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ABSTRACT

DYNAMIC AUGMENTATION OF
DISSIPATIVE ALGEBRAIC LOOPS

By

Peter Leo Graf

In the design and simulation of dynamic systems, an explicit
state-space representation of the equation set is preferred. For
strictly Tinear systems, the explicit state-space representation
is, in theory, readily obtained. On the other hand, the uncoopera-
tive nature of nonlinear systems may prevent the derivation of an
explicit state-space representation. The incidence of algebraic
loops contributes to this difficulty. Their origin may result from
the interaction between system topology and nonlinear dissipative
fields. Within the framework of the bond-graph approach, a
numerically-oriented procedure for dealing with dissipative

algebraic loops is presented and illustrated by examples.
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1.0 INTRODUCTION

1.1 Techniques for Lumped Parameter System Description

In approaching a dynamics problem, one must first define the
system and its environment. Subsequently, the various processes
within the system and interactions between the system and its
environment must be modeled. At this point, the physical system
dynamicist has at his disposal several techniques to effect a
mathematical model. Among these are Newtonian methods, Lagrangian
methods, network and circuit methods, and bond-graph methods [7,

8, 9, 1].

1.2 State-Space Representation

In the design and simulation of dynamic systems, an explicit
state-space representation is desirable. Much work has been directed
toward the development of efficient numerical algorithms for appli-
cation to this form. These numerical schemes can be separated into
two basic categories: 1) direct numerical integration algorithms
such as Runge-Kutta or predictor-corrector methods [2], and 2) tran-
sition matrix generation by techniques such as the Peano-Baker
series [10].

For linear systems, the well known form is:

X = Ax + Bu (1-1)






where x is the state vector of dimension n, u is the input vector
of dimension m, and A and B are matrices of appropriate dimensions.

The analogous explicit representation for nonlinear systems

is
X = o(x, u) (1-2)

where x and u are defined as before and ¢ is a nonlinear vector

function.

1.3 The Incidence of Algebraic Loops

‘The contrary nature of the nonlinear dynamics problem often
renders the formulation of an explicit state-spade represenfation
intractable. One such difficulty, preventing the desired repre-
sentation, may be traced to the incidence of algebraic loops (coupled
algebraic equations) in the system equation set. Particularly, the
existence of these algebraic loops may be a consequence of the
interaction between the system structure (topology) and dissipative
mechanisms in the system.

An example of the equation set for a general second order
single inpgt dynamic system containing an algebraic loop is presented
below. The state vector x and input vector u are of dimension 2 and

1 respectively. The intermediate variables are denoted by v and w.
x'l = ¢'| (x'l’ XZ’ V, W, U) (]'3)

Xo = 65 (X5 X5 Vs W, U) (1-4)






V= yq (Xgs Xp5 Vs W, ) (1-5)
W=y, (Xgs Xps V, W, ) (1-6)

In this example, the intermediate variables v and w are coupled in

an arbitrary manner with each other, thé state variables, and the

input u. Given either Yy or v, to be a nonlinear function could

suffice to prevent an explicit state-space form for this system.
In general, the incidence of nonlinear algebraic loops in

the system equation set will typically prevent subsequent reduc-

tion of the system equation set to an explicit state-space form.

1.4 Some Previous Work on the Problem of Algebraic Loops

Many good simulation programs exist that will diagnose the
incidence of algebraic loops in the equation set. Among these are
CSMP, CSSL, DARE, and SCEPTRE [3, 4, 5, 6]. Operationally, a loop
diagnostic occurs following the equation sorting process. In this
process, as the system equation set is manipulated, mutual algebraic
dependencies are identified. Typically, execution of the program
is terminated and appropriate modifications must be performed.

Both CSMP III and CSSL IV employ similar algorithms to cir-
cumvent existing algebraic loops. The success of the algorithm
hinges on the expression of the algebraic loop equation in the

scalar form

z = f(z) (1-7)






A preprogrammed iterative solution algorithm is then available
to deal with the loop equation.
Having expressed the loop equation in the desired form of

equation (1-7), the variable of interest is redefined as:

z = IMPL (Z0, ERROR, FOFZ) (1-8)
where

FOFZ = f(z)

Z0 = initial trial value (1-9)

ERROR = specified absolute error.

During simulation, this algorithm must be accessed on each derivative
call - perhaps 2-5 times per DT step.

Several major limitations are intrinsic to this method:

1)  The definition of f(z) may not be unique (e.g. the user may
solve for z=f(z) in several ways). Moreover, a solution
may not be unique. Convergence to a particular solution
could depend on the initial guess as well as the particu-

lar definition of f(z).

2) The implicit function routine does not allow nested implicit

loops (i.e. coupled nonlinear equations).






The circuit analysis program SCEPTRE approaches the problem
of algebraic loops by the implementation of a computational delay.
Ideally, every variable quantity in a system is updated at the
start of each time step using the updated state variables and
time. If, however, an implicit loop is present, the program will
use the value of the independent variable that existed at the
previous time step. Again, a functional form similar to equation
(1-7) is assumed.

The error introduced is dependent on the character of the
nonlinearity in the functional dependence and the time step.

Error may become serious in some cases. At any rate, a diagnostic
alerting the user of the computational delay is provided.

Korn and Wait [4] discuss several methods for manipulation
of algebraic loops. Mention is made of the solution techniques
utilized in CSMP, CSSL software and SCEPTRE software. Another
approach offered by Korn and Wait suggests generating functions
as so]utions‘of differential equations. For example, if the

variable Y is implicitly defined as
w(X], XZ, cevv s T; Y) = 0 (]-]0)

and is suitably differentiable, it may be introduced as a state

variable. The differential equation would be of the form

%= k signy (K> 0) (1-11)






The solution of equation (1-11) (assuming a reasonable solution

exists) satisfies a steepest-descent minimization of the function
F(x], Xos cenes T3 Y) = ]w(x], Xos vees T3 Y)| (1-12)

The correct value Y(0) must be established by some type of iteration
and K must be chosen by trial and error for best accuracy [4].

The aforementioned procedure includes the possible treatment
of coupled nonlinear equations; however, the desired explicit

form is sensitive to the nature of nonlinear dependencies.






2.0 THE BOND-GRAPH METHOD AND ALGEBRAIC LOOPS

2.1 Bond Graphs

A bond-graph model may be visualized as a schematic of the
dynamic energy exchange between components of a system (see
Appendix Al for a more extensive discussion). Energy exchange
occurs between input, dissipative, and storage fields through
the junction structure consisting of bonds and nodes (see Figure
2-1). Bonds represent paths of power flow and nodes are energy
conservative junctions that route power flow according to simple
algebraic laws. Further enhancement of information for the bond-
graph model can be achieved by indicating preferred power orienta-
tions on bonds to establish sign convention. Also, through
causal augmentation, a signal orientation in an input/output

sense can be specified for each bond.

2.1.1 An Example

Consider the two analogous physical systems in Figure 2-2a,
b. In Figure 2-2c, the basic structure of the associated bond-
graph model is shown. The I-element represents inertial effects
in the mechanical system and inductance effects in the electrical
system. Compliance and capacitance effects are indicated by the
C-element in the mechanical and electrical systems respectively.

The R-elements represent energy dissipative effects in both

7
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systems. The SE-element indicates an imposed effort on the
particular system in the form of a force or voltage input.

In this example, there are six bonds; hence, there are six
efforts and six flows in addition to the state variables p and x
representing the inertance and compliance effects in the system.
Consequently, there are 14 equations imposed by the bond-graph
structure through node constraints and constituitive relation-
ships. It is desired that the equation set be manipulated to

yield an explicit state-space form as follows
By = 97 (Pys Xp» E5) (2-1)
%5 = 95 (Pys X E5) (2-2)
At this point, it will be fruitful to discuss the role of causality
in the organization of the equation set and as a natural identi-

fier of the existence of algebraic Toops.

2.2 Identification of Algebraic Loops in Bond Graphs

As mentioned earlier, assignment of a causal sense to a bond
identifies the signal orientation on that bond. For example,
bond 3 in Figure 2-2c has a characteristic slash affixed to it.
This 'causal stroke' indicates that an effort in the form of a
force or voltage is imposed as an input to the system. Likewise,
if bond 3 was a current or velocity source, the causal stroke
would be switched to the other end of the bond indicating a flow

input to the system.
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Orderly causal augmentation can be propagated through a
bond-graph by following several simple rules [1]. Following this
procedure, it may be possible that causality has not been com-
pletely extended through the bond-graph.

In the equation sorting process, the occurrence of these
acausal graph fragments discloses the existence of algebraic
loops.

Reconsidering Figure 2-2c, an acausal condition is apparent on
bonds 4, 5, and 6; hence, by the previous supposition, an al-
gebraic loop should arise in the system equation set. Suppose

the constitutive relationships for the dissipative elements take

the form:
f = 04 (ey) (2-3)
es = ¢5 (fs) (2"4)

By completing causality on bonds 4, 5 and 6 as shown in Figure 2-3,
the implied causal nature of equations (2-3) and (2-4) has been
preserved. At this point, the system equation set can be con-

solidated into the form:

Py = -kpxy - €5 - Eg (2-5)
L] P]
X, = o fy (2-6)

fy = 0y (-kpxy - &5 + E5) (2-7)
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e5 = ¢5 (p]/m] - f4) (2-8)
In this example, the input vector is

u = [E3] (2-9)

~

and the state vector is

. {Zl] (2-10)
- 1%

while f4 and ey are intermediate variables that contribute to the
algebraic loop represented in equations (2-7) and (2-8). Conse-
quently, an explicit state space form is predicated on the eli-
mination of f4 and eg from the equation set. In general, explicit
analytic solutions of nonlinear coupled equations are difficult if

not impossible to achieve.

2.3 Partitioning of Bond Graphs

In the general case of a bond-graph with acausal fragments,
partitioning is possible. The bond-graph can be partitioned
into causally complete and causally incomplete fragments. The
causally complete fragments are, in general, comprised of energy
storage fields, dissipative fields, junction structure, and input
fields. On the other hand, the acausal fragments will be ex-
clusively dissipative fields with associated junction structure.

For the partitioned bond-graph, it is appropriate to adopt

the notation:






14

GD - ith dynamic sub-graph
i

st - jth static sub-graph
Hence, a bond-graph exhibiting acausal bonds can be partitioned
into dynamic and static sub-graphs.* In Figure 2-4, the concept
of a partitioned bond-graph is illustrated.

The interaction between the ith dynamic sub-graph and jth
static sub-graph may be defined in vector notation. Each sub-
graph can be viewed as a separate independent system with both
an input and output vector ascribed to it.

Referring back to Figure 2-2c, it is apparent that the bond-
graph exhibits an acausal fragment. In Figure 2-5, the parti-
tioned bond-graph for this example is shown. The static sub-
graph, GS’ contains the algebraic loop.

In the subsequent chapter, a modification procedure to allow
the numerical solution of a bond-graph model containing algebraic
loops is introduced. This modification will avoid direct solution

of the coupled equations comprising the algebraic loop.

*The term 'static' denotes the absence of dynamic effects.
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FIGURE 2—-4. THE PARTITIONED BOND GRAPH CONCEPT






16

SE
u =[]
3 G
Dy
y =[e.]
| ——— b—c
E =[e|] E, -’-[fz]
y =[] y =[e-]
G G
D] 02
Gs, 3
L
——0 - S —
‘4 s
"
R R

FIGURE 2-5. A PARTITIONED BOND GRAPH



3.0 A SOLUTION METHOD BASED ON DYNAMIC AUGMENTATION

3.1 The Method of Dynamic Augmentation

It is possible to avoid the computationally unwieldy numeri-
cal techniques required to solve the coupled nonlinear algebraic
equations that may emerge from an algebraic loop. An alternative
and perhaps more elegant approach avails itself in the bond graph
method. (Such a procedure could also be implemented in a circuit
program such as SCEPTRE.)

Reconsider the partitioned bond graph in Figure 2-5. At any
time t in a simulation of the system, the dynamic and static sub-
graphs may be visualized as communicating through mutually shared
bonds. Mathematically, the communication linkage is defined in
terms of the flow and effort variables associated with the shared
bonds. These bond variables can be written in input/output vector
notation for each sub-graph.

Suppose that each static sub-graph of a partitioned system
was transformed into a dynamic sub-graph by some type of selective
dynamic augmentation. In addition, let us postulate that this
selective dynamic augmentation will yield a system with the charac-
teristic that at steady state, its output vector will be the same
as that of the original unaugmented static sub-graph.

Thus, at time t in the simulation, a dynamic sub-graph (GD)

will define a constant output vector which will serve as inputs

17
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to one or more dynamically augmented sub-graphs (GS). The
numerically determined steady-state output vector of each GS
will, in turn, describe a set of inputs to the appropriate
GD' Hence, the global system simulation can be achieved in
a piecewise fashion.

The details of the solution process implied by this type of

structural modification approach will be discussed later. The

two important implications of this proposition are:

1)  Algebraic loop equations are avoided.

2) Simulation is effected in a piecewise fashion.

3.1.1 The Procedure

The proposal for the selective dynamic augmentation of a
static sub-graph consists of adding I-elements to 1-junctions and
C-elements to O-junctions. The 'I' and 'C' elements are considered
to be of a class of linear, conservative, energy storage fields.
For example, in Figure 3-1, GS] from Figure 2-5 has been dynamically
augmented. By virtue of the augmentation, a 'new' dynamic system
has been posed.

In Figure 3-2, an electrical analog of the 'new' system is
pictured. In essence, the static structure of the dissipative
problem has been recast into the dynamic realm.

The premise of this transformation maintains that the steady-
state output of a dynamically augmented subsystem will satisfy the
original constraining equations posed by the unaugmented static

sub-graph. This premise is proven in Appendix A2.
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FIGURE 3—-2. AN ELECTRICAL ANALOG






3.2 Minimum-Maximum Order Augmentation

Returning to Figure 3-2, it may be inferred that three
different possible augmentations exist which serve to completely
extend causality. With each different augmentation a different
causality orientation results on the dissipative elements. De-
pending on the nature of the nonlinear dissipation functions,
there will exist a preferred causal orientation on the R-elements.
For our example problem which had the form of the dissipative
functions prescribed in equations (2-3) and (2-4), Figure 3-3
represents the desired causal arrangement with augmented C and I
elements.

To the observant reader, it may be apparent that only 3
causal arrangements are realizable through selective dynamic aug-
mentation. However, the dissipative functions may conform to four
unique causal arrangments. For the fourth situation, the method
of dynamic augmentation is inadequate to establish the preferred
causal orientations on both dissipative elements.

From the preceding discussion, it is apparent that a struc-
tural modification using selective dynamic augmentation of
a static-subgraph is not unique.

The introduction of each additional dynamic element into
a sub-graph increases the dynamic order of that system. Also,
associated with each dynamic element introduced is a free
parameter. In general, the order of the dynamically augmented
system is bounded by a minimum and maximum order augmentation.

With a minimum order augmentation, complexity is certainly
checked, however, a maximum order augmentation may allow greater

21
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latitude in tailoring the augmented system's dynamics. These

notions will be discussed in further detail in the ensuing section.

3.2.1 Example 2

In Figure 3-4, an analogous electrical and mechanical system
with its bond-graph is shown. Again, this bond-graph exhibits
an acausal fragment associated with a dissipative field. The
diagnosis was rendered following the standard causal augmentation
procedure [1].

Figure 3-5 shows the seven available dynamic augmentations
to completely extend the causality in the sub-graph. The minimum
order augmentation (2nd order) for this particular sub-graph,
is pictured in Figure 3-5a, d, the maximum order (4th order) is
shown in Figure 3-5g. The selection of a particular augmentation
scheme would be influenced by the implied causal nature of the

nonlinear dissipation functions in the field.

3.3 The Secondary Dynamics Problem

3.3.1 Linear Dissipative Fields
For the dynamically augmented sub-graph, the system repre-
sentation is readily resolved into an explicit state-space form.

x = Ax + Bu (3-1)

Structurally, the A matrix reveals the following form:






v(t)

(b)
SF—— 0 —— 1 ——> 00— 1}—— 0 —=— 1 ——|
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(d)

FIGURE 3-4. A BOND GRAPH EXAMPLE
a) ELECTRIC CIRCUIT

b) MECHANICAL SYSTEM
c) THE. BOND GRAPH MODEL

d) THE ACAUSAL SUBGRAPH
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A=- S K (3-2)

N

The S matrix is derived from the bond-graph topology and dissi-
pation elements while the diagonal K matrix consists of the free
parameters introduced through the dynamic augmentation. Con-
fining our attention to conservative energy storage fields, it
can be noted that the K-matrix will be positive definite. Also,
due to the nature of the dynamically augmented subgraph, the S
matrix will be, in virtually all cases, positive definite.* The
input vector u will be a constant vector. From the preceding
statements, it follows that the linear system will be bounded
output stable regardless of parameter selection (provided

ki > 0).

Having chosen a dynamic augmentation for the 'loop' sub-graph,
the remaining task is to determine a computation scheme to effi-
ciently calculate the steady-state output vector of 'loop' sub-
system. One must keep in mind that for each global time step, the
steady-state output vectors of the loop sub-graphs (GS) need to
be computed.

The solution for the steady-state vector in the case of
linear dissipative fields can be achieved by simple linear al-

gebra provided the A matrix is nonsingular.

*In some special cases, the S matrix may be only positive
semidefinite.
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= A" By (3-3)

X >

Another approach to this problem consists of the dynamic
simulation of the 'loop' sub-system. This concept will be
particularly useful in the case of nonlinear dissipative fields.

For this approach, the resulting design problem can be posed as:

How can the free parameters be selected to provide
computationally efficient convergence to the steady-

state output vector?

By properly selecting the free parameters, the eigenvalues
may be clustered. Using the available integration scheme for
the global simulation, a local integration of the 'loop' sub-
system to steady state may be performed. Assuming the spectrum
is compact, an optimal integration time step may be chosen
relative to the entire spectrum. Hence, a minimum number of
1terations would be required to converge to steady-state.

In a first order system, the selection of an optimal free
parameter is simplified since any positive real constant will
suffice provided the resulting system is stable. The integration
time step would be chosen accordingly. Thereby, an efficient
solution would be realized.

The characteristic polynomial is a useful tool for investi-
gating the relationship of the free parameters to the eigenvalues

of the 2nd order system.






28

Recall the special form of the A matrix:

S S
P ) 12 (3-4)

The characteristic polynomial for the general second order system
is

2

AC - (s]]K] + 522K2)A + det[SK] = 0. (3-5)

The roots ‘are:

= , ; 2
2

For repeated roots to exist,

N (577K) + 5poKp)2 = 4 det[SK] = 0, (3-7)

Squaring equation (3-7) yields a 2nd degree quadratic. The general

form of a 2nd degree quadratic equation is]

ax? + 2hxy + by? + 2gx + 2fy + ¢ = 0. (3-8)

The following equations define A and J in terms of the coefficients

of equation (3-8).

TeRC Standard Mathematical Tables.
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g
A =det |h b f (3-9)
g f c

o
"
| p——
e 2B 1)
=
| S

b (3-10)
For equation (3-7), A=0, and J takes the form
J = 4s5,75,,5,7S1, - 452 52 (3-11)
11722721712 12 ~21

Considering the cases when the S matrix is positive definite,
$11522 > S12527° For the instances when the product $125771 < 0,
the values of J is also less than zero. This fact indicates that
real positive parameters k] and k2 exist to effect repeated roots.2
For S$12507 > 0, the value of J will be greater than zero. The
solution of equation (3-7) will consist of complex conjugate

2 From this result, it is concluded that real

intersecting lines.

positive parameters to produce repeated roots are not realizable.
Reconsider the characteristic polynomial in equation (3-5).

The polynomial coefficients may be represented in terms of the

roots a and B.

2CRC Standard Mathematical Tables.
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Az - (a¥B)A + ag = 0 (3-12)
For the case where $125271 < 0, by setting o« = 8 and equating

coefficients in equations (3-5) and (3-12), the free parameters

to effect repeated roots are determined to be

ok, = 2 (14 [1 - o122 (3-13)

1272 11 - det[S]

If the product of the off diagonal elements is greater than
zero (51252] > 0), the relationship in equation (3-14) must be
satisfied to insure selection of positive real parameters. Its

derivation procedes similarly to that of equation (3-13); however,

a and B now represent real distinct roots.

4s..s
8 11522
v e 2det[s] "2 (3-14)

™|

To minimize the difference [a-B], the equality in equation (3-14)

must be enforced. It is convenient to rewrite equation (3-14) as,

™[R

+§= Cs Cs 2 (3-15)

For a given value of C, the solution pairs (a, 8) form a pair

of intersecting lines as shown in Figure 3-6. The slopes of these
lines sum to the value of C. This result indicates that an in-
finity of optimal pairs (a, B) exist which are germane to our

problem.
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FIGURE 3-6.

EIGENVALUE SEPERATION
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Arbitrarily selecting a to be unity enforces the following

condition on g,

w™|—
+

— ™
I
(ep]

(3-16)

Equation (3-16) is predisposed to a quick iterative solution.
Having specified o and B, the free parameters are determined from

the following equation,

a+g

ky = %, (3-17)
k, = 48 (3-18)
2 2522

The algorithm presented in the preceding paragraphs provides
a relatively efficient procedure for optimal pole placement for
the class of second order systems concerned with here. Unfor-
tunately, the utility of the method does not extend to higher

order systems.
3.3.2 Nonlinear Dissipative Fields

In the case of nonlinear dissipative fields, the augmented
sub-system representation takes the general form:

X = ¢(x, u). (3-19)

Y = y(x, u) (3-20)






33

Again, two primary techniques are available to determine the steady
state output vector ?.
The solution of equation (3-21) for ; could be accomplished by

a numerical scheme such as the Newton-Raphson method.

0= ¢(x, u) (3-21)
The output vector becomes readily available as

Y = y(x, u) (3-22)

Intrinsic difficulties in convergence and computational efficiency
detract from this type of numerical method.

Again, as in the linear case, the desired steady state solution
may be obtained through numerical integration of the nonlinear state
equations provided the system is stable. Stability is contingent
on the nature of the dissipative field. Parameter selection will
play a deciding role in the stability of sub-systems comprised
of certain classes of dissipative fields.

In referring to nonlinear systems, one can no longer speak
of eigenvalues. A useful and often employed technique in the
analysis of nonlinear systems is linearization about a nominal
trajectory or singular point. The resultant eigenvalues of the
linearized system will approximate the local dynamics of the
nonlinear system. This technique allows the dynamicist to identify

the relevant time scales in the system. This notion will be
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exploited in the development of a parameter selection scheme
for nonlinear systems.
To appreciate the intercoupling of the free parameters
in the nonlinear problem, an example problem will be discussed.
Reconsider the physical systems in Figure 3-4. The bond graph
for the analogous electrical and mechanical systems is also shown
in this figure. As was indicated earlier, this bond-graph engenders
an algebraic loop. The static sub-graph with possible dynamic
augmentations is shown in Figure 3-5. For this example, the aug-
mentation of Figure 3-5a has been chosen. Figure 3-7 depicts the aug-
mented sub-graph, state vector, and dissipation functions.
With Tittle effort, the state equations for this system can
be derived from the bond-graph model. The state variables 90
and 47 represent the compliance effects and the free parameters

k] and k2 are represented by 1/C]0 and 1/C]] for this system.

. 90 90 I
Qg = -8 (7)) - ¢, (—-¢—) + f (3-23)
10 1T 2 T " Ty 5
. %0 _ M m mn
Quq = ¢, (7= - =) - ¢; (7= = E£) - ¢, (&) (3-24)
LRI P o 4T "6 3Ty,
The output vector is defined as,
& = %90/ %0 (3-25)
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c
/ P
/lo ~[/“
splr’—bl L A1 ——0 * 41 +——SE
R R R R

DISSIPATION FUNCTIONS
t,= ¢,(e)
f,= ¢,(e,)
f.= Qa(ea)
t.=¢(e,)

FIGURE 3—7. AN AUGMENTED SUBGRAPH
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Suppose the dissipative functions are specified as follows:
_ .3
f1=9
2
f, = e
2 2 (3-26)
f3 = eq
_ .5
fp=¢
The Tinearized A matrix of this particular system about the
hypothetical equilibrium point 510’ a]] yields,
-3g%,  2q;, 29 3 q
a= | Cho o, S 2 %0 _ M
3 2 C,nC C,nC 2
Clo C1o 10711 10711 C]]
2,0 I -2 90 q11) 5 0 41
- - - ( - -
¢t Cobyy Crobin ¢2,” Oy 6 G
10 N
(3-27)

As conveyed by the complicated form of the A matrix in equation

(3-27), the free parameters play a nontrivial role in the adjust-

ment of the timescales in the nonlinear problem.

In Table 3-1, and in Figures 3-8 through 3-13, the dynamic

response of the example system described earlier in Figure 3-4 and

equations (3-23) through (3-26) is studied for various conditions.

The example problem is useful in illustrating several properties

exhibited by the class of nonlinear systems associated with the

dynamic augmentation of dissipative fields.

1
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For cases 1, 2, and 3 listed in Table 3-1, the input vector
remains the same, but the free parameters pairs are changed.
As is evident from the data in Table 3-1, the steady-state output
vector remains immutable regardless of the parameter selection
(provided they are positive). Comparison of Figures 3-8 and 3-9
demonstrate the effect of parameter selection on the spreading
of the time scales in the system. In case 4 and case 5, the
input vector has been redefined producing a new steady-state
output vector. In case 6, instability has been induced through

adverse parameter placement.

3.3.3 Parameter Selection in the Nonlinear Problem

Clearly, the previous example reveals the interplay of the
free parameters in the modulation of the timescales for the dy-
namics problem. A simple and efficient method to select the
free parameters for the nonlinear problem remains to be addressed.

The following technique suggests a method of recasting the
task of parameter selection for the nonlinear problem into an
equivalent linear problem.

Recall that during the simulation of an entire system, the
steady-state output vectors of the augmented sub-systems are
required at each global time step. At each call for the steady
state output vector of an augmented sub-graph (GS), the state of
the entire system is available from the previous time step.
Therefore, the instantaneous values of the effort and flow bond

variables for the entire bond-graph model have been determined.
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Digressing for a moment, reconsider the bond-graph model

in Figure 3-4.

If this system consisted of strictly linear dissi-

pative elements, the explicit state-space form derived from the

bond-graph is,

9o

a7

S

—

R

b

—

(5— +
2

w

+

i

C10

0

L

0

1
C1

-

The assumed form for the linear dissipative functions used in

deriving equation (3-28) is

®
"

Using the instantaneous values for the bond variables

i,
5
(3-28)
6
4
(3-29)

available from the previous time step, an instantaneous equiva-

lent linear resistance 'R' can be computed for each disspative

element by employing equation (3-29).

With the equivalent linear resistances, an estimate of the

instantaneous dynamics of the nonlinear system can be obtained by

the extraction of the eigenvalues from the A-matrix of equation

(3-30) rewritten below.

R2 R

A
10

0

1
C11

-

(3-30)
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This form of the A-matrix is exactly analogous to the form

presented in Section 3.3.1 for linear systems. For this form,

optimal pole placement can be effected by reselection of C]O and

C]] employing the method for 2nd order systems developed earlier.

The process described in the preceding paragraphs can be re-

peated as the global time variable increments; that is, the free

parameters could be reselected intermittently throughout the global

simulation in a prescribed fashion.

The technique of parameter selection for the 2nd order non-

linear problem is summarized below.

1)

2)

3)

4)

5)

At t = to’ set all free parameters to unity. Compute
the state of the R field. Integrate the entire system

to to + At,
Compute the instantaneous equivalent linear resistances
for each nonlinear dissipative element in the augmented
sub-graphs.
Compute the A matrices for the analogous linear systems.

Select optimal free parameters.

Compute the steady-state output vectors of the aug-

mented sub-graphs.
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6) Continue with the global integration.

7) Repeat the parameter selection process following a

prescribed number of elapsed time steps.

To effect the most efficient convergence to steady-state for the
subsequent integrations of the augmented subgraph, the initial
conditions for the augmented sub-graphs should be updated using

the previously computed steady-state variables,

S

x, (0) = "ty (3-31)
~td Et
d opt.

This ploy substantially decreases computational expenditure

when used for each sub-graph integration call.

3.4 The Solution Flowchart

To facilitate the undérstanding of the solution process
as it pertains to a bond-graph model containing algebraic loops,
the following pages delineate the logistical hierarchy in flow-
chart form. In Figure 3-14, the solution process described in
the logic diagram is illustrated.

The subsequent chapter contains several examples of the
implementation of the parameter selection process for nonlinear

dynamically augmented sub-systems.
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‘ START >

y

//f Input Bond-Graph Model //,

Assign Causality

Partition bond-graph into causal
and acausal fragments. Identify
dynamic (GD) and static (GS) subgraphs.

Define input and output vectors for
each subgraph. (US’YS)’ (UD,YD).

Dynamically augment each static
subgraph. Complete causality.

[

Organize and sort equation sets.

For t=t,, initialize x(0) = 0 for each Ge .

Set free parameters to 1.0. Select initial

integration time step for GS and GD'







48 |

Compute ug for each GS'

Integrate each GS system to
steady state. Compute YS.

Compute fD(td) (G

D)

Integrate to Xp (td+]) (GD)

Increment time to td+] (GD)

yes

\
( stor )
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Check order of dynamic

augmentation on GS
subgraphs

> 1
Pass ,//’ Optimize parameters every
N\ 3-5 time increments

Calculate equivalent linear resistances
for each dissipative element in GS subgraphs.

4 Form an 'SK' matrix for each GS.

Select the optimal free parameters.

Reset x, (0) = X K
-ty ~t4-1 / t4 opt.

Select a new optimal integration

time step for both GD and GS.

-

®
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Select Dynamic Augmentation compatible
with preferred signal orientation on
dissipative elements in GS. (C-elements

on O-junctions, I-elements on 1-junctions.

Extend causality through the
GS subgraph(s)
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X[t
Y(t]
-‘] Y Y
START _| Primary System Integration
Xlt,) Equation Solution D Routine
J A )
u(t] U
Ys
Y
Augmented
»q System G
Equation S
Solution
X .
> XS A
d d-1
Integration [ l kt‘
Routine dopt.
X[t+at]

FIGURE 3-13. SOLUTION PROCESS DIAGRAM

X(t,)
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4.0 NUMERICAL EXAMPLES

4.1 Example 1

Returning to the augmented sub-system in Figure 3-4, the ex-

plicit nonlinear state space form was found to be

. 90,3 ,% 91,2
I R e L
10 o’ %o Ony

5
(4-1)
. 9% N1,2 91, 9

a1 | ( - )©=(7—) - ( - E)
n L Go B Tt o 6

o -

Suppose the input vector is defined at to in the global system

simulation as:

F 1.0
o] -
E6 1.0

Following the procedure outlined in section 3.3.3, initially the

free parameters default to unity. That is,

- [

The resulting steady-state output vector is computed to be
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Eg .8980
= (4-3)
F6 -.0970
Computing the instantaneous Tinear resistances yields

R] = E]/F] =1.24
R, = E,/F, = 1.9
R3 = E3/F3 = 1.0
R4 = E4/F4 = 6.46

From equation (4-5), the eigenvalues for the instantaneous

linear equivalent system may be readily calculated.

r(l_ L S
Rt R, R,
A= - (4-5)
1 1T .1
- — (___ 4 —  —
oy a—
[_1.333 526
A = (4-6)
526 -1.68

The resultant eigenvalues for the A matrix in equation (4-6) are
M= -2.062, Ay = -.9505. A and Ao indicate the relative time-
scales of the system response for the parameters set to 1.0.

Figure 4-1 illustrates the response of the system<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>