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ABSTRACT

STRONG LAWS OF LARGE NUMBERS AND LAWS OF THE ITERATED LOGARITHM IN

BANACH SPACES

By

Anant P. Godbole

The validity of many Limit Theorems of Probability Theory is

intimately connected with the geometry of the underlying Banach Space.

This is especially true of the Strong Law of Large Numbers (SLLN). In

this thesis, Cotype g Banach Spaces are characterized as those in which

a certain condition is necessary for the SLLN to hold. Also, Logtype 9

spaces are characterized as those in which another condition is

sufficient for its validity. The best results are obtained for a

Hilbert Space. The results on the SLLN are formulated in terms of the

validity of a SLLN for real-valued random variables, necessary and

sufficient conditions for which have been obtained by Nagaev. It is

shown that the above results are the best of their kind.

In addition, Laws of the Iterated Logarithm are proved for certain

classes of random variables taking values in an arbitrany separable

Banach Space.



To the memory of my father.
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

He will consider a sequence {In}:=1 of symnetric and independent

(but not necessarily identically distributed) random variables defined

on some probability Space (9', ff, P') and taking values in a real

separable Banach Space B equipped with the norm I . I. Recall that a

vector valued random variable X is said to be symmetric if the

probability distributions of X and -x are the same.

Consider also a sequence {en}:-1 of independent random variables

each assuming the values +1 and -I with probability l/2. Such a

sequence is called a Rademacher sequence. We will assume throughout
 

that the sequence {en} is defined on another probability space

(n',‘[", P“) and is independent of the sequence {Xn}. He will often

consider the sequence {enxnihsl defined on the product space

(a, E" P) 3 (a. x a“, E. x in, P. x P").

n
2 2

Let Sn 8 Z X. s = E 'Sn', and denote the set of integers

j=1J "

{2"+1,...,2"*1} by I(n). The function LL(-) is defined by LLx .

max(1,log(log x)). Throughout, C will denote a generic constant whose

value will usually be unspecified.



We need to introduce notation and terminology from Probability

Limit Theory on the one hand and from Banach Space Theory on the other.

Let us first examine the probabilistic side of the coin.

He shall say that the sequence {Xn} satisfies

(a)

(b)

(C)

and

(d)

(1.1)

and

(1.2)

The Strong Law of Large Numbers

({xn} e SLLN) if lim ISnI/n . 0 a.s.

n”

The Heak Law of Large Numbers

({Xn} e NLLN) if lSnI/n + O in probability as n + o.

The Bounded Law of the Iterated Logarithm

2 1/2
n)({xn} e BLIL) if lim sup nsnu/(zsfi LLs < . a.s.

n + -

(By Kolmogorov's zero or one law, {xn} c BLIL iff there

exists a constant A e [0,») such that

2 1/2 _
n) - A a.s.).lim sup 'Sn'/(2‘§ LLs

n + o

The Compact Law of the Iterated Logarithm

({Xn} e CLIL) if there exists a non-random, compact,

synmetric and convex set D: B such that

P(d(sn/(zs§LLs§)1/2 , D) + 0) = 1

P(C{Sn/(Zs: LLs§)1/2} = D) = 1



Here, d(x,A) - inf Ix-yl and C(An(w)) denotes the set of all cluster

ycA

points of the (random) sequence {An}. The set D in the CLIL is called

the "limit set“.

The above definitions of the BLIL and CLIL differ from the original

2

n

" 2
a Z EIle . We shall

3’1

definitions of Kuelbs [22,24] who defines 5

_see that the two formulations are similar if B is a Hilbert Space, or

more generally, a type-2 space.

Suppose that {Xn} c SLLN. It follows from the triangle inequality

that lim anI/n = o a.s. This trivial necessary condition for the SLLN

n”

shows that one may, without loss of generality, assume that

Ixnl - o(n) a.s. while proving strong laws.

Since {Xn} is a sequence of symmetrically distributed random

variables, it is easy to see that {Xn} and {enxn} are equidistributed.

It follows that {Xn} c SLLN iff {enxn} e SLLN. An application of

Fubini's theorem shows that {enxn} c SLLN iff {en(-)xn(n)} e SLLN for

almost all m e n. This elementary device of Kahane [21] will be used

repeatedly in what follows. He shall denote Xn(o) (for a fixed m e a)

by xn whenever there is no possibility of confusion.

Let us next consider some basic notions from Banach Space'Theory.

Let B be an arbitrary real separable Banach space. For p.: 1 we will

denote by Lp(B) the equivalence class of B-valued random variables X

with IXIp = (EIXIp)1/p < a. L°(B) will denote the equivalence class of



B-valued random variables, with distance do(X,Y) = E(lX-YI/1+IX-Yl).

Then Lp(B) is a Banach space for p 3_1, while L°(B) is a Fréchet space.

A B-valued random variable x is said to be Gaussian if

(f1(X),...,fn(X)) has an n-dimensional normal distribution for each

f1,...,fn e B*, n l l.

The notions of typg_and 223122 are fundamental to Banach space

theory and were formulated by Maurey, Hoffmann-Jorgensen and Pisier in a

series of papers in the early and mid seventies (see, for example [19,

33, 34, 38]. To motivate the definitions, let us begin with the

parallelogram law in Hilbert spaces:

Ix1+x212/2 + lxl-xZIZ/Z = lel2 + lx2I2(x1,x2 e H)

which can be rephrased probabilistically as

2 2 2
(1.3) Elelx1+czx2l = lxll + lle

and thus by induction on n as

n n

(1.4) El 2 c.x.l2 . Z Ix.|2

j31 J J j'l J

He now generalize (1.4) by replacing the squares by pth moments

and the equality by an inequality: A Banach space B is said to be of

type p (1 §_p 5_2) if there is a constant A . Ap(B) e (0,-) such that

P

for any finite sequence {x343}.l in B,

n

2 Ix.lp.

n

Eli e.x.lp_<_A

i=1 J
3.1 J J P



Each Banach space is trivially of type 1, and it can be shown using the

Kolmogorov three series theorem (and an alternative definition of the

type of a space) that no non-trivial Banach space can be of type p for

p > 2. A Banach Space of type p is automatically of type p' for each

p' < p, so that we may talk of {pIB is of type p} which is an interval

that need not, in general, be closed above. In particular, there exist

spaces of type p' for each p' < p that are not of type p. (See Pisier

[41] for examples of such spaces.) Among the classical Banach Spaces,

C[O,1], co, L" and spaces of measures are of type 1 (and no better) and

the Lp spaces (l‘§_p < .) are of type min(2,p) (and no better).

Hoffmann-Jorgensen and Pisier [19] proved an important result

connecting the two sides of the aforementioned coin. They Showed that a

Banach Space B is of type p (1.: p.5 2) iff each sequence {Xn} of

independent, zero mean, p-integrable B-valued random variables

satisfying the condition 2 EIlep/jp < . also satisfied the SLLN.

3'1

Their SLLN improved previous strong laws of Beck [3,4] and Noyczynski

[47], just as the notion of type generalized previous notions of

B-convexity and Ga spaces due to Beck [3,4] and Mourier and Hoyczynski

[35,47] respectively.

Let us turn next to the definition of cotype. A Banach Space B is

said to be of cotype g (2 _g q < a) if there exists a constant Aq . Aq(B)

e (0,~) such that for each finite sequence {xj}2=1 in B,

n 0

Eli e.x.lq:A X lx.|q

jgl J J QJ.1 J



A cotype a Space is one in which

n

sup I.Z ejle.iiA. sup Ix.l

{ej}e{-1.1}" “'1 191"

for some constant A”.

Each Banach Space is trivially of cotype a and it can be shown that

a non-trivial Banach Space cannot be of cotype q for q < 2. A space of

cotype q is also of cotype q' for q' > q, but {q'B is of cotype q} need

not be closed below. Recently, Ledoux has generalized the examples of

Pisier to construct spaces of type 2 - c and cotype 2 + e (for each

s > 0) that are not of type 2 (or cotype 2). The Spaces C[O,1], co and

L" are, predictably, of cotype o; the Lp Spaces are of cotype max(2,p)

(and no better).

While a considerable amount of research has been done relating the

cotype of a Space to the validity of a central limit theorem in that

Space, such a link has not, to the best of my knowledge, been made for

the Strong Law of Large Numbers. We deal, in Chapter II, with this

question.

Kwapien [26] proved that a Banach space is both of type 2 and of

cotype 2 iff it is isomorphic to a Hilbert space.

we need to define another class of Banach spaces: 8 is said to be _

of (LLn)p'1-type p or Simply of logtzpe p (1 i p i 2) if there exists

a constant A; a A;(B) such that for each finite sequence {x3};1 in B,

n n

Eiz ejx 'p 5 A;(LLn)p'1{
p

Ix.|

i=1 3 J-l J



These spaces have been studied before: Pisier [41] characterized

logtype-2 spaces (he did not call them that) as those in which each

sequence {Xn}:1 of i.i.d. random variables with EX 8 0 and

ram2 < a obeyed the CLIL. He also Showed (Lemma 4 in [39]) that a

logtype p Space is of type r for each r < p.

We Shall study the relationship between the geometry of the under-

lying Banach space (as manifested in its cotype, type or logtype) and

the validity of a SLLN for independent symmetric random variables taking

values in that space. He study necessary conditions for the SLLN in

Chapter II and sufficient conditions in Chapter III (Chapter IV deals

with the BLIL for certain classes of B-valued random variables; no link

is made with the geometry of B). Most of the results on the SLLN are

expressed in terms of the validity of a real valued SLLN, and would not

be of much use unless one could find necessary and sufficient criteria

for the validity of the latter. Such criteria were obtained by Nagaev

[36] and later generalized by him and Volodin [37,46] to cover the case

of an arbitrary stabilizing sequence {bn} (bn + a). For completeness,

let us state the basic result of Nagaev.

Theorem 1.1 (Nagaev [36])

Let {Xn} be a sequence of independent, symmetric real valued random

variables. Then {X } e SLLN iff for each s > O,
n

(1.5) nZIP(IXH' > e n) < o



and

(1.6) E exp(-ehn(e)2n+1) < a (e > 0).

n=1

Here f5(h,e) . E[exp(hxj)]I('Xj"£_j e) and hn(e) is the

solution of the differential equation

d _ n+1

¢n(h9€) 8 j621(n)[alfi fj(h,€)]/fj(
h’e) .. £2

provided

sup ¢n(h,e)‘3_52n+1.

h

Otherwise, hn(e) = a. hn(e) is well defined by the monotonicity

of ¢n(h,e) in h.

The conditions of Theorem 1.1 are, to say the least, complicated.

This is only to be expected. The problem of finding necessary and

sufficient conditions for the SLLN is a long-standing one (see Chung [8]

for a discussion of the problems involved). Moreover, Prokhorov [42]

expressed the belief that criteria in terms of the moments of the

individual summands were probably impossible. Nagaev proved that this

was indeed the case by exhibiting two sequences {xn} and {Yn} having

the same moments up toany given order s < a but such that {Xn} e SLLN

and {Yn} ¢ SLLN.

Hhile (1.6) is complicated, it can certainly be verified.

Moreover, we shall see that the real-valued SLLN'S that do arise can

often be verified or disproved by other relatively simple means (such as

by direct calculation). The utility of our results should not, there-

fore, be gauged by the fact that they m1ght_be hard to verify, but

rather by the fact that they often yield a conclusion when all other _

SLLN'S are inconclusive.



It should be pointed out that we will need to verify the

generalizations of Theorem 1.1 (Nagaev and Volodin) rather than Theorem

1.1 itself. Also, Nagaev's conditions nay be reexpressed more simply in

terms of a standard minimization in Markov's inequality. See [36] for

details.

In Chapter II, we consider necessary conditions for {Xn} to satisfy

the SLLN. He show (Theorem 2.1) that cotype q spaces (2 5_q < .) are

n .

precisely those in which the condition l/nq Z Ileq + 0 a.s. is a

i=1

necessary condition for the SLLN to hold, for each independent symmetric

sequence {xn}. He also show that the above necessary condition can be

expressed in terms of the individual nonents if anI _<_ Cn a.s. (n 3. 1).

Examples are given to show that the necessary condition is the best of

its kind.

Sufficient conditions for the validity of a B-valued SLLN have been

studied by Beck [3,4], Beck, Giesy and Warren [5], Hoyczynski [47],

Hoffmann-Jorgensen and Pisier [19], Kuelbs and Zinn [25] and Heinkel

[15,16,17]. we first obtain an exponential inequality for Rademacher

sequences in B and use it to prove a SLLN for random variables in type p

spaces (1 §_p.§_2). This result is improved in Theorem 3.14, which

characterizes logtype p Spaces as those in which each independent

symmetric sequence {xn} satisfying (LLn)p'1/np.§1 Ilep + 0 a.s. also

J.

satisfies the SLLN. Examples are given to Show that the above result

is best of its kind and that it may be used in situations where all

other relevant SLLN'S are inconclusive. Furthermore, the sufficient
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conditions of Theorem 3.14 may be expressed in terms of the individual

moments if anI 5_Cn/LLn a.s. (n 3_1).

For B a H, a Hilbert Space, the necessary and sufficient conditions

n

almost coincide: {Xn} c SLLN if LLn/n2 Z Ile2 + 0 a.s. and only if

i=1

2 '3 2
1/n ) Ix.l + O a.s. For B = H we also prove (Theoreh 3.22) an

i=1

extension of the Hoffmann-Jorgensen and Pisier Theorem.

We do not consider non-symmetric random variables, but they may

easily be studied using an elementary result of Kuelbs and Zinn [25]

which states that {Xn} c SLLN iff {X3} e SLLN and {xn} c NLLN. Here,

x: is the symmetrized version of Xn and is defined by

S 3 _ n

Xn(w.n) Xn(m) th)

where X5 is an independent copy of Xn(n.1 1). A symmetrized version

must always exist, at least on the probability Space (a x o, f_x E,

PxP).

In Chapter IV we treat the Bounded law of the Iterated Logarithm.

A BLIL is proved for B'valued Rademacher sequences (Theorem 4.3). This

is related to a theorem of Kuelbs [24]. Similarly, a BLIL is proved for

independent Gaussian sequences using an inequality of Fernique [11,12].

This result is related to a theorem of Carmona and Kono [6].
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CHAPTER II
 

NECESSARY CONDITIONS FOR THE SLLN

The following is the main result of Chapter 11.

Theorem 2.1. The following are equivalent:
 

(2.1) B is of cotype q (2 £_q < .)

(2.2) Each sequence {Xn} of independent symmetric B-valued random

n

variables satisfying the SLLN also satisfies 2 IXqu/nq + 0 a.s.

i=1

.Erggf: He will first Show that (2.1) implies (2.2). Assume that (2.1)

holds and let {xn} be any independent symmetric sequence satisfying the

SLLN. It follows that {anxn} e SLLN for almost all m e 9. We need to

n

prove that 2 Ix.I/nq + 0.

i=1 3

Kahane [21] proved that a Rademacher series 2 lJejx that converges

3‘1

in probability also satisfies El 2 ejlep < . for each p > O. Motivated

i=1

by this result, we define the Fréchet space (E,I-IE) and the Banach

space (F"°'F) by

E = {x a (x1,x2,....) e B" : X ‘jxj converges in probability}

331

dE(x.y) = E(I I ej yyj)I/[l + I 2 ej (xj -yj Ill)

3'1 i=1
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F 3 {x=(x1’x2’...) 8 Ba : E'jél ijj'q < G}

leF a (El X e.x.Iq)1/q.
J31 J J

Kahane's theorem implies that E C F. The injection E + F is clearly a

linear operator with closed graph (Since the probability and Lq limits

of a sequence must coincide) and is therefore continuous (in particular

at the origin)(see Theorem 4, page 57 of Dunford and Schwartz [50]). It

follows that for each 5 > 0, there is a 6 > 0 such that (El X cJ j

1'1

< e whenever E(I X e. x. I/(1+I _X e x. I)) < 6. Since {c x } satisfies
j-l P1 jj n nJ J

n n

the HLLN by hypothesis, we have (1/nl X 1eJxJ..I)/(1+1/nl X eJxJ.I) + 0 in

J=1J=1

probability. The bounded convergente theorem now proves that

n

E[(1/nl X c .x.JI)/(1+1/nl X e x.JI)] < o(n > N) so that

J=1 ‘JJ J=1JJ

n .

1/n(EI X eJxJ 'q)1/q < e(n > N). By the cotype q inequality,

J81

n

X Ix.Iq/nq + 0, as asserted.

J-1 3

Conversely, suppose that {xn} C B, and define the sequence {Xn} by

n

X = n canx (n > 1). By assumption, X quxJIq/nq + 0 if

J81

X j e .x J/n + O a. s. and thus (by Kronecker' 5 Lemma, which is valid in

J=1 JJ
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any Banach space) if the series X .x converges almost surely.

jal eJJ

Kahane [21] and Ito and Nisio [20] have Shown that the a.s. convergence

X eJ xJ is a consequence of its convergence in Lq(B). Hith this in

J-lJ

mind, we define the Banach Spaces (E,I-IE) and F,l-IF) by

E = {x=(x1,x2,...) c B. : JX1eJxJ converges in Lq(B)}

IxIE =(EI X i:.leq)1/q

J-l JJ

° X quxJ lq/nq + 0}

J=1

F = {x-(xlx2,...) e B

" 1/4
leF = sup( X quxJIq/nq) .

n j-l

The above discussion shows that E c F. Assume that lxn-XIE + 0 and

Ixn-yIF + 0. It can be easily shown that ng-xJI + O and

ng-yJI + O, for any j. It follows that xJ - yJ, j = 1,2,... so that

x a y. The injection E + F thus has a closed graph and is, by the

closed graph theorem, continuous. Hence there exists a constant C < .

such that

sup( X quxJ.Iq/nq)1/q < C(EI X c .xqu)1/q

nJ=1J=1JJ
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' In other words (keeping in mind that C denotes a generic constant), for

n
any n and for {xJ}J81 in B,

n n

(2.3) X qux lq/nq _<_ c El X x. Iq.

J=l J J=1 JJ

Fix N 3_1 and define, as in Hoffmann-Jogensen and Pisier [19]

y. = O 1.5.J.i N

J

a xJ_n N < j.: N + n.

we have by (2.3),

"4’"
N4.“

2 JquJ Iq < C(N+n)q EIXXeJy.Iq

jal
jal J

so that

X ("+J)qlx lq < C(N+n)qu X eJx. Iq

jsl j
j-l jj

and thus

n

X (N+j)qliIq/(N+n)q < c El X eJx..l q(n,N > 1).

J'1 jaI

Choosing N a n yields

(1/2)q X Ix. lq < c El X c x. lq,

J=1J
J1 JJ

proving that B is of cotype q. This completes the proof.

» The'necessary condition in Theorem 2.1 can be verified using the

criteria of Volodin and Nagaev [37,46] but is far less appealing than an

n

individual moment condition such as X EIxJIq/nq + 0. When is such a

J=1
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condition necessary for the SLLN to hold? Corollary 2.3 below provides

an answer to this question. He will need the following

Lemma 2.2. Let {Xn} be a sequence of independent symmetric random

variables taking values in an arbitrary separable Banach space 8.

Assume that Ile _gj (j 3 1) and that {xn} e HLLN. Then EISn/nlq + o

for each q _>_ 1.

3522:; The proof is an obvious modification of Lemma 2.3 in Kuelbs and

Zinn [25]. For B a R and q - 2, a proof may be found in Stout [43]

(Theorem 3.4.2) or in Loeve [28] (Corollary 1, page 253).

Fix 0 < e < 1 and q.1 1. Since {xn} e HLLN, there exists an no

such that sup P(l$nl‘3_ne) §_1/8 . 3Q. An application of Hoffmann-

n>n
-0

Jorgensen's inequality (Theorem 3.1 in [18]) yields, for any A > 0

A A/3

f qtq'lPUSnl Z. nt)dt . q - 3‘1| f tq‘lpusnu _>_ 3nt)dt

o 0

/3A/3 A

_<_ q - 3"[4] tq'lPZUSnI 3 nt)dt + f tq‘lpmn 2. nt)dt]

o o

A NB

5 q - 3°[4e + 1/2 . 3q f tq'lpusnl 3 nt)dt +1 tq'lpwn l nt)dt

o o

A/3

_<_ 8q 3q 6 + 2q 3"; tq'1P(Nn 3 nt)dt

o

for n.: "0’ where N . max IX.I. Since Nn 5.n and A is arbitrary, we

n 1513p

have

1

EISn/nlq _<_ 8q :4:q e + 2q 3H Pm" 3 nt)dt .

0 .
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For any t > 0, however,

PM": nt) _g P( max ISKI _>_ nt/2) 5_ 2P(ISnl Z. nt/Z) + 0

1§k§n

(By Lévy's inequality). The dominated convergence theorem now implies

the result.

Corollary 2.3. Let {xn} be a sequence of independent symmetric random

variables with values in a cotype q Banach space (2 5.9 < .), Assume

that

(2.4) lle _gj a.s. (.131)

(2.5) {xn} e HLLN

Then

n .

X Elleq/nq + 0.

3'1

Proof: Immediate from Lemma 2.2 and the (alternative) definition of a

cotype q space. Notice how the above conclusion was obtained merely by

altering the blanket assumption lxnl - o(n) a.s. to Ix“: §_n a.s.

(n_>_ 1).

Remark 2.4. The proofs of Theorem 2.1 and Corollary 2.3 show that if
 

{Xn} is any sequence of indepdendent symmetric B-valued random variables

(B is arbitrary) satisfying the SLLN, then

n

2 2
EEIJX1 ejle /n + 0

for almost all {xj}. If Ixnn'5_n a.s. (n 3_1) then EISn/nl2 + 0 as

well.
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Lemma 2.5. (Due to Prokhorov; for a proof, see Stout [43], page 159).

Let {Xn} be a sequence of independent symmetric B-valued random

variables. Then {xn} e SLLN iff (5 )/2n + o a.s.

2
n+1'gn

Lemma 2.6. (Prokhorov [42]). Let {Xn} be a sequence of independent

real-valued random variables satisfying for some C < o,

(2.6) 'Xn' 1Cn/LLn a.s. (n 31)

(2.7) E(Xn) . o (n 3_1).

Then {xn} e SLLN iff X exp(-e/A(n)) < . for each s > o, where

n-l

A(n) . X exg/4".

361(0)

Examples 2.7 and 2.8 below show that the necessary conditions in Theorem

2.1 and Corollary 2.3 are the best possible of their kind and that they

are not, in general, sufficient conditions.

Example 2.7. Let on be any sequence of real numbers increasing to + n.

Then there exists a sequence {Xn} of independent Symmetric real-valued

random variables satisfying the SLLN but such that

n

4 /nq X X. q + - a.s... 3.1: J

and

n

¢n/flq 321 Elleq + a
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To see this, let

a n 1/2q

X2n eznz /(¢2n)

xK = 0 (K t 2n for any n)

Then

n 3 1/2q

IS n-l-l'sznl/2 1/(¢2n) + 0
2

for each m e n, so that {xn} e SLLN by Lemma 2.5. On the other hand,

i n/2nq Z lleq = <¢<2”))1’2 + ~.
2 jeI(n)

Such an example exists in any Banach Space B, since R C 8.

Example 2.8. The condition

n

X IX.Iq/nq + 0 a.s.

M J

is not sufficient condition for the SLLN in any Banach space. In fact,

for each sequence on . o(LLn) there exists a sequence of independent

symmetric real random variables satisfying

? + 0 a.s.

2 n

(¢n/n ).X XJ

J-l

but failing the SLLN. To see this, let xn a en(n/LLn)1/2 (n 3.1).

(2.6) and (2.7) are clearly satisfied, but A(n) 3_C/LL2"‘3_C/log n.

Hence

2 exp(-e/A(n)) = ~

n-l

if e §.C, so that the SLLN fails by Lemma 2.6. On the other hand,

2 " 2 2 " . .
(¢n/n ) 2 x3 = (an/n ) X J/LLJ : c an/LLn + o a.s.

J-l j=1
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CHAPTER III

SUFFICIENT CONDITIONS FOR THE SLLN

The study of SLLN's in separable Banach spaces was initiated by

Mourier [35], who proved that an i.i.d. sequence {Xn} satisfies the SLLN

iff Elxll < a. Subsequent work (in the non-identically distributed

case) was done by Beck [3,4], Beck, Giesy and Warren [5], Noyczinski

[47], Hoffmann-Jorgensen and Pisier [19], Kuelbs and Zinn [25] and

Heinkel [15,16,17]. As with all limit theorems in Banach spaces, these

results fall into two natural categories, with restrictions being placed

either on the probability distributions of the sequence {Xn} or on the

geometry of the underlying Banach space. He will start by considering

the first class of results. The results of Kuelbs and Zinn (Theorems

3.2 and 3.3 below) fall into this category, but may easily be restated

as statements about the geometry of B. Theorem 3.1 below is due to

Beck, Giesy and Harren. It is a result that (a) is valid for each

Banach space and (b) is in terms of the moments of the individual

summands. Ne will see subsequently how difficult it is to prove a

non-trivial result at this level of generality without making additional

assumptions (Kuelbs and Zinn hypothesize, fbr example, that the NLLN

is satisfied).

Theorem 3.1. (Beck, Giesy and Harren [5]). Let {xn} be a sequence of

independent B-valued random variables with EXn = 0 (n.3 1) and

satisfying either
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" 2 1/2
(3.1) X EIxj I 2/j2 . and lim X (EIx.I ) /n = 0

jzl n+0 jsl J

or

n

(3.2) lim X ess sup Ixj I/n = 0

nee jsl

Then {Xn} s SLLN. Furthermore, (3.1) and (3.2) are the best possible in

the sense that weakening either yields a result that is no longer true

for all Banach spaces.

Theorem 3.1 follows as a corollary of Theorem 3.3 below (Kuelbs and

Zinn). In fact, both (3.1) and (3.2) imply that

n

X IX.I/n + 0 a.s.

in J

which is a completely trivial sufficient condition for the SLLN. (3.2)

obviously implies that

n

X IX.I/n + 0 a.s.

J=1 3

Assume that (3.1) holds. We need to prove that {IxnI} e SLLN

It suffices, therefore, to show that {IxnIS} e SLLN and {anl} e NLLN.

Note that

X E(IX. I S) 2/J'2 <2 X EIX. l 2/j2

J=1 J-l

so that {anlS} e SLLN by Kolmogorov's real-line SLLN. Also

[I

P( X IXj I > he) < 1/ne X EIXJ . < l/ne 2 (EIXJ l2)1/2

j=1 j=1 j=1

proving that {Ian} e NLLN.
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Theorem 3.2. (Kuelbs and Zinn [25]). Let {Xn} be a sequence of

independent B-valued random variables satisfying

(3.3) Xn/n + 0 a.s.

(3.4) for some p a [1,2] and for some r e (0,»),

X A(n,p)r < . , where A(n,p) = 1/2np X EIX.Ip.

n=1 jc (n) J

(3.5) {xn} e NLLN

Then {x } e SLLN.
n

Kuelbs' and Zinn's next result extends Lemma 2.6 (the sufficient

part) to the B-valued case:

Theorem 3.3. (Kuelbs and Zinn [25]). Let {Xn} be a sequence of

independent B-valued random variables such that (3.5) holds and

(3.6) lle 5 Cj/LLj a.s. for some C < a, (j.: 1).

(3.7)

X exp(-e/A(n)) < a for all e > 0, where A(n) a A(n,2) = 1/4n X EIX.I2

n81 jeI(n)

Then {xn} e SLLN.

Remarks 3.4. The HLLN hypothesis of Theorem 3.3 may be difficult to
 

verify unless one assumes, for example, that B is a type-p space in

which case it may be replaced by

n

(3-3) 1/np X EIx.Ip + 0 (n + .)

J
i=1

which is a condition in terms of the individual moments. Notice,

however, how stringent (3.8) is for p a 1. This just reaffirms the fact

that norm and/or moment assumptions will not yield useful SLLN's if B is
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of type 1 (and no better). (If B = 2', for example, and one defines

xn = anenen, where {an} C R and {en} is the canonical basis of z',

n

then it is easy to see that {xn} e SLLN iff X lle/n + 0 a.s.) Notice

J=1

also that if B is a type-2 space, then (3.5) is automatically implied by

(3.4) or (3.7) and need not be hypothesized.

If B is of type p, 1.3 p < 2, however, then (3.5) is crucial and

may not be omitted even if {Xn} is a symmetric sequence. In other

words, the NLLN hypothesis of Theorems 3.2 and 3.3 is not merely a

“desymmetrization” assumption. To see this, consider, for p s [1,2),

the 2p valued sequence {Xn} defined by

xn(u.k) = en(w)(n/(LLn)°>1’21{n}(k)<an)

where a > 1 is arbitrary. We have, for any m, lle s (j/(LLj)°)1/2

so that (3.6) is satisfied. Also,

2" 2 2" a a-J
(LLn/n ) X EIX.I a (LLn/n ) X j/(LLj) .3 C/(LLn) + 0

i=1 J J'1

so that (log n) A (n) + 0. It follows that (3.7) holds. Notice,

however, that {Xn} i SLLN, since for any m,

n n

'-21 xj/n- - n‘ltjz1 (J/(LLJ)“)p’ZJl/P.;,en‘ltnp’2*1/(LLn)°p’211/P + .,

A similar example may be constructed to show that (3.5) is a crucial

hypothesis in Theorem 3.2 as well.

We next consider the second class of results on the SLLN; ones in

which conditions are imposed on the Banach space B. The basic result in

this direction is due to Hoffmann-Jorgensen and Pisier who obtain an
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analog of the classical Kolmogorov-Chung SLLN (Theorem 3.5). Heinkel

has obtained an improvement of Theorem 3.3 for Hilbert-space valued

random variables (Theorem 3.6 below).

Theorem 3.5. (Hoffmann-Jorgensen and Pisier [19]). The following are

equivalent

(3.9) Bis of type p (1 1p: 2).

(3.10) Each sequence {Xn} of independent zero-mean B valued random

variables with X EIXjIp/jp < a satisfies the SLLN.

J=1

Theorem 3.6. (Heinkel [16]). Suppose {Xn} is a sequence of independent

centered random variables with values in a 2-uniformly smooth Banach

space 8 (see [16] for a definition). Assume that (3.6) holds and that

(3.11) X exp(-e/r(n)) < o for each e > 0,

n=1

where r(n) s 1/4n X sup E(f,x.)2 .

jeI(n) ngerr J

n

(3.12) 1/n2 X EIXJIZ + o.

3'1

Then {xn} e SLLN.

Heinkel also constructs a sequence of sz-valued random variables

satisfying the hypotheses of Theorem 3.6 but not of Theorem 3.3, proving '

that (3.7) is not a necessary condition for the SLLN to hold, even in a

cotype 2 space and even if (3.6) holds. Zinn [49] has given another

example.
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There are three major differences between the present investigation

and the work of the above authors. Most of the results are stated in

terms of the validity of a real-valued SLLN. They are shown to be the

best possible of their kind. Finally, no HLLN hypothesis is made in the
 

symmetric case. Convergence in probability need only be hypothesized,

therefore, to be able to conclude that {Xn} obeys the SLLN if {xi}

does. Also, the results resemble Theorems 3.2 and 3.5 in that no

specific hypothesis is made on the magnitudes of the norms of the Xn's

and because one obtains characterizations of certain classes of Banach

spaces through the validity of a SLLN. There is also a strong

similarity with Theorems 3.3 and 3.6 (See Remark 3.12).

The first group of results depend on an exponential inequality

(Lemma 3.7). They are not the best possible (and are, in fact, improved

later in this chapter) but are included because the nature of their

proofs is quite revealing (see Remark 3.18) and also because Lemma 3.7

plays an important role in Chapter IV on the (bounded) law of the

iterated logarithm.

Lemma 3.7. Let B be a separable Banach space. Consider the Rademacher

n

series "X1 5 x", where {xn} c B. Set Sn . X e and s
2 2

.x
n 3’1 J j n

a ElSnl .

Then there exists a constant M a M(B) such that for each a > 0,

(3.13) P(ISnI/sn > e) 5 3 exp(-e2/M2).
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‘25221; He shall use a basic result of Kwapién [27] which states that

for any sequence {xn} in an arbitrary Banach space B, the almost sure

convergence of X e x. implies that E[exp al X e.x.l2] < . for each

j'l J J jal J J

a > 0. Let the Banach space (E,I-IE) and the Orlicz space (F,I-IF) be

defined by

E a {x a (x1,x2,...) 2 8° : .Xl ejxj converges in L2(B)}

J8

I2 1/2
IxIE = (El 5 I)

jél J1

F = {x 8 (x .x ....) e B. = E eXP(°| X 8 X '2) < ° for 93¢" 0 > 0}12 i=1“

leF s inf{t > 0 : E exp(l X ejlezltz)‘g e}

1'1

The fact that both E and F are Banach Spaces is well known and may be

verified by a tedious but routine calculation. Kwapien's theorem

asserts that E c F. Suppose that lxn-XIE + 0 and Ixn-ylF + 0. It then

follows that EI X ej (xn -x )I2 + 0 and El X e (xn-y )I2 + 0 so that
. 321 J J jsl J J J

x - y. The closed graph theorem now implies that there is a constant

M < . such that

(3.14) iflf{t > 0 2 E EXPUSIz/tz) 1 e}: "(EISI2)1/2

where S - X J J In other words, for each n,

J81

E exp(ISI2/M2EISI2+n‘1) 5.e. An application of Fatou's lemma yields
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(3.15) E exp(ISI2/M2EISIZ) _<_ e

so that for each n,

2 2 2 2 2
P(ISnl/sn3§) = P(ISnI /M Sn2§ /M )

§_E(exp ISnlz/Mzsg) exp(-e2/M2)

_<_ 3 exp(-eZ/M2).

by (3.15). This proves (3.13).

Remark 3.8. Kahane [21] showed that E exp(aISI) < . for each a 5-00

whenever S is an a.s. convergent series; Kwapien's theorem is obtained

by using Kahane's result together with an additional argument. Marcus

and Pisier [31] generalize Kwapien's result and also show how it nay be

proved directly. The Orlicz norm of Lemma 3.7 was first used by Pisier

[40]. It must be pointed out that Lemma 3.7 is implicit in the work of

the above authors and has merely been retrieved from Kwapien's theorem.

The following result of Kahane is a consequence of Kwapien's result

and generalizes the classical Khinchin inequalities. It shows that the

Lp norms (1 5_p < .) are all equivalent on the linear span generated (in

B) by the Rademacher random variables. It nay also be interpreted as a

converse Holder inequality on this subspace.

Lemma 3.9. (Kahane's inequalities [21]). For each p and q satisfying

1 5_p §_q < a, there exists a universal constant Kp q such that for each.

Banach space 8 and for each finite sequence {x3};1 in B,

n n

q l/q P l/P

3'1
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The next lemma is a fundamental result of Hoffmann-Jorgensen. It

provides conditions under which the almost sure and Lp-convergence of a

series of independent B-valued random variables are equivalent:

Lemma 3.10. (Hoffmann-Jorgensen [18]). Let {xn};.1 be a sequence of

independent B-valued random variables so that Sn converges a.s. to S,

and let 0 < p < a. Then the following are equivalent.

(3.16) 5n + s in Lp(B).

(3.17) s s 19(3).

(3.18) n . s:plSnI 5 19m ).

(3.19) N =- sgplxnl e Lp(R ).

(3.20) {Sn}:.1s a bounded subset of Lp(B) .

The next proposition gives 3 sufficient conditions for the SLLN.

The first two are in terms of the a.s. convergence of a series of real

random variables, while the last is in terms of the validity of a

real-valued SLLN.

Proposition 3.11. Let {Xn} be a sequence of independent symmetric

2
B-valued random variables. Let tau and Th” (or simply t2n and T", when

there is no possibility of confusion) denote the Quantities

2
E I e.X.(m)I and X e x.(m) , respectively. Then

‘ je§(n) J J 381(0) J J
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(a) {xn} e SLLN if'

(3.21) X exp(-e4n/t:m) < o a.s. for each a > 0.

n-l

If, in addition 8 is of type p (1 §.p §_2) then

(b) {xn} e SLLN if

(3.22) X exp(-e4"/[ X lXj(m)Ip]2/p < o a.s. for each s > 0

n=1 jeI(n)

and

(c) {xn} e SLLN if

n

(3.23) [(LLn)p/2/np] { llep + o a.s.

J'l

Proof: We will show that {anxn(m)} e SLLN for each m satisfying (3.21).

By Lemma 2.5 and the Borel Cantelli Lemma it suffices to show that

X P(ITnI > Zne) < «-

n-1

for each a > 0. Fix 6 > 0 and apply Lemma 3.7 to get

P(lTnlz2ne) a P(lTnl/tn12ne/tn) §_3 exp(-4"c2/t:M2). By (3.21) the last

series is summable for each s > 0. This proves Part (a).

Part (b) follows immediately from (a), Kahane's inequality and the

definition of type, since

t2 . El X e.x (w)l2‘§_K§’2(El X c.X.(m)Ip)2/p

"“’ Jenn) JJ 3cm)“

2 2 2/
5.xp’2A gp(XlXj(m)lp) P.
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To prove (c), notice that by (3.23)

E exn(-e4"/[ IX. w lp Z/p =

n31 je§(n) J( ) 1

X exp(-e{2np/(LL2n)p/2 X 1x.(e)up}2/PL12")

n-l jeun) J

' -2
< C X n < ..

- and

In other words 3.23 implies 3.22. This completes the proof of (c).

Remarks 3.12. The sufficient condition in part (c) above may be
 

verified by the criteria of Volodin and Nagaev [37.46]. One may attempt

similarly to check the conditions in (a) and (b) using Kolmogorov's

three-series theorem, but it is more convenient to use Hoffman-

Jorgensen's result (Lemma 3.10). Assume that (3.21) holds. Since

(3.19) is obviously satisfied we must have (3.17). In other words,

(3.24) nX1 E exp(-e4"/t:m) < o (e > 0).

Conversely, if (3.24) holds, the series X exp(-e4n/t:m) converges in

n21

L' for each s > 0 (since it is a positive term series) and thus almost

surely, fbr each s > 0 (by Lévy's theorem). (3.21) and (3.24) are thus

equivalent. Similarly, (3.22) is equivalent to

(3.25) X E exp[-e4"/(. X llep)2/p] < a (e > 0)

n=1 JeI(n)

so that (3.21) and (3.22) hold iff just ggg_of the series in

Kolmogorov‘s three-series criterion converges. Unfortunately, (3.24)

and (3.25) cannot be thought of as being computationally easy
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substitutes for (3.21) and (3.22). It is not clear, therefore, how (a)

and (b) of Proposition 3.11 may be verified, even though they are

formulated in terms of the almost sure convergence of a series of

independent real random variables. In Proposition 3.13 below, we show

when the sufficient conditions of (b) and (c) are equivalent.

The rates in (c) are not the best possible (this is painfully

obvious for p . 1) unless p . 2. He shall obtain the best rates in

Theorem 3.14. Assume therefore that p . 2. Part (b) of Proposition

3.11 states that a Rademacher sequence {anxn} satisfies the SLLN if

(3.26) X exp(-e4n/ X Ix.l2) < a (e > 0) ,

n-1 je n J

which is exactly what the sufficient conditions of Kuelbs and Zinn

(Theorem 3.3) and Heinkel (Theorem 3.6) reduce to for such a sequence.

Suppose one were trying to prove the SLLN for an arbitrary sequence

{Xn} of independent symmetric random variables with values in a type 2

space, using the criteria of Kuelbs and Zinn or Heinkel. Suppose also

that one chose to prove the SLLN for {enxn(m)} (for almost all m)

instead of for {xn}. (3.7) and (3.11) would then coincide with (3.22),

the sufficient condition of Proposition 3.11(b). This is not to suggest

that these 3 conditions are equivalent; they are not. The above remark

provides a clue, however, as to how they might be related. Notice also

that (3.22) implies the SLLN even if the boundedness hypothesis

(Ile §_Cj/LLj) of Kuelbs, Zinn and Heinkel is not satisfied.
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Proposition 3.13. Let A(n,p) = X( )IXjIp/an form a decreasing

jeI n

sequence of real numbers, and suppose that X exp(-e/[A(n,p)]2/p) < .

n=1

for each s > 0. Then (log n)p/2 A(n,p) + 0 (thus (b) and (c) of

Proposition 3.11 are equivalent if A(n,p) forms a decreasing sequence

for almost all m e n, a condition that most sequences {Xn} would

satisfy).

'frggf; Let{an} be any decreasing sequence of real numbers. We will

prove that an = o(1/log n) if X exp(-e/an) < . for each s > 0.

n=1

The proof is along the lines of Proposition 6.7 in Dudley [9]. Let

an a an/log n. We will show that “n + 0. Suppose on the contrary

that lim sup “n a 26 > 0, so that an > 6 for arbitrarily large values

n+9

1/2
of n. Choose such an n and suppose that [n ] 5_j 5_n. Then

a. a ajlog j 3_anlog j . (an/log n)log j-Z-“n/z .

J

Thus

n n -€/a. n -Ze/an

X exp(-e/aj) = X j J 3_ X n

j-[n1’23+1 j-[n1’2]+1 i=[n1/2]+1

n -26/5
2- 2 n : (n-[n1/2])/n28/6 .

jsan/2]+1

It is clear that X exp(-e/an) cannot converge for each s > 0. This

n81

proves the result.
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The fbllowing example shows that Proposition 3.13 is false in

general. Define a symmetric independent real-valued sequence {xn} by

K

X 8 6K 22 [Kl/2

2

K (K31)

2 +1

K

2 +1 for any K).Xj = 0(3 t 2

Then for any m e n and for each K,

K 22K+1

A(2K,p) 3 1/22 “D 2 K llep Z. C/Kp/g

j=22

so that lim sup (log n)p/2 A(n,p) is strictly positive. Note also that

n + o

(11(2K,p))2/p g C/K. Suppose now that n ¢ 2K for any K. Then 2£+1.i n

.£.2£+1'1 for some I, so that 2n+1 > 22t+1 and 2n+1 < 22£+l+1. It

follows that A(n,p) - 0 and thus

'2' exp(-e/[A(n.p)]2/p) - '2' exp<-e/u<2".p)12’p) 5 f exp(-eK/C) <-
n81 K81 K81

for each s > 0.

There are several directions in which one may hope to improve

Proposition 3.11(c). One possibility would be to widen the domain of

its validity and another would be to improve the rate in (3.23) (which

is intolerably bad for p - 1). Finally one may want to obtain a

characterization of certain Banach spaces through the validity of a

SLLN. Some of this is accomplished in the following theorem, which is

the main result of this chapter.
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Theorem 3.14. Let {Xn} be a sequence of independent symmetric random

variables taking values in a real separable Banach space B. Assume that

p-1 p " p
(3.27) For some p e [1.2], (LLn) /n X Ile + 0 a.s.

i=1

(3.28) {enxn(m)} e HLLN for almost all m.

Then {Xn} e SLLN.

In particular, the following are equivalent

(3.29) B is of log type-p.

(3.30) Each sequence {Xn} of independent symmetric B valued random

variables satisfying (3.27) also satisfies the SLLN.

Proof: The proof makes use of Theorem 3.3 (Kuelbs and Zinn) and a

truncation argument. Let Xj . Yj + 23, where Yj - XjI(lle§j/LLJ) and

23 = XJI(lle > j/LLj). Note that {Yn} and {Zn} are both independent

symmetric sequences. By Lemma 2.5, {Zn} 3 SLLN iff X )Zj/z" + 0 a.s.

je (n

We have

1 z./2"l < 1/2n Ip'1(nx.u > j/LLj)Ix.l

3301) J ‘ Jeifin) J J

_<__C(LLz")P‘1/2"p X IX.Ip + o a.s.,

jeun) J

by (3.27). Let us next consider the sequence {Yn}. It is clear that

{Yn} e SLLN iff {enxnI(lxnl 5 n/LLn)} e SLLN for almost all m. Choose

an m for which (3.27) and (3.28) hold. We need to verify that (3.5)

through (3.7) hold for the sequence {anxn1('xn'-3 n/LLn)}. (3.6) is

obviously satisfied. Let yn denote xnI(lxnl'§_n/LLn). We have
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L12"/4" X ijl2 = LLz"/2"p X uy.upnyj|2‘p/2"(2‘PJ

jean) jean) J

5_CLLz"/2"p - 1/(LL2")2'p X ly.Ip=

JeI(n) J

C(LLz")p'1/2"p X ny.lP;C(LL2")p'1/2"p X IX.Ip + o,

Jenn) J 361(0)

by (3.27). Hence

X exp(-c4n)/( X ijl2)§_Ce X n"2 < a

n=1 jeI(n) n-l

so that (3.7) holds. (3.27) implies that lxnl §_n/(LLn)p'1/p if n is

large enough. (3.28) asserts that {enxn} e NLLN. He may thus apply

n

Lemma 2.2 to conclude that 1/n E I X ejle + 0. Kahane's contraction

i=1

principle [21] or Hoffmann-Jorgensen's comparison principle (Lemma 4.1

n

in [18]) now show that 1/n El X ejyjl + 0 so that (3.5) holds. Another

3'1

proof of the last fact may be given by using Lévy's inequality. This

proves the first part of the theorem.

If B is of logtype-p then

n _ n _ _1 n

P(l X e x.I > ne) < (ne) pEI X c.x.lp < C(nc) p(LLn)p X Ix.Ip + 0

. J J - . J 3 - , 3
J 1 J 1 j 1

for each m satisfying (3.27), so that (3.28) holds. It follows that

(3.29) implies (3.30). He turn next to the converse proposition. This

is proved by using yet another closed graph argument. Consider the

Rademacher sequence {enxn}, {xn} c 8. By hypothesis, {enxn} e SLLN if

n

(LLn)p‘1/np X Ilep + 0. Kronecker's lemma and an argument similar to

3'1
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the one in Theorem 2.1 now show that

n . _1

1/an1 X e.x.lp + o if X (LLj)p IX.Ip/jp < . .
-,1 J J -=1 J
J J

Define the spaces (E,l-IE) and (F,I-IF) by

E . {x e B“ : X (LLj)p'1Ix.lp/jp < .}

#1 J

IXIE = E Z (LLJ)p'1Iijp/jp]1/p

3‘1

a n

F a {x e B : 1/np E I X e.x.lp + 0}
j']. JJ

le = sup 1/n(El X +:.x.lp)1/p

F n j=1 J J

(E,I-IE) and (F,l-IF) may easily be seen to be Banach spaces with E C F.

Suppose that lxn-xlE + 0 and Ixn-ylF + 0. It follows easily that

lxg-le + 0 and lxg-yjl + D for each j. It follows that x . y. The

closed graph theorem implies that there exists a C < a such that

n O

sup 1/n(El X e.x.lp)1/p‘§_C( X (LLj)p’1|x.up/jp)1/p.
fl jal J J 3.31 J

In other words, for each n 3_1

ll n _1

(3.31) El X c.x.lp < c nP( X (LLj)p Ix.lp/jp).
j']. J J "' j’]. J

Fix ".1 1 and define

”=00531N)

= xj_N(N < j §_N + n).
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By (3.31), for each n

N+n N+n

E: X e .y. 'p < C(N+n)p( X (LLj)p 11x.Ip/jp)
j.1 J j j_1

so that

n

EI X e x. I" < C(N+n)p( X [LL(N+j)]p'1Ix.lp/(N+j)p)

3-1 JJ 3'1

c{(N+n)p[LL(N+n)]P'1/(N+1)p}XI1 llep.

J8

Setting N . n, we obtain

" p +1 p--1 pEl X ejx.I < c 2p (LLn) X Ix. I

i=1 3'1 3

which proves that 8 is of logtype-p. (Pisier [39] has shown that this

implies that B is of type r for each r < p.)

No assumptions are made on the magnitudes of the norms of {xn} in

Theorem 3.14. Theorems 3.2 (Kuelbs and Zinn) and 3.5 (Hoffmann-

Jorgensen and Pisier) fall in this category. We would like to show next

that our result may be used in situations when both the above theorems

are inconclusive.

Example 3.15. Define the sequence {Xn} by

3/4
x a e n - 2"/(LL2") (n . 1,2,...)

2
2n

XJ. = 0 (j at 2n for any n).

2n
n .

Then,jX1E|lep/jp=X 1/(LL2‘J)3p/4 + a for each p e [1.2], so that

1'1

Theorem 3.5 is inconclusive. Also,
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A(n,p) = 1/2np X E|x.)P a (LL2")'3p/? It follows that X A(n,p)r = .

351(0) J n=1

for each p s [1,2] and r s (0,0). No conclusion may thus be reached

using Theorem 3.2. On the other hand, for any p s [1,2] and n e I(K),

K+1
n 2

(LLn)p'1/np X )x.'P < (LL2K*J)p’1/2Kp X Ix )9

3-1 J " 3-1 "

K+1 . .

= (LL2K+1)p'1/2Kp X ZJp/(LLZJ)3p/4‘5_C(LLZK)p/4'1 + o

J'1

a.s., so that {Xn} e SLLN. Theorem 3.14 does not, however, contain

either of the two theorems; to see this, let

X x (n a 1,2,...)3 E

an an an

Xi = 0 (j e an for any n)

and xn = an/nz. He then have

' C O -2

jélg'lep/Jp ' n§lfilxanlp/an ' "£1" p < .

K

for each p e [1,2]. Also it is clear that A(n,p) = 0 (n t 22 ) and

K ~ ~

2 ,p) a K'2p so that X A(n,p) < o for each p e [1,2]. However,

n81

A(2

a
n n

(LLan)p'1/a: X lx.'p < C 2n(p-1)/ap X aP/j2p + . a.s.
. J - n - J
J31 J31

Similar examples may be constructed to show that for B . fl! ,

(3.27) is not comparable to any of Teicher's [45] sufficient condi-

tions for the SLLN.
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Theorems 2.1 and 3.14 may now be combined (with p = q = 2) to

obtain the following.

Corollary 3.16: A sequence {Xn} of independent symmetric random

variables with values in a Hilbert space H (or more generally a cotype

n

2, logtype-2 space) satisfies the SLLN if LLn/n2 X Ile2 + 0 a.s.

J31

. 2 “ 2
and only if 1/n X lle + 0 a.s. Furthermore, the condition

3'1

n

o(n)/n2 X Ile2 + 0 a.s. is neither necessany nor sufficient for the

3'1

SLLN for any function ¢(n) + a, ¢(n) = o(LLn). (This may be seen from

Examples 2.7 and 2.8.)

Example 3.17. We showed in Example 2.7 that the rate in Theorem 2.1

could not be improved for any q.: 2. He would like to show next that

the rate in Theorem 3.14 is also the best possible, in the following

sense: For each p s [1,2], and for each sequence o(n) + a, there exists

a sequence {xn} of independent symmetric real random variables

n

satisfying the condition [(LLn)p'1/np¢(n)] X |lep + 0 a.s. but failing

3'1

the SLLN. Such a sequence may be defined by

xj . sjzn/LLZ" j = 2" + 1,...,2"+[LL2"]

n s 1,2,...

X. = 0 Otherwise
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Then for any K s 1(n), and p a [1,2],

p-l p K p n+1p-1 up n "*1 3 3'9 3p
[(LLK) /K M10121 Ix” _<_ [(LL2 ) /2 3(2 )].X1[u.2 12 /(LL2 )

3=
J.

5_ o(LLz'J“1)"'1/2np - 2("“1)F’/(LI.2""1)"'1 - 1/¢(2") + o as n + .,

0n the other hand, while (2.6) and (2.7) of Prokhorov's Lemma 2.6 are

satisfied, we have Mn) a 1/4" - [LL2"] . 4"/(LL2")2 _>_ C/l’og n so that

X exp(-c/A(n)) = a for 8 small enough. Hence {Xn} t SLLN.

n-l

Remark 3.18. He have seen how the necessary and sufficient conditions
 

for the SLLN ”almost“ coincide if B is a Hilbert space. If B is

arbitrary, however, necessary and sufficient conditions that are close

to one another cannot be formulated in terms of the validity of a real

valued SLLN. Observe, however, that Remark 2.4 and Proposition 3.11(a)

n

together imply that a B-valued SLLN holds if LLn/n2 Es. X ijj(m)|2-+ O

i=1

n

a.s. and only if 1/n2 EE' X erj(w)l2 + 0 a.s. These conditions are

i=1

not, however, easily verifiable since there is no general technique of

2
estimating EISnI for an arbitrary sequence of B-valued random

variables. (The two-sided estimates obtained by Giné and Zinn [14] may

be expressed in terms of the individual summands only if B is a Hilbert

space.)
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He saw in Corollary 2.3 how the necessary condition of Theorem 2.1

could be expressed in terms of the individual moments if we assumed that

lxhl‘§_n a.s. (n 3_1). We show now that the sufficient condition of

Theorem 3.14 may be similarly rephrased if Ixnn‘5_c n/LLn a.s. (".1 1).

The following Lemma of Loéve generalizes Prokhorov's result (Lemma

2.6).

Lemma 3.19. (Loéve [28]). Let {Yn} be a sequence of independent

zero mean (real) random variables such that 'YnI-fi C bn/LLbn a.s.

(n.: 1) where bn + . and 1 < Clibzml/bznéc2 < a for some constants

2

n
C and C1 2. Set Tn = S n+1 - Sznlbn, t . ET: . 1/b2 X EYZ. Then

2 2" jeI(n) J

Sn/bn + O a.s. iff the series X exp(-e/t:) < a for each 3 > 0.

n=1

Proposition 3.20. Condition (3.27) may be expressed in terms of the

moments of {xn} if lxnl g Cn/LLn a.s. (n 3_1). In fact, (3.27) holds

iff

-1 "
(3.32) [(LLn)p /nP] X ulep + o in probability

3'1

and

(3.33) X exp[-e 22"”/{(LI.2")2"'2 X E(IX.Ip-lxtlp)2}]

n=1 jeI(n) J J

< o, for each s > O

I

where Xj is an independent copy of Xj(j 3 1). (Here, (3.32) may be

- expressed in terms of the individual moments by the classical degenerate

convergence criterion.)
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. n .

Proof: Assume that (LLn)p'1/np X llep + 0 a.s. for some p s [1,2].

3'1

By the result of Kuelbs and Zinn (see the Introduction), this is

equivalent to (3.22) and

p-1 p " p ' p
(3.34) (LLn) /n X (lle -Ile ) + O a.s.

3'1

We have

C'jp/(LLJ)p'1

LL(Jp/(LLJ)p'1) '

 lllep-IX3IPI‘§_2ij/(LLj)p <

so that Loéve's result aplies to (3.34).

It follows that (3.27) is equivalent to (3.32) and (3.33), as

claimed. Notice that

E(IXle-Ixslp)2 a 2 Var(lle ) §_2EIle29

so that

(LL2")29'2 X E(ux.uP-nx'np)2/22"P <
jen J J -

2(I.L2")2P"2 X 2p 2np
JBI(MEIXJJ /2 .5

C(LLz")2J"2 X Elx.|2(2"/L12")ZP‘2/22"p

JeI(n) J

= 04(0).

so that (3.33) is a slight improvement of the Kuelbs-Zinn condition.

One the other hand, (3.32) may do worse than their HLLN hypothesis.
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Next, we proceed in a somewhat different direction to obtain a SLLN

for Hilbert-space valued random variables. One may use the following

example to motivate what follows: Define the sequence {Xn} of 22-

1/2
valued random variables by Xn = enen(n/LLn) , where {en} is the usual

2
basis of t . Does {xn} e SLLN? Theorem 3.14 as well as the results of

Hoffmann-Jorgensen and Piser, Kuelbs and Zinn, and Heinkel are all

inconclusive. To see this, note that

-|2/Jz - X 1/j LLj = e,X Elx
. J J31

3'1

1/4n X EIX.I2 a 1/4n X sup E(f,X )2

ch(n) J jeI(n) mil J

= 1/4n X j/LLj _>_ C/log n

381(0)

and

n

LLn/nZX muzlc > o a.s.

i=1 J

2 " 2
0n the other hand, 1/n X Ile ‘5_C/LLn + O a.s., so that no negative

j-l

conclusion may reached using Theorem 2.1. The fact that {Xn} e SLLN

may however be deduced from Theorem 3.22 below, which is a generaliza-

tion to the Hilbert space setting of Teicher's [45] extension of the

classical Kolmogorov SLLN. It extends the Hoffmann-Jorgensen and Pisier

theorem in exactly the same way (for B . H). Teicher's result is stated

next. It is really the first in a hierarchy of successfully stronger

(and more complicated) results.
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Theorem 3.21. (Teicher [45]). Let {Xn} be a sequence of mean zero,

independent (real) random variables satisfying

1

(3.35) X Exf/i4 1X EX? < .

i=2 j=1 J

n

3'1 J

There exist constants Cj such that

“ ° 2 2 4
(3.37) JX1P(|xj' > cj) < and lecj EXj/j < .

Then {x } e SLLN.
l‘l

Egorov [10] showed that (3.35) and the condition Xn = o(n) a.s.

were sufficient for the SLLN to hold, but we shall see that such an

extension will not be possible in the case of Hilbert Space-valued

random variables.

Theroem 3.22. Let {xn} be a sequence of independent symmetric random

variables with values in the real separable Hilbert space H equipped

with the inner product (-,-). Assume that

2 " 2
(3.38) 1/n X Ix.l + 0 a.s.

3-1 J

and

. _ _ . _4 k-l 2

(3.39) X x X (xj,xk) < . a.s.

k=2 j=1

Then {xn} e SLLN.

Before we prove the theorem, we shall need to state a basic lemma of

Chow [7].



Lemma 3.23. (Chow [7]). Let {Y E"; n 3.1} be a martingale
n,

difference sequence and suppose that 0 < aj + a, where aj is f3_1

measurable for each j 3_1. Then

(3.40) X E( Y p.§ ._ )/ap < a a.s. for some 0 < p < 2

n

implies that X Y /a + 0 a.s.

J-IJ"

Proof of Theorem 3.22. He will show, as before, that {enxn(o)} e SLLN

for almost all m. Choose any m satisfying (3.38) and (3.39).

Denote Xn(m) by xn(n‘3.1). He have

(3.41) lelxl+...+enxnl2 a (elx1+...+enxn,e1xl+...+enxn)

f 2 E (a Ix.l + 2 c c. x ,x.)

j‘]. J 1,j'11J1J

i<j

n 2 n

= 3X1 lle + Zsz (ekxk,e1x1+...+ck_lxk_l)

so that we will have {enxn} e SLLN if we can show that

2 n

1/n X (ckxk,elx1+...+ek_1xk_1) + O a.s.

k=2

Set Yk = (ekxk,clx1+...+sk_1xk_l) and Ek"’(el’62"'°’ek)’

k-1

Then E(YklEk-l) I le E(‘j€k(xj’xk)lfk-1) = 0 so that

{Yk,[k; k.: 2} is a martingale difference sequence
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He have,

2 2 k‘]. 2 k‘l

E(E(Yklfk_1) . E(Yk) . E(jX1(xj,xk) + 21 Xaleiej(xi,xk)(xj,xk))

i<j

k-l
2 -4 2

= X (x.,x ) . It follows that X k E(E(Y F )) < a so that

i=1 J k k=2 kl'i‘l

X k-4E(YElEk-1) < . a.s. An application of Chow's Lemma with

k=2

2
aj a j and p a 2 shows that (3.42) holds.

Corollary 3.24. Suppose {Xn} is a sequence of independent symmetric

H-valued random variables satisfying (3.39). Then Theorems 2.1 and 3.22

n

show that {Xn} e SLLN iff 1/n2 X lle2 + O a.s. In particular, the 22-

J‘1

valued random variables xn a r en (where {rn} is a sequence of
n

independent symmetric real random variables) satisfy the SLLN iff

n

1/n2 X r? + o a.s.

M J

Remarks 3.25.
 

(a) Theorem 3.22 is an improvement of Theorem 3.5 (Hoffmann-Jorgensen

and Pisier) for B a H. If X EIX.I2/j2 < . then X IXJI2/j2 < a a.s.

jzl J jnl .

n

so that by Kronecker's Lemma, l/n2 X lle2 + O a.s. Thus (3.38) holds.

3-1



46

Also,

a k—l 9 k-l

k“ X E(x.,xk)2§ X x" X

k=2 3-1 J k=2 3:1

2 2
ElXjI Elel

5. X Enxknz/k2 X EIXJIZ/jz < .

k=2 jsl

so that (3.39) holds. See Heinkel [15] for another improvement.

(b) Heinkel [15] has shown that (3.38) is implied by the condition

9 2 2 1/2
X Elle /n + 0 if Ile §_Cj/(LLj) (j 3.1). The latter is clearly

3'1

a more verifiable condition. This remark provides an analog to Lemma

2.1.

(c) One might ask whether (3.38) may be entirely dispensed with, as

Egorov did for B a I! . Such a claim can easily be seen to be false by

2
considering the t -valued sequence Xn a nenen(n 3 1). (3.39)

is obviously satisfied and (3.38) obviously fails, so that the SLLN must

fail by Theorem 2.1.



47

CHAPTER IV
 

THE BOUNDED LAN OF THE ITERATED LOGARITHM

In this chapter we will consider a sequence {Xn};-1 of independent

random variables unth values in an arbitrary Banach Space 8. He will

not place any restrictions on the Banach space or on the moments of the

{Xn} sequence. In particular, we will not consider analogues of

Theorems 2.1 and 3.14. He shall instead study Specific kinds of

sequences, especially Rademacher and independent Gaussian sequences.

One has to distinguish, in the Banach space setting, between the

Bounded and Compact versions of the LIL (the definitions were provided

in the Introduction). The formulation of both versions is due to Kuelbs

[22,24] (the former reference treats the i.i.d. case while the latter

deals with an extension of the classical Kolmogorov LIL (the non i.i.d.

case)). He shall now state Kuelbs' basic bounded LIL in the non-i.i.d.

case.

Theorem 4.1. (Kuelbs [24]). Let {Xn} be a sequence of independent,

zero mean, 8 valued random variables satisfying

(4.1) ‘ Ixnl _<_ I‘na "/(LLET'ZI)1/2 a.s. (n 1 1) where 1'" + 0 and

2 " 2
a 8 X EIX I + .0
n j=1 j

(4.2) There exists L > 0 such that sup P(ISnI > La") 5_1/24, where

n

a 2 2 1/2
an (21:n Llan) .
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. Then there exists a constant A e [0,o) such that

lim sup IS I/a a A a.s.

"-1). n n

Notice that our definition of the BLIL (see Introduction) and that

of Kuelbs are similar if 8 is a Hilbert space. He shall first prove a

BLIL for Rademacher sequence {enxn}, {xn}c: 8 under weaker hypotheses

than (4.1) and (4.2). The method of proof relies on a result of Marcus

and Zinn [32]. They generalize a Theorem and a construction of Volodin

and Nagaev [46]. Let us describe this construction:

Given an increasing sequence {bn}, fix C > 1 and consider the

intervals (0,C], (C,Cz], . . . . From these, discard the ones for which

t t +1

k CK+1] = a and label the rest (C r,C r{bn}fl (c . 1 (r - 1.2....) in

tr+1t

such a way that tr < t In other words, (C r,C ] is the rth
r+1°

interval having a non-empty intersection with the sequence {bn}. Let

t t +1

n = sup(n : bn e (C r,C rr J} and consider the sequence {bn}' It is

clear that tr 3_r. He shall, following Marcus and Zinn, call {"r}

the Volodin-Nagaev (NV) subsequence determined by {bn} and C.

Lemma 4.2. (Marcus and Zinn [32]). Let {Xn} be a sequence of

independent B-valued random variables. Let C > 1 and {bn} + a be

arbitrary. Assume that for some a > O,

(4.3) lim P(ISnl > a b") = 0 .

M
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(4.4) For the NV subsequence {"r} determined by {bn} and C,

X P(IS -S I > Zab ) < ..,

r=1 nr nr-1 nr

Then

(4.5) lim sup 'Sn'lbn-i {(4C+[2/C-1])a} a.s.

n + -

He are now ready to state our BLIL for Rademacher sequences. Our

relaxing of (4.1) in no way contradicts the classical examples of

Marcinkiewicz and Zygmund [30] since we do not wish to insist that we

obtain A - 1.

Theorem 4.3. Consider the Rademacher sequence {enxn}, where {xn}<: B.

Assume that

n

Si 2 El X e x I2 + c as n + 0. Then there exists A e [0.0) such

3=1JJ

that

3 A a.s.

n
2 2 1/2

l;m+sup IJX1 ejij/(an LLsn)

2
Proof: Let b" = (25}: LLsn)1/ 2 (n 3 1). Theorem 2.5 in Hoffmann-

2
Jorgensen [18] shows that {sn}, and hence {bn}’ are increasing

sequences. By Kolmogorov's zero-or-one law, we need to show that

lim sup lSnI/bn < a a.s. Let {"r} be the NV subsequence based on {bn} _

n + a

and e. Let A > 0 be arbitrary (we will choose a specified A later).

By Lemma 3.7,

3 2 1/2
P(ISnI > 1 bn) P('Sn'/sn > x(2LLsn) ) _<_ 3 exp(-zxZLLs§/M2) + 0,

so that (4.3) holds for each x > 0. Also,
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(4.6) P(IS -S I > 21b ).§

nr nr-l nr

P(ISn l > 1 bn ) + P(ISn l > A b ) =

r r r-1 n r-1

P(ISn l/sn > x(2LLs§ )1/2) + P(ISn l/s > 1(2LLs2 )1/2).3

r r r r-1 nr-l nr-1

6 exp(-212 LLsg /M2) .

r-1

t t +1

Recall that "r a sup{n : (Zstz‘LLstz‘f/2 e (e r,e r )}. It is clear

2 2 1/2 tr 2 2
that (Zs LLs ) > e so that log 2 + log 5 + LLLs > 2t . It

n n - n n - r
r r r r

follows that log sfi 3-tr 3'r. (4.6) now yields

r

P(ISn -Sn I > 21bn ).g 6 exp(-212 log(r-1)/M2)

r r-1 ' r

proving that (4.4) holds for A > M/f2’. It follows that

M
lim sup IS l/b i — (4e-r2/e-1) a.s.

n + 0 n n 1/2

He turn next to the Gaussian case. Laws of the Iterated Logarithm

for independent B-valued Gaussian random variables have been proved by

Mangano [29] and Carmona and Kono [6]. He have, for example, the

following.

Theorem 4.4. (Carmona and Kono [6]). Let {Xn} be a sequence of

independent Gaussian random variables with values in a Banach space 8.

1/2
Assume that bn + a and that Sn/bn converges in distribution to a

(Gaussian) random variable X. He then have
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(4.7) P(d(sn/(2bn¢(bn))J/2.o) + 0) = 1

and

(4.8) P(C{Sn/(2bn¢(bn))1/2} e o) e 1

for each “admissible” function a.

.352225? In the above theorem, D is the unit ball of the Reproducing

Kernel Hilbert Space determined by L(X), and C(A) denotes the set of

cluster points of the set A. An admissible function a is defined as

follows: Given a sequence {bn} as in Theorem 4.4 define the

sequence {nK} by

n1 = inf{n Z 1 l bn s o}

smfln31|%3ebn }u32).

x-1
"k

A strictly positive, increasing function p on (0,.) is said to be

admissible if o(bn ) a log K (K 3_2).

K

2
If we take bn s s", the function LLx clearly need not be

admissible in general. Carmona and Kono show, however, that LLx is

2
admissible if Cln §_sn‘§_C2n for some C1, C2 e (O,-).

He shall prove a BLIL for independent B-valued Gaussian sequencs

under less stringent conditions than those of Theorem 4.4. Also, we

will prove the result for the (usually) inadmissible but more natural

function LLx. The following basic inequality is due to Fernique.
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Lemma 4.5. (Fernique [11,12]). Let X be a 8-valued Gaussian random

variable. Then there is a constant N a N(8) such that for each 2 > 0,

2)1/2
(4.9) P(IXl > e(Ele ) 5_3 exp(-e2/N2).

Theorem 4.6. Let {Kn} be a sequence of independent B-valued Gaussian

n

random variables such that s: . El X x.I2 + o as n + -. Then there

i=1

exists A e [0,~) such that

lim sup lSnl/(Zsfi LL53)“2 = A a.s.

n + .

‘Erggf: Exactly the same as that of Theorem 4.3.

The results of Kwapien and Fernique yielded BLIL's for

Rademacher and Gaussian sequences respectively. One may, in the same

way, use the following result of Kuelbs (see DeAcosta [1,2] for related

results) to prove BLIL's for other classes of variables.

Lemma 4.7. (Kuelbs [23]). Let B be a cotype 2 Banach space with

{xn} c B. Let {Yn} be a sequence of i.i.d. real-valued random

variables such that EY1 a O and E(exp(BY§)) < a for some 8 > 0. If

S s X ijj converges a.s. then E(exp BISIZ) < a .

3‘1 ‘

Proposition 4.8. Let {Yn}, {xn} and B be as in Lemma 4.7. Assume
 

2
n n

n . El X Y.ij2 + a and let Sn - X Y x.. Then thereAssume that s

jsl J jal JJ

exists A e [0,») such that

lim sup ISfil/(ZsfiLLs

n + o

2 1/2 _
n) - A a.s.

Proof: Exactly the same as that of Theorems 4.3 and 4.6.
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