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ABSTRACT
QUASISYMMETRIC FUNCTIONS AND PLANE QUASICONFORMAL MAPPINGS
By

Kenneth P. Goldberg

In 1928 H. Grotzsch gave a definition of quasiconformal
mappings which sought to generalize the concept of conformal
mappings. However, these mappings satisfy neither the
reflection principle nor the normal family property, both
of which are satisfied by conformal mappings. In 1954
L. V. Ahlfors gave a new definition for quasiconformal mappings
which in fact extends the class of mappings that are quasi-
conformal in the sense of Grotzsch. These new mappings do
satisfy the above two properties, in addition to having many
other properties of conformal mappings.

The dilatation D > 1 of a differentiable topological
mapping f: (x,y)—> (u,v) of one plane domain onto another
is determined by
&2+UV2+V;+V 2

Y
|vay - vaxl

p+pt

Geometrically, D represents the ratio between major and

minor axes of the infinitesimal ellipse obtained by mapping
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an infinitesimal circle of center (x,y). A mapping is said
to be guasiconformal in the sense of Ahlfors if D is bounded.

The least upper bound of D is called the maximal dilatation.

Beurling and Ahlfors showed (Acta Math. 1956) that
there exists a quasiconformal mapping of the upper half plane
onto itself with boundary correspondence x—>%(x) if and

only if

1l  P(x+t) =P (x)
h < P (x) -9 (x-t) <h

(1)

for some constant h, 1l<h<», and for all real x and t.
A function ¢® which satisfies (1) is said to be guasisymmetric
and the least upper bound of h is called the guasisymmetric
dilatation of ® and is denoted by p(®).

In Chapter I we show that (1) is really a generalized
convexity-concavity condition, and that the assumptions in
the definition of quasisymmetry can be significantly weakened
without altering the class of such functions. We then use
this fact to obtain sharp bounds for the dilatation of the
sums, products, inverses and compositions of quasisymmetric
functions on (0,«).

In Chapter II we introduce, by means of a differentiability
condition,a subclass of the quasisymmetric functions which
we call ratio-bounded. We study closure properties of this

class under sums, products, compositions and the taking of
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inverses and find sharp bounds for the quasisymmetric dilatation
of such functions.

As already indicated, quasisymmetric functions of
(-»,=) onto itself can be extended to quasiconformal mappings
of the upper half plane, but until now only one such extension
had been given explicitly, namely that of Beurling and Ahlfors
in 1956, and hardly anything was known about extremal exten-
sions (that is, quasiconformal extensions with minimal maximal
dilatation). In Chapters III and IV we use the results of
Chapter II about ratio-bounded functions to obtain explicit
extremal extensions for each quasisymmetric function in a
certain class.

In Chapter V we continue our study of extremal quasi-
conformal extensions and generalize a result of Reich and

Strebel (Comment. Math. Helv., 1970).
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CHAPTER I

INTRODUCTION

A well-known theorem of Riemann [2, p.l172] states that
any simply-connected domain () whose boundary consists of
more than one point can be mapped conformally onto the unit
disk. Thus any two such domains (, Q' can be mapped
conformally onto each other.

In 1928 H. Grotzsch [8] posed the following problem:
given a square D and a rectangle R which is not a square,
can D be mapped conformally onto R so that the vertices
correspond?

As was subsequently shown by Grotzsch [8], no such
conformal mapping exists. He then asked for the most nearly
conformal map of D onto R with vertices corresponding. 1In
order to answer this new question one needs a method of
measuring approximate (or quasi) conformality. It was in
attempting to supply such a measure that Grotzsch laid the
foundations for the modern theory of plane quasiconformal
mappings [8].

Let 0 be ~ domain. A guadrilateral in (Q is a Jordan

domain Q, Q c Q, together with a pair of disjoint, closed



arcs on the boundary of Q (called the b-arcs). If we map
Q conformally onto a rectangle with side lengths a and Db,
with the b-arcs going onto the sides of length b (see Figure 1.1),

then the modulus of Q is defined uniquely as

a
z
3
Z), Wi W3
)
——
} b
b-arc
b-arc )
2 %2 wl\‘¥7 gl W2
a
Figure 1.1

The modern definition of quasiconformality, as first

given by L. V. Ahlfors in 1954 [4] is:

Definition 1l.1. Let w = f(z) be a sense-preserving
homeomorphism from a domain ( onto a domain '. Then f
is said to be guasiconformal on 1, or QC, if there is some

K, 1 <K <K », satisfying

a.2) K< mag S

for all quadrilaterals Q in Q with £f(Q) = Q'. We define



the maximal, or OQC, dilatation K(f) of f on Q to be the

infimum of all numbers K satisfying (1.2). If K(f) = KO

we say that f is Kofguasiconformal (ox KO-QC) on (.

The above definition, as well as several equivalent ones,
is given in [6].

As is easily shown (4, p.8], f 1is conformal if and only

if K(f) = 1. Thus K(f) can be used as a measure of approximate
conformality.

We will also find the following definition quite useful

later in this paper.

Definition 1.2. Let f = u + iv be a sense-preserving
homeomorphism of the domain (} onto the domain Q', and let
(xo.yo) be a point of (Q at which both u and v have

continuous partial derivatives. Let

1 . _ 1 .
fz = 2(fx 1fy). f2 = 2(fx + 1fy).
Then

X(x.,Y.) = =2 0 0
o -0 fz(xO'yO)

is called the complex dilatation of f at the point (xo.yo)

and
1+|X(xolyg) ‘
D(xO.Yo) = 1"|X(xono)l

is called the point dilatation of £ at (xo,yo). Moreover,



D(xo,yo) satisfies

2 2 2 2
‘%ngfyo)+°v(xo‘yo)+Vx(xo'yo)+vy(xo'yo)

1
(1.3) D(x,,¥,)+57 = ~
o’‘o D(xo.yo) ux(xo,yo)vy(xo,yo) uy(xo.yo)vx(xo.yo)

Remark: It is clear, from Definition B on page 24 of [3],
that if f 1is a QC map of (0 onto Q' then
K(f) = ess sup D(z).
z €0

A few of the more important properties of QC maps,

whose proofs may be found in [3], are:

(i) f 1is conformal if and only if K(f) = 1.
(ii) £ is QC if and only if £1 is qc, and
K(£71) = k(f).
(iii) The QC dilatation K(f) 1is invariant under
composition with conformal mappings. (I.e., whenever £ is

QC, g 1is conformal, and fog (gof) is well-defined, then

K(fog) = K(f) (K(gef) = K(f))).

By (iii) above and the theorem of Riemann mentioned at
the beginning of this chapter, it can be assumed without loss
of generality that both 1 and ()' are the upper half plane

H = {z = x+iy|y>0].



A problem that aroused considerable interest during the
early research in QC mappings was to determine necessary and
sufficient conditions on a homeomorphism u of (-o,®) onto
itself which would allow u to be extended to a QC map

of H onto itself.

This problem was completely solved by Ahlfors and Beurling

in 1956 [5]. They proved that u can be extended to a QC

map of H onto itself if and only if u satisfies a condition

now referred to as quasisymmetry. The definition of quasisymmetry

is as follows.

Definition 1.3. Let u be a continuous, strictly
increasing function defined on an interval (a,b) with

-« { a<b<w. Then u is said to be guasisymmetric on (a,b),

or Qs on (a,b), if there is some p, 1 < p < =, satisfying

u‘ +t!-u‘ !
X X s p

1
f1.4) o S u(x) - u(x-t)

for all x and t with a < x-t < x < x+t < b. The QS
dilatation p(u) of u on (a,b) is defined as the infimum

of all numbers p satisfying (1.4). If p(u) = po we say

that u is po-QS on (a,b).

In Chapter 2 we give an alternative definition of QS

and prove it equivalent to Definition 1.3. Using the new def-

inition the class of QS functions is then shown to be closed



under the operations of addition, multiplication, composition

and the taking of inverses. The remainder of Chapter 2

deals with the problem of finding explicit, sharp bounds
for the QS dilatation of sums, products, compositions

and inverses in terms of the QS dilatation of the original
functions.

One of the difficulties frequently encountered when
working with QS functions is that of determining whether or
not a particular function u 1is QS and, if it is, finding
p(u). With this problem in mind we begin Chapter 3 by making

the following definition.

Definition 1.4. Let u be a strictly increasing

self-homeomorphism of [O,»). Then u 1is said to be ratio

bounded on [O,»), or RB, if there are numbers L, M,

O0<L<KMC<Cae such that u satisfies

(1.5) L XXy e on (0w

u(x)

The lower (upper) ratio bound L(u) (M(u)) of u on [O,w)
is defined as the supremum (infimum) of all numbers L (M)

satisfying (1.5).

In the first part of Chapter 3 it is shown that the class

of RB functions is closed under the operations of addition,
multiplication, composition and the taking of inverses. Sharp



bounds are found for the ratio bounds of these sums, products,
compositions and inverses.

It is then shown that if a function u is RB on [0, )

then u must also be QS on (0,«) and sharp bounds are found

for p(u) on (0,») in terms of L(u) and M(u).

At the end of Chapter 3 we prove that if u 1is either
convex or concave on [O,») then u is QS on (0,«) if and
only if it is RB on [O,=).

In [3] Ahlfors and Beurling give an explicit extension
for a QS self-homeomorphism u of (-o,») to a QC self-
homeomorphism of H.

We begin Chapter 4 by defining g new extension for u

t H. This extension is called the radial extension and is

shown to be if and only if u is RB on (O,«) and the
function v given by v(x) = -u(-x) is RB on |O,w). Sharp

bounds are found for the QC dilatation of the radial extension
in terms of L(u), M(u), L(v) and M(v).

The remainder of Chapter 4 is concerned with the
following generalization of the problem of Grotzsch: given

a homeomorphism u between the boundaries of two domains,

find the extension to the interiors of these domains which

is most nearly conformal. Such an extension is said to be
extremal for the given boundary homeomorphism u.



Conditions are given on u for which the radial exten-

sion is extremal. Questions of unigqueness and non-uniqueness
are also investigated.
In Chapter 5 we continue our study of extremal

mappings and generalize a result of Reich and Strebel [14].



CHAPTER II

QUASISYMMETRIC FUNCTIONS

l. A new definition.

As was pointed out in the introduction, a homeomorphism
u of (-=,») onto itself can be extended to a QC map of
H onto itself if and only if u is QS according to
Definition 1.3. The following theorem gives an alternative
formulation of quasisymmetry which is egquivalent to
Definition 1.3 but better suited to the estimates we want to

make in this chapter.

Theorem 2.1l. Let u be a non-constant function
defined on an interval (a,b) with -« { a <b < . Then u

is on (a,b) if and only if

(i) u is linear
or (ii) there is some A, 1/2 < A < 1, such that

+
2

xl xz

(2.1) au(x)) + (1-Mu(x,) < uf ) < (I=0u(x)) + Au(x,)

for all xl,x2 with a < xl < x2 < b.



1o

Definition 2.1. If u 1is a nonlinear QS function on
(a,b) we define the midpoint dilatation A(u) of u to
be the infimum of all numbers A for which (2.1) holds.

The relation (2.1) is called the midpoint condition. The

relationship between A(u) and p(u) is

- —A(w) - L)

Proof of Theorem 2.1.

(i) Let u be Qs on (a,b). By Definition 1.2

1 u(x+t) - u(x)

(2.3) E;-S u(x) - u(x-t)

< Py

for all x,t satisfying a < x-t < x < x+t < b, where
po = p(u). Multiplying (2.3) by the positive expression

u(x) - u(x-t) and solving for u(x) gives

P P
J—u(x-t) + —l—u(x+t) L u(x) £ —1—u(x—t) + —Q-u(x+t) .
1+p 1+p 1+p 1+p

o o (0] (o)
This double inequality becomes (2.1l) if we set x, = x-t,

x, = x+t, A(u) = Po/(1+90).

(ii) Let u satisfy (2.1) with Xo = A(u). It must

be shown that
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a) u 1is continuous on (a,b).
b) u 1is strictly increasing on (a,b).

c) u satisfies (l1.4) for some p, 1 < p < =,

Proof of a: In [3, p.66] it is proved that (2.1)

implies the continuity of u.

Proof of b: Let Xy x2 be given with a < Xy < X, < b.

Then by (2.1) it is clear that the inequality

Aou(xl) + (l-AO)u(xz) <L Aou(xz) + (l-lo)u(xl)

implies (ZAO-l)u(xl) < (Zko—l)u(xz) or equivalently, since
1/2 < Ao <1, u(xl) g_u(xz). Hence u is non-decreasing.
To complete the proof of (b) assume there are points

X X with a < x1 < x2 < b and u(xl) = u(xz) = M. Since u

1’ 2
is non-decreasing this would imply u(x) = M identically on

[xl.xz]. By assumption u is not constant. Hence there is

some x, € (a,b) for which u(x3) # M. Without loss of

generality it can be assumed that x, < x,. Then by the

2 3
monotonicity of u, u(xz) =M< u(x3).

Let S be defined as

(2.4) S = {x\xz‘g x < x4 with u(x) > u(xz) =M]}.

Clearly x, € S so that S 1is not empty. 1In addition x, is
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a lower bound for S by (2.4). Thus S must have a

greatest lower bound (g.l.b.) x with x, Xx. If u(x) >M
then by continuity there is some ¢ > O such that u(x) > M

on (X-e¢,X). But this contradicts the assumption that X

is the g.1l.b. of S. Hence u(x) = M and so u(x) = M
identically on [xl.§]. Pick € > O so small that u(x+e) > M
and u(X-¢) = M. This is possible because x is the g.l.b.

of S. Then by (2.1), using the points Xx-e, X, X+e, we

obtain
Xou(x-e) + (l-ko)u(x+e) L u(x) £ (l-ko)u(x-e) + Aou(x+e).
The left inequality implies that
u(x) 2 rgu(x-e) + (1-Aj)u(x+e) > A M + (1-A )M = M.

But this is obviously a contradiction of wu(x) = M. That is,

there cannot be any Xy < x with u(xl) = u(xz). Hence u

2

must be strictly increasing on (a,b).

Proof of c: The proof is immediate since all the steps

in the proof of (i) are reversible.

Remark: Looking at the statement of Theorem 2.1 it is
reasonable to ask if condition (i) can be omitted by simply
changing condition (ii) to allow 1/2 < xo < 1. 1It is obvious

that if u is QS and linear then (2.1) does hold with ko = 1/2.
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The converse, however, is not true. It is possible to have a
non-constant function which satisfies (2.1) with A = 1/2
but is not QS on (a,b). To show this we will exhibit an
example.

In [7, p.150] a function f 1is constructed, using a
Hamel basis xl,xz,....xa,.... a € N, with the property

f(x+y) = £(x) + £(y) for all x,y. Taking x =y we obtain

f(2x) = 2f(x), which leads to f(x) = f(2x)/2 or f(x/2) = f(x)/2.

Thus for any Xx,YV.,
((557) = (3) = £(5) + «(3) = g0 + e,

But this is just (2.1) with xo = 1/2. As indicated in

[7, pP.150], £ can be defined arbitrarily on the Hamel basis.
Since a Hamel basis has an infinite number of elements, we can
from this particular basis.

choose three elements x X.o X

1° 72 73
Assume without loss of generality that in the usual ordering
of the reals we have x) < X, < Xq0 and define f(xl) = 0,
f(xz) =1, f(x3) =0 and f = O for all the other elements
in this basis. Let u = f. Then u satisfies (2.1) with

Ao = 1/2 because f does. The function u is not constant
since u(xl) # u(xz). Yet u cannot be QS because it is not
even monotonic since x < x, < Xy with u(xl) < u(x2) and

u(xz) > u(x3). Hence condition (i) cannot be omitted in the

statement of Theorem 2.1.
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2. Upper and lower bounds.

In order to obtain upper and lower bounds for a QS
function u on the interior of an interval when the function
values are known at the endpoints, we define the following

two functions P(A) and p(A) on [O0,1]. 1If

~n =
+ +ooo + n+ooo (ei-o Or l)

is the binary expansion of A € [0,1], then

(2.5)
P(M) =P, (A) = A [6,;+X, B.4A, A, O,4ccedh A, -oe) 0 +.es ],

%o 0L 82 7878, 8% ' ?
p(A) = p, (A) = A [0+ _, B +A Ay BaFece#h. LAl

Xo 111912 1611923 lel len-l
where Ao 1/2 < Ay < 1, is the midpoint dilatation of u
(C£. Definition 2.1) and Al = 1-xo. When there is no chance
of confusion we will use P, p in place of P, , pP.

kO XO

respectively.

Theorem 2.2. Let u be a QS function on (a,b) and

let x,. x, € (a,b) be given. Then for any A € [O,1],

u[(l—l)x1 + sz].g [l-P(X)]u(xl) + P(A)u(xz).

(2.6)
uf (- x, + Ax2] > [1-p(}) Ju(x)) + PN u(x,).
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Proof: 1In a paper by R. Salem [15] P and p are
shown to be continuous, strictly increasing functions mapping
[0,1] onto itself. If v is QS with v(0) =0, v(l) =1,
then by (2.1) and the method of construction of P and p
in [15] we must have p(A) < v(A) < P(A) for all A € [0,1]
with a finite binary expansion. But the set of these numbers
is dense in [0,1]. Hence, by the continuity of v,P and

P, P(A) < v(A) < P(\) for all A € [0,1].

If we now take any QS function u and set

u[(l-l)x1+kxgl-u(xl)

via = u(x2)-u(xl)

then v is QS with v(0) = 0, v(l) = 1. Hence

u[(l-k)x1+xx2]-u(xl)

P(A) L v(A) = u(xz)-u?§1i < P(N).

Solving for u[(l-x)x1+kx2] gives the desired bounds.
Theorem 2.3. P(t) + p(l-t) = 1 identically on [O,1].

Proof: Define f(t) = P(t) + p(l-t) on [O0,1]. Since
P and p are both continuous [15], so is £f. It will be
shown by induction on n that £(t) =1 when t is of the
form t =m/2", n=0,1,2,... and m=0,1,...,2% since
the set of all such t 1is dense in [0,1] the continuity

of f will then imply £f(x) = 1 identically on [O,1].
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(i) Let n=0. Then m can be either O or 1

and f(0) = P(O) + p(1-0) =0 + 1 =1, £(1) = P(1) + p(1l-1)

(iil) Let n = 1. Then m can be either 0,1, or 2.
But the cases m =0 and m = 2 are covered by (i), while

m=1 gives f£(1/2) = P(1/2) + p(1-(1/2)) = Ao + A, = 1.

1
(iii) Assume f(t) = 1 for all t of the form
N N +1 N_+1
t=m/2° andlet t =m/2° , 0<m<2° . If m=0
NO+1
or m = 2 then t =0 or 1, respectively. These cases

have been treated in (i).

N
Let m be an even number. Then m = 2k, 1<k < 2 o
N _+1 N _+1 N
and so t = m/2 ° - 2k/2 ° k/2 O. By the induction
NO

hypothesis this would imply f(t) = £(k/2 ~) = 1.
Let m be an odd number. Then m-1 and m+l are

both even. Hence m-1 = 2k m+l = 2k for some k., k
N

1° 2 1’ %2
with ogkl<k2g2°. Then

N +1
(2.7) f(t) = £(m/2 )
_ m-1 m+1
£(( N +1 11/2)
2 © 2 Yo*
-1 m+1l m+1
= P((==— By /o) 4 p1- (- BE /)
No+l No+l o+l No+l

2 2 2 2

l.
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NO NO N0 No
P([(k,;/27) + (ky/2 ©)1/2) + p([(1-k /2 D) +(1-k,/2 ) 1/2)

No Yo
[A,P(k /2 7) + A P(k,/2 7)]

NO NO
+ [xlp(l—kl/z ) + Aop(l-kz/z ) ]

N N
_ @) 0
= xlf(kl/z ) + Aof(kz/z ).

Hence, by the induction hypothesis, (2.7) reduces to

ll + AO = 1. The induction proof is completed.

Corollary 2.3. P T(1/2) + p 1(1/2) = 1.

Proof: Since P(0) =0, P(l) =1 and P is continuous,
there must be some t, € (0,1) with P(tl) = 1/2 or, equi-
valently, t1 = P-1(1/2). Similarly p(0) =0, p(l) =1

and p continuous imply the existence of a t2 € (0,1) with

= P-1(1/2)- By Theorem 2.3, 1/2 = P(t,) = 1-p(1-t,).

2 1
Hence p(l-tl) = 1/2 = p(tz). Since p 1is strictly increasing,

p(l—tl) = p(tz) implies l-t1 = t2 or tl + t2 = 1.

Substituting t, = P-l(l/z), t, = p-1(1/2) gives

1
p'l(l/z) + p'1(1/2) = 1.

2
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3. The power functions u(x) = xO, a > O.

Corollary 2.3 will be found to be very useful later

in this chapter. Also quite useful is

Lemma 2.1l. Let u(x) = xa, a > 0, on [O,o). Then

u is QS on (0,«) with

1
(2.8) p(u) = max {2% - 1, :
-1 =)

Proof: It is clear that

a N
2°-1 if o> 1
max {2“—1, 1 } = 1 .
2%-1 —— if 0<a<1
2%-1

The cases o >1 and O < o <1 will be treated separately.

(i) Assume o > 1 and let x,t be given arbitrarily

with x >0, 0O0< t < x. Then

xttya _
(2.9) u(x+t) - u(x) _ (x+t) ¢ - x© _ ( X ) 1 (1+s)® -1

u(x) - u(x-t) %@ - (x-t)a 1 - (X;t)a 1 - (l-s)a
(14s)® - 1
= S with 0 < s = i < 1.
1 - (1-s)©

Clearly, ((1+S)a - 1)/3 is just the slope of the secant line

connecting the points (1, la) and (l+s, (l+s)a) on the
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graph of the convex function vy = x2. Similarly (1 - (l-s)a)/s
is the slope of the secant connecting (1l-s, (l-s)a) and

(1, 1°y. By [10, p.3], ((1+4s)? - 1)/s is non-decreasing

and (1 - (l-s)q)/s non-increasing as s goes from O to 1.
Hence
(1+s) " -
(1+s)? - 1 s
1-(1-s)” 1 - (1-s)°
S

is non-decreasing for s € (0,1), and (2.9) together with

11m(+) lim (1+4s)% -1 _ ,a _
s+0' 1 - (1-s)° s+1” 1 - (1-s)°
gives
1 u(x+t) - u(x)
(2.10) VS 1< —enen S 2% - 1,

2°-1

Since the upper bound in (2.10) is actually approached as

a

t approaches x, 2 - 1 must be the best possible QS bound.

That is, p(u) = 2% - 1.

(ii) Assume O < a < 1. Then the function y = x°

is concave instead of convex, as in (i). For concave functions,
however, the double inequality in [10, p.3] is just reversed.

The rest of the proof is the same as in (i) and we find that
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u(x+t) = u(x)
u(x) - u(x-t)

<1

27-1 ¢
27-1

Here the lower bound is approached as t approaches x so
that 1/(2a_1) must be the best possible QS bound. That 1is,

pu) = 1/(2%1).
CLOSURE PROPERTIES

4. The sum of QS functions.

Theorem 2.4. Let wu,, u, ..., u be QS functions on
(a,b) with QS dilatations pl, p2, cocs pn and midpoint
dilatations A(l). 1(2), ceeys A(n), respectively, Then the

n
function v defined as v(x) = Y ui (x) is also QS on (a,b)
_—— _— 21

-

and

p(v) < max {p,},
: 1<i<n

This result is sharp!

Proof: The proof is by induction on n.

(1) )\(2)}.

(i) Assume n = 2 and let c¢ = max (A .

Then for x x, € (a,b) (2.1) gives

1’ 72
X, +X X, +X X, +X
12 1 72 1 72
v ( 2 ) = ul( 2 ) + “2( 2 )
L[ (1-)\(1)) uy (xl)+x(1)ul(x2) J+( (1-x(2)) uz(x1)+)\(2)u2(x2) ]
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< [(l-c)ul(xl)+cul(x2)]+[(l-c)u2(xl)+cu2(x2)]

= (1-c)v(x1)+cv(x2).

Similarly,

X.+X X.+X X.+X
1 1 "2 1

2) _ u ) + u, (——2

2 2 2

)

v (

(1) (1) (

yug () 1+ P )+ P u (x) ]

> [ ul(x1)+(l-x

> cv(xl)+(1-c)v(x2).
Hence
X, +X
cv(xl)+(l-c)v(xz)gjd—l——zxg(l-c)v(xl)+cv(x2).

2

By Theorem 2.1 v 1is QS on (a,b) while Definition 2.1
1 2
1), (2

shows that A(v)< ¢ = max (A Since
p(u) = A(u)/(1-A(u)) is an increasing function of A (u),
this is equivalent to p(v) < max {Fl, pz}.

(ii) Assume the theorem true for n = No and let

N

0 =% 5
'i§ﬁ“i° Then v =vVv + is assumed QS

uNo+1' But uN‘O+1

and 0 is QS by the induction hypothesis, with p(e) < max {pi].

A 1SiSN6

Hence, by part (i), v =vVv + u is also QS on
Nb+l

(a.b) With

p(v) £ max (p(c). Py +1] < max {pi}.

o lgjgNo+1
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Equality holds when u, = uz = ... =
An obvious analog of Theorem 2.4 would be to show that
1<i<n
This statement, however, is false even in the simple case

n = 2, as the following Theorem shows.

Theorem 2.5. There exist functions u and u

1 2’

S on (- »), such that p(ul + u2) < min (pl,pz).

Proof: For an arbitrary xo. 1/2 < XO <1, and

*1 = l—ko. define Gl and Gz on [0,1] as
2)\ x if o<xL1/2
Gl(x)-{ °
(2-2Xo)x+(2Ao-1) if 1/2<x1
2% if 0<x<L1/2
uz(x) ={

(2-20)) x+(20,=1)  if 1/2<x<1

8
1

Gz on [0,1] with p = A /A, and that Sx) = Gl(x>-+62(x) = 2x

It is easy to see that (1.4) is satisfied for both and

for all x € [0,1]. Next let us define functions u, and

u2 on (-w,®) by

u, (%) = Gi(x) for O<x<l, u, (x+2) = u, (X)+2, i = 1,2.
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Then by Theorem 5 of [9, p.239], uy and u, are both QS on

(-G' “) . AlSO

A
0O . .
if i =1
3 1 A '
1 1 ")
u ) = w Q) L if 1= 2.
o

Therefore p, = p(ul) > Xo/kl.p2==p(u2) z_xo/xl. But by the
construction of v, v(x) = ul(x) + uz(x) = 2x 1identically
on (-w,®), so that p(v) = 1. Hence p(v) =1 < Ao/kl <

min {pl.pz}.

5. The product of QS functions.

Theorem 2.6. Let ul. u2, coes un be QS functions

on (a,b) with ui(a) = O for each i. Then the function

n
v defined as v(x) = 1 ui(x) is also QS on (a,b) and
i=1
n

p(v) <[ 1 (1+pi)] - 1.
i=1

This result is sharp!

Proof: The proof is by induction on n.

(1) (2)

(i) Assume n = 2 and let c = 1l-(1l-A ) (1= ).

x. € (a,b) we have by (2.1)

Then for any X0 2
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.v!?

X.+X X_+X
1 2 1 2
A EAC LR

< ta-AY) u, (x1)+x(l)u1(x2) )0 (1-x(2))u2(x1) +x‘2)u2(x2) ]

RS 324 0 yu )

)(l-k(z))ul(xl) u, (x,) + (1= L) (x,

B (1-202)) uy (x,) 0, (x,) +x(1’x(2)ul (x,)u, (x,)

(1) (2)

< (1 (1)) ,(2)

)kzv(x2)+k(l) (2)

(1=-)\"") v(x,)

) (1=) 2

)v(xl) +(1-\

+>‘(1))\(2)" (x,)

(1) (1) (2)

X(z))v(x1)+(l-(1-)\

(=27 (1~ ) (1=17))v(x,)

= (l-c) v(xl) +cv(x2) .

Similarly

X, +X X, +X X, +X

> cv(xl) +(1-c)v(x2) .
Hence

X, +X
cv(x1)+ (l-c)v(xz)gv (—:l——z)g(l-c)v(xl) +cv(x2) .
2
By Theorem 2.1 v is QS on (a,b), while A(v) £ c. Changing

to the QS dilatation, this becomes p(v) < (pl+1) (p2+1) - 1.
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(ii) Assume the theorem true for n = N and let

NO °
A _ A, .
v = .H u,. Then v = v LT But U 41 is assumed QS and
i=1 (0] (o) No
G is QS by the induction hypothesis, with p(e) i< [H (pi+1)]-1.
i=1
Hence, by part (i), v = Q-uN +1 is also QS on (a,b) with
o
No+1
. A 1 - A 1.
p(v)s<p(v)+1)(pr+1+l) 1= p(v)(pNo+l+1)+pNo+l < [igl(pi+l)1 1.

a.
Equality holds when ui(x) =X l, i=1,2,...,n, ON

[0,») for any choice of QpeQoeeeera, all greater than or

equal to 1. By Lemma 2.1 this choice of the u, gives

a. Za. Ya.
2H-1=2 *1=px Y =pw).

1

(

_ (p;+1) ]-1 = (
1

1 i

h=as
=3

6. The inverse of a QS function.

Theorem 2.7. Let u be a QS function from (a,b)
onto (c,d) with midpoint dilatation XO = A(u). Then u-l
is a 9Ss function of (c,d) onto (a,b) whose QS dilatation

satisfies pzl(l/z)
plu) § —o—
P.” (1/2)

x0

where p and P denote the Salem functions in (2.5). This

result is sharp!
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Proof: Let Yye¥,y € (c,d) with Y, < Y4 and let
-1 .
y2 = (yl+y3)/2. Let xj =u (yj). j =1,2,3, and let

3 = P Y(1/2) = 1-p 1 (1/2). Then
ul (1-R) %, +Ax5] < (1=P(X) ) u(x)) +P (X) u(x,)
= (u(x;)+u(x3))/2 =y,
by Theorem 2.2. Since u is monotone increasing this gives
x2 > (l-i)x1 + XX3.

Similarly,

u(ix1+(1-i>x3) u((l-(l-i))xl + (1-X)x3>

> (1-p(1-X))u(x;) + p(1-X)u(x,)
= (u(x)) + u(x;))/2 =y,.

This gives, by the monotonicity of u, X, £ Xxl + (l-X)x3.
Hence

-0 u "ty + (- -0 u iy ey ) <= (1= u T vy) + (=D ()

and by Theorem 2.1 u—l must be QS on (c,d) with
A(u—l)‘g 1-} = p-1(1/2). By Definition 2.1 this becomes, in

terms of the QS dilatation,

-1
p(u-l) < .E_(_]'.Q)_ .

p"1(1/2)
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Equality holds when u(x) = x on [0O,=) for any

1/n

integer n > 1. By Lemma 2.1, p(u) = 1/(2°° -1). Hence,

1
by Definition 2.1, A(u) = 1/2 /n. From (2.5) it is clear

that

l/n)n

p(1-(1/2™)) = 1-(A ()™ = 1-(1/2 = 1-1/2 = 1/2,

-1
or p (1/2) = 1-1/2n. For this choice of u, u is given
by u-l(y) = yn and, as above, it is easy to see that
p(u”l) = 2"-1. Hence

p(u-l) = gy = =L 2" = _E:iilZ_L_ _ 2-111422
1/2" 1-p Y120 P2

For computations the following bound for p(u-l).
though no longer sharp, is probably easier to use than the

bound in Theorem 2.7.

Corollary 2.7. Under the conditions of Theorem 2.7,

log 2
log(1+1/p(u)) _ ;.

p(u'l) < 202

Proof: Let A_= A(u) and P = P_ . Since
p(1/2") = xg for each n > 0, and P(1/2°) = P(1) = 1 > 1/2,

there exists some integer k such that

2l <12 <f = p/2h.

(2.11) P(1/2 o



28

Since P 1is strictly increasing (2.11) is equivalent to

1/2k+1 < P-1(1/2) < (1/2k), which reduces easily to
(2.12) 1 - 1/2° < 1-p"Y(1/2) = pt/2) < 1-1/25th

Solving (2.11) for k gives

log 2 _ log 2
¥ < Tog (1) T Tog (+1/p(a) < *H

and thus log 2

oK <2 log (1+1/p(w)

Hence, by Theorem 2.7 and (2.12) we find the desired bound

-1 pttasze) L 1-12Ktt n k 1 1(°1+1/())
pu ) < < = 27t = 2.2%-1 ¢ 22799 Pl _,.

pty2) T 172Kt

7. The composition of QS functions.

Theorem 2.8. Let u

1 uz, co ey un be Qs functions

such that the domain of each us is contained in the range

of the preceding u, - Then the composed function u defined

as u(x) = unoun_lo...oul(x) is also QS and

Pn(1/2)
PW < T 1172)

where P = P oP °...0P . This result is sharp!
— "n k(un) X(un_l) l(ul)
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Proof: The proof is by induction on n.

(1) Assume n = 2 and let xl,x2 € (a,b) be given,

where (a,b) 1is the domain of wu,. Let c¢ = Pk

. (A (u)) -

(u,)

2
Then by Theorem 2.1 and Theorem 2.2

xl+x2) - (xl+x2
2 21" 2

u ( ))

L u, ((1-A(ug))uy (xy) +x(u))u, (x,))

< (l-PMuz) (A(u;)))u(x,) +PX(u2) (l(ul))u(xz)

(1-c)u(xl)+cu(x2).

Similarly
2R = w0 )
2 (1-Px(u2)(1-X(u1)))u(x1)+PA(u2)(l-l(ul))tx(xz)
= Pl(uz) (X(ul))u(xl)*-(l-PMuz) “‘(ul)))u(xz)
= cu(xl)+(1-c)u(x2).
Hence

X, +X
cu (xl) +(1-c) u(xz)gu (—]'—z—z)g(l-c) u(xl) +cu (xz\ .
By Theorem 2.1 u is QS on (a,b) and A(u)<c = P (A(u,))
(uz) 1

= Pk(uz)(PX(ulfl/z)) = 92(1/2). Changing to the QS dilatation,

this becomes
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92(1/2)

p(u) S 1-P2(1/2)

(ii) Assume the theorem true for n = No and let

G = u u u Then u =u ﬁ But i
= N o N _lo---o l' = N +10 . u uN +1 S
(o) (o] A (o] (o]
assumed QS and u 1is QS by the induction hypothesis with

X(G)g P_ (1/2). Hence, by part (i), u = u oG is also
Nb No+1

QS and
(1/2)) = P ()

X(uNO+

A(u)

A
A(u ou) <P (P. A
Nb+l No+l) A(u)

A(u

PNO+1(1/2).

By Definition 2.1 this is equivalent to
PN0+1(1/2)
p(u) <75

+1
Yo

(L/2) °

a.
Equality holds when ui(x) = x l, i=1,2,...,n0, on

[0,») for any choice of QpeQyeeecosay with all a;> 1.

To,
Obviously u(x) = x 1 on [0O,»), so that Lemma 2.1 gives
p(u,) o4
A(u,) = —t 2 =) 1 g for each 1i.
i 1+p(ui) a; a;
2 2

Ta,

i

It is now trivial to show by induction that Pn(1/2) = 1-1/2 .

Hence
i Pn(1/2)

Fai l-Pn(l/Z) '
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Remark: It would be interesting, in Theorem 2.8, to
see how {/(u) depends on the individual p(ui). For simplicity
we will restrict the investigation to the case n = 2.

If n = 2 then by Theorem 2.8

P, (1/2) Px(uz)(X(“l))
(2.13) p(u) = p(u,°eu,) < 73 = J-p
2 1 1 pz(l/z) 1 Pk(uz)(K(ul))

Since 1/ng(ul)<l there is some integer k > 1 with

1 - 1/2° < ap) <1 - 1725

Solving for k and using Definition 2.1 gives

log(l+p(u1))
k < "Toa 2 < k+1.

Thus

k+1 k+1
Px 4 )(A(ul)) <P 2)(1-1/2 ) = 1-(1-k(u2))

(1)

A(u

and using this in (2.13) gives
log (2+2p (u,))

(2.14) puyou)) < (pw )1 < epy) 9 -l

Now suppose the function u, is fixed and let
a = log (2+2p(u1))/log 2. Then 2 < a < «» and (2.14) shows

that

a
(2.15) p(uzoul) £ (l+p(u2)) - 1.
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A simple expansion of the right-hand side in (2.15) shows

that

(2.16) p(uzoul)‘g p(uz)a + o[p(uz)a‘l] as p(uz) approaches .

Suppose now that u2 is fixed instead of ul. Then

using (2.14) and the identity Alog B = Blog A. with

A = (1+p(u2)). B = (2+29(ul)), we obtain

log (2+2p(u,) )

(2.17)  pluyeu;) < (L+p(uy)) log 2 -1
log (1+p (“2) )

= (2+2p(u)) 92 -

Let B = log(1+p(u2))/log 2. Then 1 <P <w and (2.17) gives
0 B _
(2.18) p(u2 ul) L (2+2p(u1)) 1.

A simple expansion of the right-hand side in (2.18) shows

that

plujou)) < (2p(ul))B +o[p(u1)5'l] as p(a)) approaches e

The inequalities (2.15) and (2.18) show that if
u, (u2) is fixed, then p(uzoul) is bounded by a power
function of p(uz) (p(ul)) as p(uz) (p(ul)) tends to
infinity, the power depending on the finite constant

p(uy) (p(u)).



CHAPTER III

RATIO BOUNDED FUNCTIONS

l. Introduction.

Although the definition of quasisymmetry is quite
simple, in practice it is often very difficult to determine
whether or not a particular function u 1is QS, and to obtain
bounds on its QS dilatation p(u). Since all QS functions
are by definition strictly increasing, however, and a monotone
function must be differentiable almost everywhere, it would
certainly be helpful to have a simple differentiability
condition for quasisymmetry.

With this in mind we begin Chapter 3 by defining a new
class of functions called ratio bounded, or RB, functions.
This class is defined by a relatively simple differentiability
condition. The major portion of this chapter is spent in
an investigation of closure and other properties of this
class, much as we spent Chapter 2 studying the properties of
the class of QS functions.

The first application made of this class comes at the

end of Chapter 3 when we show that the RB functions actually

33
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form a subclass of the QS functions and then use the

differentiability condition to obtain sharp bounds for the
QS dilatation p(u) when u is RB.

A second, and more important, application of RB
functions is their use in the problem of extending a QS
function on (-®,®) to a QC mapping of the upper half
plane H. 1In particular we are interested in finding such
an extension that is gquasiconformally extremal. I.e., one

that is as close to being conformal as possible. This
second application will be treated in the next chapter,

however.

2. Notation.

A function u will be said to be normalized if it
satisfies

(3.1) | u(0) =0, u(l) =1, u(w) = =,

whenever the points O, 1, » are in the domain of u.
Throughout the remainder of this paper it will be assumed
that all QS functions are normalized according to (3.1).
Furthermore, if u is a QS function of (-»,®) onto itself
with QS dilatation p(u) as given in Definition 1.3, then
S(u) will mean the QS dilatation of the restriction of u

to (0,=). Obviously S(u) £ p(u) always holds.
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3. Alternative definitions.

For ease of reference we repeat here the definition

of ratio boundedness (Cf. Definition 1.4).

Definition 3.1, let u be a strictly increasing
self-homeomorphism of [O,«w). Then u is said to be

ratio bounded on (O,~), or RB, if there are numbers L, M,

OKCKL<KMCTC » such that

xu' (x
u (x)

(3.2) L < <M a.e. on (0,=).

The lower (upper) ratio bound L(u) (M(u)) of u on

[O,®) is defined as the supremum (infimum) of all numbers

L (M) satisfying (3.2).

Our first goal is to give two equivalent, and very

useful, alternative definitions for ratio boundedness.

Theorem 3.1. A function u of [0O,«) onto itsel

—

is RB with ratio bounds L., M if and only if

(o] o
X ..
(3.3) u(x) = exp(J %fi{f%'%f) for all x > O, u(o) = O,
1

where y is some real valued, measurable function on (0,w)

with

el ),

(3.4) sup |yx(s)| < 1, ess sup |Ix(s)| = orl

0<s<m 0<8<»
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for some Q > 1. Moreover, if u satisfies (3.3), then

Q = max (Mo. 1/LO}.

Proof:
(i) Assume that u is of the form (3.3). Then
X measurable implies that (1+¥%(s))/(l-x(s)) is also measurable
since (3.4) shows that the denominator in the integral in
X
(3.3) is never zero. Hence I linéL.Qé. and thus also u in
ll-x(s) s
(3.3) must be continuous on (0,»). It is also clear, taking
a limit in (3.3) as x approaches O, that u 1is continuous

at O as well. By the second inequality in (3.4),

0 < 1/Q £ (1+yx(s))/(1l-y(s)) a.e. on (O,=), so that

*2
j 1+X(s) ds
x l-x(s) s
x, < x2 = u(xz) - u(xl) = e 1 >0 = u(xz) > u(xl).

Thus u is strictly increasing. It is also trivial to show
from the form of u (3.3) that u is normalized according

to (3.1). Finally,

u (x) = 23X 10

1y (x) X a.e. on (0,x),

whence

0 < l.ﬁ xu' (x) _ 1+X(x)

Q u(x) - l-y(x) L£0< = a.e. on (0,=).
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By definition 3.1 u is RB with l/QgLogMOg Q, and either

Lo = 1/Q or Mo

in the second part of (3.4). Hence Q = max[MO,l/Lo}.

= Q; otherwise there could not be equality

(ii) Assume u 1is RB with ratio bounds L0 and

MO. Then since u 1is monotonic, u' exists a.e. on (0,)

and is measurable. Let Q = max{MO,l/Lo} > 1 and define ¥ by

su' (s)-u(s)

. .
su’ (s) +u(s) wherever u exists

(3.5) x(s) =
(o] elsewhere

Then y 1is measurable on (0,) and

sup |x(s) | = ess sup |x(s)| = (Q-1)/(Q+1) < 1.
0<s<» 0<s<=
From (3.5), uls) Lix(s) 1 a.e. on (0,w). Integrating

u(s) - l-y(s) s

and exponentiating gives

I"h_xcg). ds
ll-x(s) s
u(x) = e .

and by continuity u(0) = O.

Theorem 3.2. Let u be a function mapping [0,)
onto itself and normalized according to (3.1). Then u
is RB _on [O,e), with ratio bounds Lo and MO. if and

only if
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LO M0
b u(b) b
(3.6) (a) Sy < G)

for all a, b € (O,o) with a < b.

Proof:

(i) Assume u is RB with ratio bounds LO' MO. By

Theorem 3.1

J‘xl-i-X‘g[ ds
ll-x(s) s
u(x) = e for all x > 0, u(0) = O,

which implies that

1+X(s) _ su'(s)
Lo,g 1y (s) = Ta(s) £ Mo a.e. on (0,=).

Hence
, Ibiqu ® 14x(s) s fbiq i "
b o _ a S a l-x(s) s _ u(b) e s b o
(a) =€ Le ~ u(a) < - a)
(ii) Assume
LO MO
b u(b) b
(3.7) (a) S'u(a) g_&a) for all O<a<b<w.
L

Then L_ > O implies wu(b)/u(a) > (b/a) ° >1 for any a < b,

o
which means u is strictly increasing. Hence u must also

be differentiable a.e. on (0,»). If x € (0O,») is a point of

differentiability for u, then for any h > 0 (3.7) gives
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Lo LO Mo M.o
h _ u (x+h) x+h _ h
(1+x) = &x;h) £ u (%) < K - ) = (l+x) a.e.,
or L M
h o] h (0]
(v -1 u (x+h) -u (x) (1+;) -1
(3.8) n u(x) < h < h u(x) a.e.
Letting h approach O, (3.8) reduces easily to
LO MO
x u(x) < u'(x) £ > u(x) a.e. on (0,x),

which is equivalent to

xu' (x)

LO‘S (%) (< Mo a.e. on (0,).

Therefore u 1is RB.

CLOSURE PROPERTIES

4. The sum of RB functions.

Theorem 3.3. Let ul. u2, ....un be RB functions
with ratio bounds L(ui) = Li' M(ui) = Mi, i=1,2,...,n. Then
n
the function v =(1/n) u, is also RB, and
i=1

L(v) > min (L.}, M(v) < max (M,]}.
1<i<n ¢ 1<i<n ¢

This result is sharp!
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Proof: Let LO = min fLi}. MO = max (M.}. Then
1<i<n 1<i<n
(3.9) Loui(x) g.xu;(x) g.Moui(x) a.e. on (0, «)

for each i. By the subadditivity of measure, however, the

set of points at which any of the us does not satisfy (3.9)

has measure O. Hence

n n n
'_;_? Loui o (s x? ug (x) ‘i’) Moui
LO = _n < v (%) = n g_-h = MO a.e. on (0,).
2 u, 2 u, (x) 3 u,
] i L 1 i

The proofs of continuity, monotonicity and normality follow
trivially from the definition of wv.
a [O'Q)' i= 1,2,.--'n'

Equality holds when ui(x) = x on

for some a > 1.

5. The product of RB _functions.

be RB functions.

Theorem 3.4. Let UpelUgreeesuy

is also RB, and

n
Then the function v = 1 uy

n n
L(v >T L, MV SIM,.
1l 1l

This result is sharp!
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n n
Proof: Let L. = 2XL., M_= 2 M,. By the subadditivity
I (0] 1 i (0] 1 1

of measure,

Liui(x) g,xui(x) < Miui(x) a.e. on (0O, ®)

for each i implies

n
X 2 (ui(x) T u,(x)) ,
xv' (x) _i=1 * §4i n xu: (x)
L0 <L vix) - N = .Ea m—m— < MO a.e. on (0,=).
I u.(x) 1=
=1 °

The proofs of continuity, monotonicity and normality follow
trivially from the definition of wv.
i

Equality holds when ui(x\ = u on [0,x), 1i=1,2,...,n,

for any choice of the a; all greater than O.

6. The inverse of an RB function.
Theorem 3.5. If u is an RB function then so is u -,

lm
S}
0,

L(u‘l) = 1/M(u), M(u'l) = 1/L(u).

Proof: Let v = u-l. It is obvious that the continuity,

monotonicity and normality of u imply the same properties
for v. Since v is monotonic it is differentiable a.e. Let

Yo be a point at which v 1is differentiable. Then also u
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must be differentiable at Xy where Xy = v(yo). Also

v'(yo) = l/u'(xo) implies that

1
. u(x )=~
M(u) v(yo) B X, - xou'(xo)'s L (u) *T

7. The composition of RB _functions.

Theorem 3.6. Let Uyeleeeeouy be RB _functions.

Then the composition function v = a eu ,e...ou, is also

RB, and
n n

L(v) > TL, MW < TM,.
i=1 1 i=1

This result is sharp!

Proof: The proof is by induction on n.

(i) Assume n = 2. Then v = uzoul. The proofs of
continuity, monotonicity and normality follow trivially from
the definition of v. Hence v 1is differentiable a.e. on
(O,»). Let Xq be a point of differentiability for v and
let Yo = ul(xo). Then v'(xo) = ui(yo)ui(xo). Since

v(xo) = uz(yo) and Yo = ul(xo) we thus have

— X,V (xg) ) xguz' (yg)u'1 (xo) Y ] YQuz' (yg) . X,u) (%)
172 v(xo) u, (yo) ul(xo) u, (yo) u, (xo)

k< Mluz a.e. on (O,=).

(O' °°)
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(ii) Assume the theorem true for n = Nb and let

oG. But u is

0 = ol ose.0U,s. Then v =
“No Ny -1 1 N +1

uNo+l
RB by assumption and 0 is RB by the induction hypothesis

with

\ NO \ NO
L(v) >0 L,, M(v) <1 M..
i i
1 1
Hence, by part (i), v = uN +1o0 is also RB and
(o]
R R No+l .
L(v) = L(uN +l°v) > LN +l°L(v) > I Li' M(v) = M(uN +lov)
(0] (0] 1 (0]
R No+1
SR R
(o] 1
a.

1

Equality holds when ui(x) = x on [O,®), i=1,2,...,1n,

for any choice of the @, all greater than O.

8. The class T of RB functions.
—_— LM ———m————————

Definition 3.2. For given L, M € (0O,®) with L 7 M,
let TL M denote the class of RB functions u with L(u) > L,
o

and M(u) <M.

Lemma 3.1. Let u be continuous on [O,«) and

suppose (ui} converges to u pointwise on [O,«) and

uniformly on compact subsets, where ui € TL M for each 1i.
0

Then u € TL.M also.
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Proof: Since ui(o) = 0 and ui(l) =1 for each i,

we obviously have u(0) = O, u(l) = 1 as well, by the pointwise
convergence of the u.. Also, ui(x) > 0 for each i and

any x > O, so that u(x) > O. Suppose there exist x.,,x, € (0, )

1
with u(xl) > u(xz). Let 4 = u(xl) - u(xz) > 0. Since

2

[ui} converges uniformly to u on the compact set [xl/z, 2x2].

there exists an Nb such that

luNo(xl)-u(xl) | < a/4, | uNo(xz)-u(xz) < a/4.

Then

uNo(xl) > u(xl)-d/4 = u(x2)+3d/4 > u(x2)+d/4 > uNb(x2)°

Therefore (x,) > (x.), which is impossible since u
"‘No 1 “No 2 N,

is strictly increasing. Therefore u is non-decreasing.
The proof will be completed by showing that for any

X0 X € (0,») with x1 < x2.

2
x. L u(x)) x. M
-2 2 2
(3.10) kxl)'s u(xl)'s kxl) .

Given any integer Noe let ¢ = u(xl)/2(2N°+l). By the uniform
convergence of [ui] to u on [xl/z,zxz], there exists

an n such that

0 < un(xl)-e < u(xl) < un(x1)+e. un(xz)-e < u(xz) <L un(x2)+e.
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Thus

u(xa) < un(x2)+e ) un(xi 1 un(xz)
u(xl) un(xl)-e un(xl) .
un xl

—_—

< fz M 1 u (x ) < ‘fz M 1+u(xl)-e

kxl) 1 € (xl) 1 € ,

u (x ) u(xl)-e

(x ) u(:()xz)e - Kx ) EH—_J

Since No can be chosen arbitrarily large, this means that

u(xz)/u(xl) < (xz/xl)M. Similarly, we find that

u(xz)/u(xl) 2,(x2/x1)L. Thus (3.10) holds. By Theorem 3.2

u must be RB with L(u) > L, M(u) < M. Hence u € TL M
[

Theorem 3.7. TL M is compact under uniform convergence
’
on _compact subsets of (0,«).

Proof: We begin by showing that T is equicontinuous

L,M

on compact subsets of (0,«).
Let S be a compact subset of (0,«»). Then there

exist positive numbers a,b with 0<a<l<b<= such that

1 2
a<x{ b for all x € S. Given any ¢ > O, let § = a((1+e/2 / -1)

Let u e€rT and X 0 X € S with X, < X,. Then by Theorem 3.2,

L,M
u(b) = u(b)/u(l) < bW

2
g,b . Hence
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Ixz-x1| < & implies that x2/x1 <1+ (b/xl) L1+ (8/a),

which implies further that

u(x_)
- —3 - 3 _'L-
|u(x2) u(x,) | = u(x,)-u(x) = u(x,) Lu(xl) 1]

< u(b)! 2m ng'Ll«O-'g'M-l
L(xl) J ( a) J

=b|—5—| =% <¢e¢.

il
Thus T is equicontinuous on compact subsets of (0,«).

L,M
Now let x € (O,»). It must be shown that

S. = {u(x)|]u €. .} is bounded. If x =1 then S = {1} by

X LM
the normality condition, and (1} is obviously bounded.
Suppose O < x < 1. Then by Theorem 3.2, using a = x and
b = 1, we obtain xM'g u(x) < xL. so S _c [xM,xL]. Hence
sx is bounded. Finally, if x > 1 then by Theorem 3.2
with a =1 and b = x we find xL Lu(x) xM, so
Sx c [xL, xM] is bounded.

Hence T satisfies al® the conditions of Ascoli's

L,M

Theorem, sO any sequence fui} of elements from TL M has
4

a subsequence which converges to a continuous function u
pointwise on (0,«») and uniformly on compact subsets of

(Oy»). By Lemma 3.1 u €T

L,M

. Therefore T is compact.
, L,M
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Corollary 3.7. For any a > O, let ua(x) = x%

on [O,»). Then for any LM € (0O,») with L < M,

uL € TL,M and uM € TL,M' Also, for any u € TL.M we have
uM(x) <L ux) £ uL(x) for all x € [0,1],
uL(x) L u(x) £ uM(x) for all x € [1,=).

Proof: The proof is immediate from Theorem 3.2. If
x € [0,1] take a=x, b=1. If x € [l,o) take a =1,

b = x.

FIRST APPLICATION

9. The relationship between RB and QS.

It will be shown in this section that any function u
which is RB on [0O,») must also be QS on (0,»). Sharp
bounds on p(u) will be found in terms of L(u) and M(u).

The following lemmas will be found quite useful.

1, and T < 27 -1 if T > 1.

OCT<l, T =20 -1 if T

T

Proof: Let £(T) 2> -1-T for T > 0. Clearly

£(0) = 0 and £(1) = 0. Furthermore, £'(T) = 2T log 2 - 1

has only one zero T with 0<T0<1, and f"(T) = ZT(log 2)2 >0

o

everywhere. Therefore the critical point TO must be a



48

minimum and so f 1is decreasing on (0,1l) and increasing

on (l,»). This completes the proof.

Lemma 3.3. If T > O and 0<s<l then
T (1+s) T-1 T
min{T, 2°-1} < < < max (T, 27-1}.

Proof: Let f(s) = «l+s)t&)/s for 0<s<l. Then

. Ts(1+s)T-1 + 1 - (;+s)T
£'(s) = Y ’
" 2(1l+s T . 2Ts (1+s T-1 + T(T-1 2 l+s -2
f'(s) = 3
s

If there is some s, € (0,1) with f'(sl) = 0 then

T T-1
(l+sl) -1= Tsl(1+sl) .

Therefore

T(T-1) (1+s.) T 2
1
fu (S ) - —_— R
1 81

so
<0 if oK1

(3.11) f" (s) 1is =0 if T=1
>0 if T > 1.

Case 1: If OKT<1 then by (3.11) s, is a maximum

point of f and



(1+s.) T Ts) (1+s,) T-1
(3- 12) f(sl) = s- = p
1 1
T-1 T
= T(l+s1) = . )1_
( s,
<

Since any maximum or minimum of f on [O,1] must occur

either at one of the endpoints or at an interior point sy

with f'(sl) 0, (3.12) shows that for any s € (0,1],

£(s) < max (£(0), £(1), T} = max (T, 2% - 1},

£(s) > min (£(0), £(1)} = min (T, 2% - 1}.

Case 2: If T =1 then
f(s) = =1=T=2" =1,

Therefore, once again,

T

min (7,27 - 1} < £(s) < max (T, 2% - 1).

Case 3: If T > 1 then by (3.11) Sy is a minimum

point of £ and

T T-1
(l+sl) -1 T81(1+81) -1
f(sl) = = = = 'r(1+sl) > T.

5 8

Hence
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£(s) > min (£(0), £(1), T} = min (T, 2% - 1},

f(s) < max {£(0), £(1)} = max[T,zT-l}.

Lemma 3.4. f T >0 and 0<s<1 then

1 - (1-9)7T
S

min {1,T]} < < max {1,T].

Proof: Let

1l - (l-slT

g(s) = =
Then
(3.13) g' (s) = L8 (1-5)T"* 2 (1-s)T - 1
S
and
(3.14) g"(s) = —20-9)T-215(1-9 " rr-1 2 0-9) T2

3
s

If there is some Sy € (0,1) with g'(sl) = O then by (3.13)
1

T T-
1—(1—81) = Tsl(l—sl) .

Therefore, by (3.14),

—r(r-1)82(1-8.) T2
" ( ) - l ]_-
g"(s;) = > .
5y
Hence .
>0 1if 0o<1K1
(3.15) g"(sl) is =0 if T =1

<o if T > 1.
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Case 1: If 0O<KT<1 then by (3.15) s is a minimum

1
point of g on (0,1) and
T
1-(1-s.)
g(s,) = . T(l-s ) T 1. —T > T.
1 s 1 1-T
1 (l—sl)

Thus

g(s) > min {g(0), g(1), T} = min (1,T},
g(s) < max {g(0), g(1)} = max {1,T].
Case 2: If T =1 then g(s) =1 =T, so again
min (1, T} < g(s) < max (1, TJ.

Case 3: If T > 1 then by (3.15) s1 is a maximum
point for g and
1-(1_81)T T-1
g(s,) =——— = T(l-s,) < T.
1 sl 1

Hence
g(s) < max {g(0), g(l), T} = max (1,T},
g(s) > min {g(0), g(1)} = min {1, T}.

Theorem 3.8. Let u be RB on [O,=) with ratio

bounds L = L(u), M = M(u). Then u must also be QS on
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(1) 21 < B < M

(ii)

“"""SP()S—
M1 21

s(u) < max { Ll .
27 -1

(iii)

These results are sharp!

Proof:
will treat cases (i) and (ii).

(iii).

(a) To find lower bounds for

the definition of S(u),

The proof will be in two parts.

if  1<LM,

if LM<,
M M M_2 ML, ..M
2 -1, 1. LKM-L) (M-1)

if L<1<M.

In (b) we will treat case

if it exists,

u(x+t)
u(x+t) —u(x) u (x)
P(u) S u(x) -u(x-t) - | ux-t) Sp(u) for all
u (x)

Letting t—>x, and remembering

that u

[0,=) with u(0) = 0, we find that
u(2x) _ A
6(‘1) L u(x) 1 <p(u).
Thus
A u(2x) _ 2x L _ L _
PO 2 Y = 12 (x) 2" - L
u(2x) _ 2xM . M
r(u su(x) 1S\x) 1 =2 1.

In (a) we

x>0'

is continuous on

Lo

S(u), we notice that by

o<t<x.

l-L}
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Hence 6(\1) > max{2L-1, 1/(21“-1-1) j. The lower bounds in cases (i)
and (ii) follow simply from this inequality.
To find upper bounds for f)‘(u) let x € (0,=),

O<t<x, and define s as O < s = t/x < 1. Then by Theorem 3.2

u (x+t) x+t -1 L
u(x+t)-u(x) _ __u(x) &Ji) _ (1+s) -
u(x) -u(x-t) julx=t) 2 1-( ¥t M l-(l-s)M ’
u (x) Q x )
(3.16)
u(x+t[ x+t M " M
u(x+t)-u(x) _ _u(x) k X ) _ {(1+s) -1
u(x) -u(x-t) l_uup(: t) 1- k ) l-(l-s)L
x) x

But by Lemma 3.3 and Lemma 3.4, if 0<s<l then

M
M l4+s) -1 M
(1+s) -1 _ - S < max{M,2 -1} = q
1- (1-8) L 1- (1-8) L min{1,L)
s
(3.17)
l+s L-1

(1+s) L-L s min{L, gL-l |
M M 2 max{1,M} B-
1-(1-8) 1-(1-8) ’

Thus, if ¢ = max {a,1/B}, then by (3.16) and (3.17)

1l  u(x+t)=-u(x)
c < u(x) -u (x-t) < c

so e(u) £ c. Now by Lemma 3.2, 1I<M implies qa = ZM-L

B=L/M> 1/M. Hence c = max [ZM-l,M} = 2“-1. This is just
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the bound we are looking for in case (i). Similarly in case
(ii), L<ML1 implies by Lemma 3.2 that o = M/L £ 1/L,
B = 2L-1. Hence ¢ = max {l/L.l/(ZEJJ}==l/(2Ed). Again, this

is the bound we want.

(b) For any x € (0,»), O<t<x, let s be defined as

0<S=t/x<lo

M L
1+ -1 1+ -
£(s) = =1, g(e) = LEBL=L L for s € (0,1,
1- (1-s) 1- (1-5)
and ag=sup f(s), B = inf g(s). Then as we showed in (a),
0<s<1 0<s<1

u(x+t) —u(x)
B S g(s) S u(x) _u(x_t) S f(s) S Qe

If, as before, we set ¢

max (a,1/B}., then we have S(u)‘g c

T S

in case (iii) as well. Our problem is to estimate o and
B in this case.
It is clear that both f and g are continuous on

(0,1) and that by 1'HOpital's rule

lin £(s) = %. lim £(s) = 2"-1, lin g(s) = -3—, lim g(s) = 2"-1.
8-+0 s-+1" 8-+0 s-+1
Hence, if we define f and g at O and 1 by their limit
values, then f and g will be continuous on [0O,1]. Since

[0,1] is compact f and g must actually attain their

maximum and minimum values on [O,1]. That is,
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a= max f(s), B = min g(s).

0<s<1 0<s<1

Since we already know the values of f and g at the end-
points O and 1 we need only investigate possible interior
maxima for f and interior minima for g to obtain bounds

on a and B.

Let So O<so<l, be any critical point for f. Then
(1-(1-s ) “ym+s )™ - (14 ) M-1)L(1-5 ) U2
(o) (0] (o) (o)
O = £'(sy) = B L 2
(1-(1-50) )
implies
(1-(1-s ) Yy M1+s O™ = ((1+s )M rL(1-s ) ¥t
0 %o = o ) ’
which in turn implies
M M-1
fls) = (l+§Q2 -1 ) M(1+so) ) ﬂ(1+s )M-l-(l-s )l-L.
(o) -1 L (o] (o]

1-(1-30)L L(1-so)L

If we define h(so) =(M/ﬂXl+so)M-l(1—so)l-L for 0<so<1.

then we find that f(so) £ s8sup h(s ). But now

(0]
O<so<1
h'(s)
(o) M-1 1-L 1
—— = ST L AT (M+L-2-s_ (M-L)).
h(sg) 48, 1l-s; 1_302 Y

If M+L-2<0 then h is a decreasing function of s =1o)

0'
that h(so) < M/L on 0<s,<l. But if M+L-2>0 then h'(sj)) =0

for 8o = (M+L-2) /(M-L) € (0,1] since L1 implies M+L-2{M-L.
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And in this case h increases from So = O to s, = (M+L-2) / (M-L)

and then decreases until so = 1. So if M+L-2>0 then the

supremum of h on (0,1l) is

L

M+L-2 M
MiL-2, _ M. 2

M-L M-1 1-
M-L p(w-r) M1 AL

h(

Thus, in any case, if s is any critical point for £ on

)
(0,1) then
£(sy) < max(l, By M P -nM (1o th.
This means, finally, that
_ M M. M _2 M-L . M-l _ _ 1-L
a = max{£(0), £(1), f(sy)} L max(, 27-1, T "(M-1)7 " (1-1) " 7]

Now suppose s 0<so<1, is a critical point for g.

o'

Then in a manner similar to our treatment of f, we must have

- L-1 1-M
g(so) = (L/M)(l+so) (1-30) .

. . L-1 1-M
Setting 3(so) = (L/M)(l+so) (l-so) for O<so<l and
differentiating Jj logarithmically as we did with h, we
find that M+L-2>0 implies 3j increasing so that j(so)zj(o) = L/M

for 8o € (0,1). And, as before, if M+L-2<0 then j

decreases from 8y = 0O to 8, = (M+L-2) /(L-M), then increases

until so = 1. Hence we must have

3sg) 23D = @ G M a-n eyt
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Thus, in any case, if o is any critical point of g with
O<so<1 then
2 \L

oL L2
g(so) zmln[M, M ML)

My
M-L

M- ¥ m-n 1T

and so, finally,

L _2  L-M

B = min(g(0), g(1),g(s))] 2 min (21,22 " ™Ma-tf m-n?

M 'M-L
And, at long last,

S(u)sc = max{a.-l'} = max{2M-1. —l—, %.

M_2 ML, . M-1_ _ 1-L
- A T s R G R

M-L
Equality will hold in cases (i), (ii) and (iii) by

the following examples 3.1, 3.2 and 3.3, respectively.

Example 3.1. Let u(x) = x> on [0,o) with q > 1.

Then u is differentiable on (0,«) and

] a_l
a_ix) XX . _ 5,51 for all x € (0,).
u (x) %%

Therefore u is RB with L = M = q. Hence the lower and
upper bounds in case (i) of Theorem 3.8 are the same and so
both inequalities must actually be equalities. Thus<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>