THE DISTRIBUTION OF SOIL PRESSURES

UNDER PAVEMENTS

THESIS FOR DEGREE OF B. S.

F. N. CAWOOD C. W. GOHR

cognit

Caronina.

Tute Soil Present

THE DISTRIBUTION OF SOIL PRESSURES UNDER PAVEMENTS

A Thesis Submitted to The Faculty of

THE MICHIGAN STATE COLLEGE

. of

AGRICULTURE AND APPLIED SCIENCE

b

F. H. Carroad

C. W. Cohr

Candidates for the Degree

of

Bachelor of Science.

June 1926.

Introduction.

wident in the number of subgrade failures which have resulted in the failure of the hard surface above it. In the future there will be over so many more miles of concrete reads built than in the past. Larger units of traffic must be considered, thus greater chance for failure. Previous read slabs were not designed for uniform strength, but rather of uniform thickness. In places it was too thick and in some places too thin.

High speed traffic which results in high impact stresses and high stresses resulting from the added tendary to increase truck loads throughout the country result in the destruction of many types of read surfaces. Whether or not these conditions are the result of inadequate laws they must be not in the future. Some speed and load regulation should be made but still there is the question of economic design, design for uniform strength and not for uniform thickness.

Present specifications call for uniform thickness over all classes of soil. We will attempt to show how experiment will indicate an economic mood for uniform strength specifications carrying specific loads over whole length and width of pavement regardless of type of soil or sub soil conditions.

The perements on clay, learn, or post soils must have an added thickness while a much lesser thickness will suffice on the more stable soils such as sand or gravel. A great waste may be saved by the proper design of concrete reads.

senething wrong with the present read design. Failures on soils of high bearing power total 17%, while under same conditions failures on low bearing soils are as high as 70%. On gravel and sand soils failures are as low as 2 to 3% and are usually due to faulty construction.*

These figures would further indicate that uniform strength design should replace the ebselete uniform section design.

The most important need is the determining of the bearing power of the different soils and the determining of the maximum wheel loads. The latter, set by the state law, leaves the determining of the bearing power of the different classes of soils undone.

spent in the design of an instrument that would accurately measure seil pressures. In the construction of this apparatus we attempted to find a means of measuring the pressure directly under the patement in pounds per square inch. This apparatus was constructed from a casting machined into the desired shape with an electric connection and disphragm so connected that when the disphragm was subjected to pressure it deflected and completed the electric circuit and lit the light. Air was then pumped in above the disphragm until the connection was broken indicated by the light going out. At this point the soil pressure and the air pressure was assumed to be in equilibrium so that the air pressure in pounds per square inch would equal the soil press-

ure in pounds per square inch under any load.

Accompaning vare is sketches of apparatus, test slab, load, and data which was obtained by experiment on a slab 5' by 12' by 7". The accuracy and plausability of the instrument was assertained in the measurement of the soil pressure through the data obtained.

^{*} From a paper presented before the American Road Builders Association, Chicage, Illinois., by H. G. Shirley.

DETAIL DRAWING of PRESSURE APPARATUS Wire to Light 1/2 Pipe Top Spork Plug K Pipe Tup For Air Contact Point Tin Diophraym Fostened With 16 Packed to make 16 Stove Bolts Air Tight

Drawing of Concrete Slob Showing Location

of Instrument

DATA SHEET

Distance fro.	m Readings in
origin oin inci	hes Ibs. per sq. in.
6	9.8
	9.1
10	8.8
	82
14	9.6
	11.0
	11.5
	11.2
	/0.8
	7.5
	7.0
	55
36	0.0
Loods applied along	centerline of concrete slob

DATA ON LOADS

Weights of Truck Used.

22,600#
18,600#
9,450#

LOAD TOTAL USED 9,450#

• • • • • • • • • • • • • • •

Calculation of load total from pressure distribution - using areas affected as running across slab.

164 " " x 1.5 = 216

A complete soil pressure apparatus is represented by this photograph, including pressure gage, dry cells, pump, small light, pipe conmections and soil pressure measuring instrument. —— As shown in this phote which adequately shows spark plug, disphragm fastened onto casting by means of ring and stove bolts, and the pressure line leading away from instrument to gage and pump.

·

This is a phote taken on Michigan Avenue between East Lansing and Lansing and represents probably the most satisfactory way of obtaining a firm foundation for road bed, by means of excavation of the muck and pete material and the replacing unsound materials with that of sand which is one of the best of bearing soils. This is one of the first experiments of this kind carried on by the state. It may or may not prove successful because in order to count on sand as having high bearing power it must be confined. The sand may slump under traffic due to the bulging at the edges.

·

en de grape en proposition de la company de

··· •

Conclusion

In this thesis we have attempted to design a seil pressure use measuring apparatus and indicate the uses and necessity of such an apparatus. This thesis can mean only a starter in soil pressure analysis.

Analysis may proceed along lines of,-

- 1. Field analysis of soil pressure and division of soils as mear as possible and as to their lead bearing capacity.
- 2. Accompaning these tests should be soundings and drainings recommendations.
- 5. A study of the treatment of subsoil for the prevention of absorption.
- 4. The effect thawing and freezing has upon the sub soil, in the change of volume of the soil which results in the heaving and the breaking down of pavements.
- 5. The further classification of soil under different conditions, mainly the moisture content of each.
- 5. The design of surface to make strongth of whole road bed of uniform degree.
- 7. Finally the reduction of soil characteristics to the extent that all soils can be compared to a set standard and these systematic operations aid in the design in uniform strength surface ever entire length.

Pocket empty 10/20/09

