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ABSTRACT
A DARBOUX PROPERTY FOR THE GRADIENT
By

Raymond Peter Goedert

A real-valued function f of a real variable
is said to have the Darboux property if f(I) 1is
connected for every closed interval 1I. A function
is said to be Baire 1 if it is the pointwise limit

of a sequence of continuous functions.

In Chapter I of this paper we discuss the
following generalization of the Darboux property.
(It is due to A.M. Bruckner and J.B. Bruckner.) 1If
X and Y are topological spaces and 8 1is a basis
for X, then a function f : X 4+ Y 1is said to be
Darboux (8) if £(U) is connected for all U € ®.

If X

]
=
I
=

1 (the real line) and ®8 is the basis
of open intervals for Eq, then this reduces to the

usual notion of the Darboux property.

C.J. Neugebauer characterized (in terms of
inverse images of closed sets) the class of Baire 1

functions having the ordinary Darboux property. 1In
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Chapter II we consider the family {§ consisting of
Baire 1 functions mapping E (Euclidean n-space)

into a fixed separable metric space Y. A theorem is
proved establishing a condition which distinguishes
those functions in J§ which are Darboux (#8), where
8 1is any basis for E, satisfying certain restrictions.
The condition 1is stated in terms of inverse images

of closed sets and is similar to Neugebauer's condition
for Baire 1 functions having the ordinary Darboux
property. Examples are given showing the various
hypotheses in the theorem cannot be omitted. An
example is also given showing the theorem is no longer
valid if the domain E is replaced by an infinite-

dimensional normed linear space.

A function f : E. 2+ E is said to be

n 1

differentiable at x if
£(y) - £(x) = (y-x)- grad f£(x) + o(|y-x|)

as y <+ xXx. A function is said to be differentiable if

it is differentiable at x for all x ¢ E, . In

Chapter III we consider real-valued functions defined on

E » each having a gradient everywhere in E . It is shown
that the gradient of a differentiable function is Darboux

(8), where 8B is any basis for E, consisting of
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connected sets satisfying a certain restriction. An
example is given showing that this restriction cannot

be omitted. An example is also presented showing that

the gradient of a function which fails to be differentiable
at even a single point need not be Darboux (8), where 8
is any basis whatever for E_. In addition, a Darboux
property for partial derivatives and an "intermediate-
value property" for the norm of the gradient of a

differentiable function are established.
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CHAPTER I

INTRODUCTION, DEFINITIONS, AND NOTATION

Throughout this paper E, will denote n-
dimensional Euclidean space. The interior of a set
S will be denoted by Int S, the boundary by

Bd S, and the closure by S.

A function f : E, - E is said to have the

1 1
Darboux property if, given any a and b, a < b,

and any c¢ between f(a) and f(b), there is some
t € (a,b) such that £f(t) =c. (This defining
property is usually termed the intermediate value
property. A detailed exposition of functions with
this property can be found in the survey article [3].)

This definition gave rise to the following generalization

due to Mi%ik [5].

Definition 1.1. Let X be a topological
space, and let ®B be a basis for X. A function
f:X o E; is said to have the strong Darboux property
relative to 8 if, given any U € 8 and any real
number c for which there exist x; and x, in U
with f(xl) < e < f(xz), there is some t € U such

that f£f(t) = c.



Notice that, if X = E and 8 1is the basis

1
for E, consisting of all open intervals, then this

reduces to the ordinary Darboux property.

Now the main purpose of this paper is to
establish a Darboux property of some sort for the
gradient. Thus Mi3{k's generalization is not the
appropriate one, for it requires the functions under
consideration to be real-valued which the gradient

is not.

The ordinary Darboux property for a real-
valued function of a real variable can also be defined
in the following fashion. (This definition is
equivalent to the one given above.) A function
f : E; B is said to have the Darboux property if
f(I) 1is connected for each closed interval I. This

definition gave rise to the following generalization

due to Bruckner and Bruckner |2].

Definition 1.2. Let X and Y be topological
spaces, and let ® be a basis for X. A function
f : X Y is said to have the Darboux property relative
to 8 (or, more briefly, is said to be Darboux (8)) if

f(U) is connected for all U € 8.



It is this generalization of the Darboux
property which will be used in this paper. Notice

that, if X =Y = E and 9 1is the basis for E

1 1
consisting of all open intervals, then this reduces

to the ordinary Darboux property.

Suppose now that 8 is a basis for a topological
space X. Then, if a function f : X =+ E; has Mi%ik's
strong Darboux property relative to 8, it is trivial
to show that f is also Darboux (8). However, as

the following example shows, the converse is not true.

Example 1.1. Let 8 be the basis for E2

consisting of the open rectangle R with corners at

(o,1), (-1,1), (-1,-1), and (0,-1) and all open balls

not tangent to the y-axis. Define f : E, + E, as
follows.
. 1
sin (x+l , x < =1
0] ’ -1 . x <O
f(x,y) = < 0 ’ X =0 and \y\ > 1
y . x =0 and |y| <1
. 1
L51n (i) ’ x >0

It will be shown in Example 2.11 that f is Darboux (®).
But f does not have the strong Darboux property relative

to ®, for f(R) = [-1,1] while £(R) = (0]}.



There are certain terms and notational
conventions which will be used throughout this paper.

They are presented at this point.

Definition 1.3. Let (X,d) be a metric space.

Then an open ball is denoted and defined as follows:

B(a,r) = {x € X : d(x,a) < r}.

Definition 1.4. A topological space is said
to be separable if it contains a countable dense

subset.

Definition 1.5. A function is said to be
Baire 1 if it is the pointwise limit of a sequence

of continuous functions.

Definition 1.6. A function f : En - El is

said to be differentiable at x if
f£(ly) - £(x) = (y-x)- grad f£(x) + o(|y-x|)

as y =+ x, where -+ denotes the usual scalar product

in En and grad f(x) 1is the vector whose ith
coordinate is the partial derivative of f with respect
to the ith variable evaluated at x. The function f is
said to be differentiable if it is differentiable at

x for each x € En'



Neugebauer [6] characterized (in terms of
inverses images of closed sets) the class of Baire 1
functions having the ordinary Darboux property.

(Also see Weil [7].) In Chapter II we consider the
family § consisting of Baire 1 functions mapping

E into a fixed separable metric space Y. A theorem
is proved establishing a condition which distinguishes
those functions in § which are Darboux (8), where

® is any basis for E, satisfying certain restrictions.
The condition is stated in terms of inverse images of
closed sets and is similar to Neugebauer's condition
for Baire 1 functions having the ordinary Darboux
property. Several examples are given demonstrating
that the various hypotheses of the theorem cannot be
omitted. In particular, a rather lengthy example is
presented showing that the domain E, cannot be
replaced by a general normed linear space (in fact,
not even by a separable Banach space) if the theorem

is to remain valid.

There is a theorem due to Bruckner and
Bruckner [2] establishing another condition which
distinguishes those functions in § which are Darboux
(), where ®8 is any basis for E, satisfying

certain restrictions. The condition is stated in terms



of inverse images of open sets and is similar to a
condition due to Zahorski [8] for Baire 1 functions
having the ordinary Darboux property. Bruckner and
Bruckner's result follows quite easily from the

theorem mentioned in the last paragraph and is presented

as a simple consequence thereof.

In Chapter III the results of Chapter II
are applied to the gradient. (When we consider grad f
here, we tacitly assume f 1is such that grad £
exists everywhere in En') An example is presented
showing that the gradient of a function which fails
to be differentiable at even a single point need not
be Darboux (8), where 8 is any basis whatever for
E . Using a theorem from Chapter II, it is shown
that the gradient of a differentiable function is
Darboux (8) provided each element in 8 is connected

and none comes to a cusp on its boundary.

The major result in Chapter III has some
rather interesting corollaries. In particular, a
Darboux property is established for partial derivatives.
In addition, it is shown that the norm of the gradient
of a differentiable function has Mi%fk's strong Darboux
property provided certain restrictions are placed on

the basis for En under consideration.



CHAPTER 11

A GENERALIZED DARBOUX PROPERTY

In [7] Weil defines a ball closed G, set

5
as follows. A G6 set H cC En is called a ball
closed G6 set if, whenever B(x,r) < H, one has

Bd B(x,r) € H. Neugebauer proved in [6] (without
using Weil's terminology) that a real-valued function
f of a real variable is Baire 1 and has the ordinary
Darboux property if and only if the sets

(x : £(x) >a} and (x : f(x) < a} are ball

closed G6 sets for each real number a.

In this chapter we shall consider the family
3 consisting of all Baire 1 functions mapping E
into a fixed separable metric space Y. As remarked
earlier, the main objective of Chapter II is to
establish a condition distinguishing those functions
in § which are Darboux (8), where ®8 is any basis
for E, satisfying certain restrictions which will
be introduced later. The condition will be stated in
terms of inverse images of closed sets and will be
similar to Neugebauer's condition for Baire 1 functions

having the ordinary Darboux property. To establish



this condition it is first necessary to isolate the

"ball closed" part of the ball closed G, concept.

)

Definition 2.1. Let X be a topological
space, and let B be a basis for X. A set S cX
is said to be B closed if, for each U € 9,

Bd U cS whenever U C S.

Example 2.1l. Clearly any closed set in En
is B closed no matter what the basis B is.
However, a set can be 8 closed without being closed.

Let ® be the open-ball basis for E Let

5
S={(x,y) : 0<{x<1l, 0y <1, (x,v) # (1,1)}.

S 1is not closed, but S is 8 closed.

Example 2.2. Even an open set in E, can be
closed. Let ®8 be the basis for E,; consisting of
all open intervals except those having O as a right

endpoint. Then (-«,0) 1is both open and %8 closed.

Example 2.3. A set which has no interior is
vacuously B closed no matter what ®8 is. For
example, in E1 both Q (the set of rationals) and

E; ~Q are 8 closed for every basis 8.



Most of the results in this chapter require
that certain restrictions be placed on the bases
under consideration. The three restrictions that

will be used are presented here with some discussion.

Definition 2.2. Let X be a metric space,
and let ® be a basis for X. Then 8 1is said to
satisfy (1) if, given any open ball B and any
X € Bd B, there is some V € 8 such that v ©€B

and x € B4 v.

Definition 2.3. Let X be a metric space,
and let B8 be a basis for X. Then ®8 1is said to
satisfy (2), if, given any U € 8 and any x € U,
there is some V ¢ 8 such that V ~ (x} c U

and x € V.

Definition 2.4. Let X be a metric space,
and let B be a basis for X. Then 8 is said to
satisfy (3) if, given any U ¢ 8 and any Xx € U,

there is some V € 8 such that Vv cU and x € Bd V.

Condition (1) says that, given any ball and
any point on its boundary, you can touch that point with
a basis element lying inside the ball. Condition (2)
says that, given any basis element U and any point

X 1in its closure, you can touch x with a basis
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element whose closure (except possibly for x) lies
inside U. Condition (3) says that, given any basis
element U and any point x in U, you can find

another basis element contained in U having x on

its boundary.

Conditions (1) and (2) are independent as
Examples 2.4 and 2.5 show. Conditions (2) and (3)
are independent as Examples 2.5 and 2.6 show.
Example 2.7 shows that condition (3) does not imply
condition (l1). In general, condition (1) does
not imply condition (3) either. For example, any
basis for a discrete space satisfies (1) but not
(3). However, if ® is a basis for E, which

satisfies (1), %9 must also satisfy (3).

Example 2.4. Let % Dbe the basis for E2
consisting of all open balls and the open rectangle
R with corners at (0,1), (-1,1), (-1,-1), and
(0,-1). 8 satisfies (1), for clearly, given any
ball and any point on its boundary, you can touch
that point with another ball (which will be a basis
element) lying inside the given ball. But ®8 does
not satisfy (2), for you cannot touch any corner X

of the rectangle with a basis element whose closure

(except for x) 1lies inside the rectangle.
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Example 2.5. Let ®8 be the basis for
E; consisting of all open intervals not having O
as an endpoint. B clearly satisfies (2). However
B8 does not satisfy (3). For example, (-1,1) is
a basis element and O 1is in its interior. But
there is no basis element lying in (-1,1) having

O as a boundary point. Notice that 8 does not

satisfy (1) either.

Example 2.6. Let 8 be the basis for E,
consisting of the open rectangle R with corners at
(o,1), (-1,1), (-1,-1), and (0,-1) and all open
balls not tangent to the y-axis. @ satisfies (3),
for clearly, given any basis element and any point

X 1inside it, there is an open ball which is not
tangent to the y-axis (and, hence, is a basis
element) lying inside the given basis element and
having x as a boundary point. However 8 does not
satisfy (2), for you cannot touch any corner x of

the rectangle with a basis element whose closure (except

for x) 1lies inside the rectangle.

Example 2.7. Let #8 be the basis for E,
consisting of all open intervals except those having
O as a right endpoint. Clearly ® satisfies (3)

but not (1).
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Remark. Most of the results in this chapter
require that at least one of the three restrictions
mentioned above be placed on the basis 8 under
consideration. It should be noted that, if ®8 1is
the basis for E consisting of all open balls, 9
automatically satisfies (1), (2), and (3). However,
as Bruckner and Bruckner mention in [2], this offers
no help in overcoming the difficulties caused by other

bases.

The following theorem is well known. It
was originally proved (in an equivalent form) by
R. Baire. (See, for example, [4, p.326].) It is

presented here without proof.

Theorem 2.1. Let X be a complete metric
space and Y a separable metric space. Let f : X Y

be Baire 1. Then, for any non-void G set S c X,

)
f|s (f restricted to S) has a point of continuity.

The following theorem is the major result

in this chapter.

Theorem 2.2. Let Y be a separable metric
space. Let f : En + Y be Baire 1. Let 8 be a

basis of connected sets for E satisfying (1).
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1

Then, if f (K) is ® closed for all closed K cC Y,

f is Darboux (%).

Proof. Let f 1

(K) be B closed for all
closed K c Y. Suppose however that £ 1is not
Darboux (B8). Then there is some U € 8% such that

£(U) is not connected. Hence there exist sets

* *
A and B, closed in Y, such that
- - * - *
£(U) = (£(U) NA ) U (£(U) NB)
is a decomposition of f£(U) into two disjoint, non-

void, relatively closed sets.

-— %*
Let A= {(x €U : f(x) €A }. Let

- * -
B (x €U : f(x) €B }. Notice that U = A UB. Let

P=UNBA A. Notice that P = U N BAd B also since

A and B are disjoint, U cA UB, and U 1is open.

It is claimed that P # ¢, for suppose P
is void. Then each x € U 1is in either 1Int A or
Int B. Hence, since U is connected, either U c A
or UcB. If UcA, BdUCA since f—l(A*) is
® closed. Hence B = ¢ which is a contradiction.
If UcB, BAUCB since f—l(B*) is 8 closed.

Hence A = ¢ which is a contradiction.
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Notice that P 1is clearly a G6 set.

It is claimed that A N P is dense in P,
for suppose not. Then there exists some b0 € P and
some open ball N = B(bo,r) c U such that
NN (A NP =¢g. That is, there are no points of
A NBAd A in N. 1In particular, bO £ A N BA A;

sO bo € B. Since bo € B NBAd A, there exists

some  a ean B(bo.z). Let 4 = dist(ao,ﬁ). Then
0 <d«< g. The second inequality is clear. The
first inequality follows from the fact that a_ £ B.

(@]
(If ag € B, then a, € (A NBdA) NN which is

impossible.) There exists some bl € B such that
|b1—ao\ = d. It is claimed that bl € B. (If

b B ~ B, then b, € (A N BAd A) NN which is

1 €
impossible.) Since ®B satisfies (1) and since

bl € B4 B(ao,d), there is some W € 8 such that

1

WcBa,d) cAcE (A") and b, € W. But this is

*
impossible since f (A ) is ®8 closed.

The argument that B N P is also dense in

P 1is identical since P = U N Bd B.

Now P 1is a G6 set, f 1is Baire 1, and
Y 1is a separable metric space. Hence, by Theorem 2.1,
f|P has a point of continuity. But this is impossible,

for suppose x 1is a point of continuity of f|P.
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Either X € A or x € B. Suppose X € A. Since

B NP is dense in P, one can choose a sequence of
points bn € B NP such that bn converges to Xx.
Since x 1is a point of continuity of f£|P, f(bn)
converges to f(x). Since B* is closed and

f(bn) € B* for all n, f£f(x) is in B*. Hence x € B
which is a contradiction. (If one assumes that

X is in B, an identical argument again

leads to a contradiction.) Hence f must have been

Darboux (®) .

The hypothesis in Theorem 2.2 that £ be
Baire 1 cannot be omitted as the following example

shows.

Example 2.8. Consider E; with basis 8
consisting of all open intervals. Let f be the
characteristic function of the rationals Q. (Then
f 1is Baire 2 but not Baire 1l.) The basis certainly
satisfies (l1l). The inverse image of any closed set
(in fact, of any set) is either Q, E, ~Q &, or E;
and is therefore 8 closed. However f is clearly

not Darboux (8).

The hypothesis in Theorem 2.2 that the basis
B8 for E satisfies (1) cannot be omitted (or even
replaced by the weaker condition (3)) as the following

example shows.



16

Example 2.9. Consider E; with basis 8
consisting of all open intervals not having O as
a right endpoint. As was stated in Example 2.7,
® satisfies (3) but not (1). Let £ Dbe the
characteristic function of [0O,«). Clearly £ 1is
Baire 1. The inverse image of any set is either
(-=,0), [0,x), &, or E,. Hence the inverse image of
any closed set is ® closed. However, f |is

clearly not Darboux (9).

One might ask whether in Theorem 2.2 one
could replace E by a normed linear space of some
sort. It happens that, as the following example
shows, replacing En even with a separable Banach

space invalidates the theorem.

Example 2.10. Consider Cor the space of
all sequences of real numbers converging to O. The

norm on cg is given by
x|l = s;p \xk\, where x = [xk] € cg-

The space o is a metric space with metric generated
by the norm. Let @8 be the open-ball basis for Cor
Clearly ®8 satisfies (1). It is well-known that o

is a separable Banach space.
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Let ei be the sequence with a 1 in the
ith place and O's elsewhere. Let S be the
collection of all finite rational combinations of
the ei‘s. It is easy to show that S 1is countable.
To show that S is dense, let x = [xk] € c, and
€ > 0 be given. Choose K sufficiently large that
|% | < € for all k > K. Choose rationals
Fyse+-sTy ; such that ]xk—rk\ < ¢ for k=1,...,K-1.
Let s = (rl,...,rK_l,O,O,...). Note that s € S

and that |[x-s|| < e. Hence S 1is indeed dense in c_.

Now let

-k

I

H= (x = [xk] €c_ : E) xk2 o}.

° k=1
It is claimed that H 1is closed. Let ¢ > O and

y = {yk] € H be given. Then there is some x = [xk} € H

such that |ly-x|| < €. Since 5 xK27k - O, one has
that k=t
|z v 2 K| = |z (vi-x, )27 2 z ly,=x, 1275
Sl T 27K e
k=1
But ¢ was arbitrary. Hence E) y 2% _ 0. Hence

=lk

y € H. Hence H is indeed closed.
Observe that, if a £ H, then dist (a,H) > O.

This follows immediately from the fact that Cq is a
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metric space and H 1is closed. Observe also that,

if z = [zk} €c, and z # 0, then

®

| 2 227 < |lz]|.

To see this, note that |z, | < |lz|| for all k
sufficiently large since z, *0 as k + ». Hence

one has that

L2 52N < T g 2™ < =) Z 27 - el

k=1 K )
It is claimed that dist(a,H) = | Z akz‘k|,
k=1
where a = [ak]. Let x = [xk} € H. Then, since
> xk2-k = 0, one has that
k=1
- -k - -k od -k
| Z a,2 = |2 (a,-x.)2 < T lag-x, |2
k=1 K ‘ k=1 kK 'k ‘ k=l‘k k
- .-k
< lla=x| Z 277 = |la-x]|.
k=1
Hence
it -k . .
| 2 a2 | < inf [ja-x|| = dist(a,H).
k=1 X €H
To show the reverse inequality, let e’ = {e;} be as

defined above. Let

A = MR-~ akz'k.
k=1
Let
m .
X" = {XE} =a-A % e.
m .
i=1
Note that xm €c.. It is claimed that x™ € H.

o
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> xrlzz‘k = 2 (ak—Am)2-k + 7 ak2-'k
=1 =1 k=m+1
o] _ m _
k=1 k=1

-m . m -m,.m
2 (2 -a -A2 (27-1) = 0.

Hence xm € H. One has that

la™ = o T e = ja| 1T e
i=1 i=1
= |a.] = 2m(2m-1)'1\kza akz"k\.

Therefore

dist(a,H) < [a=x™| = 2" ™17 = a2

k=1

Letting m + », one gets dist(a,H) < | > ak2—k‘.
k=1

If a £H, there is no x € H such that

dist(a,x) = dist(a,H), for suppose there were such an

X. Then

la-x|| = dist(a,x) = dist(a,H)

-k k

\kzi a2 | = \kza (a-x )2 |

which is a contradiction since |a-x| # O.

Now let S and e1 be as defined above.

S ~H is countably infinite since S 1is countably

infinite and e1 €s ~H for i=1,2,---. Hence
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. 1 2 . n
one can write S ~H = (s ,s",...}. Since s £H,
dist(s",H) > 0. Let B, = B(s",dist(s",H)). Note
that ﬁn cc, ~H, for, if not, there would be some

X € H with dist(sn,x) = dist(sn,H) which is impossible.

Define a continuous function fn on a

closed subset of c, as follows.

n -—
1, x € U B
k=1

o, X €H

k
fn(X) =

Next use the Tietze Extension Theorem to extend fn

continuously to all of Coe Denote the extended

~

function by fn' Do this for each n =1,2,+*-.
Note that fn(x) = 0 for each x € H; so
f(x) = lim fn(x) exists and equals O on H. It is
n-o ~
claimed that f(x) = lim fn(x) exists and equals 1
n -

on c_ ~H. So suppose that a £ H. Then dist(a,H) > O.

Since S 1is dense in c, and

B(a,% dist(a,H)) NH = ¢,

there is some n such that

s™ € (s ~H) n B(a,% dist(a,H)).

But then dist(sn,H) > dist(a,H). Hence

dist(a,s") < = dist(a,H) < dist(s™,H).

NI= NI

Therefore a € Bn' and, hence, f(a) = 1.



21
It is claimed that f—l(K) is B closed for

all closed K c E;- Clearly it suffices to show that

f—l(l) and f-l(o) are each @ closed. First
consider f—l(o) = H. Since H 1is closed, f-l(O)
is clearly @ closed. Next consider f-l(l) =cgy H.

Let U = B(z,r) c g1

(1). U is in ®w. Let x ¢ B4 U.
Then f(x) =1, for, if not, one has that x € H
and dist(z,H) = dist(z,x) which is impossible since

z £ H. Hence U c f_l(l). Hence f-l(l) is B closed.

Finally, it is clear that f is not
Darboux (®). The unit ball, for example, is a basis
element. But f maps its closure onto (0,1},

which is not connected.

If the restriction on the basis is changed,
one can prove a converse to Theorem 2.2 even without

the assumption that f is Baire 1.

Theorem 2.3. Let Y be a metric space.

Let 8 be a basis for En satisfying (2). Then,

-1

if £ : E Y is Darboux (8), f (K) is ®8 closed

for all closed K c Y.

Proof. Let K <Y be closed. Let U be

any basis element contained in f—l(K). It must be

shown that Bd U c £ 1

o

(K). Let x € Bd U, but suppose

that x € £ (K). Since % satisfies (2), there is
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Lk .

some V € ® such that x ¢ V and V ~ (x} c U c £
(The set V ~ {x} cannot be void, for V 1is an open
subset of En') Hence f(V ~ {x}) € K, and f£f(x) £ K.
But then f£f(V) = £(V ~ (x}) U (£f(x)} is a decomposition
of f£(V) into two disjoint, non-void, relatively

closed sets. Hence f(V) 1is not connected which is

a contradiction since V € 8 and f is Darboux (®).

The hypothesis in Theorem 2.3 that ®8 satisfies
(2) cannot be omitted even if one assumes that f is

Baire 1 as the following example shows.

Example 2.11. Let En = E and let

2’

Y = El' Let ®8 be the basis for E consisting of

2
the open rectangle R with corners at (0,1), (-1,1),
(-1,-1), and (0,-1) and all open balls not tangent
to the y-axis. As was mentioned in Example 2.6, 8

does not satisfy (2). Define f : E, + E; as follows.

ro. 1
sin (m R X <« -1
0 ’ -1 s_ x < O
f(x,y) = { o] , x=0 and |y|>1
1% ’ x =0 and |y| 1
. 1
\51n (i) ' X >0

It is easy to show that f is Baire 1. The function
f is also Darboux (®8). Any ball whose closure lies to

the left of x = -1 or to the right of x = O automatically
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has its closure mapped onto a connected set since f

is continuous in these regions. Any ball whose

closure lies in the strip -1 { x < O has its

closure mapped onto {O}. Any ball which lies to

the left of and is tangent to x = -1 has its closure
mapped onto [-1,1]. The same is true of any ball

which overlaps x = -1 orx = O. Finally f£(R) = [-1,1].
However, the inverse image of the closed set (-=,0]

is not B closed since R 1is contained in f-l((-m,o])

but R is not.

Remark. As before, let J§ be the family
of all Baire 1 functions mapping E into a fixed
separable metric space Y. If one combines Theorem 2.2
and Theorem 2.3, one gets the desired condition
distinguishing those functions in § which are Darboux
(8), where ® is any basis for E satisfying
(1) and (2). As was remarked earlier, this condition
is similar to a condition established by Neugebauer
[6] and discussed by Weil |[7] for Baire 1 functions

having the ordinary Darboux property.

Let Y be a separable metric space. Let
f : E, Y be Baire 1. Let 8 be a basis of
connected sets for E, satisfying (1) and (2). Then
f-l(K) is 8 closed for all closed K cY if and

only if f is Darboux (®).
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The following definition is due to Bruckner

and Bruckner [2].

Definition 2.5. Let X be a topological
space, and let B be a basis for X. A set S cX
is said to be dense-in-itself (8) if, given any
X €S and any U € 8 with x ¢ U, S NU contains

some point other than x.

Lemma 2.1. Let f : X +Y, where X and
Y are topological spaces. Let 8 be a basis for
X satisfying (3). Then f-l(v) is dense-in-itself
(8) for all open VvV cY if and only if f—l(K) is

B8 closed for all closed K C Y.

Proof. Let £ T(V) be dense-in-itself (®)
for all open V Cc Y, but suppose there is some closed
K c Y such that f-l(K) is not 8 closed. Then
there is some U € 8 and some X € Bd U such that

1

veflk and x ¢ £y~ . But £ l(y—x) is

dense-in-itself (®). Hence U N £ Y(Y~K) # ¢ which

is a contradiction.

For the reverse implication, let f'l(K) be

8 closed for all closed K c Y, but suppose there is

1

some open V € Y such that £ (V) is not dense-in-itself

(B) . Then there is some U ¢ 8 and some x ¢ f-l(V)
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such that x € U and U n f_l(v) c (x}. If x €U,

then, by (3), there is a U, € 8 such that U, < U

1l
If x £ U, then, obviously,

1
and x € Bd Ul‘
X ¢ Bd U. We see that in either case there is a
W €8 such that WcCc U and x € Bd W. By the choice
of U and x we have W c f—l(Y~V) which is a

contradiction because f_l(Y~V) is B closed.

Remark. Notice that, in Lemma 2.1, the
hypothesis that 8 satisfies (3) was used only to

show that, if f_l

(K) is ®8 closed for all closed
K cY, then f—l(v) is dense-in-itself (®8) for all
open V c Y. (The reverse implication was proved
without using this assumption.) That this hypothesis

cannot be omitted even if one assumes that f 1is

Baire 1 is shown by the following example.

Example 2.12. Let X =Y = El' Let B Dbe

the basis for E consisting of all open intervals

1
not having O as an endpoint. As was pointed out in
Example 2.5, % does not satisfy (3). Let f Dbe the
characteristic function of the singleton (0}. Clearly
f is Baire 1. The inverse image of any set is either
(o}, E, ~ (o}, &, or E,. Hence the inverse image of
any closed set is 8 closed. However, the inverse

image of the open set (0,«), for example, is not dense-

in-itself (B).
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As before, let 3 be the family of all
Baire 1 functions mapping E into a fixed separable
metric space Y. As was remarked earlier, Bruckner
and Bruckner [2] established a condition (stated in
terms of inverse images of open sets) distinguishing
those functions in {§ which are Darboux (8), where
B is any basis for E satisfying certain restrictions.
This condition is similar to a condition established
by Zahorski [8] for Baire 1 functions having the
ordinary Darboux property. Bruckner and Bruckner's
result is presented here as a simple consequence

of the remark following Example 2.11.

Theorem 2.4. Let Y be a separable metric
space. Let f : E - Y Dbe Baire 1. Let 8 be a
basis of connected sets for E satisfying (1) and
(2). Then f-l(V) is dense-in-itself (®) for all

open V cY if and only if f is Darboux (9).

Proof. Since ®8 1is a basis for E, satisfying
(1), B satisfies (3) also. Hence, by Lemma 2.1,
f_l(v) is dense-in-itself (B) for all open V c Y
if and only if f-l(K) is B closed for all closed
K €Y. But, by the remark following Example 2.11,
f-l(K) is ® closed for all closed K cY if and

only if f is Darboux (B).
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Remark. In the proof of Theorem 2.4, the
assumption that ®8 satisfies (2) was used only to
show that, if f is Darboux (8), then f-l(v) is
dense-in-itself (8) for all open V € Y. The
assumption that ®8 satisfies (1), however, was used

for both implications.

The following lemma gives an additional
interesting property of Darboux (8) functions. This

lemma will be used in the next chapter.

Lemma 2.2. Let X be a metric space and Y
a topological space. Let ®8 be a basis for X.
If f : X Y 1is Darboux (8), then f(V) is

connected for each connected open set V < X.

Proof. Let V € X be open and connected,
but suppose that £(V) is not connected. Then there
exist sets A* and B*, open in Y, such that
£(V) = (£(V) NA") U (£(V) n B
is a decomposition of £(V) into two disjoint, non-void,

relatively open sets.

*
Let A= ({x €V : f(x) €A }]. Let
*
B=({x €v: f(x) ¢ B]}. Notice that v = A UB and
A NB=g¢g. It is claimed that both A and B are

open in X. To show that A is open, let x € A.
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Since V 1is open, one can find an open ball W such
that X ¢e WC W c V. Since W is open, one can find
some U € B such that X € U CW. Hence X ¢ UCWecV.
It then follows that U < A, for suppose not. One
has UNA# @ since x ¢ UNA. If UNBFG also,
then

£(0) = (£(® na") U (£@ n B
is a decomposition of f(U) into two disjoint, non-void,
relatively open sets. But this is impossible since f
is Darboux (B). Therefore one has x € U c U € A.
Hence A 1is open. (The argument for B 1is identical.)
But Vv =A UB, and V is connected. Therefore

A=¢g or B=¢@. Hence f(V) 1is connected.



CHAPTER III1

A DARBOUX PROPERTY FOR THE GRADIENT

This chapter deals with real-valued functions
defined on E . It is tacitly assumed that, for
each function f considered here, grad f exists

everywhere.

Definition 3.1. Let (X,d) Dbe a metric
space. Let S cX and let x € S. Then x is said
to be accessible from S if there is some a > O
with the following property: there exists a sequence
of points c,6 €8~ {x} such that 1lim c, =X and

B(cn,ad(cn,x)) c S for each n.

Definition 3.2. Let X be a metric space.
A set S € X 1is said to have an accessible boundary

if each x ¢ Bd S 1is accessible from S.

Roughly speaking, a set S has an accessible
boundary if it does not come to a cusp on its boundary.

Consider the following example.

Example 3.1. Given s > O, let X be the

unique real root of 2x3 + x - s = 0. Then

29
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4.1/2

r, = [(s-xs)z + X

is the minimum distance from (s,0) to the curve
y = Xx°. The minimum distance from (s,0) to the

curve y = X 1is =- . Dpefine US and VS as follows.

JZ

{ (x,y)

U
S

e %2 o <
ly] < x%,0 < x <x} UB((s,0),r)

lv] <x, 0 <x<3) UB((s,0),2)
2

v { (x,y)

S

Vg has an accessible boundary, but US does not. The
point (0,0) is on the boundary of Vg and is
accessible from Vs. One can choose a to be any
positive number not exceeding sin % . The point (0,0)

is on the boundary of U also but is not accessible

from Us'

Remark. Notice that, if x € Int S, x is
automatically accessible from S. 1In fact, one can

choose a to be 1.

The following theorem is similar to a result
established by Borwein and Meier [1] for the gradient

of a function which is not necessarily differentiable.

Theorem 3.1. Let 8 be a basis for E,.
each element of which has an accessible boundary. Let

£ : En -+ E be differentiable, and let F = grad f.

1
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Assume that f£f(0) = 0 and F(0) = 0. Let U be
any element of % such that O ¢ U. Then, given
any € . O, there is some v € U such that v # O

and |F(v) | < e.

Proof. First we use the fact that U has
an accessible boundary to select an a, O « a < 1,
with the following property: given any £ > O, there
is a point e € U, such that Cg # O and

B(cg,a]cgl) cU NnB(O,E).

Next we use the fact that f 1is differentiable, that
f(0) = 0, and that F(0) = 0 to finda & > 0 such
that |f(x)‘ < %f |x| whenever x| < 8. Finally

select a ¢ € U such that ¢ # O and

B = B(c,&\c\) c U nB(O,3H).

Now let g(x) = ez\x-c\2 - f(x)2. Since g
is continuous and B is compact, there is some
v € B such that
g(v) = min{g(x) : x € B}.

For convenience let

X = min{g(x) : x € B}.

For x € Bd B one has

g(x) > e%a? |c\2 - % a? ¢? \x\z
> eza2\c|2 - %l azez(\c| + oz\c\)2
> 2a? ‘c\2 -~ }1 a?e? (2 ‘c\)2 = 0.
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But )\ < g(c) = —f(c)2 < 0. Hence g(v) = A for some

v £ B. Therefore
grad g(v) = 2ez(v-c) - 2f(v) grad f(v) = O.

Hence f(v) grad f(v) = ez(v—c), which implies that

(*) £(v)2|grad £(v) |2 = ?lv—c|? = (g ) +£(n)?)

COrEW?) < e,

If X <O, then
£(v)? = ez!v-C|2 - g(v) > -g(v) = -x>o0.

Hence, dividing (*) by f(v)2 yields the desired

result.

Similarly, if X = O and there is some Vv € B

such that v # ¢ and g(v) = A\, then one has
f(v)2 = 32 \v-c\_2 - g(v) = e:z‘v—c\2 > 0.

Again, dividing (*) by f(v)2 yields the desired result.

It remains to consider the case where )\ =0
and g(x) . O for all x ¢ B except x = c. (Notice that,

in this case, g(c) = f(c) = 0.) Let B, = B(c,%‘c\).

For x € Bd Bl one has

2 2

1 242 \z—g(x)<%€a|c

f(x)2 =2 e¢a lc

7 |°

Hence |£(x)]| < %‘ ealc| for all x € Bd B, . Since f is

continuous and Bd Bl is compact, there is some u ¢ Bd Bl
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such that
f(u) = max{f(x) : x € Bd Bl).

Since f(u) < % ea|c|, one can choose a v > O such

that £(u) + v <% ea\c\. Then, for all x € Bd By,
one has
- % ealc| < £(x) < f(x) + v L £(u) + v
< % ea|c|.
Hence, for all x ¢ B4 By |E£(x)+v] < -21- ea|c|. Now
let

n(x) = e |x-c|? - (£(x)+v)°.

Since h is continuous and }31 is compact, there is

some v € B such that

1
h(v) = min{h(x) : x ¢ 1-31].

For convenience let H = minfh(x) : x € }-31]. For

X € Bd Bl one has
h (x) )% €2u2 \cl2 - % (12e2 \c\2 = 0.
But
2 2
u<h(e) = =(£(c)+v)° = =v° < O.
Hence h(v) = U for some v € Bl' Therefore

grad h(v) = 2e2 (v-c) - 2(f(v)+v) grad f(v) = O.

Hence (f(v)+v) grad f(v) = ez (v-c), which implies that

(**) (£(v)+w) 2 |grad £ (v) \2 = & |v-c ‘2

= 2 (h(v)+(£(v)+V) )

e2 (u + (f(v)+\))2)
< 2 (e(v)+v) 2.
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But
(f(v)+v)2 = ez\v-c\2 - h(v)
= ez‘v—c\z -V
> -u > o.

Hence, dividing (**) by (f(v)+\))2 yields the desired

result.

Corollary 3.1. Let @8 be a basis for E .
each element of which has an accessible boundary. Let
f:En-oEl
Let U Dbe any element of 8, and let X be any

be differentiable, and let F = grad f.

point in U. Then, given any ¢ > O, there is some

v € U such that v # x, and ‘F(v)—F(xo)‘ < e

Proof. Let G(x) = F(x+xo) - F(xo), and let
g(x) = f(x+xo) - f(xo) - F(xo) ° X, where o denotes
the usual scalar product in E . It is clear that g

is differentiable, G = grad g, g(0) = 0, and G(0) = O.

Let B, = [—xo+w : W € B, 3, is a basis for
E . each element of which has an accessible boundary.
Moreover, V = -x +U is in ®, and O € V. Hence,
by Theorem 3.1, there is some v’ € V such that v’ # O

rd

and |G(v’) | < e. Let v=v"+ 3 Then v €U, v # X

and one has

|F(v)=F(x_) | = |[F(v™x )-F(x))| = |6(v) | < .
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The following theorem is the major result

in this chapter.

Theorem 3.2. Let ®B be a basis of connected
sets for E.. each element of which has an accessible
boundary. Let f : En + E; be differentiable, and
let F =grad f. Then F is Darboux (®).

Proof. Let 8 be the open-ball basis for
En' Let 81 = 8 U ﬁo. Then ﬁl is a basis for En
satisfying (1), and each element of %1 is a connected

set with an accessible boundary. Note that F, Dbeing

the gradient of a continuous function, is Baire 1.

Suppose F 1is not Darboux (ﬁl). Then, by
Theorem 2.4, there is an open set V C En such that
F—l(v) is not dense-in-itself (%l). Hence there is
some U € 8, and some Xx_ ¢ Uun F_l(V) such that U

contains no point of F-l(v) with the possible exception

of x .
o

We have F(xo) €V, and V 1is open. Hence
there is some r > O such that B(F(xo),Zr) C V. Now
use Corollary 3.1 to finda v €U such that v # X,
and |F(v)-F(xo)| < r. But then F(v) ¢ B(F(xo),Zr) cv
which is a contradiction. Thus F must have been Darboux

(8,) and, hence, Darboux ().
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A Darboux property for partial derivatives

follows easily from Theorem 3.2.

Corollary 3.2. Let B be a basis of connected
sets for En' each element of which has an accessible

boundary. Let f : En -+ E be differentiable. Then

1
akf (the partial derivative with respect to the kth

variable) is Darboux (8 for k =1,...,n.

Proof. Let p : E - E, be the projection

onto the kth component. Then
3 f(x) = py (grad f(x)).

Since, as is well-known, Py is continuous and, by
Theorem 3.2, grad £ is Darboux (8), it follows

immediately that akf is Darboux (%).

The following corollary establishes a sort of
intermediate value property for the gradient of a

differentiable function.

Corollary 3.3. Let ® be a basis of connected
sets for E_ . each element of which has an accessible
boundary. Let F : E - En be the gradient of a
differentiable function. Suppose that |F(x)| assumes
the values a and b, a < b, at the points u and
v respectively. Then, if U is any element of ®

such that u,v € U, ‘F(x)l assumes every value between

a and b in U.
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Proof. F 1is Darboux (®8) by Theorem 3.2.
Thus F(U) 1is connected by Lemma 2.2. Hence
(|Ftw)| : w € U} is an interval. Now suppose there
is some c¢ € (a,b) with the following property:
there exists no w € U such that |F(w)| = c. Let

€ = %’ min{c-a,b-c}.

By Corollary 3.1, one can find points WyeW, € U such

that ‘F(Wl)-F(u) | < ¢ and ‘F(wz)-F(v) | < €. Hence
[F(wy) |=al = ||F(w)) | = |F(w) ||
< |F(w1) -F(u) | < e

and

|IF(wy) |-b| = [IF(w,) | - |F(v) ||
< |Fwy)-F(v) | < e.

Therefore |F(w1)‘ < e < ]F(wz) |- Hence (|F(w)| : w € U}

is not connected which is a contradiction.

Remark. Let F and 98 be as described in
Corollary 3.3. Let G(x) = |F(x) |. Then what
Corollary 3.3 says is that G has the "strong Darboux
property relative to ®" as defined by Mi%{k [5]. 1It

should be noted that G must also then be Darboux (8).

The hypothesis in Theorem 3.2 that each element
in ®8 have an accessible boundary cannot be omitted as

the following example shows.
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Example 3.2. Given s > 0, let Us be as
defined in Example 3.1l. The collection of all such
Us together with translations of same is a basis

for the usual topology on E Call this basis 9.

2.
Each U € 8 1is connected, but each U ¢ 8 has a

point on its boundary which is not accessible from U.

Let
h(x,y) = f% x-4y3 - %? x-zy2 + %%-y - %Z x>
for x > O. Define f : E, + E; as follows.
(o vy 2 4x®> and x >0
-h(x,-y) . f4x2 <y < -x%2 and x >0
f(x,y) = é y A g_xz and x >0

h(le) ’ X2 <y < 4X2 and x > O

o) , x <O

It is an elementary though rather tedious task to show
that f 1is indeed everywhere differentiable.) Now
let F = grad f. We have F(0,0) = (0,0). However,
F maps the set {(x,y) : |yl o x2, X > 0} onto the

point (0,1). Hence, for each s > 0, F maps U,
onto a set which is not connected. Therefore F 1is

not Darboux (B).

The hypothesis in Theorem 3.2 that f be
differentiable cannot be omitted as the following

example shows.
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Example 3.3. Let % be any basis whatever

for E2. Let
2xy (x%+v2) 12, (x,y) # (0,0)
f(x,y) =
0] ’ (XIY) = (Olo)o
Then
(22 (xP4y2) 372, 26 (:P4yD) ), xuy) #
grad f(x,y) =
(0'0) ’ (X,Y) =

For (x,y) # (0,0),
3

|grad f(x,y)!2 a (x%+y®) (x®+y%)”

g + % cos 49 > 1,

where x =r cos # and y = r sin 8. But |grad £(0,0) |
Thus, for any open neighborhood U of (0,0), grad f(D)
is not connected. The function f 1is differentiable
everywhere save at the origin, for f,fx, and fy are

continuous everywhere save at the origin. But grad f

is certainly not Darboux (%).

Remark. Let %8 Dbe any basis of connected
sets for E - Let f : E -+ E be continuously
differentiable, and let F = grad f£f. Then F is

clearly Darboux (%).

(0,0)

(0,0).

= O.
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