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ABSTRACT

STRONG LAWS OF LARGE NUMBERS AND LAWS OF THE ITERATED LOGARITHM IN
BANACH SPACES

By
Anant P. Godbole

The validity of many Limit Theorems of Probability Theory is
intimately connected with the geometry of the underiying Banach Space.
This is especially true of the Strong Law of Large Numbers (SLLN). In
this thesis, Cotype q Banach Spaces are characterized as those in which
a certain condition is necessary for the SLLN to hold. Also, Logtype p
spaces are characterized as those in which another condition {is
sufficient for its validity. The best results are obtained for a
Hilbert Space. The results on the SLLN are formulated in terms of the
validity of a SLLN for real-valued random variables, necessary and
sufficient conditions for which have been obtained by Nagaev. It is
shown that the above results are the best of their kind.

In addition, Laws of the Iterated Logarithm are proved for certain
classes of random variables taking values in an arbitrary separable

Banach Space.
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CHAPTER I
INTRODUCTION AND PRELIMINARIES

We will consider a sequence {xn}‘;=1 of symmetric and independent

(but not necessarily identically distributed) random variables defined
on some probability space (2', F', P') and taking values in a real
separable Banach space B equipped with the norm 1 - 1. Recall that a
vector valued random variable X is said to be symmetric if the
probability distributions of X and -X are the same.

Consider also a sequence {en};-l of independent random variables

each assuming the values +1 and -1 with probability 1/2. Such a

sequence is called a Rademacher sequence. We will assume throughout

that the sequence {en} is defined on another probability space

(?", F*, P") and is independent of the sequence {Xn}. We will often

consider the sequence {enxn};_1 defined on the product space
(2, F, P) = (o' x a*, F' x F*, P' x P").

2 2
Let S, = § X., s  =EISH

and denote the set of integers
=1 0

{2"+1,...,2"+1} by I(n). The function LL(+) is defined by LLx =
max(1,log(log x)). Throughout, C will denote a generic constant whose

value will usually be unspecified.



We need to introduce notation and terminology from Probability

Limit Theory on the one hand and from Banach Space Theory on the other.

Let us first examine the probabilistic side of the coin.

and

(1.1)
and

(1.2)

We shall say that the sequence {Xn} satisfies

(a) The Strong Law of Large Numbers

(b)

(c)

(d)

({X,} € SLLN) if Tim 1S 1/n = 0 a.s.
n+oo

The Weak Law of Large Numbers

({xn} e WLLN) if 1S 1/n > 0 in probability as n » =,

The Bounded Law of the Iterated Logarithm

2 ,,.2,1/2
({X,} € BLIL) 1f Tim sup 1S 1/(2s] LLs))

n+o

< L a.s‘

(By Kolmogorov's zero or one law, {xn} € BLIL iff there

exists a constant A ¢ [0,») such that

2 2,1/2
1im sup ISn|/(2sn LLsn)

n+o

= A a.s.).

The Compact Law of the Iterated Logarithm

({Xn} € CLIL) if there exists a non-random, compact,
symmetric and convex set Dc B such that

p(d(sn/(zsﬁusﬁ)l/2 ,D)+0) =1

P(cls, /(2s2 Ls?)l/2

}:D)sl



Here, d(x,A) = inf Ix-yl and C(An(w)) denotes the set of all cluster
yeA

points of the (random) sequence {An}' The set D in the CLIL is called

the "1imit set".
The above definitions of the BLIL and CLIL differ from the original

2
n

4 2
= Y EIX.1°. We shall

definitions of Kuelbs [22,24] who defines s i
J=1

see that the two formulations are similar if B is a Hilbert space, or
more generally, a type-2 space.
Suppose that {x"} € SLLN. It follows from the triangle inequality

that lim lxnl/n = 0 a.S. This trivial necessary condition for the SLLN
N>

shows that one may, without loss of generality, assume that

X1 = o(n) a.s. while proving strong laws.

Since {Xn} is a sequence of symmetrically distributed random
variables, it is easy to see that {X } and {e X |} are equidistributed.
It follows that {X } € SLLN iff {e X'} € SLLN. An application of
Fubini's theorem shows that {enxn} € SLLN iff {en(-)xn(u)} e SLLN for

almost all w € Q. This elementary device of Kahane [21] will be used

repeatedly in what follows. We shall denote xn(w) (for a fixed w € Q)
by Xn whenever there is no possibility of confusion.

Let us next consider some basic notions from Banach Space Theory.

Let B be an arbitrary real separable Banach space. For p > 1 we will
denote by Lp(B) the equivalence class of B-valued random variables X

with lep = (Elep)I/p < ®, L°(B) will denote the equivalence class of



B-valued random variables, with distance do(x,Y) = E(1X=-Y1/1+1X=-Y1).

Then Lp(B) is a Banach space for p > 1, while L°(B) is a Fréchet space.
A B-valued random variable X is said to be Gaussian if

(fl(X),....fn(X)) has an n-dimensional normal distribution for each
flseeesf € B¥ 0> 1,

The notions of type and cotype are fundamental to Banach space
theory and were formulated by Maurey, Hoffmann-Jorgensen and Pisier in a
series of papers in the early and mid seventies (see, for example [19,
33, 34, 38]. To motivate the definitions, let us begin with the
parallelogram law in Hilbert spaces:

2

lx1+x2l2/2 + le-x2l2/2 = Ix0" + |x2|2(x1,x2 e H)

which can be rephrased probabilistically as

(1.3) Ele1x1+e2x2l2 = lel2 + |x2l2
and thus by induction on n as
n n
(1.4) Er § e.x. 12 = ) ix.12
=1 33 j=1

We now generalize (1.4) by replacing the squares by pth moments
and the equality by an inequality: A Banach space B is said to be of

type p (1 < p < 2) if there is a constant A_ = Ap(B) € (0,») such that

P

n

j=1 in B,

for any finite sequence {xj
n

) P E P
En e.x. 1" <A Ix.0".
j=1 9 J — P j=1 J



Each Banach space is trivially of type 1, and it can be shown using the
Kolmogorov three series theorem (and an alternative definition of the
type of a space) that no non-trivial Banach space can be of type p for
p > 2. A Banach space of type p is automatically of type p' for each
p' < p, so that we may talk of {p|B is of type p} which is an interval
that need not, in general, be closed above. In particular, there exist
spaces of type p' for each p' < p that are not of type p. (See Pisier

[41] for examples of such spaces.) Among the classical Banach spaces,

cco,1], Coe L™ and spaces of measures are of type 1 (and no better) and

the LP spaces (1 < p < =) are of type min(2,p) (and no better).

Hoffmann-Jorgensen and Pisier [19] proved an important result
connecting the two sides of the aforementioned coin. They showed that a
Banach space B is of type p (1 < p < 2) iff each sequence {x"} of

independent, zero mean, p-integrable B-valued random variables

satisfying the condition J EiX j|"/j" < = also satisfied the SLLN.
j=1

Their SLLN improved previous strong laws of Beck [3,4] and Woyczynski

[47], just as the notion of type generalized previous notions of

B-convexity and qa spaces due to Beck [3,4] and Mourier and Woyczynski

[35,47] respectively.
Let us turn next to the definition of cotype. A Banach space B is

said to be of cotype q (2 < q < =) if there exists a constant Aq = Aq(B)

€ (0,») such that for each finite sequence {x‘].}g,'1 in B,

n q n q
X070 > A 1x.1
Eljz1 €17 2 Ag jgl X



A cotype = space is one in which

n
sup 1) e.x.0>A  sup 1Ix.1
ey 33 =T e 4

fejlef-1,0)" I e

for some constant A_.

Each Banach space is trivially of cotype = and it can be shown that
a non-trivial Banach space cannot be of cotype q for q < 2. A space of
cotype q is also of cotype q' for q' > q, but {q|8 is of cotype q} need
not be closed below. Recently, Ledoux has generalized the examples of
Pisier to construct spaces of type 2 - ¢ and cotype 2 + ¢ (for each

e > 0) that are not of type 2 (or cotype 2). The spaces C[0,1], < and

L” are, predictably, of cotype =; the LP spaces are of cotype max(2,p)
(and no better).

While a considerable amount of research has been done relating the
cotype of a space to the validity of a central limit theorem in that
space, such a link has not, to the best of my knowledge, been made for
the Strong Law of Large Numbers. We deal, in Chapter II, with this
question.

Kwapien [26] proved that a Banach space is both of type 2 and of
cotype 2 iff it is isomorphic to a Hilbert space.

We need to define another class of Banach spaces: B is said to be

of gLLn)p'l-txge p or simply of logtype p (1 < p < 2) if there exists

a constant A; = A;(B) such that for each finite sequence {xj}g=1 in B,

n
Er ) €%

P A" (LLmPl T
i j' E_AP(LLn) Z

P
I1X.1
=1 J



These spaces have been studied before: Pisier [41] characterized

logtype-2 spaces (he did not call them that) as those in which each
sequence {Xn}:'1 of i.i.d. random variables with EX = 0 and

Erxil

< » gbeyed the CLIL. He also showed (Lemma 4 in [39]) that a
logtype p space is of type r for each r < p.

We shall study the relationship between the geometry of the under-
lying Banach space (as manifested in its cotype, type or logtype) and
the validity of a SLLN for independent symmetric random variables taking
values in that space. We study necessary conditions for the SLLN in
Chapter II and sufficient conditions in Chapter III (Chapter IV deals
with the BLIL for certain classes of B-valued random variables; no link
is made with the geometry of B). Most of the results on the SLLN are
expressed in terms of the validity of a real valued SLLN, and would not
be of much use unless one could find necessary and sufficient criteria
for the validity of the latter. Such criteria were obtained by Nagaev
[36] and later generalized by him and Volodin [37,46] to cover the case

of an arbitrary stabilizing sequence {bn} (bn + »), For completeness,

let us state the basic result of Nagaev.
Theorem 1.1 (Nagaev [36])

Let {Xn} be a sequence of independent, symmetric real valued random

variables. Then {X } € SLLN iff for each ¢ > 0,

(1.5) nzlp(|x"' >en) <=



and

(1.6) El exp(-ehn(e)2"+1) <o (¢ > 0).
n=

Here f,(h,e) = E[exp(hxj)]1(|xj' <je)andh () is the

solution of the differential equation

- d = oNtl
#n(h9e) JeZI(n)[Hh- fj(h’e)]/fj(hse) €2
provided

sup ¥, (h,e) > g2l

h 2

Otherwise, hn(e) = o, hn(e) is well defined by the monotonicity
of wn(h.e) in h.

The conditions of Theorem 1.1 are, to say the least, complicated.
This is only to be expected. The problem of finding necessary and
sufficient conditions for the SLLN is a long-standing one (see Chung [8]
for a discussion of the problems involved). Moreover, Prokhorov [42]
expressed the belief that criteria in terms of the moments of the
individual summands were probably impossible. Nagaev proved that this

was indeed the case by exhibiting two sequences {X } and {Y } having
the same moments up toany given order s < = but such that {xn} € SLLN
and {Y } ¢ SLLN.

While (1.6) is complicated, it can certainly be verified.
Moreover, we shall see that the real-valued SLLN's that do arise can
often be verified or disproved by other relatively simple means (such as
by direct calculation). The utility of our results should not, there-
fore, be gauged by the fact that they might be hard to verify, but
rather by the fact that they often yield a conclusion when all other

SLLN's are inconclusive.



It should be pointed out that we will need to verify the
generalizations of Theorem 1.1 (Nagaev and Volodin) rather than Theorem
1.1 itself. Also, Nagaev's conditions may be reexpressed more simply in
terms of a standard minimization in Markov's inequality. See [36] for
details.

In Chapter II, we consider necessary conditions for {Xn} to satisfy

the SLLN. We show (Theorem 2.1) that cotype q spaces (2 < q < =) are
) .
precisely those in which the condition 1/nq ) lleq + 0 a.s. is a
J=1
necessary condition for the SLLN to hold, for each independent symmetric

sequence {Xn}. We also show that the above necessary condition can be
expressed in terms of the individual moments if 1X 1 < Cn a.s. (n > 1).

Examples are given to show that the necessary condition is the best of
its kind.

Sufficient conditions for the validity of a B-valued SLLN have been
studied by Beck [3,4], Beck, Giesy and Warren [5], Woyczynski [47],
Hoffmann-Jorgensen and Pisier [19], Kuelbs and Zinn [25] and Heinkel
[15,16,17]. We first obtain an exponential inequality for Rademacher
sequences in B and use it to prove a SLLN for random variables in type p
spaces (1 < p < 2). This result is improved in Theorem 3.14, which
characterizes logtype p spaces as those in which each independent
symmetric sequence {xn} satisfying (LLn)p"l/npj)':'1 IXle + 0 a.s. also
satisfies the SLLN. Examples are given to show that the above result
is best of its kind and that it may be used in situations where all

other relevant SLLN's are inconclusive. Furthermore, the sufficient
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conditions of Theorem 3.14 may be expressed in terms of the individual

moments if 1X 1 < Cn/LLn a.s. (n > 1).

For B = H, a Hilbert space, the necessary and sufficient conditions

n
almost coincide: {X } e SLLN if LLn/n? ) lle2 + 0 a.s. and only if
J=1
2 ! 2
1/n° ) Ile + 0 a.s. For B = H we also prove (Theorem 3.22) an
j=1

extension of the Hoffmann-Jorgensen and Pisier Theorem.
We do not consider non-symmetric random variables, but they may

easily be studied using an elementary result of Kuelbs and Zinn [25]

which states that {xn} € SLLN iff {X:} e SLLN and {X } € WLLN. Here,
X: is the symmetrized version of Xn and is defined by

S = - X!
Xwa) = X (@) - X)
where Xa is an independent copy of xn(n.1 1). A symmetrized version

must always exist, at least on the probability space (2 x @, F x F,
P x P).

In Chapter IV we treat the Bounded law of the Iterated Logarithm.
A BLIL is proved for B-valued Rademacher sequences (Theorem 4.3). This
is related to a theorem of Kuelbs [24]. Similarly, a BLIL is proved for
independent Gaussian sequences using an inequality of Fernique [11,12].

This result is related to a theorem of Carmona and Kono [6].
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CHAPTER 11
NECESSARY CONDITIONS FOR THE SLLN

The following is the main result of Chapter II.
Theorem 2.1. The following are equivalent:
(2.1) B is of cotype q (2 < q < =)
(2.2) Each sequence {Xn} of independent symmetric B-valued random

n
variables satisfying the SLLN also satisfies ) lleq/nq + 0 a.s.
j=1

Proof: We will first show that (2.1) implies (2.2). Assume that (2.1)

holds and let {Xn} be any independent symmetric sequence satisfying the

SLLN. It follows that {e x } € SLLN for almost all w € 2. We need to

n
prove that § x,1/n% » 0.
=1

Kahane [21] proved that a Rademacher series |} €% that converges
j=1

in probability also satisfies E1 | ejlep < » for each p > 0. Motivated
J=1

by this result, we define the Frechet space (E""E) and the Banach

space (F,I-IF) by

(]
E={x= (X{,Xy500..) € B~ : ] €.x, converges in probability}
172 j=1 74

dE(xoy) = E(ljzl ej(xj.‘yj)'/[l + |j§1 ej(xj-yj)il)
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F = {xs(xl,xz....) e B : EIJZ1 eJleq < =}

= (61} q)1/q
Ixip (Elj§1 € 4%t ) I

Kahane's theorem implies that E c F. The injection E + F is clearly a

linear operator with closed graph (since the probability and L9 1imits
of a sequence must coincide) and is therefore continuous (in particular

at the origin)(see Theorem 4, page 57 of Dunford and Schwartz [50]). It

follows that for each ¢ > 0, there is a § > 0 such that (Ei § eJ j

j=1

<e whenever E(1 Z eJx /(141 2 e;x;1)) < 8. Since {e x | satisfies

3%

X |)/(1+1/n| I exi1) +0in

the WLLN by hypothesis, we have (1/n1 Z € %5
Jj=1

j=1 373

probability. The bounded convergence theorem now proves that

EC(1/m 2 €.x:1)/(1+1/n1 Z €.X. l)] < &(n > N) so that
jep 93 jep 97

1/n(E1 2 eJx 'q)llq <e(n > N). By the cotype q inequality,
JS

n
) |leq/nq + 0, as asserted.
j=1

Conversely, suppose that {xn} c B, and define the sequence {Xn} by

n
Xn =nex (n > 1). By assumption, qux 19n9 5 0 if
2 351 j

n

Lie

Jx ./n + 0 a.s. and thus (by Kronecker's Lemma, which is valid in
Jj=1
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any Banach space) if the series | ejxj converges almost surely.
j=1

Kahane [21] and Ito and Nisio [20] have shown that the a.s. convergence

X e 1s a consequence of its convergence in Lq(B) With this in
g9

mind, we define the Banach spaces (E,I-IE) and F,I-IF) by

E = {x-(xl.xz,...) e B” : I ej j converges in L9(8)}
Ixig = (E8 2 €5%y 19y1/q
jo1 3

n
F = {x-(xlxz,...) e B )) quleq/nq + 0}

J=1
4 1/q
Ixic = sup( Jqlleq/nq) .
n j=1
The above discussion shows that E c F, Assume that lx"-xlE + 0 and
Ix"-ylF + 0. It can be easily shown that lxg-le + 0 and

lxg-yjl » 0, for any j. It follows that x; = y;, j = 1,2,... so that

x =y, The injection E + F thus has a closed graph and is, by the
closed graph theorem, continuous. Hence there exists a constant C < =
such that

sup( | F9x 1 9mHM ¢ (e z s 19y /4
n o j=l
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~ In other words (keeping in mind that C denotes a generic constant), for

n
any n and for {xj}jsl in B,

n n
(2.3) ) quleq/nq.5 CEl} € {%; 19,
j=1 Jj=1

Fix N> 1 and define, as in Hoffmann-Jogensen and Pisier [19]

, = 1<j<N
Y5 0 iz
= xj-n N<j<N+n,
We have by (2.3),
N+n N+n
) quy 19 <cc(vn)dEr § €5Y; 149
j=1 J=1
so that
{ (M5)%1x.19 < c(Mn) e 2 e.x 19
j=1 J j=1 373
and thus

2 (N+j)qlx 19/ (mn)3 < ¢ En 2 €
Jal Jal

i3 A (n N> 1)

Choosing N = n yields

(1/72)9 2 ixa9<cE 2 € 4X; 19,
j=1 3 j 39

proving that B is of cotype q. This completes the proof.
The necessary condition in Theorem 2.1 can be verified using the
criteria of Volodin and Nagaev [37,46] but is far less appealing than an

n
individual moment condition such as Elleq/nq + 0. When is such a
j=1
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condition necessary for the SLLN to hold? Corollary 2.3 below provides
an answer to this question. We will need the following

Lemma 2.2. Let {xn} be a sequence of independent symmetric random
variables taking values in an arbitrary separable Banach space B.
Assume that 1X,1 < j (J > 1) and that {X } e WLLN. Then Ers /md » 0
for each q > 1.
Proof: The proof is an obvious modification of Lemma 2.3 in Kuelbs and
Zinn [25]. For B = R and q = 2, a proof may be found in Stout [43]
(Theorem 3.4.2) or in Loeve [28] (Corollary 1, page 253).

Fix 0 <e <1and > 1. Since {X } € WLLN, there exists an n,

such that sup P(ISnl >ne) <1/8 . 39, An application of Hoffmann-
n>n
=0

Jorgensen's inequality (Theorem 3.1 in [18]) yields, for any A > 0

A A/3
[ qt%te(es 1 > nt)dt = q - 39 [ t9lp(as 1 > nt)at
0 0

/3

A/3 A
<q- 3908 e IPas p > nt)at + [ tIR(N > nt)dt]
0 0

A/3

A
<q- 3ae + 172+ 3 3 ps > nt)at + [ t3Ip(N > nt)at
0

0
A/3
<8 3%e+2g39 ) tIIp(N_ > nt)at
0
for n > n,, where N. = max 1X.1. Since N < n and A is arbitrary, we
=0 n 1<j<n n—

have

1
ElSn/nlq <8qF¥e+2q3y P(N, > nt)dt .
0 .
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For any t > 0, however,

P(N, > nt) < P( max IS0 > nt/2) < 2P(aS.1 > nt/2) + 0
1<K<n

(By Lévy's inequality). The dominated convergence theorem now implies
the result.

Corollary 2.3. Let {xn} be a sequence of independent symmetric random

variables with values in a cotype q Banach space (2 < q < =). Assume
that

(2.4) lle <J a.s. (§21)
(2.5) {X.} € WLLN

Then

n .
) l-:llec‘/nq + 0.
J=1

Proof: Immediate from Lemma 2.2 and the (alternative) definition of a

cotype q space. Notice how the above conclusion was obtained merely by

altering the blanket assumption X1 = o(n) a.s. to IX0 < na.s.

(n>1).
Remark 2.4. The proofs of Theorem 2.1 and Corollary 2.3 show that if

{xn} is any sequence of indepdendent symmetric B-valued random variables

(B is arbitrary) satisfying the SLLN, then

n
2, 2
Eeljg1 ejle /n©+ 0

for almost all {xj}. If 1IX 1 < na.s. (n > 1) then Elsn/nl2 + 0 as

well.
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Lemma 2.5. (Due to Prokhorov; for a proof, see Stout [43], page 159).

Let {Xn} be a sequence of independent symmetric B-valued random

variables. Then {X } € SLLN iff (S )/2" + 0 a,s.
2

n+1'§n
Lemma 2.6. (Prokhorov [42]). Let {Xn} be a sequence of independent

real-valued random variables satisfying for some C < =,

(2.6) ,Xn' < Cn/LLn  a.s. (n > 1)

(2.7) E(Xn) =0 (n>1).

Then {Xn} e SLLN iff ) exp(-e/A(n)) < = for each ¢ > 0, where

n=]
A(n) = § Ex§/4“.
jel(n)

Examples 2.7 and 2.8 below show that the necessary conditions in Theorem
2.1 and Corollary 2.3 are the best possible of their kind and that they

are not, in general, sufficient conditions.

Example 2.7. Let L be any sequence of real numbers increasing to + =,
Then there exists a sequence {X '} of independent symmetric real-valued

random variables satisfying the SLLN but such that

n
o./n% T [X.]9+ = a.s.
ot e

and

n
¢n/ﬂq j§1 E|Xj|q > e
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To see this, let
1/2q
X =¢ 2"/(¢ )
2 2" 2"

X, = 0 (K # 2" for any n)

K
Then
|s

1/2q
-5 |/2" = /(¢ ) +0
2n+1 an 2n

for each w € 2, so that {Xn} € SLLN by Lemma 2.5. On the other hand,
o /2" 1 ||V b@" Y e
2 jel(n)

Such an example exists in any Banach space B, since R < B,
Example 2.8. The condition

n
) lleq/nq + 0 a.s.
J=1
is not sufficient condition for the SLLN in any Banach space. In fact,

for each sequence o, * o(LLn) there exists a sequence of independent
symmetric real random variables satisfying

(¢/n)z x§+oas.

Jl

but failing the SLLN. To see this, let X_ = e (n/LLn)Y/? (n > 1).

(2.6) and (2.7) are clearly satisfied, but A(n) > C/LL2" > C/log n.

Hence

1 exp(-e/A(n)) = =
n=1
if € < C, so that the SLLN fails by Lemma 2.6. On the other hand,

(0,/n%) 2 x§ = (¢,/n?) § /Ly < c 8, /LLN > 0 a.s.
j=1 J=1
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CHAPTER III
SUFFICIENT CONDITIONS FOR THE SLLN

The study of SLLN's 16 separable Banach spaces was initiated by
Mourier [35], who proved that an i.i.d. sequence {Xn} satisfies the SLLN

iff Elxll < », Subsequent work (in the non-identically distributed

case) was done by Beck [3,4], Beck, Giesy and Warren [5], Woyczinski
[47], Hoffmann-Jorgensen and Pisier [19], Kuelbs and Zinn [25] and
Heinkel [15,16,17]. As with all limit theorems in Banach spaces, these
results fall into two natural categories, with restrictions being placed

either on the probability distributions of the sequence {xn} or on the

geometry of the underlying Banach space. We will start by considering
the first class of results. The results of Kuelbs and Zinn (Theorems
3.2 and 3.3 below) fall into this category, but may easily be restated
as statements about the geometry of B. Theorem 3.1 below is due to
Beck, Giesy and Warren. It is a result that (a) is valid for each
Banach space and (b) is in terms of the moments of the individual
summands. We will see subsequently how difficult it is to prove a
non-trivial result at this level of generality without making additional
assumptions (Kuelbs and Zinn hypothesize, for example, that the WLLN

is satisfied).

Theorem 3.1. (Beck, Giesy and Warren [5]). Let {X } be a sequence of
independent B-valued random variables with EX =0 (n > 1) and

satisfying either
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(3.1) 2 EIX 1 /J <= and lim 2 (En X, |2)1/2/n =0
i=1 e jal 9
or
n
(3.2) lim | ess sup IX i/n =0
N j=]

Then {Xn} € SLLN. Furthermore, (3.1) and (3.2) are the best possible in

the sense that weakening either yields a result that is no longer true
for all Banach spaces.
Theorem 3.1 follows as a corollary of Theorem 3.3 below (Kuelbs and
Zinn). In fact, both (3.1) and (3.2) imply that
n
jgl lle/n + 0 a.s.
which is a completely trivial sufficient condition for the SLLN. (3.2)
obviously implies that
n
Y 1X.1/n + 0 a.s.
j=1 !
Assume that (3.1) holds. We need to prove that {i1X I} e SLLN

It suffices, therefore, to show that {1X 15} ¢ SLLN and {1X 1} e WLLN.
Note that

2 E(1X,1 5 <2 X ENX,1 2152

j=1 j=1

so that {lxnns} € SLLN by Kolmogorov's real-line SLLN. Also

P T 1,1 > ne) < 1/ne 7 EX;1 < 1/ne ? (Ex 132, o,
j=1 j=1 j=1

proving that {1X 1} e WLLN.
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Theorem 3.2. (Kuelbs and Zinn [25]). Let {Xn} be a sequence of

independent B-valued random variables satisfying

(3.3) xn/n + 0 a.s.

(3.4) for some p e [1,2] and for some r € (0,»),
) A(n,p)" < = , where A(n,p) = 1/2"P % Erx.iP.
n=1 Jjel(n J
(3.5) {X_} € WLLN

Then {X } e SLLN.

Kuelbs' and Zinn's next result extends Lemma 2.6 (the sufficient
part) to the B-valued case:
Theorem 3.3. (Kuelbs and Zinn [25]). Let {Xn} be a sequence of

independent B-valued random variables such that (3.5) holds and
(3.6) lle < Cj/LLj a.s. for some C <=, (j > 1).

(3.7)

! exp(-e/A(n)) < = for all € > 0, where A(n) = A(n,2) = 1/4n ) Elx.l2

n=1 jel(n) J
Then {X } e SLLN.

Remarks 3.4. The WLLN hypothesis of Theorem 3.3 may be difficult to
verify unless one assumes, for example, that B is a type-p space in
which case it may be replaced by

n
(3.8) /ol 3 EixaP > 0 (n =)

j=1  J
which is a condition in terms of the individual moments. Notice,
however, how stringent (3.8) is for p = 1. This just reaffirms the fact

that norm and/or moment assumptions will not yield useful SLLN's if B is
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of type 1 (and no better). (If B = 2', for example, and one defines

X, =aee, where {a.} < R and {e)} is the canonical basis of &',

n
then it is easy to see that {X } e SLLN iff } lle/n + 0 a.s.) Notice
J=1

also that if B is a type-2 space, then (3.5) is automatically implied by
(3.4) or (3;7) and need not be hypothesized.
If B is of type p, 1 < p < 2, however, then (3.5) is crucial and

may not be omitted even if {X } is a symmetric sequence. In other

words, the WLLN hypothesis of Theorems 3.2 and 3.3 is not merely a

*desymmetrization" assumption. To see this, consider, for p ¢ [1,2),

the P valued sequence {x,} defined by

Kn(sk) = €(0) (0/(LLm)*) Y 21y 1 (K) (n22)

where a > 1 is arbitrary. We have, for any w, lle = (j/(LL,j)"‘)l/2

so that (3.6) is satisfied. Also,
2, 7 2 2, 8 @ a-1
(LLn/n®) T E1X® = (LLn/n°) § j/(LL3)™ < C/(LLn) + 0
=1 J j=1
so that (log n) A (n) » 0. It follows that (3.7) holds. Notice,

however, that {Xn} ¢ SLLN, since for any w,

n n
11oxg/m n‘lcjz1 G/ (LLi)®)P 2P 5 ca~l[nP/ 2 (Lin)oP/ 23 1/P o,
J= = . .

A similar example may be constructed to show that (3.5) is a crucial
hypothesis in Theorem 3.2 as well.

We next consider the second class of results on the SLLN; ones in
which conditions are imposed on the Banach space B. The basic result in

this direction is due to Hoffmann-Jorgensen and Pisier who obtain an
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analog of the classical Kolmogorov-Chung SLLN (Theorem 3.5). Heinkel
has obtained an improvement of Theorem 3.3 for Hilbert-space valued
random variables (Theorem 3.6 below).

Theorem 3.5. (Hoffmann-Jorgensen and Pisier [19]). The following are
equivalent

(3.9) B is of type p (1 < p < 2).

(3.10) Each sequence {Xn} of independent zero-mean B valued random

variables with § Ellep/jp < » satisfies the SLLN.
j=1

Theorem 3.6. (Heinkel [16]). Suppose {xn} is a sequence of independent

centered random variables with values in a 2-uniformly smooth Banach

space B (see [16] for a definition). Assume that (3.6) holds and that

(3.11) J exp(-e/T(n)) < = for each ¢ > 0,
n=]
where T'(n) = 1/4" 7§ sup E(f,x.)2 .
jel(n) 1fi<l,feBw J
2 ¢ 2
(3.12) 1/n {1 E1x ;1% > 0.

Then {X } € SLLN.

2-va’lued random variables

Heinkel also constructs a sequence of £
satisfying the hypotheses of Theorem 3.6 but not of Theorem 3.3, proving
that (3.7) is not a necessary condition for the SLLN to hold, even in a
cotype 2 space and even if (3.6) holds. Zinn [49] has given another

example.
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There are three major differences between the present investigation
and the work of the above authors. Most of the results are stated in

terms of the validity of a real-valued SLLN. They are shown to be the

best possible of their kind. Finally, no WLLN hypothesis is made in the

symmetric case. Convergence in probability need only be hypothesized,
therefore, to be able to conclude that {X } obeys the SLLN if {x:}

does. Also, the results resemble Theorems 3.2 and 3.5 in that no

specific hypothesis is made on the magnitudes of the norms of the Xn's

and because one obtains characterizations of certain classes of Banach
spaces through the validity of a SLLN. There is also a strong
similarity with Theorems 3.3 and 3.6 (See Remark 3.12).

The first group of results depend on an exponential inequality
(Lemma 3.7). They are not the best possible (and are, in fact, improved
later in this chapter) but are included because the nature of their
proofs is quite revealing (see Remark 3.18) and also because Lemma 3.7
plays an important role in Chapter IV on the (bounded) law of the
iterated logarithm.

Lemma 3.7. Let B be a separable Banach space. Consider the Rademacher

n
2 2
Xq» Where {x } cB. Set S = ] e.x . ands; =EIS 1%

series | € X
n=1 n Jj=1 373

Then there exists a constant M = M(B) such that for each ¢ > 0,

(3.13) P(1S1/s, > €) < 3 exp(-e?/M?),
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Proof: We shall use a basic result of Kwapién [27] which states that

for any sequence {x } in an arbitrary Banach space B, the almost sure

convergence of J ejxj implies that E[exp al | ejlezj < » for each
=] =]

a > 0. Let the Banach space (E,l-lE) and the Orlicz space (F,lolF) be

defined by

E={x= (xl,xz,...) e B” : f € converges in LZ(B)}

i1 i*

Ixig = (E1 ) ejlez)l/z

j=1

Fa{x= (XysXoseae) € B” : E exp(at e.x.lz) < = for each a > 0}
1°72 ja1 973

Ixtg = inf{t > 0 : E exp(1 ] ejlezltz)_g e}
j=1

The fact that both E and F are Banach spaces is well known and may be

verified by a tedious but routine calculation. Kwapien's theorem

asserts that E c F. Suppose that lx"-xlE + 0 and lx"-ylF + 0. It then

follows tha; E|j§1 ej(xg-xj)l2 + 0 and Eljzlej(xg-yj)lz + 0 so that

x = y. The closed graph theorem now implies that there is a constant
M < = such that

(3.14) inf{t > 0 : E exp(1512/t?) < e}< M(Exs1?)1/2

where S = }

€.X;. In other words, for each n,
j=1 JJ

E exp(lSlz/H2E|S|2+n’1) < e. An application of Fatou's lemma yields
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(3.15) E exp(lSlz/M2E|S|2) <e

so that for each n,
2,,2.2. 2,2
P(lSnl/anF) = P(ISnl /M Sp2€ /M)
< E(exp ISnIZ/Mzsﬁ) exp(-ee/Mz)

<3 exp(-e2/M?),
by (3.15). This proves (3.13).
Remark 3.8. Kahane [21] showed that E exp(alSi) < = for each a Lag

whenever S is an a.s. convergent series; Kwapien's theorem is obtained
by using Kahane's result together with an additional argument. Marcus
and Pisier [31] generalize Kwapien's result and also show how it may be
proved directly. The Orlicz norm of Lemma 3.7 was first used by Pisier
[40]. It must be pointed out that Lemma 3.7 is implicit in the work of
the above authors and has merely been retrieved from Kwapien's theorem.
The following result of Kahane is a consequence of Kwapien's result

and generalizes the classical Khinchin inequalities. It shows that the

LP norms (1 < p < =) are all equivalent on the linear span generated (in
B) by the Rademacher random variables. It may also be 1ntefpreted as a
converse Holder inequality on this subspace.

Lenma 3.9. (Kahane's inequalities [21]). For each p and q satisfying

1<p<q<=, there exists a universal constant Kp q such that for each
’

Banach space B and for each finite sequence {xj};-l in B,

n
(En E ejleq)l/q < Ky qlE ) Py1/e,

€.X
j=1 j=1 3%
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The next lemma is a fundamental result of Hoffmann-Jorgensen. It

provides conditions under which the almost sure and Lp-convergence of a

series of independent B-valued random variables are equivalent:
Lemma 3.10. (Hoffmann-Jorgensen [18]). Let {xn};,l be a sequence of
independent B-valued random variables so that Sn converges a.s. to S,

and let 0 < p < =, Then the following are equivalent.

(3.16) s, + S in LP(B).

(3.17) s e LP(B).

(3.18) M= supts,l e LP(R).

(3.19) N = s:plxnl e LP(R).

(3.20) {S"}:-Is a bounded subset of LP(B) .

The next proposition gives 3 sufficient conditions for the SLLN.
The first two are in terms of the a.s. convergence of a series of real
random variables, while the last is in terms of the validity of a
real-valued SLLN.

Proposition 3.11. Let {X } be a sequence of independent symmetric

2
nw

2

B-valued random variables. Let t n

and Thm (or simply t- and Tn’ when

there is no possibility of confusion) denote the quantities

2
E €. X.(w)1® and €.X.(w) , respectively. Then
€ je%(n) JJ je% n) 33
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(a) {X } e SLLN if

(3.21) ) exp(-e4"/t§m) <= a,s., for each ¢ > 0.
n=]1

If, in addition B is of type p (1 < p < 2) then
(b) {X } e SLLN if

(3.22) E exp(-e4"/[ ) lxj(m)n"]?-/p <=»a,s. for eache >0
n=1

jeI(n)
and
(c) {X} e SLLN if
(3.23) [(LLn)P/Z/n"]f 1P+ 0 aus.

j=1
Proof: We will show that {enxn(m)} e SLLN for each w satisfying (3.21).

By Lemma 2.5 and the Borel Cantelli Lemma it suffices to show that
I POT > e) < -
n=]1

for each ¢ > 0. Fix € > 0 and apply Lemma 3.7 to get
POIT 152%) = PUIT 1/t 52"/t ) < 3 exp(-4"eZ/t2M%). By (3.21) the last

series is summable for each € > 0. This proves Part (a).
Part (b) follows immediately from (a), Kahane's inequality and the

definition of type, since

t2 = (n?< xg SE1 ] ejxj(w)lp)zlp

X
RN TS I 2" jel(n)

2,2 2
<K A {,p():lxj(m)lp) /P,
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To prove (c), notice that by (3.23)

f exp(-€4"/[ 1X,(w)1P1%P =
n=1 J

J'ezl(n)

T exp(-e{2P/(LL")P/2 T ax, ()iP}2/PLL2™)
n=l jel(n)

In other words 3.23 implies 3.22. This completes the proof of (c).
Remarks 3.12. The sufficient condition in part (c) above may be

verified by the criteria of Volodin and Nagaev [37,46]. One may attempt
similarly to check the conditions in (a) and (b) using Kolmogorov's
three-series theorem, but it is more convenient to use Hoffman-
Jorgensen's result (Lemma 3.10). Assume that (3.21) holds. Since
(3.19) is obviously satisfied we must have (3.17). In other words,

(3.24) El E exp(-e4n/t§m) <o (e >0).
n=

Conversely, if (3.24) holds, the series ) exp(-e4p/t§m) converges in
n=1

L' for each € > 0 (since it is a positive term series) and thus almost
surely, for each € > 0 (by Lévy's theorem). (3.21) and (3.24) are thus
equivalent. Similarly, (3.22) is equivalent to
(3.25) § E exp[-ed"/( § nxjup)Z/P] <o (> 0)

n=1 jel(n)
so that (3.21) and (3.22) hold iff just one of the series in
Kolmogorov's three-series criterion converges. Unfortunately, (3.24)

and (3.25) cannot be thought of as being computationally easy
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substitutes for (3.21) and (3.22). It is not clear, therefore, how (a)
and (b) of Proposition 3.11 may be verified, even though they are
formulated in terms of the almost sure convergence of a series of
independent real random variables. In Proposition 3.13 below, we show
when the sufficient conditions of (b) and (c) are equivalent.

The rates in (c) are not the best possible (this is painfully
obvious for p = 1) unless p = 2. We shall obtain the best rates in
Theorem 3.14. Assume therefore that p = 2. Part (b) of Proposition
3.11 states that a Rademacher sequence {snxn} satisfies the SLLN if

(3.26) E exp(-c4n/ § lx.lz) <w (¢ >0,
n=1 jei(n) 9

which is exactly what the sufficient conditions of Kuelbs and Zinn
(Theorem 3.3) and Heinkel (Theorem 3.6) reduce to for such a sequence.
Suppose one were trying to prove the SLLN for an arbitrary sequence
{X;} of independent symmetric random variables with values in a type 2

space, using the criteria of Kuelbs and Zinn or Heinkel. Suppose also

that one chose to prove the SLLN for {enxn(u)} (for almost all w)
instead of for {xn}. (3.7) and (3.11) would then coincide with (3.22),

the sufficient condition of Proposition 3.11(b). This is not to suggest
that these 3 conditions are equivalent; they are not. The above remark

provides a clue, however, as to how they might be related. Notice also

thét (3;22) implies the SLLN even if the boundedness hypothesis

(lle < Cj/LLj) of Kuelbs, Zinn and Heinkel is not satisfied.



Proposition 3.13. Let A(n,p) = ) lx.lp/Znp form a decreasing
jel(n)

sequence of real numbers, and suppose that | exp(-e/[A(n,p)Jz/p) <=
n=1

for each € > 0. Then (log n)p/2 A(n,p) » 0 (thus (b) and (c) of
Proposition 3.11 are equivalent if A(n,p) forms a decreasing sequence

for almost all w € @, a condition that most sequences {X } would

satisfy).

Proof: Let{an} be any decreasing sequence of real numbers. We will

]
prove that a_ = o(1/log n) if )) exp(-e/ay) < = for each e > 0.
n=1

The proof is along the lines of Proposition 6.7 in Dudley [9]. Let

a, = anllog n. We will show that a, * 0. Suppose on the contrary

that lim sup a, = 26 > 0, so that a, > § for arbitrarily large values

n+o

of n. Choose such an n and suppose that [n1/2] <£Jj<n. Then

a, = ajlog J 3_anlog j= (an/]og n)log j 3_an/2 .

h]
Thus
n n -€/a. n -Ze/an
) exp(-e/aj) = I3 > )) n
j=[nt/2111 j=[nt/%101 j=[nt%101
n -2¢/§
> I n = (n-[nY/27)/n%/8
j=[n}2341

It is clear that exp(-e/an) cannot converge for each € > 0. This
n=1

proves the result.
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The following example shows that Proposition 3.13 is false in

general. Define a symmetric independent real-valued sequence {xn} by

K
X = e, 22 x1/2

2

K (K> 1)

2+1

K

Xj = 0(j # 22 +1 for any K).

Then for any w € Q and for each K,
K 22K+1
Mﬁm)-uf'pzk | |P 2 e/
j=2t

so that 1im sup (log n)P/2 A(n,p) is strictly positive. Note also that

n+e

(A(ZK,p))z/p < C/K. Suppose now that n # ZK for any K. Then 2‘+1_§ n

5_2£+1-1 for some £, so that 2n+1 > 22’""1 and 2"+1 < 22‘+1+1. It
follows that A(n,p) = 0 and thus
I exp(-e/TaMp)IZP) = | expl-e/IA25,0)12/P) < T exp(-ek/C) <=
n=1 K=1 K=1
for each € > 0.

There are several directions in which one may hope to improve
Proposition 3.11(c). One possibility would be to widen the domain of
its validity and another would be to improve the rate in (3.23) (which
is intolerably bad for p = 1). Finally one may want to obtain a
characterization of certain Banach spaces through the validity of a
SLLN. Some of this is accomplished in the following theorem, which is

the main result of this chapter.
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Theorem 3.14. Let {X"} be a sequence of independent symmetric random

variables taking values in a real separable Banach space B. Assume that
p-1,p ¢ p
(3.27) For some p € [1,2], (LLn)" " %/n" ¥ lle + 0 a.s.
j=1

(3.28) {e X (@)} € WLLN for almost all w.
Then {X } € SLLN.

In particular, the following are equivalent
(3.29) B is of log type-p.

(3.30) Each sequence {xn} of independent symmetric B valued random

variables satisfying (3.27) also satisfies the SLLN.

Proof: The proof makes use of Theorem 3.3 (Kuelbs and Zinn) and a

truncation argument. Let Xj = Yj + Zj, where Yj = XJI(Ilefj/LLj) and

ZJ = )(J I(lle > j/LLj). Note that {Yn} and {Zn} are both independent

symmetric sequences. By Lemma 2.5, {Zn} e SLLN iff %( )zj/zn + 0 a.s.
Jel(n

We have

i 2./ < y2" P-lax > j/LLg)ix.
jeyﬂn) $ooo- Jﬁ(n) J J

< o™l 7 axaP 0 aus.,
jel(n)

by (3.27). Let us next consider the sequence {Yn}. It is clear that
{Y,} e SLLN iff {e x I(1x 1 < n/LLn)} e SLLN for almost all w. Choose

an o for which (3.27) and (3.28) hold. We need to verify that (3.5)
through (3.7) hold for the sequence {enxnl(lxnl < n/LLn)}. (3.6) is

obviously satisfied. Let ¥, denote xnI(Ixnl_i n/LLn). We have
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L2"a" y  aya? s 22"y ayaPiy a?Pa"(2-P)
jel(n) jel(n) 73

< c22™ . 1y ®P 2 1y.aP=
jel(n) 9

c(LL2MP12" Y ayaP < cu2"P 2" 3 axaP s o,
jel(n) 9 jel(n)

by (3.27). Hence

E exp(-e4™)/( ) ijl ) <C, X ¢ <
n=1 jel(n) €n=l

so that (3.7) holds. (3.27) implies that 1x 1 < n/(LLn)P"1/P if n is

large enough. (3.28) asserts that {enxn} € WLLN. We may thus apply

Lemma 2.2 to conclude that 1/n E 1 | eJle + 0. Kahane's contraction
j=1

principle [21] or Hoffmann-Jorgensen's comparison principle (Lemma 4.1
n
in [18]) now show that 1/n EIJE-1 ejyjl + 0 so that (3.5) holds. Another
proof of the last fact may be given by using Lévy's inequality. This
proves the first part of the theorem.
If B is of logtype-p then

P(1 Z €gx40 > ne) < (ne) ~PEy Z CI
j=1 j=1 373

1P < c(ne)~P(LLn)P! z TRLEN
j=1 J

for each w satisfying (3.27), so that (3.28) holds. It follows that

(3.29) implies (3.30). We turn next to the converse proposition. This

is proved by using yet another closed graph argument. Consider the

Rademacher sequence {e x }, {x } c B. By hypothesis, {e x } e SLLN if

n
(LLn)p'I/np ) .lep + 0. Kronecker's lemma and an argument similar to
J=1
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the one in Theorem 2.1 now show that

UnPEr T exaP » 0 df T (LLg)P ) ax, RL LT
ja1 3 i=1

Define the spaces (E,I-IE) and (F,l-lF) by

E={xeB”: 2 (LLj)P-L X 1P/iP < =}
JS

ixig = [ 2 (LLs)P i, lp/Jp]]'/p
JS

o n
F={xeB :1/mPEI] e.xaP+0}
j=1 JJ

Ixig = sup 1/n(El ): €.X, |p)1/p
37
n j=1

(E,I-IE) and (F,I-IF) may easily be seen to be Banach spaces with E c F,
Suppose that lx"-xlE + 0 and lx"-,ylF + 0. It follows easily that

lxg-le + 0 and lx;.'-yjl + 0 for each j. It follows that x = y. The

closed graph theorem implies that there exists a C < = such that

sup 1/n(E1 2 exaP)YP ¢ ¢ T (LLg)Phix, n"/J")Up

373

j=1
In other words, for each n > 1
(3.31) Er Y ¢ x41P < € nP( T ()P llx L
J=1 j=1
Fix N> 1 and define
=0(1<j<N)

Y3
= "j-N(" <j<N+n).
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By (3.31), for each n

N+n N+n
E1 ) ey P < cwn)P(T ()P hixaP/P)
j=1 it - j=1 J

so that

El f e.x.1P < c(Mn)P( f CLL(N+5) P 2ix 1P/ () P)
j’l j j - j’l J

n
< c{ (wn)PLLL(M) TP~ L/ (w1)PY 3 1x,1P.
J=1
Setting N = n, we obtain

El g €

n
x 4P < ¢ PPl axaP,
j=1 I I ; J

j=1
which proves that B is of logtype-p. (Pisier [39] has shown that this
implies that B is of type r for each r < p.)

No assumptions are made on the magnitudes of the norms of {xn} in

Theorem 3.14. Theorems 3.2 (Kuelbs and Zinn) and 3.5 (Hoffmann-
Jorgensen and Pisier) fall in this category. We would like to show next
that our result may be used in situations when both the above theorems

are inconclusive.

Example 3.15. Define the sequence {xn} by

X _ =e o 2"L2M34

2n 2" (ﬂ = 1,2,00-)

X; =0 (j# 2" for any n).

J

2" n
Then, T E[X;[P/4P = ] 1/(LL2)%/4 5 « for each p € [1,2], so that
J=1 j=1

Theorem 3.5 is inconclusive. Also,
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An,p) = 172 ] E|x, [P = (LL2")"3P/% 1t follows that § A(n,p)" = =
jel(n) J n=1

for each pe [1,2] and r € (0,»). No conclusion may thus be reached
using Theorem 3.2. On the other hand, for any p € [1,2] and n ¢ I(K),
K+1

n 2
(LLn)P=1/nP %P < (LL2K+1yP-1/9Kp ¥ |%|°
g 3= g1 Uk

K+l . .
= (LL2M)Pe1/RPTy 23R (Lad )3/4 ¢ e/ L o
j=1

a.s., so that {xn} € SLLN. Theorem 3.14 does not, however, contain

either of the two theorems; to see this, let

X x. (n=1,2,...)

=€
an an an

xj =0 (j # a, for any n)

and Xp = an/nz. We then have

o ® o -2
jZIE'lep/jp * nglElxan'p/anp = ﬂ}':ln P < o

K
for each p ¢ [1,2]. Also it is clear that A(n,p) = 0 (n # 22 ) and

K o
A(Z2 sP) = K'2p so that | A(n,p) < = for each p ¢ [1,2]. However,

n=1
an n
(P laP 5 |xg|P cc 2P Nzab 5 2By s e ais,
=1 i=1

Similar examples may be constructed to show that for B = R ,
(3.27) is not comparable to any of Teicher's [45] sufficient condi-
tions for the SLLN.
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Theorems 2.1 and 3.14 may now be combined (with p = q = 2) to
obtain the following.

Corollary 3.16: A sequence {xn} of independent symmetric random

variables with values in a Hilbert space H (or more generally a cotype

n
2, logtype-2 space) satisfies the SLLN if LLn/n2 ) IXJ.I2 + 0 a.s.
J=1
n
and only if 1/n? ) lle2 + 0 a.s. Furthermore, the condition

j=1

n
¢(n)/n2 Z lle2 + 0 a.s. is neither necessary nor sufficient for the
J=1

SLLN for any function ¢(n) + =, ¢(n) = o(LLn). (This may be seen from
Examples 2.7 and 2.8.)

Example 3.17. We showed in Example 2.7 that the rate in Theorem 2.1

could not be improved for any q > 2. We would like to show next that
the rate in Theorem 3.14 is also the best possible, in the following
sense: For each p e [1,2], and for each sequence ¢(n) + =, there exists

a sequence {X_.} of independent symmetric real random variables

n
satisfying the condition [(LLn)p'I/np¢(n)] ) Ilep + 0 a.s. but failing
J=1

the SLLN. Such a sequence may be defined by

X; = ej2"/LL2" j=2"+1,...,2"+[LL2"]

n = 1,2’.0.

X.=0 Otherwise
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Then for any K ¢ I(n), and p ¢ [1,2],

K +1 L
P /e L [P < E(LLZ“”)""/z"%(z“)J;'Z1 (2 12P/(LL2d)P
JI =

< o(LL2™LyP=1,om0 L (0P, oM*1Pl L 1 0(27) 5 0 as 0+ .
On the other hand, while (2.6) and (2.7) of Prokhorov's Lemma 2.6 are

satisfied, we have A(n) = 1/4" « [LL2"] -+ 4"/(1L2")2 > C/10g n so that

) exp(-e/A(n)) = = for ¢ small enough. Hence {Xn} ¢ SLLN.
n=1

Remark 3.18. We have seen how the necessary and sufficient conditions
for the SLLN "almost" coincide if B is a Hilbert space. If B is
arbitrary, however, necessary and sufficient conditions that are close
to one another cannot be formulated in terms of the validity of a real
valued SLLN. Observe, however, that Remark 2.4 and Proposition 3.11(a)

n
together imply that a B-valued SLLN holds if Lln/n E_1 §

e X (0)12+ 0
j=1 JJ

n
a.s. and only if l/n2 Ee' ) ejxj(u)l2 + 0 a.s. These conditions are
Jj=1

not, however, easily verifiable since there is no general technique of

2

estimating ElSnl for an arbitrary sequence of B-valued random

variables. (The two-sided estimates obtained by Giné and Zinn [14] may
be expressed in terms of the individual summands only if B is a Hilbert

space.)



40

We saw in Corollary 2.3 how the necessary condition of Theorem 2.1
could be expressed in terms of the individual moments if we assumed that

|x6|.3 n a.s. (n > 1). We show now that the sufficient condition of
Theorem 3.14 may be similarly rephrased if |xn| < Cn/LLn a.s. (n > 1).

The following Lemma of Loéve generalizes Prokhorov's result (Lemma
2.6).
Lemma 3.19. (Loéve [28]). Let {Yn} be a sequence of independent

zero mean (real) random variables such that 'Yn'.s c bn/LLbn a.s.
(n > 1) where b + = and 1 < C; < byntl/b,n < C, < = for some constants

2 _ 2 2
Set T = S,n#l - S,n/b , to = ETC = 1% | EY

2" jel(n)

2

C, and C Je

1 2° Then

sn/bn + 0 a.s. iff the series | exp(-e/tﬁ) <= for each € > 0.
n=1

Proposition 3.20. Condition (3.27) may be expressed in terms of the

moments of {xn} if 1X 1 < Cn/Lln a.s. (n > 1). In fact, (3.27) holds

iff

(3.32) [(u.n)"‘l/n"]jzj1 1X;1P + 0 in probability
and

(3.33) n§1 exp[-¢ 22“9/{(LLz")ZD‘Zjeg(n)E(nxj|p-|x;|9)2}]

<o, for each e > 0
[}
where xj is an independent copy of xj(j > 1). (Here, (3.32) may be

- expressed in terms of the individual moments by the classical degenerate

convergence criterion.)



o |
Proof: Assume that (LLn)p'l/np )) Ilep + 0 a.s. for some p e [1,2].
j=1

By the result of Kuelbs and Zinn (see the Introduction), this is
equivalent to (3.22) and

-1 n '
(3.34) (LLn)P=*/aP 3 (ixaaP-1x.aP) » 0 a.s.

ju1 o 9 j

We have
c'3Pr(iLg)Pt
LL(3P/(LLg)P™h)

||xjnp-|x;|P| < 23P/(LLH)P <

so that Loéve's result aplies to (3.34).
It follows that (3.27) is equivalent to (3.32) and (3.33), as
claimed. Notice that

E(IXJIP-IX;IP)Z a2 Var(llep) 5.ZE|xj|2?

so that

(LL2")2P-2 % EQx aP-1x.1P)2 22" ¢
jel(n J J -

2(LL2M)2P-2 ¥

2p ,,2np
jel(n)E'xj' /127°F <

c(L?")?-2 7 Eax a2(2"/LL2)2P-2 02
jeI(n) J
= CA(n),
so that (3.33) is a slight improvement of the Kuelbs-Zinn condition.
One the other hand, (3.32) may do worse than their WLLN hypothesis.
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Next, we proceed in a somewhat different direction to obtain a SLLN
for Hilbert-space valued random variables. One may use the following

example to motivate what follows: Define the sequence {Xn} of 22-

valued random variables by X = enen(n/LLn)l/Z, where {en} is the usual

2

basis of £~. Does {xn} € SLLN? Theorem 3.14 as well as the results of

Hoffmann-Jorgensen and Piser, Kuelbs and Zinn, and Heinkel are all
inconclusive. To see this, note that

) EIXJ-IZIJ2 =] Vil =w=,

jsl j:l

174" 37 Eixa%=14" ¥ sup E(f.X,)2
jel(n) 9 jel(n) 1f1<1 J

=1/4" §  j/LLj > C/log n
jel(n)

and

27 2
LLa/n® ¥ 1X.0°> C > 0 a.s.
=13 7

n
On the other hand, 1/n2 1 IXJ.I2 < C/LLn » 0 a.s., so that no negative
j=1

conclusion may reached using Theorem 2.1. The fact that {Xn} € SLLN

may however be deduced from Theorem 3.22 below, which is a generaliza-
tion to the Hilbert space setting of Teicher's [45] extension of the
classical Kolmogorov SLLN. It extends the Hoffmann-Jorgensen and Pisier
theorem in exactly the same way (for B = H). Teicher's result is stated
next. It is really the first in a hierarchy of successfully stronger

(and more complicated) results.
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Theorem 3.21. (Teicher [45]). Let {X } be a sequence of mean zero,

independent (real) random variables satisfying

- i-1
(3.35) 1 exdit ] ex?ca
j=2 j=1 3
n

j=1
There exist constants Cj such that
(3.37) I P(|x;] > ¢;) <= and [ cZextygt <.
j=1 J J j=1 J
Then {X_} e SLLN.

Egorov [10] showed that (3.35) and the condition X, = o(n) a.s.

were sufficient for the SLLN to hold, but we shall see that such an
extension will not be possible in the case of Hilbert space-valued
random variables.

Theroem 3.22. Let {X } be a sequence of independent symmetric random

variables with values in the real separable Hilbert space H equipped
with the inner product (¢,»). Assume that

2 7 2
(3.38) 1/n© ¥ X1+ 0 a.s.
=1 Y
and
- . @ -4 k-l 2
(3.39) Y kY (xj’xk) <= a,s.
k=2 j=1

Then {X } € SLLN.

Before we prove the theorem, we shall need to state a basic lemma of

Chow [7].



Lemma 3.23. (Chow [7]). Let {Yn, ; n > 1} be a martingale

LM
difference sequence and suppose that 0 < aj + =, where aj is 55_1

measurable for each j > 1. Then

v p P ..
(3.40) jzl E(IYJ' l[ j-l)/aj <= a.s. for some 0 <p <2

n
implies that § Yj/an + 0 a.s.
j=1

Proof of Theorem 3.22. We will show, as before, that {enxn(m)} € SLLN

for almost all w. Choose any w satisfying (3.38) and (3.39).
Denote xn(m) by xn(n'z 1). We have

(3.41) le1x1+...+enxnl2 = (elx1+...+enxn,e1xl+...+e

nxn
n 2 n
= jzal 'le + 21 ’§’1 eiej(xi’xj)
i<j

n n
2
= jzl Ixg1° + ZKZZ (€ Xy s€1 X Feeetey 1%, 1)

so that we will have {e x | € SLLN if we can show that
n

1/n? §

ksz (ekxk,elxl+0007€k-1xk_1) hd 0 a.S.

Set Yk = (ekxk,e1x1+...+ek_1xk_1) and fk"’(el’SZ""’ek)'

k-1
Then E(Yk'fk-l) = jgl E(ejek(xj’xk)lfk-l) = 0 so that

{YesF s k > 2} is a martingale difference sequence



45

We have,

2 2 k-1 2 k-1
E(E(Yklﬁk-l) = E(Yk) = E(jgl(xj ’xk) + 21 ’gsleiej(xi ’xk)(xj oxk))
i<j

k-1
2 -4 2
= ¥ (x;,x,)°. It follows that § k™ E(E(Y_|F, ,)) < = so that
g 37K k=2 s

¥ k'4E(Yf|f*_1) <= a.s. An application of Chow's Lemma with
k=2

2

aj = j~ and p = 2 shows that (3.42) holds.

Corollary 3.24. Suppose {xn} is a sequence of independent symmetric

H-valued random variables satisfying (3.39). Then Theorems 2.1 and 3.22

n
show that {X } e SLLN iff 1/n2 ) lle2 + 0 a.s. In particular, the 22
j=1

valued random variables X =T e (where {rn} is a sequence of
independent symmetric real random variables) satisfy the SLLN iff

n
1/n2 ) r? + 0 a.s.

j=1 J
Remarks 3.25.

(a) Theorem 3.22 is an improvement of Theorem 3.5 (Hoffmann-Jorgensen

and Pisier) for B = H, If § Elx.lz/j2 <® then | llez/j2 <= a,s.
j=1 J j=1 .

n
so that by Kronecker's Lemma, 1/n2 ) llez + 0 a.s. Thus (3.38) holds.
J=1
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Also,

@ k-1 ® k-l
k-4 2 E(X, ,xk) ) k-4 ) Elilelx 12
k=2 J=1 ~ k=2 j=1

< z E|X|/|<2 P Elle /,1
k=2 Jj=1
so that (3.39) holds. See Heinkel [15] for another improvement.
(b) Heinkel [15] has shown that (3.38) is implied by the condition

Z Ei1X,

| /n + 0 if lx 1< CJ/(LLJ)I/Z(j > 1). The latter is clearly
j=1

J

a more verifiable condition. This remark provides an analog to Lemma
2.1. "

(c) One might ask whether (3.38) may be entirely dispensed with, as
Egorov did for B = R . Such a claim can easily be seen to be false by

considering the zz-valued sequence X = nsnen(n > 1). (3.39)

is obviously satisfied and (3.38) obviously fails, so that the SLLN must
fail by Theorem 2.1.
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CHAPTER IV
THE BOUNDED LAW OF THE ITERATED LOGARITHM

In this chapter we will consider a sequence {xn};-I of independent

random variables with values in an arbitrary Banach space B. We will
not place any restrictions on the Banach space or on the moments of the

X | sequence. In particular, we will not consider analogues of
n

Theorems 2.1 and 3.14. We shall instead study specific kinds of
sequences, especially Rademacher and independent Gaussian sequences.

One has to distinguish, in the Banach space setting, between the
Bounded and Compact versions of the LIL (the definitions were provided
in the Introduction). The formulation of both versions is due to Kuelbs
[22,24] (the former reference treats the i.i.d. case while the latter
deals with an extension of the classical Kolmogorov LIL (the non i.i.d.
case)). We shall now state Kuelbs' basic bounded LIL in the non-i.1.d.
case.

Theorem 4.1. (Kuelbs [24]). Let {Xn} be a sequence of independent,

zero mean, B valued random variables satisfying

(4.1) X< Ie "/(Ll.aﬁ)l/2 a.s. (n > 1) where r,+0and

2 10 2
o- = § EIXa© > e,
n j=1 j

(4.2) There exists L > 0 such that sup P(lSnl > Lan)_g 1/24, where
n

s (2 a2\ l2
a, (a:nLlnn) .



- Then there exists a constant A € [0,») such that

lim sup 1S _1/a_ = A a.s.
N+ n’'“n
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Notice that our definition of the BLIL (see Introduction) and that

of Kuelbs are similar if B is a Hilbert space. We shall first prove a

BLIL for Rademacher sequence {e x }, {x,}< B under weaker hypotheses

than (4.1) and (4.2). The method of proof relies on a result of Marcus

and Zinn [32]. They generalize a Theorem and a construction of Volodin

and Nagaev [46]. Let us describe this construction:

Given an increasing sequence {bn}’ fix C > 1 and consider the

intervals (0,C], (C,CZJ, « « « « From these, discard the ones for which

t. t .+l
{bn}/1 (Ck,CK+1] = ¢ and label the rest (C r,C r ] (r=1,2,...) in

tr+l

t
such a way that t.<t In other words, (C r.c ] is the rth

r+l°
interval having a non-empty intersection with the sequence {bn}. Let

tr tr+1
n. = sup{n : b, e (C ",C

1} and consider the sequence {b }. It is
clear that t > r. We shall, following Marcus and Zinn, call {"r}
the Volodin-Nagaev (NV) subsequence determined by {bn} and C.

Lemma 4.2. (Marcus and Zinn [32]). Let {xn} be a sequence of

independent B-valued random variables. Let C > 1 and {bn} + = be

arbitrary. Assume that for some a > 0,

(4.3) lim P(lSnl > a bn) =0.
N>



(4.4) For the NV subsequence {"r} determined by {bn} and C,

P(IS 1 >2b )<=,

rgl e "r-l e

Then

(4.5) lim sup 1S 1/b < {(4c+[2/C-1])a} a.s.
n+o

We are now ready to state our BLIL for Rademacher sequences. Our
relaxing of (4.1) in no way contradicts the classical examples of
Marcinkiewicz and Zygmund [30] since we do not wish to insist that we
obtain A = 1,

Theorem 4.3. Consider the Rademacher sequence {e x }, where {x } c B.

Assume that

2 = E1 2 €5x jl2 +®as n+ =, Then there exists A € [0,») such
j=1

that

1im sup & Z €5X; l/(Zs LLsz)l/2 = A a.S.

n+ o js J

Proof: Let b = (Zs LLs )1/2 (n > 1). Theorem 2.6 in Hoffmann-

Jorgensen [18] shows that {sﬁ}, and hence {b }, are increasing

sequences. By Kolmogorov's zero-or-one law, we need to show that

lim sup 1S 1/b, < = a.s. Let {n_} be the NV subsequence based on {b } N

n+o
and e. Let A > 0 be arbitrary (we will choose a specified A later).
By Lemma 3.7,

P(lSnl > A bn) = P(lSnllsn > A(ZLLsﬁ)l/Z)_i 3 exp(-ZAZLLsﬁ/MZ) + 0,

so that (4.3) holds for each A > 0. Also,

49
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(4.6) P(1S_ -S 1 > 2b ).5
"r nr-l "r

P(IS, 1 > A b ) + P(IS_

P> b ) =
r r r-1 n

r-1

> a(ase V2 ¢

P(as, /s, > a(2ws2 )Y« pas, s, 0 )<

r r r r-1 r-1

6 exp(-22 LLsﬁ M) .
r-1

t, t +1
Recall that n. = sup{n : (ZsﬁLLsﬁ)l/2 e (e el )}. It is clear

t
that (2s§ LLsﬁ )1/2‘3 e " so that log 2 + log sﬁ + LLLsﬁ
r " r r

22t It

follows that log sﬁ >t

r

P2 (4.6) now yields

P(ISn -Sn

1 > 2b ) < 6 exp(-2x% Tog(r-1)/M?)
r r-l- r

proving that (4.4) holds for A > M/YZ. It follows that

M
1im sup 1S _1/b_ < — (4e+2/e-1) a.s.
R L

We turn next to the Gaussian case. Laws of the Iterated Logarithm
for independent B-valued Gaussian random variables have been proved by
Mangano [29] and Carmona and Kono [6]. We have, for example, the
following.

Theorem 4.4. (Carmona and Kono [6]). Let {Xn} be a sequence of
independent Gaussian random variables with values in a Banach space B.
Assume that bn 4+ « and that Sn/b:/Z converges in distribution to a

(Gaussian) random variable X. We then have



(4.7) P(d(S,/(2b,¢(b ) /2,0) » 0) = 1
and
(4.8) P(C{S, /(2 ¢(b )12} = D) = 1

for each “admissible" function ¢.

Remark: In the above theorem, D is the unit ball of the Reproducing
Kernel Hilbert Space determined by L(X), and C(A) denotes the set of
cluster points of the set A. An admissible function ¢ is defined as

follows: Given a sequence {bn} as in Theorem 4.4 define the
sequence {n,} by

n, = inf{n > 1 | b, # 0}
"K’“‘f{“lllbnlebn } (k> 2) .
K-1
A strictly positive, increasing function ¢ on (0,») is said to be

admissible if ¢(bn ) = log K (K > 2).
K

2

If we take bn =S,

» the function LLx clearly need not be

admissible in general. Carmona and Kono show, however, that LLx is

admissible 1f C;n < s2 < C,n for some C,, C, € (0,%).

We shall prove a BLIL for independent B-valued Gaussian sequencs

under less stringent conditions than those of Theorem 4.4. Also, we
will prove the result for the (usually) inadmissible but more natural

function LLx. The following basic inequality is due to Fernique.
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Lemma 4.5. (Fernique [11,12]). Let X be a B-valued Gaussian random
variable. Then there is a constant N = N(B) such that for each e > 0,

(4.9) P(ixt > e(E1X12)1/2) < 3 exp(-e¥/N9).

Theorem 4.6. Let {X } be a sequence of independent B-valued Gaussian

2 2

= EI 2 X1+ = as n+» e, Then there
=1

random variables such that s

exists A € [0,») such that

1im sup 15 1/(2s2 LLsz)I/Z = A a.s.

neo
Proof: Exactly the same as that of Theorem 4.3.

The results of Kwapien and Fernique yielded BLIL's for
Rademacher and Gaussian sequences respectively. One may, in the same
way, use the following result of Kuelbs (see DeAcosta [1,2] for related
results) to prove BLIL's for other classes of variables.
Lemma 4.7. (Kuelbs [23]). Let B be a cotype 2 Banach space with
{x,} ¢ B. Let {Y } be a sequence of i.i.d. real-valued random

variables such that EY1 = (0 and E(exp(BYf)) <= for some B > 0. If

2 ijj converges a.s. then E(exp B1SI ) <w ,

Proposition 4.8. Let {Y }, {x } and B be as in Lemma 4.7. Assume

2 2 n
= EI { Y. X1 > - and let S = ]

Then there
j=1 J j=1 373

Assume that s

exists A ¢ [0,») such that

lim sup 1S l/(Zs LLsZ)llz

n+wo

= A a.s.

Proof: Exactly the same as that of Theorems 4.3 and 4.6.
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