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ABSTRACT

FLOW -PASSAGE -GEOMETRY OPTIMIZATION
INSIDE A MODEL COMPRESSOR ROTOR

By

Paul Charles Glance

The goal of this work is to determine optimal internal flow
passages for compressor rotors. This work should be regarded as a
first approach to the problem of designing optimal internal flow
passages. A great many other phenomena such as shocks, boundary-
layers, etc. need to be considered if a realistic compressor rotor
is to be designed. Steady isentropic flow of a fluid, which obeys
the ideal gas relations, is assumed throughout this work. The
equations developed in this work may be applied to axial-flow,
mix-flow, and radial-flow rotors.

The problem of describing the motion of the fluid continuum
is formulated as a minimum problem of Variational Calculus, and the
equation which results from this formulation is called "the fluid
particle minimum principle". Basically, this minimum principle
states that of all the possible motions the fluid will travel along
the one family of pathlines (or streamlines) which causes the
kinetic energy minus the potential and enthalpy energies of each
fluid particle to be a minimum. A fluid particle is defined as an
infinitesimal volume of fluid whose surface is impervious to the

flow of matter,



Paul Charles Glance

The "optimal flow passage geometry' is defined as the
geometry for which the entire flow region satisfies the fluid
particle minimum principle, continuity equation, boundary condi-
tions, and various "“optimal'" constraints. An optimal constraint
is any side condition which is imposed on the problem in an effort
to produce desirable or optimal results. Constraints are imposed
in order to control the pressure and energy increase of the fluid
inside a rotor and they often simplify the problem.

The flow problem is treated as a boundary value problem,
One of the boundary conditions is that the pathlines of the flow
region must coincide with the walls of the passage. When the flow
is rotational, the following procedure is employed to determine
the optimal flow passage geometry. A family of pathlines is
determined which satisfy all the equations and boundary conditions
except the above mentioned boundary condition. The passage geometry
is then selected to coincide with any set of pathlines, belonging
to the given family of pathlines, and the boundary value problem
is thus completely determined. When the flow is irrotational,
the boundary value problem is determined by the velocity potential
function. 1In general, a rotational flow, inside a rotor, can
satisfy the fluid particle minimum principle at only one set of
operating conditions. Whereas, an irrotational flow will satisfy
the fluid particle minimum principle over a wide range of operating
conditions.

In order to demonstrate the optimization procedure, a
"max imum kinetic energy increase" centrifugal rotor is investigated.
Application of the optimization procedure to axial-flow rotors is

also discussed.
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NOMENCLATURE

S entropy

P pressure

T temperature

o density

h = CpT enthalpy of ideal gas

H=}% V2 + h total enthalpy

Cp specific heat at constant pressure
Cv specific heat at constant volume
K = Cp/CV ratio of specific heats

Rc ideal gas constant

HR total relative enthalpy

vx( ) curl operator

v() gradient operator

ve() divergence operator

%% = § time derivative

af =F partial derivative

Yy y

§() variational derivative operator
A(H) = H, - H difference operator

v volume

A cross sectional area

8 arc length

E position vector

vi



det

F

E,(a,¥), E,(,3)

position vector at t =0

time

velocity
position vector drawn from the relative

reference frame

relative velocity

body forces per unit mass
non-conservative body forces
conservative body forces

force potential function (VG = -?)
velocity potential function (Vg = V)
functional

integrand of functional

functions of the coordinates of the end
points of the pathline

space variables

time derivative of space variables

orthogonal curvilinear coordinates
Cartesian coordinates

cylindrical coordinates

Cartesian unit vectors

cylindrical unit vectors

Cartesian unit vectors of rotating
reference frame

cylindrical unit vectors of rotating
reference frame

vii



w angular speed of rotor (w 1is constant)

d=0+w absolute angular speed of a fluid particle

) angular speed of a fluid particle with
respect to rotor

a, = Cp - T* speed of sound of an ideal gas

M, =V/a_ Mach number

U= mu internal energy

w work

K.E. = % v kinetic energy

m mass

Subscripts

* denotes sonic conditions

o denotes stagnation conditions

i denotes intake point

d denotes discharge point

K= Cp/Cv ratio of specific heats
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INTRODUCTION

The Lagrangian method of describing the motion of a con-
tinuum is employed in this work. The Eulerian description of
motion is the traditional method used to describe the motion of
a fluid continuum. However, the Lagrangian description was chosen
because the methods of Variational Calculus are considerably less
complicated for functions of one independent variable. The problem
of describing the motion of the fluid continuum is formulated as
a minimum problem of Variational Calculus, and the equation which
results from this formulation is called '"the fluid particle
minimum principle". Basically, the fluid particle minimum prin-
ciple states that of all the possible motions the fluid will
travel along the one family of pathlines which causes the kinetic
energy minus the potential and enthalpy energies of each fluid
particle to be a minimum. The energy equation is of primary
importance in the present formulation, while the momentum equation
is always satisfied. The energy equation is the first integral
of the momentum equation for the case of isentropic flow. This
approach differs from the traditional Eulerian method, wherein
the momentum equation is the equation primarily operated upon.

Steady isentropic flow of a fluid, which obeys the ideal
gas relations, is assumed throughout this work. The path of a

fluid particle is called a pathline. For the case of steady flow



pathlines and streamlines coincide. 1In section-1 the Lagrangian
desceription of motion of a fluid continuum is explained and a

fluid particle is defined. 1In section-2 the Lagrangian form of

the momentum and continuity equations are listed. A special form

of the lLagrangian continuity equation is derived for the case of
steady flow. Some of the results of Variational Calculus, that

are employed in later sections, are listed in section-3. 1In
section-4, the problem of describing the motion of a fluid con-
tinuum is formulated as a minimum problem of Variational Calculus.
The fluid particle minimum principle is then developed. 1In section-5
some classical fluid problems are investigated using the previously
developed theory. All (irrotational) potential flow problems are
shown to satisfy the fluid particle minimum principle. The con-
ditions under which (one-dimensional) isentropic compressible flow
satisfies the fluid particle minimum principle are also investigated.
In section-6 the fluid particle minimum principle of section-4 is
adapted to the flow inside a rotating reference frame. The energy
equation is then derived. 1In section-7 it is shown that there
exists only one trivial case for which the flow inside a rotating
passage is irrotational. Thus this case is excluded from the
following investigations. 1In section-8 the continuity equation

and energy equation are combined and the boundary value problem is
described for the case of rotational flow. In section-9 the optimal
constraints are selected. The system of equations and boundary
conditions, which are employed to determine the optimal compressor
passages, are summarized at the end of section-9. Section-10

contains a demonstration of how an optimal flow passage may be



determined. A "maximum kinctic energy increase' radial blade

centrifugal rotor is considered in this section. In scction-11

flows which are irrotational in the relative reference frame are

investigated, Section-12 contains some concluding remarks.



1. KINEMATICS

The Lagrangian method of describing the motion of a con-
tinuum will be employed in this thesis. In the Lagrangian des-
cription of motion, the path of each particle is described by
the locus of points traced out by the end point of a position
vector, ﬁ[ﬁo, x(t),y(t),z(t)], with respect to a fixed (Newtonian)
reference frame [8]. The reference position of each particle is
given by the constant position vector, Eo’ which is the position
of the particle at time, t = 0. The coordinates of the particle
at t =0 are known as the material coordinates of the particle.

A fluid particle is defined as a differential volume of
fluid which may change shape, volume, and density but must always
contain the same molecules of the fluid [10]. A fluid particle
is an infinitesimal closed system since no mass may cross its
boundary. When the Lagrangian description of motion is employed
to describe the motion of a fluid continuum, the trajectory (or
pathline) of each fluid particle is described by the locus of points
traced out by the end point of the position vector,
ﬁ[io, x(t),y(t),z(t)]. An infinite number of position vectors is
needed to describe the motion of the fluid continuum. For the
present time we assume that the pathlines traced out by the posi-
tion vectors do not intersect in the flow region under considera-
tion. For the case of steady flow, pathlines and streamlines

coincide [10]. Only steady flow is considered in this work.
4



2. LAGRANGIAN FORM OF THE MOMENTUM
AND CONTINUITY EQUATIONS

The Lagrangian form of the momentum equation, for a non-

viscous fluid, that will be employed in this work is

2
dR84%.7.o0, (2.1)
P
dt

where p is the densiﬁy of the fluid, p. is the pressure, T
represents the body forces per unit mass acting on the fluid
particle, and R is the position vector of the fluid particle
{10].

The lagrangian form of the continuity equation is often

written in the below form
pdv = pldvl = constant. (2.2)

A second form is

& L d@n 1% 2.3)
V'ae T av dt p dt ’ ’

where t denotes time, p 1s density, V is the volume of the
fluid, and R 1is the position vector of the fluid particle [10].
We now seek a more convenient form of the continuity equa-
tion for the case of steady flow. We select the material co-
ordinates to be a set of orthogonal curvilinear coordinates,
(ul,uz,u3),and the u, curve is selected to coincide with the
pathlines of the fluid particles. That is, at time t = 0 the

5



fluid continuum is described by the curves:

ul(x,y,z) = C1 = constant along a pathline, (2.44a)
uz(x,y,z) = C, = constant, (2.4b)
u3(x,y,z) = C3 = constant. (2.4¢)

For the case of steady flow, the path of the fluid particles will
remain coincident with the u, curves. A volume element, dV,

about any point, Ph,
ordinate system (u;,u,,uy) is defined as [12]

for a moving orthogonal curvilinear co-

- (2 q, . @B aB_
dv |aul du, (auz du, X 35 duy)| (2.5)

where E(ul,uz,ua) is a position vector drawn from the origin to

the fluid particle at Ph, see figure 2.1,

ﬁ(Cl:':)

Figure 2.1

Curvilinear Curves



The cross product in (2.5) may be interpreted as the change in

cross sectional arca, dA, normal to the u, curve. And the term
2B _ 4.
Y1

Thus (2.5) may be rewritten as

1 is the change in arc length, dsl, along the u; curve.

dv = ds da , (2.6a)
_|2E_ I
where dA = 3, du2 X 3u; du3 = dszds3 , (2.6b)

and dividing (2.6a) by dt yields

ds
dav _1
FT at dA . (2.7)

Since the ratio of the change in arc length to the change in time

is a measure of the speed of a fluid particle along the u, curve,
equation (2.7) can be rewritten as
W R ZaF.dR. (2.8)

Dividing equation (2.2) by dt and then substituting (2.8) into

the resulting equation yields

oV . dA = vy dKl , (2.9a)

or
Vl‘ dAl VldAl 2.9
- — =VdA. (')
P V.d&

Equation (2.9) is the Lagrangian form of the continuity equation
that is employed in this work. It is only valid for the flow of

a fluid particle along a time independent pathline.



3. VARIATIONAL CALCULUS

We shall be concerned with the following problem from The
Calculus of Variations. Consider the variable end point problem

for the functional

t=b — - — -,
t=a F(y’Y)dt + El(a ’Y) + Ez(b’}') ’ (3-1)
where El and E2 are functions of the coordinates of the end

points of the path along which the functional is considered,
; = yl,yz,y3 represents the space variables, and y = 91,92,93
represents the components of velocity. Calculating the variation

of the functional, (3.1), and setting the result equal to zero

we obtain the well known Euler-Lagrange equations

F --F, =0 (i=1,2,3), 3.2)

Y.

i dt yi

and the boundary conditions;

(F§ - E; )|t’=a =0 (i=1,2,3), (3.3a)

(F9 - E, )|t=b =0 (i=1,2,3), (3.3b)

where the subscripts Yy and 91 denote partial differentiation,
aF  _
i.e., ot Fy [2]. The solution to the Euler-Lagrange equations,
i i
(3.2), is called an extremum or an extremal curve. The family of

curves satisfying, (3.2), is called a family of extremal curves.



We shall be concerned with minimizing the functional,

(3.1). cConsider the functional,
b S
J‘a F(y,}')dt > (3'4)

where the end points of each extremal curve is specified. Equa-
tion (3.4) will be called the fixed end point functional. Calculat-
ing the variation of (3.4) and setting the result equal to zero
yields the Euler-lagrange equations, (3.2). Thus the problem of
minimizing the variable end point functional, (3.1), is equivalent
to minimizing the fixed end point functional, (3.4), subject to
the boundary conditions (or side conditions), (3.3). From
Variational Calculus it is known that (3.4) is a minimum when the
following conditions are satisfied, see Gelfand [2], pg. 146-148.
I. The Euler-Lagrange equations, (3.2), are satisfied.
II. The matrix “F}.'i).,j“ is positive definite along the
extremal.
I1I. The interval [a,b] contains no conjugate points.
A conjugate point is a point of intersection of the
neighboring extremals.
IV. The value of the functional, (3.4), is independent
of the path of integration. Or, more precisely, the
Weierstrass E-function is 2 0 along the extremal
curve.
And for the functional, (3.1), we also impose the following addi-
tional condition.

V. The boundary conditions, (3.3), must be satisfied.
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When conditions I-V are satisfied, the minimum is said to be a
"strong minimum". When all the conditions except IV are satisfied,
the minimum is said to be a 'weak minimum'. For the case of a
weak minimum, the family of extermals always possess conjugate
points and the functional is a minimum only in local regions
which are free of conjugate points.

The family of extremal curves is obtained by integrating
the Euler-lagrange equations, (3.2). The Euler-Lagrange equations,
(3.2), may be integrated in the below manner. Multiplying (3.2)

by ii and then adding and subtracting the term, F§ ?i, ylelds
i
WP TN T vy, T SR '

Adding the above equations yields

3
. . d
F . +F0 y - . + —Fo =0 . 3.6
E {( y.y1 yiyi) (Fyiyi yi dt yi)} ( )

i=1 i

Employing the chain-rule of Calculus, we observe that

3
d L L] L] o (13
TR 5Y,5Y55Y15Y,5Y,) = E [F ¥y, +F, §.]. GB.7
dt 1°72°73°71°72°73 =1 Y4 i y;o1
Substituting(3.7) into(3.6)yeilds
dF 3 d
3 - L@, ¥ +y q-F.)=0, (3.8a)
dt i=1 Vi i i dt ¥y
or
4 3
—[F-z yF.]l=0. (3.8b)
de i=1 * Yy
Integrating (3.8b) yields
3 L]
F- % yiF' = -H = constant along each extremal 3.9

i=1 Vi curve .
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Equation (3.9) is called the first integral of the Euler-Lagrange
equations, (3.2). Since the first integral of a system of dif-
ferential equations is a function which has a constant value along
each integral curve of the system, we see that the function, H,

is a constant along each integral curve determimed by (3.2).



4. FLUID PARTICLE MINIMUM PRINCIPLE

In this section, the problem of describing the motion of a
fluid continuum will be formulated as a minimum problem of The
Calculus of Variation. Consider one fluid particle moving along
one pathline during time t =a to t = b. The motion of the
fluid particle is described by the locus of points traced out by
the end of the position vector, ﬁ[?o,yl(t),yz(t),y3(tz]' As
explained in section-1, the motion of the fluid continuum is
described by an infinite number of position vectors which trace
out a family of pathlines. The motion of each fluid particle must
obey the Lagrangian form of the momentum equation, (2.1). To derive
the fluid particle minimum principle, the dot product of the
momentum equation, (2.1), times the variation of the position vector,
6§, is taken and the result is integrated with respect to time from

t=a to t=©>b, which yields

t"b ps - —_ 22 — —
Jt=alR * oR + o Ok - f . R)de =0, (4.1)
. d2~
where R = -—% . The first term of (4.1) may be integrated by parts
dt

in the below manner

b = = A b b et
IaR'éRdt=R~6§]a-Iaﬁ'6Rdt (4.2)
=R - 5R]: - J'g % [ ®)27de .

12
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When the end points of the pathline are specified, the boundary

conditions are
6R), = 0, and &R] =0 ; (4.3)
and (4.2) becomes
b - b1l 2
Ja R - oRde = - 280 ® de . (4.4)

The second term of (4.1) may be expanded in the below manner

3
1 -

From Thermodynamics it is known that for the isentropic flow of

fluid obeying the perfect gas laws that

TdS = 0 = C dT - QR N (4.68)
p Y
or

c dT = dp s (4.6b)
P P

where T 1is temperature, S is entropy, Cp is the specific heat
of the fluid at constant pressure, p 1is pressure, and p 1is
density [10]. Replacing the total derivatives in (4.6b) by varia-
tional derivatives and equating the resulting equation with (4.5)

yields

Y2 . R =8 =¢c 47 . “.7)
[ p |

When the body forces, ¥, acting on the fluid particle are con-
servative, the third term of (4.1) may be replaced by a force

potential, i.e. VG = -?c, and
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6G = -?c - R (when f is conservative, v X f = 0). (4.8)
Substituting (4.8), (4.7), and (4.4) into (4.1) yields
J‘: [- % a[(k.‘)zjq- C 6T + 5G]dt =0 . 4.9

Factoring out the variational derivative operator, §, and multiplying

by a minus one yields
b 152
8fa Z®" - ¢ T -6lde =0 . (4.10)

In words, equation (4.10) states that the isentropic flow of an
ideal fluid particle moves between two specified points in a con-
servative force field in such a way that the functional, (4.10),
is a minimum. A result which is equivalent to (4.10), but written
in a more general form, was published by Nantanson in a series of
papers from 1896 to 1902 [6]. In most fluid flow problems, the
end points of the pathlines are unknown. We therefore consider

the variable end point functional

P G®” - cT® - 6@®)d + ) @F) + 5,68 , (4.11)

where E1 and E2 are known functions of the coordinates of the
end points of the pathline along which the functional is considered.
Calculating the variation of (4.11), and remembering that boundary

condition (4.3) no longer applies, yields
b 122 - -
8Ja GE® - CT®) - GR))dt +
\’_(VE1 - R) - &R], +[(VE2 -R) -8R}, =0, (4.12)

where T(R) and G(ﬁ) are functions of the space variables, i.e.
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= A .2 o2 .2
TR) = T(y>¥,5¥3), 8lso (R) =y; +y, +y3 . In order to

describe the motion of a fluid continuum, the functional must be
solved along each pathline of the flow region. However, the
functions VE, and VE, will be chosen so that they specify the
velocity, é, along every pathline at the cross sections, 1 and 2.
Then equation (4.12) will apply to every pathline in the flow
region. And the solution of (4.12) will be a family of pathlines
which describe the motion of the fluid continuum. Equation (4.12)
will be called the "fluid particle minimum principle'". 1In words,
(4.12) states that the isentropic flow of a fluid, obeying the
ideal gas laws in a conservative force field, will travel along the
one family of pathlines which causes the variable end point func-
tional, (4.12), to be a minimum.

The functional, (4.12), is a minimum when the five condi-
tions, (I-V), of section-3 are satisfied. We will now discuss
these conditions for the special case of (4.11). The Euler-Lagrange
equation of (4.11) is identical to the momentum equation, (2.1).

This statement is easily verified by substituting the integrand,

F, of (4.11) into (3.2) which yields
" al_, a6 . -
¥y + Cp 3y, + Byi 0 (i 1,2,3) , (4.13)
or in vector form
R + CVT +¥6 =0, (4.14)

and substituting (-f = vG) and (%2 = C9T) into (4.14) yields

§+%2-?=o, (4.15)
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which is identical to (2.1). The first integral of the Euler-
Lagrange equation of (4.11) is obtained by substituting the
integrand, F, of (4.11) into (3.9) which yields
132 >
SR -CT-G- £y,y,=-H; (4.17a)
2 P =1 i1

and since (-ﬁ)2 = 8(§i)2,(4.17a) becomes
1,5 2
E(R) + CpT + G = H = constant along each pathline. (4.17b)

Equation (4.17b) is equivalent to Bernoulli's equation. We shall
call (4.17b) the energy equation, and it is shown in appendix-A
that the First Law of Thermodynamics agrees with (4.17b). Since
the energy equation, (4.17b), is derived by integrating the Euler-
lagrange (or momentum) equatidn, we conclude that condition I of
section-3 is satisfied when (4.17b) is satisfied.

Condition II of section-3 is always satisfied for the

functional (4.11) since

1 0 0
O

is always positive. Let us now consider condition IV. In appendix-
B it is shown that condition IV is satisfied when the flow is
irrotational. When the flow is irrotational there exists a velocity
potential function, g, such that

; = 2B i=1,2,3) ; 4.19a
yi ayi ( ’ ) ( )

or in vector form

R =yg . (4.19b)



17
It is also shown in appendix-B that the integrand, F, reduces to

_dg
F =3 (4.20)

for the case of irrotational flow. Let g =E =E, = E2 and sub-

1
stituting (4.20) into (4.11) yields

‘; gg dt + g(a) + g(b). (4.21)

From (4.21) we conclude that the known functions, Eq and Ez, and
the functional, (4.11), are completely determined by the potential
function, g, for the case of irrotational flow. Since the value
of (4.21) does not depend on the path of integration, condition IV
is satisfied. We now list the conditions for which the fluid
particle minimum principle, (4.12), is satisfied. We consider two
cases, rotational and irrotational flow. .

A, Rotational flow (weak minimum)

(4.A.1 The energy equation, (4.17b), is satisfied.

4.A.2 The boundary conditions, (3.3), or;
< (VE, - R’)|a =0, (4.22a)

4.A .
(VE, - R)\b =0 (4.22b)
are satisfied.

4.A.3 The pathlines do not intersect in the flow region,

- i.e., there are no conjugate points.

The following procedure from Gelfand [2] pg. 130 may be employed to
test for conjugate points. Let y = y(t,xa,B) be a general solution

of (3.2) depending on two parameters, o and B. When the ratio

gyﬂi/s% . (4.22¢)
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is the same at two points, the points are conjugate.

B. Irrotational flow (strong minimum)

(4.3.1 The energy equation, (4.17b), is satisfied.

4.B.2 The potential function, g, satisfies the boundary
conditions;

4.8 4 .
(vg -B)| =0, (4.23a)

(vg - )|, =0 . (4.23b)

(_4.B.3 The pathlines do not intersect in the flow region.

The fluid particle minimum principle, (4.12), is said to be satisfied
when conditions (4.A) or (4.B) are satisfied. Whenever the fluid
particle minimum principle is satisfied both the momentum equation,
(4.15), and the energy equation, (4.17b), are satisfied. 1In fact,
they are equivalent equations for the case of isentropic flow. 1In
addition to the fluid particle minimum conditions, (4.A) or (4.B),
the flow must also satisfy the continuity equation and the condition
that the pathlines of the flow region coincide with the walls of the
passage.

The fluid particle minimum principle may be extended to
include forces, fN’ which are not derivable from a potential force
function, G. Letting f = fc + fN in equation (4.l1) yields

b = . aR 22 . AR . - - b - -
fa [R - oK + o oR - £, - sR)ae - (] 'fN 6R dt = 0 , (4.24)

where ?c represents the conservative forces. Repeating the pre-

vious steps of this section up to equation (4.10) yields

6j‘: [%(fi)z - C,T - G]dt - J"; T - 6Rde=0. (4.25)
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Calculating the variation of the first term of (4.25), (4.25)

be comes
Ib [ﬁ + C VT + vG] - 6R dt - Ib f - 8Rdt =0 . (4.26)
a P a N
Since &R is arbitrary, (4.26) reduces to
R +9 - £ =0 ; 4.27
+C VT + G - £ (4.27)

which is the momentum equation, see equation (2.1) (with CPVT = vp/p

and 9G - ?& = f). The variable end point form of (4.25) is
) P b .
o[> @2 - c,T -6l - [2F - R ae +
[(E, - K) + 8K], +[(VE, - K) . k], =0, (4.28)

which is similar to (4.12). The Euler-Lagrange equation of (4.28)
is again the momentum equation, (2.1). The boundary conditions of
(4.28) are the same as the boundary conditions for (4.12), i.e.,
the boundary conditions are given by (4.22). 1t should be pointed
out that (4.28) is, in general, difficult to employ because the
second integral in (4.28) cannot be evaluated, in practice, without
additional information. Fortunately, for the case, which we shall
consider, ?ﬁ is normal to SR and thus the second integral in

(4.28) reduces to zero.



5. SOLUTION OF SOME CLASSICAL EXAMPLES

In this section, some classical example problems are in-
vestigated using the previously developed equations. One of the
purposes of this section is to demonstrate that the Lagrangian
description of motion may be employed to solve fluid problems,
which are traditionally solved by the Eulerian method. Two
examples will be considered, incompressible potential flow and

isentropic compressible flow.

A. Incompressible Potential Flow

Consider the isentropic flow of a fluid in a region where
the body forces, VG = J?, may be neglected. We assume that the
flow is irrotational and that the velocity potential function,
g, 18 known. The velocity, V, of the fluid is then determined

from the gradient of the potential function, i.e.,
V=R=vg. (5.1)

Substituting (5.1) into the energy equation (4.17b), with G = O,

yields
2
i!%l_ + CPT = H = constant along each pathline. (5.2)
For the case of isentropic flow,

dh = %2 = cdr ; (5.3)

20
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and since the density p is constant, integration of (5.3) yiclds
cT = ﬁ + constant . (5.4)

Substituting (5.4) into (5.2) yields the incompressible form of

the energy equation,
2
Szgl— + § = constant along each pathline . (5.5)

Since the flow is incompressible, from (2.2) we observe that the

change in volume is constant, i.e.,

dvV = constant . (5.6)
Substituting (5.6) into (2.3) yields

v.-V=0. (5.7)
Substituting (5.1) into (5.7) yields

V. (@ =v%g=0, (5.8)

which is the well known Laplace equation.

Once a potential function, g, 18 selected which satisfies
the boundary conditions and Laplace's equation, the family of path-
lines is uniquely determined by the potential function, g. The
pressure distribution is then determined by the energy equation,
(5.5). Of course, this result is exactly the same as the results
of "Classical Incompressible Potential Flow Theory" [4]. The only
difference is that the classical results are derived from the
Eulerian point of view, whereas, the present derivation is from

the lLagrangian point of view. Since for the case of steady flow
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pathlines and streamlines coincide, the same equations result
regardless of our point of view.

Let us now consider the fluid particle minimum principle.
Condition (4.B.1l) is satisfied by (5.5). Condition (4.B.2) is
satisfied by (5.1) for all values of time t =a and t =b. Con-
dition (4.B.3) is satisfied in regions which do not contain con-
jugate points. Thus we conclude that all incompressible potential
flow problems satisfy the fluid particle minimum principle in
flow regions which exclude conjugate points.

For the case of flow around a two-dimensional airfoil
(with circulation), conjugate points occur at the stagnation point
and trailing edge of the air-foil as shown in figure 5.1. Thus,
these two points are excluded from the flow region. The fluid
particle minimum principle does not predict the nature of the flow
in the neighborhood of these two points. The stagnation stream-
line divides the flow into two regions and the flow in these two
regions, excluding the stagnation streamline, satisfy the fluid

particle minimum principle at all points.

streamline

stagnation

conjugate points

Figure 5.1

Conjugate Points
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B. Isentropic Compressible Flow

Consider the isentropic flow of a fluid obeying the ideal
gas relations. Assume that the flow is in a region where the body
forces, VG = -?, may be neglected. The energy equation as given

by (4.17b), with G = 0, is

% V2 + CPT = constant along each pathline, 5.9

where V = R. The constant in (5.9) may be evaluated at the

stagnation condition (denoted by the subscript o), i.e.,

1 2
2 vV + CPT - Cp‘To . (5.10)

Or the constant can be evaluated at sonic conditions (denoted by

the subscript *), i.e.,

1.2 1.2
ZV +CT=CT, +5V, . (5.11)

The definitions of the Mach number, M, and the speed of sound in

an ideal gas, a, are

M=V/a, (5.12)

M =Vl = via, , (5.13)
2

a” = KRT = C,(K-1)T , (5.14)

where R_. 1is the ideal gas constant and K = CP/CV is the ratio
of specific heats. From Thermodynamics we recall the isentropic
relations

K-1

T . LT- LK'I. (5.15)
T [PIJ ["1]
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Dividing each term of (5.10) by (5.14) yields

vi, 1 1

— + —
a2 K-1 k-1

N =
-3

2
T (5.16)

Substituting (5.12) into (5.16) and solving for TO/T yields

T
o K-1 2
T 7M. (5.17)
Dividing each term of (5.11) by [(5.14) with T = T*] yields
2
2 v
1V 1 T 1 1 &
-~ T a —_— = + = — . .
2 2% k1T, K122 (3.18)
* 8y
Substituting V, =a,  and M, = V/a* into (5.18) and solving
2
for M, yields
2 -2 T K+l
M = x—-r[r— - "2"] : ©-19)
*
Py Po
Substituting (5.15) into (5.17) and solving for ;— and p_ yields
=
2= (1+ li;—]‘Mz)K-]' , and (5.20)
, i
p—° =+ KT'I uHk-1l (5.21)

At sonic conditions, M = 1 and (5.17), (5.20), and (5.21) reduce to:

T
o K+1
LA LK 5.22
=5 (5.22)
_K_
P
0 K+1.K-1
2 5.23
2= & (5.23)
1
P
o) K+1.K-1
2 5.24
2= & (5.24)

All of the above equations, (5.10-5.24), agree with the classical

one-dimensional isentropic flow relations [11]. This agreement is
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expected since all the equations and definitions used so far are
exactly the same. The only difference is that the above equations
give the changes in fluid properties along a pathline, whereas in
the classical one-dimensional method the above equations give the
changes in properties along a '"one-dimensional" streamline. How-
ever, we now introduce the Lagrangian continuity equation, (2.9),
which differs from the continuity equation employed in the classical

method. The Lagrangian continuity equation, (2.9a), is
pVdA =p, vV dA, . (5.25)

The Eulerian continuity equation employed in classical one-dimensional

gas dynamics is
pVA=pV,A = constant . (5.26)

We will now use the Lagrangian form of the continuity equation,
(5.25), to obtain dA in terms of the Mach number, M. This result
will then be compared to the similar equation obtained when the
Eulerian continuity equation, (5.26), is employed. Substituting

(5.25) into (5.15) yields

T o K-1 V,dA, 1K-1 dA 1-K
S = = 3 = M* a— ’ (5.273)
Ty P vda Ay
or
L
1-x
dA -1 T
ar = M, [T ] . (5.27b)
* *

Substituting (5.19) into (5.27b) yields

an (2 gy Fo) 5.28)
da, |k-1bT, 2 T, ) )
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Substituting (5.22) into (5.28) yields

dA_ )2 T\ et

2 T o

- = 1-—] = . (5.29)
a forfi 3

Substituting (5.17) into (5.29) yields

1
g_A__,-_Z_T_El -1 -K;IMZJ]-!’[L 1K
A, [k-1 1, 2 T,

= (K+1) (5.30)

=1|T 2(k-1)
M|T, :

Dividing (5.22) by (5.17) yields

-
*

D-ll'-l
* O

-1
T _ (2 [y ,xk1,20]7" .
T [K+1 [1+ =M ]] ; (5.31)

-3

which when substituted into (5.30) yields

7K-1)
a _1[_2 K-1 2
aA, " | el (1+ M ] . (5.32)

We now compare the above equation to the similar relation, (5.33),

from classical one-dimensional gas dynamics which is given below
(117
K+1
2(r-1)
A 11_2 K-1 2
—_—- ] — _— . 5.33
A, K+1 [1 + 2 M J] (.33)

M

Notice that the right hand side of (5.32) and (5.33) are identical.
We will now show that for a hypothetical case of flow bounded by
radial pathlines (or streamlines), the left haﬁd gside of (5.32)

and (5.33) are equivalent. Consider a family of radial pathlines
as shown in figure 5.2. Llet r, locate the cross section at which

sonic conditions occur.
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AO = constant

Figure 5.2

Radial Pathlines Enclosing
a Pathtube

The cross sectional area normal to the pathtube (or streamtube) is

given by
~ 2
A T n(rae)” , (5.34)

and the area ratio is

2 2

A .n(é® . r_ | (5.35)
A 2 2
*  1r(r,A8) r,

The rate of change of the cross sectional area is
2 .
dA =r sin @ dg do ; (5.36)

and since dp and d@ are constant along each pathline the dA

ratio is
2
dA_ _r_, (5.37)
2
dA* r2
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which is the same as (5.35). Thus we can conclude that for the
case of radial pathline flow, (5.32) reduces to the classical
result, (5.33). 1If we would analyze the flow through a straight-
radial wall nozzle by the present equations and by the one-
dimensional method we would obtain exactly the same results (all
the equations are identical). However, when we analyze the flow
through a nozzle with curved walls, the two methods would not
agree because the ratio of increment of areas in (5.32) is not
equal to the ratio of areas in (5.33). The greater the curvature
of the walls, the greater will be the disagreement.

Let us now consider the fluid particle minimum principle.
Consider the case of flow through an internal flow passage where
the pressure at the intake and discharge of the passage is known.
The geometry of the passage is also known. A family of pathlines
is then selected so that the outer pathlines of the flow region
coincide with the walls of the passage. For example, for the case
of flow through a conical passage, as shown in figure 5.2, a radial
family of pathlines is selected. The ratio dA/dA_ can then be
calculated. We now seek the function Vg in terms of dA/dA_ .

Substituting [?_]I/K = &~ (from 5.15) into (5.27a) yields

* P
V, dA
[L]I/KB x_* (5.38)
P, vV dA

Solving for V yields

1/K da
Py *
V= [p_:l T v, - (5.39)

Dividing (5.23) by (5.20) yields
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L:R_Ez[ l<+11 2'] : (5 .40)

2

NI?!
]
—

which when substituted into (5.39) yields

1

- K-1 dA,
vV = - \'4 E'Vgl, (5.41)
[2(1 + K-1 _2 ] dA *

2 M)

where we have defined the right hand side of (5.41) to be equal to
IVg‘. The Mach number M is determined implicitly in terms of
dA/dA, by (5.32). Since dA/dA, is a function of the space
variables, the function vg, defined by (5.41), is also determined
as a function of the space variables.

Substituting the known pressures, Py and P> into (5.39)

determines the velocity at both ends of the flow passage, i.e.,

\ [Pa]1/K dA*] \' and (5.42a)
= |— - , n .

d -ch dA d *

. rp_*u/l( dA*] v 5.42b)
1 [Py da Jy *

Condition (4.B.1l) is satisfied by (5.9). Condition (4.B.2) is
satisfied when (5.42) is satisfied or when (5.41) is satisfied.
Since (5.41) is not valid across a shock, condition (4.B.2) is
satisfied in flow regions which exclude shocks. Condition (4.B.3)
is satisfied in regions free of conjugate points. Thus we can
conclude that the fluid particle minimum principle is satisfied
for the case of flow through a passage when (5.42) is satisfied
in a region free of shocks and conjugate points.

It should be pointed out that it is difficult to select a

family of pathlines that coincide with the walls of some given
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flow passage. An iteration procedure may be necessary in order
to determine this proper family of pathlines. The inverse pro-
cedure is much easier. That is, given a family of pathlines we
may choose any set of pathlines to be the outer pathlines of the
flow region and thus determine the geometry of the flow passage.
This inverse procedure will be employed in later sections to
determine optimal geometries of compressor rotor passages.

It should also be pointed out that all compressible
(irrotational) potential flows satisfy the fluid particle minimum
principle in regions free of shocks and conjugate points. That
is, once a velocity potential function, g, is selected which
satisfies the boundary conditions and the continuity equation
(2.9), the family of pathlines is uniquely determined, see (5.41).
The boundary conditions are (5.42) plus the condition that the
family of pathlines coincide with the walls of the flow passage.
For the case of rotational flows, there does not exist a potential
function and the fluid particle minimum principle is often not

satisfied.






6. ROTATING FLOW PASSAGE

In this section, the fluid particle minimum principles,
(4.12) and (4.28), are adapted to the flow inside a rotating
passage. Consider a fluid particle that is moving along a path-
line which lies inside a rotating passage. The fluid particle
is rotating at an angular speed, é, relative to the passage as
shown in figure 6.1. The wall of the passage is rotating at a
constant angular speed, w. The total angular speed of the

particle, ¢, is
d=w+9. (6.1)

The absolute position vector, E, of the fluid particle may be
expressed with respect to the fixed reference frame (with unit

vectors 1,},k) in the below manner
R=rcosal+r sin o 3 +z k. (6.2)

Where (r,a,z) are the cylindrical coordinates related to the

Cartesian coordinates (x,y,z) by:
X=rcosa,y=rsinag,z=2z. (6.3)

The first time derivative of (6.2) is

d = . . ~
E§'= V= (rcosag-ar sin g)i +
(6.4)

(fsina+ar cos a)j +2 k ;

31
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y - fixed reference framc

|

Yy - rotating reference frame

relative pathline

//am

Figure 6,1

Rotating Passage

and the kinetic energy is

o 2 (3 2 L3 2
12 1.2 () (6)” . ()
ACHEEAAEES SRR R R (6.5)

Since the Euler-Lagrange equations and the functional, (3.1), are
invariant under coordinate transformation, the introduction of
cylindrical coordinates does not change any of the equations
developed in the previous sections [2]. 1In order to apply the

result of the previous sections, we simply replace the terms
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.
- Il

R, R, % V2 by equations (6.2), (6.4), (6.5) respectively. For exam-

1 - 2 .
ple, replacing E(R) by (6.5) in the fluid particle minimum principle,

[6-12) with ¢ = 0], yields

b .2 L2 L2
o [4-+ ) 4 ) c T3t +
a
[(E, - B) - 8R]), [ (VE, - R) - sK], =0 . (6.6)

The Euler-Lagrange equations of the above functional are obtained
by substituting the integrand of (6.6) into (3.2) (with Yy =T

Yo T 05 ¥g T z) which yields

dr .
g2, .79
dgrz&z ah
e + 3 =0, (6.7b)
dz 4 ah _ g | (6.7¢)
dt d2
where h = CpT. Multiplying (6.7b) by 1/r and substituting
Vh=22=l[al’-‘i +12pg +M’-“i] (6.8)
p P O ¥ Trpyx a 3yz z
into (6.7) yields
.2 1
£ -rg +-2B =0 s (6.9a)
p or
.o 11ap
- = = 6.9
ry + 2ra + o T a0 o, ( )
. . 1ap
Z + - =0 ; (6.9¢)
p 32

which is the Lagrangian form of the momentum equation written in
terms of cylindrical coordinates for the case of isentropic

(frictionless) flow, see Owczarek [10] page 93. The functional
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(6.6) depends on time, t, because the total energy of a fluid
particle is increased while passing through a rotating passage.
When the functional depends on time, the first integral of the
Euler-lagrange eqaution (i.e., the energy equation) is no longer
given by (3.9) but is given by the below equation, see Gelfand

(2] page 70

2
ai _di _d V_
at  dt 4t G +h . (6.10)

We now choose a reference frame which is attached to the
passage and thus is rotating at a constant angular speed, w, see
figure 6.1. This rotating reference frame will be called the
relative reference frame. The position vector drawn from the
relative reference frame to the fluid particle is called the relative
position vector, R , which is written in terms of the relative

1
unit vectors, (31,31,§1) as

R1=rcoseil+rsinej1+zf<1. (6.11)

The relative velocity, W, is the first time derivative of (6.11),

i.e.,

ﬁl =W=(f cos g-9r sin 9)11 + (t sin 8 + 8 r cos 6)31 +z k

1’
(6.12)
where 11,31,R1 are the unit vectors of the rotating reference
frame. The relative kinetic energy is
15 .2 1 2 1 ..2 . 2 .2
E(Rl) =W =3 (r” + (re) +2z7] . (6.13)






35

We now seck an expression for the acceleration of the
particle along the rotating pathline. Drawing the absolute posi-
tion vector, ﬁ, from the fixed reference frame to the particle,
we may differentiate R with respect to time in order to obtain
the absolute velocity and acceleration of the fluid particle.

The absolute position vector, ﬁ, and the relative position vector,

ﬁl’ coincide, i.e.,

=R. . (6.14)

~l

1
Differentiating (6.14) yields

R

[=9
-

—t

dR

7K.

dt

[ d

+0XR, =W +gr 1 . (6.15)

1 C

a“
(ad

Notice that the relative position vector, ﬁl’ is changing its

magnitude and direction. The term, ® X R,,in (6.15), arises

1’
because Kl is rotating. In general, derivatives taken in the

rotating reference frame are related to derivatives taken in the

inertial reference frame according to the operator [10],

a0)

a0)
dt
ROTATING

T J +ox () . (6.16)
INERTIAL

The absolute acceleration is obtained by differentiating (6.15)

and employing (6.16) which yields

.o .

=R‘1+25,’x§’

~l

. o X (@ X EI) , (6.17a)

or

- ° — 2 ~
V=W+2wxw-wr1r, (6.17b)
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We will now formulate a fluid particle minimum principle
in terms of quantities measured from the relative reference frame,

i.e., in terms of El and W. The absolute acceleration, 6,
is given in terms of quantities measured in the relative reference
frame by the right hand side of (6.17). Substituting (6.17b)

into the momentum equation, (2.1), (with f = 0) yields
5 - - 2
W+ xW-wri +2=9; (6.18)

which is the momentum equation as viewed from the rotating reference
frame. We observe that Newton's second law of motion does not
retain its form (W =¥p +f) in the rotating reference frame [3].

P

Taking the dot product of (6.18) times 5R, and then multiplying

1
by dt and integrating yields

b .
[W-sR, + I8 6k + 2@ x @) - 6R, - w’ri - 6K Jdt =0 .  (6.19)
J 1, 1 1 r 1

When the inertia accelerations are treated as forces which act

on the relative reference frame, i.e., when we let

f =-2$x&7

. , and (6.20a)

fo=0ri, (6.20b)

then (6.19) is of the same form as the general functional, (4.24),
and as shown in section-4 the general form of the fluid particle
minimum principle is given by (4.28).

We now seek an expression for the "potential energy", G,

where we define G so that 68G = -?C . éﬁ First, observe that

1°

2 PS
the centrifugal acceleration, w r ir, produces a conservative force
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ficld since

1 2 A 1 -
r 1r 16 r 1k
2
vx @rl) = g; %5 g-z- =0 . (6.20c)
r wz 0 0

Thus the potential energy of a fluid particle in the rotating

reference frame is

2.2

86 = -w’r 1. eR, = -w2rér = -8 er . (6.21)

Substituting (6.21) and (6.20a) into the general form of the

minimum principle, (4.28), yields
b w2 w2r2 b .
6 {[5— + 87— - hjde + {(zw x W) - 6K dt +

[ (vE, - W . 8K ], + [(VE, - #) - ai'l]b =0, (6.22)

where h = CPT and T& = 2» X W. The second term of (6.22) is
zero since the Coriolis acceleration, 20 X ﬁ, is normal to bﬁl.
However this term will be retained since its omission will alter

the Euler-Lagrange equation. The Euler-Lagrange equation of
22

(6.22) is given by (4.27) (with G = “”2‘ , 'f’N =-2p X W , and
R = W), i.e.,

W-I-CpVT-wzr i+@xid=0, (6.23a)
or

W+%P--w2r'ir+2$xﬁ=0. (6.23b)

Substituting (6.17b) into (6.23b) yields
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V+%P-=o; (6.24)

which is the momentum equation as viewed from the fixed reference
frame. Expanding the above vector equation into its three scalar
equations, in terms of cylindrical coordinates, yields (6.9).

Thus we can conclude that the Euler-Lagrange equations of the
functionals (6.6) and (6.22) are identical. It is known from
Variational Calculus that two functionals are equivalent when their
respective Euler-lagrange equations are identical. The two fluid
particle minimum principles, (6.6) and (6.22), are therefore equi-
valent and thus we may operate in the relative reference frame
using the minimum principle given by (6.22).

The first integral of the Euler-Lagrange equation may be
found by two methods. 1In the first method we form the dot product
of (6.23b) times dﬁl and then integrate. In the second method
we substitute the integrand of (6.22) into (3.9). In both methods,

we observe that (26 X W} . dR, = 0. Employing one of the above

1
methods yields

2.2

%’Wz - wzr +h = HR = constant along each relative
pathline; (6.25a)
or
12 2 2 wzrz
r : 397 - L =H_ . 6.25b
E[r + (x9)° + 29 5 +h HR ( )

The relative pathline is the path of the fluid particle as viewed
from the relative reference frame. Substituting O = & - w from

(6.1) into (6.25b) yields

M

° . 02 Y
[rz + (ra)2 +z ] - rzaw +h = HR . (6.26)



39

Substituting (6.5) into (6.206) yields

1 .
2 V2 - rzaw + h = HR = constant , (6.27a)
or
2 2
S th=r ow + Hy = H # constant ; (6.27b)
v2
where H = ' + h, and H 1is called the total absolute enthalpy.

The symbol HR is called the total relative enthalpy. Taking

the time derivative of (6.27b) yields

e G th) =330 Cow) . (6.28)

Equation (6.28) is called Euler's turbine equation which is valid
for steady isentropic flow, see Owczarek [10] page 95. The right
hand side of (6.28) represents the rate at which work is added to
a fluid particle along an absolute streamline or an absolute path-
line in this derivation. Comparing (6.28) and (6.10) we see that
they are equivalent equations. Thus we can conclude that the
same absolute energy equation results regardless of the minimum
principle that is employed to describe the motion.

In later sections, the fluid particle minimum principle,
(6.22), will be employed to determine the family of pathlines which
describe the motion of the fluid continuum. The 'relative energy
equation", (6.25), is the energy equation corresponding to (6.22)
which must be satisfied in order that condition (4.A.1) of section-

4 is satisfied.



7. IRROTATIONAL FLOW

In this section we seek the condition at which the flow
inside the rotating passage is irrotational, i.e., we seek the

condition, v X vV =o0. Substituting (6.15) into ¥ X V=0 yields

v X d; + wr ie) =0, or (7.1a)
. 2 . 2
vxil=-1 22a0) 47 wale) 1. (7 .1b)
zZ rar rr 3z z

Since the curl of a velocity vector is equal to twice the angular
speed of the fluid particle, the angular speed of the relative
velocity vector is equal to -w when the fluid is irrotational,

i.e., the irrotational condition is
9xV=0 TIFF §=-y. (7.2)

This type of flow is called a "free-vortex" flow in turbomachinery
literature [13]. When (7.2) is substituted into Euler's turbine
equation, (6.28),we see that the energy level, H, of a free-
vortex flow remains constant, i.e., substituting
Y=w+0=w-w=0 into (6.28) yields H = 0. Thus we conclude
that the strong minimum energy state of the system corresponds

to a zero change in energy along an absolute pathline. Since the

principle function of a compressor is to add energy to the fluid,

the irrotational case, (7.2), is dismissed as a trivial case.
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8. ROTATIONAL FLOW

In the previous section, it was shown that there exists
only one trivial case for which the flow inside a rotating passage
is irrotational. 1In this section, we investigate the conditions
for which the fluid particle minimum principle, (6.22), and the
continuity equation are satisfied in a rotational flow.

In section-6 the relative energy equation, (6.25), was
derived, which is the first integral of the Euler-Lagrange equation
corresponding to the fluid particle minimum principle, (6.22).

As shown in section-6, the Euler-Lagrange equation, (6.24), of
(6.22) is identical to the momentum equation. Thus the energy

and momentum equations are satisfied whenever the fluid particle
minimum principle, (6.22), is satisfied. The continuity equation
is now combined with the relative energy equation and an expression
for the change in cross sectional area, dA, of a differential
pathtube is obtained in terms of (w,r,W,h) as shown below. A
precise definition of dA was given in section-2, see equation
(2.6b). We proceed in a manner similar to the procedure employed
in the second example of section-5. The relative energy equation,

(6.25), as derived in section-6 is

wz 2.2
- @ ; 4+ CT =H_, = constant along each (8.1)
P relative pathline .
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Dividing each term of (8.1) by the speed of sound squared,

a_ = Cp(k-l)T*, where * denotes sonic conditions, yields

2
1wt W o W 8.2
2 2 2 txarT 2 (8.2)
a, Za* * a,

Substituting the continuity equation, given by (5.27a with W = V)

into (8.2) yields

1w _w2r2+ 1 |wW_dA I-K_}i (8.3
2,77, 7 TK-1|a, dA 2 ° -3
ay 8y ay
Solving for dA/dA, yields
L
dA a_ HR wzrz w2 1-K
== |K-)| 5 + = -~ . (8.4)
da, W 82 2a2 2&2
* * *

Equation (8.4) can be written for any two points along a pathline

in the below manner

dA
) =dA2/dA*-wi1_ HR+
da, dA,/dA, WLl

¥y

2 . (8.5)
W

1

Multiplying (8.5) by WZ/WI and using the fact that the relative
velocity vector, ﬁ, is perpendicular to the change in area vector,
dA, yields

1
I, 12 2 2.2 27T
Wprdhy W%y My plHy - W] -0’ - D)

- (8.6)
7 .dE WldAl hl ’

+ % wzri - %Wi (see 8.1). The changes in

where h1 = CpT - HR

the thermodynamic properties of the fluid can be found by employ-
ing the below equations after (8.6) has been evaluated. Employing

the continuity equation, (2.9b) with W =YV, yields
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Substituting

yields

When
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(8.7)

(8.7) into the isentropic gas relation, (5.15), yields

T, [El]l(-l =[wldA1]K-1 .
T, W, dA,

(8.7) and (8.8) into the ideal gas equation of state

-[W ldAl]K
WZdA2

equation (8.5) or (8.6) is satisfied along a relative

(8.8)

P,

Py _ PRI
P1

lech

(8.9)

pathline, the momentum, energy, and continuity equations are

satisfied.

If the flow is in a region which does not contain

conjugate points and if the boundary conditions, (4.22), are

satisfied, then the fluid particle minimum principle is satisfied.

That is, when conditions (4.A) of section-4 are satisfied, the fluid

particle minimum principle is satisfied.
boundary value problem.
every pathline inside the flow region.

region, boundary conditions (4.22) must hold.

We can now formulate a
Equation (8.5) must be satisfied along
At the ends of the flow

Along the walls

of the flow passage the pathlines must coincide with the walls of

the passage.
termine the optimal geometry of the flow passage.

"optimal" constraints on the problem.

The following "inverse" procedure is used to de-
We impose

A family of pathlines is

then determined which satisfy (8.4), (4.22), and the optimal con-

straints.

The passage geometry is then selected to coincide with
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the pathlines, and thus the boundary value problem is completely
determined. The optimal constraints are developed in the next

section.



9. OPTIMAL CONSTRAINTS

In this section a few optimal constraints are selected
which, in the author's opinion, are expected to produce optimal
performance of a compressor rotor. The choice of these optimal
constraints is supported by intuitive arguments. The author knows
of no rigorous procedure for selecting the optimal constraints.
Optimal constraints are imposed in order to produce desirable
operating conditions. However, it is not always possible to
solve the boundary value problem subject to several constraints.
When this occurs, it may be necessary to remove one or more con-
straints.

A rotor usually has a uniform inlet pressure and back
pressure imposed on the intake and discharge cross sections (see
Vavra [13] page 212). However, the intake pressure, P> and the
discharge pressure, Py> inside the rotor is, in general, not
uniform. This type of situation may produce secondary flows
especially if the pressure distribution is highly non-uniform.

It is therefore reasonable to constrain Py and Py to be
approximately uniform. Examination of the momentum equation, (6.9),
yields the following steady flow case in which the intake pressure,

P;» is uniform over the (r,0)-plane of the intake section

. . . 1 .
r=constant,ai=w_ei=0,28—a2,f=a=o. (9.1)
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We shall call (9.1) the "free-vortex intake condition'". Notice
that this condition can hold only at one given rotor speed, w.

Given a uniform pressure (or approximately uniform pressure),
p;» at the intake section, the discharge pressure, Pg» will be
uniform (or approximately uniform) only if the pressure increases
by the same amount along every pathline between the intake and
discharge sections. We will also constain the pressure to mono-
tonically increase along each pathline. A local region of rapid
pressure change could cause the boundary-layer to separate, which
is undesirable. Upon examindng (8.6) and (8.9), we conclude that
the above "uniform pressure increase constraint" is met when

-K
1.2 .2 2,2 29 | 1k
b waa | K hi-E[W -Wi-w(r-ri)]

Py W.dA " h:

i

= L(r,8,2) » (9.2)

where L(r,0,z) 1is a monotonic increasing function which has the
same value when evaluated between the intake and discharge points
of each pathline.

A special case of (9.2) is

m

J-I/K 1. (9.3)

| 3—132_1 = [L(r.e,z)
From (8.7 - 8.9) we observe that the thermodynamic variables,
(p,T,p), remain constant along the pathlines when constraint (9.3)
is satisfied. Constraint (9.3) will be called the "maximum kinetic
energy increase constraint" because all the energy being added to
the fluid is being converted into kinetic energy, while the

enthalpy, h, of the fluid remains constant.
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Solving (8.6) for dA/dA; yields

1
1-K
12 .2 2,2 2
dA_ .'ii hi'z[w "W me(r ‘ri)] . (9.4)
dA, W h

i i

The above equation determines the ratio dA/dA1 along each path-
line in the flow region. For a given set of design conditionms,
(hi’wi’w’ etc.), equation (9.4) is employed to determine a family
of pathlines. The walls of the flow passage are then selected to
coincide with the pathlines of the flow region, and thus the geo-
metry of the flow passage is also determined from (9.4). When
one of the design conditions, (hi,Wi,m, etc.), is changed, the
pathlines of the flow region will, in general, no longer coincide
with the walls of the flow passage. There is only one special
case of (9.4) in which the pathlines coincide with the passage
walls at all rotor speeds, w, and initial conditions, (hi’wi)'

That is, if we impose the constraints

r

‘Ti--l and r1-1, (9.5a)
then (9.4) reduces to
-%15 1, (9.5b)

which is independent of the parameters (hi’wi’w)' The above
equations, (9.5), will be called the "maximum speed range" con-
straint.

It is common practice to design a rotor so that the same
amount of energy is added to each fluid particle which passes

through the rotor [13]. The "uniform energy increase constraint"
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is imposed in order to reducc mixing losses after the flow leaves
the rotor. Thus the change in energy, AH, is constrained to be

a monotonic increasing function, L(r,0,z), which has the same value
when evaluated between the intake and discharge points of each
pathline. The change in energy, AH, along a pathline is determined

by integrating (6.28) with respect to time from t =t,6 to t = t,

i
Substituting o = é + ®w into the resulting equation yields

2 2 2 2, 2 .
H - Hi =w (r - ri) +r wd - rf»ei = L(r,0,z) . (9.7)

The equation of a pathline can be expressed in the following para-

metric form;

r=r(), z=2z(), 0=oe0(t). (9.8)

For the case of steady flow, it is possible to eliminate time,
t, from one of the above equations and express the equation of
the pathline in terms of the other two space variables, i.e., we

may write

8 = o(r,z) . (9.9)

Differentiating the above equation and employing the chain rule

of Calculus yields

- _.d9 _20dz  agdr
8= 3¢ Sz dt + AT dt (9.10)

Substituting (9.10) into (9.7) yields

2,2 2 2,20 _ .2, (20
- = - - 2 +
H Hi w (r ri) + rw 3z rw 1[32]1

2 .20 2 . 128
r wr ar - riwri[ar]i . (9.11)
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Defining the angles vy, € so that

tan y = r 20  and  tan E=r a8 (9.12)
3z oz

equation (9.11) becomes

2,2 2 . .
H-H =0 - ri) + rwz tan y - r.wz tany, +

rof tan € - r wr, tan € - (9.13)

i1

We now list the system of equations and boundary conditions

which will be employed to determine optimal internal flow passages.

I. The uniform pressure increase constraint, (9.2), plus the

continuity, momemtum, and energy equation, (8.6), requires that

-K
1 2 2 2,2 2 T-x
-K h, - =|W -W, ~w( -r,)
[:,L%AX‘] - b -l — ) = L(r,0,2), (9.14)
| )

where L(r,0,z) 1is a monotonic increasing function which has

the same value when evaluated between the intake and discharge
points of each pathline. When the Yfree-vortex intake condition",
(9.1), is satisfied, the intake pressure, Pys and discharge
pressure, p,, are uniform over their respective cross sections.
Two special cases of (9.14) are listed below.

A, "Maximum Kinetic Energy Increase'" Constraint
2 2 2,2 2

1) w - Wi =gy (r - ri) R (9.15a)
W dA P_ h

2) HCA =152 =) and =1, (9.15b)
W.dAy Py hy

B. 'Maximum Speed Range'" Constraint

r W dA

1) =1, —=1, =1 (9.16a)
r, wi dAi
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Wda P__ h _
2) WA 1= b 1 and 1 (9.16b)

II. Boundary Conditions
i hi’ etc.) are

known for each pathline. The intake pressure, Py> is uniform

A, The initial or intake conditions, (pi’ W

over the intake section when the "free-vortex intake condition',
(9.1), is satisfied (i.e., when @ = -éi).

B. The discharge pressure, pa, is known for each pathline.
It is constrained, by equation (9.14), to be uniform over the
discharge section when p, 1is uniform (i.e., when @ = -éi).

Cc. The boundary condition, (4.22b), for the variable end point
functional is determined in terms of the pressure boundary con-

ditions by equation (8.9), i.e.,

dAi[pi 1/x

W,=W, —| — =9QE, . (9.17)
d idA, pd] 2

D. The pathlines of the flow region must coincide with the

walls of the flow passage. Since the walls of the flow passage
are determined from (9.14), this boundary condition is, in
general, satisfied throughout the entire flow region only at
one set of design conditions, (w, hi’ Wi, etc.). However, when
the maximum speed range constraint, (9.16), is satisfied, this
boundary condition is satisfied for all rotor speeds, w, and

intake conditions, (hi’ W,, etc.).

i
When the above equations and boundary conditions are satisfied
in regions which exclude conjugate points and shocks, the fluid

particle minimum principle, (6.22), is satisfied. That is,
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conditions (4.A) of section-4 are satisfied for equation (6.22).
Shocks must be excluded from the flow region since equation
(9.14) does not hold across a shock. The following two con-
straints may also be imposed in order to reduce mixing losses

after the flow leaves the rotor.

III. The "uniform energy increase constraint'" requires that

e el -y + rus . .
H-H =0 ( -r TwZ tan y - r,wz, tan vy,

ryr tan € - riu)i'i tan £, = K(r,0,2) , (9.18)

where K(r,0,z) 1is a monotonic increasing function which has
the same value when evaluated between the intake and discharge

points of each pathline.

Iv. The "uniform discharge velocity constrvaint' requires that
2 2 2 2.2 2 2
vy = 2(Hd - Hi) +V, - (rd - ri)w +W, - W, (9.19)

have a uniform value over the discharge section. Where: (9.19)
was obtained by integrating (6.28) with respect to time from

t=1 to t=d and then substituting h, and hd’ which are

i
evaluated from (6.25a), into the resulting equation.



10. A "MAXIMUM KINETIC ENERGY INCREASE"
CENTRIFUGAL ROTOR PASSAGE

In this section, we seek the geometry of the flow passage
of a centrifugal (mix-flow) rotor which will satisfy the "fluid
particle minimum principle'" and the "maximum kinetic energy in-
crease constraint'" of section-9. This example is intended to
serve only as an academic demonstration of how an optimal rotor
passage may be determined.

We consider only centrifugal rotors having radial blades
in this section. We constrain each pathline to lie on a (r,z)-
plane (radial plane) as shown in figure 10.1.

All the initial conditions of each pathline inside the
rotor, (¥, éi’ etc.), must be known. The pressure distribution
over the intake section is then determined from the momentum equa-
tion, (6.9). It is interesting to observe that when the flow
satisfies the "free-vortex intake condition", (9.1), (i.e., when
we assume éi = -p), then the present example reduces to the
trivial irrotational case discussed in section-7. That is, when
condition (9.1) is satisfied, the pressure distribution is uniform
over the intake section. And since the pressure is constrained
by (9.15) to be constant along each pathline, the pressure is
constant throughout the flow region. The momentum equation, (6.9),
then reduces to r = constant, z = constant, and § = -w through-
out the flow region. And Euler's turbine equation, (6.28), then
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reduces to ﬁ = 0, which is a trivial case.

For the purpose of demonstration, we shall assume that
the fluid enters the rotor with zero velocity in the tangential
direction, i.e., we assume éi = 0. The other intake conditions,
(Ei, éi’ Pi» etc.), are assumed to be known but will not be assigned
specific values. The discharge pressure, Py> is constrained to
equal the intake pressure, P> (see equation 9.15). Since the

pathlines lie in the (r,z)-plane,

o= 9, = 0. (10.1)

In order to satisfy the "maximum kinetic energy constraint",

(9.15), we let

a) W2 -W, = wzQ(z) , (10.2a)

b) r2 -r

HoN =N

=Q(z) . (10.2b)

Substituting (10.1) and (10.2) into (9.14) and (9.7) it is easily

verified that

W dA
=1, (10.3)
widAi
and
H - Hi = w2Q(z) s Or (10.4a)
= 2 2 1
Hy - Hi w Q(zd) -w Q(zi) , (10.4b)

where we require that Q(z) be a monotonic increasing function
which has the same value when evaluated between the intake and

discharge points of each pathline. Equation (10.4b) then satisfies
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the "uniform energy increase constraint'", (9.18).
Substituting (10.4b) and (10.2) into the "uniform discharge

velocity constraint", (9.19), yields

V2= 27[Qezy) - Q)] + Ve (10.5)

From (10.5) we observe that Vi is uniform when Vi is uniform

2
over the intake section. Expanding V

{ yields
2 .2 .2 2 2
Vi r, + z, + r,w . (10.6)
or
. 2 2 2 2
- - 34 - . 10.
£ \[v1 LT (10.7)

Letting Vi = constant, the intake angle, 91, of each pathline is

\ﬁz_iz_rzwz
= tan } 'L ; 1

i i

"

1

Bi = tan . (10.8)

Ne

and the '"uniform discharge velocity constraint'", (9.19), is then

satisfied at the design conditions, (w, V,, etc.).

i

We now seek an expression for the change in area, dA, (see
equation 2.6b for a definition of dA). We assume that the flow
may be represented by a family of pathlines, y, and orthogonal

curves, ¢, as shown in figure 10.2.

¢ =Cq

Figure 10.2

Flow Net



56
The equation of the pathlines is determined from (10.2b), i.e.,
2 2
y(r,z) =r -Q(z) = r, = constant . (10.9)

The slope of the pathlines is obtained by solving (10.9) for r

and differentiating with respect to z, i.e.,
dr, _d | /2
(dz¢ dz[ ri+Q(Z)]

_1/2 dQ/dz _Q'(z)

- T (10.10)
/ r, +Q
Since the y and @ curves are orthogonal,
dr, _ _dz, _ z2r
L ¢ o v Q" (10.11)

where the subscripts ¢ and y denote the curve along which
the differentiation is performed. The equation of the ¢ curves

is found by integrating (10.11), i.e.,
2r d
r=-j‘67 z -0, (10.12)

where @ is the constant of integration. Substituting (10.12)

into (10.9) yields

2
v = [¢+J‘Q%EZ) dz] -Q(z) . (10.13)

Differentiating (10.13) with respect to z, and holding @ constant

yields

(%‘zl)¢=2 ['¢ +J'Q2r7dz (%%-Q' . (10.14)

Substituting (10.12) into (10.14) yields






dy, _Zbr
@D, =g~ - - (10.15)
The differential change in area, dA, is equal to the differential

change in arc length, dsl, of the ¢(r,z) = constant curve times

the change in arc length, dsz, in the r-¢ plane as shown in figure

10.3. r r s
‘ * - dA ¢ =cC
v
ds2

< /dsl

r

Figure 10.3

Area Increment

‘/ dr. 2
dA = ds;ds, = +|/1 + (&%)¢ dz r dn , or (10.16a)

T dr,2 gz
it R B o)

Dy Gy " dy . (10.16b)

Substituting (10.15) and (10.11) into the minus value of equation
(10.16b) yields

an_-Vi+art/@ylcan . L (10.17)
dy  _ [Q' +4r2/Q'] \/(Q') + 4r

Substituting (10.2b) into (10.17) yields

g—‘: = r d7 {[Q'(z)]2 + éri + loQ(z)}-% . (10.18)
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Substituting the derivative of (10.2b) with respect to z into
(10.17) yields

dA _ 2 dr,2 2.-%

ay r dn {4r (dz) +4r°}) * . (10.19)
Substituting tan B = %f into (10.19) yields

dA 2 2 -y _dn

== . 10.

ay r d1 [4r" (tan” g + 1)) 2 sec B (10.20)

Evaluating (10.20) at the intake point (i) and then dividing it

into (10.18) yields

94 = or sec g, {[Q'(2)]% +4r% +4Q(z)} "%, (10.21)
dA1 i i
where dy and dT cancels with d'i and d“i respectively

because they are constants along each pathline. Substituting

(10.2a) into (10.3) and solving for dA/dAi yields

w

1Y)
dA i
. -w—-—-i— . (10.22)

1 Vwi + wzQ
Equating (10.22) and (10.21) yields

(10.23)

Substituting r = Vri +Q from (10.2b) into (10.23), then squaring

both sides and solving for Q' yields

2 X
4 sec B. 2
R l——L @l +oQ @) +Q) -or - | . (10.24)

W
i
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Multiplying (10.24) by 1/ri, and then separating variables and

integrating yields

z = %—j 4 +1, (10.25a)
7 Vig? 4+ g + a
. 2 2
where; a = 4(sec By - 1) = 4 tan By » (10.25b)
2
il QU U N 10.25
b=—2'—2—'(wi riw)-z. (10.25¢)
r, W r,
i i
4w2 seczgi
C =T ——p—— (10.25d)
2 w2
LR
4 = constant of integration . (10.25e)

Performing the integration of (10.25a) yields

z = —L Ln|;/cQ2+bQ+a +QJE"+b +24 , (10.26a)
r c 2Ve

i

where ¢ > 0; or

12 +b | 4, (10.26b)

1 -
sinh
r \/c V&ac - b2

i
where 4ac - b2 > 0. Only (10.26a) will be considered in detail.

Substituting (10.2b) into (10.26a) yields

z = + 4.

(10.27)

4in \/c(rz-ri)2 + b(rz-ri) + a + (rz-ri)\/‘? + b

ric A 2\c

Evaluating the above equation at (ri,zi) and (rd,zd) respectively

yields
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2, = 1 Ln[\/;ﬂx b ]+L, and (10.28)
' r, Ve 2 Ve

1 S 2
d Ln[c(Qd) +de+a+Qdc+

z. = J + ¢, (10.29)
rivﬁ; 2 Ve
where Qd = rg - ri = A% = constant. Equation (10.29) determines

W
the end point of each pathline so that the "uniform energy increase

constraint", (9.18), is satisfied. The constant of integration,
4, is arbitrary and may be set equal to zero.

Equation (10.27) determines the equation of each pathline
in the r-z plane. Notice that the constants, (a,b,c), vary from
pathline to pathline. In order to satisfy boundary condition D
of section-9, we must select the hub and shroud profiles of the
centrifugal rotor to coinc¢ide with equation (10.27), see figure
10.1. Since the constants, b and ¢, in (10.27) depend on
the design conditions, (w and Wi), boundary condition
D 1is, in general, satisfied only at one set of design conditioms.
This set of design conditions is the only operating point at which
the fluid particle minimum principle is satisfied throughout the
entire flow region.

Boundary condition C of section-9 is satisfied, when the
discharge pressure, Py equals the intake pressure, pi’ i.e., when

Pq = P; then

K
Ww.,dA P
d™a
= = [;11] =1, (10.30)

which is required by condition (10.3). In most flow situations

the discharge pressure, Py» will equal the pressure of the chamber
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into which the flow is being emitted. In these situations the
pressure of the chamber must be controlled so that it is approx-
imately equal to the discharge pressure, p;. See Sharpiro (11
page 91 for a discussion of the effect of back pressure on flow
through nozzles.
Although it is theoretically possible to satisfy all the
constraints mentioned in this section, employment of all these con-
straints may result in an impractical rotor. If the above situation
arises, the "uniform discharge velocity constraint'", (10.8), may
be omitted, or the condition that Qd possess exactly the same
value when evaluated between the intake and discharge points of
each pathline may be relaxed.
In conclusion, we observe that the "maximum kinetic energy
increase constraint", (9.15), and the "fluid particle minimum
principle'" are satisfied when the following five conditions are
satisfied:
1. The rotor operates at the given design conditions,
(w, OH, By, W, etc.).

2. The hub and shroud profiles of the rotor conform to
equation (10.27).

3. The discharge pressure, Pg> and intake pressure, P>
of each pathline are equal.

4. Shocks are excluded from the flow region.

5. A flow region is selected from the family of pathlines,
(10.27), which is free of conjugate points.

We also observe that it is possible to satisfy the "uniform energy

increase constraint'", (9.18), and the "uniform discharge velocity
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constraint'", (9.19). The initial and end points of each pathline
are partly determined by the employment of these constraints,
(9.18) and (9.19).

The flow chart in figure 10.4 outlines the procedure for
determining the optimal geometry of the internal flow passage for
the centrifugal rotor discussed in this section. Figure 10.1
shows the geometry of the rotor which is determined by the set of
design conditions listed below:

5

. 2 2
w = 2000 RAD/SEC, v, = 500 FT/SEC, 8 = 0, AH = 4.16 x 10” FT /SEC .

The initial points of some representative pathlines are:

1 r, =1.00" B, = 28°
2 r, =l.l66" B, = 29°
3 r, =1.333" B, = 30°
4 r, =1l.50" By 31°

Because the parameters, b and ¢, depend on the operating
conditions, w and Wi, the family of pathlines, (10.27), will
coincide with the hub and shroud profiles of the flow passage only
at the design point, (w,wi). However, if the flow can be controlled
so that @ = constant Wi, then the parameters, b and c¢, no longer

depend on w and W The family of pathlines, (10.27), is then

i.
independent of all operating conditions, (pi, Ti’ Wi, w), and the
fluid particle minimum principle is satisfied at all operating

points, (w, Wi).
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START

C

READ (VY AH’ vi

D

e
.

READ r,, By, (let { =0)

)

initial data for
each pathline

CALCULATE
w? = v?

i i

see

see

[o see

z, £ see
i

r2 u)2
i

equation (10.25b)

equation (10.25c)
equation (10.25d)

equation (10.28)

Q = AH/w2

z see

d

equation (10.29)

z =z + Az

CALCUIATE
r(z)

see equation (10.27)

.

PRINT r(z), 2z

)

END

Figure 10.4

Flow Chart

output used to plot
each pathline



11. AXIAL-FLOW ROTORS

In this section it is shown that it is possible to design
"special axial-flow" rotors which satisfy the fluid particle min-
imum principle over a wide range of operating conditions. We

shall impose the constraint,

r/r, =1, (11.1)

on the flows discussed in this section. This constraint requires
each pathline to lie on a right cylindrical surface. The Coriolis

acceleration is then normal to the flow as shown below

1 - 1 A
r ir ie r 1K
2wxW=2]0 0 w --2rmé’ir. (11.2)
0 rzé z

Thus both the Coriolis acceleration and the centrifugal acceleration,
ﬁ»zr ir’ are normal to the cylindrical surface containing the flow.
We shall assume that the inertia forces and pressure gradient are

in stable equilibrium in the r-direction. That is, we assume that
the radial component of the momentum equation, (6.9a), is satisfied
throughout the flow region. This condition is called the 'radial

equilibrium condition'". The flow in each (re,z)-cylindrical plane

can then be treated as a two-dimensional flow which is independent
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of the radial component of the momentum equation, (6.9a). The

fluid particle minimum principle, (6.22), then reduces to

b 2
) jd%— - h)de + EVEI - W).anl] + (VE, - W)-aﬁl] =0, (11.3)
a a b

where W2 = (ré)2 + 22 and r = constant. The Euler-Lagrange

equations corresponding to (11.3) are

, (11.4a)

" |-
ok
]
o

4
O~ O]~
o
9=

]

=)

. (11.4b)
And the "radial equilibrium condition" is

: 2 1lap
-r(o + +=4t=0. 11.5
r(8 + w) 5 ar ( )

Substituting r = constant, ¢ = ¢ + w, and 1a = ie into the
momentum equation, (6.9), yields (11.4) and (11.5). Thus we con-
clude that the Euler-Lagrange equations of the functional (11.3)
plus the '"radial equilibrium condition' are identical to the Euler-
lagrange equations of the functional (6.22). It is known from
Variational Calculus that two functionals are equivalent when
their respective Euler-lagrange equations are identical. The
fluid particle minimum principle (11.3) plus the constraint (11.5)
is therefore equivalent to the fluid particle minimum principle
(6.6). Thus we may operate in the relative reference frame using
the fluid particle minimum principle, (11.3), and the constraints,
(11.5) and (11.1). Since the inertia forces do not act in the

(r9,z)cylindrical plane (they act normal to the plane), the flow

may be irrotational in each (ro,z)-plane. That is, the flow is



66

irrotational when

19 1 11
r r ) r z
L 2.
v X = |2 a_ a_ =17 |22 a2 O .o, 1.6
dr 2o 2z r r|ad 3z
0 rzé z
or the flow is irrotational in each (r@,z)-plane when
at _ .2 28
30 r 3z 11.7)

However, the flow is still rotational as viewed from the fixed
reference frame.

When the flow is irrotational, the fluid particle minimum
principle, (11.3), reduces to the irrotational flow (strong minimum)
problem (4.B) discussed in sections 4 and 5. In this case, it is
possible to satisfy the fluid particle minimum principle over a
wide range of operating conditions.

The traditional method of designing blades for axial-flow
rotors is to first assume that the flow is two-dimensional on
each (r@,z)-cylindrical surface. Next, the 'radial equilibrium
condition" is satisfied. Then the classical incompressible
potential flow theory (or some other method) is employed to map
the flow through a cascade of blades, see Vavra [13] page 312.
Thus we can conclude that the assumptions employed in the tradi-
tional method are often equivalent to the constraints employed

in the optimization procedure.



12. CONCLUDING REMARKS

The present optimization procedure predicts the "minimal
energy configuration" of the flow field, inside a rotating passage,
only when the fluid particle minimum principle is satisfied. When
the optimization procedure is employed, the intake conditions of
the fluid, inside the rotor, must be accurately known. The intake
conditions may be difficult to determine in practice. The present
work does not discuss how the intake conditions may be determined.

In order to design a practical rotor, the present optimiza-
tion procedure as demonstrated in section-10, must be employed in
conjunction with "other analytical methods'". The author suggests
the following iteration procedure for incorporating the present
optimization procedure into a design program. The design conditions
041, W, Ty etc.) may be treated as unknown parameters each of which
is restricted to lie within a specified range. Employment of the
optimization procedure then yields the equation of a family of path-
lines, which depends on the parameters, 041, W, Ty, etc.). For
example, the constants, (AH, w, Vi’ Bi’ ri), in the problem dis-
cussed in section-10 could have been treated as unknown parameters.
Then, the design problem is to determine a passage geometry which
coincides with one of the set of pathlines determined by the
optimization procedure and which also appears to be a reasonable

geometry based on the "other analytical methods'" (i.e., based on
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the boundary-layer analysis, off-design analysis, ctc.). This
would involve an iteration procedure in which the "other analytical
methods" are employed for each set of parameters, (AH, w, Vi’
Bi’ ri).

This work, in general, agrees with the well known equations
and assumptions traditionally employed in turbomachinery design
work. However, we will now discuss a few points in the present
work which deviate from the traditional procedures. Often in
turbomachinery design procedures, the one-dimensional compressible
flow theory, as described in reference [11], is employed to
1nvestigate the flow inside the rotor. As mentioned in section-5,
the one-dimensional theory becomes increasingly inaccurate as the
curvature of the streamlines increase. Since the absolute stream-
lines inside a rotor are usually curved lines, this procedure may
yield inaccurate results. A more accurate procedure is to employ
the three-dimensional equations of section-8 in the investigation
of the flow inside the rotor.

The employment of "optimal constraints' in the present
work also deviates from the traditional procedures employed in
turbomachinery design work. Any constraint may be imposed on the
flow as long as the fluid particle minimum principle is satisfied.
Thus if we impose the constraint, that the flow is two-dimensional,
and then discover that the fluid particle minimum principle is
not satisfied, we must conclude that the flow will not be two-
dimensional. That is, we can only force (or constrain) a flow to
be two-dimensional when the fluid particle minimum principle is

satisfied. The traditional methods employed in turbomachinery
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work often contain simplifying assumptions, such as the assump-
tion, that the flow is approximately two-dimensional. In the
present optimization procedure the simplifying assumptions are
often replaced by the "optimal constraints".

It was shown in sections 4 and 5 that all (irrotational)
potential flow problems satisfy the fluid particle minimum prin-
ciple. However, for the case of flow inside a rotating passage,
the fluid particle minimum principle is seldom satisfied. 1In
general, the flow inside a (rigid geometry) rotating passage will
satisfy the fluid particle minimum principle at no more than one
set of design conditions. The "maximum speed range'" constraint,
(9.16), and the special-rotors discussed in sections 10 and 11
represent cases in which it is, theoretically, possible to satisfy
the fluid particle minimum principle over a wide range of operat-

ing conditions.



APPENDIX-A

In this section it will be shown that the energy equation,
(4.17b), is equivalent to the First Law of Thermodynamics for the
case of steady isentropic flow. Consider a fluid particle, i.e.,
an infinitesimal closed system, moving at velocity, V = é , along
a pathline. The First Law of Thermodynamics for a moving closed

system and for steady isentropic conditions is

+ 4 R.E) dw
0= dt dt "’dc +dt’ (a.1)

where: U = mu internal energy of system,
1.2
K.E. = m E'V kinetic energy of system,
*
G = mG potential energy of system,

w = work injected into system,

m = mass of system.

Substituting the definition of the mass of the fluid particle,
= { pdy , (A.2)
into(A.1l)yields

2
0= dw+d p[u+v—+GJdV. (A.3)
dt V 2

The thermodynamic reversible compression work for a closed system

is [7]

w =j pdv . (A.4)
v
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Substituting (A.4) into (A.3) and rearranging terms yields

d P V2
0=a—;v[p+u+?‘+G]pdv. (A.5)

Since the size of the volume, ¥, is arbitrary, the integrand of

(A.5) must vanish everywhere in the flow region. Observing that

the element of mass, pdy, is a constant, (A.5) becomes

2
d |p v -
at [; +u + 2 + G] 0. (A.6)

Multiplying (A.6) by dt and integrating with respect to time

yields

2

§+u+‘2’—+c=n, (A.7a)

or

é 2
CPT + S—%— + G = H = constant along each pathline , (A.7b)

where CPT =h=u+ § and V = R. The constant of integration,

H, is a constant along each pathline because equation (A.l) applies
to one fluid particle which is traveling along one pathline.

Equation (A.7b) is identical to the energy equation, (4.17b).



APPENDIX B

In this section a brief review of a "field of a functional"
is presented. All the definitions and theorems listed in this
section are taken from reference [2] chapters 5 and 6. Consider
a system of second order differential equations (such as the Euler-

Lagrange equations)
¥, = £, 0y, (®), y,(®), y;(©)], (1 =1,2,3) . (8.1)

In order to single out a definite solution of this system, we

have to specify six boundary conditions of the form

for two values of time, t. The family of boundary conditions,
(B.2), is called a field (of directions) for the given system
(B.1) when equation (B.2) holds at all values of time, t. A
necessary condition for (B.2) to be a field of a functional is
that (B.2) must first be a field of the system of the Euler-
Lagrange equations of the functional.

Theorem-B-1. A necessary and sufficient condition for

the family of directions, (B.2), to be a field of the functional,

ty i
[1 F(¥, y)dt , (8.3)
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is that the self-adjointness conditions (this is the irrotational

condition in our application),

3P, P =
91 .%k (t=1,2,3) (B.4)
oYy Yy (k = 1,2,3)

and the consistency conditions (this is the momentum or Euler-

Lagrange equation in our application),

r Y
il (5 =1,2,3), (8.5)
at 3y,

be satisfied at every point t in [tl’tZ]’ where P, 1is the

"momenta'" (it is the velocity in our application) defined as
P, =F. , (B.6)

and H 1is the Hamiltonian function (it is the total enthalpy plus

a constant in our application) is defined as

3
H= £ P y, - F+ constant . ®B.7)
j=p 171

Theorem-B-2. The expression

api aPk (i-= 1,2’3)
i _ -k (B.8)
Yy Yy (k = 1,2,3)

(this is the vorticity in our application) has a constant value
along each extremal (i.e., along each pathiine).

The self-adjointness condition (or irrotational condition),
(B.4), implies that there exists a potential function (a velocity

potential function in our application), g, such that

Bﬂ_gp

A L (8.9)



74

Theorem-B-3. The boundary conditions (B.2) defined by
(B.9) are a field of the Euler-Lagrange equations if and only if
the potential function, g, satisfies the Hamilton-Jacobi equation

(this is the energy equation in our application)
g§+ HY, vg) =0 . (B.10)

We observe that the Hamilton-Jacobi equation, (B.10), and
the self-adjointness conditions, (B.4), (i.e., the energy equation
and irrotational condition) require that the integrand, Fdt, have

an exact differential, dg. That is, since

38 = .y and 0QB-a=p 11
v nd B-mr (8.11)

then
dt = -Hdt + dy = 2B dt + 3B 4y =dg . .12
Fdt H p) Pi Yy s 151 3y, Y, g (B.12)

The above equation forms the basis for Hilbert's Invariant Theorem
which is formally stated in the below manner.

Theorem-B-4. Given a field of directions (B.2) of the
Euler-Lagrange equation, the directions (B.2) define a field of

the functional

t2
J‘ F dt (8.13)
t
1
if the Hilbert integral
3 3
F- I y,F. ]dt+ £ F. dy (B.14)
‘i[ i=1 1 Yy =1 Yy 1

depends only on the end points of the curve along which it is

taken and not on the curve itself. If the curve ¢ along which
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the integral, (B.l4), is evaluated is one of the extremals (path-

lines) of the field, then

dy, =y, dt (B.15)

i

along ¢, and hence (B.1l4) reduces to

j F dt . (B.16)

c
When the conditions (B.10) and (B.4) hold (i.e., when the flow
is irrotational and the energy equation holds), then (B.12) may
be substituted into (B.16) which yields
l F de = { gf it =g, - g, , ®.17)

which is independent of the path of integrationm.

When the potential function, g, is known, it may be used
as the boundary conditions of the variable end point functional,

(3.1). That is, equating (B.9) and (B.6) yields

g = F. 9 (3018)
Yy Yi

which when substituted into the boundary conditions, (3.3), yields

Q@ _(E -g)=0,2—(E -g) =0
a7, ( 1 g) R ~ ( 9 g) » or

E,=E, =g, (8.19)

at all values of time, t.
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