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ABSTRACT

A DARBOUX PROPERTY FOR THE GRADIENT

By

Raymond Peter Goedert

A real-valued function f of a real variable

is said to have the Darboux prOperty if f(I) is

connected for every closed interval 1. A function

is said to be Baire 1 if it is the pointwise limit

of a sequence of continuous functions.

In Chapter I of this paper we discuss the

following generalization of the Darboux property.

(It is due to A.M. Bruckner and J.B. Bruckner.) If

X and Y are topological spaces and 8 is a basis

for X, then a function f : X 4‘Y is said to be

Darboux (m) if f(fi) is connected for all U 6 E.

If X = Y = E1 (the real line) and 8 is the basis

of Open intervals for 31' then this reduces to the

usual notion of the Darboux property.

C.J. Neugebauer characterized (in terms of

inverse images of closed sets) the class of Baire 1

functions having the ordinary Darboux pr0perty. In
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Chapter II we consider the family 8 consisting of

Baire 1 functions mapping En (Euclidean n-space)

into a fixed separable metric space Y. A theorem is

proved establishing a condition which distinguishes

those functions in 3 which are Darboux (Q), ‘where

$ is any basis for En satisfying certain restrictions.

The condition is stated in terms of inverse images

of closed sets and is similar to Neugebauer's condition

for Baire 1 functions having the ordinary Darboux

prOperty. Examples are given showing the various

hypotheses in the theorem cannot be omitted. An

example is also given showing the theorem is no longer

valid if the domain En is replaced by an infinite-

dimensional normed linear space.

A function f : E 4 E is said to be
n l

differentiable at X if

f(y) - f(X) = (y-X)- grad f(x) + 0(\y-X\)

as y 4 x. A function is said to be differentiable if

it is differentiable at x for all x 6 En' In

Chapter III we consider real-valued functions defined on

En' each having a gradient everywhere in En' It is shown

that the gradient of a differentiable function is Darboux

(E), 'where 3 is any basis for En consisting of



Raymond Peter Goedert

connected sets satisfying a certain restriction. An

example is given showing that this restriction cannot

be omitted. An example is also presented showing that

the gradient of a function which fails to be differentiable

at even a single point need not be Darboux (B), ‘where m

is any basis whatever for En' In addition. a Darboux

prOperty for partial derivatives and an "intermediate-

value property" for the norm of the gradient of a

differentiable function are established.
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CHAPTER I

INTRODUCTION, DEFINITIONS, AND NOTATION

Throughout this paper En will denote n-

dimensional Euclidean space. The interior of a set

S will be denoted by Int S, the boundary by

Ed S, and the closure by §.

A function f : E1 4 E1 is said to have the

Darboux preperty if. given any a and b, a < b,

and any c between f(a) and f(b), there is some

t 6 (a,b) such that f(t) c. (This defining

pr0perty is usually termed the intermediate value

property. A detailed exposition of functions with

this prOperty can be found in the survey article [3].)

This definition gave rise to the following generalization

due to Misik [5].

Definition 1.1. Let X be a tOpological

space, and let 8 'be a basis for X. A function

f : X 4 E1 is said to have the strong Darboux pr0perty

relative to B if, given any U E E and any real

number c for which there exist x1 and x2 in 5

with f(xl) < c < f(xz), there is some t 6 U such

that f(t) = c.



Notice that, if X = El and T is the basis

for El consisting of all open intervals, then this

reduces to the ordinary Darboux property.

Now the main purpose of this paper is to

establish a Darboux property of some sort for the

gradient. Thus Misfk's generalization is not the

apprOpriate one, for it requires the functions under

consideration to be real-valued which the gradient

is not.

The ordinary Darboux pr0perty for a real-

valued function of a real variable can also be defined

in the following fashion. (This definition is

equivalent to the one given above.) A function

f : E1 4 E1 is said to have the Darboux property if

f(I) is connected for each closed interval I. This

definition gave rise to the following generalization

due to Bruckner and Bruckner |2].

Definition 1.2. Let X and Y be t0pological

spaces, and let S 'be a basis for X. A function

f : X 4'Y is said to have the Darboux property relative

to B (or, more briefly, is said to be Darboux (3)) if

f(fi) is connected for all U E 8.



It is this generalization of the Darboux

prOperty which will be used in this paper. Notice

that, if X = Y = El and 3 is the basis for El

consisting Of all Open intervals, then this reduces

to the ordinary Darboux prOperty.

Suppose now that 8 is a basis for a t0pologica1

space X. Then, if a function f : X 4 E has Misik's
1

strong Darboux property relative to 3, it is trivial

to show that f is also Darboux (3). However, as

the following example shows, the converse is not true.

Example 1.1. Let 8 be the basis for E2

consisting of the Open rectangle R ‘with corners at

(0,1), (-1,l), (-1,-1), and (0,-1) and all Open balls

not tangent to the y-axis. Define f : E2 4 El as

follows.

' 1
5111 (m , X < -l

O , -1 3.x < O

f(x,y) = z 0 , x = O and \y‘ > 1

y , x = 0' and ‘y‘ g 1

. 1

L31n (i) , x > O 
It will be shown in Example 2.11 that f is Darboux (B) .

But f does not have the strong Darboux prOperty relative

to e, for f(R) = [-1,1] while f(R) = {o}.



There are certain terms and notational

conventions which will be used throughout this paper.

They are presented at this point.

Definition 1.3. Let (X,d) be a metric space.

Then an Open ball is denoted and defined as follows:

B(a,r) = {x E X : d(x,a) < r}.

Definition 1.4. A topological space is said

to be separable if it contains a countable dense

subset.

Definition 1.5. A function is said to be

Baire 1 if it is the pointwise limit Of a sequence

of continuous functions.

Definition 1.6. A function f : Bn 4 E1 is

said to be differentiable at x if

f(y) - f(X) = (y-X)- grad f(X) + 0(ly-X\)

as y 4 x, where - denotes the usual scalar product

in En and grad f(x) is the vector whose ith

coordinate is the partial derivative of f with respect

to the ith variable evaluated at x. The function f is

said to be differentiable if it is differentiable at

x for each x 6 En'



Neugebauer [6] characterized (in terms of

inverses images Of closed sets) the class of Baire 1

functions having the ordinary Darboux property.

(Also see Weil [7].) In Chapter II we consider the

family 3 consisting of Baire 1 functions mapping

En into a fixed separable metric space Y. A theorem

is proved establishing a condition which distinguishes

those functions in g which are Darboux (m), where

E is any basis for En satisfying certain restrictions.

The condition is stated in terms Of inverse images Of

closed sets and is similar to Neugebauer's condition

for Baire 1 functions having the ordinary Darboux

property. Several examples are given demonstrating

that the various hypotheses of the theorem cannot be

omitted. In particular, a rather lengthy example is

presented showing that the domain En cannot be

replaced by a general normed linear space (in fact,

not even by a separable Banach space) if the theorem

is to remain valid.

There is a theorem due to Bruckner and

Bruckner [2] establishing another condition which

distinguishes those functions in 8 ‘which are Darboux

(m), 'where E is any basis for En satisfying

certain restrictions. The condition is stated in terms



of inverse images of open sets and is similar to a

condition due to Zahorski [8] for Baire 1 functions

having the ordinary Darboux property. Bruckner and

Bruckner's result follows quite easily from the

theorem mentioned in the last paragraph and is presented

as a simple consequence thereof.

In Chapter III the results Of Chapter II

are applied to the gradient. (When we consider grad f

here, we tacitly assume f is such that grad f

exists everywhere in En') An example is presented

showing that the gradient of a function which fails

to be differentiable at even a single point need not

be Darboux (S), where E is any basis whatever for

En' Using a theorem from Chapter II, it is shown

that the gradient of a differentiable function is

Darboux (3) provided each element in 8 is connected

and none comes to a cusp on its boundary.

The major result in Chapter III has some

rather interesting corollaries. In particular, a

Darboux property is established for partial derivatives.

In addition, it is shown that the norm Of the gradient

of a differentiable function has Misik's strong Darboux

property provided certain restrictions are placed on

the basis for En under consideration.



CHAPTER II

A GENERALIZED DARBOUX PROPERTY

In [7] Weil defines a ball closed G6 set

as follows. A Go set H C En is called a ball

closed 66 set if, whenever B(x,r) CZH, one has

Bd B(x,r) crH. Neugebauer proved in [6] (without

using Weil's terminology) that a real-valued function

f Of a real variable is Baire l and has the ordinary

Darboux property if and only if the sets

[x : f(x) 2Da} and [x : f(x) g_a] are ball

closed G6 sets for each real number a.

In this chapter we shall consider the family

8 consisting of all Baire 1 functions mapping En

into a fixed separable metric space Y. As remarked

earlier, the main Objective of Chapter II is to

establish a condition distinguishing those functions

in 3 which are Darboux (E), 'where S is any basis

for ED satisfying certain restrictions which will

be introduced later. The condition will be stated in

terms Of inverse images Of closed sets and will be

similar to Neugebauer's condition for Baire 1 functions

having the ordinary Darboux prOperty. TO establish



this condition it is first necessary to isolate the

"ball closed" part of the ball closed G concept.

6

Definition 2.1. Let X be a topological

space, and let 8 ‘be a basis for X. A set S CLX

is said to be D closed if, for each U 6 B,

Bd U c: 8 whenever U c S.

Example 2.1. Clearly any closed set in En

is 8 closed no matter what the basis B is.

However, a set can be S closed without being closed.

Let N 'be the Open—ball basis for E2. Let

S: [(x,y) : ogx_<_1, O_<_ygl, (x,y) 7! (1.1)}.

S is not closed, but S is B closed.

Example 2.2. Even an Open set in En can be

closed. Let B be the basis for E1 consisting Of

all Open intervals except those having 0 as a right

endpoint. Then (-w,O) is both Open and B closed.

Example 2.3. A set which has no interior is

vacuously B closed no matter what a is. For

example, in E1 both Q (the set Of rationals) and

El o'Q are 8 closed for every basis 3.



Most of the results in this chapter require

that certain restrictions be placed on the bases

under consideration. The three restrictions that

will be used are presented here with some discussion.

Definition 2.2. Let X be a metric space,

and let 8 be a basis for X. Then 8 is said to

satisfy (1) if, given any Open ball B and any

x 6 Bd B, there is some V E 8 such that V CIB

and x 6 Bd V.

Definition 2.3. Let X be a metric space,

and let T be a basis for X. Then 8 is said to

satisfy (2), if, given any U E E and any x e 6,

there is some V 6 8 such that V ~I[x] CIU

and x 6 9.

Definition 2.4. Let X be a metric space,

and let E be a basis for X. Then E is said to

satisfy (3) if, given any U e B and any x e U,

there is some V e B such that V C‘U and x 6 Bd V.

Condition (1) says that, given any ball and

any point on its boundary, you can touch that point with

a basis element lying inside the ball. Condition (2)

says that, given any basis element U and any point

x in its closure, you can touch x 'with a basis
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element whose closure (except possibly for x) lies

inside U. Condition (3) says that, given any basis

element U and any point x in U, you can find

another basis element contained in U having x on

its boundary.

Conditions (1) and (2) are independent as

Examples 2.4 and 2.5 show. Conditions (2) and (3)

are independent as Examples 2.5 and 2.6 show.

Example 2.7 shows that condition (3) does not imply

condition (1). In general, condition (1) does

not imply condition (3) either. For example, any

basis for a discrete space satisfies (1) but not

(3). However, if B is a basis for En which

satisfies (1), a must also satisfy (3).

Example 2.4. Let T be the basis for E2

consisting Of all Open balls and the Open rectangle

R with corners at (0,1), (-1,l), (—1,-l), and

(O,-1). 8 satisfies (1), for clearly, given any

ball and any point on its boundary, you can touch

that point with another ball (which will be a basis

element) lying inside the given ball. But B does

not satisfy (2), for you cannot touch any corner x

of the rectangle with a basis element whose closure

(except for x) lies inside the rectangle.
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Example 2.5. Let 8 be the basis for

E consisting of all Open intervals not having 0
l

as an endpoint. B clearly satisfies (2). However

B does not satisfy (3). For example, (-1,1) is

a basis element and O is in its interior. But

there is no basis element lying in (-l,1) having

0 as a boundary point. Notice that B does not

satisfy (1) either.

Example 2.6. Let E be the basis for E2

consisting of the Open rectangle R With corners at

(0,1), (-l,l), (-l,-l), and (O,-1) and all Open

balls not tangent to the y-axis. E satisfies (3),

for clearly, given any basis element and any point

x inside it, there is an open ball which is not

tangent to the y-axis (and, hence, is a basis

element) lying inside the given basis element and

having x as a boundary point. However 8 does not

satisfy (2), for you cannot touch any corner x of

the rectangle with a basis element whose closure (except

for x) lies inside the rectangle.

Example 2.7. Let S ‘be the basis for E1

consisting of all Open intervals except those having

0 as a right endpoint. Clearly E satisfies (3)

but not (1) .



12

Remark. Most Of the results in this chapter

require that at least one of the three restrictions

mentioned above be placed on the basis E under

consideration. It should be noted that, if B is

the basis for ED consisting Of all Open balls, 3

automatically satisfies (1), (2), and (3). However,

as Bruckner and Bruckner mention in [2], this Offers

no help in overcoming the difficulties caused by other

bases.

The following theorem is well known. It

was originally proved (in an equivalent form) by

R. Baire. (See, for example, [4, p.326].) It is

presented here without proof.

Theorem 2.1. Let X be a complete metric

space and Y a separable metric space. Let f : X 4‘Y

be Baire 1. Then, for any non-void G set S CJX,

6

f[S (f restricted to S) has a point of continuity.

The following theorem is the major result

in this chapter.

Theorem 2.2. Let Y be a separable metric

space. Let f : En 4‘Y be Baire 1. Let B 'be a

basis Of connected sets for ED satisfying (1).
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1
Then, if f- (K) is E closed for all closed K C'Y,

f is Darboux (s).

Proof. Let f-1 (K) be E closed for all

closed K c'Y. Suppose however that f is not

Darboux (E). Then there is some U e E such that

f(fi) is not connected. Hence there exist sets

A* and B*, closed in Y, such that

._ - * .. *

f(U) = (f(U) DA) U (f(U) n B)

is a decomposition of f(U) into two disjoint, non-

void, relatively closed sets.

_ *

Let A=[x€U:f(x) EA}. Let

_ * _

B=[x€U: f(x) EB]. Notice that U=AUB. Let

P = U n Bd A. Notice that P = U 0 Bd B also since

A and B are disjoint, U C’A U B, and U is Open.

It is claimed that P # ¢. for suppose P

is void. Then each x e U is in either Int A or

Int B. Hence, since U is connected, either U C.A

or U CtB. If U CIA, Bd U CIA since f_1(A*) is

E closed. Hence B = ¢ ‘which is a contradiction.

If U c.B, Bd U CJB since f-1(B*) is E closed.

Hence A = ¢ 'which is a contradiction.
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Notice that P is clearly a G6 set.

It is claimed that A 0 P is dense in P,

for suppose not. Then there exists some b0 6 P and

some Open ball N = B(bo,r) C‘U such that

N D (A n P) = ¢. That is, there are no points of

A H Bd A in N. In particular, bo (’A n Bd A;

so b0 6 B. Since bO E B 0 Bd A, there exists

some a0 6 A 0 B(bo'§)' Let d = dist(aO,E). Then

r

O<d<'2'-

first inequality follows from the fact that a0 5

The second inequality is clear. The

{
I
l
l

(If a0 6 R, then a0 6 (A 0 Bd A) n N which is

impossible.) There exists some b1 6 E such that

[bl-a0] = d. It is claimed that b1 5 B. (If

b1 6 E ~ B, then b1 6 (A 0 Bd A) n N which is

impossible.) Since E satisfies (1) and since

b1 6 Bd B(ao,d), there is some W E E such that

W c B(ao,d) c A c f"1

.. *

impossible since f 1(A ) is E closed.

* _

(A ) and b1 6 W. But this is

The argument that B n P is also dense in

P is identical since P = U 0 Bd B.

Now P is a G6 set, f is Baire l, and

Y is a separable metric space. Hence, by Theorem 2.1,

f\P has a point Of continuity. But this is impossible,

for suppose x is a point of continuity of f‘P.
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Either x 6 A or x e B. Suppose x E A. Since

B H P is dense in P, one can choose a sequence of

points bn E B n P such that bn converges to x.

Since x is a point of continuity of f]P, f(bn)

converges to f(x). Since B* is closed and

f(bn) E B* for all n, f(x) is in 8*. Hence x E B

which is a contradiction. (If one assumes that

>c is in B, an identical argument again

leads to a contradiction.) Hence f must have been

Darboux (E).

The hypothesis in Theorem 2.2 that f be

Baire 1 cannot be omitted as the following example

shows.

Example 2.8. Consider E1 with basis E

consisting Of all Open intervals. Let f be the

characteristic function Of the rationals Q. (Then

f is Baire 2 but not Baire l.) The basis certainly

satisfies (1). The inverse image Of any closed set

(in fact, of any set) is either Q, El ~'Q, ¢, or E1

and is therefore E closed. However f is clearly

not Darboux (E).

The hypothesis in Theorem 2.2 that the basis

E for En satisfies (1) cannot be omitted (or even

replaced by the weaker condition (3)) as the following

example shows.
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Example 2.9. Consider E1 with basis E

consisting of all Open intervals not having 0 as

a right endpoint. As was stated in Example 2.7,

E satisfies (3) but not (1). Let f be the

characteristic function of [0,m). Clearly f is

Baire l. The inverse image of any set is either

(—w,0), [0,m), ¢, or E1. Hence the inverse image Of

any closed set is E closed. However, f is

clearly not Darboux (E).

One might ask whether in Theorem 2.2 one

could replace En Tby a normed linear space of some

sort. It happens that, as the following example

shows, replacing En even with a separable Banach

space invalidates the theorem.

Example 2.10. Consider co, the space of

all sequences Of real numbers converging to 0. The

norm on C0 is given by

“x” = sip [xk\, where x = {xk} 6 co.

The space cO is a metric space with metric generated

by the norm. Let E 'be the Open-ball basis for co.

Clearly E satisfies (1). It is well-known that CO

is a separable Banach space.
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Let ei be the sequence with a 1 in the

ith place and 0's elsewhere. Let S be the

collection of all finite rational combinations of

the ei's. It is easy to show that S is countable.

To show that S is dense, let x = [xkl 6 c0 and

e > 0 be given. Choose K sufficiently large that

‘xkl < e for all k.2 K. Choose rationals

r1,...,rK_1 such that ‘Xk-rk‘ < e for k = 1,...,K-l.

Let s = (r1....,rK_l,0,0,...). Note that s E S

and that Hx-s” < 6. Hence S is indeed dense in co.

Now let

-k

H = {x = [xk} E c : Z) x 2 = 0].

It is claimed that H is closed. Let c > 0 and

y = {yk} E H be given. Then there is some x = [xk] E H

a)

such that Hy-xH < 6. Since 23 ka-k = 0, one has

k—l

that

m —k m -k m -k
\ Z} y 2 = Zi(y -x )2 ;_ 23 y -x \2

k=1 k ‘ ‘k=1 k k ‘ k=1‘ k k

_<_ Hy-xH 2: 2‘k < e.

k=l

But 6 was arbitrary. Hence 2) y Z-k = 0. Hence

k=1 k

y E H. Hence H is indeed closed.

Observe that, if a g H, then dist (a,H) > 0.

This follows immediately from the fact that cO is a
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metric space and H is closed. Observe also that,

if z = [zkl 6 c0 and z # 0, then

Q

1 E zk2“k\ < Hz“.

To see this, note that [zk] < Hz” for all k

sufficiently large since 2k 4 0 as k 4 m. Hence

one has that

1 E z 2"k\ g élxzklz'k < Hzné’:l 2'k = 1le-

  

k=1 k

It is claimed that dist(a,H) = I Z) ak2—k[,

k=1

where a = {ak}. Let x = [xk} E H. Then, since

Z} ka-k = 0, one has that

k=1

” -k m —k m —k

[ZaZ =[Z(a-x)2 gZa-xp

k=1 k ‘ k=1 k k ‘ k=1‘ k k

m -k

s. Ha-xllZ 2 = Ila-x.
k=1

Hence

“ -k . .
\ Z3 ak2 ] g inf Ha-XH = dist(a,H).

k=1 xgH

TO show the reverse inequality, let el = lei} be as

defined above. Let

2m(2m_l)—l Z} akZ-k.

k=1

Am

Let

m

X

m .

m _ _ 1

i=1

m

Note that xm E co. It is claimed that x E H.



a) m 03

Z XEZ-k — Z (ak-Am)2 k + Z ak2 k

k=1 =1 k=m+l

m - m -

k=1 k=1

2'm(2m-1)A - A 2'm(2m-1) = o.
m m

Hence xm e H. One has that

.§? eiu = \Amx u,§> ein
i=1 i=1

—1 -k

[Am] = 2m(2m-1) (RE: k2 \.

na-xmn = uAm

Therefore

dist(a,H) g Ha-me = 2‘“(2“‘-1)'1\ 2: a 2

k

Letting m 4 m, one gets dist(a,H) 3" Z) ak2

=1

If a E'H, there is IND x E H such that

dist(a,x) = dist(a,H), for suppose there were such an

x. Then

Ha-XH dist(a,x) = dist(a,H)

-k k

E: 2 = E: ( - )2"

‘k=l ak ‘ ‘k=1 ak Xk ‘

which is a contradiction since Ha-XH # 0.

Now let S and e1 be as defined above.

S ~lH is countably infinite since S is countably

infinite and e1 e S ~'H for i = l,2,--o. Hence
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. ~ 1 2 . n

one can write S ~'H = [S ,s ,...). Since 3 A H,

. n n . n
dist(s ,H) > 0. Let Bn = B(s ,dist(s ,H)). Note

that fin c c «:H, for, if not, there would be some
0

x E H with dist(sn,x) = dist(sn,H) which is impossible.

Define a continuous function fn on a

closed subset of co as follows.

n -

1, x E L) E

f (x) =

n OI X E H

Next use the Tietze Extension Theorem to extend fn

continuously to all Of co. Denote the extended

function by fn' DO this for each n = 1,2,'°-.

Note that fn(x) = 0 for each x 6 H; so

f(x) = 1im fn(x) exists and equals 0 on H. It is

n4m ~

claimed that f(x) = 1im fn(x) exists and equals 1

ndm

on C0 ~'H. SO suppose that a K H. Then dist(a,H) > 0.

Since S is dense in c0 and

B(a,% dist(a,H)) n H = ¢I

there is some n such that

sn 6 (S ~'H) fl B(a,% dist(a,H)).

But then dist(sn,H) > dist(a,H). Hence

dist(a,sn) < dist(a,H) < dist(sn,H).

N
H
‘

N
H
‘

Therefore a E Bn' and, hence, f(a) = l.
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It is claimed that f-1(K) is E closed for

all closed K c E . Clearly it suffices to show that
1

f-1(l) and f-1(0) are each E closed. First

consider f_l(0) = H. Since H is closed, f-l(0)

is clearly E closed. Next consider f-1(l) = CO “’H.

1
Let U = B(z,r) c f- (1). U is in 9:. Let x e Bd U.

Then f(x) = l, for, if not, one has that x E H

and dist(z,H) = dist(z,x) which is impossible since

2 f H. Hence 6 C f—1(l). Hence f-l(l) is E closed.

Finally, it is clear that f is not

Darboux (m). The unit ball, for example, is a basis

element. But f maps its closure onto [0,1],

which is not connected.

If the restriction on the basis is changed,

one can prove a converse to Theorem 2.2 even without

the assumption that f is Baire 1.

Theorem 2.3. Let Y be a metric space.

Let E be a basis for En satisfying (2). Then,

if f : En 4y is Darboux (s). f-1(K) is :3 closed

for all closed K c‘Y.

Proof. Let K CiY be closed. Let U be

any basis element contained in f-1(K). It must be

shown that Bd U c: f'1

1<

(K). Let x 6 Bd U, but suppose

that x £ f_ K). Since E satisfies (2), there is
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some V E E such that x e V and V ~ {x} C‘U c f.-1 (K).

(The set V ~'[x} cannot be void, for V is an Open

subset of En') Hence f(V ~'[x]) c K, and f(x) 5 K.

But then f(V) = f(V ~'[x}) U {f(x)} is a decomposition

Of f(V) into two disjoint, non—void, relatively

closed sets. Hence f(V) is not connected which is

a contradiction since V E E and f is Darboux (E).

The hypothesis in Theorem 2.3 that E satisfies

(2) cannot be omitted even if one assumes that f is

Baire 1 as the following example shows.

Example 2.11. Let En = E and let2'

Y = E1. Let E be the basis for E consisting Of
2

the Open rectangle R with corners at (0,1), (-l,1),

(-l,-1), and (0,-l) and all Open balls not tangent

to the y-axis. As was mentioned in Example 2.6, E

does not satisfy (2). Define f : E2 4 E1 as follows.

 

r . 1

Sin (X+l , x g —1

O o "ISXKO

f(x,y) = fl 0 , x = 0 and [y] > 1

y , x = 0 and [y] g_l

. 1

KSin (i) , x > 0

It is easy to show that f is Baire 1. The function

f is also Darboux (E). Any ball whose closure lies to

the left of x = -l or to the right of':x = 0 automatically
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has its closure mapped onto a connected set since f

is continuous in these regions. Any ball whose

closure lies in the strip -1 g_x < 0 has its

closure mapped onto [0}. Any ball which lies to

the left Of and is tangent to x = -1 has its closure

mapped onto [-l,1]. The same is true Of any ball

'which overlaps x = -l orwx = 0. Finally' f(R) = [-1,l].

However, the inverse image of the closed set (-m,0]

is not E closed since R is contained in f-1((-m,0])

but R is not.

Remark. As before, let 8 be the family

of all Baire 1 functions mapping En into a fixed

separable metric space Y. If one combines Theorem 2.2

and Theorem 2.3, one gets the desired condition

distinguishing those functions in 3 'which are Darboux

(E), where E is any basis for En satisfying

(1) and (2). As was remarked earlier, this condition

is similar to a condition established by Neugebauer

[6] and discussed by Weil [7] for Baire 1 functions

having the ordinary Darboux prOperty.

Let Y be a separable metric space. Let

f : En 4'Y be Baire 1. Let E 'be a basis of

connected sets for En satisfying (1) and (2). Then

f-1(K) is E closed for all closed K c‘Y if and

only if f is Darboux (E).
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The following definition is due to Bruckner

and Bruckner [2].

Definition 2.5. Let X be a tOpological

space, and let E ‘be a basis for X. A set S CJX

is said to be dense-in-itself (E) if, given any

x 6 S and any U 6 E ‘with x E H, S n U contains

some point other than x.

Lemma 2.1. Let f : X 4‘Y, where X and

Y are topological spaces. Let E 'be a basis for

X satisfying (3). Then f-1(V) is dense-in-itself

l
(E) for all Open V c:Y if and only if f- (K) is

E closed for all closed K C‘Y.

Proof. Let f-1 (V) be dense-in—itself (E)

for all Open V c:Y, but suppose there is some closed

K c:Y such that f—1(K) is not E closed. Then

there is some U E E and some x 6 Bd U such that

1m) and x c {10140. But f-1(Y~K) isUCf'

dense—in-itself (E). Hence U H f-1(Y~K) # ¢ ‘which

is a contradiction.

For the reverse implication, let f-1(K) be

E closed for all closed K c‘Y, but suppose there is

some Open V C Y such that f-1(V) is not dense-in-itself

(E). Then there is some U G E and some x e f-1(V)
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such that x E U and U n f-1(V) c {x}. If x 6 U,

then, by (3), there is a U 6 E such that U crU
1

If X £ U, then, obviously,

I

and x 6 Bd U1.

x C Bd U. We see that in either case there is a

W 6 E such that W c:U and x 6 Bd W. By the choice

Of U and x we have ‘W c f_l(Y~V) which is a

contradiction because f-1(Y~V) is E closed.

Remark. Notice that, in Lemma 2.1, the

hypothesis that E satisfies (3) was used only to

show that, if f-1(K) is E closed for all closed

K C'Y, then f-1(V) is dense-in-itself (E) for all

open V c'Y. (The reverse implication was proved

without using this assumption.) That this hypothesis

cannot be omitted even if one assumes that f is

Baire l is shown by the following example.

Example 2.12. Let X = Y = E1. Let E be

the basis for El consisting Of all Open intervals

not having 0 as an endpoint. As was pointed out in

Example 2.5, E does not satisfy (3). Let f be the

characteristic function Of the singleton [0}. Clearly

f is Baire l. The inverse image Of any set is either

{0}, El ~ [0}, ¢, or E1. Hence the inverse image Of

any closed set is E closed. HOwever, the inverse

image Of the Open set (O,m), for example, is not dense-

in-itself (E).
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As before, let 8 be the family Of all

Baire 1 functions mapping En into a fixed separable

metric space Y. As was remarked earlier, Bruckner

and Bruckner [2] established a condition (stated in

terms Of inverse images Of Open sets) distinguishing

those functions in 3 'which are Darboux (E), 'where

E is any basis for En satisfying certain restrictions.

This condition is similar to a condition established

by Zahorski [8] for Baire 1 functions having the

ordinary Darboux prOperty. Bruckner and Bruckner's

result is presented here as a simple consequence

Of the remark following Example 2.11.

Theorem 2.4. Let Y be a separable metric

space. Let f : En 4‘Y be Baire 1. Let E The a

basis of connected sets for En satisfying (1) and

(2). Then f-1(V) is dense-in-itself (E) for all

Open V c'Y if and only if f is Darboux (E).

Proof. Since E is a basis for En satisfying

(1), E satisfies (3) also. Hence, by Lemma 2.1,

f-1(V) is dense-in-itself (E) for all Open V C‘Y

if and only if f-1(K) is E closed for all closed

K c‘Y. But, by the remark following Example 2.11,

f-1(K) is E closed for all closed K C'Y if and

only if f is Darboux (E).
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Remark. In the proof of Theorem 2.4, the

assumption that E satisfies (2) was used only to

show that, if f is Darboux (E), then f-1(V) is

dense-in-itself (E) for all Open V c'Y. The

assumption that E satisfies (1), however, was used

for both implications.

The following lemma gives an additional

interesting prOperty Of Darboux (E) functions. This

lemma will be used in the next chapter.

Lemma 2.2. Let X be a metric space and Y

a tOpOlogical space. Let E ‘be a basis for X.

If f : X 4'Y is Darboux (E), then f(V) is

connected for each connected Open set V CLX.

Proof. Let V CIX be Open and connected,

but suppose that f(V) is not connected. Then there

exist sets A* and 3*, Open in Y, such that

f(v) = (f(V) nA*) U (f(V) n 13*)

is a decomposition Of f(V) intO two disjoint, non-void,

relatively Open sets.

*

Let A=[x€V:f(x)€A}. Let

‘k

B = {x E V : f(x) 5 B }. Notice that V = A U B and

A n B = ¢. It is claimed that both A and B are

Open in X. TO show that A is Open, let x 6 A.
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Since V is Open, one can find an Open ball W such

that x E W ch CIV. Since W“ is Open, one can find

some UEE suchthat XGUCW. Hence xEUchV.

It then follows that U ClA, for suppose not. One

has U H A #’¢' since x 6 U H A. If U H B # ¢ also,

then

f(U) = (f(U) n A*) U (f(U) n 13*)

is a decomposition Of f(U) into two disjoint, non-void,

relatively Open sets. But this is impossible since f

is Darboux (E). Therefore one has x 6 U CIU c4A.

Hence A is Open. (The argument for B is identical.)

But V = A U B, and V is connected. Therefore

A = ¢ or B = ¢. Hence f(V) is connected.



CHAPTER III

A DARBOUX PROPERTY FOR THE GRADIENT

This chapter deals with real-valued functions

defined on En. It is tacitly assumed that, for

each function f considered here, grad f exists

everywhere.

Definition 3.1. Let (X,d) be a metric

space. Let S c.X and let x 6 §. Then x is said

to be accessible from S if there is some a > O

with the following property: there exists a sequence

Of points cn 6 S ~'{x} such that lim cn = x and

B(cn,dd(cn,x)) C’S for each n.

Definition 3.2. Let X be a metric space.

A set S C X is said to have an accessible boundary

if each x c Bd S is accessible from S.

Roughly speaking, a set S has an accessible

boundary if it does not come to a cusp on its boundary.

Consider the following example.

Example 3.1. Given 5 > 0, let XS be the

unique real root Of 2x3 + x - s = 0. Then

29
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4 1/2_ 2
r8 — [(3 x8) + xS

is the minimum distance from (3,0) to the curve

y = x2. The minimum distance from (5,0) to the

curve y = x is --. Define US and VS as follows.

J2“

{ (X.y)C II \Y\ < x2,0 < x < XS] U B((s,0),rs)

M < x, 0 < x < 3} U B((s.o>.-§—>
2

v {(X.y)
8

Vs has an accessible boundary, but US does not. The

point (0,0) is on the boundary Of V5 and is

accessible from Vs' One can choose a tO be any

positive number not exceeding sin E . The point (0,0)

is on the boundary Of US also but is not accessible

from U .

3

Remark. Notice that, if x 6 Int S, x is

automatically accessible from S. In fact, one can

choose a to be 1.

The following theorem is similar tO a result

established by Borwein and Meier [l] for the gradient

Of a function which is not necessarily differentiable.

Theorem 3.1. Let E 'be a basis for En'

each element Of which has an accessible boundary. Let

f : Bn 4 E be differentiable, and let F = grad f.
l
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Assume that f(0) = 0 and F(0) = 0. Let U be

any element of E such that 0 G U. Then, given

any e 2 0, there is some v P U such that v # O

and ‘F(v)} g 5.

Proof. First we use the fact that U has

an accessible boundary to select an a, 0 \ a g l,

with the following property: given any 5 > 0, there

is a point Cg € U, such that Cg # 0 and

B(c§,a‘c§}) CU n B(O,§).

Next we use the fact that f is differentiable, that

f(0) = 0, and that F(0) = 0 to find a 6 > 0 such

that \f(x)‘ < %f-‘x‘ whenever ‘x‘ 3,5. Finally

select a c E U such that c # 0 and

B = B(c,O‘c\) C U H B(0,6).

Now let g(x) = €2\x-c\2 - f(x)2. Since 9

is continuous and E is compact, there is some

v E E such that

g(v) = min{g(x) : x E B}.

For convenience let

1 = min[g(x) : x E E}.

For x 6 Bd B one has

g(x) 2 6: C12 ‘C‘Z - % a262\x‘2

2 czaz‘c‘z - Al‘ (1262(‘C‘ + o‘c‘)2

> €2a2\c\2 _ % d2e2(2‘c\)2 = O
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But 1 g_g(c) = -f(c)2 g_0. Hence g(v) = x for some

v C B. Therefore

grad g(v) = 2e2(v-c) 2f(v) grad f(v) = 0.

Hence f(V) grad f(v) = 32(v—c), which implies that

(*) f(v>2\grad f(v)‘2 e4‘V-C|2 = e2(g(v)+f(v)2)

62 (1+f(V)2) g €2f(v)2.

If 1 < 0, then

f(v)2 = €21v-c12 - g(v) 2,-g<v) = -x > 0.

Hence, dividing (*) by f(v)2 yields the desired

result.

Similarly, if 1 = 0 and there is some v 6 B

such that V # c and g(v) = 1, then one has

f(v)2 =

Again, dividing (*) by f(v)2 yields the desired result.

It remains to consider the case where 1 = 0

and g(x) > 0 for all x C B except x = c. (Notice that,

in this case, g(c) = f(c) = 0.) Let B1 = B(c,%‘c\).

For x 6 Bd Bl one has

f(x)2 = % czaz‘c\2 - g(x) < % €2a2 c‘z.

Hence |f(x)‘ < % am\c\ for all x 6 Bd 81' Since f is

continuous and Bd B is compact, there is some u 4 Bd B
1 1
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: X 6 Bd Bl}.

v > 0 such

such that

f(u) = max{f(x)

Since f(u) < % eo‘c‘, one can choose a

that f(u) + v < % ga‘c‘. Then, for all x 6 Bd B1,

one has

-% €C1‘C‘< f(x) < f(x) + vgf(u) + V

< % €a|c\.

Hence, for all x 6 Bd Bl' \f(x)+v‘ < % ea‘c‘. Now

let

€2\x-c\2 - (f(X)+v)2.h(x) =

is compact, there isSince h is continuous and B1

some v C E1 such that

h(V) = min{h(x) x E El}

For convenience let u = min[h(x) : x 6 El}. For

x G Bd Bl one has

1 2 2

h(X) / Z EZUZ‘C‘Z - 211- u e c‘ = 0

But

u gh(c) = -(f(c)+\2)2 = -v2 \ 0.

Hence h(v) = u for some v 6 81' Therefore

262(V-C) - 2(f(v)+v) grad f(v) = 0.grad h(v) —

which implies thatHence (f(v)+v) grad f(V) €2(V-C),

(**> (f(V)+v)2}grad f(v)\2 = e4‘v-c\2

52 (h(V)+(f(V)+v) 2)

.301 + (f(vmnz)

g 62(f(v)+v)2.
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But

(f(v)+v)2 = e2\v-c\2 - h(v)

= e2\v-c\2 - u

2-u >0.

Hence, dividing (**) by (f(v)+v)2 yields the desired

result.

Corollary 3.1. Let E ‘be a basis for En'

each element Of which has an accessible boundary. Let

f : Bn 4 E be differentiable, and let F = grad f.
1

Let U be any element of E, and let x0 be any

point in U. Then, given any 9 > 0, there is some

v E U such that v # x0 and ‘F(v)-F(xo)‘ 3.5.

Proof. Let G(x) = F(x+xo) - F(xo), and let

g(x) = f(x+xo) — f(xo) - F(xo) 0 x, where 0 denotes

the usual scalar product in En' It is clear that g

is differentiable, G = grad g, g(0) = 0, and G(0) = 0.

Let E1 = {—xO+W : W P E]. E1 is a baSis for

En' each element of which has an accessible boundary.

Moreover, V = -xo+U is in E1, and 0 E V. Hence,

by Theorem 3.1, there is some v' 6 V such that v’ # 0

I

and ‘G(v')| g e. Let v = v + x0. Then v 6 U, v #’x0,

and one has

\F(v)-F(xo)‘ = lF(v’+xO)-F(x0)| = ‘G(v')\ g e.
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The following theorem is the major result

in this chapter.

Theorem 3.2. Let E be a basis of connected

sets for En' each element Of which has an accessible

boundary. Let f : En 4 E1 be differentiable, and

let F = grad f. Then F is Darboux (E).

Proof. Let Eb be the Open-ball basis for

En' Let E1 = E U E0. Then E1 is a ba31s for En

satisfying (1), and each element of E1 is a connected

set with an accessible boundary. Note that F, being

the gradient of a continuous function, is Baire 1.

Suppose F is not Darboux (El). Then, by

Theorem 2.4, there is an Open set V c En such that

F-1(V) is not dense-in-itself (E1). Hence there is

some U 9 El and some xo 6 U n F-1(V) such that U

contains no point of F-1(V) with the possible exception

of x .

O

We have F(XO) E V, and V is Open. Hence

there is some r > 0 such that B(F(xo),2r) c‘V. Now

use Corollary 3.1 to find a v G U such that v #'x0

and ‘F(v)—F(xo)‘ g_r. But then F(v) E B(F(xo),2r) c:V

which is a contradiction. Thus F must have been Darboux

(E1) and, hence, Darboux (E).
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A Darboux property for partial derivatives

follows easily from Theorem 3.2.

Corollary 3.2. Let E be a basis Of connected

sets for En' each element Of which has an accessible

boundary. Let f : En 4 E be differentiable. Then
1

akf (the partial derivative with respect to the kth

variable) is Darboux (E) for k = l,...,n.

PrOOf. Let pk : Bn 4 E1 be the projection

onto the kth component. Then

akf(x) = pk(grad f(x)).

Since, as is well-known, pk is continuous and, by

Theorem 3.2, grad f is Darboux (E), it follows

immediately that akf is Darboux (E).

The following corollary establishes a sort Of

intermediate value property for the gradient Of a

differentiable function.

Corollary 3.3. Let E be a basis Of connected

sets for En' each element Of which has an accessible

boundary. Let F : En 4 En be the gradient of a

differentiable function. Suppose that ‘F(x)| assumes

the values a and b, a < b, at the points u and

v respectively. Then, if U is any element Of E

such that u,v 6 U, \F(x)} assumes every value between

a and b in U.
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Proof. F is Darboux (E) Tby Theorem 3.2.

Thus F(U) is connected by Lemma 2.2. Hence

[\F(w)‘ : w E U} is an interval. Now suppose there

is some c 6 (a,b) with the following property:

there exists no w E U such that ‘F(w)‘ = c. Let

s = % min[c-a,b-c}.

By Corollary 3.1, one can find points w .w2 e U such
1

that ‘F(wl)-F(u)‘ g_e and ‘F(w2)—F(v)“g 6. Hence

”F(wl) |-a‘ = HF(W1)\ - (F(u) H

_<_ lF(wl)-F(u)\ g e.

and

HF<W2) HO! = HF(W2)| - \FW) H

_<_ ‘F(w2)-F(v) \ _<_ 9.

Therefore |F(wl)\ < c < ‘F(w2)\. Hence [}F(w)‘ : w e U}

is not connected which is a contradiction.

Remark. Let F and E be as described in

Corollary 3.3. Let G(x) = \F(x)‘. Then what

Corollary 3.3 says is that G has the "strong Darboux

prOperty relative to E" as defined by Misik [5]. It

should be noted that G must also then be Darboux (E).

The hypothesis in Theorem 3.2 that each element

in E have an accessible boundary cannot be omitted as

the following example shows.
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Example 3.2. Given 5 > 0, let US be as

defined in Example 3.1. The collection Of all such

US together with translations of same is a basis

for the usual tOpOlogy on E Call this basis E.2.

Each U 6 E is connected, but each U E E has a

point on its boundary which is not accessible from U.

Let

5 -4 3 l4 -2 2 32

h(XaY)='2—7X y --§-x y +—9-y—

b
)

N 2
x

N 7

for x > 0. Define f : E 4 E as follows.

‘y‘ 24x2 and X > 0O

-h(x,-y) , —4x < y < -x2 and x > 0

f(X.Y) = y , ‘y‘ g_x2 and x > 0

h(x,y) , x \ y < 4x and x > 0

0 , X g_0

at is an elementary though rather tedious task to show

that f is indeed everywhere differentiable.) NOw

let F = grad f. We have F(0,0) = (0,0). However,

F maps the set {(x,y) : \yl ; X2, x > 0} onto the

point (0,1). Hence, for each s > 0, F maps US

onto a set which is not connected. Therefore F is

not Darboux (E).

The hypothesis in Theorem 3.2 that f be

differentiable cannot be omitted as the following

example shows.
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Example 3.3. Let E be any basis whatever

for E2. Let

2xy(x2+y2)-l/2. (X.Y) # (0,0)

f(x,y) =

O
I (XIY) = (0,0).

Then

’12Y3(X2+Y2)—3/2. 2x3(x2+y2)_3/2). (X.y) # (0.0)

grad f(X.y) =

(000) I (XIY) = (0:0)-

For (X:y) ¢ (0.0).

‘grad f(x,y)}2 = 4(X6+Y6)(X2+y2)
-3

+ cos 49‘; l,I

N
I
U
'
I

l
e

where x = r cos 6 and y = r sin 9. But ‘grad f(0,0)‘ = 0.

Thus, for any Open neighborhood U Of (0,0), grad f(U)

is not connected. The function f is differentiable

everywhere save at the origin, for f,fx, and fy are

continuous everywhere save at the origin. But grad f

is certainly not Darboux (E).

Remark. Let E be any basis of connected

sets for En' Let f : ED 4 El be continuously

differentiable, and let F = grad f. Then F is

clearly Darboux (E).



BIBLIOGRAPHY



BIBLIOGRAPHY

D. Borwein and A. Meier, A prOperty Of gradients,

Amer. Math. MOnthly 76 (1969), pp.648—649.

A.M. Bruckner and J.B. Bruckner, Darboux transformations,

Trans. Amer. Math. Soc. 128 (1967). pp.lO3-111.

A.M. Bruckner and J.G. Ceder, Darboux continuity,

Jber. Deutsch Math.-Verein 67 (1965), pp.93-ll7.

C. Kuratowski, Topologie I, 4th ed., Monogr. Mat.

VOl. 20, Warsaw, 1958.

 

L. Mi§ik, Uber die Funktionen der ersten Baireschen

Klasse mit der Eigenschaft von Darboux, Mat.-Fyz.

éasopis Sloven. Akad. vied 14 (1964). pp.44-49.

C.J. Neugebauer, Darboux functions Of Baire class one

and derivatives, Proc. Amer. Math. Soc. 13 (1962),

pp.838-843.

C.E. Weil, A tOpOlogical lemma and applications to

real functions, Pacific J. Math., to appear.

Z. Zahorski, Sur la premiere dérivée, Trans. Amer.

Math. Soc. 69 (1950), pp.l—54.

4O



 


