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ABSTRACT

THE THERMAL CONDUCTIVITY OF SILVER—ION

SUPERIONIC CONDUCTORS

By

Michael Carl Goetz

The thermal conductivity for several samples of AgI,

AgIO.963rO.O4’ and PyAg516 was determined between 120 K and

500 K using the transient-hot-wire method. In the experi-

mental set-up the temperature excursion of a nickel wire

resistively heated by a current pulse and surrounded by

sample material is determined many times a second. The

logarithmic time dependence of the temperature excursion

is used to calculate the thermal conductivity.

All of the sample materials have phase transitions

above which they are superionic conductors with the charac—

teristic high ionic conductivity. Below these phase transi—

tions in AgI and AgIO.96BrO.O4 the temperature dependence of

the thermal conductivity is interpreted in terms of multi-

phonon scattering processes, while above the transition

temperatures the data is analyzed using a form of the thermal

conductivity that assumes a minimum phonon mean free path.

These data suggest that the mobile ions play no direct

part in thermal conduction in these materials.

The PyAg516 data is difficult to interpret because of

the scatter and because the quality of the samples is

questionable.
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CHAPTER I

INTRODUCTION

The thermal conductivity is a transport property which

relates the amount of heat per unit area that flows per

unit time to the temperature gradient which produces this

heat flow. A formulation of the differential equation that

describes thermal conduction was published by Fourier1 in

1822.

Measurements2 of the thermal conductivity of dielectric

solids early in this century indicated a T-1 dependence

above 77 K. To explain this behavior, Debye3 suggested that

traveling waves could carry heat in an elastic medium and

that these waves would be scattered by anharmonicities in

the material. Peierls4 quantized these waves, and rigor-

ously treated the anharmonicities of the crystalline

structure. He found that only those scattering processes

that do not conserve crystal momentum contribute directly

to the T"1 dependence of the thermal conductivity at high

temperatures.

Since the treatment of Peierls many other theories con-

sidering additional scattering mechanisms have been used to

explain the results of these, and other, thermal conductivity



experiments. Reviews and books dealing with the thermal con—

ductivity of solids have been written by the prominent work-

ers in the field--Berman5, Slacke, Klemens7’8, and Zimang.

Many different methods have been used to measure thermal

conductivity. One particular technique used originally to

measure the thermal conductivity of fluids is the transient

hot wire technique.

Stalhane and Pyk10 pioneered the transient hot wire

method by determining empirically the time dependence of the

temperature increase of a thin wire located in a known liquid

and heated by the passage of an electric current. Van der

Held11 related their result to a solution of the differential

equation of Fourier under appropriate boundary conditions.

Since then the transient hot wire method has been used by

several groups of experimenters to measure the thermal con—

ductivity of fluids with each group, in turn, refining the

mathematical solutionlz.

With the advent of high precision measuring techniqueslB,

the transient hot wire method has been used to measure

thermal conduction in solids. The method has been applied

15 where the structuralwith success to NH4C£ 14 and ice

changes in the materials can be studied by measuring the

thermal conductivity.

The effects of the high ionic disorder of superionic

conductors upon thermal conduction have not been studied

previously. The classification "superionic conductor"

includes all solids (for example, AgI, PbFz, B-alumina)



with a melt-like ionic conductivity and a low activation

energy for ionic diffusion. The high ionic conductivity of

these materials suggests using them as electrolytes in

solid state batteries and in solid electrolyte coulometers.

Due partly to the relatively low temperature of the

first order phase transition to the superionic phase, silver

iodide has been investigated intensely since the discovery

of the high-ionic-conductivity silver-conducting phase by

Tubandt and Lorenz in 191416. .From X-ray diffraction studies

of the superionic phase of AgI Strock17 determined that the

iodine ions have a simple b.c.c. structure and identified

forty-two available sites for the two silver ions in each

unit cell. He concluded that the mobile silver ions hopped

from site to site within this structure. Recent neutron

diffraction studies18 have modified this picture by estab-

lishing that some sites are unoccupied and by indicating

clearly the conduction pathways in the open structure.

The technological need for room-temperature superionic

conductors has motivated the substitution of impurity ions

for some of the silver ions in silver iodide in order to

open up the structurelg. One such room-temperature super-

ionic conductor is based on the partial substitution of the

pyridinium ion C5H5NH+ into silver iodide. In this compound—-

(C5H5NH)Ag5I6--a phase transition near 310 K makes available

an additional number of sites for the silver ions without

changing the structure of the other atomszo.



Another high ionic conductivity material is created by

the replacement of some of the iodine ions in silver iodide

by bromine ions. The increase in the ionic conductivity (in

some mixtures by a factor of a thousand) occurs not in the

superionic phase but rather in the low-temperature mixtureSZI.

This increase is attributed not to an increase in the number

of available sites but to an increase in the number of ions

activated to the interstitial sites in the material.

The entire subject area of superionic conductors has

been extensively reviewede—26 with emphasis not only upon

the measurements of the properties of the materials but also

on the theory of transport of the ions through the Open

structure.

The major objectives of the work that follows are:

a) the construction of a transient hot wire method

apparatus;

b) the measurement of the thermal conductivity of some

high ionic conductivity materials; and

c) the subsequent interpretation of the data with

emphasis upon the ionic disorder.



CHAPTER II

SUPERIONIC CONDUCTIVITY AND THE SAMPLE MATERIALS

The sample materials are superionic conductors, so that

the experimental results must be interpreted in terms of

processes that allow a high ionic conductivity. The

following section describes

a) the ionic disorder of these materials,

b) the principal measurements which investigate this

ionic disorder, and

c) specific detail concerning the materials.

Ionic Disorder
 

The superionic conducting phase of a solid has an ionic

conductivity near that of the melt and a low activation

energy for the mobile ions. The conducting ions move freely

along extended pathways between the stationary ions of the

solid.

X-ray and neutron diffraction experiments establish

that the stationary ions in a superionic conductor form a

regular sub-lattice and that the mobile ions are spread over

many possible sites within the unit cell. These sites can



be divided into several sets of locations with the same

symmetry, and the mobile ions can be pictured as hopping

from site to site in the solid.

The passageways through the solid consist of inter-

connected inequivalent sites. The easy movement of the

mobile ions through the passageways requires that the energy

barriers between the sites be low. In other words, the

activation energy for diffusion must be small.

The hopping diffusion in superionic conductors is not

the same as ionic conduction in a normal (non-superionic-

conducting) solid. The mobile ion in a normal solid can

occupy its own lattice site, move into a vacancy left by

another ion, or occupy an interstitial position. In a

superionic conductor the mobile ion can occupy any of

several sites--the number of available sites is much larger

than the number of ions that can occupy them.

The idea of a few ions with many possible sites per

ion forms the theoretical basis of the ionic disorder within

superionic conductors. Interactions between these mobile

ions are suggested by investigations of phase transitions

in these materials.

The phase transition from a normal solid to a super-

ionic conductor can be considered as a sublattice melting

transition-—the mobile ions of the superionic conductor

melt from a separate rigid structure in the normal solid.

The extent to which the mobile ions are liquid-like demands

some knowledge about the interactions between the mobile

ions.



Some superionic conductors have phase transitions in

which the occupancy of certain sets of sites becomes allowed

without other structural change. Although both phases are

disordered, some set of restrictions on the movement of

the ions disappears at the transition. This removal of

restrictions also suggests that long-range correlations

affect apparently free disordered ions.

Several theoretical models for superionic conductors

are suggested by this general discussion:

a) hopping models, where the ions are considered as

hOpping from site to site;

b) lattice gas models, which stress the statistics of

n ions spread over N sites;

c) free-ion models, which treat the charged ions like

the free electrons of the Drude model for metals;

and

d) hydrodynamic models, which emphasize the melt-like

characteristics of the superionic phase.

Measurements and Disorder

In order to learn about the ionic disorder and how it

occurs in each superionic conductor, three principal experi-

ments are done:

a) measurement of the ionic conductivity;

b) X-ray diffraction experiments; and

c) measurement of the heat capacity.



Since they provide a basic working knowledge of the materials,

these are generally the first experiments done on a new

superionic conductor. In this section the information that

each set of measurements provides will be discussed.

The ionic conductivity of a solid identifies the mate-

rial as a superionic conductor. It is usually 3—4 orders

of magnitude larger than that of a normal solid (such as

NaCZ) immediately below the melting temperature and approaches

that of the melt (~1 Q-lcm-l).

Measurements of the ionic conductivity can be analyzed

to provide the activation energy for charged ion diffusion

when only one ionic species is mobile. Simple arguments

then indicate that the ionic conductivity 0 has a temperature

T dependence like27

A

o = 7-1.1 exp (ml/1:31;) (1)

where AI is a temperature-independent prefactor, k is the
B

Boltzmann constant, and the slope energy E is obtained from

1

I

the slope of plots of log(oT) against T-

The slope energy EI is an empirically determined

energy that is equal to, or greater than, the activation

energy for ionic diffusion. The activation energy is the

height of the energy barrier that restricts the motion of

the mobile ion.

Any difference between the slope energy and the acti-

vation energy is generally ascribed to the formation of



either Frenkel or Schottky defects. The silver halides

principally form Frenkel defects (the combination of a

vacancy and an interstitial) in the normal phase28, and

diffusion occurs by the movement of interstitials through

the solid.

In the normal solid at low temperatures, frozen—in

interstitials control the ion motion, and so

E = E (2)

where EA is the activation energy for the diffusion process.

At higher temperatures in the normal solid, temperature-

activated Frenkel defects form, and the slope energy EI

increases to

E=E+%E (3)

where Ef is the energy of formation for the Frenkel defects.

As a result, the plot of log(oT) vs T-1 will show a sharp

increase in the slope at the temperature where the Frenkel

defects begin to control the ionic conductivity.

Ideally the slope energy EI determined for the super-

ionic state will obey

E = E (4)

where Em is the migration (activation) energy for the dif-

fusion of the mobile ions through the rigid open structure.

Since equation (4) assumes that none of the interactions
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noted earlier are present, if some set of restrictions

inhibits mobile ion conduction, then

E - Em > 0 (5)
I

because a formation energy will contribute to the SIOpe

energy. Supplementary measurements (such as the thermo-

powerzs) have shown that the statement of equality, equation

(4), holds for many but not all superionic conductors.

Another of the set of principal experiments is the

determination of the rigid structure within the superionic

conductor using X-ray diffraction. The data is analyzed by

identifying the Bragg (or Debye) peaks, assigning a rigid

structure consistent with the scattering, and finally deter-

mining the locations within the structure where mobile ions

might be located. Three considerations guide this deter-

mination of the mobile ion siteszgz

a) there must be many more sites than ions to fill

them;

b) the sites must form a connected conduction path-

way; and

c) movement along this pathway must require a low

activation energy.

The positions for the mobile ions within the superionic

conductor ideally can be checked by analysis of the diffuse

X-ray scattering. The diffuse X—ray scattering contains a

coherent scattering part that can be separated from Compton

scattering, thermal vibrations, and the general background.
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The coherent scattering intensity, once isolated, can provide

the radial distribution functions of the mobile ions about

other mobile ions and of the mobile ions about the stationary

ions.

The two radial distribution functions are difficult to

separate, and when separated using other X-ray techniques,

do not indicate much beyond nearest-neighbor distances30.

As a result, supplementary experiments such as neutron dif-

fraction and EXAFS (Extended X-ray Absorption Fine Structure)

are done to detail the locations of the mobile ions.

The last of the principal set of experiments done on

superionic conductors is measurement of the heat capacity.

The object of these measurements is the determination of

phase transitions and of disorder from both the location of

peaks in and the anomalous contributions to the heat capacity.

The heat capacity Cp measured at constant pressure

can be written in terms of temperature derivatives of the

entropy S and the Gibbs free energy G,

  

where T is the absolute temperature. The Gibbs free energy

is a thermodynamic state function, and changes in G describe

energy changes associated with thermodynamic processes.

By definition31, changes in G that produce a step dis-

continuity in %% (and hence an infinity in Cp) indicate
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first-order phase transitions. If %% changes its slope

continuously, then humps or discontinuities in CD indicate

higher-order phase transitions. Anomalous increases in the

heat capacity near phase transitions are due to increased

disorder (increased entropy S) in the material.

In the sections that follow, the sample materials will

be characterized primarily through this set of three experi-

ments, with supplementary data included where it clarifies

details.

Silver Iodide
 

Silver iodide AgI is one of the most interesting super—

ionic conductors for several reasons:

a) its simple chemical formula and structure suggest

that the mechanism of superionic conduction should

be uncomplicated; I

b) half of the ions (the cations Ag+) are mobile and

therefore are the current carriers;

c) the ionic conductivity 0 increases by a factor of

104 to ~1.3 9‘1cm.1 (one of the largest ionic con—

ductivities for any solid) in the superionic phase

at the first-order transition at 420 K;

d) the ionic conductivity decreases upon melting at

830 K; and

e) the temperature range over which it is a superionic

conductor (420 K to 830 K) is a large fraction of

the temperature range over which it is solid.
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The plot of log(oT) vs T’1 (see Figure 1) indicates the

features noted above. The SIOpe energies associated with

these data are given in Table 1.

Silver iodide has three phases at atmospheric pressure:

a) the superionic a-phase above 420 K;

b) the stable B-phase below 420 K; and

c) the metastable y-phase below 420 K.

The metastable y—phase forms rather easily under extremes

of pressure such as powdering and pelletizing34, so that

precautions must be taken to insure a pure sample of the

stable B-phase. Two procedures that eliminate y-AgI are:

a) annealing the sample between 400 K and 420 K for

about one week35; or

Table l. Slope Energies EI for AgI

 

 

 

 

E Meas.

Range I Sample Fre ReferencePhase T(K) (ev) Type (HQB.

a-AgI 420 + 820 0.051 Powder 0 16

250 + 420 0.58 Crystal 10 l

200 + 250 0.38 l c-axis A

B-AgI
32

250 + 420 0.73 Crystal 10

200 + 250 0.41 It c-axis I

y-AgI 300 + 400 0.26 powder 104 33
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Figure l. The ionic conductivity data for AgI (after

Tubandt and Lorenzl6, Govindacharyulu, et al.32,

and Hoshino and Shimoji33).
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b) heating the sample to 450 K or above, and sub-

sequently cooling the material slowly back through

the phase transition.

Samples of Y-AgI heated just through the phase transition

at 420 K will be y-AgI when cooled back through the phase

transition, and the samples must be heated well above the

phase transition to produce B-AgI when cooled36.

The values of EI given for B-AgI indicate that the

crystals are anisotropic and that the few mobile ions will

be channeled along certain preferred directions. The Y-AgI

results do not show any dependence on crystal anisotropy

since these measurements were taken on powder samples. The

ionic conductivity for both phases is due to the movement

32,37
of silver ions through interstitial locations

The value of E for d—AgI is significantly smaller
I

than the values for B-AgI and Y—AgI, and indicates a low

activation energy. The high value for the ionic conducti-

vity o and the low value for the slope energy EI are

sufficient to label a-AgI as a superionic conductor.

The structure of these phases has been determined by

X—ray diffraction:

a) the superionic conductor a-AgI has a b.c.c. rigid

structure;

b) stable B—AgI has a wurtzite structure; and

c) metastable y-AgI has a zincblende structure.

The existence of two room—temperature phases (B-AgI and

y-AgI) was first shown by Wilsey38, who found both structures

in a set of several samples.
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According to the X-ray diffraction measurements of

Strock17, the iodine ions for a-AgI are arranged in a body-

centered-cubic lattice while the mobile silver ions can be

found at any of forty-two possible crystallographic sites

(one set of six octahedral sites, one set of twelve tetra-

hedral sites, and one set of twenty-four trigonal sites) in

the unit cube (see Figure 2). Although the rigid structure

has been repeatedly verified, neutron diffraction studies18

indicate that the octahedral sites for the mobile ions are

not occupied. These neutron diffraction studies show that

the mobile silver ions in d-AgI move from tetrahedral site

to tetrahedral site within the rigid iodine structure using

the trigonal sites as intermediate bridging sites.

To understand the nature of the superionic phase transi—

tion in AgI one can look at the heat capacity data of N61ting39

(see Figure 3). The curve clearly shows that the superionic

transition at 420 K, like the melting transition at 830 K,

is first order. No additional features are seen in this

heat capacity data either above or below the superionic

phase transition.

Many other material properties have been measured and

are catalogued in the reviews indicated in the introduction.

The reasons for measuring the thermal conductivity K

of AgI can be stated as follows:

a) the relative abundance of information concerning

the material allows calculations to be done;

b) its structure is simple;
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Figure 2. Sites for AgI in the Strock Model.

 



19

 

  

 

 

    

v 6 (octahedral)

o 12 (tetrahedral)

- 24 (trigonal)
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39
Figure 3. The heat capacity Cp for AgI (after Nblting ).



21

 

 

l l l l

3 $2

()1 elow/ lea) Mgoedeo tee”

A
.
.
.

 
8
0
0

6
0
0

4
0
0 T
e
m
p
e
r
a
t
u
r
e

(
K
)

.



22

0) its superionic phase is conveniently set apart from

the room-temperature phases by the transition at

420 K; and

d) the thermal conductivity K is an unmeasured trans—

port coefficient that either directly (if K is due

to the ions) or indirectly should continue the

characterization of this compound.

Silver Iodide/Silver Bromide Mixtures

In order to learn more about ionic disorder, changes

in the ionic conductivity may be monitored when impurity

ions are introduced. The effects of these impurities will

fall into two categories:‘

a) size effects, such as occur when a smaller ion

substitutes for a larger ion; and

b) charge effects, such as occur when one ion substitutes

for another ion with a different charge.

Charge effects will lead to increased or decreased numbers

of vacancies or interstitials in order to achieve charge

neutrality in ionic conductors. For example, a Cd++ impurity

in AgI will be compensated by a silver ion vacancy.

Size effects can be viewed as opening or closing the

structure to the mobile ions. The partial substitution of

bromine ions (using silver bromide) for some of the larger

iodine ions in silver iodide should change the ionic con-

ductivity through size effects alone.
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A plot of the ionic conductivity against concentration

for silver iodide/silver bromide mixtures at room tempera-

ture21 (see Figure 4) can be used to gauge some of these

effects. The data shows a peak at 20 atomic percent AgBr

where the ionic conductivity of the mixture is 3 orders of

magnitude greater than the ionic conductivity of either

component.

Figure 4 also shows the single-phase and multi-phase

40. B-AgI dis—regions of composition for these materials

solves up to 5 atomic percent AgBr to form one of the two

single-phase regions, while AgBr dissolves up to 30 atomic

percent AgI to form the other. The multi-phase mixtures

consist of combinations of the two single-phase materials

and any leftover component compounds.

Two points on the maximum dissolved concentration of

AgBr in AgI vs. temperature curve have been described by

Shahi and Wagner40. They find that AgI dissolves up to

~5 atomic percent AgBr at room temperature, and up to

~10 atomic percent at the superionic transition temperature.

The discussion that follows will focus upon single-phase

material (because the properties of the multi-phase mate-

rials are difficult to interpret) and so will be restricted

to concentrations up to 10 atomic percent AgBr.

The temperature dependence of the ionic conductivity

for several different concentrations of AgBr in AgI is shown

16,40,41
in Figure 5 These powder sample data show that

with increasing bromine concentration:
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Figure 4. The room-temperature ionic conductivity of

21
AgI/AgBr mixtures (after Shahi and Wagner ).
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Figure 5. The ionic conductivity of several concentrations

of AgBr in AgI (after Shahi and Wagner40

16).
Tubandt and Lorenz41, and Tubandt and Lorenz
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a) the temperature of the superionic phase transition

decreases (see also Table 2);

b) the temperature of the melting transition

decreases;

c) the ionic conductivity of the melt and of the

superionic phase is nearly the same; and

d) the ionic conductivity of the wurtzite phase (the

room temperature phase) increases.

Shahi and Wagner40 verified that the structure of their

samples was like B-AgI after heat treatment similar to that

required for AgI.

The nearly identical curves of log(oT) vs. T_1 in the

superionic phase of Figure 5 indicates that the slope energy

for this phase does not change with increasing concentration

Table 2. Depression of the superionic phase transition

temperature with increasing concentration of

AgBr (after Shahi and Wagner40).

 

 

 

Transition Temperature Concentration

Tc (K) C (atomic percent)

420.5 0

416.0 2

412.3 4

408.3 6

401.0 10
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of AgBr. The slope energy EI for an ideal superionic con-

ductor should obey (equation(4))

where Em is the migration energy for the mobile ions, and

so the lack of any change in E indicates no dependence on
I

defects for the conduction of the mobile ions in this phase

for low concentrations of the impurity.

A more interesting feature of the ionic conductivity

data of Figure 5 is the decrease, with increasing bromine

concentration, of the slope energy below the superionic

phase transition. Since (equation(3)).

.. l
E - E + 2F:

I A f ’

one can interpret the results as showing (with increasing

bromine concentration):

a) a decrease in the activation energy EA;

b) a decrease in the defect formation energy E orf.

c) a decrease in both EA and Ef.

Shahi and Wagner40 suggest that increasing bromine concen-

tration lowers the formation energy Ef, and that the increase

in the ionic conductivity is due primarily to increased

numbers of mobile ions in the room-temperature phase. This

suggestion also indicates why the slope energy in the super-

ionic phase does not change. Since the conduction ions

are already mobile, no new conducting ions can be thermally

activated.
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Shahi and Wagner40 also suggest that the phase transi-

tion to the superionic phase is driven by a critical number

of defects in the room-temperature material. Thus, since

the critical number is passed at a lower temperature, the

temperature of the phase transition should decrease with

increasing bromine concentration.

Measurements using a low concentration of AgBr in AgI

should establish some idea of the dependence of the thermal

conductivity upon the number of defects within the material.

The concentration should be close to 5 atomic percent AgBr,

since this material is single phase at room temperature

and has a room temperature ionic conductivity ten times

larger than that for pure AgI.

Pyridinium Penta-Silver Hexa-Iodide
 

One way to make a low-temperature superionic conductor

is to open up the structure of a high-temperature superionic

conductor using large organic ions to replace some of the

mobile ions. An example of a near-room-temperature super-

ionic conductor prepared by the insertion of organic ions

into AgI is the pyridinium ion (Py+ = C5H5NH+) compound

PyAg516.

The single crystal ionic conductivity data42 for

PyAg516 (see Figure 6) indicates that:

a) some small differences in the ionic conductivity

due to crystal anisotropy exist;

b) a definite change in the slope of the ionic con-

ductivity curve occurs near 310 K;
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Figure 6. The ionic conductivity of PyAg516 (after

Hibma42).
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c) the slope energy EI is less above 310 K than below

310 K; and

d) below 310 K the ionic conductivity curves show no

sharp features.

The high ionic conductivity for PyAg516 coupled with the

sharp decrease in the slope energy EI suggests that the

phase above 310 K is a superionic conductor.

20’43 indicate theX-ray diffraction measurements

following set of phases:

a) a superionic phase above ”310 K;

b) a high conductivity hexagonal phase between 230 K

and ~310 K where the silver ions gradually disorder

with increasing temperature;

c) a monoclinic phase between 180 K and 230 K; and

d) a second monoclinic phase below 180 K.

These measurements also indicate that the transition near

310 K is not accompanied by a change in the rigid structure

consisting of pyridinium ions and iodine ions. Rather,

this transition seems to involve the gradual removal of

restrictions upon the mobile silver ions.

The evolution of the silver-ion disordering process

can be traced from the silver-ion ordered material in the

20
room-temperature phase at 230 K. The structure at this

temperature has the space group P6/mcc (Dgh) with two

formula units per unit cell. The ten silver ions occupy

ten sites--6f tetrahedral sites and 4c octahedral sites--

with 24m tetrahedral sites unoccupied. The iodine ions are
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arranged to form long pipe-like tunnels which detour around

pyridinium ions.

The mechanism of the disorder can be illustrated using

Figure 742. At 230 K only the c and f sites are occupied,

and the connecting m sites are unoccupied. The m sites

are tetrahedral sites, but one of the paths from each site

is blocked by a pyridinium ion, so that only three conduc-

tion paths are available. As the temperature is increased,

the ions move into m sites until ~310 K where the ions are

completely disordered and are spread over all three sets

of sites.

This sort of transition is quite different from the

superionic transition at 420 K in AgI. The structural

phase transition in AgI provides a sharp break between the

normal phase and the superionic phase. The rigid structure

of the pyridinium ions and the iodine ions in PyAg516 does

not change at the phase transition to the superionic phase,

and so the change in the ionic conductivity is much

smoother..

Heat capacity measurements42 show:

a) no feature for the transition at 180 K;

b) a small peak near 230 K which indicates the

presence of a higher—order phase transition;

and

c) a very broad feature centered near 310 K.

This broad feature suggests a higher order phase transition

associated with gradual disordering in the material.
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Figure 7. Schematic of the silver-ion sites and conduction

paths in PyAg5I6 above ~310 K (after Hibma42).

 



37

Within the PyI/AgI system another superionic conductor,

PysAg18123, exists. This single—phased compound is a two--

dimensional superionic conductor with an order of magnitude

lower ionic conductivity than PyAg516. Deviations from

stoichiometry during preparation of PyAg516 may produce

Py5Ag18I23, and subsequently problems with data interpreta—

tion may develop.

The thermal conductivity of PyAg5I6 is measured to

investigate the phase transition near 310 K.



CHAPTER III

THEORY FOR THE TRANSIENT HOT WIRE METHOD

A mathematical description of the transient hot wire

method will be derived and discussed in this section. The

final results are important not only for an understanding

of how the thermal conductivity is obtained by this method,

but for the restrictions that these results place on the

sample geometry.

Diffusion Equation
 

The thermal conductivity K is formally defined by

a = -KVT (7)

where q is the heat flux (heat/area-time) through the

material due to the temperature gradient VT. The continuity

equation for heat flow (with no internal sources or sinks)

7-q+pc%%‘-=O (8)

(where p is the density and c is the heat capacity at constant

volume)can be combined with equation (7) to give the diffusion

equation

38
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2 1

VT-fi—

TH

S
l
i
i

n <
3

(9)

with the thermal diffusity DTH = K/pc.

The diffusion equation is a second—order partial dif-

ferential equation generally solved using a particular set

of coordinates and at least one boundary condition. In

what follows, the symmetry of the system under consideration

is used to eliminate space derivatives, and Laplace trans-

formations are used to remove the time derivative. Laplace

transformations are discussed in Appendix A.

The Boundary Value Problem

To a good approximation the geometry of the transient-

hot-wire—method system consists of an infinitely long cylin-

drical heat source of near-zero radius surrounded by a

sample of infinite radius. The symmetry of the system

geometry allows the three cylindrical coordinates (r,9,z)

to be reduced to the single coordinate (r). ,In other words,

system variables such as the temperature T will be a function

only of the radius r and the time t.

In the calculation of the working equation for the

transient hot wire method, one considers a cylindrical wire

of radius a, density ow, and gram heat capacity cw surrounded

by sample material of thermal diffusity DTH’ thermal con-

ductivity K, density p, and gram heat capacity c. The

temperature within the wire can be written T1 = T1(r,t),

and the temperature of the sample material outside the wire
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can be written T2 = T2(r,t). Heat is produced in the wire

by a current pulse of duration tp

Following the discussion of Blackwell44 and Carslaw

and Jaeger45, the diffusion equation within the sample

(r'>aq t >0) can be written (because of the symmetry) as

 2+———--————--=o (10)

T = T = T .
(11)

Since one is interested only in temperature changes, T0 is

set equal to zero.

The first of the two boundary conditions at r==a is

Q - na pwcw 7E? = -2WaK'7fi: r=a (12)

where O is the heat power supplied per unit length. This

expression states that the heat supplied to the wire (0)

less the heat retained by the wire (na pwcw 2;?) leaks away

to the outside sample through thermal conduction

(-2naK 2;? ).

r=a

The second boundary condition approximates the effects

of thermal resistance. The heat that leaks away from the

BT

wire (-2naK 75% above) may be assumed to cross a boundary

r=a

layer which retains extra heat in the wire and so increases
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the temperature of the wire. If QBL is the total heat power

flowing through the boundary layer, then one many write the

simple expression for thermal conduction

Q = K A £31:I§3

BL BL BL Ax ’

BL

where, for the boundary layer (subscript BL), ABL is the

area, AxBL is the thickness, and KBL is the effective thermal

conductivity. As a result, the power per unit length flowing

through the boundary layer may be written

QBL ABL 1

‘2’ = KBL[AxBLZ](T1'T2) = a; (T1'T2)

. where K is the length along the wire and RT, the inverse of

KBL multiplied by a dimensionless constant, has the units

of a thermal resistivity. Thus, the second boundary

condition is

-2naK 332 =43: (T -T ) (13)
3r r=a RT 1 2 ' .

At this point, one takes the Laplace transform of the

differential equation (equation (10)) and the two boundary

conditions (equations (12) and (13)) using T ==0 for the
0

initial condition (equation (11)). This gives the three

 

equations

2-

d T dT
2 1 2 p -

+ — ——— — T = 0 (14)



- dT

9. _ 2 - = _ __2
p prra pchT1 211al< dr _ (15)

r-a

de 1

Znak ———- +-—— (T -T ) = 0 (16)
dr r=a RT 1 2

where T1 and T2 are the Laplace transforms of T and T
l 2’

and where p is the complementary variable to the time t in

the Laplace transform and has the dimensions t-l.

If the parameter q =1/p/DTH is substituted into

equation (14), the solution to this differential equation

involving the modified Bessel functions may be written:

T2 = clIO(qr) + c2K0(qr)

46

’
Since K0(qr) is finite as qr goes to w and I0(qr) is not

the coefficient c1 must vanish, and

T2 = czKo(qr) . (17)

Finally, if T2 and the derivative of T2

dT2

-d_r— = c2(-q K1(qr))

are substituted into the two boundary condition expressions

(equations (15) and (16)), the resulting two equations in

the two unknowns c2 and T1 may be solved to give the

expression

 

= Q K0(qa)+q2naKRTK1(qa)

P 2 3
T

2
anan1(qa)+pna pwchO(qa)+2n a ppwcquRTKl(qa)

1 (18)
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One must use the formal integral expression for the

inverse Laplace transform (see Appendix A) of T1 since T1

is a complicated function of the complementary variable p.

The integration can be performed, but the solution is not

experimentally useful since it is weighted heavily towards

extremely small times (large p). To find a solution valid

at comparatively large times (small p), the expression for

T1 (equation (18)) must be re-written in ascending powers

of p, and then this re-written expression can be integrated

using the formal inverse Laplace transform in the leading

powers of p.

Because q2 = p/D, the modified Bessel functions K0(qa)

 

and K1(qa) must be expanded to terms involving qza2 to be

first order in p. These expansions are45:

C a 2a2 2&2

K0(qa) = -(£n —§—)(1 + L4—) + 97— + (19a)

2a2 C a 2a2

an1(qa) = 1 — 97— + (in 3x92 )+ (19b)

where £n C = Y = 0.5772 ... is Euler's constant. These

expansions are substituted into the expression for T1

(equation 18) keeping only the terms which are first order

in p. Using the binomial expansion for T1, after the

subsequent algebra one obtains



  

l ZRK T 2

a2p c
w w pc 2 Cga pc

+ { - (ZWKR ) + (in )(40KR - )
ZDTHpc pwcW T 2 T pwcw

+ (3%— — l)(£n 92%?” . (20)

w w

If one defines the quantities

H = ZWKRT

Q

II 2pc/pwcw ,

then by using the inverse Laplace transform (see Appendix A)

one obtains

 

  

_ Q 4DTHt a2 4H-c

T1 - 4WK 2H + in 2 — 2D t ( a. )
Ca TH

2 4D t

+ 213aL t (0:2) 1'" TE 1 (21)
TH Ca

as the solution to the boundary value problem for large

times.
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The Working Equation for the Transient Hot Wire Method

The solution to the boundary value problem (equation

(21)) may be written

 

T1 = AT + 6TH + éTa

where

- 4D t

=_9._ TH
AT 4WK in 2 (22)

Ca

...9. =51.
6TH 4NK {2H} 4NK (4UKRT) (23)

GT = . ._ a2 4i-d _ d-2 fin 4Dt (24)

d 4NK 2DTHt (1 a Caz

 

Consider each of these terms in order. The leading term

AT, equation (22), will turn out to be the working equation

for the transient hot wire method. The thermal conductivity

K of the sample can be found from the slope of the wire

temperature increase AT against the logarithm of the time

Kn t.

The expression for 5TH (equation (23)) is independent

of t and suggests that the thermal resistance should not

affect the measurement of the slope that determines K.

The expression for 6T“ estimates the error in the

measurement due to the heat capacity of the wire. The

parameter a appearing in this expression contain the ratio

of the heat capacity c of the sample to the heat capacity cw

of the wire. The relative contribution due to this
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correction can be written

  

 

 

”a =_ a2 1 411-0; _ 01-2 in 4DTHt

AT 2DTHt 4D t a d Ca2

3 TH

" 2
Ca

  

A crude approximation for this ratio follows. The value

a z 2 can be used if one assumes that the density and the

heat capacity of the wire are of the same order of magnitude

as for the sample. If one also assumes that the heat

capacity of the wire has a much larger effect than the

thermal resistivity (effectively H z 0), then the term in

brackets is about -1. So, if one evaluates

 

 

  

6:; = 213212 t 1 (25)
TH 4D t

z TH

" 2
Ca

at t = 1 sec using

a e 10-4 m

-7 2
DTH z 10 m /s

C 2 2

for the parameters, then the relative error that results if

the term GT“ is ignored is

——— 2 0.017
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ST

The time dependence for 7H? indicated by equation (25)

suggests that this relative error will decrease as t

increases.

Effect of the Finite Outer Boundary

The outer boundary of the sample was earlier assumed

to be located at infinity. Since the sample size for

practical measurement systems is limited, the effect of

this finite outer boundary upon the measurement of the

thermal conductivity K must be discussed.

The effect of the finite outer boundary can be esti—

mated for the system where the wire cylinder is compressed

between flat disks of the sample47 (see Figure 8). This

approach approximates the heating of the wire cylinder due

to a heat pulse that travels from the wire cylinder to the

flat outer boundary of the sample and back again to the

wire cylinder. Since the heat pulse travels along the

"slice" of the sample, the temperature increase of the

wire due to the heat pulse from the wire can be treated

using a one—dimensional diffusion equation. This approach

over—estimates the effect, since all heat is assumed to

flow along the slice of sample material. In the following

discussion, x is the distance along a slice of material

which is 2b in length (b is the sample disk thickness).

The one-dimensional diffusion equation is

1 3T _
—---D—-a-,E-O (26)
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Figure 8. The finite outer boundary of the sample system.
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which, for the same initial conditions as the boundary

value problem

T = T , (27)

can be Laplace transformed using T0 = 0. One obtains (see

Appendix A)

T = O (28)

where p is the complementary variable to t in the Laplace

transform.

If the parameter q = p/D is introduced as before, the

solution has the general form

- = qx -qx
T dle + d2e

qx

Since e approaches infinity as x approaches infinity, the

coefficient (11 vanishes, and so

T = dze‘qx . (29)

The boundary condition is

T = f(t) (30)

at x==0 for t>>0. If this is Laplace transformed,

T = f(p) ,

so that for all x

T = f(p)e‘qx . (31)



51

The inverse Laplace transform can be performed using

Duhamel's theorem (see Appendix A). One obtains

2
x

T = It 1 - 4DTH(t-T)

 

f(T) ‘—£L——‘-————§-§ e dT

0 ZVNDTH (t-t) /

where the bracketed quantity is the inverse Laplace transform

 

 

 

of e—qx. This expression can be rewritten using the parameter

2 1

”=\/ "
4DTH(t-t)

to give

2 (n x2 -u2
T = 7: I f t — -————§ e du . (32)

n
x 4DTHu

4DTHt

46
Since the integral can be evaluated in terms of the

error function erf(x) if

f(t) = kt (33)

this form for f(t) is used to overestimate the actual time

dependence for the transient hot wire f(t) = klnt (see

equation (22)). Upon substitution and integration the

expression for T (equation (32)) becomes at x = 2b

 

 

2

T=kt{[l-erf b]1+DZbt

{znTHt TH

2
-b/D t

+72: b e TH} (34)

N DTHt
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Because a factor of the same form as f(t) appears in the

final solution for T, its time dependence can be divided

out to give the percent increase in the temperature of the

wire cylinder due to "reflection" at the outer boundary.

The procedure at this point is to evaluate the factor

in the braces in equation (34) for several values

of b//D__t until the percent increase in the wire cylinder

temperature falls below some acceptable level. Since for

b//D_—t = 3 the percent increase falls below 0.1%, this

condition is used as a criterion for choosing the thickness

of the sample disks.

Using the same order of magnitude estimate for DTH as

 

 

is used in the calculation of oTa/AT (equation (25)), one

obtains, for D z 107 mz/sec,
TH

b = 3/DTHtp = 2/tp/10 mm ‘ (35)

with the pulse time tp given in seconds. Sample disks 3 mm

thick should permit pulse times up to ten seconds for

D z 10-7 mz/sec.
TH

If the sample disk thickness b is fixed by this pro-

cedure, then changes in D ==K/pc will require that changes
TH

be made in tp so that the percent increase (the bracketed

portion of equation (34)) will stay below 0.1% (see Table 3).

As a result, because of the increase in K (due to the T"1

law explained in Chapter IV) and the decrease in c (due to

the Debye T3 law) as the temperature is decreased, one must

expect to reach a temperature where the data becomes unusable.
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Table 3. The effect of changes in the thermal diffusivity

DTH upon the acceptable pulse time tp for 3 mm

thick sample disks.

 

 

 

2
DTH (m /sec) tp(sec)

5x10‘7 2

1x10‘7 10

5x10’8 20

 

 

The pulse time becomes too small to include a sufficiently

long straight—line portion of the AT vs. int plot needed

to determine K.

Larger sample disks can minimize this problem, but

require more material and larger equipment. Larger equip-

ment can accommodate larger diameter samples which are

needed in order to maintain adequate material between the

wire and the outer diameter of the sample disk.

Coolingfrom the Potential Leads

Practically, the heat dissipated by the wire is gen-

erated resistively by means of a pulse of current I which

lasts for the time tp. One determines the temperature of

the wire by

a) measuring the potential difference V across a

length of the wire,

b) determining the resistance Rw = V/I, and
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c) converting the resistance to a temperature using

a calibration curve.

The details of this procedure can be found in Chapter V.

The potential leads spotwelded to the wire will cool

the wire at its ends. A steady-state approximation due to

Horrocks and McLaughlin48 overestimates the error in the

electrical resistance Rw due to this cooling by fixing the

temperature at the spotwelds at T = TO and by calculating

the temperature distribution along the wire.

The model considers the temperature distribution along

a wire cylinder of length K, radius a, and volume V and

surface area 8 defined to be

v = na2£ ‘ (36a)

S = 2na£ . (36b)

The wire has a thermal conductivity Kw, a density ow, a

heat capacity cw, and so a thermal diffusivity Dw = Kw/pwcw.

This wire is surrounded by material of "thermal conductivity

per unit length" H.)

The power 01 is supplied to the wire by means of

resistive heating. Part of OI escapes to the sample mate-

rial and the rest flows through the wire to its ends. One

can write a continuity equation including OI as a source

and the escaped heat power as a sink (see equation (8)):

_ _ I §§

V q + Q C _ " ‘V‘ - V (Tw-To) (37)
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where Tw is the temperature in the wire and the last term

is an approximation for the escaped heat power/volume.

Since our geometry is one-dimensional, if y describes the

distance along the wire, then, using the definition for the

thermal conductivity (equation 7), the symmetry of the

system, and the definitions of V and S (equations (36a)

and (36bfx one can write

2 .

3 Tw 3T QI

  

2
— H a (Tw-TO) . (38)

BT

Finally, if the steady state is assumed(7fi? = 0), the

differential equation may be written

d2Tw 2

0 = :{jf + g1 - 82(Tw-TO) (39)

y

where .

QI
g = ______ (40a)

1 2

na KK
w

2 _, 2H
g2 — K—E . (40b)

The solution of the differential equation (equation

(39)) is

g y “g y g
_ . 2 . 2 l

Tw - TO — jle + 328 + ;5 , (41)

2

where j1 and j2 are constants to be determined. The

boundary conditions are
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at y = 0 and y'= 2K. If one sets T0 = 0 as before, and uses

the half-length L = {/2, the two constants are found to be

..gL

. _ g1 e 231 _ _ _§
(42a)

g2 2cosh(g2L) '

 

g L

._g1e2
J2 _ _ __ .

(42b)

2

g2 Zeosh(g2L)

 

The solution for TW (equation (41)) can then be written

cosh g2(L-y)

T =-—— 1- 

cosh g2L

The average electrical resistance Rw of the wire can

be expressed as

0

2L

R = [ (l + dT ) dR
w w

0

where RO is the initial resistance and d is the linear tem-

perature coefficient of resistance. If the electrical

conductivity of the wire is ow, then

dRo= d2
0 pa

and

2L 1

R = R + a I ._____ T dy . (44)

w 0 O 0 na2 w
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Substituting the expression for Tw (equation (43)) into the

expression for Rw’ one can define the wire temperature error

 

E by

R —R g

“V O’a—J-'(1-E)
R 2
0 g2

where E is found by integration to be

_ 1

E - ESE tanh gZL . (45)

Because g2 depends on H (equation (40b)), this error E

can be evaluated only if some approximation for the "thermal

conductivity per unit length" can be made. To begin with,

the temperature Tw at the center of the wire (y = L) can

be approximated from equation (43)

21 (AI/z)

%=—§=ifir “m

g2

Also, the temperature distribution across a hollow cylinder

of inner radius a and outer radius b can be expressed as45

(Ql/i)
T(a) — T(b) '= 4“

b
(2 in ‘5)

using OI/£ as the heat input per unit length at the inner

surface and K as the thermal conductivity of the hollow

cylinder sample material. Finally, setting T(b) = T0 = 0,

and T(a) = Tw from equation (46), one finds
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K
H = -——————-

b
a£n(-a:)

and

2K 1 1 ‘g =f__ . (47)
2 Kw a2 rib/a

To determine E (equation (45)), g2 must be evaluated.

-4
Using a z 10 mm as before, b = 3.0 mm as determined by the

finite outer boundary expression (equation (35)), Kw = 91 W/mK

49
from the CRC Handbook , and K = 0.35 W/mK from the data (see

Chapter V), at room temperature g2 = 480 m-l. If £ is

chosen to be 50 mm (L = 25 mm), the error E is calculated

to be 0.08.

The value E = 8% must be considered against the

assumptions that

a) the wire leads maintain the ends of the wire at

Tw = T0 = 0, and

b) the wire is in the steady state.

The first assumption guarantees that E will be over-estimated

by this calculation, and the second assumption indicates

that these effects will not become important until reason-

ably late in the current pulse.
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Summary

The working equation of the transient hot wire method

(equation (22))

 

   

- 4D t

AT=TQ—£n TH
NK Ca2

. . 4D

= Q Q TH
4NK Znt + 4WK tn Ca2 (48)

l

can be obtained from a boundary value problem which includes

the effects of a thermal resistance at the surface of the

wire (equations(13) and (23)) and the heat capacity of the

wire (equations(12) and (24)).

The sample thickness and the pulse length were calcu-

lated by considering the effects of the finite outer bound-

ary of the sample (equation (35)). The heater wire must be

long enough to reduce the effects of potential lead cooling

upon the resistance of the heater wire (equations (45) and

(47))-



CHAPTER IV

THEORY or THERMAL CONDUCTION

In this section the theory of thermal conduction for

non-metals at high temperatures will be discussed in order

to form a basis for the interpretation of the data. The

semi-quantitative treatment of the theory will emphasize

the temperature dependence of the thermal conductivity for

the superionic conductors and for normal solids.

The Kinetic Theory Expression

The simple expression for the thermal conductivity K

derived from the kinetic theory is qualitatively useful

since it allows the straightforward interpretation of

results.

This expression28 is derived by considering the flux

of particles traveling along the x-axis in response to the

temperature gradient 6T (see Figure 9). If a particle

travels with a velocity vx an average distance x0 between

collisions, then

- SE =
6T - dx dx

dT — Q:

3; x0 - dx vxT

60
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Figure 9. The particle flux and the temperature gradient

for the kinetic theory.
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where T is the average time between collisions. If at each

collision each particle releases an energy E = CJYP (c = heat

capacity/particle), then for n particles/volume the heat

flux q can be written

_ _ -_ 293q — -nva — -nc6Tvx — nc(vx) T dx , (49)

where the minus sign indicates that the heat flow is towards

lower temperatures. Since the definition of the thermal

conductivity along one direction is (see equation (7))

=_K_<11
q dx .

and since, on the average, the three-dimensional particle

velocity v obeys <vi> = <v2>/3, the thermal conductivity

can be written

CVZT = 5 CV2 (50)

C
O
I
H

.
.
.
:

2
ncv r =7

: ll

c
o
l
l
-
4

where C is the heat capacity per unit volume and Z = VT

is the mean free path.

Quantities such as the particle mean free path generally

are not useful in a solid. However, one may relate a "phonon

gas" to the quantities written down in equation (50).

Phonons may be considered as propagating transverse or

longitudinal waves in the solid. The atoms may be pictured

as moving in a coordinated fashion about the equilibrium

lattice positions under the influence of spring-like restor-

ing forces. The normal mode frequencies for the propagating
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waves can be described by dispersion curves28 that relate

the phonon frequency w to the phonon wave-vector 5. Two

types of normal modes appear in these dispersion curves--

low frequency acoustic modes which for k = 0 have m = 0,

and high frequency optic modes which for k = 0 have m f 0.

In their particle aspect28, phonons are considered to

be the quantized unit of lattice vibrations. The displace-

ment and momentum variables for the atom are re-written in

terms of phonon creation and destruction operators obtained

from a harmonic oscillator Hamiltonian. Thus, the solid

can be considered to be equivalent to a large number of

phonons each of which travels an average distance i (the

phonon mean free path) between interactions.

Equation (50) can be re-written as a sum over the

phonon wave-vectors, and then further re-written as an

integral over the phonon frequencies using the Debye

approximation.

The Debye approximation estimates the actual distribu-

tion of the acoustic modes in the solid using w = vk (where

v is the sound velocity) to describe the dispersion curve

up to a cut-off frequency w The Debye approximation isD'

applicable here because the low-frequency acoustic modes

carry much more heat through the solid than the optic modes.

If C is the heat capacity of the lattice, v is the sound

velocity, and r is the phonon relaxation time, the thermal

conductivity can be written in the Debye approximation as

(0D 2

I C(w)[V(w)] T(w)dw (51)

0

K

II

a
n
d
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where the integral is taken over the phonon frequency

spectrum up to the Debye frequency mD.

In the Debye approximation the heat capacity can be

written (w = frequency,‘h.= Planck's constant/2w, k =

  

B

Boltzmann's constant)28

3k w4 2 fim/kBT

C(w) = g 3 [kfiT] 'Hw/k f (52)

The Debye approximation was formulated to give low-tempera-

ture results, but the high—temperature form for C(m)

  

 

(using eu : 1+u in equation (52))

4

C(“) : 3kgw3 [hfir]2 1 2
2'” V B (fiw/kBT)

3ka2

= (53)
2 3

2n v

can be integrated to give the Dulong-Petit rule for the

heat capacity C per unit volume at high temperature

 

(T 2 9D)

”D

C = I C(w)dw

0

3k w 3 3Nk

= 233 g = vB (54)
Zn v

using28 wDB = 6n2v3 N/V where N/V is the number of unit

cells per unit volume.
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As a result the high temperature lattice thermal con-

ductivity can be written (using equations (51) and (53))

w

B
K = ——

“D 2

. l
o T(w) %7 do (55)

in the Debye approximation. Since v changes very slightly

with temperature, the temperature dependence of the relax-

ation time r(w) will determine the temperature dependence

of K.

The relaxation time 1(m) is related to the relaxation

times ri(m) due to different scattering mechanisms through

-1

Thus, the general strategy is to determine the Ti, and then

to write out the thermal conductivity K.

The T-1 Law
 

The relaxation time Tu appropriate to the temperature

dependence of non-metals at high temperatures (T > 6D = th/kB)

5,7-9
has been calculated in many ways The discussion that

follows indicates the essential points of some of the calcu—

7’8 by concentrating upon the determination of thelations

temperature dependence of In while ignoring the additional

theory required to obtain the magnitude of Tu“

If N gives the number of normal modes of frequency w

in a solid, and if n is the departure of N from its
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equilibrium value NO, then the relaxation time can be

 

defined by

0
dN n N-N

3?] ='¥’='T
(56)

scatt u u

which gives an exponential decay law to the time rate of

change of N due to scattering processes. The derivative

dN

afiscatt

from perturbation theory.

can be related to transition probabilities obtained

The unperturbed Hamiltonian is the harmonic oscillator

Hamiltonian

2

...le
H 2m + 2 mm x

where p and x are the momentum and displacement of a particle

of mass m vibrating at a lattice site with frequency w. The

solution to the unperturbed Hamiltonian can be eXpressed in

. . . . +
terms of the creation and annihilation operators a and a

where

a+|N> = /N+1 |N+1>

a|N> = /fi |N—l>

and where the ket vectors |N> represent the wavefunctions

corresponding to the Nth energy eigenstate.

The perturbation Hamiltonian is

H' = ¢x3
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where o is a proportionality constant. If the displacement

x is written in terms of the creation and destruction

operators (non-essential factors will not be included from

here until the end of this section)

+

x ~ a + a ,

then the perturbation must look like

, ~ + + +

H (a1+a1)(a2+a2)(a3+a3)

~ + + + +a +

aiazas aiaz 3

, + + + ,

where terms like a a a and a a a cannot satisfy conserva-
1 2 3 1 2 3

tion of energy. Thus, only three-phonon processes such as

the annihilation of two phonons to form a third and the

breakdown of one phonon into two other phonons can con-

tribute to the calculation using the perturbation theory.

The transition probability obtained from time-dependent

perturbation theory involves the square of the matrix element

due to the perturbation. As a result the derivative

3%] must involve terms like

scatt

dN a
3?] [N1N2(N3+1) - (N1+1)(N2+1)N3]

scatt

~ [N1(N2—N3) - N3(N2+l)] . (57)

Before this factor can be evaluated, the three-phonon

processes must be separated into normal processes (N-pro-

cesses) and Umklapp processes (U-processes). For both
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sets of processes energy conservation

fiwl + fiwz = fim3 (58)

is observed. However, for N-processes the momenta ki obey

-l -2 — -3 ’

while for U—processes the momenta obey

51 + 52 = 5 + G

where G is a reciprocal lattice vector. These processes

are compared pictorially in Figure 10.

The N-processes, in the absence of other scattering

mechanisms, cannot produce any thermal resistance. These

processes maintain the equilibrium distribution of the

phonons, so that a heat-flow distribution of phonons would

also be maintained. The N-processes, although generally

ignored mathematically, are important physically because

these processes maintain the phonon distribution in which

U-processes contribute to the thermal resistance.

In order to evaluate the derivative 93 (see

dt scatt

equation (58)), one must define the equilibrium distribution

hw./k T -1

N9 = [e l B - l]
1

and the change from equilibrium

for the ki mode. So using equation (58), one can write
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Figure 10. Normal processes and Umklapp processes.
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dN
1 00 000 00

TR? [n1[N2-N3] + N1[N2—N3] - N3[N2+l]]

where the non-equilibrium part is contained in the term

n1[Ng-Ng]. Using the equilibrium distributions (with

eLl : 1+u) one can write (see equation (57))

dN

 

l l l O 0

——=-—--——~[N-N]
Tu n1 dt 23

~ kBT mm;
(59)

H 2 3

where the frequency factor follows from energy conservation

(equation (58)).

Finally, all the various factors can be lumped together

into one constant D such that

(g; = DT ’ (60)

u

and, with constant v,

 

k “D 2

K = g (1‘; I -%- dLu . (61)

2“ v 0

The integral is independent of T so that the lattice thermal

1 if three-conductivity at high temperatures should go as T-

phonon Umklapp scattering is the dominant scattering

mechanism.
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Other Scattering Mechanisms
 

Although three-phonon Umklapp scattering dominates the

temperature dependence of the thermal conductivity at high

temperatures, other contributions due to

a) boundary scattering

b) impurity scattering,

c) four-phonon processes,

d) thermal expansion, and

e) optical phonon scattering

must also be considered.

In order to argue that some of these contributions are

negligible at high temperatures, one might assume that at the

melting phase transition temperature TMELT the phonon mean

free path Z is one lattice spacing long. Since i = VI and

r = 6% (see equation (60)), if TMELT = 840 K (similar to

that for AgI) then at T = 140 K the phonon mean free path

will be six lattice spacings.

With this assumption both boundary scattering and

impurity scattering can be ignored at high temperatures.

Boundary scattering, which refers to phonon scattering from

the crystal walls, can become important only if the crystal-

lite size is smaller than the phonon mean free path. For

powder a few microns in diameter the phonon mean free path

(for the TMELT given above) is much smaller than the powder

particle size. Impurity scattering is also negligible. For

a sample of 99.9% purity, an impurity will be encountered

only once in a thousand atoms, so that the impurities will



74

be §I000 = 10 lattice spacing apart on the average. For

the assumed value of TMELT impurity scattering should not

affect high temperature data.

Practically speaking, the Debye temperature 6D

(6 z 120 K for AgI) usually is the lower limit on the high-
D

temperature region, with both the impurity and boundary

scattering of no importance above 6D/5.

Calculations involving perturbation Hamiltonians like

H" = wx4

lead to a consideration of four-phonon processes. Ideally,

the four-phonon relaxation time T4 will have50

a) a temperature dependence fiL-= D'TZ, and

4

b) a much smaller magnitude than the relaxation time

Tu due to three-phonon Umklapp processes.

In most non-metals no evidence of a T"2 contribution appears

in the high—temperature thermal conductivity data. A few ‘

exceptions have been found, and are listed in the references

to the paper by Klemens and Ecsedyso.

The contributions due to thermal expansion and to

optical phonon scattering also affect the thermal conductivity

in this temperature range. These are considered in some

detail in the following sections.

Thermal Expansion Correction

To determine the effect of volume changes upon the

temperature dependence of the thermal conductivity, one

may write
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G V M

K=JT—l=—l—-FE— (62)
T TH

where G(V) is a volume dependent proportionality constant,

M is a volume and temperature independent quantity, and

8TH is a correction to the temperature power law due to

the volume dependence. The assumption here is that, since

V = V(T), the coefficient determined for the T-1 law

(equation (62)) will have a hidden temperature dependence.

To determine 6 one first takes temperature deriva-
TH’

tives of equation (62):

dK dG V dZnV
 

 

-5. __.<__1_

ET ‘ ‘ T (1+ETH) ‘ ‘ T + T d nV dT (63)

-Using

3a = dfigK

where a is the coefficient of linear expansion and defining

_ _ dZnK

d£nV ’

 

(
I
Q

equation (63) can be manipulated (using equation 62) to give

 

 

_ l do(V) d£nV _ 3g dG v

ETH ‘ ‘ K dZnV dT ‘ ‘ l< 32%72

_ 3g d KT _ 8£nK

_ _ l< dénv — 3aT(- aznv)

= 3dgT . (64)

The correction 8TH to the temperature dependence of the

thermal conductivity is small both at low temperatures and
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for materials with a small thermal expansion if g is not

too large.

Optic Phonon Scattering
 

Optic phonons contribute to the thermal conductivity

not by carrying heat (from the phonon dispersion curves,

do 2

v = H? is near zero 8) but by scattering acoustic phonons.

This effect can be approximated in the following way6

One assumes that the thermal resistivity W =.% is

preportional to the number of acoustic phonons scattered

by each set of modes, and that this scattering is propor-

tional to the total energy in each set of modes.

Since the heat capacity at high temperatures is con-

stant (see equation (54)) one can write for the acoustic

modes

E = N k T (65)

where EA is the total energy in the acoustic modes and NA

is the number of acoustic phonons. If an Einstein oscil-

lator approximation is used for the optic modes, then

 

1
E = N'fiw (66)
o o o eth/kBT _

where E0 is the total energy of the optic modes, NO is the

number of optic phonons, and m0 is the maximum optic phonon

frequency. The expression for E0 (equation (66)) can be

re-written in terms of
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‘fiwo 60

x = ___ = __B

0 k T T

B

x

z=x0

e Oel

to give

x
_ 0

E0 ‘ NOkBT x
0

e -1

= NokBTZ (67)

If one assigns f as the ratio of the number of acoustic

phonons scattered by acoustic phonons to the total number of

scattered acoustic phonons, and takes n as a proportionality

constant, then one can write

W = fnT + (1—f)nTZ (68)

where the first term has the temperature dependence of EA

and the second term of E0. If S is defined to be the ratio

of the number of acoustic phonons scattered by optic phonons

to the number of acoustic phonons scattered by acoustic

phonons, then S = 1%: and f = T%S . Equation (68) may be

written using this definition to give

1+8

1+SZ = nT op (69)

w=”T'ITs_

where 80p is the correction to the temperature dependence

due to optic phonon scattering.

Through differentiation of equation (69) one obtains

Q
)

Z3£nW _ _ ST

3£nT - l + E:op — l + 1+SZ

  

Q
)
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which gives

.ST_3._Z_=__SZ _
8op ‘ 1+sz aT 1+sz (Z+X 1) ° ‘70)

This correction to the power law for the thermal conductivity

is a complicated function of the temperature and of the

maximum optic mode frequency.

Minimum Thermal Conductivity

At high temperatures the thermal conductivity of non-

metals becomes temperature independent. This region of

minimum thermal conductivity occurs when the phonon mean

free path reaches its minimum value. The discussion will

follow Slack6, except that some numerical factors will be

changed to insure clarity in the discussion.

The minimum thermal conductivity KMin is obtained from

the kinetic theory expression for the thermal conductivity

(see equation (50))

-lK—3Cv£

by substituting appropriate values for the parameters. If

the number of atoms per unit cell is n = 2, then both optic

and acoustic phonons must be considered. Since the heat

capacity C can be written (see equation (54))

3kB

253

where 63 is the volume per atom, the minimum thermal
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conductivity KMin can be expressed as

k3

KMin = 333 (VA£A+v0£0) (71)

where the subscripts A and 0 refer to acoustic phonons and

optic phonons respectively.

The acoustic phonon velocity VA can be set equal to

the sound velocity v. The acoustic phonon mean free path

2A can be written in terms of the sound velocity v and the

Debye frequency vD = wD/Zn:

£A = v/vD . (72)

For the optic phonons, the mean free path £0 is taken

to be 6 and the frequency v0 = wo/ZT to be the largest optic

mode frequency. As a result the optic phonon velocity v0

can be expressed as

V = v 5 . (73).

 

Finally the minimum thermal conductivity KMin can be

expressed as

K = 153 [<v)(—"—) + (v mm
Min‘ 2 3 v 0

6 D

2
-. ka kBVO

‘ 3 + 25 (74)
26 vD

for a system with n = 2 atoms per unit cell.
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Thermal Conductivity: Superionic Conductors

Two theories out of the several available treatments

of the transport properties of superionic conductors deal

with the thermal conductivity--the hydrodynamic mode126’51

and the free-ion modelsz.

The hydrodynamic theory considers the collective

excitations of a material at low frequencies and long wave-

lengths. The idea is to look at a slowly changing system,

to treat the system as if it were in local thermal equilibrium,

and finally to write the variations of the system in terms of

the local thermodynamic variables and the transport coeffi-

cients. One obtains time-dependent correlation functions

which can be related directly to the scattering cross-

sections for neutrons and photons. Although the thermal

conductivity is used as a parameter in the calculation, no

way of obtaining K from the scattering data exists. It is

possible only to verify that K has the correct order of

magnitude (Zeyher51 uses a T-3 dependence for K to obtain

results from his calculations).

By contrast the free-ion theory of Rice and Roth52

derives an explicit expression for thermal conductivity.

The details of this model are presented in the next section.

The Free—Ion Model
 

The mobile ions in the model of Rice and Roth52 are

treated as free ions which have been excited above an energy

gap so in the superionic conductor. The threshold energy s0
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is the minimum energy for ion motion in the solid, and the

energy spectrum for ion energy sm 2 s0 is continuous while

for sm < s0 it is zero. The ion energy sm can be written

in terms of an ion velocity vm such that sm = % Mvm2 where

M is the ion mass. The ions travel for a time Tm before

they de-activate, which gives an ion mean free path

Km = Vme'

For each of the free-ion states of energy sm one can

define a thermal occupation nm such that the total number

of N of thermally excited free-ion states per unit volume

can be expressed by

N=%gl%%nm <75)

where V is the volume of the conductor and 0 is a solid

angle. This statement can be refined by defining a density-

of-states function g(sm) such that g(sm)6sm gives the number

of free-ion states per unit volume between sm and s + 6cm
m

In this case the density-of—states function is

0 sm < so

g(€m) = , (76).

_2_ e > e

kBT m - 0

where n is the number of potentially mobile ions per unit

volume.

Expressions for the ionic current (Ze = charge of

the conducting ion)
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I(E,t) = Ze (o dsmg(sm)[ %% anm(i,t) (77)

and the heat flux

_ - _ 7 do - -
qH(r,t) - A0 dsmg(sm) I 4? smvmnm(r,t) (78)

can be written if nm is a function of position r and time t

unless the system is at equilibrium. At equilibrium, both

I and 5H will vanish beCause nm will be isotropic and so

the integral over d0 will vanish. The quantities I and EH

appear in the equations for the ionic transport coefficients:

I = 01E (79a)

E = -GVT (79b)

qTOT = KLVT + qH = -(KL+KI)VT (790)

where CI is the ionic conductivity, E is the applied electric

field, 9 is the thermopower, VT is a temperature gradient,

aTOT is the total heat flux, KL is the lattice thermal con-

ductivity, and KI is the ionic thermal conductivity.

The finite lifetime Tm for the free-ion states can be

introduced by writing a Boltzmann transport equation

- - - 0
3nm(r,T) _ 3nm(r,t) _ nm(r,t) - nm

at + vIn . -————-——-— - (80) 

— 1

3r m
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where the left-hand side describes the evolution of nm(f,t)

due to the propagation of the free-ions and the right-hand

side describes the decay of the free-ion states due to

interaction with the solid.

For weak E(E) and small uniform VT(T) the thermal

occupation nm can be written

n (r) = n°(r) + An (81)
m m m

where dnm << ng(f) and where (using ¢(?) defined by

E = -V¢)

ng(r) = exp{-[sm+Ze¢(r)]/kBT(r)} . (82)

If equations (81) and (82) are substituted into the Boltzmann

3n

transport equation (equation (80)), then I“? = 0 and

s

- 0 - . _e - .1.5mm - nmrmvm [ZeE + 1, VT] kBT (83)

The ionic current I (see equation (77)) calculated from

nm(f) defined by equations (81), (82), and (83) can be

expressed as

I=3> ~E+5I oVT

where 3} and 3} are the tensors

2 on

+* _ (Ze) gg 0- -

GI - kBT L)d€mg(€m)J 4n nmvmvam (84)

+> _ (Ze) ” d0 0 -
OT - k T2 dsmg(sm)J 4n nmrmsmvmvm (85)
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The trace of the tensor 3} (equation (84)) can be taken to

give the ionic conductivity

<vm£m> (86)

under isotropic conditions. The average <fm> for a function

fm can be expressed as

on -€m/kBT

<f > = I ds g(s ) f e . (87)
m 0 mm m m

The ionic thermal conductivity can be obtained by calcu-

lating the heat flux qH (see equation (78)) using the expres-

sion for nm (equation (81), (82), and (83)) and by taking a

trace similar to that for the ionic conductivity above

(equation (86)). One obtains

 

l <€rivmzm> (emvm£m>2

“fie—‘2— 1‘ 2 - <88)
kBT <vm£m><smvm£m>

To evaluate the averages (equation (87» the form of

g(sm) (equation (76)) is used to give

m -s /k T
_ n m B

<fm> — k_T I dsmfme (89)

B s
0

which can be repeatedly integrated by parts to give

(kT)

-s /k T B
_ 0 B l + C ——— +

<fm> - nf(so)e ILEO)

(kBT‘N

+ CN ——— + ... (90)

s

L0)  
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where the coefficients CN are

N

_ eo dNige)

N f(so) dsN

6:80

The expansion for <fm> (equation 90) can be terminated to

-s0/kBT

<fm> = nf(so)e (92)

if the gap energy s0 is much larger than the thermal energy

kBT. Rice and Roth52

culations because it allows the transport coefficients to

use this approximation in their cal—

be evaluated. They indicate that the results are applicable

only at low temperatures (T << sO/kBT).

Using the simple statement for the averages (equation

(92)), one can write

2 -s /k T
_ 1 (Ze) 0 B

°I ‘ 3 kBT nVoice

Since the simple statement for the averages gives a zero

KI, the next term in the expansion (see equations (90) and

(91)) is required. One obtains

 

s -s /k T
..a' __Q, 0B

KI ‘ if nkaozo kBT e

= OILI

where

2s

, _ 0 d£(s)

a — 1 + 326 [ ds J _
s—so

L = 3a'kBsO

I 2 2
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As a result, the free-ion model suggests that the ionic

thermal conductivity should have the same sort of tempera-

ture dependence as the ionic conductivity. The total thermal

conductivity of the superionic phase should be the sum of

the lattice thermal conductivity K and the ionic thermal
L

conductivity KI.



CHAPTER V

APPARATUS AND MEASUREMENT

To measure the thermal conductivity of the samples,

one must

a) prepare the sample with its heater wire,

b) compress the sample to its final form,

c) control the temperature of the sample,

d) create current pulses through the heater wire

within the sample, and

e) measure the potential difference between two points

on the heater wire and so obtain the temperature

increase of the heater wire.

Making the Sample
 

The initial step in the manufacture of a sample

ensemble was the creation of a suitable heater wire from

thin Nickel wire (diameter d z 0.1 mm). The Nickel wire

used was made a) by drawing larger diameter MARZ grade

Nickel wire53 through diamond dies, and b) by then anneal-

ing the smaller diameter wire. Precut pieces of this wire

were spotwelded together to form a heater wire approximately

50 mm long with four 10 mm long leads. Larger diameter wire

87
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(d' z 0.2 mm) was attached to each of the four leads in

order to withstand the stresses of assembly and compression.

A second step was the manufacture of thermocouples in

order to measure the sample temperature. Two iron—constantan

thermocouple554 were spotwelded together, and a teflon sheath

was fitted over each exposed spotweld. Thermocouples used in

preliminary runs did not have such protection and corroded

during data-taking.

Finally, sample disks were made by compressing a pre-

measured amount of sample powder to ~l kbar in the sample

cell. These disks, about 3 mm thick and 30 mm in diameter,

were strong enough to permit both the removal of material

from the circumference of the disk (in order to ease the

insertion of the completed sample ensemble into the sample

cell) and drilling through the disks for the thermocouple

and heater—wire leads.

Figure 11 is an exploded diagram of the assembled

sample ensemble. The notations TOP and BOTTOM refer to the

orientation of the sample during data-taking.

Sample Cell
 

The sample cell (Figure 12) is used for three purposes:

a) to compress the sample disks from powder;

b) to compress the sample ensemble; and

c) to act as a sample cell during the data-taking.

The sample ensemble compression insures both a single-crystal-

55
like density for the material and close contact between the

heater wire and the sample material.
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Figure 11. An exploded diagram of the sample ensemble.
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Figure 12. Cross-sectional view of the sample cell and

of the pressure-related pieces.
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The pieces shown in Figure 12 are axially symmetric

about the pressure axis except for the cell body. This

piece has four slots on its bottom in order to preserve

the wire leads during compression as well as two holes for

pins in order to prevent movement of the assembled sample

cell with respect to its base (the bottom brass plate

described in a later section).

Three materials were used to build the sample cell:

a) type 304 stainless steel for the pistons and

the cell body;

b) Teflon for the disks and for one pressure ring;

and

c) a glass-filled phenolic for the rest of the

pressure rings.

The design of the sample cell follows that of Andersson and

Backstr5m47, and has been used to pressures of 5 kbar. The

particular dimensions of the sample cell were restricted by

the maximum pressure as well as the sample size. The outer

diameter of the cell body was computed by multiplication of

the inner diameter by a safety factor of 3.5 56.

Sample Placement
 

Centering the sample ensemble axially within the cell

and attaching leads that do not break or short under pressure

figure significantly in run preparation. A procedure for

these tasks follows.

1) Invert the cell body with the top piston protruding



2)

3)

4)

6)

7)
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~% inch onto any form that will maintain this

relative position.

Fit the inverted sample ensemble (Figure 11) into

the central bore of the cell body (sample ensemble

TOP toward cell TOP) and press the sample ensemble

carefully downward until contact is made with the

top piston.

Place the top phenolic ring and the teflon ring

into the central bore of the cell body.

Spotweld leads to the heater wire (and to the

thermocouples if needed). Use copper wire (AWG34)

for the current leads and enameled nickel wire57

for the potential leads.

Carefully press all leads into position and place

the bottom phenolic ring into position. The leads

last longer if equally spaced around the ring, and

the spotwelds break less often if the lead from

the sample and the lead to the outside are laid

side-by-side.

Center the thin teflon disk over the spotwelds and

leads, and then slowly drop the bottom piston into

the central bore of the cell body.

Gather two leads at a time and pull them into a

slot on the cell body bottom. Tug on the leads

enough to remove excess wire from the annulus

between the bottom piston and the cell body.



95

8) Finally, position some teflon spacers (~0.006 inch

thick) within the annulus to minimize any rocking

motion of the bottom piston.

Experimental Set-Ups
 

In order to produce the sample disks and to compress

the sample ensemble, pressure was applied to the sample cell

using a hydraulic ram58 confined within a steel rack (see

Figure 13). Brass plates were used where high stress

occurred--above and below the sample cell and between the

lower beams of the rack. Transite plates slowed heat flow

along the pressure axis.

The design of the bottom brass plate (see Figure 14)

solves several problems. The four slots, which are con-

tinued in the bottom transite pieces, channel the wire leads

away from the sample cell at a safe distance from the

refractory oven elements in the high temperature set up.

The two holes line up with the holes in the bottom of the

cell body, and when the cell body and the bottom brass

plate are connected with copper pins any rocking motion of

the bottom piston is prevented. Finally, the four radial

screw holes allow handles to be attached to the bottom

brass plate for the transport of the sample cell and the

bottom brass plate. Such transportation requires flipping

the sample cell/bottom brass plate to the run orientation

(TOP up).
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Figure 13. Pressure set-up for pelletizing. Internal

set-up for high—temperature runs.
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Figure 14. Top View of bottom brass plate.
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The manufacture of the sample disks required only the

set up of Figure 13. However, sample ensemble compression

usually took place immediately before a high-temperature

run. The set up for a high-temperature run required in

addition to the set up of Figure 13 both some quartz wool

packing to protect the leads and fitting the refractory oven

around the column of plates and sample cell before position-

ing the hydraulic ram. The refractory oven (see Figure 15)

essentially consists of two semi-circular refractories

(wound with heating coils)59 surrounded by firebrick. The

high-temperature system easily reached the temperature of

500 K needed for our measurements.

During sample ensemble compression (pressure

pMAX z 5 kbar) the electronics were turned on in order to

monitor the wires. During compression the sample warmed

causing a noticeable rise in the voltage across the heater

wire. Both compression and de-compression were done slowly

to preserve the insulation on the leads and so to prevent

shorts to the stainless steel cell body.

For the low-temperature data, a slightly different

arrangement was used (see Figure 16). Usually no sample

compression was required since low-temperature data-taking

followed a high-temperature run.

The coil is a length of % thick square copper tubing

wound helically with an inner coating of soft solder. A

layer of vacuum grease (Dow Corning silicone lubricant)

helped to make good contact between the coil and the cell

body and aided in slipping the coil in place. The tight



101

Figure 15. Oven (bolts and electrical connection not

shown).
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Low-temperature set-up.



104

 

   

 

 

 

    
 

    
  

Rack

Hydraulic

Ram

Quartz

Wool

Top Transite

Plate

Sample Cell

with Coil

Bottom Brass

Plate

Foam Bucket

Transite Base

Plate

Brass Base

Plate



105

fit of the coil required that a plastic mallet be used to

pummel the coil into final position on the sample cell. To

protect the leads the sample cell was inverted during the

”delicate" procedure.

The sample cell was lowered into the foam bucket using

the detachable handles for the bottom brass plate. After

the hydraulic ram was positioned on top of the sample cell,

quartz wool was stuffed into open spaces in the bucket in

order to keep any water condensed by the ram out of the

foam bucket.

The cooling agent, cold gaseous nitrogen, was boiled

off from inside a liquid nitrogen storage dewar using a

100 0 power resistor hooked to a variac for a heat source.

The gas was transferred to the coil through a short length

of rubber hose.

Cooling by means of liquid nitrogen poured into the

foam bucket was tried for all the samples. The effectiveness

of this procedure was limited since

a) the thermocouples indicated temperatures several

degrees below 77 K,

b) heat pulse reflection destroyed the linear portion

of the AT/Q vs. int plots at low temperatures, and.

c) any data obtained after such cooling did not match

earlier data.

No data taken below 120 K was found to be useful.

Hot and cold running water were used sometimes to obtain

additional data near room temperature using the low-tempera—

ture set up. Data could be obtained between 285 K and 325 K.
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Nickel Wire Calibration
 

In order to determine accurately the small temperature

excursions of the heater wire, the resistivity of the wire

as a function of the temperature was determined.

For this calibration a nickel wire sample (t = 13.35 cm;
wire

d = 0.012 cm) was mounted in a small vycor tube using
wire

G.E. varnish. An iron-constantan thermocouple was mounted

inside this tube in contact with the wire sample.

The sample resistance was determined from 77 K to

300 K using a cryostat provided by Dr. P. A. Schroeder.

The current was supplied by a Helwett-Packard 6920B meter

calibrator while the voltage across the sample was measured

using a Keithley 180 Digital Nanovoltmeter. A by-product

of the low—temperature calibration of the nickel wire was

the simultaneous calibration of the thermocouple against a

Platinium resistance thermometer. The thermocouple read

approximately 1.5 K high near 77 K, but only ~0.5 K high

above 150 K.

The high-temperature calibration (290 K to 540 K) was

determined with the same sample and electronics. The sam-

ple temperature was maintained using an oven. The sample

was held by a piece of firebrick. Figure 17 shows the

entire calibration from 77 K to 500 K.

The calibration curve was fitted to a ninth order poly-

nomial using the FORTRAN IV program GOATFIT (see Appendix

B) on the CDC 7600 computer.
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Figure 17. Nickel wire calibration.
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Electronics
 

The experimental setup for the electronics and the

computer is shown in Figure 18. The setup can be divided

into two sections:

a) temperature control, including the thermocouples

and their electronics; and

b) data-taking, which is overseen by the PDP-8

mini-computer.

The major tasks for the PDP-8 are considered below (the

programs are found in Appendix B).

First, the PDP-8 controls the current pulse generated

by the power supply (a Hewlett-Packard 6259B DC Power Supply).

The mini-computer sends to the power supply a timed 10 volt

pulse which regulates the length of the output current

pulse. Hardwire programming on the back panel of the power

supply--a variable voltage divider for the input, a sensing

resistor with the output-~converts the mini-computer

voltage to a constant current level.

Second, the PDP-8 collects the voltage readings from

the DVM (a Dana Digital Multimeter Model 5900) through an

interface. The inferface was designed and constructed in

the electronics shOp by D. Edmunds with input from M. Haerle.

The software which runs this portion of the experiment (see

Appendix B) was originally written by D. Edmunds, but has

been modified by the author and contains some contributions

from M. Haerle. The DVM/interface system could measure

either the voltage across a l 0 power resistor (in order to
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Figure 18. Circuit diagram.
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measure the current) or the potential difference across

the heater wire, and collected twenty readings per second

during the current pulse.

Both of these tasks, as well as the storing of data

files on disk, were contained in the FORTRAN II data-taking

program. Other tasks were undertaken by a FORTRAN IV

analysis program which

a) generated an initial resistance R by extrapola-

0

tion from the first five data points,

b) calculated the temperature differences using R0

and the ninth order polynomial fit corrected to the

heater wire dimensions,

0) displayed the AT/o vs. Znt data,

d) permitted the removal of spurious data points

(such as the points that are due to heat pulse

reflection from the finite outer boundary), and

e) calculated the thermal conductivity and X2 using

a least squares fit, and displayed the differences

between the actual data and the fit.

Data Taking
 

In order to relate the electronics to the other

apparatus a summary of the data-taking procedure follows.

1) The temperature controlling variac was adjusted to

give a temperature drift of ~8 K/hr by setting the

variac at the voltage for an equilibrium tempera-

ture ~30 K ahead in the drift direction.



2)

3)

4)

5)
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The two thermocouples were monitored to judge the

temperature drift and to insure that their dif-

ference was 1 K or less. Larger differences

indicated thermal non—equilibrium.

The current could be varied between 0.18 Amp and

1.0 Amp using the resistive pot in the voltage

divider circuit on the power supply. This pot was

adjusted to give a maximum temperature excursion

near 1.6 K.

Using the FORTRAN II data-taking program:

a) a set of voltages across the l 0 resistor were

taken in order to measure the current;

b) a set of voltages from the heater wire were

measured in order to monitor the temperature

excursion; and

c) the heater wire voltages and the parameters

(including the temperature and the current)

were written onto the disk for storage.

The data was analyzed with the FORTRAN IV analysis

program to give the thermal conductivity K. Two

sets of AT/Q data points were eliminated consis-

tently during the analysis:

a) the initial curved section of the data due to

the heat capacity of the wire; and

b) the upward curving section towards the end of

the data due to heat pulse reflection from the

finite outer boundary (especially important at

low temperatures).
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A typical set of AT/Q vs. £nt data is shown in Figure 19.

System Calibration
 

In order to verify the accuracy and precision of the

total system it was calibrated against known materials.

The system calibration proceeded in several steps.

First, the thermal conductivity of glycerol at room

temperature was measured to test the electronics without

computer programs. The data obtained was not analyzed by

computer but rather was analyzed by plotting numbers from

an x-y plotter trace. The value of 0.24 W/mK obtained by

such data manipulation was near the value of 0.29 W/mK

60 Some of the differenceobtained by Sandberg, et a1.

between the two numbers could be due to absorbed water in

the glycerol. '

Second, the thermal conductivity of teflon was measured

'as a function of pressure and compared to the data of

Andersson and Bickstr5m47. The pressure was measured using

a resistance pressure gauge consisting of Manganin wire

wound on a teflon form. This gauge was substituted for

one of the thermocouples during these pressure runs. One

set of the data (see Figure 20) indicates the agreement

with the data of Andersson and Bickstrfim.

There are two difficulties with this data. First,

the sample was not under hydrostatic pressure. Second,

continual compression and decompression destroyed the wire

leads. This last problem was due to the wire rubbing
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Figure 19. A typical set of AT/O vs. £nt data.
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Figure 20. The thermal conductivity of teflon (compared

to data from Andersson and B8ckstr5m47).
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against surfaces during the pressure cycles and shorting

to the metal cell body.

As a final calibration, the thermal conductivity K'

of NH4C£ was measured as a function of the temperature T.

The data was measured at a pressure of ~0.8 kbar and fits

the line (see Figure 21)

KnK’ = 6.882 - 1.167 ZnT

The standard deviation of the points about this fit is

14 fits the lineabout 3%. The data of Ross and Sandberg

£nK' = 6.219 - 1.049 £nT

for data taken between 250 K and 298 K at ~0.5 kbar. The

data for the two curves meet at 300 K and differ by only

1%.

AgI Sample Preparation
 

Silver Iodide may exist as either stable B-AgI or

metastable Y-AgI below the phase transition at 420 K. Meta-

stable Y-AgI forms under extremes of pressure such a occur

during powdering and pelletizing34. Since both of these

techniques are used to prepare the sample disks, any AgI

sample must be considered to be primarily Y-AgI unless it

is converted to B-AgI by heat treatment.

To obtain the B—AgI sample used in the experiments a

pressed powder compact was annealled lg sitg between 400 K

35
and 420 K for one week . By the procedure the material in

the sample was changed to greater than 95% B-AgI.
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Figure 21. The thermal conductivity of NH4C£ (compared

14).
to data from Ross and Sandberg
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AgI0.96Br0.04 Sample Preparation

 

The sample material containing AgI + 4 atomic percent

AgBr (written Ag10.96Br0.04) was prepared by the following

procedure:

a) appropriate amounts of 99.999% AgBr and 99.999% AgI

were mixed, and subsequently sealed within coaxial

vycor tubes evacuated to 10-4 torr;

b) the system was heated in a furnace to near 900 K

in order to melt both the AgI and the AgBr;

c) the melt was shaken vigorously within the furnace

using a wire connected to a loop on the outer vycor

tube; and

d) the material was cooled slowly to room temperature.

The solid at room temperature was purplish on the outside

and nearly the same yellow as AgI on the inside.

Two items of information are needed in order to under-

stand the sample preparation. First, since the sample

material expands as it cools both through and below the

phase transition, the inner vycor tube shatters. Two vycor

tubes were required in order to prevent contamination of

the sample material. Second, since AgI dissolves up to

5 atomic percent AgBr at room temperature, a sample with

proportionally less AgBr will have the bromine ions well

distributed throughout the sample. As a result, the

sample does not need to be quenched.
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PyAg516 Sample Preparation

 

The sample preparation for the sample material PyAg5I6

begins with the manufacture of the component compound PyI.

PyI precipitates from a stoichiometric mixture of HI and

pyridine in the form of white flakes. This precipitate

must be re-crystallized several times by dissolving the

flakes in hot ethanol and cooling the ethanol/PyI solution.

The re-crystallizations remove any leftover pyridine and HI.

The PyAg5I6 sample material was made in the following

way:

a) stoichiometric amounts of PyI and AgI were ground

together, compressed into small pellets, and sealed

in an evacuated vycor tube;

b) this sample system was annealled near 125°C for

12-16 hours;

c) the ionic conductivity of the pellets was measured,

and as long as the ionic conductivity continued to

increase strongly, the pellets were crushed and

steps a) through c) were repeated.

Typically the ionic conductivity of the PyAg516 samples

leveled off after 5-6 anneals at values about an order of

20 1
magnitude below the reported value of (8)(10-2)Q-1cm-

(except for one sample that had an ionic conductivity of

1
(1.3)(10-2)0-1cm- ). The low ionic conductivity may

have been due to:

a) decomposition (the decomposition temperature is

440 K 20);
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b) water and oxidation;

c) excess reactants; and

d) the formation of Py5Ag18123.

The measurements of the ionic conductivity suggest that

the samples of PyAg516 are below the quality of the other

samples.



CHAPTER VI

DATA AND INTERPRETATION

The measurements of the thermal conductivity and the

interpretation of the data are presented in this section.

The samples at room temperature consisted of:

a) B-AgI

b) Y-AgI

c) B-AgI with four atomic percent AgBr; and

d) predominantly PyAg516.

The measurements were taken between 120 K and 500 K. Since

where CO is a constant, these data are plotted on a £nK vs.

£nT graph in order to determine the temperature exponent s

from the slope of the plotted data.

.8221

The thermal conductivity results (see Figure 22) for

one sample of 99.999% AgI predominantly in the B-phase at

room temperature show three linear regions in the thermal

conductivity:

a) region I between 120 K and 180 K where

K ~ T-1.3i0.1;

125
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Figure 22. The thermal conductivity of B-AgI.
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b) region II between 300 K and 420 K where

-1.8f0.1,
K ~ T and

c) region III above 420 K where K ~ T+0'5i0°1.

All of region III lies above the phase transition at 420 K

and corresponds to superionic d-Agl. Regions I and II and

the intermediate curving region correspond to stable B-AgI.

Two sets of data are shown within region II:

a) the first set of data (I) taken between the anneal

temperature and room temperature, and then through

the phase transition at 420 K; and

 

b) the second set of data (0) taken while cooling from

the phase transition at 420 K after taking the

a—Agl data.

The latter set of points have slightly lower values of the

thermal conductivity compared to the freshly annealed sam-

ple since no pressure was placed on the sample during the

phase transition at 420 K. A 5% volume increase occurs as

AgI is cooled through the transition, so that either the

heater wire pulled away from the sample material or the

material density was less for the second set of data (a).

In any case, the effect was small so that no correcting

compression was desirable. Had such a compression been used,

it could have changed some significant.fraction of the B-AgI

to Y-AgI.

Interpretation of the B:AegData

If the temperature dependence of the thermal conducti-

-€

vity is written as K = CT , three processes should
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contribute to the exponent s = s + s + s for the
u th op

normal solid:

a) three phonon Umklapp scattering gives su = 1

(equation (61));

b) thermal expansion gives 8th = BagT (equation (64));

and

c) optical phonon scattering gives 8 = —§§— (Z+x —l)

op 1+SZ 0

(equation (70)).

The quantity 8 is the coefficient of thermal expansion,

'50 x
_ 3£nK _ _ 0 _ 0

g — - EZHV , xO — eop/T where 60p - 7i; , Z - xO/(e —l),

and S relates the scattering by the optic phonons to the

scattering from the acoustic phons.

Consider first the contribution s The coefficient

th’

of thermal expansion a for Y-AgI has been measured by many

workers, but measurements of the lattice constant by Lawn61

using X-ray techniques indicate the coefficient of thermal

expansion for the two polymorphs is similar. As a result,

one can use the value a e (2)(10-6)/K determined by

Bienenstock and Burley62 for Y-AgI. The derivative g can

be taken to be a7 as for the potassium halidesa. One can

then calculate eth’ and the results for three temperatures

are given in Table 4.

Also in Table 4 are the results of the calculations

for sop. The parameter xO can be determined from the

maximum optical mode wavenumber (1;; 2: 124 cm’l) determined

63
by Raman scattering The quantity S is between 0.6 and

1.4 for many materials6, so that one can use S e l.
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Table 4. Calculated values for s = l + sth + 50p at 150 K,

300 K, and 420 K for B-AgI.

 

 

 

T(K) 8th 8Op 8

150 —0.01 0.24 1.23

300 -0.01 0.14 1.13

420 -0.02 0.10 1.08

 

 

These sets of calculations indicate that this theory

explains the data near 150 K (s(I) 1.3i0.l) but not the

data at higher temperatures (s(II) l.8:0.l, s(III) =

—0.5:0.l).

In order to explain the temperature exponent s(II),

one can look at the temperature dependence of the average

square deviation <i2> of the ions about their lattice

positions. In a purely harmonic potential, <§2> will be

proportional to the temperature T at high temperatures

(T >> 6D).28 The quantity <§2> may be obtained from

measurements of the Debye-Waller factor in X—ray or neutron

diffraction experiments.

However, the determination of <i2> from the thermal

18
parameters of neutron scattering for B-AgI between 290 K

1.4
and 420 K suggests a temperature dependence like T for

<iz> that is becoming even stronger at higher temperatures.

Since most materials obey <iz> ~ T at high temperatures,

this evidence implies increasing lattice anhamonicity and
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so motivates the addition of H" = tx4 to the potential

energy in region II.

The addition of the x4 term in the potential energy

permits the inclusion of the four—phonon relaxation time

1
 

r4 = 2 in the temperature dependence of the thermal

D'T

conductivity

K~T=__l__=__1__
-l -l , 2
Tu +14 DT+D T

_ l. l

- DT [l-tT Tp] ' (94)

The proportionality constant Tp = %7 has the units of

temperature and measures the relative strength of the three-

phonon processes to the four-phonon processes.

50
The theory of Klemens and Ecsedy uses a factor like

Tp such that IT/Tpl is the "mean square thermal shear".

Their factor has a magnitude around 50,000 K for many non-

metals, so that four-phonon processes should contribute

little to the thermal conductivity at room temperature

since (300 K)/Tp e 10'2.

However, for a few materials the experimentally deter-

65’66. The temperature exponentmined Tp is much smaller

s(II) can be used to estimate Tp for B-AgI by the following

procedure. The slope of the data in region II is -s(II)

between the end points at 300 K and at 420 K. One can

write
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_ £nr(420 K) - £nr(300_§l
-s(II) -1-8 - £n(4zo E) - £n(300 K)
 

£n[r(420 K)/T(300 K)]

£n(420/300)

 

for this slope using the expression for 1 given in equation

(94). The constant Tp is found to be near 140 K. At room

temperature the four-phonon processes appear to contribute

a large portion of the scattering since (300 K)/Tp z 2.

In region III, using the free—ion model of Rice and

Roth, the ionic thermal conductivity KI may be written

(equation (93))

KI = O1L1

where CI is the ionic conductivity and

3a'kBsO

I 2Z2e2

where d' is nearly 1, Ze = (l)e is the charge on the mobile

ion Ag+, and s0 is the gap energy in the free-ion model.

According to Rice and Roth52 the gap energy so may be

identified with the migration (activation) energy

Em = 0.051 eV obtained from the slope of the ionic conducti-

16 16
vity data for d-AgI For d-AgI at 420 K ,

CI = 1.3 0"lcm-1 and LI : (6.6)(10—6)W Q/K, so that

KI z (8.6)(10‘4) W/m-K. When compared to the data at 425 K

(K s 0.16 W/moK), the ionic thermal conductivity is seen to

be more than three orders of magnitude lower than the meas-

sured total thermal conductivity.
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As a result, the discontinuity and change in the tem-

perature dependence at 420 K suggest that further shortening

of the phonon mean free path due to scattering from the

mobile ions occurs in the superionic phase. A direct cal-

culation of the lattice thermal conductivity for d-AgI

cannot be made due to the lack of appropriate data for this

phase. However, a calculation of the minimum thermal con-

ductivity at 420 K using B-AgI parameters can be made, and

this calculation can be drawn upon to interpret the

d-AgI data.

The minimum thermal conductivity KMIN may be expressed

as (see equation (74))

 

2
K = ka +ka0

MIN 3 26
26 vD

3. _‘”o.
where 6 is the volume per atom, v0 - 5? is the largest

1
optic mode frequency (16 z 124 cm’1 from Raman scattering63 ).

VD = wD/Zn is the Debye frequency calculated from 9D 2 120 K,

and v is the sound velocity.

The sound velocity can be re-created from the elastic

constants64 C11 and C44 at room temperature using6

v = __1 (,xc— + 2.6—) (94)
3/— ll 44

P

where p is the mass density. One finds that

KMIN z 0.17 + 0.08 = 0.25 W/m-K
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using B-AgI parameters, which agrees quite well with the

measured value for B—AgI at 420 K (K 2 0.20 W/m-K).

The thermal conductivity of B—AgI does not become tem-

perature—independent immediately below the phase transition,

so the phonon mean free path in B-AgI at 420 K is not at its

minimum value. However, the weak temperature dependence of

K for the superionic phase supports the extrapolation of

the minimum thermal conductivity idea to d-AgI since the

introduction of temperature-dependent quantities into KMIN

can produce a weakly increasing thermal conductivity at

temperatures roughly 3—4 times 6D

In short, our data shows that the mobile ions in

d-AgI affect the thermal conductivity not by carrying heat

but by truncating the phonon mean free path.

1:.431

The thermal conductivity results (see Figure 23) for

two samples of 99.9% AgI predominately in the a-phase at

room temperature show three straight-line regions in the

thermal conductivity:

a) region 1' between 120 K and 180 K, where

K ~ T-l.3i0.l;

b) region II' between 300 K and 420 K, where

—1.7io.1,
K ~ T and

c) region III' above 420 K, where K ~ T+0'210'1.

All of region III' lies above the phase transition at 420 K,
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Figure 23. The thermal conductivity of y-AgI.
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and corresponds to a-AgI. Region I' and the curve between

regions I' and II' corresponds to y-AgI because this data

was taken on an unannealed sample. Region II' corresponds

to mixtures of B-AgI and y-AgI.

Within region I' sample 1 (e) was estimated to con-

tain at least 90% y-AgI. Within region II' the exact per-

centage of y-AgI for this sample changes since this portion

of the data represents several traversals between room tem-

perature and just below 420 K. Since y-AgI slowly converts

to B-AgI above 400 K 35, some y-AgI will anneal out at the

high temperatures. However, this sample is estimated to

35 for all the data below thecontain more than 50% y-AgI

phase transition in Figure 23. Over the range of tempera-

ture and composition in region II' no dependence on the

amount of y-AgI is seen in this sample, and the collective

data appear linear.

Within region II' the initial composition of sample 2

(l) was also near 90% y-AgI, but this data repesents only

one traversal from room temperature to the phase transition.

Two parallel lines of data appear at room temperature

for sample 1 (e) in Figure 23 due to an additional compres-

sion after taking the low-temperature data. This compression

insured that the nickel heater wire was in close contact

with the sample material after the apparatus change-over.

The compression increased the magnitude of the thermal

conductivity while preserving the slope of the £nK vs. £nT

plot.
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Interpretation of the y-AgI Data
 

The temperature exponents for the three regions I',

II', and III" in the y-AgI samples match up with the values

obtained for the corresponding data of the B-AgI sample.

The temperature exponents s(III) = -O.5f0.l for B-AgI and

s(III') = -0.2:0.l for y-AgI show the largest difference,

but the discrepancy can be attributed to the scatter in

the data.

The similarities between the temperature exponents for

the two phases indicate that the same scattering mechanisms

dominate the thermal conductivity over the same ranges of

temperature. Especially important is the observation that

s(II) for B-AgI and s(II') for y-AgI are nearly the same.

Because the ionic conductivity for the two phases is so

different (two orders of magnitude at room temperature;

see Figure l), the thermal conductivity in regions II and

II' cannot depend on either the ionic conductivity or the

number of defects in the material but only upon the

anharmonicity of the lattice. The number of defects is

contained in the prefactor for the ionic conductivity, and

so should affect the relative magnitude of the ionic con-

ductivity of y-AgI compared to B-AgI.

The thermal conductivity data in Figure 23 has a lower

magnitude than the B-AgI of Figure 22. The maximum pres-

sure used during the sample ensemble compression was smaller,

so that the decreased magnitude is probably due to either a

lower sample density or poorer wire contact. It cannot be
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attributed to differences between y-AgI and B-AgI because

of the mixed phase data in region II.

AgI B
0.96 r0.04
 

This sample was compressed to nearly the same gauge

pressure as the B-AgI sample, and was heated through the

phase transition in order to determine immediately the

temperature of the phase transition. Once above the phase

transition, the superionic phase data were taken, and then

the remaining data for the stable B—phase were taken. The

data (see Figure 24) for AgI B show the following
0.96 r0.04

when compared to the data from the pure AgI sample:

a) the phase transition is reduced 6 K from 420 K for

AgI to 414 K for the mixed sample;

b) the mixed sample data is lower in magnitude than

the B-AgI data; and

c) the mixed sample data has the same temperature

dependence as the B-AgI data.

The reduction of the superionic transition temperature by

6 K would seem to indicate that the sample is near 3 atomic

percent AgBr in AgI (see Table 2). Because the concentra-

tion of AgBr was not determined by other methods, the

exact concentration is unknown. In either case the sample

can be used to judge the effect of Br- impurities in AgI

solid solution.
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Figure 24. The thermal conductivity of AgI + 4 atomic

percent AgBr.
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Interpretation of the AgI B Data

0.96 r0.04

The mixed sample data and the pure AgI data may be

interpreted using the same set of scattering processes since

the temperature dependence of the thermal conductivity of

both samples is nearly identical. Because the data of

Shahi and Wagner21 shows that this amount of bromine

impurity increases the ionic conductivity at room tempera—

ture by a factor of ten, the two curves indicate that the

ionic conductivity (which is related to the number of

defects) is not connected with the temperature dependence

of K.

The mixed sample data and the pure AgI data would be

expected to have nearly the same magnitude since the pres-

sure used in the manufacture of the two samples was nearly

identical. Although the difference in the magnitude of the

two samples might be attributed either to the contact

between the wire and the sample or to the number of defects,

the difference in the density that results from the substi-

tution of bromine ions is probably responsible. The thermal

conductivity K should depend on the density p as

K ~ (mg

where g is defined by

_ 3£nK

g - - 3£nV

 

as was used to determine the correction for thermal expan-

sion (equation (64)). If g z 7 as for the potassium
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halidess, then a one percent decrease in the density

could account for a seven percent reduction in the thermal

conductivity.

PyAg5I6

The thermal conductivity data for several samples of

PyAg516 prepared as described in Chapter V are shown in

Figure 25. Because of the scatter in the data and because

no sharp phase transitions appear, the temperature depen-

dence of the thermal conductivity cannot be uniquely

determined. One interpretation is that

a) a nearly temperature-independent region exists

between ~l40 K and ~260 K,

b) the thermal conductivity goes as T-O'6 between

~260 K and ~350 K, and

0) another nearly temperature-independent region

exists between 350 K and 440 K.

None of the transitions between regions in this interpreta-

tion corresponds to a phase transition determined by other

methods.

Interpretation of the PyAg5I6 Data

 

The thermal conductivity data for PyAg516 are diffi-

cult to analyze because of

a) the poor quality of the samples, and

b) the ambiguous temperature dependence.
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Figure 25. The thermal conductivity of PyAg5I6.
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Overall, the data looks similar to that found for amorphous

solids where no strong temperature dependence occurs6

The interpretation of the data which suggests a tem-

perature dependence for some portions of the thermal con—

ductivity curve hints that the gradual phase transition at

~310 K shortens the phonon mean free path over a broad

range of temperature. As indicated earlier, this inter-

pretation is not unambiguous.

Overall Summary
 

 

The data for the several samples of AgI and AgIO.96Br0.04

show three regions of temperature dependence which can be

explained by:

a) three-phonon Umklapp scattering between 120 K and

180 K;

b) four-phonon Umklapp processes between 300 K and

the superionic phase transition; and

c) a minimum phonon mean free path above the superionic

phase transition.

The introduction of the bromine impurity reduces the tem-

perature of the superionic phase transition but does not'

seem to affect the temperature dependence of the thermal

conductivity.

The mobile ions in all phases (Ag+ interstitials in

B-AgI and in y-AgI and the free ions in d-AgI) do not

participate directly in thermal conduction. In the normal

phases this is to be expected since the number of mobile
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ions is small. However, in the superionic phase the number

of mobile ions is half the total number of ions, and one

would expect a correspondingly larger effect. The data in-

dicates that the ions transport no heat, but rather

truncate the phonon mean free path. The ions can be de-

scribed as continually disturbing the lattice during their

passage through the open structure. ”a

A negligible ionic thermal conductivity also results I

in the free-ion model postulated by Rice and Roth52.

 
However, their restriction that .j"

kBT << s0 = Em .

is not obeyed-~the thermal energy is instead nearly equal

to the migration (activation) energy for d-AgI. The viola-

tion of this restriction probably nullifies their expres-

sion for the ionic thermal conductivity, but since this

is the only explicit calculation of the thermal conducti-

vity for superionic conductors it is worthwhile to make

the comparison.

The data for PyAg516 is featureless and reflects the

poor quality of the samples. Reliable data could be ob-

tained by growing single crystals42 of PyAgSIG, and by

powdering these crystals.

The system could be improved in many ways, including:

a) better pressure measurement systems, including

a hydrostatic pressure cell for the sample;

b) high-temperature plastics for the rings and pro—

tective teflon disks;
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'c) a larger sample cell so that a straight heater

wire could be used instead of an "S" shaped heater

wire with a large radius of curvature;

d) a vacuum system around the sample cell to prevent

contamination by the air and to permit the hand-

ling of water-sensitive samples;

e) one single computer program for data-taking and

analysis; and

f) a good method of determining the thermal diffusivity

DTH = HE from the intercept of the AT/Q vs.£nt plot.

The intercept of the AT/Q vs.£nt plot includes several addi-

tive components that need to be removed before DTH can be

determined. A determination of both K and D would permit
TH

the product of the density p and the heat capacity C to be

determined.
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APPENDIX A

LAPLACE TRANSFORMATIONS

The Laplace transform of a function v(x,y,z,t) is

defined to be

V(x,y.z.p> = Liv} = l e‘ptv(x,y,z,t>dt
0

where p is the complementary variable to t. Several

Laplace transforms67 important to the discussion are given

in Table 5.

The inverse Laplace Transform is usually determined

by means of inspection from tables such as Table 5, or by

using the inversion theorem for the Laplace transform

Y+i0°

1 _

v(t) = 5—; J eptv(p)dp

)r-i<=o

where Y is large enough to enclose all the singularities

of V(p) on the negative side of the line drawn parallel to

the imaginary axis through +Y.

The boundary value problem of Chapter III can only be

solved using the inversion theorem. Since there is a

branch point at the origin, the contour of Figure 26 must be

used for the integral in the complex plane. The contour

149  
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Table 5. Some Laplace Transforms
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includes the line parallel to the imaginary axis through +Y

as well as a cut that starts just below the negative axis,

circles the origin, and ends just above the negative axis

(line BC).

The procedure68 that is followed for problems such as

the boundary value problem is to show that the integral

vanishes for all of the contour except for the cut (line

BC) from -m to the origin, and then to evaluate the inte-

grals along this out. These integrals can be written

(0+)

v(t) = 5%; J ept5(p)dp

and have been evaluated for several functions67 (Table 6).



151

Figure 26. The contour for the inverse Laplace transform

of the boundary value problem.
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Table 6. Integrals (ZnC = y)
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Duhamel's theorem (also known as the Superposition

theorem) is

L{&: f1(T)f2(t-T)dT} = L{fl(t)} L{f2(t)}

which essentially states that the product of two Laplace

transforms can be written in terms of the Laplace trans-

form of a convolution integral.



APPENDIX B

COMPUTER PROGRAMS

The computer programs used in the determination of the

thermal conductivity using the transient hot wire method

can be separated into two classifications:

 

a) data—taking and file-storage programs written in

FORTRAN II and SABR (an assembly language for

FORTRAN II) for the PDP-8; and

b) analysis and curve fitting programs written in

FORTRAN IV for the PDP-8 and for the CDC 7600.

The two sets of programs are connected by the data files

organized as in Table 7. The data files have space for

up to 85 data points and 12 parameters.

The hub of the data-taking programs is IGUANA-FT.

(see Table 8). IGUANA~FT calls three subroutines in the

following order:

a) RMl6SB-FT to measure the voltage across a nominal

1 Q resistor during the pulse to measure the cur—

rent (the actual resistance is given as the scale

factor);

b) RM16SB-FT to measure the voltage across the heater

wire during a second pulse;

155
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Table 7. Data File Arrangement

 

 

 

 

I SV(I)

1 Data Taken = l

2‘?

3

4

5

83

84 Data Points (Maximum Number = 85)

85

86

87 End of Data = Negative Number

88 Open

89 Parameters Included = l

90 Open

91 Resistance Zero

92 Temperature

93 Pressure

94 Current

95 Open

96 Scale Factor

97 Wire Length

98 Wire Diameter

99 Time Interval

100 Date

 

 



157

c) PARMSD-FT (called PARMSB by IGUANA-FT) to attach

the parameters such as the sample temperature and

pressure; and

d) SHOFIL-FT to write the completed data file onto

the disk storage device.

RM16SB'FT is given in Table 9, PARMSD-FT is given in Table

10, and SHOFIL-FT is given in Table 11.

The program RMl6SB-FT is a long program principally

written in SABR. The letter S appears before the SABR

lines. RMlGSB-FT performs the following tasks:

a) to obtain the number of data points from the user;

b) to control the power supply;

c) to wait for 51.4 msec between data points;

d) to take the data points and to store them tempo-

rarily; and finally

e) to convert the data points into usable numbers.

The final values are stored in COMMON.

PARMSD'FT defines the array PAR(I) which stores the

parameters entered in this'subprogram. Using comment state-

ments the user can decide which parameters are to be

printed out and entered during data-taking. This decision

usually takes place immediately prior to the run when the

parameters (such as the wire length) are changed using the

system EDITOR.

SHOFIL'FT allows the user to assign a six—symbol name

(with no spaces since the file would be irretrievable) to

the file written on the disk. It also checks to make sure
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that the data and the parameters have been included in

SV(I) before the file is written:

The analysis program GOATSV-FT (see Table 12):

a) reads the data and the parameters from the file;

b) calculates the array of points D(I) which are the

temperature excursions divided by the instantaneous

power dissipated per unit length;

c) calculates the array C(I) of the int values corres-

ponding to D(I);

d) displays the data points;

e) permits the elimination of spurious data points;

and

f) calculates the thermal conductivity and the X2

with a linear least-squares regression and displays

the differences E(I) between the fit and the data

points.

The program sections that control the manipulation of the

displayed data points have been given line numbers between

400 and 699.

One section of GOATSV-FT requires additional explana-

tion--the section that extrapolates an initial potential

difference from the first five potential differences

measured.(line 800). This extrapolation fits the measured

points to an internally generated set of orthogonal

Legendre polynomials69. This procedure is a least-squares

approximation that quickly converges to a solution because

of the orthogonality of the polynomials.
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The array AA(I) in GOATSV-FT stores the coefficients

of the nickel wire calibration calculated by GOATFIT (see

Table 13) on the CDC 7600. GOATFIT calculates these coef-

ficients by writing a matrix equation that minimizes X2,

and then by solving the matrix equation using Cramer's

rule70.
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Table 8. Listing for IGUANA-FT

0
0
0

100

102

252

260

261

400

800

999

IGUANA. FT

THERMAL CONDUCTIVITY MEASUREMENTS

TRANSIENT HOT HIRE METHOD

COMMON SV! ATT

COMMON PAR

DIMENSION SU(100)9PAR(12)

DO 100 I=19100

SU(I)=0.0

DO 102 I=1912

PAR(I)=0.0

READ(112) IGO

FORMAT(’ BO=0!OUT3ELSE3 ’II3)

IF(IGO) 999!200!999

DATA TAKING

URITE(17201)

FORMAT(’ DATA TAKING: OUT=O§ MAX 85 PTS‘ I BEFORE U’)

CALL RMléSB

IF(ATT) 1'1v205

SV(1)=100

IATT=IFIX(ATT)+2

SU(IATT)=-1.0

IF(IATT-87) 20772109201

IZER=IATT+1

DO 209 I=IZERr87

SU(I)=0.0

DO 212 J=1rIATTv5

URITE(19213) (SV(K+J-1)1K=175)

CONTINUE

FORMAT(’ ’95E13o6)

READ(19214) ISU

FORMAT(’ CURRENT DATA=-19D.POINT CHANGE=09UOLTAGE DATA=+1:’9I3)

IF(ISU) 250v215v400

READ(11217) IDPC

FORMAT(’ DECIMAL POINT CHANGE: MULTIPLIER=10¥X ’9I3)

DO 227 I=19IATT

SU(I)=SU(I)*(10.0*#IDPC)

GO TO 218

CURRENT DATA

IAT=IATT-1

SUMCU=0oO

DO 252 I=ZIIAT

SUMCU=SUMCU+SU(I)

CONTINUE

CURBSUMCU/ATT

URITE(19261) CUR

FORMAT(' CURRENT ='IE14o6)

SU(94)=CUR

PAR(6)=CUR

GO TO 200

PARAMETERS

CALL PARMSB

FILE

CALL SHOFIL

GO TO 1

sun

STOP'-

END



Table

O
0
0

m
m
m
m
m
m
m
m

U
!

200

SCLR29

S

S

S

220

SMEECEv

(
”
£
0
0
1
0
1

300

C

SPHOFF9

S

S

400

SCECIL9

0
2
m
m

460
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9. Listing for RMlGSB-FT

SUBROUTINE RM16SB

GOETZ -- SABR9F2

DATA TAKING SUBROUTINE

TRANSIENT HOT HIRE METHOD

COMMON SU9ATT

DIMENSION SUX(100)

DIMENSION SVY‘lOO)

DIMENSION SV(IOO)

OPDEF DACS 6551

OPDEF CLZE 6130

OPDEF CLAB 6133

OPDEF CLSA 6135

SKPDF CLSK 6131

OPDEF CLDE 6132

OPDEF DGOT 6113

ORDEF DGIN 6144

READ<19150) ICHR

FORMAT(’ NUMBER OF POINTS = '9I3)

IF(ICHR) 46094609151

IF(ICHR-85) 15291529999

CONTINUE

JC=ICHR+2

DO 5 JD=1987

SUX(JD)=0.0

SVY(JD)=0.0

SV(JD)=0.0

UEX=O o 0

CONTINUE

CLA CLL

TAD (3777

DACS

CLA CLL

CONTINUE

DO 300 JM=19JC

CLA CLL

JMS STTM

JMS - READ

JMS UTTMI

CLA CLL

SUY(JM)=AUTO

SUX(JM)=AUT2

CONTINUE

/POUER OFF

CLA CLL

DACS

CLA CLL

AUTO=0o0

AUT2=0o0

CONTINUE

DO 450 JM=19JC

AUTO=SUY(JM)

AUT2=SUX<JM)

CLA CLL

JMS CNUT

JMS PNTD

CLA CLL

SU(JM)=UEX/((10.0)**5)

VEX=0o0

CONTINUE

IATT=ICHR+2

SV(1)=1.0

SU(IATT)=-1o0

ATT=FLOAT(ICHR)

GO TO 999
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C

SMASK19

STEMP9

SK17509

SDGT19

SDGT29

SDBT39

SD8T49

SDGT59

SDBT69

(
o
n

U
)

.
.
.

.
4

I

a
m
a
z
m
m
m
m
m
m
m
m
m
m
m
m

SREAD9

RDE9

m
m
m
m
m
m
m
m
w
m
m
m
m
m
m
m
m
m
m
m
m
m
m
w
m
m
m
m
m
m
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9. (continued)

SUBROUTINES

0017

0000

0764

0000

0000

0000

/START TIMER SUBRDUTINE

0000

CLA CLL

CMA

CLZE

CLA CLL

CLAB

CLSA

CLA CLL

TAD K1750

CIA

CLAB

CLA CLL

TAD (1400

CLDE

JMP I STTH

/HAIT TIMER 1 SUB.

0000

CLSK

JHP UT

CLA CLL

JMP I UTTMI

IREAD BUM SUB.

0000 ISTART

CLA CLL IDUM

TAD (0300

DGOT

NOP

NOP

NDP

NOP

NOP

NOP

NOP

CLA CLL

DGOT

CLA CLL

TAD (0400 /LOOK FOR

DGOT IDATA READY

NOP

NOP

NOP

NDP

NOP

NOP

NDP

CLA CLL

DGIN

AND (0001

SZA

JMP RUE

CLA CLL /READ DVM

DGOT

TAD (0200
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Table 9. (continued)

DGOT

DCA \AUTO

CLA CLL

TAD (0100

DGOT

NOP

NOP

NDP

NDP

NOP

NOP

NDP

CLA CLL

DGIN

DCA \AUT2

CLA CLL

DGOT

JMP I READ

ICONUERT SUBROUTINE

CNUT9 0000

CLA CLL

TAD \AUTO

DCA TEMP

TAD TEMP

RTR

RTR

RTR

RTR

DCA DGTI

TAD TEMP

RTR

RTR

DCA D8T2

TAD TEMP

DCA DGT3

TAD \AUT2

DCA TEMP

TAD TEMP

RTR

RTR

RTR

RTR

DCA DGT4

TAD TEMP

RTR

RTR

DCA DGTS

TAD TEMP

DCA DGTb

CALL 09CLEAR

JMP I CNUT

/MULTIPLY BY TEN SUBR.

MULTEN90000

CALL 09CLEAR

CLA CLLm
m
m
n
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
w
n
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
'
m
m
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ADD9

m
o
m
m
m
m
m
m
m
m
n
m
m
m
m
m
m
m

PNTD!

m
w
m
m
m
m
m
m
m
w
m
m
m
m
m
m
m
m
m
m
m
m
m
m

999
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(continued)

TAD (0012

CALL 09FLOT

CALL 19PM?

ARG \VEX

CALL 19ST0

ARG \VEX

JMP I MULTEN

IADD SUBR.

0000

AND (0017

CALL 09FLOT

CALL 19FAD

ARG \UEX

CALL 19ST0

ARG \UEX

JMP I ADD

IPLACE DATA SUBR.

0000

CLA CLL

TAD DGT1

JMS ADD

JMS MULTEN

CLA CLL

TAD DBT2

JMS ADD

JMS MULTEN

CLA CLL

TAD DOTS

JMS ADD

JMS MULTEN

CLA CLL

TAD DGT4

JMS ADD

JMS MULTEN

CLA CLL

TAD DGTS

JMS ADD

JMS MULTEN

CLA CLL

TAD DGT6

JMS ADD

JMP I PNTD

CONTINUE

RETURN

END
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Table 10. Listing for PARMSB-FT

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

413

412

411

410

409

408

407

406

405

456

457

SUDROUTINE‘PARMSB

OOETZ -- F2

(PARAMETER ACQUISITION

SITES SV(88)9SU(90)9SU(95) OPEN

DATE’SV(100)=PAR(12)

TIME INTERVAL=SU<99)=PAR(11)

UIRE DIAMETER=SU(9B)=PAR(10)

HIRE LENGTH=SU(97)=PAR(9)

SCALE FACTOR=SU<96>=PAR(8)

CURRENT=SU(94)=PAR(6)

PRESSURE=SU(93)=PAR(5)

TEMPERATURE=SU<92)=PAR(4)

RESISTANCE ZERO=SU(91)=PAR(3)

PARAMETER FULL=SV(89)=PAR(1)

DATA FULL=SU(1)

COMMON SU9ATT

COMMON PAR

DIMENSION SU(1OO)9PAR(12)

PARAMETERS ENTERED EARLIER UITH EDITOR

PAR(5)=0.0

PAR(8)=1.022

PAR(9)=J.00

PAR(10)=4.2

PAR(11)=51.4

PAR(12)=9.2481

URITE(194OS) PAR(12)

URITE(19406) PAR(11)

URITE(19407) PAR(IO)

URITE<19408) PAR(9)

URITE(19409) PAR(B)

CURRENT SUPPLIED BY AVERAGE

URITE(19410) PAR(6)

URITE(19411) PAR(S)

READ(19412) PAR(4)

READ(19413) PAR(B)

PAR(7)=0.0

PAR(2)=0.0

PAR(1)=1.0

FORMAT(’ RESISTANCE ZERO(OHM)= '9E14.6)

FORMAT(’ TEMPERATURE(K)= ’9E14.6)

FORMAT(’ PRESSURE<KBAR)= ’9E14.6)

FORMAT(’ CURRENT<AMP)= ’9E14o6)

FORMAT(’ SCALE FACTOR= ’9E14.6)

FORMAT(’ HIRE LENGTH(CM)= ’9E14.6)

FORMAT(’ HIRE DIAMETER<MIL)= ’9E14o6)

FORMAT(’ TIME INTERVAL(MILLESEC)= ’9E14o6)

FORMAT(’ PARAMETERS -- DATE(MONTH.DAY)= ’9F8.4)

DO 457 121,12

SU(I+88)=PAR(I)

RETURN.

END '
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Table 11. Listing for SHOFIL-FT

10

11

12

14

20

56

57

58

630

633

634

638

650

659

999

SUDROUTINE SHOFIL

GOETZ -- F2

MAKES SINGLE DATA SET FILES

COMMON SV9ATT

DIMENSION SV(100)

IF(SU(1)) 999911

URITE(1910)

FORMAT(’ NO DATA SET FOR SHORT FILE’)

GO TO 999

IF(SU(89)) 12912920

URITE(1914)

FORMAT(’ NO PARAMETER SET FOR SHORT FILE’)

GO TO 999

READ(1956) ISH

FORMAT(’ SHORT FILE: OUT=-19LIST=09DISK URITE=+1: ’9I3)

IF(ISH) 9999589630

FORMAT(’ ’94(2X9E14.6))

DO 59 I=1910094

URITE(1957) (SU(I+J)9J=093)

CONTINUE

GO TO 20

URITE(19633)

FORMAT(’ PROGRAM ATTACHES oDA’)

URITE(19634)

FORMAT(’ ENTER SIX CHARACTERS9 NO SPACES')

READ(19638) ENAME

FORMAT(’ FILE NAME: ’9A6)

CALL OOPENC’DSK’9ENAME)

DO 650 I=1910095

URITE(49659) (SU(I+J)9J=094)

CONTINUE

FORMAT(5E14o6)

CALL OCLOSE

RETURN

END
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Table 12. Listing for GOATSV-FT

a
n

x
!
!
!

H
‘
O
N
H

14

17

18

19

[
'
J
h
‘

I
.
)

A
.
)

f
‘
E
d

I
.
)

P
.
)

V
O
-
L
fl
b

C
:
(
3
9
‘
O

b
l
u
r
.
)

0
V
0

GOATSU

THERMAL CONDUCTIVITY CALCULATIONS

FOR THE TRANSIENT HOT HIRE METHOD

USES INPUT DATA FILE

LOGICAL PABST

DIMENSION A(100)9C(85)9AA(10)9FL(10)9XL(10)

DIMENSION E(85)9SU(100)9BUFFER(100)9D(85)

DIMENSION PL(10910)9SL(10)9BL(10)9CL(10)9DL(10)

PI=3.1415927

DO 1 I=1910095

READ(192) (SU(I+J)9J=094)

CONTINUE

FORMAT(5E14.6)

FORMAT (’ ’95(Gl2.692X))

FORMAT (612.6)

IX=0

DO 14 I=2986

IF(SU(I).GT.0.0) GO TO 14

IX=I-2

GO TO 15

CONTINUE

IX=85

CONTINUE

IXT=IX

DO 17 I=1986

A(I)=SU(I+1)

DO 18 1:899100

A(I)=SU(I)

PARAMETER ACQUISITION

CONTINUE

URITE (4920) A(100)

URITE (4921) A(99)

URITE (4926) A(98)

URITE (4927) A(97)

URITE (4929) A(96)

URITE (4922) A(94)

URITE (4923) A(93)

URITE (4924) A(92)

URITE (4925) A(91)

DT=A(99)

USF=A<96)

RH=A<98)

UL=A(97)

CU=A(94)

TNIL=A(92)

TZERO=A<92)

ZEROR=A(91)

GO TO 800

FORMAT (’ FILE DATA DATE: ’9812.6)

FORMAT (’ TIME INTERUAL= ’9Gl2o69’ MILLESEC’)

FORMAT (’ CURRENT= ’9Gl2.69’ AMPS’)

FORMAT (’ PRESSURE= ’9G14o69’ KBAR’)

FORMAT (’ TEMPERATURE= ’9514.69’ K’)

FORMAT (’ RESISTANCE ZERO= ’9GI2.69’ OHMS’)

FORMAT (’ HIRE DIAMETERa ’9812.69’ MIL’)

FORMAT ( HIRE LENGTHg ’9612o69’ CM’)

FORMAT (’ VOLTAGE SCALE FACTOR= ’9612o6)

FORMAT (L3)

CONTINUE

IX=IXT

DELTT=TNIL-TZERO

TEMP DIFFS + DATA PREP

T VS R PARAMETERS FROM CDC GOATFIT

HLM=RH31.0E-3X2.54E-2/2.0
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Table 12. (continued)

RO”13.35

130:4 o 60

CO=(RO/UL)X(RH/DO)*(RH/DO)

AA(1)=48o5427

AA(2)=481.459XCO

AA(3)=-609.070*CO*CO

AA(4)=1243.07*CO**3

AA(5)=-1950.50*CO*#4

AA(6)=2055.55*CO**5

AA(7)=-1386.91*CO**6

AA(8)=J69o210*CO**7

AA(9)=‘128o789*CO**8

AA(10)=12o2872*CO**9

REZER=RNIL¥VSF

TEZER=0.0

DO 42 I31910

J=I-1

42 TEZER=TEZER+AA(I)XREZERXXJ

DO 50 I=19IX

TIM=I*DT/1000o

C(I)=ALOG(TIM)

IF(I.EO.IX) TT=TIM

REPT=USF*A(I)/CU

TEPT=0.0

DO 45 K=1910

J=K-1

45 TEPT=TEPT+AA(K)*REPT**J

DIET=TEPT-TEZER+DELTT

IF(I.EO.IX) XX=DIET

50 D(I)=DIET*UL*USF/(A(I)*CU*100.0)

IP=IX

LASH=1.1*D(1)

DASH=1011C(1)

CASH=1.1*C(IP)

ASH=1.1*D(IP)

DO 57 I=19100

57 DUFFER(I)=0.0

CALL SCALE(DASH9LASH9CASH9ASH)

CALL CLRPLT(1009DUFFER)

CALL PLOT(IP9C9D)

C DATA POINT MANIPULATION

65 URITE (4966)

66 FORMAT(’ START=19END=29PToELIM=39FIT=49CURSOR=59LIST=63 ’9‘)

READ (49106) IND

IF(IND.LE.O) GO TO 65

IF(IND.GT.6) GO TO 65

GO TO(4019501960198095509650)9IND

C TRIPLE DOTS

80 CONTINUE

HGT=(LASH+ASH)/2.0

DO 83 I=2S930

G=~FLOAT(I)/10o0

CALL PLOT(19G9HGT)

83 CONTINUE

8:000

DO 84 I=193

H=LASH+FLOAT(I)/10o0

CALL PLOT(19G9H)

84 CONTINUE

C LINEAR REGRESSION

90 AXM=0o0

DYM=0oO

AXMH=0 o 0

BYHH=0.0

ABMM=0o0
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(
'
1

93

97

98

100

101

102

105

106

109

110

300

301

401

402
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(continued)

DO 93 I=191P

AXM=AXM+C(I)

DYM=BYM+D(I)

AXMM=AXMM+C(I)*C(I)

BYMM=BYMM+D(I)*D(I)

ABMM=ADMM+C(I)*D(I)

82X=AXMM/IP-(AXM/IP)*(AXM/IP)

S2Y=BYMM/IP-(BYM/IP)#(BYM/IP)

SLOPE=((ABMM/IP)-(AXM/IP)#(BYM/IP))/S2X

TNTC=(BYM/IP)-SLOPE#AXM/IP

COCO=SLOPE¥SZXlS2Y

CALCULATIONS AND PRINTOUT

UK=1.0/(4.0*PI#SLOPE)

DTH=0.4453XULMXULMXEXP(TNTC/SLOPE)

CHI=0o0

EX=0 o 0

DO 98 I=19IP

EIO=D(I)-SLOPE*C(I)-TNTC

CHI=CHI+EIOKEIO

E(I)=EIO*10.0+HGT

IF(ADS(EIO)‘EX) 98998997

EX=ABS(EIO)

IFD=I

CONTINUE

CHI=CHI/(IP-2)

FRAC=SORT(CHI)/TNTC

URITE(49100) UK

URITE(49101) DTH

URITE(49102) CHI9FRAC

URITE(49109) EX9IFD

URITE(49110) XX9TT

CALL PLOT(IP9C9E)

URITE(49105)

FORMAT(' '95X9'KAPPA= '9G14o6)

FORMAT(’ '95X9’DTH3 ’9G14o6)

FORMAT(’ ’95X9'CHI SO= ’7614oél’:

FORMAT(’ FIT DIFFS #10 CENTERED

FORMAT(I3)

FORMAT(’ MAX FIT DIFF = ’9Gl4.69’

ON AVE TEMP’)

FORMAT(’ TEMP DIFF MAX = ’9614.69’ AT

DECISIONS

URITE<49301)

FORMAT(’ CHANGE=19RE-ANALYZE=29DONE=3:

READ(49106) IND

IF(IND.LE.0) GO TO 300

IF(IND.GE.4) GO TO 300

GO TO(4209389999)9IND

NEU START

URITE (49402)

FORMAT(’ START : REMOVE THRU

READ (49106) INS

IF(INS.LE.0) GO TO 65

IF(INS:GE.IP) GO TO 65

IPSS=IP-INS

DO 403 I=19IPSS

C(I)=C(I+INS)

D(I)=D(I+INS)

CONTINUE

IP=IPSS

DO 407 I=19100

BUFFER(I)=0.0

CALL CLRPLT(1009DUFFER)

CALL PLOT(IP9C9D)

GO TO 65

I ’99)

AT POINT ’913)

’9614.69’

’95)

CHI/TNTC=’9Gl4.6)

SECS’)
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Table 12. (continued)

603

607

650

651

654

NEU END

URITE (49502)

FORMAT (’ END AT I= ’93)

READ (49106) INE

IF(INE.GE.IP) GO TO 65

IF(INE.LE.0) GO TO 65

IP=INE

DO 507 I=19100

BUFFER(I)=0.0

CALL CLRRLT(1009DUFFER)

CALL PLOT(IP9C9D)

GO TO 65

POINT ELIM

WRITE (49602)

FORMAT (’ ELIM -- I= ’95)

READ (49106) IPE

IF(IPE.LE.0) GO TO 65

IF(IPE.GT.IP) GO TO 65

DO 603 I=IPE9IP

C(I)=C(I+1)

D(I)=D(I+1)

CONTINUE

IP=IP-1

DO 607 1319100

DUFFER(I)=0.0

CALL CLRPLT(1009DUFFER)

CALL PLOT(IP9C9D)

GO TO 601

DATA POINT LISTING

URITE(49651)

FORMAT(’ LISTING’)

DO 654 I=19IXT95

URITE(499) (A(I+J)9J=094)

CONTINUE

GO TO 65

PARAMETER CHANGE

URITE (49421)

FORMAT(’ PARAMETER CHANGE: NONE=09CURR=19TEMP=29T INTVL?3’)

URITE(49422)

FORMAT(’ R ZERO=49UIRE LGTH=59UIRE DIAM=69SCALE FCTR=7: ’93)

READ (49106) IPCH

IF(IPCH.LE.O) GO TO 300

IF(IPCH.GE:8) GO TO 300

URITE (49425)

FORMAT (' NEH VALUE= ’9$)

READ (4913) CHASM

IF(IPCH.EO.1) CU=CHASM

IF(IPCH.EO.2) TZERO=CHASM

IF(IPCH.EO.3) DT=CHASM

IF(IPCH.EO.4) RNIL=CHASM

IF(IPCH.EO.5) UL=CHASM

IF(IPCH.EO.6) RH=CHASM

IF(IPCH.EO.7) VSF=CHASM

GO TO 300

CURSOR

CONTINUE

URITE (49551)

FORMAT(’ CURSOR -- I= ’9‘)

READ(49106) ICUR

IF(ICUR.GT.IP) GO TO 65

IF(ICUR.LE.0) GO TO 65

CALL PLOT(19C(ICUR)9D(ICUR))

CALL PLOT(19C(ICUR)9D(ICUR))

GO TO 65
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Table 12. (continued)

0
0
0
0

800

802

810

830

832

834

838

837

839

.840

850

858

860

870

999

LEGENDRE POLYNOMIAL EXTRAPOLATION

GENERATES N'I ORTHOGONAL POLYNOMIALS TO FIT N POINTS

THEN EXTRAPOLATES FROM THE FIT) HERE PRODUCES RNIL.

THEORY FROM CONTE AND DE DOOR

N=5 V ‘

DO 802 I=19N

XL(I)=I

FL(I)=(A(5)—A(I))/(A(5)*CU)

NN=N~1

NP=N+1

DO 810 I=19NP

SL(I)=0.0

DL(I)=0.0

CL(I)300°

DL(I)=0.0

PL(I91)=1.0

DO 810 J=29N

PL(I9J)=0o0

DO 840 J=19NN

DO 830 K=19N

SL(J)=SL(J)+PL(K9J)¥PL(K9J)

DO 832 K=19N

DL(J)=BL(J)+XL(K)$PL(K9J)*PL(K9J)/SL(J)

IF(J-1) 84098379834

CL(J)=SL(J)/SL(J-1)

DO 838 K=19N

PL(K9J+1)=(XL(K)-DL(J))XPL(K9J)-CL(J)*PL(K9J’1)

GO TO 840

D0 839 K=19N

PL(K92)=XL(K)-DL(1)

CONTINUE

DO 850 J=19NN

DO 850 K=19N

DL(J)=FL(K)*PL(K9J)/SL(J)+DL(J)

XZ=0.0

L=1

RZ=DL(1)+DL(2)*(XZ-DL(1))

DO 860 J=29NN

FL(L9J+1)=(XZ-DL(J))XPL(L9J)-CL(J)*PL(L9J-1)

IF(J+1-NN) 85898589860

RZ=RZ+DL(J+1)*PL(L9J+1)

CONTINUE

RNIL=A(5)¥(1.0-RZ*CU)/CU

URITE(49870) RNIL

FORMAT(’ EXTRAPOLATED RESISTANCE ZERO= ’9812.69’ OHMS’)

GO TO 38

STOP

END
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Listing for GOATFITTable 13.

PICGFIF ICATFITCINPUTQCL‘TPUT)

IFTIFT

I
c

D
T

I
R

I

I
9

R

A
.

X
8

Q
3

5
I

I
I

I
C

D
9

M
I

I
T

C
E

0

C
.

T
4
V

0

I
A

I
A

R
I

I

z
9

I
I

F
I

O
u

z
I

.
I

I
3

I
3

T
I

s
C

.
T

0
0

R
I

R
I

a
v

I
M

M
O

A

9
0

O
O

G
O

I
.

T
R

I
.

O
R

M
3

8
a
v
I
S

.
8

X
J

9
E

A
M

R

I
.
l
.

I
6
G
I

6
6

(
I

T
I

.
)
l

C
A
T

T
0

C
L
-

0
I

l
I

N
F

A
C

0

T
T

(
I

C
T

2
C

R
Q

o
(

Q
0

(
I
I

E
I

F
0

o
I

9
o

I
I

T
I

S
N

(
0

A
F

N
T

A
T

6
5

T
T

I
I

I
T

T
R
A
I

I
C

4
4

O
9
Q

9
T

I
F

6
P

.
L

C
0
'

T
E

I
I

T
E

T
T

E
Q

R
T

o
R

C
I
I
T

E
R

s
o

N
o

:
N

o
X

C
9
4

O
P

S
D
I
.

E
C

I
C

0
.

4
R

0
4

6
O

I
I

T
I
r
e
l
.

I
.

I
.

T
C
3

5
I

O
S
.

I
I

I
I

S
O
0

C
3
5

0
.
.

R

P
A

E
l
.

T
E

S
T

S
Q

.
.
U

I
O

X
T

E
l
:
0

E
E

2
0
.
?
R
R

P
0
I
F

O
I

C
T

X
C

R
T
I

T
T

T
R
E

P
Q

I
N

I
a
v
M
A

I
4
'

R
C

O
2

T
T

F
9
5

I
T

2

F
R

I
I

O
i

N
O
R
C

o
.

.
7

A
4
.
.

I
9

I
I

I
I

I
I

S
4

S
O

6

O
M
.
E
D

I
R

3
.
h
‘
5

T
2

I
U

4
9
‘

3
I

I
I

A
.

F
F

E
C
‘
I

M
I

P
I

0

5
E

[
.
0

S
R

I
O

Q
R

Q
v
s

V
T

9
3

T
I

I
I

0
l
.

L
O
X

.
X

R
5

I
N
T

R
N
I
I

T
E
.
.
.

T
9
8

I
T

I
I
I

R
I

I
I

5
P

T
l
.
(
R

3
C

3
8
3
7
5
A

E
T

I
t
.
)
E
(
X
T

.
L
o

U
C
S

P
I

o
9
‘
T
T

.
0
3
H

.
9
.
T
T

.
0
3
M

9
N
N
T

T
O
I

P
E
S

C
C
U
.
M

T
P

P
X
.

T
T
0

4

R
o
9
O
T
T

N
I

2
I
T

I
N

I
C

T
I
N

I
C

A
C
O
I

I
I

0
R
N

O
X
S
R
N
D
N
D

N
N
M
M

N
M
M
O

A
G
E

0
P
I
O
C

I
.
.
I
F
0

A
i

I
F
!

C
I

5
I
.
I
F
.
F
O

A
E

A
I

O
E
0
0
0
0

0
O
C
R

Q
U
R
S

C
C

N
R
4
I
T

F
.

T
F
.

I
O

4
F

I
O

O
N

I
:
I
:
T

T
I

A
C
T

R
R
T
I
I
I
C
U
I

C
I
S
E
I
I
I

A
T
C

I
:
I
t
:

A
I
L
.
.
.
"
2

2
.
3
.
3
9
!
»
I
I
.
"

.
.

5
.
5
3
9
.
.
.
C

8
3
9
'
.
.
.
$
2
.
!

-
E
E
'
E

I
C
.
»
-

T
C
C
I
.

.
.

o
.
2
2
0
8

o
:
2
T
I

.
.
2
T
I
C

I
.
A
I
I
Q
C
I
I
C
‘

g
‘
l
u

Z
C
I
Z
C
C
I
I
J

3
C
1
)
.
I

C
l
.
I

I
C
I
E
L
I
U

T
3
5

I
I
I

9
N
I
J
I
C
I
I
I
I
N
I
X
T
N
I
T
C
I
-

E
T
T

C
5
4
1
.
I
R
T

[
F

T
I

A
T

T
D
.
T

I
A
T

T
T
C
I
¢
.
I
|
n
I
R
T
N

l
.

I
C
5
5
2

A
I
.
.
.
I
I

:
A

.
.
:

I
:

:
A

A
I
Q
~
I
N

A
0

I
A

C
T
A
I

.
T
I
A
T
A

T
A
I

.
T
I
A
T

A
T
A
E
C
S
I
I
I
‘
T
I
A
I

C
T
E

I
N
N
.
.
I
.
(
¢
.
(
S
C
C
C
'
4
‘
.
M
E
‘
P
C
I

P
F
I

L
E
O
P
I
O
T
F

5
I
l
—
N
P
Z
J
N
T
P
N
M
L
N
P
3
-
.
.
N
T
P
N

I
N
M
‘
T
E
T
T
T
N
T
M
T
P

R
3
U

L
E
E
X
I
I
I
T
S
S
I
T
R
4
X
R
R
4
T
R
$
T

C
3
3

F
l
t
-
I
R

A
R
I
.
T

L
I
I
.

:
I
D
R
I
R
L
I
F

.
.
I
I
R
I

T
I
R

I
I
A
:
T
N
R
N
C
C
E

.
l

P
A
P
A

F
P
I

.
.

.
.
E

F
E
E

W
E
I
R

E
F
I
E
C
C
E
C
C

I
C
A
R
C
C
N
R
C
C
R
O
A
R
C
C
A
R
C
R

E
R
C
C
F
C
F
C
F
R
C
O
O
T
N
U

E
0
P
I
I
M
O
U
C
U
M
C
I
T
O
C
T
T
C
L
T
P
C

M
R
R

I
D
R
F
D
R
C
F

F
O
C
P
F
C
J
P
C
F
P
F
C
P
F
O
J
P
C
F
P

n
u
P
F
D
T
C
T
C
T
P
C
F
C
S
E
S

[
N

I
O
O
N
O
S
C
S
C
C
I
T
X
C
S
X
T
C
S
T
C
C

I
5

I
.
.
.
-

D
I

D
I
2

3
0

I
2

5
5

6
6
0
9

I
3

5
I

I
4

8
9
9

4
1
1

2
2
2

2
.
.
.

3
3

G
6

6
6
1
5

I
1

1
2

4
4

4
4
5

C
C
C
C
C

C
C
C

C
C
C

.
C
C
C
C



173

(continued)Table 13.

II
.9

KTV
.

IR

I
R

S
I

V
.

I

I
.

I

E
J

T
4

fi
K

'
I

T
T

4
4

R
.

R

R
I

R

4
z

4

l
.

u
0

V
O

I

4
R

9
K

.
.
.

E
H

o

.
L

I
T

a
I

E
I

I
E

l
(

D
I
n

I
.

D
T

p
l

T

I
I

‘
'

‘
‘

S
.

I
T

I
.

N
p

N
R

p
s

I
n

I
.

c
O

I
R

F
P

L
s

I
E

I
I

I
I

I

F
.

R
s

0
T

R
S
I

4
3

9
a

T
E

I
I

c
‘

I
f

9
I
.

I
I
f
.

I

N
T

I
I

N
U
c
1

1
3

K
(
5

J

O
N

u
~

1
‘

U
n
l
E

O
2

2
O

T
O

9

I
7
1

I
I

4
l
‘

4
F

S
R
0

0
9

I
‘
0

I

‘
2
‘
.

“
J
V
.

‘
t
E

F
1

I
I

l
.

3
.
5

(
2
3
‘

3
5

(
R

O
s

5
5
5

(
(
4
.
5
9
3

I
S
—
t

N
F

l
.
$
4
5
.
:

5
Y

R
9
"
P
T

"
’
R
T

H
P
I
.
.
.
X
T
F
H
C
'

s
'
R

0
0

E
T

I
.
F

'
I
‘
E

‘
3

R
R
.

R
R

"
‘
5

R
R
R
R

"
H
R
R

0
R

(
R
E
.

I
L
.

R
I
R
I

R
I
U
R
V

H
.
4

E
E
K

E
E

L
1
!
4
E

E
E
E

[
L
‘
E
r
t
E

I
.
"

C
.
T

E
R
.
E
I
E
I

E
4
"

F
.
.
.

T
T
R

T
T

5
'
1
.

T
T
T
T

S
S
‘
T

-
T

O
T
C

I
E

U
R

T
K
T
J

T
I
A
S

E
R
I

"
N
4

N
"

=
R
6

N
N
N
N

:
:
H
N
O
N

9
N
5

C
D

0
‘

N
0
N

0
N
o
!

.
.
:
T
E
S

O
9
.
.

’
0
I
E

n
u
!

4
1
4

I
I
R
9
5
9

(
.
.
.
-
o

E
.
1
.
0
0
"

0
“

n
u

Q
Y
I
I

E
T
"

I
I
I

I
I

K
T
I

O
I

I
I
I

'
L
E
I
I
I

1
.
5
.
?

I
.
E

I
o
I
‘
F
‘

0
F
o
r
4
'

(
E
R
.

“
'
9
5

.
.
.
.

Q
E
‘
I
:
(
.

:
:
2

1
T
.
.
.
f
:

.
P
T
C

o
r
T

T
(
I
:
\
.
.
.
T
E
(
:
:
F

4
4
$
.
.
.
l
F
.

.
.
.
.
4
.
!

s
K
I
J
c
T

.
.
J
Q
E
L
J
'
I
J
J
E
J
c
n
l
r
-
z
r
:

I
.
I
I
:
“
I
d
l
e

:
E
I
R
I
I
L
:
:
T

I
d
.
.
.
“

.
I
I
:
I
.
"
o

o
(
(
9
.
.
-

3
.
2
“
.
.
.
“
E

L
(
4
.
?

R
R
N
'

‘
T
I
R
'
I
K
I

I
.
.
.

4
4
K
T
A
E
C
5
:
C
0
6
§
K
T
T
.
.
.
.
.
C
.
.
.
K
‘
=
C
R

l
.

.
.
L
I
h
fi
0
R
1
.
R
I
R
C
4
=
T
T
I
R
P

.
Q
E
E
T
I
I

5
5

9
‘
T
D
S
B
K
I
T
T
‘
G

9
‘
I
I
T
S
T

o
.
5
7
.
5
“
e

c
L
E
E
S
‘
Z
A
T
E
T
S
E
A
I
T
E
E
K
K
l
.
4
‘
T
u

U
R
L
T
I

t
.
~
R
R
L
I

.
S
I
E
I
T
C
U

l
—
P
'
T

.
l
(
“
T

‘
R
F
‘
T
T
‘
:

R
t
h

c
c
:
R
F
P
C
I
‘
C
C
C
C

.
.
a
n
g
l
e
s
-
C

.
.
P
R
H
E
N
O

I
'
I
E
C
F
O
F
O
E
C
C
‘
R
R
C
E
E
F
I
O
C
R
C
E
N

D
D
N
I
D
I
C
D
I
G
D
D
D
N
‘
A
‘
D
C
C
N
C
F
C
R
E
D

c
I
D
D
C
I
D
I
C
D
G
E
A
‘
C
D
D
I
K
D
D
‘
C
R
E

4
T

9
I
2

5
6
0
1

5
6
7
0

9
1
.

I
.
.
.

I
4

I
1
.

6
9
.
5

5
6
6

6
6
7
7

7
7
7
8

I
I

2
2

3
1
.

4
4

4
5
‘

(
C
r
.
.
.



LIST OF REFERENCES



10.

11.

12.

13.

14.

15.

LIST OF REFERENCES

J. Fourier, Théorie Analytique de la Chaleur, (Paris,

1822).

A. Eucken, Ann. Physik 32, 185 (1911). A Eucken,

Verhandl. Deut. Phys. Ges. 13, 829 (1911). A. Eucken,

Physik. Z. 12, 1005 (1911).

P. Debye, in Vortrage fiber die kinetische Theorie der

Materie und der Elektrizitit, ed. M. Planck, et al.

(Leipzig, Tuebner, 1914), pp. 19-60.

R. Peierls, Ann. Physik §, 1055 (1929).

R. Berman, Thermal Conduction in Solids, (Oxford,

Oxford University Press, 1976).

 

G. Slack, Solid State Physics 33, 1 (1979).

P. G. Klemens, Solid State Physics 1, 1 (1958).

P. G. Klemens, in Thermal Conductivity, ed. R. P. Tye,

vol. 1 (New York,Academic Press, 1969) p. l.

 

J. M. Ziman, Electrons and Phonons, (Oxford, Oxford

University Press, 1963).

 

B. Stalhane and s. Pyk, Tekn. Tidskrift 55;, 38 (1931).

E. F. M. van der Held, Warmte-Tech. g, 21 (1932).

J. J. Healy, J. J. de Groot, and J. Kestin, Physica

82C, 392 (1976), and the references therein.

Y. Nagasaka and A. Nagashima, Rev. Sci. Instrum. Q2,

229 (1981).

R. G. Ross and O. Sandberg, J. Phys. 9: Solid State

Phys. 12, 3649 (1979).

R. G. Ross, P. Andersson, and G. Backstrom, High Temp.-

High Press. 2, 87 (1977).

174



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

175

C. Tubandt and E. Lorenz, Z. Physik. Chem. 21, 513

(1914).

L. w. Strock, z. Physik. Chem. B g9, 411 (1934).

L. w. Strock, z. Physik. Chem. B 31, 132 (1936).

R. J. Cava, F. Reidinger, and B. J. Wuensch, Solid

State Comm. 24, 411 (1977).

B. B. Owens, J. H. Christie, and G. T. Tiedeman, J.

Electrochem. Soc. 118, 1144 (1971).

S. Geller and B. B. Owens, J. Phys. Chem. Solids 22,

1241 (1972).

K. Shahi and J. B. Wagner, Jr., Appl. Phys. Lett. 21,

757 (1980).

Solid Electrolytes, ed. S. Geller (New York, Springer-
 

Verlag, 1977).

Physics of Superionic Conductors, ed. M. B. Salamon,
 

(New York, Springer-Verlag, 1979).

K. Funke, Prog. Solid State Chem. ll, 345 (1976).

K. Shahi, Phys. Stat. Sol. (a) 42, 11 (1977).

W. Dieterich, P. Fulde, and I. Peschel, Advances in

Physics 22, 527 (1980).

A. B. Lidiard, in: Handbuch der Physik 20, ed. 8.

Flfigge, (Berlin, Springer, 1957) p. 246.

C. Kittel, Introduction to Solid State Physics, 4th

edition, (New York, John Wiley and Sons, 1971).

 

J. B. Boyce and B. A. Huberman, Physics Reports 21,

189 (1979).

Y. Tsuchiya, S. Tamaki, and Y. Waseda, J. Phys. C:

Solid State Phys. 22, 5361 (1979).

H. E. Stanley, Introduction to Phase Transition and

Critical Phenomena, (New York, Oxford University Press,

1971).

 

P. A. Govindacharyulu, D. N. Bose, and S. K. Suri, J.

Phys. Chem. Solids 22, 961 (1978).

H. Hoshino and M. Shimoji, J. Phys. Chem. Solids 22,

321 (1974).



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

176

Burley, Am. Minerologist 22, 1266 (1963).

Burley, J. Phys. Chem. 22, 1111 (1964).

0
0
0

Burley, Acta Cryst. 22, l (1967).

H. Hoshino and M. Shimoji, J. Phys. Chem. Solids 22,

2303 (1972).

R. B. Wilsey, Phil. Mag. 32, 487 (1923).

J. N51ting, Ber. Bunsenges. 21, 172 (1962).

K. Shahi and J. B. Wagner, Jr., Phys. Rev. B 22,

6417 (1981).

C. Tubant and F. Lorenz, Z. Physik. Chem. 21, 543

(1914).

T. Hibma, Phys. Rev. B 12, 5797 (1977).

T. Hibma and S. Geller, J. Solid State Chem. 21, 225

(1977).

J. H. Blackwell, J. Appl. Phys. 22, 137 (1954).

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in

Solids, second edition, (Oxford, Clarendon Press,

1959).

 

M. Abramowitz and I. A. Stegun, Handbook of Mathe—

matical Functions, paperback edition, (New York, Dover,

1972).

 

P. Andersson and G. Backstram, Rev. Sci. Instrum. 31,

205 (1976).

J. K. Horrocks and E. McLaughlin, Proc. R. Soc. Lond.

A 273, 259 (1963).

R. C. Weast, CRC Handbook of Chemistry and Physics,

59th edition, (West Palm Beach, CRC Press, 1978).

 

P. G. Klemens and D. J. Ecsedy, in Phonon Scattering

in Solids, ed. L. J. Challis, V. W. Rampton, and A.F.G.

Wyatt, (New York, Plenum, 1975).

R. Zeyher, Z. Physik 331, 127 (1978).

M. J. Rice and W. L. Roth, J. Solid State Chem. 2,

294 (1972).

Materials Research Corporation, Orangeburg, New York

10962. The impurity content is about 50 ppm.



54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

177

Omega Engineering, Inc., Stamford, Connecticut 06907.

This is 0.003 inch diameter wire with teflon insulation.

The sample densities were ~94% of the single crystal

density.

C. Foiles, private communication.

California Fine Wire Company, Grover City, California.

This is 0.005 inch diameter Nickel 270 wire with H-ML

insulation.

Enerpac Division of Applied Power Industries, Inc.,

Butler, Wisconsin 53007.

Fisher Scientific Company, Livonia, Michigan 48150.

O. Sandberg, P. Andersson and G. Bickstrém, J. Phys.

E: Sci. Instrum. 12, 474 (1977).

B. R. Lawn, Acta Cryst. 11, 1341 (1964).

A. Bienenstock and G. Burley, J. Phys. Chem. Solids

23, 1271 (1963).

G. Mariotto, A. Fontana, E. Cazzanelli, and M. P.

Fontana, Phys. Stat. 801. (b) 101, 341 (1980).

T. A. Fjeldly and R. C. Hanson, Phys. Rev. B 12,

3569 (1974).

C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134,

A1058 (1964).

D. Billard and F. Cabannes, High Temperatures-High

Pressures 2, 201 (1971).

H. S. Carslaw and J. C. Jaeger, Conduction of 2§at

in Solids, second edition, (Oxford, Clarendon Press,

1959).

 

H. S. Carslaw and J. C. Jaeger, Proc. London Math.

Soc. (2) 32, 361 (1940).

S. D. Conte and C. deBoor, ElementarygNumerical

Analysis, second edition, (New York, McGraw-Hill,

1972).

 

P. R. Bevington, Data Reduction and Error Analysis

for the Physical Sciences, (New York, McGraw-Hill,

1969).

 



 


