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ABSTRACT

A SYMBOLICALLY-ASSISTED APPROACH TO

DIGITAL IMAGE REGISTRATION

WITH APPLICATION IN COMPUTER VISION

BY

Ardeshir Goshtasby

Analyzing a sequence of images from the same scene often

requires image registration; that is, the process of

determining the position of corresponding points in the

images.

Two images taken from the same viewpoint from a

two-dimensional scene can be registered if the position of

at least two pairs of corresponding points in both images

are known. However, images obtained at different viewpoints

from a three-dimensional scene (such as stereo images)

cannot be registered by knowing only the position of a few

corresponding points in the two images, and a window search

is often needed to individually determine the position of

corresponding points.

Images from a two-dimensional scene that have

translational, rotational, and scaling differences, are

registered by first segmenting the images and determining

 

 



Ardeshir Goshtasby

corresponding regions in both images. Corresponding regions

are refined to obtain optimally similar regions. The

centroids of corresponding regions are then used as

corresponding points to determine the registration

parameters. These centroids will correspond to each other

regardless of translationsl, rotational, and scaling

differences between the corresponding regions.

When registering stereo images of three-dimensional

scenes, the images are segmented and a search is carried out

for the position of points in one image that correspond to

points on the region boundaries of the other image. Windows

centered at region boundaries are used for the search

because their high variances make searches more reliable

than those using windows from homogeneous areas. To reduce

the effect of geometric difference between the images in the

window search process, window shapes are taken such that

only parts of objects (and not objects and background) are

used in the search. The position of corresponding points in

two stereo images are used to determine disparity between

these points. Depth of points in the scene can then be

determined by knowing the disparity measures and the camera

parameters .
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Chapter 1

I NTRODUCT I ON

This dissertation discusses the design of a system for

automatic registration of digital images by a

symbolically-assisted approach. Image registration is the

process of determining the position of corresponding points

in two images of the same scene. It is needed in many areas

of image processing and computer vision, such as change

detection, object tracking, motion analysis and stereo depth

perCeption.

The proposed approach is symbolically-assisted in the

sense Ithat the images are first segmented into regions

(symbolic features), and correspondences are made between

regions in the two images. Knowing region correspondences,

'correspondence can be established between points in the two

original images.

The study has been carried out on two types of images.

1. Images that have been obtained from the same viewpoint

from a scene in which distances of objects from the

camera are much larger than the heights of objects in the



scene so that images can be approximated as having been

obtained from a two-dimensional scene. It is assumed

that the images do not have non-linear geometric

distortions, although they may have translational,

rotational, and scaling differences. Examples of these

images are the satellite images.

2. Images that have been obtained from two different

viewpoints from a scene where the distances of objects

from the camera are not large compared to the heights of

objects in the scene. These images may have non-linear

geometric differences due to the fact that they have been

obtained from different viewpoints from a

three-dimensional scene. However, it is assumed that the

viewpoint differences are small (only a few degrees) and

the images have been obtained parallel to the scene and

do not have rotational or scaling differences. Examples

of these images are stereo images.

Since two-dimensional scene images have linear geometric

differences, they can be registered by a single

transformation function. The parameters of. the

transformation function can be determined by knowing the

:msition of at least two pairs of corresponding points in

the two images. But three-dimensional scene images may have

undefined non-linear geometric differences. In such a



situation, a single transformation function is not capable

of registering the images, and there is a need to carry out

a search for the position of every point from one image in

the other image.

To register two images obtained from the same viewpoint

from a two-dimensional scene, the images are first segmented

into regions. Then an attempt is made to determine the

correspondence between closed boundary regions in the two

images. Since centroids of corresponding regions correspond

to. each other no matter what the translational, rotational,

and scaling differences between the images, the centroids of

corresponding regions are selected as corresponding points

to estimate the transformation parameters.

Image segmentation has been approached by using an

iterative thresholding procedure to obtain optimally similar

regions in the two images. The segmentation procedure

involves first segmentation of one of the images using the

gradient information in the image. The other image is then

segmented using its gradient information and the

segmentation result of the first image. At this point,

corresponding regions in the two images are determined. For

every region in the first image where there is a

correspondence in the second image, the area around the

region in the second image is iteratively thresholded until



a region is obtained that is most similar to the

corresponding one in the first image.

A probabilistic relaxation approach is given for the

determination of corresponding regions in the images. In

this approach, regions in one image are assumed to be a set

of objects and regions in the other image a set of labels.

Then the initial probability of a given object having a

given label is determined by the boundary shape similarity

of the two regions refered to by the object and the label.

Label probabilities are iteratively updated using the

inter-region distances as a constraint until a unique

labeling is found or computation time reaches its limit.

Region shape similarities are determined by the matix

approach. In this .approach, shapes are transformed into

matrices by polar redigitization of the shapes, and

similarity measurements are made on the matrices. This .

approach lends itself to measurement of shape similarities

irrespective of rotational and scaling differences between

the shapes.

To register stereo images, the images are first segmented

and an attempt is made to establish correspondence between

regions in the images (global correspondence). Then point

correspondence (local correspondence) is achieved by

assistance from the global correspondence. Since in stereo



images, the position of corresponding points differs by a

horizontal value, to determine corresponding regions in the

two images, a window centered at a point on the region

boundary in one image is taken and is searched in a narrow

band horizontally in the other image. Once correspondence

is established between a pair of points belonging to

corresponding regions by following the boundary of the

region in one image, corresponding points in the other image

are located by searching in small windows centered at the

region boundaries.

The main operation in stereo image registration is window

searching. To increase the accuracy of window seaches, the

nature of three-dimensional scenes and camera geometries are

'studied carefully, and main sources causing mismatches are

identified as occluded points, geometric difference between

images, homogeneous areas, window size, and similarity

measure. Then counter measures are introduced to avoid the

mismatches.

The organization of this dissertation is as follows: In

Chapter 2, technical terms that are used in the following

chapters are defined , the statement of the problem is

given, and past works related to this study are reviewed.

In Chapter 3, a method for discrimination of two-dimensional

shapes using shape matrices is given. This shape



discrimination method is then used in Chapter 4 to measure

region shape similarities for the purpose of determining

corresponding regions in the images. The result of Chapter

4 is then used in Chapter 5 to register two-dimensional

scene images. which is given along with experimental

results. Chapter 6 then discusses the problem of

registering three-dimensional scene images and determination

of depths of points in the scene. Experimental results are

then given for stereo image registration and suggestions are

made for further improvements. Finally in Chapter 7, the

contributions of this work are reviewed and topics for

further research are given.



Chapter 2

BACKGROUND

During the past two decades considerable effort has been

put into research and development in the area of computer

vision. Computer vision deals with analysis of the

signal-based information in an image and transforming this

information to descriptions that are understandable by

humans.

Computer vision may involve analysis of one image or a

number of images taken from a scene. When a sequence of

images is involved often there is a need to determine the

position of corresponding points in the images. In the

following, we will be concerned with the point

correspondence problem called "image registration."

2.1. Definitions

Def. 2.1. Image: The projection of points in the scene to

a pin-hole camera's image plane. A pin-hole camera, as



shown in Figure 2.1, is an ideal camera with the image

plane at distance f in front of the camera. The

projection of a point to the image plane is obtained by

the intersection of the line joining the point to the

camera's lens center, with the image plane. Most real

life cameras act approximately like pin-hole cameras.

Y
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Figure 2.1. Point p and its image p' in a pin-hole camera.

Note that a straight line in space is projected to a

straight line on the image plane. 'The image of the line

is obtained by determining intersection of the image

plane with the plane created by the straight line and the

lens center. Since the property of straightness stays

invariant under this transformation, we can relate points

on the line to their images by the following projective



transformation formulas [Peet 75].
>
4 II' (ax+by+c)/(dx+ey+1.0) (. )

2.1

(fx+gy+h)/(dx+ey+l.0)"
< I
I

If the scene can be approximated by a plane, then

transformation (2.1) actually gives the relation between

points (x,y) on the plane and their images (x',y').

Images obtained by satellites can be approximated as

images of planes. Using the coordinate system of Figure

2.1, since x' and y' are inversely proportional to 2,

points from a three-dimensional scene can be related to

points in the image by,

x' = (ax+by+c)/z(dx+ey+1.0)

(2.2)

y' = (fx+gy+h)/z(dx+ey+1.0)

Knowing coordinates of a point (x,y,z) in the scene,

transformation (2.2) gives coordinates of its image

(x',y') on the image plane [Caelli 81, pp 79].

Def. 2.2. Digital Image: A two-dimensional array of

digital numbers in which each number represents the

average value over a small rectangular area in the image.

The values can be properties of the scene at that area

such as intensity, color, texture, etc. The images that

are used in the following are arrays of intensity values.
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The larger the value, the brighter the area in the scene.

0 represents no light or black and 255 represents full

light or white.

Def. 2.3. Pixel: A picture element, or one element of a

digital image.

Def. 2.4. Image Registration: The process of determining

the position of corresponding points in two images of the

same scene .

Def. 2.5. Region: A connected set of pixels such that each

pixel is reachable from another pixel in the set.

Def. 2.6. Image Matching: Determination of correspondence

between regions in two images of the same scene“ Note

that image registration is point correpondence while

image matching is region correpondence.

Def. 2.7. Centroid of a Region: An imaginary point with

coordinate values equal to the average coordinate values

of pixels on the boundary (not interior) of the region.

Interior pixels are not used to avoid holes in a region

to affect the position of the centroid.

Other definitions will be given in appropriate places as

the discussion proceeds.
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2.2. Notations

A square root sign will be shown by SQRT.

A multiplication is shown by concatenation of two operands

like 2.3m meaning 2.3 multiplied by m.

A vector name is shown by the name of the vector underlined;

for example, 3 means vector V.

An image is shown in the form f(i,j) where f is the name of

the image and i and j are two variables counting the rows

and columns of the-image.

2.3. Statement of the Problem

Given two images of the same scene, we want to determine

the position of all corresponding points in the images

automatically. The images might have been obtained

1) from the same viewpoint from a two-dimensional scene

but at different orientations or distances to the scene

(images with translational, rotational, and scaling

differences). Or 2) from two different viewpoints from a

three-dimensional scene but at the same orientation and

distance to the scene (stereo images).
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In Chapter 5, registration of images obtained at the

same viewpoint from a two-dimensional scene will be

considered. In Chapter 6 registration of images obtained

at slightly different viewpoints from a three-dimensional

scene is given. These images are called stereo pairs.

Registration of stereo images will make it possible to

measure the depth of points in the scene.

2.4. Data

Data for registration of two-dimensional scene images has

been provided by the Center for Remote Sensing, Michigan

State University. Data consists of a pair of satellite

images from the Heat Capacity Mapping Mission (HCMM) with

500 meter resolution (see Figure 2.2). These images have

translational, and rotational differences, but are of the

same scale. The images are obtained at different

spectral bands and at different times. The image of

Figure 2.2.a is a day-visible (Day-Vis) image acquired on

9/26/79 while the image of Figure 2.2.b is a

night-infrared (Night-IR) image acquired on 7/4/78.

Another pair of images are also used as

two-dimensional scene images. These are Landsat

Multi-Spectral' Scanner (M55) and Thematic Mapper

Simulation (TMS) images shown in Figure 2.3. These
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(b)

Figure 2.2. HCMM (a) Day-Vis and (b) Night—IR images.
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images were obtained at the same spectral band but have

translational, rotational, and scaling differences. The

TMS image has been obtained by an aircraft and involves

some geometric distortions due to the change in attitude

of the aircraft during the flight.

Four sets of data are used for registration of

three-dimensional scene images. These are shown in

Figures 2.4, 2.5, 2.6, and 2.7. Stereo images of Figures

2.4 2.6, and 2.7 have been obtained by the author.

Images of Figure 2.4 show a number of objects arranged on

a textured table while stereo images of Figures 2.6 and

2.7 were obtained from two outdoor scenes on the campus

of Michigan State University. Stereo images of Figure

2.5 were provided by the Center for Remote Sensing,

Michigan State University. These ’images have been

obtained by a low altitude aircraft from a residential

area. Perception of these scenes in three-dimensions is

possible if the the images are viewed by. a stereoscope.

The objective in registering these stereo images was to

determine the relative depth of points in the scene.

All these images are of size 240x240 with 256

different gray values.
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(b)

Figure 2.3. (a) M85 and (b) TMS images.
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a (b)

Figure 2.4. Stereo images of objects on a table.

 

(a) (b)

Figure 2.5. Aerial stereo images of a residential area.
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(a) (b)

Figure 2.6. Stereo images of the truck scene.

 

(a) (b)

Figure 2.7. Stereo images of the garden scene.
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2.5. Computer System

The programs have been developed on the PDP 11/34

computer of the Image Processing Laboratory, Computer

Science Department, Michigan State University. This

system requires 65 micro seconds when adding two real

numbers and 85 micro seconds when multiplying two real

numbers. It has a main memory of size 64K, of which 32K

can be used to load user programs and data. Because of

the small size of the main memory, an image larger than

180x180 cannot be stored at one time in the main memory.

Since digital images consume a large amount of main

memory, management of memory for storage of images and

intermidiate results becomes a difficult problem. For

this reason implementation of the proposed image

registration system is recommended on a machine with

virtual memory like the Digital Equipment Corporation's

VAX-750 or the Harris Corporation's H500.

To speed up the processing time, most of the given

algorithms can be implemented on parallel machines such

as an array processor (CRAY-l) or multi-processor (ILLIAC

IV). For example, refinement of regions in the image

segmentation step, updating of label probabilities in the

symbolic matching step, or image resampling are tasks in

which each can be processed in parallel using a series of
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processor elements with the same control program. On the

other hand, tasks like matrix Exclusive-OR operation for

the measurement of similarity between shapes, or other

matrix operations, can be processed in parallel by an

array processor.

2.6. Past Works

One of the first attempts to register images digitally

was made by Anuta [Anuta 69]. He used cross-correlation as

the similarity measure to search for corresponding windows

in the two images. Then he took centers of corresponding

windows in the two images as corresponding points to

estimate the translational difference between the images.

This technique was able to register only images that had

translational differences. Image registration by

correlation has proven to be very effective over a wide

range of imagery and still is one of the best techniques in

image registration.

To speed up the time-consuming process of computation of

cross-correlation, Anuta later used the fast Fourier

transform algorithm to compute the cross-correlation values

[Anuta 70]. The sum of absolute differences has also been

used as an alternative similarity measure to speed-up the

window search'process [Barnea 72, Bernstein 76].
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Most of the work in image translational registration has

been centered on speed-up techniques rather than the

accuracy of the registration. Dewdney has proposed a

steepest-descent algorithm to limit the window search domain

and therefore achieve a higher speed [Dewdney 78].

A two-stage window search technique has been used in

[Vanderburg 77]. In this technique, first a subwindow is

used to locate the possible locations for a match. Then the

whole window is used to locate the best match position among

the possible ones. This technique was later extended to the

coarse-fine searching technique, where a coarse window is

used in the first stage and then the fine resolution window

is used in the second stage to find the best match position

[Rosenfeld 77a]. The two-stage window search process has

been extended to the multi-stage search technique in which

the lowest resolution window is used in the first stage, and

a higher resolution window is used as we go up the stages in

the search [Hall 76, Tanimoto 81].

All these speed-up techniques (except for the

steepest-descent technique) work when the sum of absolute

differences is used as the similarity measure. A technique

to speed up the window search process for the more accurate

similarity measure, namely the cross-correlation

coefficient, is given in [Goshtasby 83a]. It has been
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experimentally shown [Svedlow 76] that the cross-correlation

search technique consistently produces better results than

the sum of absolute differences on different types of

images.

Other similarity measures have also been used in the

window search process. In [Wong 78], invariant moments have

been used as the similarity measure. Similarity between two

windows are measured by determining the cross-correlation

between the logarithms of 7 invariant moments of the

windows. In [Chandra 82], Haar transform coefficients and

in [Schutte 80] Walsh-Hadamard transform coefficients .are

used in the same manner to carry out the search.

When the images are rotated with respect to each other,

the above window search techniques, will fail. This is

because even though the centers of two windows may

correspond, we may obtain a low similarity measure due to

the fact that other points in the windows do not correspond

to each other. In other words, the similarity measures that

were discussed above can not truly measure the similarity

between two windows which are rotated with respect to each

other.

As a matter of fact, similarity measure is not the only

problem. When two windows are rotated with respect to each

other, it is impossible for them to contain the same parts
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As a matter of fact, similarity measure is not the only

problem. When two windows are rotated with respect to each

other, it is impossible for them to contain the same parts

of a rectangular scene (except when the two windows are

rotated by a multiple of 90 degrees with respect to each

other). Figure 2.8 shows two windows in which their centers

correspond to each other but contain different parts of the

scene.
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Figure 2.8. Rotated rectangular windows.

If we make the windows circular, when the centers of two

windows correspond to each other, the two windows will cover

the same parts of the scene no matter what the rotational

difference between the windows. Figure 2.9 shows two

circular windows which are rotated with respect to each
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other, but since their centers correspond to each other,

they contain the same parts of the scene.
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Figure 2.9. Rotated circular windows.

Now if we use invariant moments as the similarity measure

with circular windows, we will be able to carry out the

window search as we did before [Goshtasby 83b]. Hu has

derived a set of invariant moments in which two windows

containing the same pattern will have similar invariant

moments no matter what their rotational differences [Hu 62].

Registration of rotated images by a symbolic approach has

been described by Stockman [Stockman 78,82]. In this

approach, symbolic features like line segments and line

intersections are extracted from the images. Then by

matching features of the same kind, transformation

parameters are derived for each possible pair of features.
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extended to registration of images that have unknown scaling

differences.

Another technique which uses symbolic features to

register images with rotational differences is Clark's

technique [Clark 80]. With this technique, boundaries of

dominant objects in the images are determined and object

boundaries are approximated by chords. Then matching is

carried out between three connected chords from the two

images to determine the approximate transformation

parameters. The original boundary lines are used to refine

the parameter values. This technique can also be extended

to registration of images with unknown scaling differences.

In practice, images that have rotational and scaling

differences are registered by some interaction from the

user. To find corresponding points in the images, shade

prints of the images with pixel coordinates printed at the

borders are prepared. Then corresponding points in the

images are carefully selected in unique areas and

coordinates of corresponding points are read from the image

borders [Van Wie 77]. Once a set of corresponding points

from the images are found, determination of transformation

parameters is straightforward.
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One of the first attempts to register stereo images

digitally was made by Hannah [Hannah 74]. In Hannah's work

windows were taken from one image and were searched in the

other image. Centers of the matched windows were then taken

as the corresponding points. Since searching in low

variance areas results in more mismatches than searching in

high variance areas of images, in [Hannah 74], areas of low

variance in the images are marked before matching is carried

out. By this, attempts at matching in low variance areas

can be forewarned of [the low information condition.

However, if the area under search has high variance, it does

not automatically imply that the matching is going to be

absolutely reliable. High variance areas could result in

mismatches if geometric difference between them is large.

Assuming that two windows from two stereo images are

available in which their centers correspond to each other,

then as we go away from the centers of the windows, usually

the geometric difference between them becomes large. This

tells us that we should use pixels away from the window

centers less importantly than pixels near the window

‘centers. In [Mori 73], the windows are weighted with

Gaussian type weights to reduce the effect of distortions at

points far away from the window centers. In [Nevatia 76] a

sequence of images obtained at small viewing angle
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increments have been used to reduce the effect of geometric

difference between images.

A computational model for human stereo vision has been

proposed by Marr and Poggio [Marr 79]. According to this

model, first the left and right images are filtered with

four different filter sizes at different orientations. The

filters essentially determine the second directional

derivatives of the images. Then zero-crossings (zeros of

the second directional derivatives) in the filtered images

are determined in the horizontal direction.. To establish

correspondence between the left and right images, matching

is carried out first between zero-crossings obtained from

the same filter size and with the same sign and orientation

in the two images, starting with zero-crossings from the

largest filter size. The reason for matching zero-crossings

from the largest filter size first is to establish a global

correspondence so that matching of zero-crossings from the

smaller filter sizes, which are more detailed and difficult,

become easier.

The work presented here is based on the finding of Julesz

that the human visual system uses global correspondences to

assist in determination of local correspondences [Julesz

71]. This idea has been the philosophical basis for this

work. A registration system was designed to first find a
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global correspondence and then use the result of the global

correspondence to obtain local correspondence.

Past works in digital image registration that are based

on the idea of obtaining local correspondence by assistance

from global correspondence are the works of Vanderburg and

Rosenfeld in two-stage template matching [Vanderburg 77,

Rrosenfeld 77a], Hall and Tanimoto in multi-stage template

matching [Hall 76, Tanimoto 81], and Marr and Poggio in

computational theory of human stereo vision [Marr 79].

Also of some similarity to this work is the work of Price

[Price 76] where changes between two images of the same

scene are determined by first segmenting the images into

regions. Corresponding regions in the two images are

determined and changes are detected region by region. To

determine correspondence to a region in one image, features

such as area size, perimeter size, length to width ratio and

color are measured from the region. These measurements are

then compared to those of regions in the other image. The

region producing the most similar measurements is taken as

its corresponding region.



Chapter 3

SHAPE DISCRIMINATION

3.1. Introduction

Shape refers to the geometry of an object's surface

appearance. The discrimination of shapes of two-dimensional

objects will be discussed in this chapter. To discriminate

shapes, first a procedure to describe them is given, then by

comparing shape descriptions, shape ' discrimination is

achieved. The description of shape is to be invariant to

translation, rotation, and scaling.

Shapes can be described using distances and angles in

many ways [Zusne 70]. Shape descriptions using distance

measures include the ratio of the length of the longest side

and the perimeter of the shape, the standard deviation of

the length of the sides of the shape, the length of the

28
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Descriptions using angles are the ratio of the largest to

the smallest angle, the ratio of the largest angle to the

total degrees of angles, and the standard deviation of

angles.

Moments of side lengths, radii, and angles can be used to

describe shapes too. In [Brown 76], the first four moments-

of the angles given by

Mk: é(ai-g)k/n

are used to describe shapes. In this formula, k is the

power of the moment, n is the number of angles, ai is the

size of angle i, and a is the mean of the angles. Similar

formula can be used to compute the moments of side lengths

and radii.

A measure which describes the degree of compactness of a

shape is Pz/A, where P and A are the perimeter and area of

the shape, respectively. Given different shapes of a

constant area, the one with the smallest perimeter is the

most compact shape.

Other measures which are used for shape discrimination

are measures of regularity [Zusne 70] and angular

variability [Atteneave 57]. Regularity is defined as the

ratio of the standard deviation of side lengths and standard

deviation of all angles. Angular variability is the mean

absolute difference of adjacent angles taken in overlapping
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absolute difference of adjacent angles taken in overlapping

pairs about the boundary, where convex angles are given a

positive sign and concave angles are given a negative sign.

The shape measures (descriptors) given above are not

information preserving since it is not possible to

reconstruct the original shapes using their descriptions. A

wide variety of shapes may have the same description.

However there are descriptors which are information

preserving, such as the Fourier descriptors [Persoon 77,

Zahn 72], invariant moments [Hu 62], and syntactic

techniques [Fu 82]. A review of information preserving

descriptors is given in [Pavlidis 78, 80].

Of the many ways to describe a shape, which is the most

effective? Marr and Nishihara [Marr 78] have given three

criteria for judging the effectiveness of a shape

descriptor. These are accessability, scope and uniqueness,

and stability and sensitivity.

Accessability tells how economically (in terms of

computation time and memory usage) a description can be

generated for a shape in a digital image. Scope shows the

class of shapes that can be described by the descriptor, and

uniqueness tells whether a description uniquely describes a

shape or if it represents a wide range of shapes. Stability

tells how stable the description is in representing the
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general property of the shape, and sensitivity shows how

sensitive the descriptor is to finer distinctions between

shapes.

Since our purpose in shape description is shape

discrimination, we add one more criterion to the

effectiveness of a shape descriptor: discriminability.

Discriminability is the ease of determining the similarity

between two shapes using the description of the shapes. A

shape descriptor should be designed in such a way that

determination of similarity between shapes is easy and fast.

In the following, only quantized shapes or shapes in a

digital image are considered., This implies that knowing the

position of pixels belonging to the shape, we will be able

to reconstruct the exact original shape. In section 3.2, a

shape descriptor is given in matrix form using the polar

quantization of the shape. Then in section 3.3, using

descriptions of two shapes, their similarity is measured

independent of their rotational and scaling differences.

Finally, in section 3.4 the proposed shape discrimination

technique is tested on shapes of lakes extracted from

satellite images, and shapes of 26 alphabet characters.
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3.2. Shape Description

Figure 3.1.a shows a shape with its centroid at 0. Let

the size of its maximum radius be L. We draw circles

centering at O and radii,

L/m, 2L/m, 3L/m, . . mL/m.

Let the circles intersect the maximum radius of the shape,

line OA, at al, a2, . . am. Then starting from al, a2, .

. am on the maximum radius OA and counter-clockwise, we

divide each circle into n equal arcs, so each arc is

d6=360/n degrees. We construct an nxm matrix for a given

shape as below and will call it the shape matrix.

Alggrithm 3.1: Construction of shape matrix of size nxm for

a given shape.

1. Create an nxm matrix and initially set all elements of

the matrix to 0.

2. Set element (i,j) of the shape matrix to 1 if the point

on the circle of radius j(L/m) and are value i(360/n)

lies inside the shape.

The shape matrix of Figure 3.1.a for n=6 and m=4 is shown in

Figure 3.1.b.
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(a) (b)

Figure 3.1. (a) A shape and (b) its shape matrix.

There is no limit to the scope of the shapes that the

shape matrix can represent. It can describe even shapes

with holes. If m and n are selected large enough, the

description becomes unique, and for any one shape, there

exists only one shape matrix. As it will be shown by

Algorithm 3.1, this shape descriptor is information

preserving, and the original shape can be reconstructed.

Algorithm 3.2: Reconstruction of a shape from its shape

matrix.

1. Generate a grid with (2m+l)x(2m+1) cells, as shown by

Figure 3.2. Initially mark all cells as not belonging to

the shape.

2. Assuming a Cartesian coordinate system at the center of
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the grid, as shown in Figure 3.2, mark cell (x,y) of the

grid as belonging to the object if element (i,j) of the

matrix is 1 and the following relations hold,

i=(tan-ly/x)/d6 ; j=SQRT(x2+y2)/dl

where d6=360/n and d1 is the length of a side of a cell

in the grid. x

 

Figure 3.2. Reconstructed shape of Figure 3.1.a.

Selection of the appropriate values for m and n is very

important. If m and n are larger than a given value, no new

information about the shape will be obtained. If m and n

are smaller than a given value, it would not be possible to

reconstruct the exact original shape from its shape matrix.

What are the smallest values of m and n which still allow

the exact original shape to be reconstructed?
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If the length of the maximum radius of a shape is L and

m > L, more than one circle will be passed through a pixel,

and repeated information will be collected. If dB is the

smallest angle between two neighboring pixels on the

boundary of the shape when viewed from its centroid, n

should also not be greater than 360/d6.

For a shape with maximum radius L, n=360/d6 (where

d6=360/2nL, so actually n=2nL), and m=L guarantee

reconstruction of the exact original shape.

Proposition 3.1: If the values of m and n are selected

properly (mZL and nZZNL), then a shape matrix that has been

obtained by Algorithm 3.1 can be used to reconstruct the

exact original shape using Algorithm 3.2. In the following,

an element of the original shape is refered to as a pixel,

an element of the shape matrix is refered to as an element,

and an element of the grid produced by Algorithm 3.2 is

refered to as a cell. L is the length of the maximum radius

of the shape.

Proof: A pixel which belongs to the shape at distance dgL

from the centroid of the shape can be viewed from the

centroid of the shape by angle d6'=360/2nd:360/2flL degrees.

Now if we let mgL and nzer, two neighboring elements in a

column of the shape matrix differ in d6=360/n§360/2nL§d6'
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degrees and two neighboring elements in a row of the shape

matrix differ in L/mgl units. This shows that each pixel in

the shape is mapped to at least one element in the shape

matrix by Algorithm 3.1.

Also, since a cell at distance d'gL from the center of

the grid is viewed from the center of the grid by angle

d6”-360/2nd'3360/2«L :360/ncd6, then in Algorithm 3.2, a

cell in the grid also corresponds to at least an element in

the shape matrix. This shows that Algorithm 3.2 will mark

each element of the grid at least once. If element (i,j) of

the matrix is l, the cell with coordinates (x,y) (such that

the cell's distance to the center of the grid is SQRT(x2+y2)

and its angle with respect to the x-axis is tan-ly/x) ) will

be marked as belonging to the shape by Algorithm 3.2.

Now we know that element (i,j) of the shape matrix is set

to l by Procedure 3.1 only if the pixel at distance j(L/m)

from the centroid of the shape and angle ide with the

maximum radius of the shape, belongs to the shape. In this

mapping, the relation of a pixel to the centroid and the

maximum radius of the shape is equal to the relation of a

cell to the origin and the x-axis of the coordinate system

in the grid. The relation is the distance of the pixel

(cell) to the centroid (coordinate system origin) and the

angle with the maximum radius (x-axis). Therefore, the
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reconstructed shape will. have the same geometry as the

original shape. We conclude that if a shape with maximum

radius L is available and a shape matrix of size mZL and

n32flL is constructed using Algorithm 3.1, the original shape

can be reconstructed from this shape matrix using Algorithm

3.2. #

Since m and n are the only parameters of a shape matrix,

a shape can be described in this way regardless of its

(maximum radius) size. This descriptor is invariant with

respect to sizes of the shapes. Since the angles are

measured with respect to the orientation of the maximum

radius, it does not matter how the shape is oriented, and

the descriptor is invariant under rotation of the 'shapes

too. In the next section, the last criterion for

effectiveness of the shape matrix, discriminability, will be

examined.

3.3. Shape Similarity Measurement

To determine the degree of similarity between two shapes,

the matrices of the two shapes are compared. To compare two

matrices, the dimensions of the matrices should be equal.

So, for similarity measurement purposes, if mlxnl and m2xn2

are the sizes of the two shape matrices then we let
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m=min(m1,m2) and n-min(n1,n2) and construct shape matrices

of size mxn for both of the shapes.

To determine how similar two mxn matrices are, we count

the number of corresponding elements in the two matrices

that are equal. This can be done simply by Exclusive-ORing

the two matrices. Equal elements will result in value 0 and

non-equal elements in value 1. Total number of the 0's

shows the similarity.

Let $1 and 52 be two shape matrices of size mxn, then the

similarity between $1 and $2 is computed by the following

Algorithm.

Algorithm 3.3: Determination of similarity between two

shape matrices $1 and 52 of size nxm.

l. S=:0

2. For i=1 to n

3. : For j=l to m

4. : : S:=S+Sl(i,j).XOR.SZ(i,j)

5. Similarity:=l-S/(n-2)m

Step 5 of Algorithm 3.3 is adjusted so that when two

shapes are completely similar (S=0), we obtain Similarity=1.

We have defined a circle and a line as two completely

nonsimilar shapes. A line corresponds to 2 rows with values

equal to l in the shape matrix, and a circle will produce a
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shape matrix with all elements equal to 1. Their difference

is S=(n-2)m, and Similarity=0 is obtained for a circle and a

line. Other shapes will produce values between 0 and 1.

Proposition 3.2. If a shape is rotated counter-clockwise

by i(360/n)degrees, its shape matrix is shifted down

cyclically by i rows.

The proof is straightforward.

There exist shapes with more than one unique maximum

radius which may produce different shape matrices depending

on the maximum radii used. Proposition 3.2, however,

assures that if a shape has two equal maximum radii and the

angle between them is i(360/n), and if we create two shape

matrices [using the two radii, then the two shape matrices

will be similar if one matrix is rotated cyclically by i

rows with respect to the other.

Since existence of noise in one of the images may cause

selection of the wrong maximum radius as the start point, we

refine Algorithm 3.3 so that one of the shape matrices is

rotated cyclically by 0, d6, 2d9, . . (n-l)d6 and each

case is compared to the other shape matrix. Among the n

obtained similarity measures, the one with the largest value

is picked up to be the similarity between the two shapes.
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Algorithm 3.4: Determination of similarity for shapes with

more than one maximum radius.

1. For k=0 to n-l

2. I S(k+l):=0

3. i For i=1 to n

4. :fi : For j=l to m

5. : 3 : S(k+l):=S(k+l)+Sl(i,j).XOR.52((i+k)MODn,j)

6. Similarity:=1-max(S(i))/(n-2)m

Another property of the shape matrix is that, if a part

of a shape is missing or a hole in the shape is misplaced,

then the effect will be only on the few related columns in

the shape matrix. This property is shown in Figures 3.3 and

3.4. If we determine the number of elements in each row of

the two shape matrices that are different, as shown in

Figure 3.4.c, we see that rows éfliand 8' have large values

while other. row values are small. This tells us the

position of the defect and its magnitude. We will call the

vector of Figure 3.4.c the “defect-showing vector.”

The difference between two non-similar shapes and two

similar shapes, one with a missing part, is that in the

former, the difference between the two matrices is spread

randomly to most of the rows, while in the latter, the
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(a) (b)

Figure 3.3. (a) A shape and (b) the same shape

with a missing part.

difference is concentrated on only the rows that correspond

to the defect at the given angle. By using the information

in the defect-showing vector, one can argue about the

defectiveness of a shape.

Assume objects on a conveyor belt approach a camera, the

camera views the objects from above, and is required to

recognize the objects by comparing their boundary shapes to

the models already stored in the computer. Imagine also

that some of the objects might be defective, and there is a

need to recognize- them and set them aside. The shape

discrimination technique which is proposed here can take

care of' this problem up to a point. Note that the defect

should be small, otherwise the centroid of the shape may

move far enough to produce a very different shape matrix.
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3.4. Results

To evaluate

discrimination
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Shape matrices and defect-showing vector.

the

technique,

Michigan were used.

performance of

six lakes

These are shown in

the proposed shape

in Oakland County,

Figures 3.5.a and
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3.5.b. These shapes were obtained by segmenting a Landsat-2

band 7 and a Thematic Mapper Simulation band 3 of the same

area, respectively. The two sets of shapes have scaling and

rotational differences.

 

 

 

  

 

   
  

(a) (b)

Figure 3.5. Two sets of lake boundaries.

The similarity of each pair of shapes from the two images

are determined using Algorithm 3.4. The results are shown

in Table 3.1. Entry (i,j) of the table shows the similarity

between shape i of Figure 3.5.a and shape j of Figure 3.5.b.

All the shapes were recognized correctly.



Regions

of Figure

3.5.a.

from

Figure 3.5.a

from

Figure 3.5.b .
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Table 3.1. Similarity measures of regions from

Figures 3.5.a and 3.5.b computed by Algorithm

3.4. The best matches are underlined.

Regions of Figure 3.5.b.

 

1 2 3 4 6 6

1 Egg; 0.72 0.80 0.70 0.77 0.57

2 0.74 gggg 0.69 0.82 0.74 0.83

3 0.79 0.71 9113 0.68 0.74 0.52

4 0.66 0.81 0.71 gggg 0.71 0.73

s 0.74 0.72 0.72 0.72 gggg 0.66

6 0.58 0.81 0.53 0.72 0.64 0:24   

Table 3.2. Roundness of objects from Figures

3.5.a and 3.5.b. The best matches are linked.

1 2 3 4 5 6

 

1.82 2.24 2.03 1.54 6.88 2.82
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Table 3.2 shows the roundness (P2/4n A, where P and A are

perimeter and area of the shape, respectively). Three out

of the six matches were wrong. We computed the perimeter of

a shape as follows.

While travelling along the boundary of the shape, if we

are presently at (i,j) and the next location to go is one of

(i-l,j), (i+l,j), (i,j-l), (i,j+l), then we add 1 to the

count. But if the next location is one of (i-l,j-1),

(i-1,j+l), (i+l,j-1), (i+1,j+l) then we add SQRT(2) to the

count. For example, the triangle of Figure 3.6 has

perimeter of size PalO+5$QRT(2), assuming the side of a

pixel as the unit. This is actually the perimeter of the

triangle shown by the broken lines in Figure 3.6.

 

Figure 3.6. Measurement of perimeter and area of a shape.

The area of this shape is measured as the number of

pixels occupied by the shape - P/2. The area of the shape

shown in Figure 3.6 is A=21-(10+SSQRT(2))/2 = 16
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-SSQRT(2)/2. This is actually the area of the triangle

shown by the broken lines in Figure 3.6 (not exactly, but

very close).

As a tougher test, 26 upper-case alphabet characters, as

shown in Figure 3.7.a, were used in the above shape

discrimination procedure. The characters were digitized

once, as shown in Figure 3.7.b, and then rotated and

enlarged slightly and digitized again, as shown in Figure

3.7.c. The two sets of characters are in good shape but.

have rotational and scaling differences. We want to see how

well the above shape discrimination technique can recognize

 

 

 

  
 

them.

IL-amx

ABCDEF 2:23

’ABCDEF G” ' JKL >

GHIJKL MNOPOR 0-0:

wwovon

STuvwX STUVWX "12"”

vz

YZ (021»)-    
 

(a) (b) (c)

Figure 3.7. (a) Original characters, (b) and (c) digitized.
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The computed alphabet shape similarities using Algorithm

3.4 are shown in Table 3.3. Taking the largest similarity

measure for each row or each column as the correct match,

three errors out of 26 were made in recognizing the

characters. In this process, characters "C", "G", and "K”

of Figure 3.7.b are confused with characters "G", ”D", and

"P" of Figure 3.7.c, respectively; while characters ”G”,

"H", and ”K” of Figure 3.7.c are confused with characters

"D", ”B", and "E" of Figure 3.7.b, respectively.

Since the elements of the shape matrices used by the

proposed technique are binary numbers, each row of the

matrix can be stored in a computer word (if m is larger than

the number of bits in a computer word, each row can be

stored in several words) and the Exclusive-OR can be carried

out word by word. A shape which has a shape matrix of size

36x16 can be stored in 36 words of a l6-bit word computer.

Computation of similarity between two shapes is fast because

the operation involved is Exclusive-OR, which is one of the

fastest operations ~in any computer. Computing the shape

matrices for any pair of shapes shown in Figures 3.5 and 3.7

and determining their similarity takes about 2 seconds on a

PDP 11/34 computer. The shapes in Figures 3.5 and 3.7 fit

in 32x32 windows.
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Alphabet shape similarities of Figures 3.7.b,c.
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The defect-showing vector which was introduced in section

3 contains information about the difference of two shape

matrices, row by row. This corresponds to the difference of

the original shapes at a given angle. Here it becomes

possible to conclude whether the shape difference is due to

defect or to the fact'that the two shapes are different.

This capability becomes especially useful in a vision system

where objects are inspected for possible defects by

comparing the boundary shape of the sensed object to

boundary shapes of models already stored in the computer.

A comparison of the above described technique with the

shape description of Peli [Peli 81] where distances of

points on the boundary of a shape to its centroid are used

for shape description, would be apropriate. In the Peli's

technique, points on the boundary of the shape are sampled

with equal angular steps, measured from the centroid of the

shape. The distances of points on the boundary of the shape

to its centroid are used as features to describe the shape.

Similarity between two shapes is computed by correlating the

distance features from the two shapes.

1. The technique of Peli cannot handle shapes with holes,

while the above technique can.

2. The shape description of Peli is not information

preserving because at a given angle only one distance
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value is measured, and if the shape intersects the radius

at that angle at more than one point, the sum of the

distances from the intersected points to the centroid is

taken as the distance feature. Once distances are added

together it is not possible to tell how many intersection

points have existed or how much their distances to the

centroid are. There are many different ways to add a

number. of distances together to obtain a given sum.

Therefore, from the distance measures it is not possible

to reconstruct the original shape. The above technique,

however, is information preserving, and the original

shape can be reconstructed from its shape matrix.

Computation of similarity between two shapes by Peli's

technique requires computation of cross-correlation

between two sets of distance features, while computation

of similarity -in the above technique is a matrix

Exclusive-OR operation which is faster. Since a row of a

shape matrix can be stored in a computer word (or several

computer words) the Exclusive-0R can be carried out word

by word rather than bit by bit, and the computation of

similarity in the above technique is faster than in

Peli‘s technique.



Chapter 4

IMAGE MATCHING BY PROBABILISTIC RELAXATION

4.1. Introduction

Image matching is the process of determining the

correspondence between regions in two binary images'

(segmented images) of the same scene. In the following, a

procedure will be given which determines the region

correspondences by a probabilistic relaxation labeling.

Suppose an aerial image is available. From the

measurements in the image we can assign labels to each pixel

in the image to identify them. ' The labels can . be

vegetation, water, road, building, etc. Due to noise, pixel

size, brightness conditions, or other factors, it may not be

possible to obtain sufficient information to label each

pixel unambiguously. From the measurements in the image

alone, we may not be able to tell whether a pixel is water,

vegetation, road, or building. We may then assign labels to

pixels with given probabilities. If we are sure a pixel is

51
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water, we may give probability 1 to water and probability 0

to other labels. If we are not sure about the label of a

pixel, we may assign labels with probabilities based on the

measurements from the image. This labeling, however, may be

ambiguous, and relaxation is a tool to reduce the label

ambiguities.

Relaxation is a 'cooperative process for reducing

ambiguity between object labels by iteratively updating the

probabilities of the labels using initial observation and

world knowledge. Initial observation includes intensity or

the color values of pixels, and world knowledge is some

constraint among labels. A constraint may come from the

fact that a road pixel cannot be (or has a very low

probability of being) surrounded by water pixels.

Relaxation was first described by Rosenfeld [Rosenfeld

76] and has since been used in many computer vision

applications [Zucker 76b,77, Rosenfeld 77, Davis 80,81].

These relaxation processes are designed to reduce local

ambiguities, but there is no guarantee of reaching a

globally consistent labeling. A process which reduces

global ambiguity as well as local ambiguity is the

hierarchical relaxation labeling process [Zucker 78a].
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The traditional relaxation is a bottom-up process, and

label probabilities are updated based on fixed

neighborhoods. There are relaxation processes available,

however, that enable top-down control in updating label

probabilities. These processes are known as augmented

relaxation labeling and dynamic relaxation labeling and have

been described by Kuschel and Page [Kuschel 82]. These

processes update label probabilities based on dynamic

,neighborhoods through a broadcast and receive mechanism.

The relaxation process which is used in the following for

determination of corresponding regions in two images is

based on the original relaxation labeling process of

Rosenfeld. But the neighbor contribution factors are

computed using information from all object labels, rather

than 'the immediate neighbors, so that label probabilities

are updated to achieve a globally consistent labeling.

In section 4.2, the probabilistic relaxation labeling is

defined formally. Sections 4.3 and 4.4 determine the

initial label probabilities and neighbor contribution

factors, respectively. Then convergence of the label

probabilities are discussed in section 4.5. Section 4.6

gives the results of the proposed technique on two sets of

regions obtained by segmenting two satellite images of the

same scene 0



54

4.2. Probabilistic Relaxation Labeling

Let A={al, a2, . . am} be a set of objects (the regions in

image 2), and let B={bl, b2, . . bn, b*} be a set of

labels (the regions in image 1). From local measurements

(shown in the next section), we can estimate the initial

probability Pi(0)(bj) that object ai has label bj. b* is

the "undefined object" label and Pi(0)(b*) is the

probability that object ai is undefined (region ai is not

present in image 1). The initial probabilities satisfy the

condition 2 Pi(0)(bj)=l for all ai e A.

J

The label probabilities are updated according to the

following iterative formula.

Pi(k)(bj)[l+qi(k)(bj)]
.(k+1) .

P1 (b]) = .

§Pi(k)(bj)[l+qi(k)(bj)]

(4.1)

where qi(k)(bj) is the neighbor contributions to Pi(k)(bj),

in the kth iteration, and is in the range [-l,l]. The label

probabilities at any iteration satisfy :zPi(k)(bj) = l. The
J

relaxation process is iterated until the label probabilities

converge or the computation time exceeds its limit.

There are two sources of information for this relaxation

process, the initial probability estimates and the neighbor

contribution factors. In the following, each is discussed
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in detail.

4.3. Initial Label Probability Estimation

The initial probability that region ai has label bj is

computed using the similarity between the two regions.

Since image 1 and image 2 may have translational,

rotational, and scaling differences, region bj and region ai

may have translational, rotational, and scaling differences.

We should therefore use the properties of the regions which

are invariant under translation, rotation, and scaling.

Some of these properties are average intensity, color,

and shape. We will be using the shapes of regions to

determine the similarity between them. A shape similarity

measurement technique has been designed in Chapter 3 which

determines shape similarities and is invariant under

translation, rotation, and scaling of the shapes. The

similarity between two shapes is represented by a number

between 0 and l, 1 showing complete similarity and 0 showing

complete dissimilarity (a line and a circle has been defined

as two completely dissimilar shapes).
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We define the weight associated with the label bj of

region ai to be

Wi(bj) = the similarity between regions ai and bj.

Wi(bj) changes between 0 and l, and the more similar the two

regions ai and bj, the closer the value of Wi(bj) to 1. We

also define Wi(b*) é l-max Wi(bj). This is natural because

if all the label weights of a region are small, it shows

that there is no region in image 1 similar to ai, and so

Wi(b*) (the weight of the undefined region label) should be

large. If one of the labels has a high weight, it shows

that a similar region exists in image 1, and so Wi(b*)

should be small. We use weight functions Wi(bj) to estimate

the initial probability that region ai has label bj as

below.

Pi(0)(bj) = wi(bj)/§:wi(bj)

4.4. Neighbor Contribution Factors

Neighbor contribution factors are tools by which the

label probabilities can be updated so that the label

assignments become consistent with the world knowledge.

World knowledge can be, for example, relative sizes of the

regions, distances of the regions from each other, and
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relative positions of the regions in the first image. We

represent world knowledge in matrix form, calling it a

knowledge matrix, and denoting it by W. An element of a

knowledge matrix W(b,b') may show,

1. the size (perimeter size or area size) ratio of regions b

.and b'.

2. the distance between regions b and b',

3. the position of region b relative to region b' (above,

below, to the right, to the left),

4. the shape similarity of regions b and b',

5. etc.,

in image 1.

To find how compatible label bj of object ai is with

labels of other objects, we pursue as follows. Let W(bj) =

{W(bj,bl), W(bj,b2), . . W(bj,bn)} show the distances

between region bj and the other regions in image 1. Then

for region ai in image 2 we determine the distances of ai to

every other region. Let D(ai) = {D(ai,al), D(ai,a2), . .

D(ai,am)} denote this. Every object in image 2 has a set of

labels, each with a different probability. Assuming ci (ci

e B) is that label of ai which has the largest probability,

then we construct another vector
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D(k)(bj) = {W(bj,cl), W(bj,c2), . . W(bj,cm)}

where W(bj,ci) shows the distance between regions bj and ci

in the first image. Then a measure like

E(U(k)(bj) D(ai)) - E(U(k)(bj))E(D(ai))
.(k) .

q1 (b3) =

0(U(k)(bj))0(D(ai))

shows the neighbor support for region ai to have label bj in

the kth step, where

E(U(k)(bj)) = (l/(m-l))§:W(k)(b,ci)

E(D(ai)) = (l/(m-l))§,D(ai,ai')

E[U(R)(bj)D(ai)] = (l/(m-l)) §[W(k)(bj,ci')D(ai,ai')]

0(U(k)(bj)) = {(1/(m—1)):§(u‘k’(bj,ci) - E(U(k)(bj)))2}0'5

o(D(ai)) = {(l/(m-l)) §(D(ai,ai‘) - E(D(ai)))2}o'5

Now qi(k)(bj) is a measure in the range [-l,l], and if

region ai truely corresponds to region bj, then regardless

of some mistakes in the labels of other regions, qi(k)(bj)

will be high. On the other hand if region ai truely does

not correspond to region bj, then even though all other

regions in image 2 might be labeled correctly, the value of

qi(k)(bj) will be low. This is a very desirable property,

and we use qi(k)(bj) as the neighbor contribution factor in

formula (4.1).

Neighbor contribution factors for the undefined region

labels qi(k)(b*) cannot be determined in this manner because

correlation of distances that do not exist does not make
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sense (W(b*) is undefined). To determine the neighbor

contributions for object ai having label b* (the neighbor

contribution for region ai of image 2 having no

correspondence in image 1), we observe the following. If

object ai truely has label b*, then assigning label b* to ai

should increase the true label probabilities for other

objects, while if b* is not the true label of ai, assigning

b* to ai should decrease the true label probabilities of

other objects.

Assuming that most of the highest probability labels of

objects show their true labels, we can 1) compute the

largest label probabilities of objects when b* is assigned

to ai (except when the largest label probability is b*), and

2) compute the same label probabilities this time by

assigning the largest probability label of ai to ai (except

when the largest probability label is b*). If there are M

label probabilities in case 1 that are larger than in case 2

and m' is the number of objects whose largest probability

label is not b*, we should,

i) increase the label probability for object ai having label

b* if M>m'/2,

ii) decrease the label probability for object ai having

label b* if M<m'/2, and
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iii) not change the label probability for object ai having

label b* if M=m'/2.

A measure which can simulate this property is 2(M/m'-0.5)

and we will use it as the neighbor contribution factor,

qi‘k)(b*). This measure also shows, if by assigning label

b* to ai, the largest probability for every object

increases, then qi(k)(b*)=l, while if the probability of all

largest probability labels decreases, then qi(k)(b*)=-l.

This measure well characterizes the neighbor contribution

factor.

In the above, we used the distance between regions as the

world knowledge to estimate the neighbor contribution

factors. Other features such as relative sizes of the

regions, relative positions of the regions, etc., could also

be used for this purpose.

For images with translational, rotational, and scaling

differences we should select a knowledge matrix which makes

the neighbor contribution factors, qi(k)(bj), invariant with

respect to translation, rotation, and scaling of the images.

For example, the position feature (above, below, to. the

right, to the left) is not invariant under rotation, but the

distance feature is.
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4.5. Convergence of the Label Probabilities

The label probabilities in the kth iteration was given by

equation (4.1). For this equation to converge, we should

have

lim {91‘k1)(bj) - Pi(k)(bj)} = 0

or lim{Pi(k)(bj)[l+qi(k)(bj)]/T(k)-Pi(k)(bj)} = 0

where

T(k)= ; Pi(k)(bj)[l+qi(k)(bj)]

or lim Pi(k)(bj){[l+qi(k)(bj)]/T(k)-l} = 0

This implies that either

1. lim Pi(k)(bj) = 0 or

2. lim[l+qi(k)(bj)]/T(k)-1 = 0

Case 2 implies that

1+ qi‘k’(bj) = 23Pi(k)(bj)[l+qi(k)(bj)]

61- = zPi(k)(bj) + z Pi(k)(bj) q1“"(bj)

or = 1+ ZIPi(k)(bj) qi(k)(bj)

or qi‘k’(bj) = §:Pi(k)(bj) qi(k)(bj)

For the process to converge, we should have either

1 if b = bj

1. lim Pi(k)(b) =
loo!

0 otherwise

This shows that a unique assignment will be found after a

large enough number of iterations. Or,
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2. lim Pi(k)(bj) = constants other than 0 for more than one

label. In this case lim Pi‘k)(bj) will converge but a

unique labeling is not possible. If a unique labeling is

not found, we may eliminate those objects with label

probability 1 from the set of objects and try to carry out

the relaxation process on the remaining objects with a new

knowledge matrix.

A desirable property for the updating rule is that the

label probabilities converge quickly. In the following,

possible speed-up strategies will be discussed. If .we use

equation (4.1) iteratively, we can write

Pi(1)(bj) Pi(0)(bj)[l+qi(0)(bj)]/ §ZPi(0)(bj)[l+qi(0)(bj)]

Pi(2)(bj) Pi(1)(bj)[l+qi(1)(bj)}/ §EPi(1)(bj)[l+qi(l)(bj)]

= Pi(0)(bj)[l+qi(0)(bj)][l+qi(1)(bj)]/

z;fi(0)(bj)[l+qi(0)(bj)][l+qi(1)(bj)] . . .

p1‘k*1’(bj) =1Pi(k)(bj)[l+qi(k)(bj)]/

§:p1(k’(bj)[1+qi(k)(bj)]

= Pi(0)(bj)[l+qi(0)(bj)] . . [1+qi(k)(bj)]/

§;pi(°)(bj)[1+q1(°)(bj)] . . [1+qi(k)(bj)]

For a k large enough that label probabilities do not change

much, we can approximate qi(k)(bj) by qi(k-l)(bj). So, we

have

Pi(k+1)(bj) = Pi(0)(bj)[1+qi(0)(bj)] . .

[1+q1‘k'2’(bj)1[1+q1‘k’1’(bj112/ . . .



63

In other words we can estimate Pi<k+1)(bj) without using

the result of the kth iteration. This shows that we can

leave behind a large number of iterations in this manner and

still reach the same label probabilities. In general we

have

p1‘k*5’(bj) = p1‘°’<bj)[1+q1‘°’(bj)1 . .

[1+q1‘k’1)(bj)][1+q1(k)(bj)]5/ . . (4.2)

Equation (4.2) shows the approximation of Pi(k+5)(bj) by

jumping over s-l steps. In the same fashion we can guide

the relaxation process so that it will execute one in every

5 steps and force the label probabilities to converge

faster. In the following, we will call 5 the speed-up

factor. The new iterative formula is of the form

Pi(k+1)(bj) = Pi(k)(bj)[1+qi(k)(bj)]s/

z:pi“‘)(bj)[1+q1“‘)(bj)]S (4.3)

The larger the s the more computational saving is

obtainable, but large values of 5 may cause the label

probabilities to converge to false values. To detect the

occurance of such a case, in [Zucker 78b}, extrapolation has

been used to predict label probabilities in the next

iteration. Then comparing the predicted probabilities and

the computed ones, those probabilities that change

unexpectedly are detected.
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This may not work all the times because some label

assignments may be wrong from the very beginning. Their

probabilities may keep increasing so that no change in the

trend is observed, and ultimately the probabilities converge

to a false fixed point.* This fact is demonstrated by an

experiment in section 4.6.

To be able to use formula (4.3) with more security, the

following alternative is proposed. Use formula (4.1) for

the first s iterations (k=1, 2, . . s). The label

probabilities will stabilize considerably. Then use formula

(4.3) for iterations k=s+l, 5+2, . . By doing so,

convergence to a false fixed point may not be eliminated

completely, but the probability of its occurance will be

reduced. This assertion is backed up experimentally in the

next section.

* Fixed point: The point where label probabilities no longer

change. A relaxation process may have more than one fixed

point which are characterized by the neighbor contribution

factors [Haralick 80b].
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4.6. Results

To study the behavior of this relaxation process, two

'sets of regions were used as shown by Figures 4.l.a and

4.1.b. Figures 4.1.8 and 4.1.b are prepared by segmenting

two (Heat Capacity Mapping Mission) satellite images of the

same scene and extracting closed boundary regions in the

images. There are 14 regions in each set, but there are

some regions in one set which are not present in the other.

The correct region correspondences are, (1,9), (2,10),

(3,11), (4,*), (5,13), (6,14), (7,*), (8,1), (9,2), (10,3),

(11,4), (12,5), (13,6), (l4,*), where the first number shows

the region in image of Figure 4.1.b and the second number

shows the corresponding region in image of Figure 4.1.a.

Initial label probabilities were determined by the shape

similarity measure of Chapter 3. The results are shown in

Table 4.1. The distances between the centroids of regions

in Figure 4.l.a were used as the knowledge matrix, Table

4.2. The distances between the centroids of regions in

'image 2 are also shown in Table 4.3. Performing the

relaxation process described above on these data, label

probabilities changed as shown in Tables 4.4, 4.5, 4.6, 4.7,

4.8, and 4.9, for iterations l, 2, 5, 10, 30, and 100,

respectively. s is the speed-up factor of section 4.5.
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The label probabilities seem to be converging, but even

after 100 iterations, the fixed point is .not reached.

Applying the speed-up technique of section 4.5, we can reach

the fixed point faster. Figures 4.2, 4.3, and 4.4,

respectively, show the convergence speed of the label

probabilities for object 14 having label 7, object 14 having

label *, and object 9 having label 2. The probabilities at

the fixed point for object 14 having label 7 is 0.0, object

14 having label * is 1.0, and object 9 having label 2 is

1.0. For all values of s experimented‘ here, no false

convergence was obtained. This is because for a given 5,

the first s iterations were computed using formula (4.1).

If in all the iterations, we use formula (4.3), we will

be amplifying probabilities that have not stabilized yet,

and this will force the label probabilities converge to

false values. Tables, 4.10, 4.11, and 4.12 show the label

probabilities for iterations 2, 5, and 10, respectively,

when s=5 and formula (4.3) is used in all iterations. Note

that labels of objects 1, 9, 12, and 14 are amplified '

wrongly from the very initial iterations. Once enough

number of labels are wrongly amplified, the label

probabilities may converge to a different fixed point. This

is what has happened to the probabilities of objects 1, 9,

12, and 14, that are converging in a wrong direction.
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Assuming given initial label probabilities and the

knowledge matrix for two sets of objects with cardinality m

and n (menumber of regions in image 2; ncnumber of regions

in image 1) the computation time needed to determine the

correspondence between objects from the two sets consists

of,

l. Computation of neighbor contribution factors, which

involve computation of cross-correlation coefficient

between two sets of m numbers. This computation is of

order m2. The neighbor contribution factor should be

computed for all the m objects and for n labels of an

object. Overall, the neighbor contribution factor should

be computed mn times. So, the time .required for

computation of neighbor contribution factors in each

iteration is of order m3n2.

2. Computation of formula (4.1) or (4.3), which is

negligible compared to the computation of the neighbor

contribution factors.

3. The number of iterations required for convergence depends

on the' number of labels, n. Assuming an order of n

iterations is needed to determine the region

correspondence problem, then the overall computation time

becomes of order m3n3.
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It takes about 10 minutes to determine the correspondence

between regions in Figures 4.1.a and 4.1.b, on a PDP ll/34

computer. The order of the computation time shows that the

speed of this procedure falls sharply as m and/or n

increase.

When m and n are large, we may selectively take subsets

of the data and work on the subsets. By determining point

correspondence in the subsets, we can determine the

transformation parameters for mapping one set into another.

The transformation parameters then can be used to determine

the correspondence between the rest of the points. For

example, using the transformation parameters, for every

point in one set we determine its position in the other set.

The closest point to it, with distance smaller than a

threshold value, can be taken as its corresponding point.

Subsets could be points falling on the convex-hull of the

88125.

Note that by selecting subsets, we may lock into a wrong

correspondence and miss the correct correspondence.
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Figure 4.1. Two segmented images of the same scene.
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5.iterationLabel probabilities afterTable 4.6.
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10.iterationLabel probabilities afterTable 4.7.

110 WITH 5:LABEL PROBABILITIES AFTER INTERATION ”
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2, 5:5.iterationLabel probabilities afterTable 4.10.
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iteration 10, s=5.Label probabilities afterTable 4.12.
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Chapter.5

REGISTRATION OF IMAGES FROM A TWO’DIMENSIONAL SCENE

5.1. Introduction

In this chapter, a two-dimensional scene is approximated

by a three-dimensional scene where the heights of objects in

the scene are small compared to the distances of objects to

the camera. "Small enough” means that we would get nearly

the same image if the scene was painted on a flat plane.

Satellite images are good approximations of two-dimensional

scene images.

One of the characteristics of these images is that it is

always possible to find a single linear transformation

function which can map one image into another. Two images

that have been obtained from the same viewpoint of a flat

scene do not have non-linear geometric differences.
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The aim of this chapter is to design a procedure for

automatic registration of two images that may have

translational, rotational, and scaling differences. The

technique should not be sensitive to noise and intensity

difference between the images. It should be able to work on

a broad class of images and give subpixel accuracy.

How accurate is subpixel accuracy? When a scene is

scanned by a camera, there is a positional error from zero

to half a pixel involved in the digitization process. So,

on the average we expect every point in the scene to have

1/4 of a pixel positional error in the image, and unless the

digital image is interpolated by a continuous plane, we

would not be able to attain accuracy of better than 1/4 of a

pixel, on average, no matter how accurate the registration

process.

Registration of images that have small geometric

differences, such as images of a three-dimensional scene

taken from two different viewpoints, or images that have

slight non-linear geometric distortions due to scanner's

movement, atmospheric effects, scanner's nonlinearity, etc.,

will be considered in Chapter 6.
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The proposed technique for registration of

two-dimensional scene images consists of the following

steps:

1. Segmentation of the images and isolation of closed

boundary regions from the images.

2. Determination of corresponding regions in the images.

3. Using centroids of corresponding regions as corresponding

points and determining the registration parameters.

In the following, each step is discussed in detail.

5.2. Image Segmentation

Image segmentation is the process of dividing an image

into regions whose interior points have nearly the same

property. This task can be accomplished in two ways. One

is by determining boundaries between homogeneous regions of

different properties. Since the boundaries are places where

there are sharp changes in property values, region

boundaries can be found by an edge operator like the

Roberts, the Sobel, or the Heuckle operator. Davis gives a_

review of image segmentation by this approach [Davis 75].
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Another way to segment an image is by determining regions

of homogeneous property. This can be done by thresholding

the image at different levels and letting each region

include those neighboring points which have property values

between two given threshold values. A survey of image

segmentation techniques by thresholding can be found in

[Weszka 78]. Another way to obtain regions of homogeneous

property in an image is by region. growing. In this

approach, neighboring homogeneous regions of similar

property are joined, or nonhomogeneous regions are split

into homogeneous ones to segment the images. A survey of

image segmentation by region growing is given by Zucker

[Zucker 76a].

Usually image segmentation involves one image and the

task is dividing it into regions so that the regions best

represent objects in the scene. In this section, we will

address the problem of segmenting two images of the same

scene. Consideration of some of the purposes of

segmentation such as image registration, object tracking, or

image analysis, leads to the conclusion that it is important

that the resulting corresponding regions in the images be

similar. So, we take as a requirement for segmentation of

two images segmenting the images s9 that corresponding

regions i_ the images are most similar. For example, in
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registering two satellite images of the same scene, the goal

would be to segment the images such that corresponding

regions (fields, lakes, etc.) are most similar. It may not

be important at this point to find regions which correspond

very well to the fields on the ground, but it is important

that the corresponding regions in the images are similar.

In the following technique for segmentation of two images

of the same scene, one of the images will be called image 1

and the other image 2. In section 5.2.1, segmentation of

image 1 is considered, and in section 5.2.2, the result of

segmentation of image 1 is used to guide the segmentation of

image 2. In section 5.2.3, corresponding regions in the two

images are determined, and in section 5.2.4 necessary

refinements are made by re-examining the information in

image 2. The result of the proposed segmentation technique

on satellite images is given in section 5.2.5.

The proposed image segmentation technique is designed to

work on image pairs that may have translational, rotational,

and scaling differences, but no geometric distortion is

allowed.
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5.2.1.5egmentation of Image 1

In segmenting an image, usually the objective is to

extract as many object boundaries, as possible and as well

as possible. Since object boundaries usually have high

gradient values, we will determine a threshold value for

segmentation of image 1 using information about high

gradient pixels in the image. A threshold value which

slices image 1 at high gradient values is favorable, because

changing‘ the threshold value slightly will not change the

segmented regions much, and so a small error in

determination of the threshold value of image 2 will not

result in very different regions. However, noise pixels

also have high gradient values and thresholding the image

- using information from noise pixels is disasterous. Even

without noise, requiring only high gradient values is not

sufficient. It may happen that only a small area of the

' image has very high gradient pixels. Determining the

threshold value using those pixels will result only in

extraction of that small. area. Therefore, we should be

using those gradient values which are both high in value and

also numerous in the image.
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After obtaining the gradient of image 1 we construct a

histogram of the gradient image, to tell us how many pixels

of a certain gradient are in the image. Figure 5.1 shows

such a histogram and G(j) shows the number of pixels with

gradient j.

G(j)

 4:3 

Figure 5.1. Histogram of gradient image 1.

Now we define variable M(j) as below.

M(j)=jG(j)

Those pixels with large j (high gradient) and large G(j)

(showing that a large number of them are available) will

result in a large value of M(j). This tells us that we

should be looking at high values of M(j) to determine the

threshold value. How about the maximum value of M(j)?

Figure 5.2 shows three different cases of M(j) depending on

the contents of image 1.
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Figure 5.2. Three different histograms of M(j).

Figure 5.2.a shows the case where the maximum value of

M(j) corresponds to the high gradient pixels in the image

(jl is high), and determination of the threshold value using

gradient jl is proper. Figure 5.2.b shows the case where

the maximum of M(j) does not correspond to high gradient

edges (j2 is not high). But M(j) has another peak value at

jl and jl is high and is proper for threshold estimation.

Figure 5.2.c shows the case where M(j) has one peak at j2

which is low and is not proper for threshold estimation.

Using these facts, the following algorithm is proposed for

threshold estimation.
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Algorithm 5.1. Estimation of threshold value for

segmentation of a single image (image 1).

Step 1. Obtain the gradient of image 1 and construct its

histogram, G(j).

Step 2. Compute M(j)-jG(j) for all j, and smooth M(j) to

avoid detection of noisy peaks (we have smoothed in 5

neighborhoods, i.e. smoothed M(j)=(l/5) éqM(j+k)).

Step 3. Determine the rightmost peak of M(j). Let the peak

be at j=j1.

Step 4. Compute SUMG=E%G(j). If SUMG 5 5% of total image

(total image=.§6(j)) then

Threshold value = average intensity of pixels with

gradient jl.

Otherwise (when SUMG > 5% of total image),

Threshold value = average intensity of pixels with

gradient jl where here jl satisfies ;G(j)=5% of

a)»

total image.

Step 3 requires that M(j) have at least one peak value.

M(j) will in fact have at least one peak because it starts

at zero (when j=0) and returns to zero (when G(j)=0). The

constants 5 neighborhoods and 5% which were used in Steps 2

and 4, respectively, were determined heuristically to best
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fit our set of imagery. For other images, this might need

modification for best results.

5.2.2. Segmentation of Image 2

We could segment image 2 the same way we segmented image

1. This approach has been taken by some authors [Clark 80,

Price 79]. The problem with doing so, however is that after

segmentation, there is no guarantee that the obtained

corresponding regions in the two images are maximally

similar. Since the similarity of corresponding regions in

the two images is what we need, it makes sense to lead

segmentation of image 2 in such a way that the obtained

regions in image 2 are most similar to their corresponding

ones in image 1.

To determine the threshold value for segmentation of

image 2, we determine the gradient of image 2 and construct

the gradient histogram. Figure 5.3 shows a gradient

histogram for image 2. G'(j') shows the number of pixels

that have gradient j'. If jl was the gradient value at

which we determined the threshold value of image 1, then we

determine the threshold value of image 2 using the pixels

with gradient jl', where jl' is determined such that

.2,G'(j') = J{36%)
1'»
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Figure 5.3. Histogram of gradient image 2.

Then the threshold value of image 2 = average intensity of

pixels with gradient jl'. It turns out that, if the images

cover exactly the same scene, are of the same scale, have no

noise, and the intensity relation between the images is

linear, then the corresponding regions in the two images are

exactly the same. This is proved below.

Proposition 5.1. If two images of the same scene are

available and the intensity of a point in one image, I(X,Y),

is a linear function of the intensity of the same point in

another image,

I'(x',y') = f(I(x,y))saI(x,y)+b (5.1)

and if a>0 (5.2)

the following assertion holds.

If j(xl,yl) > j(x2,y2) then j'(xl',yl') > j'(x2',y2')
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where j and j‘ are gradient values in image 1 and image 2,

respectively, and (xl,yl), (x2,y2) are two points from image

1 and (x1‘,yl') and (x2',y2') are corresponding points in

image 2.

Proof: In image 1, if for two Points (xl,yl) and (x2,y2) the

relation

I(x1,yl)-I(x1+dx,yl+dy) > I(x2,y2)-I(x2+dx,y2+dy) (5.3)

holds then by multiplying both sides by parameter a we get

aI(x1,yl)-aI(xl+dx,yl+dy)>aI(x2,y2)-aI(x2+dx,y2+dy)

or aI(x1,yl)+b-[aI(x1+dx,y1+dy)+b]>

aI(x2,y2)+b-[aI(x2+dx,y2+dy)+b]

using relation (5.1) we get

I'(xl',yl')-I'(x1'+dx,y1'+dy) >

I'(x2',y2')-I'(x2'+dx,y2'+dy) (5.4)

where dx and dy are small distances like one pixel.- So, if

(5.3) holds in image 1 then (5.4) will hold in image 2. Now

if we rewrite relation j(x1,yl) > j(x2,y2) in intensity

forms, we get

{[I(31vyl)’I(Xl+dx,yl)]2 + [I(x1,yl)-I(xl,y1+dy)]2}o'5 >

{[I(x2,y2)-I(x2+dx,y2)]2 + [I(x2,y2)-I(x2,y2+dy)]2}0'5

Using relation (5.4) we get

{[I'(xl',y1')-I'(xl'+dx,y1')12 + [I'(xl',yl')-

I'(x1',y1'+dy)]2}o'5 >

{[I'(x2',y2')- I'(x2'+dx,y2')]2 +
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[1! (x2! ’y2! )_II (x2! 1Y2'+dY)]2}0'5

This means that j'(xl',yl') > j'(x2',y2'). #

Using the result of Proposition 5.1, we conclude that if

EC(j) = g$6'(j') (5.5)

then all pixels in image 1 with gradient larger than jl

correspond to all pixels in image 2 with gradient larger

than jl'. Now, slicing image 2 at the average intensity of

pixels with gradient jl' will produce regions which cover

the same areas of the scene as when slicing image 1 at. the

average intensity of pixels with gradient jl. This is

proved below.

Proposition 5.2. When slicing image 1 at a level equal to

the average intensity of pixels with gradient jl, and

slicing image 2 at a level equal to the average intensity of

pixels with gradient jl' such that ‘§‘G(j)= ac'fi'), the

regions which are obtained “by segmenting the two images

cover the same parts of the scene.

Proof: The threshold value for image 1 is equal to

h a “2‘2, I(x,y)/G(j1)

where “23) means the sum over all pixels with gradient jl.

1

The average intensity of the same pixels in image 2 is

equal to

«Bf(1(x,y))/G(j1) (5.6)
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If image intensities could assume continuous values we would

expect G(jl)=G'(j1'). However, due to digital rounding, all

the pixels in image 1 with gradient jl do not have gradient

jl' in image 2. G'(jl') is the number of pixels in image 2

that have gradient jl'. The average intensity of these

pixels is

(§f(1(x,y))/G(jl'):= (Ef'(x',y')/G(jl') = h' (5.7)

(5.6) and (5.7) are close but may not be equal due to the

digital rounding errors (in section 5.2.4 we will see how

this kind of error can be compensated by region

refinements).

Now, regions in image 1 are constituted of pixels which

have intensity greater than h.or

all pixel such that I(x,y) > h = (§)I(x,y)/G(jl) (5.8)

all these pixels in image 2 will have intensity

f(I(x,y)) > f(h) = (§)f(l(x,y))/G(jl)

Approximating this by (5.7) we get

I'(x',y') > h' ’ (5.9)

So, we see that the same pixels which satisfy (5.8) in image

1, satisfy (5.9) in image 2. And so thresholding image 2 at

h' will produce the same regions as when thresholding image

1 at h. #
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What if the images do not cover exactly the same scene,

there is noise in one or both of the images, or they are not

of the same scale, or the intensity difference between the

images is not linear? One or more of these conditions may

hold for any pair of natural images. If so, the regions

obtained from segmentation of the two images will have

differences. How can we refine the regions in image 2 so

that they become most similar to their corresponding ones in

image 1?

In section 5.2.4, it will be shown how this goal can be

reached by going back to the original image 2 and using more

of the information that it contains.

5.2.3. Region Correspondence

When the two images are segmented into regions, the next

task is to find corresponding regions in two images. In

[Price 79], to find the region in image 1 which corresponds

to a given region in image 2, the region of image 2 is

‘compared to every region in image 1. The best match is

considered to be the corresponding region.
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The match rating procedure used for this purpose

incorporates the weighted difference between all features of

the region. Features include, area size, roundness

(Perimeterz/Area), length to width ratio, and color. Note

that in this technique, even though a region may not have a

corresponding region in the other image, some region will be

selected as the corresponding region. Only local

information about regions - are used to find region

correspondence in this technique. The time needed to

extract features from the segmented images and find region

correspondence for two images with 10 regions each was 5.3

min on a PDP 10 computer [Price 77].

If a region is represented by a point, such as its

centroid, Zahn has given a technique to determine point

correspondences using interpoint distances (global

information) [Zahn 74]. In this technique, the minimum

spanning tree (MST) for each set of points is determined.

Then the degree, the minimum angle, and the ratio of edges

that make the angle are determined for each point. Starting

with the point of highest degree and decreasing, a search is

carried out in the other set for a node with similar minimum

angle and associated length ratio. If the match rating of

the best match is lower than a threshold value, it is

concluded that the node in the first set does not exist in
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the other set. Otherwise, best match nodes are marked as

corresponding nodes. The time needed to find correspondence

between two sets each with 10 points is reported to be 0.6

sec on a CDC 6400 computer [Zahn 74].

Another procedure which uses inter-point distances

(global information) to match two sets of data points is

based on the notion of clustering and is given by Stockman

[Stockman 83]. In this procedure, a graph for each data set

is created by joining pairs of points selected by local

information, then matching is carried out between all

possible edges in the two graphs. While matching edges, the

translational, rotational, and scaling difference between

edges with similar endpoints are determined and a point is

entered into the parameter space showing the parameter

values. Correct matches tend to make a dense cluster while

mismatches randomly fill the space. The parameter values

corresponding to the densest cluster center are taken as the

transformation parameters. Knowing the transformation

parameters, we can map one set into another. In this

mapping, points falling within a threshold value of the

transformed points are taken as corresponding points. The

remaining points are labeled as points having no

correspondence.
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The time required to match two sets with 10 points each

takes about 20 seconds on a Harris model H500 computer.

When the number of points in each set becomes large, this

process becomes very time-consuming, but can be speeded up

by selectively choosing subsets from each set and matching

the subsets. For example, points falling on the convex hull

of each set can be taken as the subset for matching.

The convex-hull of a set does not vary by translating,

rotating, or scaling the set. This property can be used to

characterize a point set. So, rather than taking all points-

in the set, we may take only points on the convex-hull for

matching. Note that by doing so, however, depending on the

data sets, we may miss the correct match. As the number of

points in the set increases, the probability of locking onto

a wrong match decreases, and using the points on the

convex-hull becomes reliable and is preferable to an

exhaustive search.

A procedure which uses global information as well as

local information in the images to determine corresponding

regions has been developed in Chapter 4. The procedure is

based on the probabilistic relaxation labeling process of

Rosenfeld [Rosenfeld 76]. In this process, shape

similarities of regions .(1ocal information) are used to

determine the initial label probabilities. Then distances
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between the centroids of regions (global information), are

used to update the label probabilities. The time required

to find correspondence between two sets of 10 regions each

is about 2 min on a PDP 11/34 computer. Since the

computational complexity of this procedure is of order

m3n3 where m and n are a number of regions in image 2 and

image 1, respectively, the speed of the process drops

sharply as m and n increase. When m and n are large (larger

than 30), we may select subsets of the data that, for

example, fall on the convex-hull of the sets and work on the

subsets. When correspondence between the subsets are found,

we can determine the transformation parameters between the

two sets. Knowing the transformation parameters, we can map

one set into another and determine the rest of the

correspondences.

In this chapter, the procedure of Chapter 4 will be used

to determine the region correpondences.

5.2.4. Region Refinements

Segmentation of image 2 might have produced regions which

are not optimally similar by any measure to their

corresponding ones in image 1 due to various differences

between the two images. For example, it might be that one
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threshold value is not capable of isolating every object in

image 2 satisfactorily. In this section we will refine the

regions in image 2 such that they become optimally similar

by an appropriate measure to their corresponding ones in

image 1. We consider first a simple case and then a general

case.

After determining corresponding regions in the two images

using the method of Chapter 4, each region in image 2 is

refined to make it optimally similar to its corresponding

region in image 1, as shown below.

A. The simple case: The two images have only translational

differences.

Suppose region A and region B are two corresponding

regions from image 1 and image 2, respectively. Let WA and

WB be two windows each with size mxn, which contain regions

A and B individually and their centers coincide with the

centroids of the regions. We let a pixel in WA or WB have

value 1 if the pixel belongs to the region and have value 0

if the pixel is outside the region. We lay WA over WB such

that their centers overlay and determine their Exclusive-OR.

Suppose WC is the window such that WC=WAOWB, then WC can be

used to show the similarity between region A and region B.

If the two regions are similar, we will have zero or a small
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number of pixels with value 1 in WC. If the two regions are

dissimilar we will have a large number of pixels with value

1 in WC. The similarity between regions A and B is defined

below.

Def. 5.1. Similarity of regions A and B that belong to two

images with only translational difference is measured by

rAB'l-[ g §WC(x,y)]/mn

where mxn is the window size which can contain regions A and

B, individually, and WC is the third window obtained by

Exclusive-ORing the windows containing regions A and B. #

This similarity measure is easy to implement, fast to

compute, and fulfills our needs.

The following algorithm finds the optimal threshold value

for image 2 so that when sliced at that value, region B is

optimally similar to region A. Essentially this algorithm

is a peak seeking algorithm specialized to the discrete

values given by pixel count measures.

Algorithm 5.2. In the following, h and h', respectively

show the present and the previously estimated threshold

value for segmentation of image 2. Initially, h' is the

threshold value estimated in section 5.2.2. r and r' show

the similarity of regions A and B when image 2 is sliced at

h and h', respectively. SLOPE shows increase when it is

positive and decrease when it is negative for the threshold
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value, and k shows the number of iterations.

Step 0. h<--h'; k<--0; SLOPE<--positive; Compute WC; Compute

rAB; r'AB<--rAB; Continue.

Step 1. If SLOPE>0 then h<--h+l otherwise h<--h-l; Continue.

Step 2. k<--k+l; Slice image 2 at h; region B<--new region

B; Compute WC: Compute rAB; Continue.

Step 3. If rAB>r'AB then set r'AB<--rAB and go to step 1

otherwise continue.

Step 4. If k=l then go to Step 5 otherwise go to Step 6.

Step 5. h<--h-1; SLOPE<--negative; r' <--rAB AB; Go to Step 1.

Step 6. If SLOPE>0 then the optimal threshold value falls

between h and h-l. The linear approximation to the

optimal threshold value is Hsh-rAB/(rAB+ r'AB); Exit.

Otherwise (when SLOPE<0) the optimal threshold value

falls between h and h+1. The linear approximation to

the optimal threshold value 15 H=h+rAB/(rAB+r'AB);

Exit.

Step 0 initializes the parameters h, k, and SLOPE and

computes rAB' the similarity between regions A and B. At

. . , a

the beginning we let r AB rAB'
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If by increasing the threshold value, rAB increases

(showing the new B is more similar to A than the previous

B), Steps 1, 2, and 3 are executed. This is continued until

rAB starts to decrease. This is detected by Step 3 and the

optimal threshold value is estimated in Step 6 (see Figure

5.4.a).

rAB start point v

steps 1, 2, and 3

I step 6

first iteration

second iteration

steps 1, 2, and 3
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Figure 5.4. Estimation of the optimal threshold value.

If the start point is of the form shown in Figure 5.4.b,

then Steps 1, 2, and 3 are executed once, because by

increasing the threshold value, a more dissimilar region is
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found (rAB has decreased). Then in Step 5 the value of

SLOPE is set to negative, showing the threshold value should

be decreased. Steps 1, 2, and 3 are executed as long as

rAB keeps increasing. When rAB starts to decrease, it shows

that the optimal threshold value is passed. This is

detected in Step 3 and the optimal threshold value is

estimated in Step 6.

Assuming rAB and r'AB are similarity measures obtained

for threshold values h and h-l, then the optimal threshold

value is found by

H = h - rAB/(rAB+ r'AB)

This is because when rAB>r'AB' it means that thresholding

image 2 at h creates a region B more similar to A than the

region B obtained by thresholding image 2 at h-l. So, the

optimal threshold value should be closer to h than to h-l,

and vice versa when rAB>r'AB' Refering to Figure 5.5, by

linear interpolation we can write

dr'AB= (l-d)rAB or d = rAB/(rAB+ r'AB)

where d is the distance of the optimal threshold value H

from h.

So, H = h - d = h - rAB/(rAB+r'AB)‘
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Figure 5.5. Computation of the optimal threshold value.

In the same fashion, when rAB and r'AB are similarity

measures for threshold values h and h+1, the estimate to the

optimal threshold value is found to be,

H ‘ h + rAB/(rAB+r AB)

Proposition 5.3. Algorithm 5.2 always estimates the optimal

threshold value in the sense that no other threshold value

can segment image 2 so that the obtained region B is more

similar to region A.

Proof: We know that by increasing the threshold value, the

area of region B gets smaller, and by decreasing the

threshold value, region B gets larger. If the initial

threshold value is such that region B is larger than region

A, by increasing the threshold value we will reach a point

where region B becomes smaller than region A. And so there

exists a point (and only one point) where A and B are

optimally close (in other words, there exists a threshold

value where rAB is maximum);
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If the initial threshold value is such that region B is

smaller than region A, by decreasing the threshold value, we

will reach a point where region B becomes larger than region

A. And again, there exists a threshold value such that

regions A and B become optimally close.

The optimal threshold value results in the maximum of

rAB' This is detected in Steps 3 and 4, and there is no way

to by-pass these steps. When the existence of the optimal

threshold value is detected, its value is estimated in Step

6. The algorithm then terminates. So, Algorithm 5.1

estimates .the optimal threshold value and halts, for all

inputs. #

Figure 5.6 depicts the process of region refinement by

Algorithm 5.2. For clarity, the window around region B of

image 2 is shown in three dimensions where the third

dimension shows the intensities. The intensities are sliced

at different values and the slice most similar to that of

region A is determined.

Note that by using Algorithm 5.2, it is possible to

determine the location of boundary points of the optimal

region up to subpixel accuracy. This is shown in Figure

5.7. Assuming c with coordinates (xc,yc) is a boundary
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Figure 5.6. Image slices from Algorithm 5.5.

point which is obtained by slicing image 2 at h, and c' is

the same point shifted to (xc',yc') when slicing image 2 at

h-l, then, if the optimal threshold value H is between h and

h-l, slicing image 2 at H would move point c to point c"

(see Figure 5.7) with coordinates,

Figure 5.7. Determination of the optimal boundary points.
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N. - _ V 0

xc -xc (xc xc )rAB/(rAB+r AB)

yc"=yc-(yc-yc')rAB/(rAB+r'AB).

B. Thegeneral case: The two images have translational,

rotational, and scaling differences.

The similarity measure which was used in Algorithm 5.2

can take care of images which only have translational

differences. If the images have rotational and scaling

differences also, we should use a similarity measure which

can find the similarity of two regions irrespective of their

rotational and scaling differences.

A procedure for this purpose has been developed in

Chapter 3. In this procedure, similarity between two

regions is measured irrespective of their rotational and

scaling differences and is shown by a number between 0 and

l, with 1 showing complete similarity and 0 showing the

similarity between a line and a circle. The similarity of

other shapes falls between 0 and 1. If we use this

similarity measure in Algorith 5.2 (as the r), we will be

able to refine regions of image 2 even though the images

have rotational and scaling differences.
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5.2.5. Segmentation Results

To show the validity of the proposed segmentation

technique, two pairs of images are used. Figure 5.8.a is a

Heat Capacity Mapping Mission Day-Visible (HCMM Day-Vis)

image acquired on 26 September 1979 from an area over

Michigan. 'Figure 5.8.b is an HCMM Night-IR image of about

the same area acquired on 4 July 78.

HCMM Day-Vis and Night-IR images were assumed to be

images 1 and 2, respectively.‘ Algorithm 5.1 was applied to

the Day-Vis image and the segmentation result of Figure

5.8.c was obtained. The gradient operator used in the

algorithm was the maximum difference operator because of its

fast speed (see [Hall 79] pp 403). The Night-IR image was

segmented as image 2 and the result is shown in Figure

5.8.6.

Although the images may seem to have been segmented very

well, some of the extracted corresponding regions in the two

images are not similar. This is because the two images are

acquired by different sensors and the relation between the

intensities of the two images is not linear. Figure 5.10.a

shows the relation between the intensities of the two

images.
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Figure 5.8. Segmentation of Day-vis and Night-IR images.
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Figure 5.9. Segmentation of M55 and TMS images.
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Figure 5.10. Image 1 and image 2 intensity relations.

(Specify the intensity of a point on the horizontal

axis in one image and look up the (digitally rounded)

intensity of the same point in the other image from

the vertical axis)

Region correspondences were found using the procedure of

Chapter 4. Using speed-up factor 5:20, the process was

terminated when the largest label probability for each

object passed 0.95. Forty one iterations were required for

doing so. All the probabilities passing 0.95 showed the

correct labels with unique correspondence. For more

detailed results see Chapter 4.
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To show how Algorithm 5.2 can refine the region

boundaries of the Night-IR image so that they become

optimally similar to their corresponding ones in the Day-Vis

image, first closed boundary regions are extracted from the

images. These are shown in Figure 5.8.e and Figure 5.8.f.

The extracted regions are limited to those which have

(perimeter) sizes that are not too large or too small. Two

threshold values were used for this purpose. The lower

threshold value prevents very small regions prone to noise

from being selected. The upper threshold value is used to

avoid the selection of very large regions, which might be

divided into two or more regions in the other image. The

two threshold values that were used here are 10 pixels and

150 pixels.

Algorithm 5.2 with similarity measure of Chapter 3 was

applied to regions shown in Figure 5.8.f. The resultant

refined regions are shown in Figure 5.8.9. Note that there

are some regions which are present in only one of the images

because of scene differences or their small size. For these

regions no refinement is possible.

As a second example, band 7 of a Landsat-2 Multi-Spectral

Scanner (MSS) image acquired on 27 August 1980 from an area

over Pontiac, Michigan and band 3 of a Thematic Mapper

Simulation (TMS) image acquired on 19 August 1981 from the
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same area is used. The two images are in different scales.

The MSS image has an 80x80 meter resolution while the TMS

image has a 60x60 meter resolution. The original TMS image

had 30x30 meter resolution, but we reduced the resolution of

it to half, so that with the same image size it can cover

about the same areas as the M55 image. Figures 5.9.a and

5.9.b show the M88 image and the TMS image, respectively.

After applying the segmentation procedures of section 5.2.1

and 5.2.2 on the images, we get results of Figures 5.9.c and

5.9.d, respectively, for the M85 image and the TMS image.

This pair of images had approximately linear intensity

differences (see Figure 2.10.b) but were not of the same

scale, which made the edge information in the two images

different.

Region correspondences were determined using the

procedure of Chapter 4 with speed-up factor s=20. Region

correspondences were found after 57 iterations with no

mismatches.

The closed boundary regions from the segmented TMS image

were refined using Algorithm 5.2 with similarity measure of

Chapter 3 to make them optimally similar to their

corresponding regions in the M85 image. Figure 5.9.f and

5.9.9 show the closed regions of the TMS image before

refinement and after refinement, respectively.
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Our aim has been to segment the images for image

registration purposes, but the same segmentation result

might be needed for object detection [Selfridge 81] or in

object tracking [Schalkoff 82]. An accurate segmentation

result will enable better object boundaries for both shape

recognition and object position computation.

Gradient operations, threshold estimation, image slicing

and region refinements which are done by this technique are

all operations of order N or less, where N is the number of

pixels in the image, and so the technique is fast.

Segmenting a pair of images of size 240x240 on a PDP 11/34

computer takes about 3 minutes. Of this time about 1 minute

is used to segment image 1 and about 2 minutes is used to

segment image 2 and refine it. This technique is capable of

determining the boundaries of corresponding regions in the

images up to subpixel accuracy which might be needed in

image registration, object tracking or for other purposes.

As a final note, image segmentation was defined as a

process which partitions an image into homogeneous regions.

Does the above segmentation technique partition the images

into homogeneous regions? As a matter of fact, it may not.

This is because each image is sliced at one value, and if

the image contains more than two types of regions, then we

will obtain regions where each may contain several
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homogeneous subregions.

Ohlander [Ohlander 78] has used a recursive procedure to

segment images with more than two types of regions. This

idea can be applied here too. For each segmented region

pair, we may compute some measure of variance over the

regions. If the variance is above a threshold value, we

process the region pair as being two new images and apply

the above image segmentation technique on them to split the

regions into homogeneous subregions. This process can be

recursively applied until the variance of all regions falls

below the threshold value. In the next chapter, an example

which uses recursive image segmentation is given.

5.3. Selection of Control Points

Def. 5.2. Control Points: Points that are uniquely

identifiable in an image. #

Two images that have translational, rotational, and scaling

differences can be registered if the coordinates of at least

two pairs of corresponding control points from the two

images are known.
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In [Davis 78], a set of windows which contain a large

number of high gradient, connected edges which are well

dispersed over image 1 are selected. Then an attempt is

made to search the location of these windows in image 2.

The upper left hand window corners were selected as

corresponding control points. Later in [Hall 80], the

criterion of uniqueness was added to the control point

selection to make the determination of corresponding control

points. in image 2 more reliable. This control point

selection technique, however, is limited to images that do

not have rotational or scaling differences because window

searches can be applied to images that only have

translational differences. In [Kanal 81] line intersections

and in [Yam 81] high curvature points have been taken for

control points. These features can be selected in images

that may have translational, rotational, and scaling

differences. In the following, centroids of corresponding

regions are used as corresponding control points. Once it

is known that two regions in two images correspond to each

other, their centroids will correspond to each other no

matter what the translational, rotational, and scaling

difference between the two images. Of course region

similarity must be determined in a manner that is invariant

to translation, rotation, and scaling. If regions are

obtained by the image segmentation technique of section 5.2,
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then it would be possible to determine the location of

corresponding centroids up to subpixel accuracy.

If o with coordinates (xo,yo) and o' with coordinates

(xo',yo') are centroids of a region when sliced at h and

h-l, respectively, and if the optimal threshold value H is

known to be between h and h-l (see Figure 5.11), then the

coordinates of the optimal centroid (Ox,Oy) are determined

by linear interpolation,

x0 = xo - (Ko-xo')rAB/(rAB+ r AB)

yO = yo - (yo-yo')rAB/(rAB+ r'AB)

where rAB and r'AB are similarity measures of region A and

region B when image 2 is sliced at h and h-l, respectively.

h- 1 11

Figure 5.11. Computation of the optimal centroid.

A nice property of the centroid is its stability to

random noise. Random noise will affect the region

boundaries, but since the coordinates of a centroid are

computed by averaging the coordinates of points on the
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boundary of the region, random noise should mostly cancel

out and the effect on the centroid is considerably smaller.

To find out how realistic this assertion is, the

following experiment was carried out. A 64x64 window was

taken from the image of Figure 5.8.a. This is shown in

Figure 5.12.a. This window was thresholded at (gray value

84) the level at which the image of Figure 5.8.a was

thresholded. The segmented window is shown in Figure

5.13.a. Standard deviation of intensity values that fell

above the threshold value (the threshold value that was used

to segment the window) was found to be 01:22.0 and standard

deviation of values below the threshold value 02:10.0.

Random noise was generated from a uniform distribution

over (-0.5,0.5), was amplified by a factor of 01:22.0 and

was added to regions in the window with intensities above

the threshold value. Noise was amplified by a factor of

02:10.0 and was added to regions with intensities equal to

or below the threshold value. This is shown in Figure

5.12.b. The same amplitude noise is not generated for all

areas of the window because in real life images, noise tends

to vary with the signal level (intensities).
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Figure 5.12. Windows with different noise levels.

Noise amplitude was increased by factors of 2, 3, 5, and

10, and was added to the window of 5.12.a. Windows of

5.12.c, d, e, and f were obtained, respectively. The

windows were thresholded at gray value 84, the same level at

which we thresholded the window of Figure 5.12.a. The

segmentation results are shown in Figure 5.13.b, c, d, e,

and f. Table 5.1 shows the coordinates of the centroid of

the largest object in the window for each case. As we can

see, the coordinates of the centroid are very stable under

random noise, unless the amplitude of noise becomes so large
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Figure 5.13. Windows of Figure 5.12 thresholded at 84.

that the object collapses. This is what has happened to the

object of Figure 5.13.f.

5.4. Determination of Transformation Function Parameters

When two images of the same scene have translational,

rotational, and scaling differences, corresponding points in

the two images can be related to each other by the

transformation of Cartesian coordinate systems,
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Table 5.1. Coordinates of centroids versus noise. Noise

was added to points above and below the threshold value

proportional to 01 and 02, respectively.

 

a=[01 az]t

Figure Noise Level Coordinates

Figure 5.13.a 0 27.48, 18.88

Figure 5.13.b a 27.48, 18.88

Figure 5.13.c 20 27.53, 18.89

Figure 5.13.d 30 27.66, 18.86

Figure 5.13.e 50 27.99, 18.80

Figure 5.13.f 100 29.85, 18.02

x' = m(xcose - ysin8) + h

(5.10)

y' = m(xsin8 + ycose) + k

where (x,y), and (x',y') are coordinates of corresponding

points in image 1 and image 2, respectively. m is the

scaling factor, 8 is the rotational difference, and (h,k)

are the translational differences of image 2 with respect to

image 1. A minimum of 2 corresponding points are required

to determine the parameters m, 8, h, and k.

In section 5.2.4, a technique to estimate the optimal

threshold value for each region of image 2 was given. The

optimal threshold values guarantee that the best centroid

for each region of image 2 is obtained. This doesn't mean

that the centroids are determined without error. The
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optimal threshold values reduce the errors but they may not

remove them completely. So, some of the errors may still

exist with smaller magnitudes. The amount of error on the

centroid of every region is not the same. Some of the

centroids turn out to be more accurate than the others

because the boundaries of some regions can be extracted more

accurately than the others, depending on the region and its

neighborhood.

Since we don't know which centroids are more accurate

than the others, it may turn out that the two pairs of

corresponding centroids that we choose for parameter

estimation are among the less accurate ones. To downgrade

the effect of inaccurate corresponding points on estimation

of parameter values, an averaging scheme like the

minimum-squared-error criterion seems appropriate. In this

case more than two corresponding points are necessary to

determine the transformation parameters. If n corresponding

points from the two images are available, then m, 8, h, and

k can be estimated by minimizing the sum of squared errors,

E = §{[xd' - m(xicose - yisine) - h]2 +

[yi' - m(xisin8 + yicose) - klz] (5.11)



123

To minimize E with respect to m, 8, h, and k, we find

partial derivatives of E with respect to m, 8, h, and k,

then set them equal to zero, and solve the system of linear

equations for m, 8, h, and k. To make this problem easier

to solve, we replace mcosB by a and msin8 by b. Then (5.11)

becomes,

E = %{[xi' - (axi-byi+h)]2 + [yi' - (bxi+ayi+k)]2]

Now if we find partial derivatives of E with respect to

a, b, h, and, kr-and set them equal to zero this will lead

to the following linear system of equations,

‘r§(xi2+yi2) ' 0 Exi yyi-1 [a1

0 §(xi2+ yiz) - gyi §Xi b

Exi - gyi n 0 h =

l gyi gxi 0 n . bk”    

E(xi'xi+yi'yi)

2(yi'xi-xi'yi)

' (5.12)

  L _ a -

by which we can find the transformation function parameters.



124

5.5. Results

To measure the performance of the proposed image

registration technique, two experiments were carried out

with two sets of satellite images as follows.

.5.5.1. Experiment 1

Images of Figures 5.8.a and 5.8.b have been used in

experiment 1 and are shown in Figures 5.14.a and 5.14.b.

These two images are our image 1 and image 2, respectively,

and have been used for registration. Figures 5.15.a and

5.15.b show closed boundary regions that have been used 'in

the registration process. The regions in each image are

labeled so that we can refer to them by their labels. Table

5.2 shows the coordinates of centroids of regions in image

1, coordinates of centroids of regions in image 2. before

refinement, and coordinates of centroids in image 2 after

refinement. Note that only those regions in image 2 that

have a correspondence in image 1 can be refined.
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(a)

 
(b)

Figure 5.14. The HCMM Day-Vis and Night-IR images.
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Figure 5.15. Closed boundary regions of images of 5.14.



 

Table 5.2.

Label Image 1

1 11.8,150.4

2 84.2,164.9

3 109.2,169.8

4 l34.2,170.4

5 130.6,194.3

6 l40.0,14l.2

7 158.6,87.0

8 223.1,61.3

9 42.0,19.7

10 61.6,35.9

ll 33.1,50.9

12 38.0,70.4

l3 50.4,192.0

l4 75.7,214.6

There are 11 regions which exist in both of

The centroids of
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Image 2

104.6,10.2

ll4.6,32.9

83.0,36.94

21.3,168.3

43.5,172.0

59.3,202.2

6.9.19.5

23.4,119.4

85.9,159.6

107.3,173.4

130.0,182.l

117.2,202.7

146.7,158.7

l78.8,l36.3

Centroids of HCMM DayLVis and Night-IR images.

Image 2

Refined

104.7,10.1

117.3,31.8

84.2,35.4

45.3,172.0

61.2, 202.0

25.2,119.5

87.8,159.6

109.2,172.8

131.9,181.9

118.8,203.0

148.9,158.4

the images.

these 11 regions from the two images are

used in the linear system of (5.12) and the parameters are

determined to be a=0.925, b=0.381, hs-58.0, k=50.9. From

a-mcose and b=msin8, we can also

m=l.000 and the

between the images.

equations of (5.10) we get

rotational difference

x' = 0.925x + 0.381y - 58.0

y.

where (x,y) and (X'IY')

-0.381x + 0.925y +50.9

coordinates

find the scaling factor

“825.892 radians

Applying these parameter values to

(5.13)

corresponding
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points in image 1 and image 2, respectively. These

equations provide the mapping from one image to another.

So, given the coordinates of a point in one image, we can

determine the coordinates of the same point in another image

using this transformation function.

Using the transformation formulas of (5.13) we resampled

the image of Figure 5.14.b to register with the image of

Figure 5.14.a (see Figure 5.16.a). Nearest neighbor

resampling technique was used because of its fast speed and

simplicity of programming. The resampled image 2 was

negated and overlaid with image 1 for clarity. This is

shown in Figure 5.16.b.

To measure the accuracy of this technique, the

square-root~error for each of the 11 pairs of corresponding

points in the two images were determined using,

Bi = {[xi' - (0.925xi+0.381yi-58.0)]2 +

[yi' - (-o.381xi+o.925yi+5o,9)12}0.5

The square-root-errors are shown in the rightmost column of

Table 5.3. Note that most of the errors are less than 1

pixel and the rest are between 1 and 2 pixels.
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(b)

Figure 5.16. Resampled and overlaid images.
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To find out how much improvement is made by refining the

regions, the computation of square-root-errors was repeated,

this time using coordinates of centroids before the

refinement. In this process, transformation parameters

m=l.001, 8:5.897, hs-55.6, and k=49.4 were obtained giving

square-root-errors shown in the third column of Table 5.3.

Note that when the regions are not refined, most of the

points have square-root-errors more than one pixel, while

when the regions are refined, most of the points have errors

less than a pixel.

Table 5.3.

of data set.

Square-root-errors for the 11 points

Corresponding points Square-root-errors

 

Image 1 Image 2 Not Refined Refined

1 8 0.96 1.71

2 9 1.29 0.92

3 10 0.45 0.73

4 11 1.77 1.72

5 12 2.10 1.61

6 13 0.24 0.58

9 1 3.10 0.99

10 2 1.51 1.06

11 3 2.51 0.74

13 5 1.98 1.18

14 6 0.58 0.57
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5.5.2. Experiment 2

In another experiment, images of Figure 5.17a and 5.17b

were used as image 1 and image 2 for registration. These

images are the same as images of Figures 5.9.a and 5r9b.

The images were segmented with the segmentation technique of

section 5.2. Then the closed-boundary regions were isolated

as shown in Figures 5.18.a and 5.18.b. The coordinates of

centroids of regions in image 1 and image 2 are shown in

Table 5.4. The coordinates of centroids of regions of image

2 after refinement are also shown in Table 5.4.

Using the centroids of corresponding regions as

corresponding points, and using the min-squared-error

criterion of' section 5.4, transformation parameters are

computed to be,

a=-0.0896: b=0.9l4; h=22.9; k=256.6: and

m=0.918; 8=4.615.

Using these transformation parameters, the image of

Figure 5.17.b was resampled by the nearest neighbor

technique to register with image of Figure 5.17.a. This is

shown in Figure 5.19.a. The resampled image was overlaid

with the image of Figure 5.17.a, as shown by Figure 5.19.b.
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(a)

 
(b)

Figure 5.17. The M58 and the TMS images.
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Closed-boundary regions of M55 and TMS images.
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Table 5.4.

Ima e 1

17.6,44.9

39.5,22.7

18.4,127.0

34.9,1ll.0

57.0,104.4

61.9,82.9

105.6,120.2

100.6,142.3

117.2,62.7

34.3,169.9

44.6,205.3

l95.6,200.8

212.0,147.2

164.6,134.9

218.6,56.7

162.0,30.2

images do not

right part.

The reason for poor registration is that the

(image

images.

2) is geometrically

transformation function is not able

register
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Image 2

44.6,23J§'

30.6,156.7

18.2,212.4

62.8,200.6

81.1,215.0

103.6,209.9

'81.5,183.4

98.0,141.8

116.0,91.2

168.8,107.1

197.1,148.2

219.2,151.3

167.9,199.4

140.6,177.7

153.4,56.4

134.1,49.6

129.9,29.6

l41.5,25.6

129.1,14.1

116.7,12.8

103.9,17.9

210.8,37.8

190.2,13.7

111.2,210.6

t0

Centroids in M55 and TMS images.

Image 2

Refined

44.4,23.7

30.8,156.5

81.5,183.2

98.44,142.1

116.4,91.2

l68.1,107.5

197.1,148.2

168.9,199.2

153.1,56.9

'134.5,49.7

130.0,29.4

116.6,12.4

211.6,37.5

193.2,17.7

especially well in the upper

TMS image

distorted and a linear

register the two

The TMS image is a simulated Landsat-D image which

actually has been obtained by an aircraft. The altitude of
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(b)

Figure 5.19. The TMS image resampled and overlaid.
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the aircraft was 2750 meters with off-nadir look angles in

the range of 1 29 degrees [Richard 78, Teillet 81]. If the

aircraft changed its attitude even by 1 degree, pixels in

the image borders would be shifted by 78 meters or 2.5

pixels.

The following polynomials of order 2 were uSed as

transformation functions,

2 2

2 (5.14)
x'=a0+a1x+a2y+a3xy+a4x +a5y

2
y'=b0+blx+b2y+b3xy+b4x +b5y

12 unknown parameters are involved here which were

estimated using the 14 known corresponding control points

from the two images. Again by the min-squared-error

criterion, the parameter values were estimated.

a0=229.9; al=-0.028; a2=-0.887;

a3=-0.00034; a4=0.00001; a5=0.0002;

b0=6.7; b1=0.845; b2=0.025;'

b3=0.00000; b4=0.00020; b5=-0.00070.

The image of Figure 5.17.b was resampled using the

polynomial transformation function of (5.14) with the above

parameter values. In Figure 5.20, the resampled image is

overlaid with the image of Figure 5.17.a. As can be seen,

the registration result is improved. Table 5.5 shows the
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square-root-error for the known 14 corresponding points in

the two images, using the polynomial mapping function of

(5.14) for both before and after refinement. The parameter

values that were computed above were used for the case in

which the regions are refined. Using the coordinates of

region centroids before the refinements, the following

parameter values were obtained.

a0=231.2; a1=-0.032; a2=-0.882;

a3=-0.00038; a4=0.00005; a5=-0.00003;

b0=6.1; bl=0.874; b2=0.027;

b3=-0.00016; b4=0.00001; b5=0.00066;

Note the reduced square-root-errors for the case where the

regions are refined in Table 5.5. The reason for obtaining

larger errors for points near the borders of the image is

that areas near image borders have larger geometric

distortions. The registration accuracy can be improved

further if the aircrafts altitude and attitude is known for

the period the image is aquired. Then the TMS image can be

corrected before the registration is attempted.

This example shows that the proposed region matching

technique can be applied to registration of images that have

small non-linear geometric distortions too. However, the

subpixel accuracy can not be guaranteed any more because,
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Figure 5.20. Registration by polymonial transformation.

due to geometric distortions, the centroids of

corresponding regions may not correspond to each other

any more,

depending on the amount of distortion, it might not be

possible to obtain the large number of corresponding

control points needed for accurate parameter estimation,

and

selection of the correct polynomial transformation

function becomes very important and cannot be found

easily. In [Leckie 80], a number of polynomials are



5.5

fir

and

Table 5.5.

of data set.

Corresponding Points
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Square-root-errors for the 14 points

Square-root-errors

Image 1 Image 2 Not Refined Refined

1 23 7.57 5.33

2 22 3.26 4.43

3 20 1.73 1.56

4 17 1.21 1.17

5 16 1.02 0.97

6 15 0.75 0.71

7 9 1.16 0.47

9 10 0.61 0.22

11 l 3.04 3.41

12 2 7.27 3.59

13 7 7.35 2.16

14 8 3.97 0.40

15 13 4.51 1.22

16 11 1.25 0.69

tried experimentally and the one giving the smallest

root-mean-square error is selected for registration. For ‘

images that have non-linear geometric distortions but

don't have rotational or ‘scaling differences, a more

suitable registration technique is described in Chapter

6.

.3. Summary of Results

Two sets of data were used in the experiments. In the

st experiment, two images with translational, rotational,

intensity differences were used. The registration
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accuracy is summarized in Table 5.3. For most areas,

subpixel accuracy was obtained. There are some areas,

however, that have errors between 1 and 2 pixels. The

errors could be due to the fact that the images have been

obtained from slightly different viewpoints, causing small

geometric distortion between the images.

In the second experiment, two images with translational,

rotational, scaling, and small geometric distortions were

used. The registration accuracy is shown in Table 5.5.

Although subpixel accuracy was obtained in some areas of the

image, in most parts, the errors were larger than a pixel.

This shows that if the proposed technique is applied to

registration of images with unknown geometric distortions,

the subpixel accuracy cannot be guaranteed any more. The

technique of the next chapter is more appropriate for

registration of images with geometric distortions.

The computation time involved in registration of two

images of size 240x240, (all images in this chapter are of

size 240x240) includes times for,

l. Segmentation of the images, about 3 minutes,

2. Determination of region correspondences, about 10

minutes,
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3. Determination of transformation function parameters,

about 0.2 minutes, and

4. Resampling of image 2, about 7 minutes,

on a PDP 11/34 computer.

The resampling is time-consuming because equations of

(5.10) or (5.14) must be evaluated N times, where N is the

number of pixels in image 1. Determination of region

correspondences also takes a great deal of time because mn

label probabilities must be -estimated in each iteration,

where m and n are the number of regions in image 2 and image

1, ' respectively. Depending on the initial label

probabilities and neighbor contribution factors, label

probabilities will take a different amount of time to

converge. To save some computation time, the relaxation

process was stopped when the largest label probability for

every object passed 0.95. At this point it is very unlikely

that labels change. For regions in Figures 5.15.a and

5.15.b, 41 iterations and for regions in Figures 5.18.a and

5.18.b, 57 iterations with speed-up factor s=20 were needed

to obtain the largest label probability for each object to

pass 0.95.



Chapter 6

REG I STRA’I‘ I ON 01" IMAGES FROM A THREE-D IMENS IONAL SCENE

6.1. Introduction

In Chapter 5, registration of images from two-dimensional

scenes was discussed. It was assumed that the distances of

objects to the camera are much larger than~ the heights of

objects in the scene, it could be assumed that the images do

not have geometric differences. If the distances of some

objects to the camera are not large compared to their sizes,

then two images obtained at different viewpoints from the

scene will have geometric differences.

In this chapter, registration of images with geometric

differences will be discussed. It is assumed that the

images are obtained at small viewpoint differences from the

scene so that the amount of geometric difference between

them is small. Also it is assumed that the images do not

have rotational and scaling differences.

142
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In this chapter, in section 6.2, the problem of

determining the position of corresponding points in stereo

images are discussed. In section 6.3, sources causing the

mismatches in the window search process are identified and

counter measures are given to avoid them. In section 6.4,

the three-dimensional position. of points in a scene are

computed using the position of corresponding points in the

images and the camera parameters. The results of the

proposed approach on in-door and out-door scenes are shown

in section 6.5. Finally in section 6.6 the validity of the

results is discussed and some further suggestions for

improvement are given.

6.2. The Correspondence Problem

Determination of corresponding points in stereo images

has been studied by many groups. Marr-Poggio-Grimson have

selected zero-crossings that are oriented non-horizontally

as elements for matching [Marr 79, Grimson 80].

Zero-crossings are used to locate intensity changes in an

image and are defined as the zeros of second directional

derivatives of intensities in an image. Zero-crossings have

been defined for masks of four sizes in [Marr 79].

Zero-crossings from larger masks are used to determine
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global correspondences while zero-crossings from smaller

masks are used to find local correspondences. Global

correspondences, have been used to resolve ambiguities among

local correspondences.

In other studies, Baker-Binford-Arnold have taken high

gradient edges as elements for matching [Baker 81, Arnold

78], while Hannah-Moravec-Nevatia have taken windows in high

information areas of images for matching [Hannah 74, Moravec

81, Nevatia 76]. The shortcoming of window searching is the

need to identify low variance areas of an image before

searching is carried out, since windows in low variance

areas of an image do not provide reliable matching.

In the following, a technique is given which segments the

images and uses windows centered at region boundaries as

elements for matching. Using the image segmentation

technique of section 5.2, the images are first segmented.

Since the segmentation technique is based on edge

information in the images, and since edges in stereo images

mostly stay unchanged from one image to another, the

obtained region boundaries in the two segmented images will

mostly stay unchanged.

Def. 6.1. Baseline: A line connecting the lens center of

camera 1 to the lens center of camera 2 (see Figure 6.1).

#
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Def. 6.2. Match line: Any line in the images parallel to

the baseline. If the images are obtained by a well

balanced camera system, any row in the images is a match

line (see Figure 6.2). #

If two balanced, equal focal length cameras are arranged

with axes parallel (see Figure 6.1), then it can be assumed

that they share a single common image plane. Any point in

the scene will be projected into two points on the joint

image plane. If we connect these two points, the obtained

line will be parallel to the cameras' baseline. This shows

that given a point in one of the images, we can determine

its corresponding point in the other image by searching

along the line passing through the given point and parallel

to the baseline.

While following the same region boundary in the two

images on a given match line, we first search for the

position of the point on the boundary of the left image in

the right image, search for the position of the point on the

boundary of the right image in the left image. Among the

two matches, the one with the higher match rating is taken.

as the true match. Points on region boundaries are searched

twice, once in the left image and once in the right image.

This is needed to avoid selection of occluded points.
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Figure 6.1. A balanced stereo camera model.
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Figure 6.2. Locating right image boundary in left image.
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Figure 6.2 shows the search process for determining the

position of points on the region boundary of the right image

in the left image. Note that when following the boundary

line, a search is needed only in a small neighborhood around

the previous corresponding point (the search domain in

Figure 6.2).

If a-priori knowledge about geometries of the scene and

cameras are known, we can determine how large a search

domain should be taken by simple triangulation. Figure 6.3

shows images of an object in two stereo cameras. Assuming

point A on the object projects to points p and p' in the,

right and the left images, respectively, then if q is a

neighbor of p in the right image, we should determine the

domain of search in the left image so that the point

corresponding to q is not missed.

Referencing Figure 6.3 we can write,

AB/BC=AF'/F'F=h/d

or BCsABd/h=(h-h')d/h

A150 BH/DG‘HF/GF8h'/f

Ot DG-BHf/h'8df/h'

A150 CH/EG=HF/GF=h'/f

and since CH=d-BC=d-(h-h')d/h

we can write EG=CHf/h'=[d-d(h-h')/h]f/h'



148

 

 

 
 

 

 

  
Figure 6.3. Stereo images of a three-dimensional scene.

Then DE=DG-EG=df/h'-[d-d(h-h')/h]f/h'

=(f/h')[d(h-h')/h] (6.1)

DE is the distance between points p' and q'. f and d are

the parameters of the camera system, and h and h' depend on

the characteristics of the scene such as depth, size, and

shape of objects in the scene.

For cameras with f=50 mm; h=30d: and h'=0.9h we find

DE=0.185 mm

If the images are recorded on 35 mm films and then digitized

with each row scan digitized to 512 values, we get

DE=0.185x512/35=2.7 pixels

This shows that the point corresponding to q will be within
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3 pixels from the point corresponding to p. So, if point p'

in the left image corresponds to point p in the right image,

and if q is a neighbor of p in the right image, then (the

point which corresponds to q can be determined by searching

along the match line of q and 3 pixels from either side (of

the column number) of point p'. Note that in this example

we need to carry out only 7 window searches for

determination of each corresponding point.

This determines the position of corresponding points on

region boundaries. If objects in the scene are known to

have planar surfaces, then the position of corresponding

points inside regions can be obtained by linear

interpolation of the position of points on the region

boundaries. Assuming points A', B', C', and D' correspond

to points A, B, C, and D, respectively, on the boundaries of

two corresponding planes, then point E, which is at the

intersection of lines AC and BD, has its correspondence in

the other image at the intersection of lines A'C' and B'D'

(see the Appendix for proof). So, to estimate the position

of .E', which corresponds to E, we first select A, B, C, and

D. Then using their corresponding points A', B', C', and D'

in the other image, we determine the intersection of lines

A'C' and B'D', see Figure 6.4.

Note that by doing so, a great deal of window searches are
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Figure 6.4. Estimation of match points inside regions.

avoided. This will result in considerable computational

savings. Also, since window searching in homogeneous areas

is unreliable, a number of possible mismatches are avoided.

If objects in the scene do not have planar surfaces but

their geometric models are known, then by fitting

appropriate geometric models to points on region boundaries,

the position of the rest of points on an object can be

recovered.
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6.3 Avoiding Mismatches

Window search is the key operation in determination of

corresponding points in two stereo images. There are many

sources causing mismatches during the search. The main

sources are identified as:

l. Occluded points,

2. Geometric differences,

3. Homogeneous areas,

4. Window size, and

5. Similarity measure.

In the following, each source is discussed in detail and

counter measures are proposed for avoiding it.

6.3.1. Occluded Points

Def. 6.3. Occluded points: Points which can be seen from

only one of the cameras. #

If a window centered at an occluded point is taken from

one image and is searched in the other image, a mismatch

will be obtained, because the point does not‘ exist there.

Figure 6.5.b depicts this situation. Point S on the object

can be seen from the left camera but it cannot be seen from

the right camera. So, if a window centered at point 5 in
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the left image is taken and a search is carried out in the

right image a mismatch will be obtained.

 

 
(a) (b)

Figure 6.5. Image of an object formed by stereo cameras.

(a) Case where all feature points are visible in both

images. (b) Case where some feature points are occluded.

To avoid mismatches caused by occluded points, we use the

following fact. Referencing Figure 6.5.b, if point S on the

boundary of a region in the left image does not exist in the

right image, then on the same match line, the point on the

corresponding region in the right image (image of point T)

can be seen in both of the images.
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So, instead of selecting all points from one image for

searching, we select points from both images. On each match

line, and for each corresponding region, we first take the

window centered at the left image boundary and search it in

the right image, then take the window centered at the right

image boundary and search it in the left image. 'Among the

two matches, the one with the higher match rating is taken

to be the true one. This reduces the number of mismatches

due to occluded points.

6.3.2. Geometric Differences

Windows centered at region boundaries contain more

information than windows centered at points inside regions.

This, however, does not necessarily imply that matching on

region boundaries will be absolutely error free. Geometric

difference between the images is a major source of

mismatches when searching along region boundaries. Figure

6.5 depicts this situation. Note that the background to the

left of the object when viewed from the left camera

corresponds to area A', while this same area viewed from the

right camera corresponds to area A. Now if A and A' are.

considerably different, windows centered at region

boundaries that should match may not correspond to each

other, because they contain different parts from the
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background causing a low similarity measure for the windows.

To avoid this, window shapes should be taken in such a way

that they cover only parts from the object and not from both

the object and the background. Figure 6.6 compares the

traditional and the new window shapes.

k“

background   background
(a) (b)

Figure 6.6. (a) Traditional and (b) new window shapes.

Implementation of the new window shape is easy. Once the

boundaries of regions are determined, the background can be

replaced by zeros. When cross-correlation is computed, only

non-zero pixels are used in the computation. Note that the

regions should not contain zero-valued pixels (if they do,

replace the background by a negative value and take

non-negative values for determination of cross-correlation).
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6.3.3. Homogeneous Areas

If a selected window belongs to a homogeneous area, it

may not contain enough information to distinguish it from

other windows, and a mismatch may occur. Fortunately, by

taking windows centered at region boundaries, the occurrence

of such cases is very rare. However, if selection of a

homogeneous window is inevitable, there are two ways to

recover a possible mismatch.

1) If geometric models of objects in the scene are known and

the objects in the images can be recognized, then by

fitting the appropriate geometric model to those boundary

points that have high match ratings, the rest of the

points on the object can be recovered.

2) Since depth on an object varies smoothly almost

everywhere [Marr 76], if two neighboring points on the

boundary in one image fall apart by more than a threshold

value in the other image, then it is likely that a

mismatch has occured, and the position of the point can

be approximated by linear interpolation of the position

of its neighboring points.
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6.3.4. Window Size

Window size is a factor which can also affect the

accuracy of the search. If the images do not have geometric

differences, then the larger the window size the more

accurate the search. But in images with geometric

differences, larger windows may not necessarily imply more

accurate matching. On the other hand if the windows are too

small, they will not contain enough information to carry out

a reliable search.

As far as the speed is concerned, the smaller the window

the faster the search. The question then becomes, what is

the smallest size window which can hold enough information

to carry out a satisfactory search? It is clear that

depending on the area_at which the search is carried out, we

may need different window sizes. For example, a low

variance area requires a larger window than a high variance

area.

Since an image may contain both low variance and high

variance areas, a dynamically varying window size seems to

be the best. In [Hannah 74, Yakimovsky 78], dynamically

varying window sizes are used. To determine window size for

a given location (x,y), correlations of the window centered
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at (x,y) with windows centered at its neighboring points are

determined (this process is called auto-correlation). A

good window size produces a local correlation peak at (x,y).

Otherwise, window size is increased until the window at

(x,y) extends to a high variance area where it would have

low correlation values with its neighboring windows, and so

a local peak is detected. Determination of window size in

each step, however, brings overhead to the already slow

search process.

6.3.5. Similarity Measure

It has been experimentally shown that cross-correlation

provides a higher accuracy than the sum of absolute

differences as the similarity measure [Svedlow 76]. Is I

cross-correlation the best similarity measure in window

searching? There are other similarity measures such as

invariant moments and image transform coefficients that

could be used as well. Since invariant moments or image

transform coefficients are information preserving, if a

sufficient number of them are taken, the original windows

'can be reconstructed. It could be that invariant moments

and image transform coefficients provide a better similarity

measure than the cross-correlation in the window search

process.
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The performance of cross-correlation versus invariant

moments and image transform coefficients is not known. No

attempt has been made to investigate them here either.

However, the author feels that these similarity measures may

provide a more accurate tool for window matching and will be

studied in future research.

6.4. Computation of Depth

Assume that the camera model of Figure 6.1 is available.

Ideally, there exist two numbers, a and b, such that

agl=g+bgz, where gl and 22 are unit vectors pointing from

the lens centers of camera 1 and camera 2 to point 1,

respectively. g is a vector of length d pointing from the

lens center of camera 1 to the lens center of camera 2. If

the two rays 21 and 32 intersect, we can obtain the

coordinates of point X by computing gl+agl or gz+bgz where

91 and 92 are coordinates of the lens centers of camera 1

and camera 2, respectively. Because of various errors, the

_two rays may not intersect, and a reasonable way to estimate

3 is to place it midway between gl+agl and gZ+b22, or

!=(gl+agl+52+b22)/2 (6.2)
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When the coordinates of two corresponding points 31 and

32 are known, then we can compute 218(L1+yl)/||Ll+yl|| and

gZ=(LZ+yZ)/||L2+32||, where El and E2 are vectors on the

optical axes of camera 1 and camera 2, respectively, as

shown in Figure 6.1. So,' if we know 21, 22, and the

coordinates of the lens centers, then the coordinates of

points in three dimensions can be obtained, but only if we

know the values of a and b.

a and b can be estimated by using corresponding points in

the two images and minimize

E=||gi+agi-(gz+bgz)||2

Values of a and b which minimizing E are as below [Duda 73],

a=[gl g-(gl 22)(gz g)]/[1-(gl 32)2]

b=[(gl 32)(21 g)-(32 g)]/[1-(gl 22)2] (6.3)

where g=32-gl.

In summary, if the coordinates of the lens centers, £1

and £2 and the orientation and the focal length of the

cameras, El and 92 are given, to determine the position of

points in three dimensions we

1. Determine the corresponding points 31 and 12, in the two

images using the procedure of section 6.2.

2. Then determine gi=(§i+yi)/||Li+gi||; i=1,2.
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6. Then estimate a and b from (6.3).

4. Finally compute the coordinates of point 3 (whose

projections in _the two images are 31 and 32) in three

dimensions from (6.2).

If the camera parameters are not given but the actual

position of some points in the scene are known, the camera

parameters can be estimated [Gennery 79, Haralick 80a].

6.5. Results

To evaluate the performance of the proposed stereo image

registration technique, four sets of stereo images as shown

in Figures 6.7, 6.8, 6.9, and 6.10 were used. Figure 6.7

shows a number of objects (a box, a reel of tape, a belt, a

wad of paper, a piece of chalk, a roll of film, and a pipe

cap) arranged on a textured table. The lighting of the

scene was carefully adjusted to avoid any shadows from the

objects.

Since a stereo camera system was not available, the

images were obtained by a single camera but with

displacement of about 7 cm horizontally and parallel to the

background. The distances of objects to the baseline were
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on average of l m. The background was marked with small

circles so that the two images could be aligned by

registering the background. Alignment of the images is

necessary before disparity measurement is done, because a

stereo camera system was not used to obtain the images.

 

(b)

 

Figure 6.7. Stereo images of objects on a textured table.

Figure 6.8 is a pair of aerial images taken from a

residential area by a low altitude aircraft. The

displacement of the aircraft between the time the images

were obtained and the distance of the aircraft to the scene

are not known. The images were taken on a sunny day, and as

a result shadows from buildings, trees, and bushes are
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present in the images. The shadows differ significantly in

the two images.

 

 

Figure 6.8. Aerial stereo images of a residential area.

Figure 6.9 shows a scene with a truck present and Figure

6.10 is a garden scene. Images of Figures 6.9, and 6.10

were taken on a cloudy day so that no shadows are present.

The displacement of the camera for both images was about 1

m. The above four sets of data are used for stereo image

registration. In the following, after corresponding points

in a pair of stereo images are determined, their horizontal

difference, known as the disparities, are computed for the

purpose of depth perception.
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(a) (b)

Figure 6.9. Stereo images of the truck scene.

  
(b)a

Figure 6.10. Stereo images of the garden scene.
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6.5.1. Disparity on Region Boundaries

Since the images were not obtained by a stereo camera

system, there was a need to align them to make them look as

if they were. To do this, some points that are very far to

the viewer were selected by hand and were registered. By

registering the selected points, the disparity at those

points are set to zero, making the disparities of other

points in the scene appear smaller than what they should be

and the computed disparities are relative to the disparities

of the registered points. So, it should be noted that the

disparity values computed below are relative to the

disparity of the registered points.

In the following, one image in each set is segmented

according to the procedure of section 5.2.1. Then an

attempt is made to locate points on the obtained region

boundaries in the other image. The original design requires

segmentation of both images and locating region boundaries

of the left image in the right image, and locating region

boundaries of the right image in the left image. This

scheme, however, has been very difficult to implement on the

available PDP 11/34 computer with the very limited internal

memory. So here, only one image is segmented and a search

is carried out in the other image for positions of points on

region boundaries.
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After an image is segmented, regions with perimeter size

smaller than 30 pixels are eliminated from the image,

because small regions will not contain enough information to

carry out a reliable search. Regions belonging to the

background are removed from the image also (background is

replaced by zeros) so that windows centered at region

boundaries will contain only parts from the objects.

Figures 6.11, 6.12, 6.13, and 6.14 show images of Figures

6.7.b, 6.8.b, 6.9.a, and 6.10.a after segmentation, removal

of regions with boundaries smaller than 30 pixels, and

removal of the background. It does not matter which one of

the two images (the left image or the right image) is

segmented.

Window size 16x16 and search domain size 3x7 were

selected. Three rows rather than 1 row were selected for

the search because a stereo camera has not been used to

obtain the images. When putting the pictures down for

digitization, a slight rotational difference between the

images appears, as if the camera's displacement hasn't been

'horizontal. Because two-corresponding points in the two

images might not fall on the same row, the neighboring rows

also need to be searched. It is assumed that most

neighboring points on the region boundaries do not have
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Figure 6.11. Segmentation of image of Figure 6.7.b.

 

Figure 6.12. Segmentation of image of Figure 6.8.b.
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Figure 6.13. Segmentation of image of Figure 6.9.a.

 
Figure 6.14. Segmentation of image of Figure 6.10.a.
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disparity differences of more than 3 pixels so 7 column

places have been taken for the search (3 pixels at either

side of the previous corresponding point's column number).

For the initial point on the boundary of a region, a 5x33

search domain was selected. It has been assumed that

maximum disparity in the images is 16 pixels. By this, a

pair of corresponding points in the two images becomes

known. Then the search domain is reduced to 3x7 areas for

the rest of the points on the region boundary.

Since a sharp change in depth in the scene causes the.

disparity of two neighboring points in the images to differ

by more than 3 pixels, a search in a 3x7 area will result in

a mismatch. A mismatch usually has a low cross-correlation

value. Therefore, if in the window search process the

cross-correlation value for the matched windows fall below

0.6, the search is repeated, this time in a 3x17 area.

After the position of corresponding points in two stereo

images are determined, the horizontal differences between

them are computed and plotted in a map called the disparity

map. The larger the disparity, the closer the point to 'the

viewer. Disparity on region boundaries of Figures 6.11,

6.12, 6.13, and 6.14 are shown in Figures 6.15, 6.16, 6.17,

and 6.18, respectively.- The larger the disparity, the

darker the point.
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Figure 6.15. Disparities on region boundaries of 6.11.

Arrows show the mismatches.

 

Figure 6.16. Disparities on region boundaries of 6.12.

Arrows show the mismatches.
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Figure 6.17. Disparities on region boundaries of 6.13.

Arrows show the mismatches.

 

 

 
Figure 6.18. Disparities on region boundaries of 6.14.

Arrows and points in window A show the mismatches.
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6.5.2. Distinction of Objects and Background

The computed disparities of Figures 3.15, 3.16, 3.17, and

3.18 belong to points on region boundaries on the object

side and not on the background side. The notion of object

and background, however, is arbitrary. After segmenting an

image, we can assign points falling above the threshold

value to the background and points below the threshold value

to the objects, or vice versa. In Figure 6.13, the

background is assigned to values above the threshold value.

' We can assign points below the threshold value to the

background also. This is shown in Figure 6.19. Disparities

computed using Figures 6.9.b, and 6.19 are shown in Figure

6.20.

The disparity on the boundary of the truck in Figure 6.17

shows the disparity of the trees behind the truck, while the

disparity on the boundary of the truck in Figure 6.20 shows

the disparity on the body of the truck. Since the truck and

the trees behind it are at different depths from the viewer,

it is natural to obtain different disparities on different

sides of the boundary. The disparity around the boundary of

the truck for Figures 6.17 and 6.20 are enlarged and shown

in Figures 6.21.a and 6.21.b.
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Figure 6.19. Same as Figure 6.13 but the role of

objects and the background is interchanged.

£2
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Figure 6.20. Disparities on region boundaries

of image of Figure 6.19. Arrows show the mis-

matches.



Figure 6.21. Dispari

(a) on the tree side and (b) on the truck side.

ty on region boundaries of the truck

(b)
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This experiment shows the necessity for separating the

object and the background in the window search process. To

show how much improvement is obtained by applying this idea,

another experiment was carried out. The region belonging to

the building roof-top at the middle left side of the scene

in Figure 6.12 is used. First, a search is carried out for

points on region boundaries with windows containing areas

both. from the roof-top and its background. The disparities

are shown in Figure 6.22.a. Then disparities were computed

for the same roof-top boundary with the background removed.

The disparities are shown in Figure 6.22.b. In this

experiment, when the background was removed, all computed

disparities were consistent with the roof-top's shape, while

when the background was present, most of the disparities

were computed wrongly.

6.5.3. The Mismatches

The mismatches obtained in the window search are

indicated by arrows in Figures 6.15, 6.16, 6.17, and 6.18.

Mismatches in these images are due to 1) occluded points, 2)

homogeneous areas, and 3) scene differences.
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It is possible to avoid most mismatches due to occluded

points by selecting points from both images for searching,

as mentioned in section 6.3.1. For example, the mismatches

shown by A in Figure 6.18 belong to an area which does not

exist in the right image. Since windows were taken from the

left .image (Figure 6.14) and the search was carried out in

the right image (Figure 6.10.b) where area A does not exist,

mismatches were obtained. Mismatches due to occluded points

can be avoided if we segment the right image (See Figure

6.23) and. take windows centered at the obtained region

boundaries and search them in the left image. Figure 6.24.a

shows the disparities in area A when windows were selected

from the left image and the search was carried out in the

right image, and Figure 6.24.b shows the disparities when

windows were selected from the right image and searched in

the left image. The cross-correlation values when the

points were selected from the right image and searched in

the left image were consistently higher than when points

were selected from the left image and searched in the right

image, showing that disparities in Figure 6.24.b are more

reliable than disparities in Figure 3.24.a. Actually points

in Figure 3.24.a are occluded points, and they should be

avoided in window searching. Selecting points from both

images for searching is a mechanism for discovering this.
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Figure 6.23. Segmentation of image of Figure 6.10.b.

Mismatches due to homogeneous areas are something that

cannot be avoided by the proposed approach unless a test for

homogeneity of each window is carried out, which makes the

search process very slow. If the model for an object in the

scene is known, by identifying the position of a number of

points on the object, we can register it with points on its

model and recover the position of the rest of points on the

object. For example, area A in Figure 6.15 is due to the

homogeneity of the surface of the box. This error can be

recovered if the box can be matched to its model (see

section 6.6.1 for discussion about model matching).
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Mismatches that occur in Figure 6.16 are mostly due to

image differences. Trees with shadows look very different

from one viewpoint than another. Errors due to shadows are

very difficult to recover unless their properties are well

understood and predicted (see section 6.6.2 for a discussion

of shadows).

Noisy' mismatches can be corrected by smoothing the

disparity values. For example, if disparity on a boundary

changes sharply and then returns to the previous value, a

possible mismatch is indicated, and its disparity value can

be replaced by the median of the disparity of its n

neighboring points. For example, Figure 6.25.a shows a

window around area B in image of Figure 6.15. The disparity

on the boundary of the wad of paper changes from 9 pixels

(the values are multiplied by 10 for display purposes) to 1

pixel and then returns to 9 pixels again. This is a

mismatch which can be eliminated by smoothing the

disparities with a window of size 5 pixels (the disparity at

each point is replaced by the median disparity of 5 pixels,

2 to its left and 2 to its right). After smoothing

disparities of Figure 6.25.a, with a window of size 5,

disparities of Figure 6.25.b are obtained.



Figure 6.25. Disparity (a) before and (b) after smoothing.
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6.5.4. Disparity Inside Regions

In the preceding sections, disparity on the region

boundaries were determined, leaving the disparity inside

regions. Sometimes it is necessary to determine the exact

three-dimensional position of a point on a homogeneous

surface, for example, for drilling a hole. If the surface

is known to be planar, then the position of points on the

surface can be approximated by interpolating the positions

of points on the boundary of the surface, as shown in Figure

6.6. For example, the box in Figure 6.7 has planar

surfaces. To obtain faces of the box, we must segment the

image of the box more finely. Images that contain more than

two types of regions cannot be segmented satisfactorily by

one threshold value. An image, however, can be segmented

recursively by thresholding until a satisfactory result is

obtained.

When the image of Figure 6.7.b was segmented, regions of

Figure 6.11 were obtained. Each region in the segmented

image can be tested to see if it contains more than one type

of region by looking at its intensity variance. If the

variance of a region is above a threshold value, the region

can be assumed a new image for segmentation. This process

can be continued until variances of all regions fall below a

threshold value. For example, the region corresponding to
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the box is shown in Figure 6.26.a. This is assumed to be a

new image. It is segmented according to the procedure of

section 5.2.1, giving results shown in Figure 6.26.b.

Again, regions smaller than 30 pixels perimeter are

eliminated, and the boundary of the remaining region is

combined with the boundary of the box previously obtained

(c)

Figure 6.26. (a) Image of box (b) segmented (c) its edges.

(Figure 6.26.c).

   
(a) (b)

The disparities on edges of the box are computed and

shown in Figure 6.27.a. The disparities on faces of the box

are computed by linear interpolation of the disparity of

four points that are to the left, to the right, above, and

below the point and on the boundary of the box. The

disparity of points on faces of the box are shown in Figure
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6.27.b.
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Figure 6.27. Disparity (a) on edges, (b) on faces of box.

If the objects in the scene do not have planar surfaces,.

the position of points inside regions cannot be determined

by linear interpolation. However, if the models for an

object in the scene are known a-priori, then by matching the

model to the points from the object, the position of points

on faces of the object can be recovered (see model matching

in section 6.6.1).
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6.5.5. Summary of Results

Four sets of data were used for registration of stereo

images. Disparities on region boundaries were determined,

and improvements over the traditional window searching were

demonstrated. The computed disparities, however, were not

error free. Most of the errors that were obtained were in

the image of Figure 6.16 due to image differences from

shadows. Table 6.1 summarizes the accuracy of the proposed

registration technique on the four sets of data.

The computation time for a search domain of size 5x33

(for establishing the first corresponding point) was 18

secs, for a search domain of size 3x17 (this is when the

cross-correlation value is smaller than 0.6) was 6 secs, and

for a search domain of size 3x7 (when cross-correlation

value is larger than or equal to 0.6) was 2 secs. Total

computation time needed to determine disparity on' region

boundaries of images of Figures 6.11, 6.12, 6.13, and 6.14

on a PDP 11/34 computer are shown in Table 6.1.

The disparity maps of Figures 6.15, 6.16, 6.17, and 6.18

show the relative depth of points on the boundaries of

objects in the scene. The depth values determined in this

manner carry valuable information about positional
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Table 6.1. Speed and accuracy of stereo registration.

   

Image from Computation Time % of Mismatches

Figure 6.11 1 hr 11 mins 2%

Figure 6.12 43 mins 28%

Figure 6.13., 1 hr 16 mins 5%

Figure 6.14 56 mins 8%

relationships between objects in the scene, such as in front

of, behind, nearer than, and farther than. Positional

relations are constructs by which constraint among objects

in an image can be defined to utilize contextual information

for interpretation and description of the images [Baird 74].

In the scene of Figure 6.7, if we look at one of the

images, we can conclude that the roll of film is behind the

belt because the film is occluded by the belt. But we can't

tell whether the roll of film or the reel of tape is farther

from the viewer. By looking at the disparity map of Figure

6.15 we find out that the roll of film is farther from the

viewer than the reel of tape. If we observe images of

Figure 6.7, stereoscopically, we can perceive depths of

objects in the scene and verify the correctness of the

disparity map of Figure 6.15.



186

In the aerial image of Figure 6.8, it is not evident

which building in the scene is the tallest. We can find the

tallest building, however, by refering to the disparity map

of Figure 6.16. The two swimming pools that could not be

distinguished from the buildings can easily be recognized as

swimming pools by refering to the depth map of Figure 6.16.

These are some of the examples in which disparity maps

can help understand the images better. Image understanding

is the process of interpreting intensity values of images to

descriptions that are understandable by humans. One of the

factors that can greatly help understand images better is

the positional relations between objects in the scene, and

the depth map is a tool providing this information.

6.6. Further Improvements

The disparity maps that were obtained in Figures 6.15,

6.16, 6.17, and 6.18 involve some errors (areas shown by the

arrows). Some further improvement of the technique is

required before it can be used reliably.

For indoor scenes where the lighting and arrangement of

objects in the scene can be planned beforehand, a stereo

image registration technique assisted by model matching
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seems to be appropriate. Here, if models of objects in the

scene are known, the task would be to recognize the objects

and then to locate a number of prespecified points, such as

corners, marked points, etc. on the object. By registering

the object with the model, the position of the rest of the

points on the object can be determined. Model matching is

discussed in section 6.6.1.

Most mismatches obtained in Figure 6.16 are due to

shadows of trees and buildings. These shadows appear

different from one view to another and consequently cause

mismatches. Model matching might be able to recover some of

these errors, but since modeling any outdoor scene is not

possible presently, understanding shadows and their

relations to objects could help us carry out a more reliable

search. Shadows are discussed in section 6.6.2.

Reflection is another factor which should be considered

in stereo image registration. Reflection of an object on a

shiny table, reflection of a house on a quiet pond,

reflection of an object in a mirror or on a shiny metal

surface, are examples where we need to interprete the

computed disparities. Does a computed disparity correspond

to the disparity of a point on the table, pond, mirror, or

to points on the objects themselves, or correspond to

neither of them? Section 6.6.3 discusses the reflections.
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6.6.1. Model Matching

In this chapter no a-priori knowledge about objects in

the scene has been used. But if some knowledge about the

scene, such as object arrangements or object geometries are

known, most often we can register stereo images more

accurately, and sometimes even faster.

If the geometry is known of objects present in the scene

in the form of_ descriptions or models, then the problem

would be to recognize objects in the scene and determine the

position of a few points on each object. Positions of the

rest of points on the object can be determined by fitting

the right model to the available points.

In Figure 6.15, error A can be overcome by matching the

image of the box to its model. This is conditioned upon the

capability of recognizing the box correctly. Recognition of

three-dimensional objects is by itself a major problem in

computer vision. If objects in the scene are limited to

polyhedrons, and are well separated in the scene, techniques

are already available to recognize them [Shirai 71, Nagao

73, Shapira 77, Oshima 79].
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One way to recognize an object is to compare it to the

models already stored in the computer and determine the

model most similar to it. To be able to do so, we need the

capability for generating models of objects. A model

1) should be easy to generate, 2) should provide’ sufficient

information about the object, 3) should work on a large

class of objects, and 4) should be position-invariant.

Underwood has described a technique to generate models of

objects that have planar surfaces [Underwood 75]. In this

technique, a model is generated for a given object by first

obtaining images from all around the object. Then planar

surfaces of the object are determined by following high

gradient edges in the image and finding closed boundaries.

The model is then represented by a linked list in such a way

that a node in the list shows a surface on the object, with

information about the surface stored in the node. Two nodes

in the list are linked only if the two surfaces that

represent the two nodes are adjacent.

In [Agin 76, Nevatia 77] a technique to represent objects

with conical parts in a computer is given. In this

technique, the three-dimensional position of points on the

object is determined by a laser range finder. The object is

then segmented into conical parts. Each part is represented

by its axis and planar cross-section normal to the axis.
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Finally a model is created by joining touching cones

together. Model generation in this manner has been

implemented in the ACRONYM vision system at AI Laboratory of

Stanford University [Brooks 81].

The above techniques can be used to generate models with

planar surfaces or conical parts. If we look around us, we

do not see many objects with these properties. How can we

represent objects without planar surfaces or conical parts

inside the computer? If the precise geometrical structure

of an object is known, then a model for the object can be

created. Roth discusses modeling of mechanical parts with

known geometrical properties by "ray casting" [Roth 82].

In ray casting, to generate a model of an object, the

photographic process is simulated in reverse. For each

pixel on the screen, a ray is passed through it to identify

the visible surface by determining the intersection of the

ray with the first surface. At the ray-surface intersection

point, the surface normal is computed, and using the

position of light source, the brightness of the pixel on the

screen is determined. By this way, a gray value image of

the object is generated as its model.

If object to model registration is accomplishable,

considerable speed-up in depth perception is possible, since

a large number of window, searches are avoided by this
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approach. And if the position of those points used for

object to model registration is accurate, overall accurate

depth values on the object will be obtained.

For a complex scene containing multiple objects, the

object recognition problem becomes very difficult, because

parts of an object might be occluded by another object. But

if techniques could be developed for recognition of

three-dimensional objects in a complex scene, then there is

only a need to determine the position of a number of points

on each object.

With the object to model registration approach, if a

three-dimensional model of a scene (such as a terrain or an

apartment complex) is known, it is possible to register the

whole scene to its model by identifying a few objects in the

scene and determining the position of a number of

corresponding points on the model scene and the observed

scene.

6.6.2. Shadows

In section 6.5, we saw that shadows in~ a scene create

image differences and when the differences, become large

enough, wrong matches might be obtained. Here, however, we

will see that if shadows are well understood, they can be
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used to our benefit.

   

point

light
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Figure 6.28. Image of an object and its shadow.

Figure 6.28 shows the geometry of an object (in a plane)

and its shadow. Since the shadow of an object in a plane is

equivalent to the projection of the object to the plane,

coordinates of points on the boundary of the shadow are

related to points on the object by a projective

transformation,

x'=(ax+by+c)/(dx+ey+l.0) = f(x,y)

(6.4)

y'=(fx+gy+h)/(dx+ey+l.0) a g(x,y)

where (x,y) and (x',y') are points from the object and its

shadow, respectively.
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From the definition of an image (see Chapter 2), we know

that points on a plane (x,y) and their images (x‘,y”) are

related to each other by a projective transformation.

x"=f (x,y)

1 (6.5)

y"=91(x.y)

Points from a shadow (x',y') and their images (x",y") also

relate to each other by the projective transformation.

x"=f (x',y') '

2 (6.6)
yfl=gz(x| ’YI)

using (6.4), we get

x”=f (f(x,y),g(x, ))

2 y (5.7)

y”=92(f(x.y).g(x.y))

Formula (6.7) shows the coordinates of points on the

boundary of the shadow on the image plane as a function of

points on the object. Since the projective transformation

of a projective transformation is equivalent to another

projective transformation. (because the property . of

straightness stays invariant ), then formula (6.7) can be

written as

x"=f3(x,y)

(6.8)

y"=93(x,y)
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(6.8) shows that the image of a shadow relates to the

original object by a projective transformation. f3 and 93

can be determined by knowing the position of at least four

pairs of corresponding points on the object and the image of

their shadows. Or vice versa, if f3 and 93 are known 33 922

determine the position of points on the object by knowing

the position of the image 9; the shadows of the points.

Formula (6.5) shows the relation between points on an

object and points in the image of the object, while formula

(6.8) shows the relation between points on an object and

points in the image of the shadow of the object. So,

position of points on (the boundary) of an object can be

determined by knowing either the position of‘points on its

image or on the image of its shadow. In this process, of

course, first we have to determine the transformation

functions fl, 91 or £3, 93 by locating a number of

corresponding points on the object and in its image, or

corresponding points on the object and the image of its

shadow. The position of points on an object, as was

described in section 6.4, can be determined if the position

of corresponding points in stereo images and the camera

parameters is known.
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We see how valuable information about the shadow of an

object can be in locating and describing the object. In a

scene where a part of an object is occluded by some other

object, we can recover the boundary of the occluded part if

the shadow of the occluded part is visible in the image.

6.6.3. Reflections

Reflection of an object on a shiny surface is a phenomenon

'that cannot be avoided in some scenes that contain for

example polished metal parts. In Figure 6.7 we can clearly

see the reflection of the wad of paper, the piece of chalk,

the belt, and the reel of tape on the shiny table. When the

image of Figure 6.7.b is segmented (see Figure 6.11), along

with the objects in the scene, the reflections of these

objects are also being extracted from the background. Now

the question is, do the computed disparities on .the region

boundaries of the reflections belong to the points on the

table or to points on the reflected objects?

In the image of scene 6.7, since the table was textured

and not homogeneous and shiny enough, the computed

disparities seem to belong to points on the table, because

the disparity values of the reflections are larger than the

disparity values of the objects. If the computed

disparities belonged to the reflections, they should have
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been smaller than the disparities of corresponding points on

the objects, because points from reflections are farther

from the viewer than their corresponding points on the

objects.

Although a reflection falls in front of the object in an

image, disparity of a point on reflections is smaller than

the disparity of its corresponding point on the object

simply because it is farther from the viewer, and this may

confuse the image understanding process. Object reflections

are difficult to characterize because the image of a

reflection is not symmetric to the image of the object.

There are cases, however, where reflections help see

occluded points on an object, such as points underneath an

object that cannot be seen in the image of the object but

can be seen in the image of the reflection of the object.

If the reflection is from a mirror, the image of points.

from the object and the image of points from the reflection

of the object are equivalently important in reconstructing

the object.

_ Figure 6.29 shows a point and its reflection from a

mirror-like surface. The image of point p on a plane

characterized by the XY-coordinate system can be determined

in the image plane by the projective transformation,
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Figure 6.29. Images of a points and its reflection.

x'18(ax+by+c)/(dx+ey+l.0)

(6.9)

y'1=(fx+gy+h)/(dx+ey+l.0)

where (x,y) and (x'1,y'1) are corresponding points on the

XY-plane and the image plane (X'Y'-plane), respectively.

The reflection of point p will be at point p' with

coordinates (-x,y), and the image of point p' on the image

plane will be at

x'2=(-ax+by+c)/(-dx+ey+1.0)

(6.10)

y'2=(-fx+gy+h)/(-dx+ey+l.0)
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Formula (6.9) shows the relation between points on an

object (in a plane) and their images, while formula (6.10)

shows the relation between points on the object and the

image of their reflections. (6.10) shows that we can

determine the position of points on the object by knowing

only the position of points on the image of the reflection

of the object.



Chapter 7

CONCLUSIONS

7.1. Summary

Image registration was approached as a two-stage process.

In the first stage, global correspondence was achieved by

segmenting the images and determining corresponding regions

in the two images. Then an attempt was made to establish

local correspondence by determining corresponding points

belonging to corresponding regions.

Registration of images was studied, beginning with

registration of images that have translational, rotational,

and scaling differences while allowing no non-linear

geometric difference between the images. The study was then

extended to registration of images that are taken from a

three-dimensional scene by a stereo camera system and have

small non-linear geometric differences.

199
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The following procedure was given for registration of

images with no non-linear geometric differences.

1. Segment the two images and isolate closed boundary

regions.

2. Determine corresponding regions in the two images.

3. Take centroids of corresponding regions as corresponding

points to determine the registration parameters.

Image segmentation was carried out with the objective of

obtaining optimally similar regions, by an appropriate

measure, from the two images. The segmentation process

first assumes that the images cover exactly the same scene,

are of the same scale, and that the intensity difference

between them is linear. After segmentation, regions of_

image 2 are compared to their corresponding ones in image 1,

one by one, to determine whether any error has been made in.

obtaining the region boundaries because the assumptions for

the images did not hold. Each region of image 2 is refined

by re-examining the information in and around the region in

image 2. The technique adjusts itself to intensity and

linear geometric differences between the images. This

technique has the capability of determining the position of

region boundaries up to subpixel accuracy.
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Region correspondence was achieved by a probabilistic

relaxation labeling process. In this process, regions in

image 2 are called objects, and regions in image 1 are

called labels. Then the problem has become labeling the

objects in such a way that labeling is consistent with world

knowledge. World knowledge has been expressed as the

inter-region distances.

To determine the initial label probability for an object,

first the shape similarity of the regions corresponding to

the object and the label is determined. This similarity is

assumed to be the weight for the given object having the

given label. The weights are then normalized to obtain

initial label probabilities. The shape measure which is

used can determine similarity of shapes irrespective of

their rotational and scaling differences.

After the images are segmented and corresponding 'regions

in the two images are determined, centroids of corresponding

regions are taken as corresponding control points from the

two images. Since the images are assumed to have only

translational, rotational, and scaling differences, by

knowing a minimum of two pairs of corresponding control

points from the two images, it is possible to estimate the

registration parameters. If more than two pairs of

corresponding control points from the two images are
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available, the registration parameters are estimated by

obtaining the least-squares fit to the overdetermined

system.

If the images have non-linear geometric differences,

centroids of corresponding regions may not correspond to

each other, and it is not possible to register them by

knowing only a few corresponding points from the two images.

Local window searches are required to determine the position

of corresponding points in the two images. Images that have

non-linear geometric differences were limited to those that

do not have any rotational or scaling differences. Examples

of these kinds of images are those obtained by a balanced

stereo camera system from three-dimensional scenes.

Since corresponding points in images from a well-balanced

stereo camera system differ only in column values (and maybe

small row values due to some errors), a search can be

carried out in a thin band for determination of match

points.

First an attempt is made to determine points in image 2

that correspond to points on the region boundaries of image

1. If a point 23 a region boundary of image 1 exists in

both images but is not 23 the corresponding region boundary

in image 2, then it is somewhere agar the corresponding

region boundary. So, for each point on a region boundary of
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image 1 there is a need to search only in a small area in a

thin band in image 2 near the corresponding region boundary.

By following the region boundaries in this fashion,

corresponding points on or near corresponding region

boundaries are determined.

Since some of the points on the region boundaries in

image 2 may not exist in image 1 due to occlusion, for these

points the search result in mismatches. To avoid mismatches

from occlusion, rather than taking all points from one image

and searching in the other image, points are taken from both

images, and searched in both images. Among the two matches,

the one with the higher match rating is taken as the true

match.

After corresponding points on or near the corresponding

region boundaries are found, an attempt is made to locate

the position of corresponding points inside the regions.

Since areas inside regions are almost homogeneous and window

searching has a low accuracy, corresponding points inside

regions are determined by interpolation.

A by-product of registration of stereo images is

perception of relative depth, which is obtained by measuring

the disparity of corresponding points in the two images. A

-procedure for determination of depth of points in

three-dimensions was given, knowing the camera parameters
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and the disparity values.

All the procedures that were given above were implemented

and tested on real data.

7.2. Contributions

An automatic digital image registration algorithm has

been designed which is capable of registering images that

have translational, rotational, scaling, and intensity

differences with subpixel accuracy. To reach this goal,

most of the steps in the algorithm were designed anew.

Although there were many approaches available for image

segmentation, none of them could fulfill our need. So, a

new image segmentation technique was designed which works on

multiple images (two at a time) and segments them in such a

way that the obtained corresponding regions in the two

images are optimally similar by an appropriate measure.

Previous techniques for determination of corresponding

regions in two images have used either local or global

information in the images. A new approach for determination

of corresponding regions in the two images was given by the

probabilistic relaxation labeling process which uses both

local and global information in the images. The technique
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becomes slow when the number of objects and labels become

large (>30), but the number of regions in an image can be

controlled by considering only regions with perimeter sizes

between two threshold values. If the number of regions

become inevitably large (>30), we can selectively choose a

subset of the regions for determination of the

transformation parameters between the images.

Correspondence between the rest of the regions can then be

established using the transformation parameters.

A shape similarity measure was needed both in image

segmentation and in determination of region correspondences.

Other shape similarity measure techniques were available,

but a new technique using shape matrices was designed. The

new technique is easy to implement, can represent any shape

with no restrictions, can compute the similarity between two

shapes regardless of their rotational' or scaling

differences, is information preserving, and has the

capability of detecting shape defects.

Region centroids have been used as control points. It

was shown that region boundaries change due to random noise,

but coordinates of the centroids stay stable under random

noise. Note that registration of images that do not have

non-linear geometric differences depends on determination of

two or more pairs of corresponding control points in the two
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images. Once corresponding control points in the two images

are found, the rest of the process is straightforward.

In registration of stereo images, the nature of

'three-dimensional scenes and camera models were studied

carefully, the following observations were made, and new

strategies were introduced to the window search process to

increase the accuracy of the point correspondence process.

1. If a point on the, boundary of an object in a

three-dimensional scene is visible from only one of the

cameras (say the left camera), then there exists a point

on the object boundary visible by the right camera on the

same match line, which is visible from both of the

cameras. This tells us that, rather than taking all the

points from one image, we should select points from both

images to reduce the number of impossible matches.

2. If a window lies on an area with depth discontinuity,

since the area covered by~ the window has geometric

differences in the two images, the window search may end

up in a wrong match. To reduce the effect of geometric

difference between windows from the left and the right

images, the window shapes are taken in such a way that

they cover only parts of the object. Since we are

working on segmented images, we know where the iregion

boundaries are. Then windows are centered at region
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boundaries and their shapes are adjusted to the shapes of

these boundaries so that they cover only parts of the

regions.

3. Window search is more accurate in high variance areas

than in the low variance areas of the image. Since

region boundaries create high variance in an image, a

window search on or near the region boundaries has high

accuracy. To avoid search in low variance areas of the

image_ and to save computer time, the positions of

corresponding points inside regions are determined by

interpolation.

Experiments have shown that introducing the above

measures into the traditional window search process brings

higher registration accuracy.

7.3. Future Research

Window search has been the key operation in determination

of corresponding points in stereo images. The main

similarity measure that has been used in the literature is

the cross-correlation coefficient. The sum of absolute

differences is sometimes used too but it is not as accurate

as the cross-correlation coefficient [Svedlow 76]. There
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are other similarity measures that could be used to measure

window similarities. These are the moments and the image

transform coefficients, such as Fourier transform

coefficients, Walsh-Hadamard transform coefficients, Haar

transform coefficients, etc.

The performance of the moments and the image transform

coefficients against the cross-correlation or sum of

absolute differences is not known. But what is certain is

that since most of the energy of a window is transformed to

the very first few of its moments or transform coefficients,

only the first few terms should be sufficient to measure the

similarity between windows effectively.

Another property of the moments or the transform

coefficients is that they characterize the structure of the

windows, and if enough of them are known, the original

windows. can be reconstructed. In the case of

cross-correlation coefficient, it really does not matter how

the intensities are distributed in the windows. We may

rearrange the intensities in a window and still obtain the

same cross-correlation coefficient, while the transform

coefficients will change by rearranging the intensities in

the window. It seems that if the moments or the transform

coefficients are used properly, higher accuracy over the

cross-correlation should be obtainable. This is an area
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which has not been explored, and deserves future research.

In this work, perception of depth as a result of stereo

image registration was studied. Depth can be perceived by

monocular vision too. We can close one of our eyes and

still be able to walk around obstacles. One of many cues

used in perceiving depth by monocular vision is focusing.

From edge information in an image, we can determine the best

focused image for a given object and then compute the depth

of the object in the scene. This is an area in which very

little research results are available, but it seems to be a

very promising area for giving the capability of depth

perception to machines.

The topic on reflections which was mentioned in section

6.6.3 was originated by Carl Page. In section 6.6.3, the

tOpic has been scratched only on the surface. Reflections

seem to contain a great amount of information about objects

in the scene and could be used to our benefit. For example,

we know that if two images are obtained at two different

viewpoints from an object with known camera parameters, then

we can locate the position of the object in

three-dimensions. Now, rather than having two images at two

different viewpoints from an object, what if we have one

image containing the object and its reflection on a

mirror-like surface? Is it possible to use one image to
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locate the object in three-dimensions? If yes, how? The

answer to this question and many others related to

reflections are left for future research.

Image registration by window searching is known to be

reliable on images with a lot of details and unreliable on

images with smooth surfaces. In many natural or man-made

scenes, existence of smooth surfaces cannot be avoided. For

images with smooth surfaces we can use the theory of shape

from shading [Horn 75] to obtain the surface normals at each

point on object surfaces if the reflectivity function and

position of the light source are known. Then windows with

values showing the orientation or magnitude of the surface

normals can be taken from one image and searched in another

image in the same manner which was done for the intensity

values. This idea, originated by George Stockman, seems to

improve the accuracy of stereo image registration of scenes

with smooth surfaces, and is considered for future research.
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Appendix

THE PROJECTIVE TRANSFORMATION

Two images that have been obtained at different viewing

angles from a flat surface can be mapped to each other by

the projective transformation [Peet 7S],

x'= (clx+c2y+c3)/(c4x+c5y+l) ( )

l

y'= (c6x+c7y+c8)/(c4x+c5y+l)

where c4x+c5y+l # 0 and (x,y) and (x',y') are coordinates of

corresponding points in the two images.

Proposition 1: The property of straightness remains

invariant under the projective transformation.

Proof: Let Ax'+By'+C=0 be the equation of a straight line in

the original coordinate system. After applying

transformation (1) to this line we get,

A(clx+c2y+c3)/(c4x+c5y+l)+B(c6x+c7y+c8)/(c4x+c5y+l)+C¥0

or A(clx+c2y+c3) + B(c6x+c7y+c8) + C(c4x+c5y+l) = 0

or (Acl+Bc6+Cc4)x + (Ac2+Bc7+Cc5)y + (Ac3+Bc8+C) = 0

211
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or Ux + Vy + W = 0 (2)

where U=Acl+Bc6+Cc4; V=Ac2+Bc7+Cc4: W=Ac3+Bc8+C.

Equation (2) shows the equation of a straight line in the

transformed coordinate system. So, a straight line remains

straight under the projective transformation. #

Two images that have been obtained at different viewing

angles from a flat surface can be mapped to each other by

the projective transfromation. Proposition 1 insures that

under this transformation, a straight line remains straight

from one image to another.

Proposition 2: Assuming lines AC and BD are mapped to lines

A'C' and B'D', respectively, by projective transformation

(1), and if E is the point at the intersection of lines AC

and BD and E' is the point at the intersection of lines A'C'

and B'D', then B and E' are related to each other by the

projective transformation (1) (see Figure 1).

Proof: Since point E is on line AC, its corresponding point

in the transformed domain lies on line A'C'. Also since

point B is on line BD, then its corresponding point should

lie on line B'D'. So, the point corresponding to E should

lie on both lines A'C' and B'D'. It can not be anywhere but

at the intersection of lines A'C' and B'D'. So, points E

and E'- correspond to each other. Now since corresponding

points on lines AC and A'C' are related to each other by
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Figure 1. Straight lines under projective transformation.

transformation (1) and since E and E' on AC and A'C'

correspond to each other, we conclude that E and E' are

related to each other by the projective transformation (1).

#

Proposition 2 implies that if two images are obtained at

different viewpoints from a flat surface, and if points A',

B', C', and D' in image 1 correspond to points A, B, C, and

D in image 2, respectively, then the point at the

intersection of lines AC and BD in image 1 corresponds to

the point at the intersection of lines A'C' and B'D' in

image 2.
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