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ABSTRACT

Fww -PASSAGE -GEOMETRY OPTIMIZATION

INSIDE A MODEL COMPRESSOR ROTOR

BY

Paul Charles Glance

The goal of this work is to determine optimal internal flow

passages for compressor rotors. This work should be regarded as a

first approach to the problem of designing optimal internal flow

passages. A great many other phenomena such as shocks, boundary-

layers, etc. need to be considered if a realistic compressor rotor

is to be designed. Steady isentropic flow of a fluid, which obeys

the ideal gas relations, is assumed throughout this work. The

equations developed in this work may be applied to axial-flow,

mix-flow, and radial-flow rotors.

The problem of describing the motion of the fluid continuum

is formulated as a minimum problem of Variational Calculus, and the

equation which results from this formulation is called "the fluid

particle minimum principle". Basically, this minimum principle

states that of all the possible motions the fluid will travel along

the one family of pathlines (or streamlines) which causes the

kinetic energy minus the potential and enthalpy energies of each

fluid particle to be a minimum. A fluid particle is defined as an

infinitesimal volume of fluid whose surface is impervious to the

flow of matter.



Paul Charles Glance

The "optimal flow passage geometry" is defined as the

geometry for which the entire flow region satisfies the fluid

particle minimum principle, continuity equation, boundary condi-

tions, and various "optimal" constraints. An optimal constraint

is any side condition which is imposed on the problem in an effort

to produce desirable or optimal results. Constraints are imposed

in order to control the pressure and energy increase of the fluid

inside a rotor and they often simplify the problem.

The flow problem is treated as a boundary value problem.

One of the boundary conditions is that the pathlines of the flow

region must coincide with the walls of the passage. When the flow

is rotational, the following procedure is employed to determine

the optimal flow passage geometry. A family of pathlines is

determined which satisfy all the equations and boundary conditions

except the above mentioned boundary condition. The passage geometry

is then selected to coincide with any set of pathlines, belonging

to the given family of pathlines, and the boundary value problem

is thus completely determined. When the flow is irrotational,

the boundary value problem is determined by the velocity potential

function. In general, a rotational flow, inside a rotor, can

satisfy the fluid particle minimum principle at only one set of

operating conditions. Whereas, an irrotational flow will satisfy

the fluid particle minimum principle over a wide range of operating

conditions.

In order to demonstrate the optimization procedure, a

"maximum kinetic energy increase" centrifugal rotor is investigated.

Application of the optimization procedure to axial-flow rotors is

also discussed.



FIOW-PASSAGE-GEOMETRY OPTIMIZATION

INSIDE A MODEL COMPRESSOR ROTOR

BY

Paul Charles Glance

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1971



ACKNOWLEDGEMENTS

The author is deeply indebted to his major professor,

Dr. Maria Z.v. Krzywoblocki, for his guidance and assistance

throughout the course of this study. The author also wishes to

thank the other members of his guidance committee for their

interest and suggestions: Dr. George E. Mase, Dr. Gerald D.

Ludden, and Professor George H. Martin.

Thanks are due to the Mechanical Engineering Department

for financial support during graduate study and research.

To his wife Joanne, daughter Michele, and parents

Edmond and Juanita, the author dedicates this work for their

encouragement and understanding throughout this study.

ii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS i i

LIST OF FIGURES iv

LIST OF APPENDICES v

NOMENCLATURE vi

INTRODUCTION 1

Section

1. KINEMATICS. 4

2. LAGRANGIAN FORM OF THE MOMENTUM AND CONTINUITY

mUATIONS 0....0....OOOOIOCCCOICOOOCCCOOOOO..00....0 5

3. VARIATIONAL CALCULUS ............................... 8

4. FUJID PARTICLE MINIMUM PRINCIPLE.. 12

5. SOLUTION OF SOME CLASSICAL EXAMPLES ................ 20

6. ROTATING FILM PASSAGE .............................. 31

7. IRROTATIONALFLOW .................................. 4O

8. ROTATIONAL FUN‘.................................... 41

9. OPTIMAL (DNSTRAINTS ................................ 45

10. A "MAXIMUM KINETIC ENERGY INCREASE" CENTRIFUGAL

ROTOR PASSAGE 0......OO...OOOOOOOOOOOOOOOOCOOOOOOOO. 52

11. AXIAL‘FW ROTORS o.oooooo0.0000000000000000...ooooo 64

12. CONCLUDING REWS OOOOOOOOOOOOOOOOOIOOOOOOO00...... 67

REFERENCES O...00....OOOOOOOOOOCOOOOOOOOOOOOOOOOOOOO 76

iii



Figure 2.1

Figure 5.1

Figure 5.2

Figure 6.1

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

LIST OF FIGURES

CUrVili-near curves ......OOOOOOOOOOOOO

Conjugate POIDtS 000.000.00.00... ooooooooooo

Radial Pathlines Enclosing a Pathtube ......

Rotating Passage ...........................

An Optimal Centrifugal Rotor Passage .......

Flow Net ...

Area Incremnt .....OOOOOOOOOOOOOOOOOO

Flow Chart .

iv

22

27

32

53

55

57

63



LIST OF APPENDICES

Page

Appendix A. First Law of Thermodynamics 70

Appendix 8' Fields Of a Functional ......OOOOOOOOOOOOOOO 72



h = C T

kv2+h:
1
1

Il
l

V°()

dt

agzp

aY Y

5()

A(H) = H - H

”
l

NOMENCLATURE

entropy

pressure

temperature

density

enthalpy of ideal gas

total enthalpy

Specific heat at constant pressure

specific heat at constant volume

ratio of Specific heats

ideal gas constant

total relative enthalpy

curl operator

gradient operator

divergence operator

time derivative

partial derivative

variational derivative operator

difference Operator

volume

cross sectional area

arc length

position vector

vi



W
]
.

O

(
'
7

I
a
n

I
!

:
n
v

I
I

<
1

I
s
t
u
n
.

1
.
.
.
:

n

H

n

I

”
b

..
..

II 8
1

2
"
“
!

m
i
n
.

"
4

O

O

8

det

F

Elsi), 1:20:52?)

V
1

g yl’yz ’y3

*
<
1
-

«
4
.

1'92’5’3

u1,u2,u3

x,y,z

r,a,z

1,3,k

lr,la,lz

11’31’E‘1

Er’le’i
2

position vector at t = 0

time

velocity

position vector drawn from the relative

reference frame

relative velocity

body forces per unit mass

non-conservative body forces

conservative body forces

force potential function (VG 3 -f)

velocity potential function (Vg = V)

functional

integrand of functional
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INTRODUCTION

The Lagrangian method of describing the motion of a con-

tinuum is employed in this work. The Eulerian description of

motion is the traditional method used to describe the motion of

a fluid continuum. However, the Lagrangian description was chosen

because the methods of Variational Calculus are considerably less

complicated for functions of one independent variable. The problem

of describing the motion of the fluid continuum is formulated as

a minimum problem of Variational Calculus, and the equation which

results from this formulation is called "the fluid particle

minimum principle". Basically, the fluid particle minimum prin-

ciple states that of all the possible motions the fluid will

travel along the one family of pathlines which causes the kinetic

energy minus the potential and enthalpy energies of each fluid

particle to be a minimum. The energy equation is of primary

importance in the present formulation, while the momentum equation

is always satisfied. The energy equation is the first integral

of the momentum equation for the case of isentrOpic flow. This

approach differs from the traditional Eulerian method, wherein

the momentum equation is the equation primarily operated upon.

Steady isentropic flow of a fluid, which obeys the ideal

gas relations, is assumed throughout this work. The path of a

fluid particle is called a pathline. For the case of steady flow



pathlines and streamlines coincide. In section-1 the Lagrangian

dcscript ion of motion of a fluid continuum is explained and a

fluid particle is defined. In section-2 the Lagrangian form of

the momentum and continuity equations are listed. A special form

of the Lagrangian continuity equation is derived for the case of

steady flow. Some of the results of Variational Calculus, that

are employed in later sections, are listed in section-3. In

section-4, the problem of describing the motion of a fluid con-

tinuum is formulated as a minimum problem of Variational Calculus.

The fluid particle ndninuniprinciple is then developed. In section-5

some classical fluid problems are investigated using the previously

developed theory. All (irrotational) potential flow problems are

Shown to satisfy the fluid particle minimum principle. The con-

ditions under which (one-dimensional) isentropic compressible flow

satisfies the fluid particle minimum principle are also investigated.

In section-6 the fluid particle minimum principle of section-4 is

adapted to the flow inside a rotating reference frame. The energy

equation is then derived. In section-7 it is shown that there

exists only one trivial case for which the flow inside a rotating

passage is irrotational. Thus this case is excluded from the

following investigations. In section-8 the continuity equation

and energy equation are combined and the boundary value problem is

described for the case of rotational flow. In section-9 the optimal

constraints are selected. The System of equations and boundary

conditions, which are employed to determine the optimal compressor

passages, are summarized at the end of section-9. Section-10

contains a demonstration of how an Optimal flow passage may be



determined. A "maximum kinetic energy increase" radial blade

centrifugal rotor is considered in this section. In section-11

flows which are irrotational in the relative reference frame are

investigated. Section-12 contains some concluding remarks.



1 . KINEMATI CS

The Lagrangian method of describing the motion of a con-

tinuum will be employed in this thesis. In the Lagrangian des-

cription of motion, the path of each particle is described by

the locus of points traced out by the end point of a position

vector, R[Ro, x(t),y(t),z(t)], with respect to a fixed (Newtonian)

reference frame [8]. The reference position of each particle is

given by the constant position vector, R6, which is the position

of the particle at time, t B O. The coordinates of the particle

at t = O are known as the material coordinates of the particle.

A fluid particle is defined as a differential volume of

fluid which.umy change shape, volume, and density but must always

contain the same molecules of the fluid [10]. A fluid particle

is an infinitesimal closed system since no mass may cross its

boundary. When the Lagrangian description of motion is employed

to describe the motion of a fluid continuum, the trajectory (or

pathline) of each fluid particle is described by the locus of points

traced out by the end point of the position vector,

R[Ro, x(t),y(t),z(t)]. An infinite number of position vectors is

needed to describe the motion of the fluid continuum. For the

present time we assume that the pathlines traced out by the posi-

tion vectors do not intersect in the flow region under considera-

tion. For the case of steady flow, pathlines and streamlines

coincide [10]. Only steady flow is considered in this work.

4



2. LAGRANGIAN FORM OF THE MOMENTUM

AND CONTINUITY EQUATIONS

The Lagrangian form of the momentum equation, for a non-

viscous fluid, that will be employed in this work is

2-4

£1—%+YR-'t’x=o, (2.1)
pdt

where p is the density of the fluid, p. is the pressure, f

represents the body forces per unit mass acting on the fluid

particle, and E is the position vector of the fluid particle

[10] .

The Lagrangian form of the continuity equation is often

written in the below form

pdV = pldvl = constant. (2.2)

A second form is

gi.1_1en=_ififl (23,
V'dt dv dt pdt’ °

where t denotes time, p is density, V is the volume of the

fluid, and R is the position vector of the fluid particle [10].

We now seek a more convenient form of the continuity equa-

tion for the case of steady flow. We select the material co-

ordinates to be a set of orthogonal curvilinear coordinates,

(u1,u2,u3),and the u1 curve is selected to coincide with the

pathlines of the fluid particles. That is, at time t = O the

5



fluid continuum is described by the curves:

u1(x,y,z) = C1 = constant along a pathline, (2.4a)

u2(x,y,z) = C2 = constant, (2.4b)

u3(x,y,z) = C3 = constant. (2.4c)

For the case of steady flow, the path of the fluid particles will

remain coincident with the u1 curves. A volume element, dV,

about any point, P for a moving orthogonal curvilinear co-
B,

ordinate system (u1,u2,u3) is defined as [12]

. a3. . 35. 313.dv ‘aul dul (3‘12 duz x 8‘13 du3)‘ , (2.5)

where E(ul,u2,u3) is a position vector drawn from the origin to

the fluid particle at Pb, see figure 2.1.

 
  

Figure 2.1

Curv 1 linear Curves



The cross product in (2.5) may be interpreted as the change in

cross sectional area, dA, normal to the curve. And the term

”1

h§_ du is the change in arc length, ds , along the u curve.
aul 1 1 1

Thus (2.5) may be rewritten as

dv = dsldA , (2.6a)

=33. a3. =
where dA - Bug du2 X Bu3 du3 - dszds3 , (2.6b)

and dividing (2.6a) by dt yields

dV ds1

d? = d—t_ dA . (2.7)

Since the ratio of the change in arc length to the change in time

is a measure of the Speed of a fluid particle along the u1 curve,

equation (2.7) can be rewritten as

d“ a a a
gE‘FE'dA=v°dA’

(2-3)

Dividing equation (2.2) by dt and then substituting (2.8) into

the resulting equation yields

pV.dA‘=p1V1-dK1 , (2.9a)

or

__ Vi’dAi VldAl 29b

9 ‘:—-_.—=—VTA—- <-)
1 V-dA

Equation (2.9) is the Lagrangian form of the continuity equation

that is employed in this work. It is only valid for the flow of

a fluid particle along a time independent pathline.



3. VARIATIONAL CALCULUS

We shall be concerned with the following problem from The

Calculus of Variations. Consider the variable end point problem

for the functional

t=b

t=a F(§’;)dt + E1(8 93:) + E2039?) 3
(3.1)

where E1 and E2 are functions of the coordinates of the end

points of the path along which the functional is considered,

9 = y1,y2,y3 represents the space variables, and y = yl,§2,93

represents the components of velocity. Calculating the variation

of the functional, (3.1), and setting the result equal to zero

we obtain the well known Euler-Lagrange equations

F - d—F = o (i = 1,2,3) , (3.2)

3'1 dt 3'1

and the boundary conditions;

(F§ - E1 )| = o (1 = 1,2,3) , (3.3a)

F. - E = 0 i = 1 2,3 3.3b(y >|t___b < . > . < >

where the subscripts y1 and yi denote partial differentiation,

i.e., §%_ 5 Fy [2]. The solution to the Euler-Lagrange equations,

. i i

(3.2), is called an extremum or an extremal curve. The family of

curves satisfying, (3.2), is called a family of extremal curves.



We shall be concerned with minimizing the functional,

(3.1). Consider the functional,

1‘: F<§J>dt . (3.4)

where the end points of each extremal curve is specified. Equa-

tion (3.4) will be called the fixed end point functional. Calculat-

ing the variation of (3.4) and setting the result equal to zero

yields the Euler-Lagrange equations, (3.2). Thus the problem of

minimizing the variable end point functional, (3.1), is equivalent

to minimizing the fixed end point functional, (3.4), subject to

the boundary conditions (or side conditions), (3.3). From

Variational Calculus it is known that (3.4) is a minimum when the

following conditions are satiSfied, see Gelfand [2], pg. 146-148.

I. The Euler-Lagrange equations, (3.2), are satisfied.

II. The matrix “FEiEJH is positive definite along the

extremal.

III. The interval [a,b] contains no conjugate points.

A conjugate point is a point of intersection of the

neighboring extremals.

IV. The value of the functional, (3.4), is independent

of the path of integration. Or, more precisely, the

Weierstrass E-function is 2 0 along the extremal

curve.

And for the functional, (3.1), we also impose the following addi-

tional condition.

V. The boundary conditions, (3.3), must be satisfied.
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When conditions I-V are satisfied, the minimum is said to be a

"Strong minimum". When all the conditions except IV are satisfied,

the minimum is said to be a "weak minimum". For the case of a

weak minimum, the family of extermals always possess conjugate

points and the functional is a minimum only in local regions

which are free of conjugate points.

The family of extremal curves is obtained by integrating

the Euler-Lagrange equations, (3.2). The Euler-Lagrange equations,

(3.2), may be integrated in the below manner. Multiplying (3.2)

by ii and then adding and subtracting the term, F; vi, yields

1

F ° +-F " - F Y - ° 9"F = O (i = 1 2 3) (3 5)
yyi 9Y1 5:1 yidty ’ ”° '
i i i i

Adding the above equations yields

3 d

z F°.+F.“ - . +‘—-F. =0. 3.6mu yiy1 yiyp eyiy, yi dt Y1” < )

Employing the chain-rule of Calculus, we observe that

d 3

3;F(y1.y2.y3.y1.y2.y3) = .2 [Fy.yi +F5,’yi] - (3-7)

1=1 1 1

Substituting(3.7)into(3.6)yeilds

dF 3 d

—- z(r.°)=.+§.-—F.)=o, (3.8a)
dt i=1 yi 1 1 dt yi

or

d 3 .
a [F - .2 yiF).,.] = O . (3.8b)

1=l 1

Integrating (3.8b) yields

3 O

F - 2 y F. = -H = constant along each extremal (3.9)

i=1 i yi curve .
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Equation (3.9) is called the first integral of the Euler-Lagrange

equations, (3.2). Since the first integral of a system of dif-

ferential equations is a function which has a constant value along

each integral curve of the system, we see that the function, H,

is a constant along each integral curve determined by (3.2).



4. FLUID PARTICLE MINIMUM PRINCIPLE

In this section, the problem of describing the motion of a

fluid continuum will be formulated as a minimum problem of The

Calculus of Variation. Consider one fluid particle moving along

one pathline during time t = a to t = b. The motion of the

fluid particle is described by the locus of points traced out by

the end of the position vector, RERo,yl(t),y2(t),y3(t)]. As

explained in section-1, the motion of the fluid continuum is

described by an infinite number of position vectors which trace

out a family of pathlines. The motion of each fluid particle must

obey the Lagrangian form of the momentum equation, (2.1). To derive

the fluid particle minimum principle, the dot product of the

momentum equation, (2.1), times the variation of the position vector,

GR, is taken and the result is integrated with reSpect to time from

t = a to t 3 b, which yields

t=b 3 ' —o —0 —-¢

t=a[R - 6R +-§£-- 6R - i - 6R]dt = o , (4.1)

2*

where R 5 fl_% . The first term of (4.1) may be integrated by parts

dt

in the below manner

b a a _ a b b s . L
fa R - 6R dt — R . ija - fa R 6R dt (4.2)

° ~ b b 1 L 2
R aRja - fa 2 5[(R) ]dt

12
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When the end points of the pathline are Specified, the boundary

conditions are

5Rja = o, and 6R]b = 0 ; (4.3)

and (4.2) becomes

b 3 a b l L 2

[a R - 5R dt = - a -2- 6[(R) ]dt . (4-4)

The second term of (4.1) may be expanded in the below manner

3
1 —. a2

From Thermodynamics it is known that for the isentropic flow of

fluid obeying the perfect gas laws that

TdS = 0 = c dT - EB , (4.6a)

P P

or

p P

where T is temperature, 8 is entropy, CI) is the Specific heat

of the fluid at constant pressure, p is pressure, and p is

density [10]. Replacing the total derivatives in (4.6b) by varia-

tional derivatives and equating the resulting equation with (4.5)

yields

2P-'-£>'1'i=r=92=c w. @J)
p p 9

When the body forces, f, acting on the fluid particle are con-

servative, the third term of (4.1) may be replaced by a force

potential, i.e. VG = -fc, and
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66 = ~fc - 6R (when I is conservative, V x f = 0). (4.8)

Substituting (4.8), (4.7), and (4.4) into (4.1) yields

b 1 L 2
ja[- 2 6[(R) 1+ cpa'r + OGJdt — o . (4.9)

Factoring out the variational derivative Operator, 5, and multiplying

by a minus one yields

b 1 A 2

sja [2(a) - CpT - G]dt 0 . (4.10)

In words, equation (4.10) states that the isentropic flow of an

ideal fluid particle moves between two Specified points in a con-

servative force field in such a way that the functional, (4.10),

is a minimum. A result which is equivalent to (4.10), but written

in a more general form, was published by Nantanson in a series of

papers from 1896 to 1902 [6]. In most fluid flow problems, the

end points of the pathlines are unknown. We therefore consider

the variable end point functional

E: [21'6“ ' CpTdi) ‘ C(33)“ + E10351) + E2(b.§) . (4.11)

where E1 and E2 are known functions of the coordinates of the

end points of the pathline along which the functional is considered.

Calculating the variation of (4.11), and remembering that boundary

condition (4.3) no longer applies, yields

b 1 L 2 a a

bja [2(R) - CPT(R) - G(R)]dt +

[(VEI - i) - 6K], +EKVE2 - K) . 6R]b = 0 , (4.12)

where T(R) and G(R) are functions of the Space variables, i.e.
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a L 2 .2 .2 .2

T(R) E T(y1,y2,y3), also (R) = y1 +y2 +y3 . In order to

describe the motion of a fluid continuum, the functional must be

solved along each pathline of the flow region. However, the

functions VEl and sz will be chosen so that they Specify the

velocity, E, along every pathline at the cross sections, 1 and 2.

Then equation (4.12) will apply to every pathline in the flow

region. And the solution of (4.12) will be a family of pathlines

which describe the motion of the fluid continuum. Equation (4.12)

will be called the "fluid particle minimum principle". In words,

(4.12) states that the isentropic flow of a fluid, obeying the

ideal gas laws in a conservative force field, will travel along the

one family of pathlines which causes the variable end point func-

tional, (4.12), to be a minimum.

The functional, (4.12), is a minimum*when the five condi-

tions, (I-V), of section-3 are satisfied. We will now discuss

these conditions for the special case of (4.11). The Euler-Lagrange

equation of (4.11) is identical to the momentum equation, (2.1).

This statement is easily verified by substituting the integrand,

F, of (4.11) into (3.2) which yields

.. T a§_
+c3——+ =0 1=1,23 , 4.133'1 p ayi 5’1 ( .) ( )

or in vector form

i + cpvr + vc = 0 . {4-14)

and substituting (-f a VG) and (%2'= CPVT) into (4.14) yields

:R'+%P--?=o, (4.15)
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which is identical to (2.1). The first integral of the Euler-

Lagrange equation of (4.11) is obtained by substituting the

integrand, F, of (4.11) into (3.9) which yields

1-12 3
—(R) -cr-G-z:§§=-H; (4-178)
2 p i=1 i i

and Since (R)2 = 2(§i)2,(4.17a) becomes

1 L 2

2(R) + CPT +'G = H = constant along each pathline. (4.17b)

Equation (4.17b) is equivalent to Bernoulli's equation. We shall

call (4.17b) the energy equation, and it is shown in appendix-A

that the First law of Thermodynamics agrees with (4.17b). Since

the energy equation, (4.17b), is derived by integrating the Euler-

Lagrange (or momentum) equatiOn, we conclude that condition I of

section-3 is satisfied when (4.17b) is satisfied.

Condition II of section-3 is always satisfied for the

functional (4.11) since

1 0 O

“F9191“ = g 3 2 (4.18)

is always positive. Let us now consider condition IV. In appendix-

B it is shown that condition IV is satisfied when the flow is

irrotational. When the flow is irrotational there exists a velocity

potential function, g, such that

° gas. 1=123; 4.19s)yll 6% ( ..) <

or in vector form

R‘ = Vg . (4.19s)
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It is also Shown in appendix-B that the integrand, F, reduces to

F = fig, (4.20)

for the case of irrotational flow. Let g = E = E1 = E2 and sub-

stituting (4.20) into (4.11) yields

b 23a dt dt + 3(a) + go). (4.21)

From (4.21) we conclude that the known functions, E1 and E2, and

the functional, (4.11), are completely determined by the potential

function, g, for the case of irrotational flow. Since the value

of (4.21) does not depend on the path of integration, condition IV

is satisfied. We now list the conditions for which the fluid

particle minimum principle, (4.12), is satisfied. We consider two

cases, rotational and irrotational flow..

A. Rotational flow (weak minimum)

f'4.A.1 The energy equation, (4.17b), is satisfied.

4.A.2 The boundary conditions, (3.3), or;

< (VEl - R')‘a = o , (4.22a)

4.A _..

(V132 - R)‘b - o (4.221;)

are satisfied.

4.A.3 The pathlines do not intersect in the flow region,

i.e., there are no conjugate points.
 

The following procedure from.Gelfand [2] pg. 130 may be employed to

test for conjugate points. Let y - y(t,a,a) be a general solution

of(3.2)depending on two parameters, a and B- When the ratio

231% , (4.22c)



18

is the same at two points, the points are conjugate.

B. Irrotational flow (strong minimum)

r

4.3.1 The energy equation, (4.17b), is satisfied.

4.8.2 The potential function, g, satisfies the boundary

conditions;

4.3 é

(Vg - fi)‘a = 0 , (4.23a)

(Vs - {Mb - 0 . (4.23b)

 t4-3°3 The pathlines do not intersect in the flow region.

The fluid particle minimum principle, (4.12), is said to be satisfied

when conditions (4.A) or (4.3) are satisfied. Whenever the fluid

particle minimum principle is satisfied both the momentum equation,

(4.15), and the energy equation, (4.17b), are satisfied. In fact,

they are equivalent equationsfor the case of isentrOpic flow. In

addition to the fluid particle minimum conditions, (4.A) or (4.3),

the flow must also satisfy the continuity equation and the condition

that the pathlines of the flow region coincide with the walls of the

passage.

The fluid particle minimum principle may be extended to

include forces, fN,

function, G. Letting f = fC +fN in equation (4.1) yields

which are not derivable from a potential force

b I... -o 12 —o -o -o b . —o a

La [3 6R + 9 6R - fc - 6R]dt - j‘a IN 6R dt 0 , (4.24)

where fc represents the conservative forces. Repeating the pre-

vious steps of this section up to equation (4.10) yields

61‘: [El-(3)2 - cp'r - G]dt - J”: IN - 5i dt = o . (4.25)
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Calculating the variation of the first term of (4.25), (4.25)

becomes

I: [i +'C VT +-VG] ° 6E dt - fb f - 6g dt - 0 . (4.26)

P a N

Since 6g is arbitrary, (4.26) reduces to

g + CPVT +'VG - ffi = 0 ; (4.27)

which is the momentum equation, see equation (2.1) (with prT = Vp/p

and VG - ffi ‘ f). The variable end point form of (4.25) is

b 1 ' 2 b ,
6L! [2(3) - CpT G]dt fa IN 5i dt +

[(VE1 - R) o 51218 +[(VE2 - R) . 5R]b - o , (4.28)

which is similar to (4.12). The Euler-Lagrange equation of (4.28)

is again the momentum equation, (2.1). The boundary conditions of

(4.28) are the same as the boundary conditions for (4.12), i.e.,

the boundary conditions are given by (4.22). It should be pointed

out that (4.28) is, in general, difficult to employ because the

second integral in (4.28) cannot be evaluated, in practice, without

additional information. Fortunately, for the case, which we shall

consider, ffi is normal to bi and thus the second integral in

(4.28) reduces to zero.



5. SOLUTION OF SOME CLASSICAL EXAMPLES

In this section, some classical example problems are in-

vestigated using the previously developed equations. One of the

purposes of this section is to demonstrate that the Lagrangian

description of motion may be employed to solve fluid problems,

which are traditionally solved by the Eulerian method. Two

examples will be considered, incompressible potential flow and

isentrOpic compressible flow.

A. Incompressible Potential Flow

Consider the isentropic flow of a fluid in a region where

the body forces, VG - 4?, may be neglected. We assume that the

flow is irrotational and that the velocity potential function,

g, is known. The velocity, V, of the fluid is then determined-

from the gradient of the potential function, i.e.,

V E R = Vg . (5.1)

Substituting (5.1) into the energy equation (4.17b), with G E 0,

yields

2

SE§Z_.+-C§T = H = constant along each pathline. (5.2)

For the case of isentropic flow,

an a in - cpd'r ; (5.3)
p

20



21

and since the density p is constant, integration of (5.3) yields

CpT = §'+ constant . (5.4)

Substituting (5.4) into (5.2) yields the incompressible form of

the energy equation,

$231—-+-§ = constant along each pathline . (5~5)

Since the flow is incompressible, from (2.2) we observe that the

change in volume is constant, i.e.,

dV = constant . (5.6)

Substituting (5.6) into (2.3) yields

v-Vao. . (5.7)

Substituting (5.1) into (5.7) yields

V ° (V3) = V23 3 0 , (5.8)

which is the well known Laplace equation.

Once a potential function, g, is selected which satisfies

the boundary conditions and Laplace's equation, the family of path-

lines is uniquely determined by the potential function, g. The

pressure distribution is then determined by the energy equation,

(5.5). Of course, this result is exactly the same as the results

of "Classical Incompressible Potential Flow Theory" [4]. The only

difference is that the classical results are derived from the

Eulerian point of view, whereas, the present derivation is from

the Lagrangian point of view. Since for the case of steady flow
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pathlines and streamlines coincide, the same equations result

regardless of our point of view.

Let us now consider the fluid particle minimum principle.

Condition (4.3.1) is satisfied by (5.5). Condition (4.3.2) is

satisfied by (5.1) for all values of time t I a and t = b. Con-

dition (4.3.3) is satisfied in regions which do not contain con-

jugate points. Thus we conclude that all incompressible potential

flow prdblems satisfy the fluid particle minimum principle in

flow regions which exclude conjugate points.

For the case of flow around a two-dimensional airfoil

(with circulation), conjugate points occur at the stagnation point

and trailing edge of the air-foil as shown in figure 5.1. Thus,

these two points are excluded from.the flow region. The fluid

particle minimum principle does not predict the nature of the flow

in the neighborhood of these two points. The stagnation stream-

line divides the flow into two regions and the flow in these two

regions, excluding the stagnation streamline, satisfy the fluid

particle minimum principle at all points.

  

streamline   
 

stagnation

conjugate points

Figure 5.1

Conjugate Points
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3. Isentropic Compressible Flow

Consider the isentropic flow of a fluid obeying the ideal

Assume that the flow is in a region where the bodygas relations.

forces, VG I -f, may be neglected. The energy equation as given

by (4.17b), with G E 0, is

1 2

E-V +-C T = constant along each pathline, (5.9)

where V a R. The constant in (5.9) may be evaluated at the

stagnation condition (denoted by the subscript o), i.e.,

(5.10)1'V2 +' T ' C T

2 OF P o '

Or the constant can be evaluated at sonic conditions (denoted by

the subscript *), i.e.,

l 2 l 2
v + cp'r cp'r* + 2 v* . (5.11)

2

The definitions of the Mach number, M, and the speed of sound in

an ideal gas, a, are

M = V/a , (5.12)

M* = V/V* a v/a* , (5.13)

(5.14)
2

a B KRCT CPGK-1)T ,

where Rc is the ideal gas constant and K E CP/Cv is the ratio

From Thermodynamics we recall the isentropicof specific heats.

relations

fl

_ . .. [0—]1‘4 , (5.15)

91

2.

T1 p1
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Dividing each term of (5.10) by (5.14) yields

T

+-L=—1—-1-:—°- . (5.16)

Substituting (5.12) into (5.16) and solving for TO/T yields

'1‘

o K-1 2
'—— = 1 +~———

Dividing each term of (5.11) by £5.14) with T = T*] yields

2

2 V

2 a2 + x-1 1'*1<-1 2 2 ' (5'18)

* a*

Substituting V* E and M* E V/a* into (5.18) and solving
3*

2

for M“, yields

2 -2 T K+1

Mk " ETI[F' ' ‘2‘]- (5°19)
*

pO p0

Substituting (5.15) into (5.17) and solving for E-' and 'E-' yields

p __‘.‘_

.52 - (1 + 5&1 M2)K'1 , and (5.20)

p —1f
33 = (1 + Eg—l M2)K' . (5.21)

At sonic conditions, M = l and (5.17), (5.20), and (5.21) reduce to:

T

F:- , KT+1 , (5.22)

p K

33 - (531-5171. (5.23)

p 1

3:1- (IS—:1)“. (5.24)

All of the above equations, (5.10-5.24), agree with the classical

one-dimensional isentropic flow relations [11]. This agreement is
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expected since all the equations and definitions used so far are

exactly the same. The only difference is that the above equations

give the changes in fluid properties along a pathline, whereas in

the classical one-dimensional method the above equations give the

changes in properties along a "one-dimensional" streamline. How-

ever, we now introduce the Lagrangian continuity equation, (2.9),

which differs from the continuity equation employed in the classical

method. The Lagrangian continuity equation, (2.9a), is

p V dA = p*v* dA* . (5.25)

The Eulerian continuity equation employed in classical one-dimensional

gas dynamics is

p V A = p*V*A* = constant . (5.26)

We will now use the Lagrangian form of the continuity equation,

(5.25), to obtain dA in terms of the Mach number, M. This result

will then be compared to the similar equation obtained when the

Eulerian continuity equation, (5.26), is employed. Substituting

(5.25) into (5.15) yields

 

T E_.K-1 V*dA* K—l dA 1-K

... = = d = M* a——- , (5.278)

T* PfJ . V A A*

or

__1_

1-K
dA _ -1 T_.
dA — M* [T J . (5.27b)

* *

Substituting (5.19) into (5.27b) yields

dA -2 1' K+l '3 T 1'K
cl——a= — -—-—-— — . (5.28)
11* -1 T* 2 2*
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Substituting (5.22) into (5.28) yields

.1.

T -% l-K

dA 2 Tl: o] [T
--- — --- — . (5.29)

«111* K-Tl T 2*

Substituting (5.17) into (5.29) yields

.1.

9L=."___[1-1 K__1.2"MZ 35151-1(

dA* 1(- 2*

-§K+l) (5.30)

..l. 1;. 20‘ 1’
M T* '

Dividing (5 22) by (5 17) yields

1...:ch [1+L21M2 (531)
2* 2*1'0 1(—+1

which when substituted into (5.30) yields

K+1

2(K-l)
§é_.=_1 K-1 M2
(121* —[K-+——l [1 +—— M3] . (5.32)

We now compare the above equation to the similar relation, (5.33),

from classical one-dimensional gas dynamics which is given below

[11]

_1_<___+1

2(x-1)
A .1 x_-_21M2
A* M[K+-_2-1 [1 +— M3] . (533)

Notice that the right hand side of (5.32) and (5.33) are identical.

We will now show that for a hypothetical case of flow bounded by

radial pathlines (or streamlines), the left hand side of (5.32)

and (5.33) are equivalent. Consider a family of radial pathlines

as shown in figure 5.2. Let r* locate the cross section at which

sonic conditions occur.
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Figure 5.2

Radial Pathlines Enclosing

a Pathtube

The cross sectional area normal to the pathtube (or streamtube) is

given by

~ 2
A - n(rAe) , (5.34)

and the area ratio is

2 2

A. a n_i_)__rA9 .- L2. , (5.35)

A* n(r*A9)2 r*

The rate of change of the cross sectional area is

2 .
dA = r Sin 9 d9 d¢ ; (5.36)

and since d9 and do are constant along each pathline the dA

ratio is

N

dA

dA*

r. . (5.37)
2

'k

r
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which is the same as (5.35). Thus we can conclude that for the

case of radial pathline flow, (5.32) reduces to the classical

result, (5.33). If we would analyze the flow through a straight-

radial wall nozzle by the present equations and by the one-

dimensional method we would obtain exactly the same results (all

the equations are identical). However, when we analyze the flow

through a nozzle with curved walls, the two methods would not

agree because the ratio of increment of areas in (5.32) is not

equal to the ratio of areas in (5.33). The greater the curvature

of the walls, the greater will be the disagreement.

Let us now consider the fluid particle minimum principle.

Consider the case of flow through an internal flow passage where

the pressure at the intake and discharge of the passage is known.

The geometry of the passage is also known. A family of pathlines

is then selected so that the outer pathlines of the flow region

coincide with the walls of the passage. For example, for the case

of flow through a conical passage, as shown in figure 5.2, a radial

family of pathlines is selected. The ratio dA/dA* can then be

calculated. We now seek the function V3 in terms of dA/dA*.

Substituting [F-]1/K - 2—- (from 5.15) into (5.27s) yields

* 9*

[L]1/K = V_* 353:. (5 38)
9* v dA ° '

Solving for V yields

1/K dA
9* *

Dividing (5.23) by (5.20) yields
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.K_.

p K-l

L=L_g=[ K+1 2] ; (5.40)

p* pop* 2(1+KT’1M)

which when substituted into (5.39) yields

....1...

K-l dA

K+l *
V = - —- V E'Vgl, (5.41)

[2(1+—K1M2)] dA *
2

where we have defined the right hand side of (5.41) to be equal to

lVg'. The Mach number M is determined implicitly in terms of

dA/dA* by (5.32). Since dA/dA* is a function of the Space

variables, the function Vg, defined by (5.41), is also determined

as a function of the Space variables.

Substituting the known pressures, pd and pi, into (5.39)

determines the velocity at both ends of the flow passage, i.e.,

’p*‘1/K dA*

Vd = REC—U 3151—]d V* , and (5.428)

Fpfll/K dA*]

Vi = L;:‘ 52—, i V* . (5.42b)

  

Condition (4.3.1) is satisfied by (5.9). Condition (4.3.2) is

satisfied when (5.42) is satisfied or when (5.41) is satisfied.

Since (5.41) is not valid across a shock, condition (4.3.2) is

satisfied in flow regions which exclude shocks. Condition (4.3.3)

is satisfied in regions free of conjugate points. Thus we can

conclude that the fluid particle minimum principle is satisfied

for the case of flow through a passage when (5.42) is satisfied

in a region free of shocks and conjugate points.

It should be pointed out that it is difficult to select a

family of pathlines that coincide with the walls of some given
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flow passage. An iteration procedure may be necessary in order

to determine this proper family of pathlines. The inverse pro-

cedure is much easier. That is, given a family of pathlines we

may choose any set of pathlines to be the outer pathlines of the

flow region and thus determine the geometry of the flow passage.

This inverse procedure will be employed in later sections to

determine optimal geometries of compressor rotor passages.

It should also be pointed out that all compressible

(irrotational) potential flows satisfy the fluid particle minimum

principle in regions free of shocks and conjugate points. That

is, once a velocity potential function, g, is selected which

satisfies the boundary conditions and the continuity equation

(2.9), the family of pathlines is uniquely determined, see (5.41).

The boundary conditions are (5.42) plus the condition that the

family of pathlines coincide with the walls of the flow passage.

For the case of rotational flows, there does not exist a potential

function and the fluid particle minimum principle is often not

satisfied.





6. ROTATING Flow PASSAGE

In this section, the fluid particle minimum principles,

(4.12) and (4.28), are adapted to the flow inside a rotating

passage. Consider a fluid particle that is moving along a path-

line which lies inside a rotating passage. The fluid particle

is rotating at an angular speed, é, relative to the passage as

shown in figure 6.1. The wall of the passage is rotating at a

constant angular speed, m. The total angular speed of the

particle, &, is

dt=w+é. (6.1)

The absolute position vector, R, of the fluid particle may be

expressed with respect to the fixed reference frame (with unit

vectors 1,3,k) in the below manner

3 = r cos a i +'r sin a 3 +-z k . (6.2)

Where (r,a,z) are the cylindrical coordinates related to the

Cartesian coordinates (x,y,z) by:

x = r cos a , y = r sin a , z . z . (6.3)

The first time derivative of (6.2) is

d "9 o o A

:§'= V = (r cos a - a r sin a)i +

(6.4)

(i sin a +-& r cos a)3 +.é k ;

31
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i y - fixed reference frame

- («ital hig Ii'felxniec! irann‘Y1

relative pathline

 

 
Jaw

Figure 6.1

Rotating Passage

and the kinetic energy is

. .2 .2 .2

%(§')2 5%v2 =_)__(r2 +9325L+5§L. (6-5)

Since the Euler-Lagrange equations and the functional, (3.1), are

invariant under coordinate transformation, the introduction of

cylindrical coordinates does not change any of the equations

developed in the previous sections [2]. In order to apply the

result of the previous sections, we simply replace the terms
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R, R, é-Vz by equations (6.2), (6.4), (6.5) respectively. For exam-

1 4 2

pie, replacing 3(R) by (6.5) in the fluid particle minimum principle,

[24.12) (with G = 0)], yields

b . 2 . 2 . 2

6 [[11+5—r—012—+£z—)— - CTjdt +
a 2 2 2 p

[(VEl - R) - 6R]a +[(vE2 - R) . 6R]b = 0 . (6.6)

The Euler-Lagrange equations of the above functionalanmaobtained

by substituting the integrand of (6.6) into (3.2) (with y1 = r,

y2 = 0, Y3 = 2) which yields

df .2 ah _

dgrzéz ah .

dt +IBQ = O , (6.7b)

dz h
__ + L =

-dt 82 0 , (6 7c)

where h E CPT. Multiplying (6.7b) by 1/r and substituting

vh='V-R=l[a£i +133} +923] (6.8)

P P at r r 80 a az 2

into (6.7) yields

. 1

f - ra2 + "a2'= 0 , (6.98)

P 5r

.. 1

r&+2ra+”la£=0, (6.9b)

P r 80

.. 132
z +'— = 0 ; (6.9c)

P 62

which is the Lagrangian form of the momentum equation written in

terms of cylindrical coordinates for the case of isentropic

(frictionless) flow, see Owezarek [10] page 93. The functional
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(6.6) depends on time, t, because the total energy of a fluid

particle is increased while passing through a rotating passage.

When the functional depends on time, the first integral of the

Euler-Lagrange eqaution (i.e., the energy equation) is no longer

given by (3.9) but is given by the below equation, see Gelfand

[2] page 70

33 dB d V2

at=az=az<r+h>- “'10)

We now choose a reference frame which is attached to the

passage and thus is rotating at a constant angular speed, w, see

figure 6.1. This rotating reference frame will be called the

relative reference frame. The position vector drawn from the

relative reference frame to the fluid particle is called the relative

position vector, K , which is written in terms of the relative

1

unit vectors, (i1,31,k1) as

a c

R = r cos 9 11 + r sin e jl + 2 k1 . (6.11)

1

The relative velocity, W, is the first time derivative of (6.11),

i.e.,

RI 5 W’= (f cos 9 - é r sin 9)11 + (f sin e + 6 r cos 9)}1 + 2 k1.

(6.12)

where i1,]1,k1 are the unit vectors of the rotating reference

frame. The relative kinetic energy is

1 5 2 _ 2

2(R1) =
w = [£2 + (ré)2 + £2] . (6.13)

N
I
H

N
h
—
I
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We now seek an expression for the acceleration of the

particle along the rotating pathline. Drawing the absolute posi-

tion vector, R, from the fixed reference frame to the particle,

we may differentiate ‘R with reSpect to time in order to obtain

the absolute velocity and acceleration of the fluid particle.

The absolute position vector, R, and the relative position vector,

RI, coincide, i.e.,

R = R1 . (6.14)

Differentiating (6.14) yields

a 6R

=—-='——+
=w Q 0

.
v dt dt (1) x R1 +u)r 19 (6 15)

Notice that the relative position vector, RI, 18 Changing its

magnitude and direction. The term, a X R in (6.15), arises
1,

because 31 is rotating. In general, derivatives taken in the

rotating reference frame are related to derivatives taken in the

inertial reference frame according to the operator [10],

91.1

d .]
dt

ROTATING

dt] +63 x (). (6.16)

INERTIAL

The absolute acceleration is obtained by differentiating (6.15)

and employing (6.16) which yields

R = R1 + 23 x R1 + 3 x (6 x R1) , (6.17a)

01'

4 ° 3 2 Q
v=fi+2wxW-wrir, (6.17b)

where %%EV and ---‘-'='W.
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We will now formulate a fluid particle minitmm principle

in terms of quantities measured from the relative reference frame,

i.e., in terms of R1 and W: The absolute acceleration, V,

is given in terms of Quantities measured in the relative reference

frame by the right hand side of (6.17). Substituting (6.17b)

into the momentum equation, (2.1), (with f E 0) yields

.2 _. _. 2 .
W+2wXW-wrir+%2=0; (6.18)

which is the momentum equation as viewed from the rotating reference

frame. We observe that Newton's second law of motion does not

retain its form (W ='§E-+-f) in the rotating reference frame [3].

Taking the dot product of (6.18) times 6R and then multiplying
1

by dt and integrating yields

b . —‘. 2 A

[[W-oR +213. .612 +2(&ixfi) - 6R’ -wr i - 6?? 3d: =0 . (6.19)
a 1 p 1 1 r 1

When the inertia accelerations are treated as forces which act

on the relative reference frame, i.e., when we let

l
H
a I! *2 8 x W’, and (6.203)

(6.20b)H
a
l

I
I

E '
1

H

then (6.19) is of the same form as the general functional, (4.24),

and as shown in section-4 the general form of the fluid particle

minimum principle is given by (4.28).

We now seek an expression for the "potential energy", G,

where we define C so that 66 = -fC ' 63 First, observe that1.

2 A

the centrifugal acceleration, w r ir, produces a conservative force



37

f ie 1d 8 ince

  

l1 1 la
r r 9 r k

7- ~. g a. a. a. ..
V X (m r 1r) Br 89 82 0 (6.20c)

r w2 0 0

Thus the potential energy of a fluid particle in the rotating

reference frame is

2 A —o 2 (0er

66 = -u) r it ° 6R1 = -0) 1761‘ = -5 T . (6.21)

Substituting (6.21) and (6.20a) into the general form of the

minimum principle, (4.28), yields

b w2 w2r2 . b
_ __ _ , -o . -o d

6 [[2 + 2 h]dt +£(2m x W) 6R1 t +

[(vs1 - W) . 6R118+ [(vs2 - W) - 5R1]b = o , (6.22)

where h a CPT and fN = 2&3 X W. The second term of (6.22) is

zero since the Coriolis acceleration, 2; X‘W, is normal to 6R1.

However this term will be retained since its omission will alter

the Euler-Lagrange equation. The Euler-Lagrange equation of

2 2

 (6.22) is given by (4.27) (with c = ‘er , Z’N =23 x if , and

K =‘W), i.e.,

W + CPVT - wzr it + 263 x W = 0 , (6.23a)

or

W+%E-w2rir+2axfi=0. (6.23b)

Substituting (6.17b) into (6.23b) yields



 
\
.
l
i
l
j
i
1
4
’

I
.
l
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V+%E=O; (6-24)

which is the momentum equation as viewed from the fixed reference

frame. Expanding the above vector equation into its three scalar

equations, in terms of cylindrical coordinates, yields (6.9).

Thus we can conclude that the Euler-Lagrange equations of the

functionals (6.6) and (6.22) are identical. It is known from

Variational Calculus that two functionals are equivalent when their

respective Euler-Lagrange equations are identical. The two fluid

particle minimum principles, (6.6) and (6.22), are therefore equi-

valent and thus we may operate in the relative reference frame

using therminimum principle given by (6.22).

The first integral of_the Euler-Lagrange equation may be

found by two methods. In the first method we form the dot product

of (6.23b) times dfil and then integrate. In the second method

we substitute the integrand of (6.22) into (3.9). In both methods,

we observe that (ZE’X‘W) - dR B 0. Employing one of the above

 

1

methods yields

1 2 2 2

§“W - wzr +-h = HR I constant along each relative

pathline; (6.258)

or

1 2 2 2 w2r2
' ° ° .— = . 6.25bflit +(r9) +2] 2 +h HR ( )

The relative pathline is the path of the fluid particle as viewed

from the relative reference frame. Substituting 6 = & - m from

(6.1) into (6.25b) yields

2

N
I
I
—
I . . .2 .

[r + (r6)2 + z 1 - 1‘sz + h = HR. (6.26)
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Substituting (6.5) into (6.26) yields

1 2 2.

E'V - r aw + h = HR = constant , (6.273)

or

v2 2
§*'+-h = r &m + HR = H # constant ; (6.27b)

V2

where H E §-+ h, and H is called the total absolute enthalpy.

The symbol HR is called the total relative enthalpy. Taking

the time derivative of (6.27b) yields

2
d V dH d 2.

Equation (6.28) is called Euler's turbine equation which is valid

for steady isentropic flow, see Owczarek [10] page 95. The right

hand side of (6.28) represents the rate at which work is added to

a fluid particle along an absolute streamline or an absolute path-

line in this derivation. Comparing (6.28) and (6.10) we see that

they are equivalent equations. Thus we can conclude that the

same absolute energy equation results regardless of the minimum

principle that is employed to describe the motion.

In later sections, the fluid particle minimum principle,

(6.22), will be employed to determine the family of pathlines which

describe the motion of the fluid continuum. The "relative energy

equation", (6.25), is the energy equation corresponding to (6.22)

which must be satisfied in order that condition (4.A.l) of section-

4 is satisfied.



7. IRROTATIONAL FLOW

In this section we seek the condition at which the flow

inside the rotating passage is irrotational, i.e., we seek the

condition, V X V = 0. Substituting (6.15) into V X V = 0 yields

v x (17+wr i9) =0 , or (7.1a)

a 2 A 2

VXW=-i 951L1+1 9m=-izw. (7.16)
z r ar r r 32 2

Since the curl of a velocity vector is equal to twice the angular

speed of the fluid particle, the angular Speed of the relative

velocity vector is equal to -w when the fluid is irrotational,

i.e., the irrotational condition is

va=0 IFF é=-w. (7.2)

This type of flow is called a "free-vortex" flow in turbomachinery

literature [13]. When (7.2) is Substituted into Euler's turbine

equation, (6.28),we see that the energy level, H, of a free-

vortex flow remains constant, i.e., Substituting

5 = w + 8 = w - w = 0 into (6.28) yields 3 = 0. Thus we conclude

that the strong minimum energy State of the system corresponds

to a zero change in energy along an absolute pathline. Since the

principle function of a compressor is to add energy to the fluid,

the irrotational case, (7.2), is dismissed as a trivial case.

40



8. ROTATIONAL FLOW

In the previous section, it was shown that there exists

only one trivial case for which the flow inside a rotating passage

is irrotational. In this section, we investigate the conditions

for which the fluid particle minimum principle, (6.22), and the

continuity equation are satisfied in a rotational flow.

In section-6 the relative energy equation, (6.25), was

derived, which is the first integral of the Euler-Lagrange equation

corresponding to the fluid particle minimum principle, (6.22).

As shown in section-6, the

(6.22) is identical to the

and momentum equations are

minimum principle, (6.22),

Euler-Lagrange equation, (6.24), of

momentum equation. Thus the energy

satisfied whenever the fluid particle

is satisfied. The continuity equation

is now combined with the relative energy equation and an expression

for the change in cross sectional area, dA, of a differential

pathtube is obtained in terms of (w,r,W,h) as shown below. A

precise definition of dA was given in section-2, see equation

(2.6b).

in the second example of section-5.

We proceed in a manner similar to the procedure employed

The relative energy equation,

(6.25), as derived in section-6 is

12. (621-2

2
2 + CpT = H = constant along each

relative pathline .

(8.1)

41.
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Dividing each term of (8.1) by the Speed of sound squared,

0

a; = Cp(k-1)T*, where * denotes sonic conditions, yields

2 2 2

w r

28:

__1.'1_'_

K-1 1*
 + (8.2)

N
I
p
—
I

a
:

I
t
!

3
1
-
N

f
e
i
g
n
“

Substituting the continuity equation, given by (5.27s with W = V)

into (8.2) yields

.1.“ _w2r2+i LilLl-Kgljfl (83)

2 2‘2 2 2 R-1 * dA* 2 ° °
a* a* a*

Solving for dA/dA* yields

_.1._

dA a* HR u)2r2 w2 l-K

—. — (K-l) ——+—- - -— . (8.4)

dA* W a2 2a2 2a2
* * *

Equation (8.4) can be written for any two points along a pathline

in the below manner

 

1

l 2 2 ‘1 2 l-K
dAZ.dA2/dA*.h HR+2wr2-2W2 (85)

dA dA 7dA W l 2 2 l 2 ' '

1 1 * 2 HR+§mr1-EW1

Multiplying (8.5) by W2/W1 and using the fact that the relative

velocity vector, W, is perpendicular to the change in area vector,

dX, yields

  

1

s s 1. 2 2 2 2 2 'ffii

w2 cm2 _w2dA2 _ hi 2&2 W1 ‘” (r2 r1)] 8 6)

-° dK WldA1 hl ’ ( °

w1 1

— . l. 2 2 .l 2
where h1 = CPT HR +2 w r1 - 2W1 (see 8.1). The changes in

the thermodynamic properties of the fluid can be found by employ-

ing the below equations after (8.6) has been evaluated. Employing

the continuity equation, (2.9b) with W B V, yields
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 _= 1 1 . (8.7)

Substituting (8.7) into the isentropic gas relation, (5.15), yields

:2 = [El-JK-l =[WldAl]I(-l . (8.8)

T1 91 1.723112

Substituting (8.7) and (8.8) into the ideal gas equation of state

yields

 I:

(8'9)

P1 9 1RcT1 w2““‘2

:2 pZRcT2 =[W1dA1]K

When equation (8.5) or (8.6) is satisfied along a relative

pathline, the momentum, energy, and continuity equations are

satisfied. If the flow is in‘a region which does not contain

conjugate points and if the boundary conditions, (4.22), are

satisfied, then the fluid particle minimum principle is satisfied.

That is, when conditions (4.A) of section-4 are satisfied, the fluid

particle minimum principle is satisfied” We can now formulate a

boundary value problem. Equation (8.5) must be satisfied along

every pathline inside the flow region. At the ends of the flow

region, boundary conditions (4.22) must hold. Along the walls

of the flow passage the pathlines must coincide with the walls of

the passage.. The following "inverse" procedure is used to de-

termine the optimal geometry of the flow passage. We impose

"optimal" constraints on the problem. A family of pathlines is

then determined which satisfy (8.4), (4.22), and the optimal con-

straints. The passage geometry is then selected to coincide with
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the pathlines, and thus the boundary value problem is completely

determined. The optimal constraints are developed in the next

section.



9. OPTIMAL CONSTRAINTS

In this section a few optimal constraints are selected

which, in the author's opinion, are expected to produce optimal

performance of a compressor rotor. The choice of these optimal

constraints is supported by intuitive arguments. The author knows

of no rigorous procedure for selecting the optimal constraints.

Optimal constraints are imposed in order to produce desirable

operating conditions. However, it is not always possible to

solve the boundary value problem subject to several constraints.

When this occurs, it may be necessary to remove one or more con-

straints.

A rotor usually has a uniform inlet pressure and back

pressure imposed on the intake and discharge cross sections (see

Vavra [13] page 212). However, the intake pressure, p1, and the

discharge pressure, pd, inside the rotor is, in general, not

uniform. This type of situation may produce secondary flows

eSpecially if the pressure distribution is highly non-uniform.

It is therefore reasonable to constrain pi and pd to be

approximately uniform. Examination of the momentum equation, (6.9),

yields the following steady flow case in which the intake pressure,

pi, is uniform over the (r,e)—plane of the intake section

. . . 1 u

r = constant, a, =1» - 61 = 0: 2 = ..32., f = a = 0 . (9-1)

45
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We Shall call (9.1) the "free-vortex intake condition". Notice

that this condition can hold only at one given rotor speed, w.

Given a uniform pressure (or approximately uniform pressure),

pi, at the intake section, the discharge pressure, pd, will be

uniform (or approximately uniform) only if the pressure increases

by the same amount along every pathline between the intake and

discharge sections. We will also constain the pressure to mono-

tonically increase along each pathline. A local region of rapid

pressure change could cause the boundary-layer to separate, which

is undesirable. Upon examining (8.6) and (8.9), we conclude that

the above "uniform pressure increase constraint" is met when

 

 

-R

1 2 2 2 2 2 TIE

L_WdA'K_hi 2[w 'WL’w“ ’11)]

pi WidAi bi

= L(r.6.2) . (9-2)

where L(r,e,z) is a monotonic increasing function which has the

same value when evaluated between the intake and discharge points

of each pathline.

A Special case of (9.2) is

II
I

H O

J-IIK (9.3)

l‘fififi—i = [L(r.e.2)

From (8.7 - 8.9) we observe that the thermodynamic variables,

(p,T,p), remain constant along the pathlines when constraint (9.3)

is satisfied. Constraint (9.3) will be called the "maximum kinetic

energy increase constraint" because all the energy being added to

the fluid is being converted into kinetic energy, while the

enthalpy, h, of the fluid remains constant.
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Solving (8.6) for dA/dAi yields

1 2 2
dA .21 hi-ZEW -wi

“11 w hi

_1_..

- 6.26:2 - 1%)] 1-x
(9.4)

The above equation determines the ratio dA/dA1 along each path-

line in the flow region. For a given set of design conditions,

(h1,W1,w, etc.), equation (9.4) is employed to determine a family

of pathlines. The walls of the flow passage are then selected to

coincide with the pathlines of the flow region, and thus the geo-

metry of the flow passage is also determined from (9.4). When

one of the design conditions, (hi’wi’w’ etc.), is changed, the

pathlines of the flow region will, in general, no longer coincide

with the walls of the flow passage. There is only one special

case of (9.4) in which the pathlines coincide with the passage

walls at all rotor Speeds, w, and initial conditions, (h1,W1).

That is, if we impose the constraints

‘1—1-1 and §—=1, (9.5a)

a (9.5b)

which is independent of the parameters (h1,Wi,w). The above

equations, (9.5), will be called the "maximum speed range" con-

straint.

It is common practice to design a rotor so that the same

amount of energy is added to each fluid particle which passes

through the rotor [13]. The "uniform energy increase constraint"
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is imposed in order to reduce mixing losses after the flow leaves

the rotor. Thus the change in energy, AH, is constrained to be

a monotonic increasing function, L(r,9,z), which has the same value

when evaluated between the intake and discharge points of each

pathline. The change in energy, AH, along a pathline is determined

by integrating (6.28) with respect to time from t = t to t = t.
i

Substituting & 8 6 +-w into the resulting equation yields

2 2 2 2 . 2 .

H - H1 = w (r - r1) +’r we - riwei 8 L(r,e,z) . (9.7)

The equation of a pathline can be expressed in the following para-

metric form;

r = r(t). z = 2(t). e - 6(t) - (9-8)

For the case of steady flow, it is possible to eliminate time,

t, from one of the above equations and express the equation of

the pathline in terms of the other two Space variables, i.e., we

may write

9 = 8(r.2) . (9.9)

Differentiating the above equation and employing the chain rule

of Calculus yields

'.i&_aaae 6322.
9 dt 52 dt +~Br dt . (9.10)

Substituting (9.10) into (9.7) yields

2 2 2 2 a§_ 2 .33

H - H = - 2 - z +
1 w (r r1) +'r w 82 rim 1[52]1

2 . 32. 2 . .33

r wr 3r - riwri[3r]i . (9.11)
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Defining the angles y, g so that

tan y a r ha and tan 5 a r BE. (9.12)

dz 82

equation (9.11) becomes

2 2 2 . .
H - Hi - w (r - ri) +-rwz tan y - riwzi tan Yi +

rwf tan g - r wr tan g1 . (9.13)
i i

We now list the system of equations and boundary conditions

which will be employed to determine optimal internal flow passages.

I. The uniform pressure increase constraint, (9.2), plus the

continuity, momemtum, and energy equation, (8.6), requires that

 

-K

6.. -.. [m-iin-Wi-wsz-rb] T7“
[TEX-J = ‘ h ’ =L(r.e.2). (9-14)

1 i L 1

where L(r,e,z) is a monotonic increasing function which has

the same value when evaluated between the intake and discharge

points of each pathline. When the 9free-vortex intake condition",

(9.1), is satisfied, the intake pressure, p1, and discharge

pressure, pd, are uniform over their reSpective cross sections.

Two Special cases of (9.14) are listed below.

A. "Maximum Kinetic Energy Increase" Constraint

1) W2 - W3 - (1)2(r2 - ri) , (9.15s)

2) L§fi=1=h=1 and Lal. (9.156)

"1 i 91 hi

3. "Maximum Speed Range" Constraint

r W dA

1) —-1,—=1,——=1 (9.16a)

‘1 W1 “1



 2) gfi=1=L=1 and L=1 (9.166)

i i 1”i hi

II. Boundary Conditions

A. The initial or intake conditions, (pi’ W1, hi’ etc.) are

known for each pathline. The intake pressure, pi’ is uniform

over the intake section when the "free-vortex intake condition",

(9.1), is satisfied (i.e., when u) - «'51).

B. The discharge pressure, pa, is known for each pathline.

It is constrained, by equation (9.14), to be uniform over the

discharge section when pi is uniform (i.e., when w = -éi).

C. The boundary condition, (4.22b), for the variable end point

D.

functional is determined in terms of the pressure boundary con-

ditions by equation (8.9), i.e.,

dAi pi 1/K

= — —- =-.: . .1wd w, “a Pd] vs2 (9 7)

The pathlines of the flow region mst coincide with the

walls of the flow passage. Since the walls of the flow passage

are determined from (9.14), this boundary condition is, in

general, satisfied throughout the entire flow region only at

one set of design conditions, (w, h Wi, etc.). However, when
is

the maximm speed range constraint, (9.16), is satisfied, this

boundary condition is satisfied for all rotor Speeds, w, and

intake conditions, (hi’ W , etc.).

i

When the above equations and boundary conditions are satisfied

in regions which exclude conjugate points and shocks, the fluid

particle minimum principle, (6.22), is satisfied. That is,
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conditions (4.A) of section-4 are satisfied for equation (6.22).

Shocks must be excluded from the flow region since equation

(9.14) does not hold across a shock. The following two con-

straints may also be imposed in order to reduce mixing losses

after the flow leaves the rotor.

III. The "uniform energy increase constraint" requires that

H _ 2 2 2) + . . t +

- H1 - w (r - ri rwz tan v - rimz1 an v1

rwf tan g - riwf1 tan gi = K(r,e,z) , (9.18)

where K(r,e,z) is a monotonic increasing function which has

the same value when evaluated between the intake and discharge

points of each pathline.

IV. The "uniform discharge velocity constraint" requires that

2 2 2 2 2 2 2

Vd 2(Hd - Hi) +Vi - (rd - ri)w +~Wd - Wi (9.19)

have a uniform value over the discharge section. ‘Wherev(9.19)

was obtained by integrating (6.28) with respect to time from

t - i to t 8 d and then substituting h and h1 d’ which are

evaluated from (6.25s), into the resulting equation.



10. A "MAXIMUM KINETIC ENERGY INCREASE"

CENTRIFUGAL ROTOR PASSAGE

In this section, we seek the geometry of the flow passage

of a centrifugal (mix-flow) rotor which will satisfy the "fluid

particle minimum principle" and the "maximum kinetic energy in-

crease constraint" of section-9. This example is intended to

serve only as an academic demonstration of how an optimal rotor

passage may be determined.

We consider only centrifugal rotors having radial blades

in this section. We constrain each pathline to lie on a (r,z)-

plane (radial plane) as shown in figure 10.1.

All the initial conditions of each pathline inside the

rotor, (P1, f1, etc.), must be known. The pressure distribution

over the intake section is then determined from the momentum equa-

tion, (6.9). It is interesting to observe that when the flow

satisfies the "free-vortex intake condition", (9.1), (i.e., when

we assume 61 I -w), then the present example reduces to the

trivial irrotational case discussed in section-7. That is, when

condition (9.1) is satisfied, the pressure distribution is uniform

over the intake section. And since the pressure is constrained

by (9.15) to be constant along each pathline, the pressure is

constant throughout the flow region. The momentum equation, (6.9),

then reduces to f I constant, 2 I constant, and é = -w through-

out the flow region. And Euler's turbine equation, (6.28), then

52
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reduces to H a 0, which is a trivial case.

For the purpose of demonstration, we shall assume that

the fluid enters the rotor with zero velocity in the tangential

direction, i.e., we assume éi = O. The other intake conditions,

(£1, £1, Pi’ etc.), are assumed to be known but will not be assigned

specific values. The discharge pressure, pd, is constrained to

equal the intake pressure, pi’ (see equation 9.15). Since the

pathlines lie in the (r,z)-p1ane,

6 = 6 = o . (10.1)

In order to satisfy the "maximum kinetic energy constraint",

(9.15), we let

N

a) W2 - W. = w2Q(z) , (10.2a)

2
b) r -r =Q(z) . (10.2b)

H
-
N
H

Substituting (10.1) and (10.2) into (9.14) and (9.7) it is easily

verified that

W dA
= 1 , (10.3)

widAi

and

H - Hi 3 w2Q(z) , or (10.4a)

= 2 2 1

Hd -Hi wQ(zd) -(1)Q(zi) , (0.4b)

where we require that Q(z) be a monotonic increasing function

which has the same value when evaluated between the intake and

discharge points of each pathline. Equation (10.4b) then satisfies
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the "uniform energy increase constraint", (9.18).

Substituting (10.4b) and (10.2) into the "uniform discharge

velocity constraint", (9.19), yields

Vi = 2w2[Q(zd) - Q(zi)] +-V: . (10.5)

From (10.5) we observe that V3 is uniform when Vi is uniform

2

over the intake section. Expanding V

 

1 yields

2 .2 .2 2 2

= + . .Vi r1 zi +-ri(n (10 6)

or

i =W2 - 22 - r2 6.2 . (10.7)
i l i i

Letting v: = constant, the intake angle, 61’ of each pathline is

W2_é2_r2w2

I tan.1 1 3 i

i i

 

1

N
1

H
-

Bi 5 tan- , (10.8)

and the "uniform discharge velocity constraint", (9.19), is then

satisfied at the design conditions, Gn,‘V , etc.).
i

We now seek an expression for the change in area, dA, (see

equation 2.6b for a definition of dA). We assume that the flow

may be represented by a family of pathlines, t, and orthogonal

curves, o, as shown in figure 10.2.

    
O = C5

  
Figure 10.2

Flow Net
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The equation of the pathlines is determined from (10.2b), i.e.,

2 2

w(r,z) = r - Q(z) = r1 = constant . (10.9)

The slape of the pathlines is obtained by solving (10.9) for r

and differentiating with reSpect to z, i.e.,

<1: .9. /2
(dzw dz[ ri+Q(Z)]

= 1/: dQ/dz =gérgzz . (10.10)

/ri +-Q

Since the V and m curves are orthogonal,

dr = _(d3 = -2r

dr V Ql ’
(
d_z.. Q5 (10.11)

where the subscripts o and V denote the curve along which

the differentiation is performed. The equation of the ¢ curves

is found by integrating (10.11), i.e.,

2r d
r = -‘r -Q-'- Z " ¢ ’ (10.12)

where p is the constant of integration. Substituting (10.12)

into (10.9) yields

 

2

V = E+IQEEZ) dz] - Q(z) . (10.13)

Differentiating (10.13) with respect to z, and holding m constant

yields

9i i ‘ 2r. 22.-(62),, 2L¢+fq,d;] q, 0'. (10.14)

Substituting (10.12) into (10.14) yields





2

($0,) = 33-1.— - Q' . (10.15)

The differential change in area, dA, is equal to the differential

change in arc length, dsl, of the ¢(r,z) I constant curve times

the change in arc length, dsz, in the r-e plane as shown in figure

10.3.

O.

h “ i=0

ds

/ 1

  
  

Figure 10.3

Area Increment

dr 2

dA == dslds2 = iVI + (a?)¢ dz r (11] , or (10.16a)

(M 9.22 d_237 . _\/1 + (dz)¢ (“)0 r an . (10.166)

 

Substituting (10.15) and (10.11) into the minus value of equation

(10.16b) yields

 

95 _ - i/1;+ 4r2/(Q')2 r dn .. 7—13—71’6 ' , (10 17)

d1 - [Q' + 4r2/Q'] (Q') 4’ 4r

Substituting (10.2b) into (10.17) yields

dA

5;-= r dn {[0'<z>]2 +-4rf -+-4<2(z>}"i . <10 18>
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Substituting the derivative of (10.2b) with respect to 2 into

(10.17) yields

2 -

g? = r an (4.- ($92 + 4.2) ’5 . (10.19)

Substituting tan 5 a g; into (10.19) yields

dA 2 2 - d
3;- = r 61} [4r (tan B + 1)] 2 2:35 . (10.20)

Evaluating (10.20) at the intake point (i) and then dividing it

into (10.18) yields

dA . 2 -

dAi = 2" sec 51 {[Q (2)] + 4r? + 42(2)} J5 , (10.21)

where dv and dn cancels with dli and dni reSpectively

because they are constants along each pathline. Substituting

(10.2a) into (10.3) and solving for dA/dAi yields

 

.dA. . ii; __w_.i__ (10 22)

dA w ' ‘

1 VWi +(u32

Equating (10.22) and (10.21) yields

Wi 2r sec Bi

Substituting r = Vr +-Q from (10.2b) into (10.23), then squaring

both sides and solving for Q' yields

2 ’2
4 SEC 8, 2

3% . __2_1. (if +w2Q)(ri +0) - 41f - 40 . (10.24)

W.
1
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Multiplying (10.24) by 1/ri, and then separating variables and

integrating yields

 

 

 

z = %-.r 49* + L , (10.258)

1 \LQZ +-bQ +-a

2 2
where; a = 4(sec Bi - 1) = 4 tan Bi , (10.256)

2

b=48ecai 2.122 5‘— 1025
22 mi 11“")‘2’ (-c)

ri Wi r.
1

4w sec Bi

c - , (10.25d)
2 w2

rii

L = constant of integration . (10.25e)

Performing the integration of (10.25a) yields

 

  z: 1 ing/6624.66... + 676+ b +1. (10.26a)
r C JZVC;

i

where c > 0; or

1 1 M +4, , (10.266)
2 = sinh- ‘

r. ,7: J4... - b2
1

 

where 4ac - b2 > 0. Only (10.26a) will be considered in detail.

Substituting (10.2b) into (10.268) yields

 

 

Ln \/C(r2-ri)2 + b(r2-ri) + a + (rZ-ri)‘,c- + + L,

r1 ° _ 2 (I? (10.27)

 

28

Evaluating the above equation at (ri,zi) and (rd,zd) respectively

yields
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zi = 1 Ln[\/a-+ b ]+L , and (10.28)

' ri J:. 2 V;—

1 '2 6
zd= Ln[c(Qd) +de+a+Qdc+ ]+t. (10-29)

:3_VG? 2\/E

where Qd I r: - r: = A%'= constant. Equation (10.29) determines

w

the end point of each pathline so that the "uniform energy increase

constraint", (9.18), is satisfied. The constant of integration,

L, is arbitrary and may be set equal to zero.

Equation (10.27) determines the equation of each pathline

in the r-z plane. Notice that the constants, (a,b,c), vary from

pathline to pathline. In order to satisfy boundary condition D

of section-9, we must select the hub and shroud profiles of the

centrifugal rotor to coincide with equation (10.27), see figure

10.1. Since the constants, b and c, in (10.27) depend on

the design conditions, (w and W1), boundary condition

D is, in general, satiSfied only at one set of design conditions.

This set of design conditions is the only operating point at which

the fluid particle minimum principle is satisfied throughout the

entire flow region.

Boundary condition C of section-9 is satisfied, when the

discharge pressure, pd, equals the intake pressure, Pi’ i.e., when

pd I pi then

I

K
W dA p

d d g

widAi [pi] ’

 

which is required by condition (10.3). In most flow situations

the discharge pressure, pd, will equal the pressure of the chamber
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into which the flow is being emitted. In these situations the

pressure of the chamber must be controlled so that it is approx-

imately equal to the discharge pressure, pd. See Sharpiro [11]

page 91 for a discussion of the effect of back pressure on flow

through nozzles.

Although it is theoretically possible to satisfy all the

constraints mentioned in this section, employment of all these con-

straints may result in an impractical rotor. If the above situation

arises, the "uniform discharge velocity constraint", (10.8), may

be omitted, or the condition that Qd possess exactly the same

value when evaluated between the intake and discharge points of

each pathline may be relaxed.

In conclusion, we observe that the "maximum kinetic energy

increase constraint", (9.15), and the "fluid particle minimum

principle" are satisfied when the following five conditions are

satisfied:

1. The rotor operates at the given design conditions,

0», AH, Bi’ Wi’ etc.).

2. The hub and shroud profiles of the rotor conform to

equation (10.27).

3. The discharge pressure, pd, and intake pressure, pi,

of each pathline are equal.

4. Shocks are excluded from the flow region.

5. A flow region is selected from the family of pathlines,

(10.27),which is free of conjugate points.

We also observe that it is possible to satisfy the "uniform energy

increase constraint", (9.18), and the "uniform discharge velocity
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constraint", (9.19). The initial and end points of each pathline

are partly determined by the employment of these constraints,

(9.18) and (9.19).

The flow chart in figure 10.4 outlines the procedure for

determining the optimal geometry of the internal flow passage for

the centrifugal rotor discussed in this section. Figure 10.1

shows the geometry of the rotor which is determined by the set of

design conditions listed below:

5
. 2 2

w = 2000 RAD/SEC, vi = 500 FT/SEC, 91 = 0, AH = 4.16 x 10 FT lssc .

The initial points of some representative pathlines are:

1 r1 = 1.00" Bi - 28°

2 r1 = 1.166" 91 - 29°

3 r1 = 1.333" 31 - 30°

4 r1 = 1.50" . Bi - 31°

Because the parameters, b and c, depend on the operating

conditions, m and W1, the family of pathlines, (10.27), will

coincide with the hub and shroud profiles of the flow passage only

at the design point, (w,Wi). However, if the flow can be controlled

so that w I constant W1, then the parameters, b and e, no longer

depend on m and W The family of pathlines, (10.27), is then1.

independent of all operating conditions, (p1, T1, W1, w), and the

fluid particle minimum principle is satisfied at all operating

points , ((0, W1) .
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START
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3
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ll. AXIAL-FILM ROTORS

In this section it is shown that it is possible to design

"special axial-flow" rotors which satisfy the fluid particle min-

imum principle over a wide range of operating conditions. We

shall impose the constraint,

r/r = 1 , (11.1)

on the flows discussed in this section. This constraint requires

each pathline to lie on a right cylindrical surface. The Coriolis

acceleration is then normal to the flow as shown below

  

11 A 1.

Far 19 Fix

26xfi=2 o o w =-2rwé1r- (11-2)

0 r26 5

Thus both the Coriolis acceleration and the centrifugal acceleration,

snzr it, are normal to the cylindrical surface containing the flow.

We shall assume that the inertia forces and pressure gradient are

in stable equilibrium in the r-direction. That is, we assume that

the radial component of the momentum.equation, (6.9a), is satisfied

throughout the flow region. This condition is called the "radial

equilibrium condition". The flow in each (re,z)—cylindrical plane

can then be treated as a two-dimensional flow which is independent
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of the radial component of the momentum.equation, (6.98). The

fluid particle minimum principle, (6.22), then reduces to

b 2

a a b

where W2 = (r6)2 +’é2 and r = constant. The Euler-Lagrange

equations corresponding to (11.3) are

9 (11.48)

"
'
3
‘
.

$
3
3
;

II

0

. (11.4b)N +

‘
O
I
o
—
I

‘
O
h
—
I

°
é
P
é

I

0

And the "radial equilibrium condition" is

° 2 13.2_ + +-— :0 , 11.5
r(e w) p at ( )

Substituting r = constant, & = 6 +’m, and 1a E 19 into the

momentum equation, (6.9), yields (11.4) and (11.5). Thus we con-

clude that the Euler-Lagrange equations of the functional (11.3)

plus the "radial equilibrium condition" are identical to the Euler-

Lagrange equations of the functional (6.22). It is known from

Variational Calculus that two functionals are equivalent when

their respective Euler-Lagrange equations are identical. The

fluid particle minimum principle (11.3) plus the constraint (11.5)

is therefore equivalent to the fluid particle minimum principle

(6.6). Thus we may operate in the relative reference frame using

the fluid particle minimum,principle,.(11.3), and the constraints,

(11.5) and (11.1). Since the inertia forces do not act in the

(re,z)cylindrical plane (they act normal to the plane), the flow

may be irrotational in each (r9,z)-plane. That is, the flow is
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irrotational when

11 ’i la
r 1' e r 2

. 2.

VXfi: 5. a.— a— cli [&-M]BO; (11.6)

ar 89 32 1’ 1‘ 89 az

O rzé z   

or the flow is irrotational in each (re,z)-plane when

39 dz . (11.7)

However, the flow is still rotational as viewed from the fixed

reference frame.

When the flow is irrotational, the fluid particle minimum

principle, (11.3), reduces to the irrotational flow (strong minimum)

problem (4.B) discussed in sections 4 and S. In this case, it is

possible to satisfy the fluid particle minimum principle over a

wide range of operating conditions.

The traditional method of designing blades for axial-flow

rotors is to first assume that the flow is two-dimensional on

each (re,z)-cylindrica1 surface. Next, the "radial equilibrium

condition" is satisfied. Then the classical incompressible

potential flow theory (or some other method) is employed to map

the flow through a cascade of blades, see Vavra [13] page 312.

Thus we can conclude that the assumptions employed in the tradi-

tional method are often equivalent to the constraints employed

in the optimization procedure.



12. CONCLUDING REMARKS

The present optimization procedure predicts the "minimal

energy configuration" of the flow field, inside a rotating passage,

only when the fluid particle minimum principle is satisfied. When

the optimization procedure is employed, the intake conditions of

the fluid, inside the rotor, must be accurately known. The intake

conditions may be difficult to determine in practice. The present

work does not discuss how the intake conditions may be determined.

In order to design a practical rotor, the present optimiza-

tion procedure as demonstrated in section-10, must be employed in

conjunction with "other analytical methods". The author suggests

the following iteration procedure for incorporating the present

optimization procedure into a design program. The design conditions

(W1, w, r1, etc.) may be treated as unknown parameters each of which

is restricted to lie within a Specified range. Employment of the

optimization procedure then yields the equation of a family of path-

lines, which depends on the parameters, (W1, m, r1, etc.). For

example, the constants, (AH, w, V1, 81’ r1), in the problem dis-

cussed in section-10 could have been treated as unknown parameters.

Then, the design problem is to determine a passage geometry which

coincides with one of the set of pathlines determined by the

optimization procedure and which also appears to be a reasonable

geometry based on the "other analytical methods" (i.e., based on

67
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the boundary-layer analysis, off-design analysis, etc.). This

would involve an iteration procedure in which the "other analytical

methods" are employed for each set of parameters, (AH, w, V1,

31’ r1)°

This work, in general, agrees with the well known equations

and assumptions traditionally employed in turbomachinery design

work. However, we will now discuss a few points in the present

work which deviate from the traditional procedures. Often in

turbomachinery design procedures, the one-dimensional compressible

flow theory, as described in reference [11], is employed to

investigate the flow inside the rotor. As mentioned in section-5,

the one-dimensional theory becomes increasingly inaccurate as the

curvature of the streamlines increase. Since the absolute stream-

lines inside a rotor are usually curved lines, this procedure may

yield inaccurate results. A more accurate procedure is to employ

the three-dimensional equations of section-8 in the investigation

of the flow inside the rotor.

The employment of "optimal constraints" in the present

work also deviates from the traditional procedures employed in

turbomachinery design work. Any constraint may be imposed on the

flow as long as the fluid particle minimum principle is satisfied.

Thus if we impose the constraint, that the flow is two-dimensional,

and then discover that the fluid particle minimum principle is

not satisfied, we must conclude that the flow will not be two-

dimensional. That is, we can only force (or constrain) a flow to

be two-dimensional.when the fluid particle minimum principle is

satisfied. The traditional methods employed in turbomachinery
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work often contain simplifying assumptions, such as the assump-

tion, that the flow is approximately two-dimensional. In the

present optimization procedure the simplifying assumptions are

often replaced by the "optimal constraints".

It was shown in sections 4 and 5 that all (irrotational)

potential flow problems satisfy the fluid particle minimum prin-

ciple. However, for the case of flow inside a rotating passage,

the fluid particle mininum principle is seldom satisfied. In

general, the flow inside a (rigid geometry) rotating passage will

satisfy the fluid particle minimum principle at no more than one

set of design conditions. The "maximum speed range" constraint,

(9.16), and the special-rotors discussed in sections 10 and 11

represent cases in which it is, theoretically, possible to satisfy

the fluid particle minimum principle over a wide range of operat-

ing conditions.



APPENDIX-A

In this section it will be shown that the energy equation,

(4.17b), is equivalent to the First Law of Thermodynamics for the

case of steady isentropic flow. Consider a fluid particle, i.e.,

an infinitesimal closed system, moving at velocity, V E Q , along

a pathline. The First Law of Thermodynamics for a moving closed

system and for steady isentrOpic conditions is

*

_ 91.1. EUR-E.) _dG sis

0-dt+dt +dt +dt ’ (A.1)

where: U = mu internal energy of system,

1 2

K.E. = m E'V kinetic energy of system,

*

G = mC potential energy of system,

w = work injected into system,

m - mass of system.

Substituting the definition of the mass of the fluid particle,

m E I pdv , (A.2)

into(A.1)yields

dw d V2
=—

— .
A.30 dt+—dtvp[u+2 +GJdV ( )

The thermodynamic reversible compression work for a closed system

is [7]

w =f pdV . (AA)

v
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Substituting (A.4) into (A.3) and rearranging terms yields

o=9— £+u+fi+c dv (A5)
at; p 2 p ‘ '

Since the size of the volume, V, is arbitrary, the integrand of

(A.5) must vanish everywhere in the flow region. Observing that

the element of mass, pdv, is a constant, (A.5) becomes

2

d_ 2 E.
dt[p+u+2 +6] 0. (A.6)

Multiplying (A.6) by dt and integrating with reapect to time

yields

2 v_2p+u+2 +G=H, (A-7a)

or

fl 2

CPT + $—%— + G B H = constant along each pathline , (A.7b)

where CpT E h E u +“E and V E k. The constant of integration,

H, is a constant along each pathline because equation (A.l) applies

to one fluid particle which is traveling along one pathline.

Equation (A.7b) is identical to the energy equation.(4.l7b).



APPENDIX B

In this section a brief review of a "field of a functional"

is presented. All the definitions and theorems listed in this

section are taken from reference [2] chapters 5 and 6. Consider

a system of second order differential equations (such as the Euler-

Lagrange equations)

3’1 = fiiyim. y2(t). y3(t)]. (1 = 1.2.3) . (3.1)

In order to single out a definite solution of this system, we

have to specify six boundary conditions of the form

5;, = Mylo). yzm, yam]. (1 -- 1.2.3) (3.2)

for two values of time, t. The family of boundary conditions,

(3.2), is called a field (of directions) for the given system

(3.1) when equation (3.2) holds at all values of time, t. A

necessary condition for (8.2) to be a field of a functional is

that (3.2) must first be a field of the system of the Euler-

Lagrange equations of the functional.

TheoremrB-l. A necessary and sufficient condition for

the family of directions, (3.2), to be a field of the functional,

t2 .

[1 PG. §>dt . (3.3)
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is that the self-adjointness conditions (this is the irrotational

condition in our application),

3P 3P =__l 8 __E (i 1,2,3) ’ (B 4)

ayk ayi (k = 1,2,3)

and the consistency conditions (this is the momentum or Euler-

Lagrange equation in our application),

P.
3.1.: 35—. (1 = 1,2,3) , (8.5)
at av,

be satisfied at every point t in [t1,t2], where P1 is the

"momenta" (it is the velocity in our application) defined as

Pi = F§. , (8.6)

1

and H is the Hamiltonian function (it is the total enthalpy plus

a constant in our application) is defined as

3

H = 2 P 9 - Fi-constant . (3.7)

1 i

i=1

TheoremrB-Z. The expression

3P 3P ' =

...i -...E (1 1’2'3> (3.8)

3’1 5V1 (k - 1,2,3)

(this is the vorticity in our application) has a constant value

along each extremal (i.e., along each pathline).

The self-adjointness condition (or irrotational condition),

(3.4), implies that there exists a potential function (a velocity

potential function in our application), g, such that

5.8—3? . (3.9)
By, 1
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TheoremrB-B. The boundary conditions (3.2) defined by

(3.9) are a field of the Euler-Lagrange equations if and only if

the potential function, g, satisfies the Hamilton-Jacobi equation

(this is the energy equation in our application)

g§-+'H(§, Vg) = o . (3.10)

We observe that the Hamilton-Jacobi equation, (3.10), and

the self-adjointness conditions, (3.4), (i.e., the energy equation

and irrotational condition) require that the integrand, th, have

an exact differential, dg. That is, since

at ayi i ( )

then

dCB-dt'i' Pd III‘afidt'l' a's—d =d . .12F a z iyi at 15153'1 yi s (B )

The above equation forms the basis for Hilbert's Invariant Theorem

which is formally stated in the below manner.

TheoremrB-4. Given a field of directions (3.2) of the

Euler-Lagrange equation, the directions 08.2) define a field of

the functional

J‘tl F dt (13.13)

if the Hilbert integral

3 3

£[ i=1 1 Y1 1-1 3’1 1

depends only on the end points of the curve along which it is

taken and not on the curve itself. If the curve c along which
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the integral, (3.14), is evaluated is one of the extremals (path-

lines) of the field, then

dy = #1 dt (B.15)
i

along c, and hence (3.14) reduces to

1‘ F dt . (3.16)

c

When the conditions (3.10) and (3.4) hold (i.e., when the flow

is irrotational and the energy equation holds), then (3.12) may

be substituted into (3.16) which yields

In
?

t dt = g2 - g1 , (3.17)

D
.
-Ith=£

c

which is independent of the path of integration.

When the potential function, g, is known, it may be used

as the boundary conditions of the variable end point functional,

(3.1). That is, equating (3.9) and (3.6) yields

g = F. , (Bel-8)

Y1 3'1

which when substituted into the boundary conditions, (3.3), yields

a—-’ E - = 0 a‘-' E - = O or

E]. = E2 = g a (3°19)

at all values of time, t.
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