 9.» U1 3‘ .J‘l a! I.) {b 041.17.: Ld 1»! Nu)!“ N141")~ WWW-P ‘5 b p VVU‘UI ‘\ U! Nédl'u hJN UIUI 1." ”1:." 0 I“ b 1" MN mm u: UPPER K- K+ V'WWHWUI\JHnUIwwmwwrdmwNrucmmmmwwmbb b p...-.NnjtgwadafldmmwMoog“, ‘— U\O\N1\JNN'\J~F\JVTU(}MMUIUIIAkfltlJ‘JNKJ'Iva“\J1"’~3-§--‘-3ViWU‘WO‘O‘U'IJ‘ C» t» ‘4 L4 «0 -0 4~ s~ c- :> (r a) "‘““4““““‘""“"“WWU‘“~’-‘-‘“4mebAN-aoounawmwm-Jw-saaaammwNmmbrm crumb):-bbpbbbbbb-.s-4-z—AL.~J--aw-¢m;~bbwwwt--Jwr~1wmr~mooooo¢4mmuqaamu 212 OBSERVED (CM-1) 2087.720 2088.823 2089.011 2089.436 2089.536 2089.867 2090.210 2090.359 2090.696 2091.051 2091.236 2091.421 2091.566 2091.830 2091.922 2092.312 2093.085 2093.662 2095.158 2095.158 2095.490 2096.028 2096.211 2096.374 2096.562 2097.110 2097.686 2097.921 2098.022 2098.272 2098.603 2099.353 2099.708 2099.899 2100.079 2101.375 2101.722 2101.902 2102.092 2102.558 2102.899 2103.428 2103.621 2105.704 2106.027 2107.733 2107.917 2108.107 2109.388 OBS-CALC (Cm-1) 0.002 -0.004 -0.004 -0.018 -0.003 -0.002 ‘0.003 ‘0.005 0.005 0.002 0.001 0.001 -0.002 -0.002 ”0.006 ‘0.003 0.013 0.004 0.013 0.003 “0.001 -0.001 0.007 '0.001 -0.003 0.004 ‘0.005 0.000 -0.003 '0.002 0.031 0.004 0.000 0 .006 “0.004 0.004 '0.001 -0.003 0.001 -0.003 0.004 0.001 0.008 -0 .003 0.001 0.001 0.002 0.004 0.006 WEIGHT 0.05 0.25 0.25 0.01 0.25 0.25 0.25 0.05 0.25 0.05 1.25 1.25 0.25 0.25 0.01 0.01 0.01 1.25 0.01 0.25 0.25 0.05 0.01 0.25 0.10 0.25 1.25 1.25 0.05 0.25 0.01 0.01 1.25 0.25 0.05 0.05 0.05 1.25 0.05 0.25 1.25 1.25 0.05 1.25 0.01 1.25 1.25 0.05 0.05 0.25 76 80 80 73 80 78 77 76 82 8O 78 77 76 80 82 76 80 77 82 82 80 77 80 8O 78 80 80 80 78 80 76 80 78 77 76 80 78 77 76 82 80 9 l 76 82 811 73 77 76 30 ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 023 020 020 020 023 C. .o\n\0~o~o\]\3\j\lt"i)t“$“n‘.'1U1U1\nC"OthJtnmmLDu)(«l‘r‘ bb-xj-xj-xHAJl-‘VVNOOQJWOOOOOOOOO UPPER K I K ... 'quINOO-JOU'I AwahJN-«a $44.50bbtflkrlIer-JIURHJRJVb4‘bbwthWLN—iOOmmlururgoouo0.3-64.3“; (11h! )1"'\j\ll)~!'lf}‘v0‘ -D“L)-A—*'\N1)3U~3WUJ \INO‘-5U1\n‘JI\JI\fl(‘JNNf\INO‘\I‘VCJNU‘IWUIUJ‘JJ' (..- (91(k16JxN-F‘t‘ I“ I‘L‘U'Giml'vtlnWOV‘Y)‘-7"LM1N1.4LMlN\IO~O t-~vw-J\J-Joooooooomwwmmo o. 50 4“ (1' O \3 0‘ (1‘ (* LOWER 7': I K + m‘flnlowrcro~oua-¢-b-A-qo~c-A-ACh0 o~b3>t~r~bannU1UHm ('JbOv-b-JRIIUI‘xINw-fil/QLNIUIVLNLNUIA—IN-iU4LAJKNL2I16II’UNRINNO~‘flNw-9'5-JU1U'IU1MUTOOOO-fi ‘O-fi‘lL mCX‘UIU‘IUO‘J'I 1301 O C- 1‘3 1V FUNIU Cl 213 OBSERVED (CM-1) 2109.926 2110.119 2110.471 2110.651 2110.842 2113.369 2113.705 2114.068 2114.252 2114.441 2114.797 2115.135 2115.489 2115.793 2116.514 2117.151 2117.506 2117.708 2119.054 2119.411 2119.784 2119.963 2120.171 2121.187 2121.528 2121.885 2122.067 2122.262 2122.773 2124.235 2125.863 2126.230 2126.596 2126.927 2127.465 2127.757 2128.117 2130.033 2130.399 2130.673 2130.785 2132.038 2132.397 2132.586 2132.775 2133.152 2133.702 2133.816 2134.002 2134.182 OBS‘CALC (CM-1) 0.008 0.002 0.002 “0.001 0.004 0.014 0.304 0.005 0.001 ’0.001 0.002 0.001 0.001 '0.002 0.002 '0.002 ‘0.001 '0.002 3.003 3.004 0.034 ‘0.010 0.001 -00010 ’0.009 “0.008 '0.011 '0.004 ’0.001 '0.008 0.011 0.020 0.004 0.000 0.003 0.001 “0.006 0.005 0.001 0.003 0.000 0.004 0.304 0.307 0.005 0.000 3.303 0.007 ‘0.002 0.012 HEIGHT 0.01 0.05 0.05 0.05 0.05 0.10 0.25 0.25 0.05 0.01 0.10 0.25 0.25 0.01 0.25 0.25 0.05 0.00 0.25 1.25 0.25 0.25 0.25 0.01 0.01 0.01 0.01 0.01 0.25 0.01 1.25 0.01 0.25 1.25 0.05 0.05 0.25 0.05 0.25 1.25 1.25 1.25 1.25 1.25 0.25 0.25 0.05 0.25 1.25 0.01 180 77 80 78 76 82 80 78 77 76 82 80 76 80 80 80 78 80 9‘: u... 80 G u 77 76 82 78 77 36 80 80 7a 3:: 80 77 :30 7a 82 80 as 73 so 78 7? 76 so 77 30 96 E 1) ID 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 A on. b’Q‘JVVO*O~O‘OU1~OU1U1UI—bww#‘b «b 5..); , OOOU‘IKDQUOOOOQ. ..l—h 'a-Jqu-QAJV*4~JNC% .. .3”),— cal—D .J u—b -& a s N-*-* OVOO~NN~DIUL~IUJLNOK 0000—3U1U1U1—fi 8 ...) ..5 .4 ....s N211 \1 1n U1 u m o (3*) U1 9 U1 N 0. 3~ Ox 0 VO 0 b \I \J C) ‘1 b (”a 0 iv JUCbk.NM\nLflU1rUt§Ume-w§b§§-§4“hr'JI‘M‘NOC)OOL'JI‘Ibbf‘JI‘ONh)b-b—DOUI—DINU~IPJJbbww A 4 U ... LOWER c. 7K I 7‘ ‘00OOAOO~O~O~V~O~O~OL~I~Owqu-e.J—3.3_u + .8 O fURDUJ-bt‘3‘b5“NOU1$‘C)MWWFUNN-AWMW—h-b-IAN-‘de-‘fi—SduoO-‘NONNU‘OWU“: -J C) o~4g~o~puphomunmbammxnmocoowooo' ..5 Oxnww—A-\.A-50”-,n1m-AoaruNr0NNVNbJ~b 214 OBSERVED (CM-1) 2134.664 2135.590 2135.957 2136.321 2136.533 2136.661 2137.023 2137.151 2137.400 2137.509 2137.706 2137.891 2139.021 2139.604 2139.942 2140.306 2140.687 2140.901 2140.983 2141.596 2141.861 2143.450 2143.808 2144.003 2144.201 2145.660 2146.213 2146.408 2146.924 2147.669 2148.029 2148.413 2148.738 2149.103 2149.487 2149.558 2151.645 2152.207 2153.773 2154.561 2155.214 2155.568 2155.937 2156.130 2156.328 2157.956 2159.783 2160.991 2162.181 QES-CALC (CM-1) “0.008 0.022 0.000 0.004 -0.00Z 0.002 0.002 0.001 ‘0.001 -0.002 0.009 0.004 0.017 0.012 0.004 0.006 0.009 0.007 -0.012 0.012 “0.008 0.000 0.006 0.013 0.000 0.000 0.003 0.006 0.005 0.001 0.004 ‘0.005 “0.006 '0.006 “0.006 -00001 0.011 0.000 '0.004 0.002 “0.003 '0.003 -0.003 0.002 ‘0.001 0.003 ‘3.060 HEIGHT 0.10 0.01 0.25 0.05 0.01 0.05 0.01 0.25 0.25 0.10 0.01 0.05 0.01 0.00 0.01 0.05 0.25 0.05 0.01 0.10 0.05 0.25 1.25 1.25 0.05 0.05 0.05 0.05 0.05 0.01 0.25 0.05 1.25 0.01 1.25 0.05 0.05 0.25 0.00 0.05 0.25 0.25 0.25 0.05 0.25 0.25 0.00 0.05 0.05 0.00 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 023 020 020 020 023 020 020 020 023 020 ' 020 020 020 020 020 020 020 020 020 020 020 023 020 023 023 020 020 <— K I K ... C.- 7'5 I K ... ...a ‘10 -5 .-. ‘~]O-’D\,I1F\DO\DN\o'WIUuIVO"0‘)03‘(”(D-fi-JO‘WDU'U-IO‘O‘O*JMUDUOCENO'O—b -‘a o#0.,¢wm{-J_\\O()Os...00.4..LWKI‘INNJL-Jbb'()0-‘O~IUNA-«OOCLNNNUIWLNN A-s 0mV‘40-O‘\Ib—D‘O‘OD~0‘0h'05U100UI‘OUJV'QOOU‘ICOIUNU‘UT‘O0‘fibVVommO b.) -xmgobb26bmianJQ—QCJOt‘bwo r0010)?»OOf‘me-b.aoo‘\lNlNL~lthO~O‘O Ac; ...-.3 .34.; ‘0t‘VNNLflO‘v-JLMJF‘JIUIO‘OLNOI'U‘Jldw—i#bLH‘LN-I‘fil‘JNMMflJ¥*ANUWU‘MUN OMCDOHUIO‘HS‘PLHDO NNNVL»:bbbNU‘IUI1Uh1U'IL:J-¥.¢O~O~ui\nbubJ‘blunpa -3 O 0'01!) 4 215 OBSERVED (CM-1) 2162.592 2163.278 2163.651 2167.520 2168.009 2168.373 2168.582 2170.747 2171.439 2171.813 2173.628 2174.041 2176.839 2177.234 2177.614 2179.202 2180.183 2180.553 2180.772 2181.164 2183.725 2187.082 2187.965 2190.676 2195.776 2196.219 2196.425 2198.138 2198.545 2199.311 2201.063 2201.153 2205.463 2208.324 2209.341 2214.273 2217.558 2219.265 2220.529 2265.362 2266.792 CBs-CALC (CM-1) ‘0.002 '0.002 0.001 0.000 0.000 “0.010 -0.003 0.005 -0.022 -00010 “0.002 -0.008 -0.001 0.022 '0.003 '0.003 '0.012 ”0.017 -0000: 0.001 0.012 -00008 0.015 ‘0 .012 0.015 0.017 .000.8 0.005 0.005 '0.003 '0.038 0.013 '0.036 0.006 0.010 '0.013 0.005 0.031 0.002 ’0.001 -0.015 WEIGHT 0.05 0.05 0.05 0.25 0.00 0.00 0.05 0.01 0.01 0.05 0.25 0.25 0.25 0.05 0.01 0.01 0.01 0.00 0.25 0.05 0.01 0.00 0.05 0.00 0.05 0.05 0.00 1.25 - 0.25 0.05 0.01 0.25 0.00 0.25 0.05 0.00 0.01 0.00 0.01 0.00 0.00 IS? V0101 (4100 at 80 k 80 80 80 80 8O 78 80 -p l 80 80 80 78 80 78 80 80 30 80 80 80 80 80 78 80 80 80 80 80 SO 80 80 80 80 80 80 ID 020 020 020 020 020 020 020 020 023 020 020 020 020 020. 020 020 323 020 020 020 023 020 020 020 020 020 020 020 023 020 020 020 020 020 020 020 020 020 020 020 A‘s UK. UPPER J K- K+ 11 9 1O 10 ...—A “Nb-JCDWWQJmmmuJOOOGDN‘O‘O‘O‘O‘O‘O‘O $.34 ‘OFONN OOOOVNOOOC .; 4.3;... ..5 mbmoommoooouom A NI 0” 6‘ mmmumwruwmwmmmmmaammwabmoobbbbwuwmoooobmmmummmmammou ..5—b #550J-‘O‘U‘O‘OKN‘OWUININMMUIMUIOO(bk/JUJOV’QMNINCDVVUJ0000‘O‘O ...) A VimOUIo>o~o<>o~o~u wcdh:ONPJNbbl-t~bbt 9400000000 A 4.).) A 219 OBSERVED (CM-1) 2213.828 2213.979 2215.671 2215.980 2216.393 2216.722 2217.172 2217.247 2217.320 2217.478 2217.558 2217.632 2218.121 2218.223 2218.362 2218.620 2218.959 2219.178 2219.265 2219.560 2219.722 2219.945 2220.110 2220.398 2220.454 2220.529 2220.809 2221.264 2221.416 2221.714 2222.022 2222.197 2222.638 2222.863 2223.463 2223.760 2224.070 2224.226 2224.396 2224.601 2224.913 2225.231 2225.464 2225.734 2226.003 2226.097 2226.199 2226.293 2226.377 2226.559 OBS'CALC (CM-1) -0.0Z4 0.005 -0000? 0.010 0.002 0.003 0.002 0.001 -0.003 0.006 0.015 0.031 0.015 0.015 0.003 -0.023 0.008 0.000 0.004 ‘0.014 -o.002 -00001 ’0.005 ‘0.002 0.005 0.000 0.004 0.000 0.003 ‘0.004 “0.006 0.011 0.015 0.014 0.009 0.013 0.001 0.001 ‘0.004 0.004 0.008 ‘0.007 '0.030 0.010 0.000 '0.008 0.000 HEIGHT 0.25 0.01 0.05 0.25 1.25 0.25 0.10 0.25 0.01 0.25 0.05 0.25 0.25 0.01 0.25 0.01 0.25 0.05 0.25 0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.10 1.25 1.25 0.01 0.25 0.01 0.05 0.25 0.25 1.25 1.25 0.05 0.05 0.25 0.25 0.01 1.25 0.05 1.25 0.25 0.10 0.25 0.01 ISO 76 78 80 78 80 78 80 80 82 80 78 80 80 80 78 76 80 80 80 78 77 76 82 80 80 82 80 77 80 78 76 80 77 78 82 80 78 77 76 82 80 78 82 80 78 80 80 80 80 80 ID 100 100 001 001 001 001 001 001 001 001 001 001 100 001 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 001 001 100 100 100 100 001 001 001 001 J 10 11 13 1:. 1o 14 .3 p .3 U1&-O Ntrwommommmmmmmoooouom~o~OVVNV UPPER K- K+ bmwkk—hadumwdmw-ALAObbbe-«NNNNVILHU»bmbbwwmmv‘mwoUVOOJ‘ONbs‘ 6 8 12 14 6 14 cu. b ..5 N161.“ .a.sa mVVNNwwuomO-bNO-bOHJNNNNMObbbbbfibvhbboowmmw L. “dub—b Vl-t‘N-J .h a. 4......) \JIOU‘U! .3.) 'SU'VVVNUJO‘O‘Oxnxo\O'O‘O‘O‘O‘O‘OOOWOOOOOOO‘ an. .0...» hJUJN «A .5 ...... 4.3—34.54.... ()OOOObJ‘bNONW LOUER K- K+ 7 9 1 1 (NMMUIUI—D-bfiUJUIUJ-‘Ulw—iwkfio‘o‘oo«fibbbbfib3‘bm3‘mmt‘boooooo\J‘OObOND‘k ‘d uh ..5 moNObi-344%NWWHUMMU‘UMMWWVNL/«ltNUJUJ-DMUIU‘WNMU cub-...) 4.3—3...: ...)... Offload-AbkbOOON 220 OBSERVED (CM-1) 2226.776 2226.870 2226.870 2226.949 2227.108 2227.237 2227.551 2227.618 2227.894 2228.300 2229.088 2229.332 2229.571 2229.830 2230.617 2230.909 2230.990 2231.273 2231.407 2231.567 2231.709 2231.865 2232.021 2232.179 2232.497 2232.807 2232.986 2233.274 2233.487 2233.994 2234.319 2234.491 2234.665 2234.824 2235.025 2235.257 2235.335 2235.453 2235.555 2235.649 2235.864 2235.980 2236.198 2236.519 2236.685 2238.081 2238.401 2239.158 2239.468 2239.710 OBS-CALC (CM-1) -00002 '0.005 0.016 0.005 0.004 0.006 0.024 0.001 '0.003 0.007 -0.005 -0001} 0.003 ’0.002 ’0.014 -00010 0.004 '0.011 0.006 0.007 0.003 0.002 0.006 -0001, 0.001 -0.009 -00012 0.006 '0.002 '0.001 -00001 -00016 '0.001 “0.004 -0 .001 -00001 ’0.013 -0.010 0.002 ‘0.014 -09002 0.002 0.005 ‘0.004 '0.008 0.001 HEIGHT 0.25 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01 1.25 0.25 0.05 0.05 0.05 0.01 0.01 0.05 0.01 1.25 1.25 0.25 0.25 0.25 0.05 1.25 0.25 0.05 0.25 0.05 1.25 1.25 1.25 1.25 0.05 0.25 0.01 1.25 0.25 0.05 0.25 0.05 0.05 0.05 1.25 0.01 0.01 0.25 0.05 0.25 0.05 80 77 78 82 78 80 78 76 80 82 80 78 76 80 78 82 80 80 78 78 77 76 82 8O 78 77 8C 78 80 78 77 76 80 82 82 80 30 80 78 80 76 80 78 77 82 80 80 78 80 ID 001 001 001 001 001 001 001 001 001 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 001 001 001 100 100 001 001 001 001 100 001 001 001 001 001 001 001 001 001 001 001 100 100 100 100 100 .3... ..LCJOOONOJ.—b—bu. ~b A—b UPPER c. 7‘ I 7'1 4. —8 AOU‘IVVU-‘dNNNNIUN-‘kt‘OfiC’tfiOONOONNS‘~$‘£‘1\IOC‘OOm—b-bfi-ILN—DUJLNMMWWU‘ILN «3.3.3.3 a mN-bO-JO\nmmmS‘UIJ-‘V~JVODNOJN ...-.5 our) (ThatbhlihNVVm‘lm‘N \nLnOxnwquoooo 7a JAtNtN‘.NO~OC)WMWWMMNl/JQNWMM‘AMMPUIWNObeONNNNMMmme-‘mmbl‘fil‘b A...) ..5 A-JbQ—b-b ..5 IU—JOQOV-‘A‘JVNVO‘VNibmom‘O‘OGONG“O-MUQ‘OO‘OUJN—ON-‘O‘OO‘O‘U‘O‘MWQIOOVOW‘OOO dun-h a.) ..5 (V0O-C‘Dm-«bOOUUWLQJWOWUSNW°flVéJM-h-l-DUJV'IMUILN-Q‘OJ‘OOOOONONbbJ‘OJ-‘Ob ...-I a.) —b .-g ...)... ”Au—h .JJW‘NUJO-‘Jth5m3‘WbbNJ-‘NBIO‘O‘U'IO‘O‘U10h§h0NNNNO~O~0090~5§hWWWMM I.‘ A “ so. 221 OBSERVED (CM-1) 2239.996 2240.163 2240.269 2240.326 2240.420 2240.704 2241.015 2242.908 2243.046 2243.196 2243.330 2243.619 2243.771 2243.930 2244.010 2244.507 2244.636 2244.978 2245.102 2245.161 2245.334 2245.495 2245.757 2247.111 2247.208 2247.464 2247.656 2247.727 2248.004 2248.183 2248.499 2248.669 2248.822 2248.980 2249.290 2249.989 2250.511 2250.735 2250.825 2251.160 2251.330 2251.507 2251.999 2252.308 2252.636 2252.896 2253.209 2253.371 2253.371 2253.611 CBS-CALC (CM-1) 0.010 ’0.006 “0.007 ’0.004 -0.007 0.006 0.009 0.007 0.001 -0 .001 0.006 0.000 '0.001 0.017 0.003 0.002 -0 .017 0.008 0.003 0.007 0.009 0.009 0.004 0.011 0.003 0.008 0.004 0.005 ‘0.006 0.008 0.002 ’0.007 0.005 0.000 '0.002 ‘0.001 ’0.004 -0 .004 ‘0.010 ‘0.003 '0.006 0.009 0.004 0.000 0.005 3.012 HEIGHT 0.01 1.25 0.01 0.01 0.25 0.25 1.25 0.25 0.05 0.05 1.25 1.25 1.25 0.05 0.01 0.01 0.25 1.25 0.01 0.01 0.01 0.01 0.25 0.05 1.25 0.25 0.05 0.10 0.05 0.01 0.10 0.25 1.25 0.25 0.25 0.25 0.25 ‘0.25 1.25 0.25 1.25 0.25 0.25 0.10 1.25 0.25 0.25 0.05 0.01 0.1 so 77 7s 7s 77 80 78 so as 7s so 78 77 76 32 so 78 77 so 78 77 76 76 so 82 so so 73 7s so 7s so 76 7s 76 so 82 so so 78 77 7s so 7s so q ‘1- so so a e an , - ID 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 001 001 001 001 001 001 001 001 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 100 100 100 100 100 100 001 001 001 001 00” 001 UPPER t... 7‘ I 7‘ + .8 c.) ...) «Joa-0000000bebmul-b-hbbwfiVNNOLflmmmm-fipun "I «6.; ad ... —-‘ ub-A IVCDO‘OOONN-J—DLNIMC)ULNKNLNUJU'IOW‘ON-DA—I-‘dfvlflw bN|NultA-*UJ-J1N“-F“~t‘POOOORl4‘(\JNPJJ-élflwr't‘OO-Ov-DJ-Jb-DNLNNONP“?##MU‘U‘ 10 10 1O 10 10 10 10 1O 4 0 12 9 4 0 4 0 3 2 5 2 8 3 5 2 8 8 6 4 6 4 6 4 11 9 5 2 LOWER K- K+ .4 ‘— Ad 4‘ .... -3“ O‘QCJO‘COOmUlmVlb-P-D—IUWVINMmNOOOUJO‘U‘O‘O‘NUVOOm A ...—5.5.: (NOOUWU'IWONOMJ-‘flOO-A—i—‘A-‘VUJ‘OVV‘O‘C-‘dOONNVO‘ONNfiNO‘VOOKO-INNNNN-ébb ...l O-*'\l'\l'\1~00-OU~J>UIUI LNWNIVI‘JObo8‘kmmmmooOONS‘NNNNNU‘MV‘WWMNNWWWMWbM-INUIUIMLII-33*b1UI 222 OBSERVED (CM-1) 2253.699 2254.044 2254.132 2254.242 2254.761 2255.028 2255.171 2255.311 2255.985 2256.816 2257.122 2257.579 2257.579 2257.806 2258.019 2258.176 2258.344 2259.062 2259.355 2259.448 2259.746 2260.044 2260.352 2260.821 2261.127 2261.260 2261.572 2261.723 2262.038 2262.167 2262.285 2262.358 2262.651 2262.978 2263.157 2263.334 2264.344 2264.521 2264.608 2264.887 2265.230 2265.502 2265.653 2265.789 2266.123 2266.234 2266.396 2266.561 2266.676 2266.792 OBS'CALC (CM-1) 0.008 0.019 -0.003 0.004 0.004 0.000 0.001 “0.005 0.008 0.013 0.013 0.007 0.004 0.000 0.007 0.019 0.007 “0.004 0.000 0.002 0.012 0.010 0.010 -00016 -0.012 “0.010 0.016 0.009 0.013 0.002 -0.005 -0.00S “0.007 0.002 0.007 0.007 -0.008 0.007 0.007 '0.004 0.012 0.006 0.006 0.006 ‘0.004 “0.003 -0.003 0.003 “0.003 HEIGHT 0.25 0.25 0.25 0.05 0.25 1.25 1.25 1.25 0.05 0.01 0.01 0.01 0.05 0.05 0.25 0.25 0.10 0.01 0.25 0.01 o .05 0.25 0.25 0.25 0.05 1.25 1.25 0.25 0.25 0.01 0.05 0.05 o .25 0.25 1.25 1.25 0.25 0.05 1.25 0.25 0.10 0.25 0.05 0.05 0.25 0.10 0.10 0.10 0.01 0.05 ISO 80 78 80 78 80 78 77 76 80 80 80 78 77 8O 78 78 77 82 80 82 80 80 78 78 76 8C 78 82 80 8O 80 78 80 78 77 76 82 80 80 78 80 80 80 78 77 78 77 76 80 q- 66 ID 001 001 100 001 100 100 100 100 001 100 100 100 100 001 100 001 001 100 100 100 100 100 100 001 001 103 100 001 001 001 001 001 001 001 001 001 100 100 100 100 100 103 100 100 100 100 100 100 100 103 L. xrlbtrlt‘6‘4"O‘ON(bm‘lln‘0LA‘Ofldkfl\nm&~ if».1)O~O‘O~'D\]O~NLN'-IDUJ 4‘14‘0‘0‘6‘41NlNWOmmW‘lO‘U‘V OO‘NOLMO I‘J1NWN1‘38‘N3‘I‘U—sAMUMUWn‘hJNOIVPJCALQAUDJW—l-‘Lfltfl—Jlfl—bOh’On'bb5N 00005008‘!»{)8‘0N5u—DN—8NOOOO-J-fid-im“MWVUIKAVUJ-‘(NA—‘écOU1lA\lU1'\I~ON\ONhJNNN Au.) 0‘0NOVkaDVNJ-‘L’7U'IbmbCOF¢§§OJ‘O~OL‘D'\IO~®bVIbU’IUI'UIOOmN‘Om‘O‘O-L‘OC‘OOO‘UI OOU‘OWOh’lNU‘bOM-l‘kdt‘hJNt‘hb-l‘buMW-fi-‘lA-‘W3‘DJ“bbd-bL/JM—‘U-A-ALN-‘lflkdtuwb u-l—fi 0‘OU‘C\fl(WV\nGhA-bmhAfiJ4”fl‘JOCDCDO'fl-*£~#CDO~hCDfiJnHUFUhJNHDCDO~bCDO~mWr-OahdLNUHN-fi 223 OBSERVED (CM-1) 2267.027 2267.104 2267.590 2267.767 2269.805 2270.142 2270.306 2270.454 2270.551 2270.780 2270.876 2270.934 2271.119 2271.645 2271.832 2272.449 2272.726 2273.011 2273.164 2273.307 2273.494 2274.098 2274.300 2274.391 2274.391 2274.581 2275.214 2376.219 2276.317 2276.411 2276.728 2276.891 2277.059 2277.543 2277.844 2278.288 2278.442 2278.577 2278.801 2278.901 2279.047 2279.047 2279.447 2279.507 2279.595 2279.791 2279.918 7280.145 2280.241 2280.425 OBS'CALC (CM-1) “0.002 0.002 -0.005 0.001 0.000 “0.002 0.039 0.007 0.002 0.008 0.006 0.004 -0.012 0.004 0.004 0.002 '0.005 -00006 -00010 0.007 0.017 ‘0.003 0.004 0.004 '0.002 0.014 0.001 0.000 0.001 0.000 0.000 -0.004 0.001 0.002 0.005 ‘0.007 0.003 0.007 -0000? '0.009 -0.003 0.002 0.005 0.001 0.003 0.002 -0.011 0.000 HEIGHT 0.05 0.10 0.25 0.05 0.01 1.25 0.01 0.01 0.01 0.25 0.01 0.01 0.10 0.25 0.25 0.01 1.25 1.25 0.05 0.25 0.05 0.25 0.01 0.05 0.25 0.25 0.01 0.01 0.05 1.25 1.25 0.25 0.25 0.05 1.25 0.05 0.25 0.25 0.01 0.05 0.01 0.01 0.01 0.01 0.25 0.05 0.01 0.01 0.05 1.25 ISO 80 8O 77 76 8O 82 77 80 82 80 80 80 78 78 77 82 80 78 80 76 73 82 82 80 80 80 76 80 78 80 78 77 76 82 8O 82 80 80 78 78 77 80 80 80 82 78 80 76 78 77 ID 001 100 100 100 100 100 100 100 001 001 001 001 001 001 001 100 100 100 001 100 001 100 100 100 100 100 100 001 100 100 100 100 100 100 100 001 100 001 100 001 001 001 001 001 001 001 001 001 001 001 UPPER c. 7‘ I K ... (DOG064141-146)?gthJ‘OIU‘O‘nKNUIMVIOLNUJ‘J‘JVVVNUJCDWa'U‘ON‘O‘flVOU‘L‘ONML‘O‘Wbut-JIHLrJfiN-J'Io JO4.6,ANNN-bmdtvm—xMN—J—IN—bdwwwwtdwwO lNLfiOWLNOLNNNUJNfl/JOOOOOU‘NNO o~o\()o—-~a-uc-a-s.ao «sommmmmo-A-bfl'fl\INV-JVVVNVNNUOONQPNObNOO0000510 LOWER G... 7" I K + 0000OO-C‘btx‘I‘LNt/J‘OLAOO‘O‘Osoo‘OPb‘JWNWWOJOOOOCDWOM‘OO‘00m~q0-u1xj0sm5g~gubb413 kaNNNh'MwbWJ‘dd-J-é-‘OWM-‘d-léd-‘HLNWNLNNwF—sblfloNMONWbJ-‘fibfiwo mmumw-qmoomomoooooxrummomooommooo-boaowmwwumwumudaaaaw~o 224 OBSERVED (CM-1) 2280.598 2281.203 2281.481 2281.760 2282.054 2282.199 2282.359 2282.577 2282.719 2282.719 2282.857 2283.016 2283.016 2283.163 2284.641 2284.965 2285.160 2285.270 2285.456 2285.578 2285.775 2286.657 2286.960 2287.275 2288.417 2288.767 2288.946 2288.946 2289.128 2289.128 2290.333 2290.629 2290.782 2291.239 2291.536 2291.855 2292.020 2292.191 2292.446 2292.553 2292.732 2292.877 2293.211 2293.593 2293.766 2293.938 2294.290 2294.290 2294.450 2294.766 OBS'CALC (CM-1) -0.003 0.005 0.002 0.004 0.006 -00002 0.002 0 .012 0.002 0.001 0.000 -0 .004 -0.003 0.009 -0 .008 0.009 0.000 0.001 -00009 0.003 0.002 -00003 0.001 -0.006 0.005 0.008 0.002 ‘0.005 ’0.011 “0.005 “0.009 ‘0.008 ‘0.008 '0.006 0.012 -0.003 0.000 -0.003 0.004 ’0.004 0.006 '0.002 0.004 0.010 0.007 HEIGHT 1.25 0.10 0.01 1.25 1.25 1.25 1.25 0.05 1.25 0.25 0.25 0.25 0.25 0.25 0.25 0.05 0.01 0.25 0.25 0.05 0.01 0.10 1.25 0.25 0.01 0.05 0.25 0.05 0.25 0.05 0.05 0.05 0.25 0.25 0.05 0.25 0.25 0.05 0.01 0.25 0.25 0.25 0.05 1.25 0.25 1.25 0.05 0.05 0.25 1.25 ISO 76 80 82 80 78 77 76 82 82 82 80 80 8O 78 80 80 77 80 80 78 78 82 80 78 80 78 77 77 76 76 80 78 80 82 80 78 77 76 82 80 80 78 76 80 8O 76 77 80 78 ID 001 001 100 100 100 100 100 100 100 100 100 100 100 100 100 001 100 100 100 100 100 100 100 100 001 001 001 100 001 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 100 100 001 100 100 UPPER c... 7‘ I 7‘ .... .qh—ui OOVO‘X‘OJ‘IJIU‘J‘OUJbl/‘JONOORJIURJO‘ONUIObbmbkfvfl—I—IWF‘OO -.. _4_.s...;\;-qt\)|q-.s..._sb.¢u;;\..s-a ...b .3paNAmN—h—thwU‘NOhlOOPJONUJBJNW-D-v‘VU‘UJMw uummmmbmmww'flmwmm-V'q'qmflmbNNmNbNN-‘JU'IONQO~O~$~O~NN£~NNNO~UIVO~NO muumoo‘OVNNVVinxjoaoomm LOWER (— 7K I 7‘ + “A (>o~0(>o~o-V~qaru-qarwcnoomuno:ocn<3vnbssi>bun:w0~ocndLnurV~40~VanumxnUHu-q—xawn04m .....a—Amwoo«Inna...Ann—abummumumoANO—nomwwowmwOONONwNNwWNOOMbNb ($005-meI‘O\O~O‘$‘O-I-‘b0~0~0~«I‘O‘bmuwt‘UMMO‘ObJ—ldVNUINMUU‘IMLNJVIFO‘UI-bm 225 OBSERVED (CM-1) 2294.929 2394.999 2295.102 2295.363 2295.690 2295.983 2296.114 2296.292 2296.446 2296.547 2296.637 2296.788 2296.876 2297.075 2297.209 2297.571 2298.553 2298.779 2298.849 2298.849 2298.976 2299.309 2299.818 2299.961 2300.042 2300.132 2300.132 2300.366 2300.617 2300.810 2300.992 2301.160 2301.345 2301.531 2301.706 2301.942 2302.086 2302.177 2302.266 2302.508 2302.852 2303.033 2303.591 2303.910 2304.248 2304.934 2304.934 2305.230 2305.572 2305.742 085-CALC (CM-1) 0.005 '0.002 0 .008 -0.014 '0.014 -0 .003 '0.010 0.005 '0.004 0.004 0.010 0 .002 -0 .001 0.005 '0.004 '0.003 0.003 0.001 0.009 0.009 0.003 '0.002 0.000 0.001 -0 .001 0.001 -0.003 -0 .006 '0.004 “0.003 0.004 0.013 0.009 0.000 0.001 0.002 “0.007 '0.007 -0 .003 0.009 0.005 ‘0.018 0.014 0.000 0.005 0.000 '0.003 HEIGHT 1.25 0.10 1.25 0.05 0.25 0.25 0.25 0.05 0.05 0.25 0.01 0.01 0.05 0.01 0.10 0.10 0.05 0.01 0.05 0.05 0.01 1.25 0.25 0.10 0.01 0.01 0.01 0.01 0.05 0.01 0.25 0.01 0.25 0.03 0.01 0.25 0.10 0.05 0.25 0.10 0.25 0.05 0.05 0.05 0.05 0.01 0.01 0.05 1.25 0.01 ISO 77 30 76 80 80 80 80 80 80 80 78 78 80 78 76 82 80 80 80 82 80 80 80 80 80 78 78 76 78 80 76 78 77 76 80 8O 82 78 80 78 77 80 78 80 80 "r LU 80_ 78 77 ID 100 100 100 001 100 100 001 001 001 001 001 001 001 001 001 001 100 001 100 100 001 001 100 100 100 100 100 100 100 100 001 100 001 001 CO1 100 100 001 103 001 001 001 100 100 100 100 100 001 001 00* L. om-q-qmm-amaoobwoooov-banal-10NVNoNo-qoow-qoomoommwmumwmomoooomm UPPER 7‘ I 7‘ ... AbM\nJ—3dlfl—bw~§NU‘IO~m-OOdN-‘UA‘AL’IU‘OWO—I‘L‘NRIUINMNONNOI‘JO-‘m-‘boC‘I‘OJ m-iLNLAhJNC'UIOm50mwm¢5NNNbb§fio~§0~bfioo‘t‘ddeO-‘WIIW-‘LN-‘O‘J‘O‘O‘mm LOWER c. 7‘ I 7‘ + O-C-V‘JLNLNPJO‘.NWbWOWOWM§¢§O~VVNO~VO~VmV’VWLNOOINDVLN4\UDS‘HOH‘O‘O‘O’OUION bbNIULdUJ—bb—bbud-8‘NbLNUIUIWLNUII/JWUUIMU‘WLNMUISNNWNbUIkaflfiNNNU‘IUIU‘U'I1‘ON INNO‘ONOONWA’MNNV‘IVWNO&N&k#h&FJ#‘NMUINNOJOJAN-‘A-fib-INONJ‘VI-‘F4-9 226 OBSERVED (CM-1) 2305.937 2306.117 2306.236 2306.589 2306.912 2307.115 2307.539 2307.539 2307.857 2308.275 2308.275 2308.583 2309.086 2309.825 2308.926 2309.420 2309.420 2309.581 2309.581 2310.181 2310.362 2310.850 2310.937 2311.185 2311.309 2311.528 2311.633 2311.968 2312.318 2312.471 2312.906 2313.156 2313.244 2313.506 2314.153 2314.153 2314.424 2314.503 2314.719 2314.786 2315.604 2315.745 2315.960 2316.056 2316.481 2316.805 2317.041 2317.349 2317.989 2318.266 CBS‘CALC (CM-1) 0.006 0.001 0.000 0.014 0.016 0.010 0.000 0.003 0.003 0.007 ’0.003 0.010 “0.004 0.010 0.004 ’0.002 0.000 0.005 0.008 “0.008 0.000 ‘0.004 0.002 ’0.009 0.006 0.005 0.002 0.002 0.004 '0.009 0.004 0.002 ‘0.011 -00001 0.010 0.010 0.012 0.002 0.005 0.005 -00002 -0.006 '0.008 0.000 0.005 0.034 0.013 WEIGHT 0.01 0.01 0.01 0.01 0.05 0.01 0.25 0.25 0.10 0.25 0.25 0.05 0.25 0.05 0.10 0.05 0.05 0.05 0.05 0.10 0.05 0.01 0.05 0.10 0.05 0.05 0.25 0.01 0.25 0.25 0.01 0.25 0.05 0.05 0.01 0.25 0.01 0.01 0.05 0.01 0.25 0.25 0.01 0.05 0.05 0.05 0.05 0.10 0.05 0.01 ISO 76 80 82 80 80 77 80 80 78 8O 80 78 80 80 76 78 78 77 77 78 77 78 80 80 82 78 80 78 76 80 82 80 80 80 78 80 80 78 8O 80 80 80 78 78 80 80 ”’Q mm~ mo< ID 001 100 001 001 100 001 100 100 100 100 001 100 100 001 100 100 100 100 100 001 001 100 100 001 100 001 100 100 100 100 001 001 001 001 100 001 100 001 001 100 001 100 001 100 100 100 100 100 001 001 UPPER ‘- 7‘ I 7‘ 4. 4‘ 4‘ F't-VU‘INIW‘J‘O‘U‘O‘OOUlO‘O-J-JJV JINJKNI-‘KNLNO‘PI‘UJPU-JUIO‘O‘J‘J'KR‘OUIU1L'I‘0‘01}‘00‘0 OU4~Dwmr--..IUIu)-—-ht.4;\)LAMNbsz-D-towoooO-buowaN—aN—b—LVVbuumaua-bb..sboo-Aa FNDNNJ-‘I‘JkfibbbbbNIvbaa—bD-aw-fiLNINUJUJNUJLNKNLNLNUIRJNHULNJ‘U‘IUIUILNUIW..LU'IUI LDUER J K- K+ b3‘5‘t-VU1NU1U10-U‘0‘C}(J‘W‘VO‘NNN'VNWNWFMMO‘P-t‘bt‘$‘-$“O\O"\IMU1‘OWVIOO‘O~O"00‘0‘ Nb1UPO‘R’O‘NLNLNNUJLflfimLNJ‘OO-Jm—I-a—tANNdONW—bwddmmmfibV-i-fiV'IMUIUI‘OUJUJ w-JUI—iJWJMMWUMMW-‘WWNNNMNNNNNNNANNbka-QANNNW“bNN-I‘NO8‘8‘ 227 OBSERVED (CM-1) 2318.602 2318.953 2318.833 2319.191 2319.331 2319.519 2319.676 2319.789 2320.323 2320.517 2320.619 2320.925 2321.074 2321.187 2321.436 2321.708 2322.059 2322.249 2322.423 2322.584 2322.903 2323.244 2323.482 2323.581 2323.581 2323.800 2324.005 2324.151 2324.318 2324.433 2324.643 2324.804 2325.316 2325.650 2325.727 2325.829 2325.989 2326.296 2326.652 2327.034 2327.034 2327.261 2327.377 2327.542 2327.727 2327.838 2328.003 2328.318 2328.474 2328.669 OBS'CALC (CH-1) 0.009 0.008 -0.001 -0 .005 0.022 0.011 0.005 -0.006 -00004 0.001 0.001 0.005 ‘0.006 -0.003 ‘0.009 0.006 0.003 ‘0.008 0.002 0.003 0.006 0.002 0.006 0.002 -0.006 '0.006 -0.002 -00001 0.005 ‘0.002 0.000 0.009 0.004 0.003 0.001 0.001 0.004 ‘0.001 0.006 0.008 “0.009 0.004 0.006 '0.003 '0.007 ’0.009 0.003 0.002 -0.001 HEIGHT 0.25 0.10 0.05 0.25 0.05 0.05 0.25 0.05 0.01 0.25 0.01 0.05 0.05 0.05 0.05 0.25 0.25 0.05 0.05 0.05 0.05 0.25 0.10 0.01 0.01 1.25 0.01 0.01 1.25 0.01 1.25 0.05 0.25 0.01 0.01 0.25 0.01 0.01 0.05 0.01 0.01 0.25 0.25 0.25 1.25 0.25 1.25 0.05 0.05 0.01 ISO 80 78 78 76 78 77 80 77 78 82 80 80 80 78 80 78 80 76 78 8O 80 80 78 76 78 82 76 80 80 78 80 82 82 80 80 80 78 82 76 80 80 80 78 78 80 80 77 78 ID 001 001 100 100 001 100 100 001 001 001 100 100 100 100 100 001 001 100 001 100 100 100 100 100 100 100 100 100 100 001 100 100 100 001 001 100 001 001 001 001 001 001 001 100 001 100 103 001 100 001 ‘— JRDO‘O‘I‘JO‘OFV' tNtdek/Jml'fl mmbI“knbkkns)")~m0~m0m\.nx,1mv1mm0c)xub0bNUwaNUInngm-q“ PJ—E—DC-DONUJ-JUIIN-fiuwt‘brvbN5N##53‘0I-JLNO-‘NOwawdtN—A-bumdokMOL‘1‘00 deLflU‘tNLflMWW-‘ww-‘LflwNMNUJNLN‘J-A-i-DOIUWOIUDJONNNNIUNONIUONN-waNNb“ LOHER J K- K+ 3 3 (MbJLplk/Jtnlknlt‘m5‘$‘U1J‘3‘U10\O‘UICBLWO‘WU‘IUIMUINLNO—bw3‘de’UUINUIhJNU'IVNUIO‘O‘UDO~O~J-‘$‘ \NJ-bNdNRDWWS‘WWJ‘WJ-‘O6‘0-8‘0-4‘MMMWONWANMJUNbN¢NéPVdOU10OVIUINN ONNNNhJNNNOR)NONNdN—bN—9NOOOO'VdN—fi-D-Jfi-‘J-l-‘dd-JJ-‘dUJ-‘OW—I-D 228 OBSERVED (CM-1) 2328.847 2329.047 2329.276 2329.584 2329.798 2329.798 2329.911 2330.156 2330.350 2330.536 2330.643 2330.723 2330.803 2330.963 2331.107 2331.302 2331.594 2331.787 2331.983 2332.131 2332.224 2332.298 2332.427 2332.560 2332.681 2332.949 2333.221 2333.362 2333.507 2334.277 2334.451 2334.631 2334.701 2334.800 2334.975 2335.242 2335.401 2335.543 2335.668 2335.764 2335.836 2336.023 2336.138 2336.330 2336.686 2336.905 2337.037 2337.262 2337.451 2337.551 OBS-CALC (CM-1) ‘0.005 0.010 0.005 0.003 0.004 ‘0.013 -0 .013 -00011 0.004 -0.003 -00002 0.004 “0.003 0.006 -00005 ‘0.004 0.003 ‘0.001 0.001 0.007 0.005 “0.003 0.011 0.005 0.000 “0.003 '0.007 0.003 0.008 0.009 0.004 0.012 -0.015 0.003 0.002 -0.004 -00002 0.003 -0.005 -0.001 0.002 '0.006 “0.004 “0.009 '0.005 -0300} HEIGHT 0.25 0.01 0.25 1.25 0.05 0.01 0.01 0.01 0.25 0.05 0.05 0.25 0.25 0.25 1.25 1.25 0.05 0.25 0.10 0.25 0.25 0.25 0.01 1.25 0.01 0.25 1.25 1.25 0.05 1.25 0.25 0.05 0.25 0.01 0.10 0.25 0.01 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.25 0.05 0.01 0.05 0.05 0.25 77 76 82 80 80 80 78 78 80 80 82 78 82 80 80 78 77 80 82 78 80 80 80 78 80 80 78 77 76 80 82 78 80 77 78 80 82 80 80 80 ‘3'! to 78 78 8O 80 80 78 78 77 80 ID 001 001 100 100 001 100 100 001 001 001 100 001 100 100 100 100 100 100 100 100 100 100 001 100 100 100 100 100 100 001 001 001 001 001 001 001 001 100 001 001 100 001 001 001 001 001 001 001 001 100 G- a .3 a buwo'uuqoom)eivwm—DOO-bOO-AOUJQPJOWQU1IMN\GI\JV£A1ALHOOW4‘4‘r-A-4A4N!\)'\JUIN‘R-bu: ... -3 UPPER 7‘ I 7‘ + 8‘CbUJCflNLANN-JNNOOOOO‘OCx‘OONO-‘ON‘OJ‘OObOLNQJ-‘V‘NNPJOOOO—fid—bM-‘UI-bw ‘3OA~th-ONwhNONON—0NJNNNNN8‘NIUNNNNNIU-‘J-D-I-‘JdN-‘N-J—h O—AO-¢OU-‘C) LOHER ‘- 7‘ I 7‘ + aha-b ... ...) a.) ..5 t-VW‘OIULNOGN JR'Mm-fim-‘m-J-‘tfln-bfuoWOUINNMNWUWWWW“F‘b—h-A—I-JNNNWNUINLN mmNVdNOdOAdmmmmmmONOAONObNNbNNuwMVWbbkddddNNNmdew dwuaruAamaaaNouowow-aA-s-sN-sN-é—s-a—s-bw-aa-s—aa-s-adooooooo-ao-awo 229 OBSERVED (CM-1) 2337.867 2338.030 2338.453 2338.691 2338.770 2338.997 2339.317 2339.485 2339.927 2340.252 2340.422 2340.600 2340.899 2341.226 2341.392 2342.654 2342.724 2342.973 2343.492 2343.670 2344.373 2344.433 2344.783 2344.783 2344.980 2345.166 2345.325 2345.569 2345.684 2345.744 2346.029 2346.331 2346.393 2346.513 2346.717 2346.888 2347.069 2347.250 2347.391 2347.574 2348.153 2348.406 2348.477 2348.640 2348.742 2348.821 2348.919 2349.098 2349.211 OBS-CALC (CM-1) 0.000 0.017 0.001 ‘0.007 90.007 0.002 -0.003 ‘0.007 -0 000‘ 0.007 0.003 -0000? 0.001 0.001 0.004 ’0.004 0.006 -0 .005 0.011 -0 .003 0.006 0.007 -00009 '0.006 0.001 '0.006 -0000} 0.005 ’0.009 ‘0.017 '0.008 0.003 0.001 ‘0.025 '0.002 -0 .001 -00023 ’0.001 0.010 “0.002 HEIGHT 1.25 0.01 0.05 0.25 0.01 1.25 0.05 0.25 0.05 1.25 0.25 0.01 0.25 0.25 0.10 0.01 0.25 0.25 0.25 0.01 0.01 0.05 0.25 0.05 0.01 0.01 0.01 0.05 0.25 0.25 0.10 0.01 1.25 0.05 0.01 0.05 1.25 0.01 0.01 0.25 0.05 0.10 0.10 0.25 0.25 0.25 0.05 0.05 0.25 0.25 78 80 78 82 76 80 078 77 80 78 77 76 80 78 77 82 80 80 77 76 80 80 80 78 77 78 80 80 78 80 80 76 78 8O 32 78 80 76 78 80 82 80 80 80 80 78 73 78 80 80 ID 100 001 001 100 001 100 100 100 100 100 100 100 001 001 001 001 001 001 001 001 100 001 001 001 001 001 001 001 001 001 001 001 001 100 001 100 001 100 001 100 103 100 100 100 100 100 100 100 100 100 ...) awn-anNVMwourmoooowwoomawmbAVm-quummowmowmuobbt-|mmo~m~omo~c~pm a.) UPPER J K- K+ .3 u‘O‘OMb-JNOO‘“Ot‘bVNVUwN-ifl’w#émmdeNONNONO‘O‘WMWNbJ‘UIUINUIU'IS‘L‘0 O-API'Ut‘dOrdiuN-‘NPULAMLNddO-J-fi—bd—‘IQ—JN-D—‘AO-¥-50'JI\JI"J-|-J-DO-J-*~3Of\fi LOWER L. 7‘ I 7‘ + .3 5N AVWO\DINV\IOOOC‘OOOOUJLNNCDI‘JLNbOWIWNNNLN‘OUJWOL/JINCX}Pbb'flmmomomo‘k» ~5O‘NDIVNU'IUILN‘OUJWO‘O‘D‘RJNMO-JNU‘JOPbeC-fim—i—lm-‘U‘UINNNO‘WU-fi-‘FO‘53‘Nwm dN—‘UJW-‘WMLANHWhWDNNWONNNOWNKNNNN-‘NN—DNWMNNN-JNNN—bwAN-l-bfi 230 OBSERVED (CM-1) 2349.466 2349.662 2350.055 2350.121 2350.121 2350.623 2350.709 2350.825 2351.347 2351.675 2352.274 2352.405 2352.710 2353.041 2353.215 2353.511 2354.066 2354.178 2354.400 2354.564 2354.631 2354.736 2355.251 2355.565 2355.833 2355.965 2356.125 2356.252 2356.299 2356.442 2356.516 2356.603 2356.664 2356.794 2356.961 2357.041 2357.537 2357.653 2357.985 2358.268 2358.465 2358.591 2359.109 2359.463 2360.371 2360.371 2360.431 2360.735 2361.049 2361.249 OBs-CALC (CM-1) 0.003 0.001 0.007 .00005 0.008 0.006 0.005 0.001 0.000 '0.002 0.001 '0.004 ‘0 .008 ”0.003 0.014 0.007 ‘0.007 “0.021 -00001 -00006 “0.026 0.003 -00015 0.002 -00012 -0000? 0.001 '0.003 0.002 0.004 '0.006 '0.004 '0.006 -0.015 0.017 0.004 ’0.010 0.025 0.000 ‘0.010 -00012 0.008 0.000 ‘0.001 0.012 0.022 “0.004 HEIGHT 0.05 0.01 0.05 0.25 0.25 0.25 0.01 0.25 0.25 1.25 1.25 0.05 0.25 0.25 0.25 0.25 0.05 0.25 0.25 0.25 0.05 0.05 1.25 0.01 0.10 0.01 0.05 0.01 0.01 0.25 0.05 0.25 0.25 0.05 0.01 0.25 0.25 0.05 0.10 0.05 0.25 0.25 1.25 1.25 0.01 0.25 0.05 0.05 0.10 1.25 ISC 80 78 76 80 80 80 77 76 80 78 80 82 80 78 80 80 8O 78 77 78 76 80 78 8O 80 78 80 80 80 80 78 80 78 77 8C 80 76 82 80 77 78 80 78 80 8O 80 80 78 80 ID 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 103 100 001 001 001 UPPER I... 7‘ I 7‘ + mm!‘-)O~NO~0‘OC\O\U~IK~IO‘t‘UILNO‘L‘OU‘ILflflfl ~me~O~LrJO~O~wOCONVVOOOONQONN:AOO bbemmM U1 hmbmbrupbmaomwaoommmwwowbhothWObc-boo—so-aammwuw-qbvo bb-‘N-‘NPO-NFL/4L4bW‘Jde-b-bw-‘dHUMUJWW—h“[\SLNUUJLHLNPJUJNNNlNNNNUJNN~J LOVER L. 7‘ I 7‘ + com—bom-bomocrmmmms~mmo~b~ommwomo~o~ruo~o~uomVN-Voooo-aoo-a—buoobbromm—q bW-‘b-‘S‘UINJ‘UIO—smdo~15bdeN-fiCDNWWNWNRIUIOMINMWMOMOO-‘C‘NNNO‘UUO‘ WWOWOWJ‘OWJDJN-‘PNNNJ-‘WNDNO8‘L‘J‘O##Nkflblblt‘hbbdfd-9M5‘MLNLN3‘MNN 231 OBSERVED (CM-1) 2361.400 2361.577 2361.919 2362.276 2362.583 2362.934 2363.113 2363.362 2363.449 2363.774 2364.110 2364.424 2364.480 2364.757 2365.118 2365.823 2366.165 2366.482 2366.541 2367.302 2367.508 2367.821 2368.048 2368.139 2368.387 2368.747 2369.534 2369.534 2369.629 2369.877 2370.125 2370.333 2370.785 2370.851 2370.912 2370.960 2371.121 2371.183 2371.246 2371.301 2371.481 2371.554 2371.612 2371.783 2371.882 2372.119 2372.235 2372.467 2372.552 2372.656 OBS'CALC (CM-1) 0.023 '0.009 ‘0.014 ‘0.010 '0.001 0.000 -0000} ‘0.007 0.009 0.004 0.001 0.004 0.004 0.018 -0 .009 -0.017 0.000 -00011 0.001 ’0.007 0.000 0.003 ‘0.004 ‘0.024 '0.001 '0.016 0.006 “0.006 “0.001 -0001. 1 -0.025 “0.009 “0.004 ‘0.004 0.001 '0.008 0.005 .00005 0.001 '0.002 -00015 0.003 HEIGHT 0.10 0.01 0.05 0.25 0.25 1.25 0.10 0.10 0.25 0.25 1.25 0.05 0.01 0.25 1.25 1.25 0.25 0.01 0.05 0.25 0.01 0.01 0.25 0.25 0.25 0.25 0.01 0.01 0.01 0.10 0.01 0.05 0.25 0.01 0.01 0.01 0.25 0.01 0.01 0.01 0.05 0.05 0.10 0.25 0.05 0.25 0.10 0.25 0.05 0.25 ISO 76 80 78 80 80 78 77 80 80 80 78 80 76 78 76 80 78 76 8O 80 80 80 80 80 78 76 80 78 80 78 80 80 80 80 80 80 78 82 78 78 80 82 80 78 80 80 78 78 80 80 ID 001 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 100 001 100 100 001 100 100 100 001 001 100 001 100 100 001 100 100 100 100 100 100 100 001 001 100 001 100 001 100 100 100 a) .3 ...—aibm(D0Jadbsntflw‘o.bfflgq\lln\uOPMlN8‘U1LN‘JJNN‘JJI‘J'UWO‘NNWO‘OfibeNNM‘JI—DOOCOOJ -b-3 mmcsbbbubmumbbwmbmmpaaaa—n-a-aod-AO-a-on—I—htNONNNMut/Juuo bmb OO‘WKJ‘MVIOOOONMCaCDNW‘JII‘JU’I3‘9Nt‘J‘I‘JNNNNFUNNFNNNbWNNNfibbN'UUT“8‘3‘ «.3 A .b-LCanO-'llUJbU'ILNfU\Ot‘kflN\l'flfl)\OWWNWWNNdawddWO—b-‘WO‘O##9VVNU‘Im-cb0000m ..5 ..5 LOHER L. 7‘ I K 4. bJ‘WWMWOANOdw-JNAbO-5UJOONQONNOAdo—fi-‘NO—b-‘NU‘NNNNNNUWMWfiU‘ \I‘JO‘O‘OO‘UJUJUJUl—bD‘LAlN-J'blU—bOUJm-JLNU'I—bnbaALA-DAtdm-b-bLNWO‘U-IMMMMMUIWO‘MMU! 232 OBSERVED (CM-1) 2372.895 2372.991 2373.072 2373.302 2373.909 2374.260 2374.694 2375.028 2375.202 2375.473 2375.840 2376.031 2376.296 2376.528 2376.639 2376.639 2376.741 2376.868 2377.012 2377.012 2377.095 2377.391 2377.391 2377.472 2377.563 2377.873 2378.074 2378.211 2378.211 2378.405 2378.553 2378.923 2379.081 2379.081 2379.306 2379.423 2379.529 2379.529 2379.635 2379.772 2379.772 2379.895 2379.895 2380.310 2381.296 2381.644 2381.824 2382.004 2382.139 2382.476 OBs-CALC (CM-1) '0.009 -00001 ”0.006 '0.006 -0.005 -00011 0.003 “0.003 ‘0.005 -0001“ '0.006 '0.004 0.000 -0.011 ‘0.001 -00003 -0.006 0.003 '0.007 -0000? 0.003 0.002 ‘0.004 0.002 -0.003 0.001 -00010 “0.004 '0.002 0.007 ‘0.004 0.010 0.0110 0.004 0.000 0.013 0.010 ‘0.004 0.005 0.000 -0000? '0.001 0.001 ‘0.001 0.007 0.004 HEIGHT 0.05 1.25 0.01 0.05 1.25 0.25 0.25 0.01 0.01 0.05 0.25 0.25 0.05 0.25 0.05 0.05 0.25 1.25 0.01 0.01 0.01 0.01 0.01 1.25 0.25 0.25 0.25 0.25 0.25 0.25 0.10 0.25 0.05 0.05 0.01 0.05 0.10 0.10 0.05 0.01 0.05 0.01 0.05 0.01 1.25 1.25 0.05 0.25 1.25 0.01 78 78 77 80 80 78 8O 78 77 80 78 77 80 80 80 80 82 78 78 78 80 76 76 78 82 80 80 80 78 78 78 80 4“ v". 76 8O 80 80 a U 76 78 80 73 78 77 80 78 77 76 80 78 ID 100 100 100 100 001 001 100 100 100 001 001 001 100 100 001 001 001 100 001 001 001 001 001 001 100 100 100 103 100 100 100 103 100 100 001 103 100 100 100 103 100 100 100 100 100 100 100 100 100 100 (— mo bx:bmpmmpboa-honmammow‘omowombebpbmbmbowOWNOmflkn\n_§ (J‘I'UO‘ UPPER x I x + ANA-O.AO“ORIONNNONbUJNN’LNIURJW‘NULNLNINbNNm-JN"bNO*NON4033‘HNWUW J~iJO~lV0~bOfibbl-‘IUI‘UI‘N‘VCPO‘#0411340‘dos40*#MWOUJMWbMMMWMWWJ-‘O‘LHMUJUO‘ L. UldWiUVIMVLHMWMNWWN-DCNOO‘UO‘OO‘N‘OIU‘ONOWWWOWWWWMPWO‘DO‘NO‘OWVWU!“ LOWER 7‘ I K 4. (DOOdOOOOOOONLNONUJIMONNONNNNNNI’UJ‘fi-‘oN-DN4fi-h-aN-haa—hoxja—saab mgm-Amw\lwmwzn-aaw-aoousomuovmo~40VOVmNNuNNNmNbNO~£~O~N~bLAbO~J~bw 233 OBSERVED (CM-1) 2382.651 2382.899 2383.271 2383.404 2383.466 2383.720 2384.033 2384.340 2385.237 2385.363 2385.581 2385.757 2385.887 2385.998 2386.090 2386.276 2386.346 2386.458 2386.529 2386.529 2386.712 2386.836 2387.401 2387.568 2387.733 2387.907 2388.079 2388.659 2390.053 2390.129 2390.129 2390.420 2390.481 2390.481 2391.044 2391.220 2391.391 2391.465 2391.595 2391.595 2391.758 2391.980 2392.120 2392.255 2392.317 2392.393 2392.600 2392.748 2393.041 2393.111 OBS'CALC (CM-1) 0.003 0.004 ‘0.008 -00016 ‘0.008 “0.009 0.00“ -00002 0.003 0.004 “0.003 -0.001 0.012 0.001 '0.002 0.000 '0.010 0.001 -0.001 0 .007 -00008 0.007 0.001 ’0.002 0.013 0.006 0.012 -00005 0.000 '0.009 0.001 0.001 ‘0.002 0.006 0.003 “0.012 0.003 0.000 -0.008 “0.008 ‘0.003 -O .006 -0000? 0.002 0.013 0.001 HEIGHT 0.01 0.25 1.25 0.25 0.01 0.01 0.01 0.05 0.25 0.25 1.25 0.05 0.25 0.25 0.05 0.05 1.25 0.05 0.05 0.05 0.25 0.25 0.25 0.01 0.25 0.10 0.25 0.01 1.25 0.01 0.05 0.05 0.05 0.01 0.25 0.25 0.10 0.05 0.05 0.01 0.25 1.25 0.05 0.10 0.05 0.25 0.01 0.25 0.01 0.25 ID 100 001 001 100 001 100 100 001 100 100 100 100 100 100 001 100 100 100 100 100 100 001 100 100 100 100 100 100 001 001 100 001 001 100 100 001 001 100 001 001 001 001 001 100 001 100 001 100 001 - 100 uh A $\OO‘OL~IOxN‘OtNU‘IO'flknm\nU1O~U10~\lmo‘b-x3L~OOU'IKH~lOO~V\INI‘O~0\JVO‘OL‘b-t‘ulb$~w0001vu1 A.) #01114 P'NJ-‘h’ f-NU-J'bNUJLNhlnlthth~5R1~DONN«ANObAideLNNfUWNNMLNWMMLNUthNA 1 aminodOdU‘AWO-a‘flflkflwumww\lmU'IUJVLNVm-OVO‘V‘IMUIW‘JNWV‘JNNNOI‘UNOVOC‘b ..8 A {MCDOVONOIVONb‘Olvt-be‘VIS‘UIOC‘MWOvLNOODNOOO‘VNV‘O‘ON‘O‘OUMWNMMNOa-hb ~. A LOWER K- K+ L. thNNdN—l-lU—ONN—bNNMMdUl-fiéflé-‘o‘N-‘dN-fib-fi-‘A-‘é—D-‘é-bfilNNNNNNUJOON O‘O‘ONNVNNNNNNNNNNkoObJ‘NO\Nm$‘OOVOO‘O‘O‘ODODOmm-‘a-I-baa—bm—Ddu 234 OBSERVED (CM-1) 2393.243 2393.417 2393.815 2394.010 2394.401 2394.655 2394.997 2395.112 2395.355 2395.548 2395.741 2396.394 2396.722 2397.075 2397.075 2397.248 2397.444 2397.636 2397.841 2398.904 2398.904 2398.972 2398.972 2399.042 2399.174 2399.174 2399.301 2399.410 2399.474 2399.614 2399.667 2399.800 2400.166 2400.336 2400.517 2400.696 2400.916 2401.274 2401.514 2401.573 2401.653 2401.843 2401.949 2402.034 2402.142 2402.202 2402.348 2402.839 2403.171 2403.524 OBs-CALC (CM-1) 0.012 0.010 0.017 0.002 0.002 0.001 -00005 0.001 -0.002 0.006 0.003 ‘0.004 0.000 0.000 0.010 -00002 0.003 '0.007 -00008 '0.002 0.012 -0.010 0.002 0.004 0.003 0.007 -00004 -0.010 0.001 -0.004 -00003 ‘0.001 0.000 0.003 -00001 0.004 '0.007 ‘0.001 0.009 0.000 0.011 “0.001 '0.002 0.004 HEIGHT 1.25 1.25 0.25 0.01 0.10 1.25 0.25 0.10 1.25 1.25 1.25 0.01 1.25 0.05 0.05 0.01 0.01 0.25 0.05 0.01 0.01 0.01 0.05 0.25 0.25 0.05 0.25 0.25 0.01 0.01 0.25 0.05 0.01 1.25 0.25 1.25 0.25 0.25 0.10 0.25 0.10 0.25 0.25 0.01 0.01 0.01 0.05 0.10 1.25 1.25 78 78 76 80 80 82 80 76 78 77 76 82 80 80 78 77 78 77 76 80 8O 82 80 80 80 80 80 80 82 77 78 80 80 77 78 77 80 78 80 80 76 78 78 77 77 76 76 82 80 80 ID 100 001 001 100 100 100 100 100 100 100 100 100 100 001 100 100 001 001 001 001 001 100 001 001 100 001 100 001 100 001 100 100 100 100 103 100 100 103 100 001 100 100 001 100 001 100 001 100 100 103 UPPER c. 7‘ I 7‘ 4. ...} 5:)c~b<38-01)t~ow>C>0Mfl~uI>UHwkn0>DCDP~ ..5 mr~J"~)rom.¢LJ-a—au-samomb‘flbsrlldt‘thbthNNgthLQNNIANLNO—AN-fiowwwmmbfvlfi LN‘n‘fltNUJ'JLNUIVLN‘I‘I‘JVOI)N1NT‘J‘~J‘ANN‘O\')~00‘~JNN\IIU$‘~L‘Nkbt‘offlomONNNNCfi-flo-fi \AKJ‘JWU‘IVO‘O‘V‘AONOO OOVIOV'I‘OO'JI LOUER ‘— K I K ... A .3 ...-8 1a ndt~bwuru05hibcfithw$C>tflC>awsufiuvo-4-bo«Ac:~aflLa-aoaAHALA_6UHNLNLnqu~0gn_saha.3~qo-qc) -.b ...-I 4‘00th‘U‘WD14‘U'IO‘Vl'DOC‘MF‘OUIFb-de-‘11MOUJLNO!N\nmwmmmmflflomw5b¥‘mwmw NUIMNDJ—D#J-fiUJJ—S-i-A-mew-émwwaANAMl/INNUJNNWNRIMNOOOOOMbi‘bNWNw 235 OBSERVED (CM-1) 2403.978 2404.290 2404.353 2404.844 2405.301 2405.458 2405.554 2405.880 2405.936 2406.100 2406.100 2406.244 2407.006 2407.231 2407.355 2407.523 2407.588 2407.707 2407.893 2408.074 2408.277 2408.689 2408.824 2409.268 2409.473 2409.615 2409.831 2410.147 2410.513 2410.622 2410.765 2410.892 2410.960 2411.288 2412.570 2412.765 2413.254 2413.348 2413.485 2413.607 2413.726 2413.856 2414.061 2414.125 2414.191 2414.274 2414.274 2414.466 2414.660 OBS’CALC (CM-1) 0.002 0.006 0.005 0.005 0.003 0.002 '0.003 -00019 0.005 -0.004 '0.001 ‘0.001 '0.007 '0.008 0.004 0.002 ‘0.003 0.003 0.017 '0.004 0.010 0.002 0.004 '0.006 ‘0.001 0.001 -0.003 “0.004 0.014 0.002 '0.004 0.006 “0.004 0.002 -00004 0.006 '0.006 0.009 -00022 “0.006 0.000 “0.015 0.004 '0.008 0.004 0.003 0.002 HEIGHT 0.25 0.25 0.05 0.05 0.25 0.25 0.25 0.10 0.05 0.10 0.25 0.25 0.25 0.25 0.25 0.01 0.05 0.05 1.25 0.25 0.01 1.25 0.05 0.05 0.25 0.25 0.25 0.01 0.01 1.25 0.05 0.25 0.25 0.01 0.05 0.25 0.10 0.05 0.25 0.25 0.01 0.05 0.01 0.05 0.05 0.25 0.10 0.05 0.05 1.25 ISO 78 80 76 78 80 77 76 78 82 8O 8O 80 80 82 80 80 82 78 78 80 80 78 76 76 80 80 78 78 99 L; a. 80 80 80 78 78 76 80 80 80 80 80 80 78 78 80 76 77 80 '79 C \- 77 78 ID 100 001 100 001 100 100 100 001 001 100 001 100 001 100 100 100 001 100 100 001 001 001 001 001 100 100 100 100 100 100 001 001 100 001 100 100 ‘00 100 001 001 001 001 001 100 001 001 00‘ 100 100 001 UPPER c. 7‘ I 7‘ + ... A «I «I ..5 ..5...) moomoowooooompomoomm» .3... “1100-5 ..5 ..5 ~O€~000 \AUIUIUIUV'QLHVVNIOVNIO‘NObN’flfl) UlU‘ILNIUIUI-FUIFPUINUIbNLdNb‘IJNO-JhAA-DvIAJAAUIhJNUIN-blfllvt‘l‘fi-FUWbHHbNHJ8‘ J—h .a OOtleubNb4‘bbbbfibL‘d‘Ou)'Tiow-aomoamo'3amruoamrJ-Ioorucxwuo...ur)...»:fltguoo ...) A .A 8‘“4‘bbDPOOVJ‘WO‘O‘\J10\U1L4100\V03'1J‘0m‘0bOO‘OAbKDO4‘OU1NOUIU1UIMNLMU1NUIU11‘b4 ...) c—l LOWER J K- K+ PfiWWW'NWWlMS‘N-I‘LHNJ‘NAMNON-AONO#‘NO'DbNNbNKfl-‘NMMWWNIUWNIVUNNIU 4a-JA'JUI-JLNIlNlNUI‘IJW'NLN‘NmtjU‘IV‘JTUOV‘OON‘O-fio0‘00‘O—DN‘O-JNNN—DNNANNNN‘O 236 OBSERVED (CM-1) 2414.799 2414.859 2415.075 2415.438 2415.570 2415.633 2415.788 2415.900 2415.996 2416.161 2416.350 2416.554 2417.018 2417.079 2417.292 2417.439 2418.794 2417.832 2418.025 2418.430 2419.079 2419.315 2419.443 2419.585 2419.667 2419.789 2419.851 2420.056 2420.133 2420.364 2420.436 2420.644 2420.644 2420.879 2421.217 2421.456 2421.570 2421.570 2421.655 2421.762 2421.947 2422.105 2423.231 2422.316 2422.477 2422.840 2423.434 2423.996 2424.349 CBs-CALC (CM-1) 0.007 0.003 0.018 0.007 '0.009 0.003 “0.009 0.001 0.004 0.001 0.009 0.014 0.005 “0.006 0.011 “0.002 '0.003 0.013 0.012 0.001 0.006 0.003 -0.00S O .003 0.001 0.003 0.002 O .016 '0.005 0.009 '0.002 0.016 0.010 ‘0.014 0.006 0.007 ‘0.015 0.005 -0.006 0.023 ‘0.006 “0.008 0.014 0.006 “0.009 '0.005 0.006 0.002 HEIGHT 0.05 0.01 0.05 0.25 0.05 0.05 1.25 0.01 0.01 0.25 0.25 0.25 0.10 0.01 0.05 0.01 0.25 1.25 0.25 0.01 0.25 1.25 0.10 0.10 0.01 1.25 0.25 0.01 0.10 0.25 0.05 0.25 0.05 0.05 0.05 0.05 0.25 0.01 0.05 0.10 0.05 1.25 0.25 1.25 0.01 1.25 1.25 0.25 1.25 0.25 IS? 78 ’ I 76 82 80 80 80 78 78 78 77 76 80 82 80 78 80 80 78 77 A“ A! - Eo 80 82 q I J 78 80 77 80 78 80 80 80 77 80 80 77 80 78 76 77 q I 77 q (8 r—\ I .9- 8O 77 8C :79 ID 001 001 001 100 100 100 100 100 100 100 100 100 100 001 001 100 001 100 001 001 100 100 100 103 100 100 100 100 100 100 001 001 001 100 001 100 001 100 100 001 100 100 100 001 103 001 001 001 100 100 G... *4 A ...) ~O~J-qo'nth1-xj1nm0‘10110~OOOOO~OVD~1JO~O~O~OO$~0~OJPO~AO~PU! UPPER K I K ... A 4.; N01fl'3414.aw-bm\n‘\lOMWQOWVOUILAV‘OVNONN‘O-QNNANNO -4.. Ta “)0 ..5 C) .3 N 10 sqmouu‘uoo.‘ 3.3a-.04¢~m#\nmwt~wbm>4.§'flbAabubdwb-J-ARINNHMNOWMOMNU! A 7).; "bO—i-7DIU J u). as O U) LOHER :— K I 7‘ ... —I «b MOOOMPmbO‘V‘QmO‘sHVNV\IWOW'QWWW‘OD‘W‘OOMMOMM“ [UNNhJNN-i6‘0(”3‘NO-m#ONI'flbNOIEOOOO'JI—lOOOW-J‘O'JLNJ DIVOIUI-‘OU1|VONONCJIUMI08‘8‘MWMWO’1U4-5LN«I>-D~O‘.N-3~5UJ1‘~9«¢UIM-§ObddOJ‘fibd-P 2 19 1 20 19 1 11 10 9 11 11 10 9 11 11 10 9 5 0 9 9 8 5 8 7 9 9 7 5 8 5 237 OBSERVED (CM-1) 2424.719 2425.446 2425.519 2425.725 2425.889 2426.029 2426.090 2426.200 2426.282 2426.390 2426.562 2426.856 2427.221 2427.293 2427.293 2427.594 2427.594 2427.662 2427.662 2427.779 2427.869 2427.869 2427.990 2427.990 2428.069 2428.069 2428.132 2428.250 2428.898 2429.018 2429.209 2429.421 2430.655 2431.042 2431.520 2431.680 2431.875 2432.023 2432.142 2432.383 2432.487 2432.572 2432.854 2433.444 2433.745 2433.988 2434.045 2434.108 2434.294 2434.347 OBS‘CALC (CM-1) 0.000 0.006 -00004 -0.007 -0.012 ‘0.003 0.003 0.000 ’0.014 '0.004 0.006 0.003 O .011 0.003 0.006 '0.004 -0.001 '0.007 -0000? 0.003 0.006 0.004 0.016 0.011 0.008 0.006 -00003 0.005 0.006 0.007 0.002 O .011 0.004 0.002 '0.012 0.031 -0.032 -0000?- ‘0.006 0.001 -0.002 0.005 0.008 ”0.030 -0.001 0.001 ‘0.007 ’0.006 0.000 0.001 WEIGHT 0.01 0.05 0.05 0.25 0.05 0.01 0.25 0.25 0.25 0.05 0.05 0.25 0.01 0.25 0.05 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.05 0.25 0.05 0.05 0.01 0.05 0.25 1.25 1.25 1.25 1.25 1.25 1.25 0.05 0.25 0.10 0.10 0.25 0.25 0.05 0.05 0.05 0.01 0.01 0.25 0.01 0.05 0.01 ISO 76 80 82 80 80 80 78 80 78 78 78 80 78 80 80 8O 80 78 78 80 77 77 78 78 76 76 78 80 82 80 80 78 80 78 80 80 78 80 82 78 80 77 78 80 82 80 80 80 80 78 ID 100 100 100 100 100 100 100 100 100 100 100 100 100 001 001 001 001 001 001 100 001 001 001 001 001 001 100 100 100 001 100 001 100 100 001 001 001 100 100 100 100 100 100 100 001 100 001 001 001 100 UPPER ‘— K I 7‘ + 4..“ ...-Ion) «I M. -.I A ab 04-.) ..L-b\nU'|U'lU\m\J‘-|‘OUJ-“OLN—§‘O‘J‘VLN‘ON‘ON-‘NAJOdidNNNIV§¢§5‘8‘6‘6‘fifit‘m ...) 5.!100-‘1n-athN0anxoawwmooVm'xlxlwflxho .3 p b . 1 0.4.4.)bUIMUILNLNUJ‘flflde—D'JAQL'I-Jd-bbinLhINUJNNNONO“Pt-FWMMkkoitd‘l‘b'fli‘N .2 JN ‘ LOWER L. 7‘ I 7‘ ... 4* A“ A OxLIIU‘I‘JINJVVOO-flmo~01)O~Ofl~1j)C‘O-F‘VObO.de"JL14'UWUIM\flVC‘VO“JDO“)0‘O~m .3 .3 «A J...‘ an. ..s JQ‘NMNNNNb4‘15“beOUNO'iflhJOmO‘lAIIUOO'.NOJIAIOlIJO-I|ON ¢JQALJBJUM1AMUINL41NV q) O‘NOObfiPJ‘wwxflbwPct-Jbfid'ékfl-JAL‘INO‘MNKHNQOaka—3.4“bbthJ‘U‘bLflt‘S‘Wl‘N a—A-A-h 4.3.41 O-Nww 238 OBSERVED (CM-1) 2434.441 2434.763 2435.071 2435.139 2435.339 2435.448 2435.609 2435.861 2435.980 2435.980 2436.176 2436.983 2437.356 2437.743 2437.946 2438.181 2438.303 2438.566 2438.649 2438.933 2439.015 2439.091 2439.275 2439.410 2439.639 2439.713 2439.764 2440.111 2440.354 2440.472 2440.654 2440.726 2440.839 2441.029 2441.117 2441.213 2441.298 2441.434 2441.691 2441.831 2442.037 2442.239 2442.470 2442.800 2442.975 2443.632 2443.873 2444.233 2444.685 2444.991 OBS-CALC (C8-1) 0.006 -0.008 0.018 '0.013 -0.015 0.003 0.004 0.011 0.003 0.005 0.006 0.005 '0.001 “0.004 -00001 ‘0.014 “0.006 ‘0.003 ‘0.002 0.007 0.005 0.002 0.000 ‘0.007 0.004 '0.306 0.003 ’0.002 0.005 0.000 ‘0.003 ‘0.001 0.011 0.012 ‘0.003 -0.018 -0.001 0.010 0.006 0.012 0.011 0.003 0.003 0.006 0.019 “0.022 '0.004 -0.002 0.001 WEIGHT 0.01 0.25 0.01 0.05 0.05 0.05 0.05 0.01 0.25 0.25 1.25 0.25 0.25 0.25 0.25 0.05 0.01 0.25 0.05 1.25 0.05 0.01 0.10 1.25 0.05 0.01 0.05 1.25 0.05 0.05 0.01 0.05 0.05 0.01 0.10 0.05 0.01 0.05 0.25 0.01 0.01 0.01 0.25 0.25 0.01 0.25 0.00 0.25 0.05 0.01 ISO 78 80 80 78 77 78 80 76 78 80 82 80 78 77 80 8? 80 80 80 78 82 80 80 78 80 q I- 20 82 82 82 80 8O 80 78 78 so 80 75? 75 77 76 80 78 77 80 82 80 80 76 1‘0 001 001 001 001 001 001 100 001 100 100 100 001 001 001 001 100 100 103 100 001 100 100 100 100 100 100 100 100 001 001 001 00‘ 001 001 001 001 100 001 100 001 001 001 100 100 100 001 100 100 100 001 ... N ..s 000 I ,. D—b ( .3 .s ....ha-I-ah 4.3-8 ~o-ango.a:)a.a.sa ‘OWU'IJO\0(JO’D‘(J‘.’1 '0 O ‘40 0b'fl‘x—haabu'WIFL‘bmbkflbNUIVUO‘~3IV-JONO'J~bObO15‘i‘b‘flbNC)I‘JfULflMMUWO~MWO~‘N «b a. 6.. 4.. -L Jc...b-§~b 4UI'U'I'JI-‘1NA‘JN")IU‘\I‘O.U‘OIV‘0‘. J-J‘NU'IL'JUI'IJUIC‘bm-fi4‘950-40070110'30‘m1nmmwm0tfl3 a) w. ama.a (— ab J-Jgh—h «.344 «l o\oc>o<3<)~¢o..~¢e. 4..) 000.140 NNb‘Jfl) 4“an [manaom LOHER 7‘ I 7‘ + U1.\\JI£‘Aa-dealflm‘flm1flmww\flflfl\l‘4~‘J-‘4U'IJ-‘JP‘J'IL‘L‘8‘UJJ‘NONN4‘4‘PFPM4‘IUU'IIU —b ..b umbumwummm\o-¢N~OU‘IV~JNNN-J~ON-o .... ~§aI—I-§~§ .hONbNhN“ wfi .¢.a n1b3>bwanoc>uman~omxmsm.4000 ..5 239 OBSERVED (CM-1) 2445.294 2445.521 2445.662 2445.761 2445.924 2446.111 2446.476 2446.659 2446.845 2447.188 2447.291 2447.395 2447.458 2447.676 2447.836 2447.970 2448.211 2449.047 2449.447 2449.577 2449.648 2449.790 2449.868 2449.968 2450.148 2450.233 2450.520 2450.596 2450.713 2451.110 2451.183 2451.359 2451.559 2451.614 2451.744 2451.962 2452.152 2452.348 2452.648 2452.750 2452.995 2453.085 2453.560 2453.777 2453.999 2454.166 2454.962 2455.206 2455.352 2455.450 OBS-CALC (CM-1) '0.003 0.012 0.004 ‘0.003 0.006 0.001 0.904 ‘0.001 '0.006 -0.001 0.000 '0.010 '0.001 0.012 ’0.031 “0.004 0.017 0.014 0.021 0.009 '0.019 0.020 0.023 “0.003 '0.018 0.009 0.001 0.016 “0.007 ' .007 0.022 0.006 '0.019 0.020 -00078 0.028 0.004 “0.014 “0.008 “0.003 “0.004 0.013 0.004 0.017 0.004 “0.012 0.016 HEIGHT 0.05 0.25 1.25 0.01 0.25 0.10 1.25 0.05 0.05 0.05 1.25 0.05 0.01 0.05 0.01 0.01 0.25 0.05 1.25 0.05 0.25 0.01 0.25 0.25 1.25 0.01 0.05 0.05 0.01 0.05 0.25 0.05 0.25 0.01 0.05 0.01 0.00 1.25 0.05 0.01 0.10 0.05 0.01 0.01 1.25 0.05 1.25 0.25 0.01 0.01 ISO 80 80 78 82 78 80 78 77 76 80 80 80 80 78 80 80 78 80 78 80 77 82 76 s It. 80 82 78 80 77 80 80 8o 78 82 78 8o 76 78 82 so 80 80 77 80 30 78 80 72 7g 80 ID 100 100 100 100 100 100 100 100 100 100 001 001 00‘ 001 001 00’ 001 001 001 100 001 100 001 100 100 100 100 100 100 100 100 001 100 100 001 100 001 100 100 100 100 001 100 001 001 001 00‘I 001 00‘ 100 UPPER J K- K+ 9 4 5 16 1 16 8 7 2 16 1 16 15 1 14 14 3 12 15 1 14 13 3 1O ‘2 5 8 12 5 8 11 5 6 12 2 10 ‘0 6 4 ‘2 2 10 10 4 6 10 4 6 5 3 3 15 2 13 13 4 9 13 4 9 7 5 2 7 5 2 9 7 3 13 2 11 14 1 13 12 3 9 15 1 15 12 3 9 11 5 7 19 1 18 8 8 0 6 4 2 1R 1 18 6 4 2 10 6 5 16 3 14 15 3 12 15 3 12 7 4 4 6 3 4 9 8 1 6 3 4 6 3 4 14 2 12 14 2 12 ‘5 2 14 14 2 12 16 0 16 ‘6 0 16 17 2 15 LOHER J K- K+ 8 4 4 15 0 15 7 6 1 15 0 15 1 2 13 1.3 2 11 14 213 12 4 9 11 4 7 11 4 7 10 6 5 11 2 9 9 7 3 11 2 9 9 4 5 9 4 5 4 1 4 14 312 12 5 8 12 5 8 6 4 3 6 4 3 8 7 2 12 310 1 1 12 1.1 3 8 14 1 14 11 3 8 10 5 6 17 0 17 7 7 1 5 2 3 17 0 17 5 2 3 9 6 4 15 2 13 14 4 11 14 4 11 7 1 7 5 0 5 8 8 0 5 0 5 5 o 5 13 2 11 13 2 1 14 2 13 13 2 11 15 015 15 0 15 16 3 14 240 OBSERVED (CM-1) 2455.564 2455.626 2455.737 2455.943 2456.379 2456.952 2457.081 2457.712 2458.361 2458.704 2459.972 2460.122 2460.504 2460.504 2461.020 2461.406 2462.597 2464.288 2464.668 2465.432 2465.756 2466.113 2466.304 2466.404 2466.499 2466.756 2466.896 2467.052 2467.124 2467.212 2467.330 2467.454 2467.843 2468.094 2468.816 2469.192 2471.012 2471.234 2471.503 2471.591 2471.948 2472.033 2472.402 2472.589 2472.799 2472.973 2473.363 2473.485 DBS-CALC (CM-1) 0.006 0.031 ‘0.026 0.005 0.004 "0.003 ‘0.034 '0.011 -00040 -0007? -0.002 0.016 -0 .001 0.009 '0.005 -0.015 0.000 0.006 “0.013 -0.001 ‘0.004 -00002 0.015 '0.908 “0.001 ’0.009 0.012 -0.005 0.007 '0.002 -0.003 ‘0.CO9 -0 0032 0.005 '0.019 '0.002 “0.003 0.007 0.012 0.004 -00031 0.007 ‘0.007 ‘0.003 '0.012 0.019 '0.004 0.009 0.018 0.015 HEIGHT 0.01 0.05 0.05 1.25 1.25 0.25 0.01 0.25 0.01 0.05 0.01 0.05 0.01 0.05 0.25 0.25 0.25 1.25 0.25 0.01 1.25 1.25 1.25 1.25 0.25 1.25 0.01 1.25 0.05 0.25 0.10 0.10 0.25 0.01 1.25 0.01 0.25 0.01 0.25 0.10 0.25 0.25 0.25 0.01 0.05 0.05 1.25 0.25 0.05 0.01 159 77 82 8O 80 80 80 76 80 6 L .80 80 80 78 78 80 78 80 80 80 78 80 78 80 80 80 80 80 78 80 80 80 77 78 76 80 80 80 78 80 82 80 80 78 82 80 80 78 80 78 n (D ID 001 100 100 100 100 100 100 100 100 100 100 001 100 001 001 001 001 100 100 100 100 100 001 001 00‘ 001 001 001 001 100 100 001 100 001 001 100 100 100 100 100 001 100 100 001 001 001 001 001 001 100 L. ..5 ...I -§.b_b-bbb p1»u0mwu u~10wflknn~O-4-90 1‘ r0 «.71 *0 C'.) ‘0 UPPER 75 I 7‘ ... ...)... iUfUY‘JWtNUUJW-“UIbO‘O‘PO‘ ...-b A -\JUJ-\JLHOOmtnuJObNhNVOD‘OmO‘OOV-Jtflmmmdvam'fi—bawo00s\nmmw4‘3‘3‘V001N0 LNanvud)b-b1>$~ 0 LA .3. -8... A ..5 ...) OCDWJO 9- ‘J'QOOQWOPU‘O LOWER K- K+ 6 5 7 3 6 5 6 5 7 3 3 12 5 10 3 4 1 4 2 4 2 I. 2 4 5 3 5 3 5 3 3 10 1 14 1 16 2 15 5 8 1 14 1 16 5 8 5 6 5 8 4 13 1 16 7 4 8 1 8 1 8 1 9 3 9 C 9 0 9 C 4 3 4 3 4 9 2 13 4 9 0 17 2 5 8 3 8 3 8 3 2 17 6 3 2 17 6 3 3 12 241 OBSERVED (cm-1) 2473.800 2474.037 2474.196 2474.404 '2474.470 2474.530 2475.624 2476.167 2476.167 2476.390 2476.759 2477.120 2477.185 2477.497 2477.799 2478.457 2478.631 2478.716 2478.716 2478.832 2479.018 2479.094 2479.212 2479.575 2479.638 2479.775 2479.869 2480.416 2481.235 2481.636 2481.805 2482.106 2482.770 2483.069 2483.426 2483.644 2484.038 2484.578 2484.683 2484.966 2485.092 2485.295 2486.032 2486.416 2486.611 2488.82? 2483.971 2489.153 2489.262 2489.985 OBS-CALC (CM-1) 0.002 -0.009 0.000 0.936 0.003 0.011 0.003 0.016 0.005 0.000 0.018 0.010 '0.002 0.001 0.006 0.005 0.011 0.903 0.015 '0.007 0.012 0.010 0.018 0.076 “0.032 “0.029 0.007 0.009 0.006 “0.010 0.019 ‘0.016 “0.021 0.023 ’0.007 0.014 0.003 0.004 0.010 0.021 0.021 0.029 0.003 ‘0.007 “0.007 HEIGHT 0.25 1.25 0.05 0.05 0.01 0.05 1.25 0.25 0.05 1.25 0.25 0.01 0.25 0.05 0.05 0.01 0.01 0.01 0.01 0.25 0.05 0.25 1.25 0.25 0.01 0.10 0.25 0.01 0.25 1.25 1.25 1.25 0.25 1.25 0.25 0.01 0.25 0.25 0.05 0.01 1.25 0.25 0.01 0.05 0.01 0.25 0.01 1.25 1.25 0.05 ISO 80 80 78 77 78 78 77 80 80 82 30 78 82 80 78 80 80 97 80 80 78 80 78 80 76 78 76 80 80 78 77 80 80 78 76 80 80 78 78 80 80 80 78 77 80 80 78 78 80 ID 001 001 001 001 001 100 100 100 001 100 100 100 100 100 100 001 001 001 100 001 001 001 001 001 001 100 001 001 100 100 100 100 001 001 001 100 100 001 001 001 001 100 001 001 001 100 100 100 100 001 UPPER J K- K+ 17 315 8 6 3 9 4 5 8 7 1 19 1 19 19 1 19 8 7 1 11 1o 2 12 8 5 10 9 1 7 2 5 7 2 5 1010 0 17 4 14 ‘8 21 19 21.8 19 2 18 20 O 20 9 8 1 9 8 2 7 4 4 8 4 4 8 5 4 7 4 4 7 3 4 8 4 4 8 5 4 7 4 4 7 4 4 10 8 2 1O 8 2 10 8 2 1O 8 2 10 8 2 9 6 7. 9 6 3 9 6 .7 12 8 4 1 8 4 7 6 1 19 4 16 1 4 16 19 416 8 4 s 7 3 5 8 4 5 11 11 1 9 8 2 11 11 1 9 8 2 LOWER u 7‘ I ...—4.4.5...) ..5... ...—..5 ..5 'orncn~00wo<>c»<3-so'qcnooxro~qo~ 4 ~04 o-J—omfnma050O~V~00%nu5 ...-b-fil‘filv‘wmCDUIUI‘JIVVVVVNNIUM-‘NNUJNUIOONNIUkO-‘dmmom—I-‘U‘JWW 7‘ 4- cu) .5—2 AQONb—SNMOOI‘JP‘JI‘J‘ Adah—ta Lit/JDb-fi‘lfltd Q'Nlfl\fl‘.flMmLflU'IUIMU1UJNOVVU‘M (NOMIOOOWUIUIUIb 242 OBSERVED (CM-1) 2490.101 2490.257 2490.385 2490.609 2491.005 2491.371 2491.576 2492.115 2492.528 2493.158 2494.241 2494.614 2495.116 2495.588 2495.803 2496.139 2496.582 2496.788 2497.667 2498.173 2498.433 2498.567 2498.666 2498.813 2498.813 2498.949 2499.051 2499.222 2499.642 2499.734 2500.018 2500.310 2500.469 2500.619 2500.808 2501.117 2501.611 2502.970 2503.447 2504.307 2506.063 2506.444 2507.237 2507.590 2507.908 2507.971 2509.022 2509.364 2509.726 2510.070 OBS-CALC (CM-1) 0.019 0.008 '0.003 0 .008 0.012 -0.002 0.007 0.036 0.014 0.014 0.002 -00003 '0.026 0.003 0.050 0.027 0.036 '0.002 “0.020 -0 .005 “0.006 “0.018 -0.001 0.003 0.007 “0.013 “0.010 '0.008 -0 .003 ’0.007 “0.002 -0.011 0.006 0.000 “0.011 0.014 0.029 0.022 0.004 0.005 0.000 “0.004 0.000 -0.003 0.018 0.007 0.014 -0.011 HEIGHT 0.01 0.10 0.25 1.25 0.05 0.05 0.01 0.25 1.25 1.25 0.25 0.25 0.01 0.25 0.01 1.25 0.25 0.25 0.05 0.25 1.25 0.01 0.25 0.05 0.01 0.25 0.05 0.25 0.25 1.25 1.25 1.25 1.25 0.01 0.25 1.25 0.05 0.05 0.25 0.25 0.05 1.25 0.25 0.25 0.01 0.10 0.25 1.25 0.05 0.01 ISO 80 80 8C 80 80 78 76 80 8O 8O 80 7.9 80 80 80 80 78 80 80 80 82 80 80 80 80 78 78 78 76 82 80 78 77 76 82 80 77 80 78 80 82 80 76 8O 80 78 80 80 76 77 ID 001 100 100 001 001 001 001 001 001 100 100 100 100 001 001 001 001 001 001 100 001 100 100 001 001 100 100 001 001 100 100 100 100 100 100 100 100 001 001 100 001 001 001 100 001 100 100 001 100 001 UPPER J K- K+ 11 9 2 11 9 2 9 5 4 9 6 4 9 5 4 8 4 4 8 4 4 8 4 4 3 4 4 13 12 2 13 12 2 13 12 2 8 3 6 9 7 3 8 3 6 8 3 6 10 1O 0 15 10 6 15 10 6 9 4 5 9 4 5 9 4 5 8 3 5 9 9 0 8 3 5 8 3 5 9 9 0 8 3 5 9 9 0 11 8 3 9 9 0 11 8 3 11 8 3 10 6 4 10 6 4 ’0 6 4 ‘3 12 1 13 12 1 13 12 1 ‘3 12 1 13 12 1 9 3 6 9 3 6 8 2 6 9 3 6 9 3 6 8 2 6 8 2 6 8 2 6 8 2 6 LOUER J K- K+ 10 10 8 8 8 7 7 7 7 12 1 12 1 12 1 7 _)-8 —5 ..5... ‘°<30<3C>“MDCUNJN'Q‘JW'QODmeS\b~O~J\Hw V~uxrqoom1400m ...b—l \flhnU1V‘QOVVC)~OO‘4H%L%~00HNLHC>OLDc)OEACDKHVPUhJNHVDJ#WN$fiGHN OCDCDOthJOfURJ ”‘17"VVVVVVNNW’Nr‘JV‘V‘U‘“*WF‘NO‘UO‘O‘WOGO‘Omm-AKJ-qbNdaamwmmm1flmwu 243 OBSERVED (CM-1) 2510.776 2511.079 2511.359 2511.627 2511.921 2512.112 2512.512 2512.711 2512.933 2514.728 2515.038 2515.247 2516.741 2516.959 2517.109 2517.530 2517.773 2519.917 2520.347 2520.519 2520.889 2521.101 2521.262 2521.481 2521.664 2521.878 2521.956 2522.096 2522.723 2522.796 2523.000 2523.235 2523.392 2523.580 2523.948 2524.319 2526.940 2527.415 2527.796 2528.066 2528.299 2529.672 2530.062 2530.177 2530.260 2530.472 2530.579 2530.990 2531.209 2531.435 OBs-CALC (CM-1) “0.001 -0.010 0.015 -00010 0.018 0.012 0.004 0.015 -0.007 “0.031 0.005 0.009 0.016 ‘0.008 0.012 0.010 '0.016 0.014 0.002 '0.009 0.006 0.009 ‘0.009 0.000 0.003 '0.021 0.008 '0.014 0.002 0.002 0.002 0.005 -O.C15 ‘0.024 ‘0.042 “0.004 -0.073 “0.034 '0.036 “0.008 ‘0.005 0.008 ’0.007 0.001 0.008 0.005 0.012 0.023 HEIGHT 1.25 0.05 0.25 0.25 0.10 0.05 1.25 0.01 1.25 0.25 0.05 0.01 0.05 0.05 0.05 0.25 1.25 1.25 1.25 1.25 0.25 0.05 0.25 0.01 1.25 0.01 0.25 0.01 0.05 0.05 0.05 0.05 1.25 0.10 0.25 0.01 0.00 1125 0.00 0.00 0.00 0.25 1.25 0.05 0.05 0.05 0.25 0.01 1.25 0.01 ISO 80 8O 80 77 80 78 77 76 80 78 77 80 76 78 76 80 82 8O 80 78 77 fl ’ U 82 78 77 80 7A 4 s. 77 80 76 77 76 80 78 76 97 ~’. 80 78 77 76 80 78 82 77 76 80 78 77 76 ID 100 100 100 100 100 001 001 001 001 001 001 001 100 001 100 100 001 001 001 100 100 100 001 100 001 001 100 001 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 100 100 001 001 001 001 I 7‘3‘rn‘n' It 1 mmmwwwwL~g~¢~bbmooo~oo~o~0~oo~bbbbbM\n\flm\nr~JNNNMO~VVV‘AMNMU’IOOO 17.1).04VV 54 qwuq\lufimmmmmmmmmo001010OH)0~1)~O~\J 'JVNVbbbbmmJ-‘WWUIUIVIO ‘- ab ..5 03000000000130 .34.) ‘0000 ...—3...)“; mvnoam~o<>o50o<>c>mcnawwrno~oauwcnmwn 9 .‘~‘ LOUER 7‘ I 7‘ ... kg~pna_;ah;—ha.a.bAC)$“#15F‘¢\AUHA\NKHVDJKHVDJNHV00Rh¢~bdw4~§#%>OH3LRUH)LHDHALNUJO wuummmmmmmmmmoooooooomwwuwvwflfluflmmmmmWWWMOOMOOOO04 244 OBSERVED (CM-1) 2532.186 2533.046 2533.423 2533.619 2534.175 2534.586 2534.799 2534.799 2535.017 2535.142 2535.479 2535.671 2536.726 2538.686 2539.060 2539.452 2539.657 2539.870 2541.822 2542.191 2542.575 2542.777 2542.983 2543.125 2543.513 2543.933 2544.148 2544.376 2544.613 2544.980 2545.358 2545.757 2546.257 2546.653 2547.069 2547.281 2547.499 2549.485 2551.191 2551.570 2551.965 2552.175 2552.379 2552.701 2553.104 2553.520 2553.733 2553.890 2554.263 2554.650 DBS'CALC (CM-1) 0.021 0.016 0.009 0.007 -00010 “0.017 '0.009 “0.020 “0.010 ‘0.021 0.002 0.002 0.003 9.006 0.013 '0.001 '0.010 “0.009 '0.007 0.013 “0.005 -0500} '0.001 0.010 0.001 0.004 0.001 0.003 -00006 -0-015 '0.015 -0.016 '0.014 ‘0.011 ‘0.008 ‘0.006 “0.005 0.002 -0.001 0.013 0.007 0.003 0.001 0.010 0.010 0.006 HEIGHT 0.05 0.01 0.25 1.25 0.25 1.25 0.01 0.01 0.05 0.25 1.25 1.25 0.05 0.01 1.25 0.25 0.01 0.05 0.25 1.25 0.25 0.25 0.25 0.05 1.25 1.25 1.25 1.25 0.25 1.25 0.25 0.05 1.25 1.25 1.25 1.25 1.25 0.05 0.01 0.05 0.25 0.25 0.25 0.25 1.25 0.25 0.05 0.01 1.25 1.25 ISO 80 80 78 77 80 82 77 76 80 78 77 82 82 80 78 77 76 82 80 78 77 76 82 M 73 77 76 82 80 78 76 82 8O 78 77 76 80 82 80 78 77 76 82 80 78 77 82 80 73 ID 001 100 100 100 001 001 100 001 001 100 100 100 001 100 100 103 100 100 100 109 100 100 100 001 001 001 001 001 100 100 100 100 001 001 001 001 001 00‘1 100 100 100 100 100 001 001 001 001 100 100 100 €— 11 11 1o 10 10 A 11 11 11 ‘0 1O 10 11 11 11 11 11 1o 10 12 10 971 13 13 1.3 11 11 11 11 12 12 11 11 11 11 11 12 12 10 12 11 11 ‘1 11 11 11 UPPER 7‘ I 7‘ 1+ lUNNKHMMMONOO‘NM‘N‘NW'fimmO‘OOO‘mommU‘MNWUI45“bWJ‘WWN‘JNVVflbJ-‘t‘mm ~0~O~O ‘NJ‘JVVNJ'U \IVOOO?0030(flh1U1m01010101U10‘U1U1V'QO‘VVVVNVNOOOOWMV‘IMWKJIOOO‘fio J 10 1O 10 1O 10 10 10 10 LOWER K- K+ —a.a.-AKNL~JLNWUJOLNU~INNNNNO10‘O~4‘¥‘F-t‘VS‘VV4-Jb-‘4WUJWN1N0OOU’IUIUIU'IU'INNN“b o(Dcuwcnaamcn<>mcno~0~0Nru~domflo~ownooxuxcnaamcnoom~OO~0<50vw-u~rfl~q 245 OBSERVED (CM-1) 2554.853 2555.058 2556.029 2556.440 2556.665 2558.280 2558.671 2559.083 2559.300 2559.522 2561.216 2561.609 2562.038 2563.265 2563.639 2564.036 2564.239 2564.451 2565.189 2565.612 2565.885 2566.033 2566.477 2567.257 2567.619 2567.691 2567.794 2568.094 2568.514 2568.729 2568.963 2569.792 2570.194 2570.599 2572.879 2573.270 2573.669 2573.876 2574.097 2574.892 2575.261 2575.488 2575.664 2577.683 2578.106 2578.331 2578.552 2582.815 2583.204 2583.819 OBS’CALC (CM-1) 0.008 0.007 0.005 “0.005 0.005 0.007 ‘0.009 “0.013 0.001 ‘0.004 0.011 ‘0.007 “0.005 ‘0.007 “0.003 ‘0.014 “0.003 0.036 -00006 0.002 0.023 0.018 0.025 0.003 O .017 0.013 0.012 0.026 0.001 “0.006 “0.009 ’0.010 0.001 0.024 0.012 0.005 0.003 ‘0.001 0.006 0.005 0.001 0.002 0.005 HEIGHT 1.25 1.25 1.25 0.05 0.05 0.25 1.25 0.25 0.25 1.25 0.01 1.25 0.01 1.25 1.25 1.25 1.25 1.25 1.25 1.25 0.00 1.25 0.25 0.25 0.01 0.05 0.01 0.25 1.25 0.25 0.25 0.05 1.25 o 9: ...J 0.05 1.25 0.05 0.25 0.25 0.05 1.25 1.25 1.25 1.25 1.25 1.25 0.05 0.25 1.25 0.05 ISO 77 w I 80 78 77 82 80 78 77 76 80 78 76 82 8O 78 77 76 82 80 80 78 76 80 78 82 77 8o 78 77 76 82 80 78 82 80 78 77 76 82 80 80 7.8 80 78 77 76 82 80 77 ID 100 100 001 001 001 001 001 001 001 001 100 100 100 100 100 100 100 100 001 001 100 001 001 100 100 001 100 001 001 001 001 001 001 001 100 100 100 100 100 100 100 001 100 001 001 001 001 100 100 100 UPPER «8534-5 baan~§JJvh.A hu—I 'AWWNNNNNWWWWNNNN (- N I 7‘ + 1 a N ...; ¢..a~b 84344-»...4-» 5.. NNNNWMNNNNNN-ta... .z N t .5 ....) U11 4‘ .3 .3—3 5 M‘O'VJNb L 4.8;..5...a 3-.....3 .L‘bm;‘w4‘6‘bbm mmb‘bwbmmwmmmmmmuowwwuwbbwhbbbbNNtummmxnb§§be~O~o~O~u1m\nm ~Om1'ut‘IJ-X) O‘OQO‘O'Q‘JVVCIDO) 0000 A .3 0.1-“01'JU’J‘01D‘10‘0‘O‘0‘0‘0LDOO'O-JOOOODO‘O .3 A -.5—3.)» 8.3—5-¢.~b.A-A f‘uNAOx-l‘;) 4-3-30 LOWER J K- K+ 11 2 9 11 2 9 11 2 9 11 2 9 12 5 8 12 5 8 12 5 8 12 5 8 11 1 1O 11 1 1O 11 1 10 11 1 10 11 1 10 12 4 9 1 4 9 12 4 9 12 4 9 10 0 1O 10 0 10 10 0 1O 11 2 9 11 2 9 11 2 9 11 2 9 11 2 9 11 0 11 12 3 10 12 3 10 11 1 10 11 1 10 11 1 10 11 1 10 12 2 11 13 3 10 ‘2 2 11 13 3 10 11 0 11 12 3 10 8 1 7 12 3 1C 14 4 11 13 2 12 13 2 12 13 2 12 13 2 11 12 1 12 ‘3 2 11 14 3 12 13 O 13 13 0 13 246 OBSERVED (CM-1) 2584.483 2584.872 2585.273 2585.697 2586.416 2586.815 2587.030 2587.228 2594.386 2594.769 2595.182 2595.393 2595.616 2595.616 2596.010 2596.412 2596.627 2597.723 2598.160 2598.375 2598.748 2599.150 2599.577 2599.793 2600.037 2605.019 2605.882 2606.299 2608.887 2609.304 2309.734 2610.202 2616.085 2616.509 2616.509 2616.923 2619.833 2620.419 2620.587 2620.858 2636.781 2637.189 2637.618 2638.056 2641.508 2641.779 2641.937 2647.254 2648.122 2648.556 CBS-CALC (CM-1) -0.009 '0.006 '0 .007 0.048 0.048 0.058 0.046 '0.011 -0.018 '0.011 '0.001 0.006 0.013 0.010 0.017 '0.003 0.001 -0.005 0.028 0.009 0.003 -0.003 0.017 0.004 -0 .009 ‘0.001 “0.003 “0.010 0.004 '0.013 0.006 “0.002 0.009 0.008 0.0C8 0.008 0.008 0.014 -O.CZ1 -0.011 ’0.009 0.021 0.005 0.006 “0.005 0.009 0.020 HEIGHT 0.01 1.25 1.25 0.25 0.00 0.00 0.00 0.00 0.01 0.25 0.25 0.05 0.05 0.01 0.25 0.25 0.01 1.25 0.25 0.05 0.05 1.25 1.25 0.05 0.01 1.25 0.25 0.05 0.05 0.25 0.25 0.01 0.25 1.25 0.01 0.01 0.25 1.25 0.25 0.05 0.25 0.01 0.01 0.01 0.25 0.05 0.01 0.05 0.05 0.01 153 82 80 78 76 80 78 77 76 82 80 78 77 76 82 80 78 77 1“ El 78 77 82 80 78 77 76 80 8O 78 82 80 78 76 8O 80 78 78 80 80 80 79 8O 80 78 76 80 80 78 80 80 78 ID 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 001 001 001 001 001 001 001 001 100 100 100 001 001 00‘ 001 100 100 100 100 001 001 001 001 100 100 100 100 001 001 001 100 100 103 UPPER J K- K+ 1!. 311 LOHER J K- K+ 13 1 12 247 OBSERVED (CM-1) 2652.307 UBS'CALC (CM-1) '0.026 HEIGHT 0.01 ISO 10 80 001