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ABSTRACT

DYNAMIC AUGMENTATION OF

DISSIPATIVE ALGEBRAIC LOOPS

By

Peter Leo Graf

In the design and simulation of dynamic systems, an explicit

state-space representation of the equation set is preferred. For

strictly linear systems, the explicit state-space representation

is, in theory, readily obtained. 0n the other hand, the unc00pera-

tive nature of nonlinear systems may prevent the derivation of an

explicit state-space representation. The incidence of algebraic

loops contributes to this difficulty. Their origin may result from

the interaction between system topology and nonlinear dissipative

fields. Within the framework of the bond-graph approach, a

numerically—oriented procedure for dealing with dissipative

algebraic loops is presented and illustrated by examples.
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1.0 INTRODUCTION

1.1 Techniques for Lumped Parameter System Description

In approaching a dynamics problem, one must first define the

system and its environment. Subsequently, the various processes

within the system and interactions between the system and its

environment must be modeled. At this point, the physical system

dynamicist has at his disposal several techniques to effect a

mathematical model. Among these are Newtonian methods, Lagrangian

methods, network and circuit methods, and bond-graph methods [7,

8, 9, l].

1.2 State-Space Representation
 

In the design and simulation of dynamic systems, an explicit

state-space representation is desirable. Much work has been directed

toward the development of efficient numerical algorithms for appli-

cation to this form. These numerical schemes can be separated into

two basic categories: 1) direct numerical integration algorithms

such as Runge-Kutta or predictor-corrector methods [2], and 2) tran-

sition matrix generation by techniques such as the Peano-Baker

series [10].

For linear systems, the well known form is:

x = Ax + Bu (l-l)



 



where x is the state vector of dimension n, u is the input vector

of dimension m, and A and B are matrices of appropriate dimensions.

The analogous explicit representation for nonlinear systems

is

X = ¢(§3 E) (1'2)

~

where x and u are defined as before and ¢ is a nonlinear vector

function.

1.3 The Incidence of Algebraic Loops
 

’The contrary nature of the nonlinear dynamics problem often

renders the formulation of an explicit state-space representation

intractable. One such difficulty, preventing the desired repre-

sentation, may be traced to the incidence of algebraic loops (coupled

algebraic equations) in the system equation set. Particularly, the ‘

existence of these algebraic loops may be a consequence of the

interaction between the system structure (topology) and dissipative

mechanisms in the system.

An example of the equation set for a general second order

single input dynamic system containing an algebraic loop is presented

below. The state vector x and input vector u are of dimension 2 and

1 respectively. The intermediate variables are denoted by v and w.

X] = ¢1 (X1, X2: Vs W: U) (1'3)

*2 = ¢2 (X1, X2: V: W, U) (1'4)





v = v] (x1. x2, V. w, U) (1-5)

W = Y2 (X1, X2, V: W, U) (1'6)

In this example, the intermediate variables v and w are coupled in

an arbitrary manner with each other, the state variables, and the

input u. Given either y] or Y2 to be a nonlinear function could

suffice to prevent an explicit state-space form for this system.

In general, the incidence of nonlinear algebraic loops in

the system equation set will typically prevent subsequent reduc-

tion of the system equation set to an explicit state-space form.

1.4 Some Previous Work on the Problem of Algebraic Loops
 

Many good simulation programs exist that will diagnose the

incidence of algebraic loops in the equation set. Among these are

CSMP, CSSL, DARE, and SCEPTRE [3, 4, 5, 6]. Operationally, a loop

diagnostic occurs following the equation sorting process. In this

process, as the system equation set is manipulated, mutual algebraic

dependencies are identified. Typically, execution of the program

is terminated and appropriate modifications must be performed.

Both CSMP III and CSSL IV employ similar algorithms to cir-

cumvent existing algebraic loops. The success of the algorithm

hinges on the expression of the algebraic loop equation in the

scalar form

2 = f(z) (1-7)





A preprogrammed iterative solution algorithm is then available

to deal with the loop equation.

Having expressed the loop equation in the desired form of

equation (1-7), the variable of interest is redefined as:

2 = IMPL (Z0, ERROR, FOFZ) (1-8)

where

FOFZ a f(z)

20 5 initial trial value (1-9)

ERROR a specified absolute error.

During simulation, this algorithm must be accessed on each derivative

call - perhaps 2-5 times per DT step.

Several major limitations are intrinsic to this method:

1) The definition of f(z) may not be unique (e.g. the user may

solve for z=f(z) in several ways). Moreover, a solution

may not be unique. Convergence to a particular solution

could depend on the initial guess as well as the particu-

lar definition of f(z).

2) The implicit function routine does not allow nested implicit

loops (i.e. coupled nonlinear equations).



 



The circuit analysis program SCEPTRE approaches the problem

of algebraic loops by the implementation of a computational delay.

Ideally, every variable quantity in a system is updated at the

start of each time step using the updated state variables and

time. If, however, an implicit loop is present, the program will

use the value of the independent variable that existed at the

previous time step. Again, a functional form similar to equation

(1-7) is assumed.

The error introduced is dependent on the character of the

nonlinearity in the functional dependence and the time step.

Error may become serious in some cases. At any rate, a diagnostic

alerting the user of the computational delay is provided.

Korn and Wait [4] discuss several methods for manipulation

of algebraic loops. Mention is made of the solution techniques

utilized in CSMP, CSSL software and SCEPTRE software. Another

approach offered by Korn and Wait suggests generating functions

as solutions of differential equations. For example, if the

variable Y is implicitly defined as

w(x], x2, ..., T; Y) = 0 (1-10)

and is suitably differentiable, it may be introduced as a state

variable. The differential equation would be of the form

= -K 3% sign A (K > 0) (1-11)

0
.
0
.

_.
1<



 



The solution of equation (l-ll) (assuming a reasonable solution

exists) satisfies a steepest-descent minimization of the function

F(x], x2, ...., T; Y) = lw(x], x2, ..., T; Y)| (1-12)

The correct value Y(0) must be established by some type of iteration

and K must be chosen by trial and error for best accuracy [4].

The aforementioned procedure includes the possible treatment

of coupled nonlinear equations; however, the desired explicit

form is sensitive to the nature of nonlinear dependencies.



 ._

     



2.0 THE BOND-GRAPH METHOD AND ALGEBRAIC LOOPS

2.1 Bond Graphs
 

A bond-graph model may be visualized as a schematic of the

dynamic energy exchange between components of a system (see

Appendix A1 for a more extensive discussion). Energy exchange

occurs between input, dissipative, and storage fields through

the junction structure consisting of bonds and nodes (see Figure

2-1); Bonds represent paths of power flow and nodes are energy

conservative junctions that route power flow according to simple

algebraic laws. Further enhancement of information for the bond-

graph model can be achieved by indicating preferred power orienta-

tions on bonds to establish sign convention. Also, through

causal augmentation, a signal orientation in an input/output

sense can be specified for each bond.

2.1.1 An Example

Consider the two analogous physical systems in Figure 2-2a,

b. In Figure 2-2c, the basic structure of the associated bond-

graph model is shown. The I-element represents inertial effects

in the mechanical system and inductance effects in the electrical

system. Compliance and capacitance effects are indicated by the

C—element in the mechanical and electrical systems respectively.

The R-elements represent energy dissipative effects in both

7
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systems. The SE-element indicates an imposed effort on the

particular system in the form of a force or voltage input.

In this example, there are six bonds; hence, there are six

efforts and six flows in addition to the state variables p and x

representing the inertance and compliance effects in the system.

Consequently, there are 14 equations imposed by the bond-graph

structure through node constraints and constituitive relation-

ships. It is desired that the equation set be manipulated to

yield an explicit state-space form as follows

P] = 9] (p19 X2: E3) (2'1)

i2 = 92 (p19 X29 E3) (2‘2)

At this point, it will be fruitful to discuss the role of causality

in the organization of the equation set and as a natural identi-

fier of the existence of algebraic loops.

2.2 Identification of Algebraic Loops in Bond Graphs

As mentioned earlier, assignment of a causal sense to a bond

identifies the signal orientation on that bond. For example,

bond 3 in Figure 2-2c has a characteristic slash affixed to it.

This 'causal stroke‘ indicates that an effort in the form of a

force or voltage is imposed as an input to the system. Likewise,

if bond 3 was a current or velocity source, the causal stroke

would be switched to the other end of the bond indicating a flow

input to the system.





ll

Orderly causal augmentation can be propagated through a

bond-graph by following several simple rules [1]. Following this

procedure, it may be possible that causality has not been com-

pletely extended through the bond-graph.

In the equation sorting process, the occurrence of these

acausal graph fragments discloses the existence of algebraic

loops.

Reconsidering Figure 2-2C, an acausal condition is apparent on

bonds 4, 5, and 6; hence, by the previous supposition, an al-

gebraic loop should arise in the system equation set. Suppose

the constitutive relationships for the dissipative elements take

the form:

f4 - ¢4 (94) (2‘3)

95 = ¢5 (f5) (2’4)

By completing causality on bonds 4, 5 and 6 as shown in Figure 2-3,

the implied causal nature of equations (2-3) and (2-4) has been

preserved. At this point, the system equation set can be con-

solidated into the form:

p] " -I(2X2 - 85 " E3 (2-5)

0 P]

X2 : [In-T - f4 (2‘6)
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95 = ¢5 (P1/m] ’ f4) (2’8)

In this example, the input vector is

u = [E3] (2-9)
~

and the state vector is

X {51] (2-10)

~ 2

while f4 and e5 are intermediate variables that contribute to the

algebraic loop represented in equations (2-7) and (2-8). Conse-

quently, an explicit state space form is predicated on the eli-

mination of f4 and e5 from the equation set. In general, explicit

analytic solutions of nonlinear coupled equations are difficult if

not impossible to achieve.

2.3 Partitioning of Bond Graphs
 

In the general case of a bond-graph with acausal fragments,

partitioning is possible. The bond-graph can be partitioned

into causally complete and causally incomplete fragments. The

causally complete fragments are, in general, comprised of energy

storage fields, dissipative fields, junction structure, and input

fields. 0n the other hand, the acausal fragments will be ex-

clusively dissipative fields with associated junction structure.

For the partitioned bond-graph, it is appropriate to adopt

the notation:



 



l4

GD - ith dynamic sub-graph
1

GS. - jth static sub-graph

.1

Hence, a bond-graph exhibiting acausal bonds can be partitioned

into dynamic and static sub-graphs.* In Figure 2-4, the conCept

of a partitioned bond-graph is illustrated.

The interaction between the ith dynamic sub-graph and jth

static sub-graph may be defined in vector notation. Each sub-

graph can be viewed as a separate independent system with both

an input and output vector ascribed to it.

‘Referring back to Figure 2-2c, it is apparent that the bond-

graph exhibits an acausal fragment. In Figure 2-5, the parti-

tioned bond-graph for this example is shown. The static sub-

graph, GS, contains the algebraic loop.

In the subsequent chapter, a modification procedure to allow

the numerical solution of a bond-graph model containing algebraic

loops is introduced. This modification will avoid direct solution

of the coupled equations comprising the algebraic loop.

 

*The term 'static' denotes the absence of dynamic effects.
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3.0 A SOLUTION METHOD BASED ON DYNAMIC AUGMENTATION

3.1 The Method of Dynamic Augmentation
 

It is possible to avoid the computationally unwieldy numeri-

cal techniques required to solve the coupled nonlinear algebraic

equations that may emerge from an algebraic loop. An alternative

and perhaps more elegant approach avails itself in the bond graph

method. (Such a procedure could also be implemented in a circuit

program such as SCEPTRE.)

Reconsider the partitioned bond graph in Figure 2—5. At any

time t in a simulation of the system, the dynamic and static sub—

graphs may be visualized as communicating through mutually shared

bonds. Mathematically, the communication linkage is defined in

terms of the flow and effort variables associated with the shared

bonds. These bond variables can be written in input/output vector

notation for each sub-graph.

Suppose that each static sub-graph of a partitioned system

was transformed into a dynamic sub—graph by some type of selective

dynamic augmentation. In addition, let us postulate that this

selective dynamic augmentation will yield a system with the charac-

teristic that at steady state, its output vector will be the same

as that of the original unaugmented static sub-graph.

Thus, at time t in the simulation, a dynamic sub-graph (GD)

will define a constant output vector which will serve as inputs

l7
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to one or more dynamically augmented sub-graphs (G5). The

numerically determined steady-state output vector of each GS

will, in turn, describe a set of inputs to the appropriate

GD. Hence, the global system Simulation can be achieved in

a piecewise fashion.

The details of the solution process implied by this type of

structural modification approach will be discussed later. The

two important implications of this proposition are:

l) Algebraic loop equations are avoided.

2) Simulation is effected in a piecewise fashion.

3.1.1 The Procedure

The proposal for the selective dynamic augmentation of a

static sub-graph consists of adding I-elements to l-junctions and

C-elements to O-junctions. The 'I' and 'C' elements are considered

to be of a class of linear, conservative, energy storage fields.

For example, in Figure 3-1, GS] from Figure 2-5 has been dynamically

augmented. By virtue of the augmentation, a 'new' dynamic system

has been posed.

In Figure 3-2, an electrical analog of the 'new' system is

pictured. In essence, the static structure of the dissipative

problem has been recast into the dynamic realm.

The premise of this transformation maintains that the steady-

state output of a dynamically augmented subsystem will satisfy the

original constraining equations posed by the unaugmented static

sub-graph. This premise is proven in Appendix A2.
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FIGURE 3‘2. AN ELECTRICAL ANALOG



 



3.2 Minimum-Maximum Order Augmentation
 

Returning to Figure 3-2, it may be inferred that three

different possible augmentations exist which serve to completely

extend causality. With each different augmentation a different

causality orientation results on the dissipative elements. De-

pending on the nature of the nonlinear dissipation functions,

there will exist a preferred causal orientation on the R-elements.

For our example problem which had the form of the dissipative

functions prescribed in equations (2-3) and (2-4), Figure 3-3

represents the desired causal arrangement with augmented C and I

elements.

To the observant reader, it may be apparent that only 3

causal arrangements are realizable through selective dynamic aug-

mentation. However, the dissipative functions may conform to four

unique causal arrangments. For the fourth situation, the method

of dynamic augmentation is inadequate to establish the preferred

causal orientations on both dissipative elements.

From the preceding discussion, it is apparent that a struc-

tural modification using selective dynamic augmentation of

a static-subgraph is not unique.

The introduction Of each additional dynamic element into

a sub—graph increases the dynamic order of that system. Also,

associated with each dynamic element introduced is a free

parameter. In general, the order of the dynamically augmented

system is bounded by a minimum and maximum order augmentation.

With a minimum order augmentation, complexity is certainly

checked, however, a maximum order augmentation may allow greater

21
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latitude in tailoring the augmented system's dynamics. These

notions will be discusSed in further detail in the ensuing section.

3.2.1 Example 2

In Figure 3-4, an analogous electrical and mechanical system

with its bond-graph is shown. Again, this bond-graph exhibits

an acausal fragment associated with a dissipative field. The

diagnosis was rendered following the Standard causal augmentation

procedure [1].

Figure 3-5 shows the seven available dynamic augmentations

to completely extend the causality in the sub-graph. The minimum

order augmentation (2nd order) for this particular sub—graph,

is pictured in Figure 3-5a, d, the maximum order (4th order) is

shown in Figure 3-Sg. The selection of a particular augmentation

scheme would be influenced by the implied causal nature of the

nonlinear dissipation functions in the field.

3.3 The Secondary Dynamics Problem
 

3.3.1 Linear Dissipative Fields

For the dynamically augmented sub-graph, the system repre-

sentation is readily resolved into an explicit state-space form.

x = Ax + Bu (3'1)

Structurally, the A matrix reveals the following form:





 

l (t)
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FIGURE 3—4. A BOND GRAPH EXAMPLE

a) ELECTRIC CIRCUIT

b) MECHANICAL SYSTEM

0) THE BOND GRAPH MODEL
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FIGURE 3-5. POSSIBLE DYNAMIC AUGMENTATIONS



 

   



    

The S matrix is derived from the bond-graph topology and dissi-

pation elements while the diagonal K matrix consists of the free

parameters introduced through the dynamic augmentation. Con-

fining our attention to conservative energy storage fields, it

can be noted that the K-matrix will be positive definite. Also,

due to the nature of the dynamically augmented subgraph, the S

matrix will be, in virtually all cases, positive definite.* The

input vector u will be a constant vector. From the preceding

statements, it follows that the linear system will be bounded

output stable regardless of parameter selection (provided

k1 > 0).

Having chosen a dynamic augmentation for the 'loop' sub-graph,

the remaining task is to determine a computation scheme to effi-

ciently calculate the steady-state output vector of 'loop' sub-

system. One must keep in mind that for each global time step, the

steady-state output vectors of the loop sub-graphs (G ) need to
S

be computed.

The solution for the steady-state vector in the case Of

linear dissipative fields can be achieved by simple linear al-

gebra provided the A matrix is nonsingular.

 

*In some special cases, the S matrix may be only positive

semidefinite.





27

l
= A' Bu (3-3)

(
X
)

Another approach to this problem consists of the dynamic

simulation of the 'loop' sub-system. This concept will be

particularly useful in the case of nonlinear dissipative fields.

For this approach, the resulting design problem can be posed as:

How can the free parameters be selected to provide

computationally efficient convergence to the steady—

state output vector?

By properly selecting the free parameters, the eigenvalues

may be Clustered. Using the available integration scheme for

the global simulation, a local integration of the 'loop' sub—

system to steady state may be performed. Assuming the spectrum

is compact, an optimal integration time step may be chosen

relative to the entire spectrum. Hence, a minimum number of

iterations would be required to converge to steady-state.

In a first order system, the selection of an optimal free

parameter is simplified since any positive real constant will

suffice provided the resulting system is stable. The integration

time step would be chosen accordingly. Thereby, an efficient

solution would be realized.

The characteristic polynomial is a useful tool for investi-

gating the relationship of the free parameters to the eigenvalues

of the 2nd order system.
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Recall the special form of the A matrix:

S S

A z _ 11 12 (3_4)

The characteristic polynomial for the general second order system

is

2 _
X - (SHK1 + $22K2)A + det[SK] - 0. (3-5)

The roots‘are:

 

 

_ ' 2
a, B - SllKl + $22K2 :_\/(S]]K]+522K2) - 4 det[SK] (3-6)

2

For repeated roots to exist,

 

(f(snk1 + $22K2)2 - 4 det[SK] = o. (3-7)

Squaring equation (3-7) yields a 2nd degree quadratic. The general

form of a 2nd degree quadratic equation is1

ax2 + 2hxy + by2 + 29x + 2fy + c = 0. (3-8)

The following equations define A and J in terms of the coefficients

of equation (3-8).

 

1CRC Standard Mathematical Tables.
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g

A E det h D f (3-9)

9 C

a h

J E [h b] (3‘10)

For equation (3-7), A=O, and J takes the form

2 2
J = 4511522521512 - 4512 521 (3-11)

Considering the cases when the S matrix is positive definite,

511522 > 51252]. For the instances when the product $12521 < O,

the values of J is also less than zero. This fact indicates that

real positive parameters k1 and k2 exist to effect repeated roots.2

For 512521 > O, the value of J will be greater than zero. The

solution of equation (3-7) will consist of complex conjugate

intersecting lines.2 From this result, it is concluded that real

positive parameters to produce repeated roots are not realizable.

Reconsider the characteristic polynomial in equation (3-5).

The polynomial coefficients may be represented in terms of the

roots 6 and B.

 

ZCRC Standard Mathematical Tables.
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X2 - (6+B)X + OB = 0 (3-12)

For the case where $12521 < O, by setting a = B and equating

coefficients in equations (3-5) and (3-12), the free parameters

to effect repeated roots are determined to be

 

k k =-9-‘— 1+ 1- 511522 (3-13)
1’ 2 $11 —- detlSl

If the product Of the off diagonal elements is greater than

zero (51252] > 0), the relationship in equation (3-14) must be

satisfied to insure selection of positive real parameters. Its

derivation procedes similarly to that of equation (3-13); however,

a and 8 now represent real distinct roots.

45 s

O B 11 22

B'+ O- z-dEt[Sj—'- 2 (3-14)

To minimize the difference [a-B], the equality in equation (3-14)

must be enforced. It is convenient to rewrite equation (3-14) as,

O
D
I
Q

+

Q
I
U
O

= C; C > 2 (3-15)

For a given value of C, the solution pairs (a, 8) form a pair

of intersecting lines as shown in Figure 3-6. The slopes of these

lines sum to the value of C. This result indicates that an in-

finity of optimal pairs (a, B) exist which are germane to our

problem.
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Arbitrarily selecting a to be unity enforces the following

condition on B,

B _+T’C
04m

v
o
l
—
-
l

Equation (3-16) is predisposed to a quick iterative solution.

Having specified a and B, the free parameters are determined from

the following equation,

 

k = 4+6
(3-18)

2 2522

The algorithm presented in the preceding paragraphs provides

a relatively efficient procedure for optimal pole placement for

the class of second order systems concerned with here. Unfor-

tunately, the utility of the method does not extend to higher

order systems.

3.3.2 Nonlinear Dissipative Fields

In the case of nonlinear dissipative fields, the augmented

sub-system representation takes the general form:

X = 4(X, 9). (3-19)

Y = v(X. U) (3-20)
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Again, two primary techniques are available to determine the steady

state output vector Y.

The solution of equation (3-21) for x could be accomplished by

a numerical scheme such as the Newton-Raphson method.

0 = 4(5, U) (3-21)
~

The output vector becomes readily available as

Y : ¢(Xa U) (3’22)

Intrinsic difficulties in convergence and computational efficiency

detract from this type of numerical method.

Again, as in the linear case, the desired steady state solution

may be obtained through numerical integration of the nonlinear state

equations provided the system is stable. Stability is contingent

on the nature of the dissipative field. Parameter selection will

play a deciding role in the stability of sub-systems comprised

of certain classes of dissipative fields.

In referring to nonlinear systems, one can no longer speak

of eigenvalues. A useful and often employed technique in the

analysis of nonlinear systems is linearization about a nominal

trajectory or singular point. The resultant eigenvalues of the

linearized system will approximate the local dynamics of the

nonlinear system. This technique allows the dynamicist to identify

the relevant time scales in the system. This notion will be
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exploited in the development of a parameter selection scheme

for nonlinear systems.

To appreciate the intercoupling of the free parameters

in the nonlinear problem, an example problem will be discussed.

Reconsider the physical systems in Figure 3-4. The bond graph

for the analogous electrical and mechanical systems is also shown

in this figure. As was indicated earlier, this bond-graph engenders

an algebraic loop. The static sub-graph with possible dynamic

augmentations is shown in Figure 3-5. For this example, the aug-

mentation of Figure 3-5a has been Chosen. Figure 3-7 depicts the aug-

mented sub-graph, state vector, and dissipation functions.

’With little effort, the state equations for this system can

be derived from the bond-graph model. The state variables qu

and q1] represent the compliance effects and the free parameters

k1 and k2 are represented by l/C10 and 1/C1] for this system.

. _ qIO q10 q11
q10 - ' 4] (ETD) - ¢2 (ETD - 611) + f5 (3'23)

. q10 q11 q11 q11
<1 =<I> (-—----—-)-¢ (———-E)-¢ (--—-) (3-24)

The output vector is defined as,

es z q10/‘310 (3-25)

f6 = ¢4 (q11/C11 - E6)



—
~
1
w
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Suppose the dissipative functions are specified as follows:

_ 3

1c1 ‘ e1

f2 = eg

(3-26)

1:3 = ‘33

_ 5

1c4 ' e4

The linearized A matrix of this particular system about the

hypothetical equilibrium point 610, q]] yields,

L -32 2" 2" <1 <1
_ qIO q10 q11 2 10 11

A _ ( C3 C2 + C10C11) (C1OC11 - C2
10 10 11

210 q11 -2(______q10 11 ___5_(_1_1__E)4_

C7— C10C11 C1DC11 CT C11 11 6

(3-27)

As conveyed by the complicated form of the A matrix in equation

(3—27), the free parameters play a nontrivial role in the adjust-

ment of the timescales in the nonlinear problem.

In Table 3-1, and in Figures 3-8 through 3-13, the dynamic

response of the example system described earlier in Figure 3-4 and

equations (3-23) through (3-26) is studied for various conditions.

The example problem is useful in illustrating several properties

exhibited by the class of nonlinear systems associated with the

dynamic augmentation of dissipative fields.
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For cases 1, 2, and 3 listed in Table 3-1, the input vector

remains the same, but the free parameters pairs are changed.

As is evident from the data in Table 3-1, the steady-state output

vector remains immutable regardless of the parameter selection

(provided they are positive). Comparison of Figures 3—8 and 3-9

demonstrate the effect of parameter selection on the spreading

of the time scales in the system. In case 4 and case 5, the

input vector has been redefined producing a new steady-state

output vector. In case 6, instability has been induced through

adverse parameter placement.

3.3.3 Parameter Selection in the Nonlinear Problem

Clearly, the previous example reveals the interplay of the

free parameters in the modulation of the timescales for the dy-

namics problem. A simple and efficient method to select the

free parameters for the nonlinear problem remains to be addressed.

The following technique suggests a method of recasting the

task of parameter selection for the nonlinear problem into an

equivalent linear problem.

Recall that during the simulation of an entire system, the

steady-state output vectors of the augmented sub-systems are

required at each global time step. At each call for the steady

state output vector Of an augmented sub-graph (GS)’ the state of

the entire system is available from the previous time step.

Therefore, the instantaneous values of the effort and flow bond

variables for the entire bond-graph model have been determined.
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Digressing for a moment, reconsider the bond-graph model

in Figure 3—4. If this system consisted of strictly linear dissi-

pative elements, the explicit state-space form derived from the

bond-graph is,

 

1- '1 1"] 1 1 — I" 1 ‘ 1" '1

C'1 (— + —) - -- 0 4 F
10 R1 R2 R2 C10 (.10 5

= - ‘ + (3-28)

. 1 1 1 1

qI1 ‘R‘ (“+—+R‘) 0 CL q11 59
2 2 3 4 11 R4

L _I I... ..I L ...1 L. J .. J          

The assumed form for the linear dissipative functions used in

deriving equation (3-28) is

(
D I
I

Rf (3-29)

Using the instantaneous values for the bond variables

available from the previous time step, an instantaneous equiva-

lent linear resistance 'R'can be computed for each disspative

element by employing equation (3-29).

With the equivalent linear resistances, an estimate of the

instantaneous dynamics of the nonlinear system can be obtained by

the extraction of the eigenvalues from the A-matrix of equation

(3-30) rewritten below.

1

(§;'+ _

A = - (3-30)
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This form of the A-matrix is exactly analogous to the form

presented in Section 3.3.1 for linear systems. For this form,

optimal pole plaCement can be effected by reselection of C10 and

C11 employing the method for 2nd order systems developed earlier.

The process described in the preceding paragraphs can be re-

peated as the global time variable increments; that is, the free

parameters could be reselected intermittently throughout the global

simulation in a prescribed fashion.

The technique of parameter selection for the 2nd order non-

linear problem is summarized below.

1) At t = to, set all free parameters to unity. Compute

the state of the R field. Integrate the entire system

to to + At.

2) Compute the instantaneous equivalent linear resistances

for each nonlinear dissipative element in the augmented

sub-graphs.

3) Compute the A matrices for the analogous linear systems.

4) Select optimal free parameters.

5) Compute the steady-state output vectors of the aug-

mented sub-graphs.
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6) Continue with the global integration.

7) Repeat the parameter selection process following a

prescribed number of elapsed time steps.

To effect the most efficient convergence to steady-state for the

subsequent integrations of the augmented subgraph, the initial

conditions for the augmented sub-graphs should be updated using

the previously computed steady-state variables,

2td_1

{td(0) = 17—— (3-31)

t

d opt.

This ploy substantially decreases computational expenditure

when used for each sub-graph integration call.

3.4 The Solution Flowchart
 

To facilitate the understanding of the solution process

as it pertains to a bond-graph model containing algebraic loops,

the following pages delineate the logistical hierarchy in flow-

chart form. In Figure 3-14, the solution process described in

the logic diagram is illustrated.

The subsequent Chapter contains several examples of the

implementation of the parameter selection process for nonlinear

dynamically augmented sub-systems.
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4.0 NUMERICAL EXAMPLES

4.1 Example 1
 

Returning to the augmented sub-system in Figure 3-4, the ex-

plicit nonlinear state space form was found to be

    

[‘7' I- -'I

- q10 3 q10 q11 2
q =-——)-<————- 1+F
10 C10 C10 CH 5 ( )

4-1

- q10 q11 2 q11 q11 5

q = -——— --——— -(——- --—-— - E )

_]‘J C10 C11 C11 C11 6

Suppose the input vector is defined at tO in the global system

simulation as:

Following the procedure outlined in section 3.3.3, initially the

free parameters default to unity. That is,

[:11 11:21

The resulting steady-state output vector is computed to be



 

 



53

E5 .8980

= (4-3)

F6 -.0970

Computing the instantaneous linear resistances yields

R1 = El/F1 = 1.24

R = E /F = 1.9

R3 = E3/F3 = 1.0

R4 = E4/F4 = 6.46

From equation (4-5), the eigenvalues for the instantaneous

linear equivalent system may be readily calculated.

  

L}l_.+ l_g _ 1..

R1 R2 R2

A = - (4—5)

1 l 1 l
- __ (_ + __ + _)

R2 R2 R3 R4

-1.333 526

A :

(4-6)

526 -l.68

The resultant eigenvalues for the A matrix in equation (4-6) are

A] = -2.062, A2 = -.9505. A] and A2 indicate the relative time-

scales Of the system response for the parameters set to 1.0.

Figure 4-1 illustrates the response of the system for this case.
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The input vector from GD to the sub-system GS will be updated

at the subsequent global time step. Suppose its updated value is

[F5] = [1.2]

E6 .8

Using the parameter selection scheme developed in section 3.3.3,

the new improved free parameters may be selected. In equation

(4-7), the instantaneous A matrix is separated into the SK form.

1.333 -.526 t]— 0
A = _ 10 1 (4'7)

C11

Choosing 6:1, 8 is calculated from equation (4-8).

Using equations (3-17) and (3-18), the optimal parameters are

calculated to be

and

_ (l+2.1 _

2 CH " 201—)768 ‘ 45-2— (4‘10)





I
n
p
u
t

V
e
c
t
o
r

C
a
s
e

F
5

E
6

1
.
0

*
k
1

=
1
“
1
0
3

k
2

F
r
e
e

P
a
r
a
m
e
t
e
r
s
*

=
1
/
C
1
1
.

T
A
B
L
E

4
-
1

D
e
r
i
v
a
t
i
v
e

V
e
c
t
o
r

q
1
0

q
1
1

0
.
0

0
.
0

0
.
0

0
.
0

0
.
0

0
.
0

S
i
m
u
l
a
t
i
o
n

D
a
t
a

S
t
e
a
d
y

S
t
a
t
e

V
e
c
t
o
r

q
1
0

q
1
1

.
8
9
8

.
3
7
3

.
8
1
8
2

.
6
9
5
0

.
8
1
8
2

.
6
9
5
0

O
u
t
p
u
t

V
e
c
t
o
r

E
5

.
8
9
8

.
9
4
9

.
9
4
9

F
6

-
.
0
9
7

-
.
0
1
6
2

-
.
0
1
6
2

I
n
i
t
i
a
l

C
o
n
d
i
t
i
o
n
s

9
1
0
(
0
)

0
.
0

0
.
0

.
7
7
4

9
1
1
(
0
)

0
.
0

0
.
0

.
7
1
7
3

C
o
m
m
e
n
t
s

O
p
t
i
m
a
l

P
a
r
a
m
e
t
e
r
s

O
p
t
i
m
a
l

P
a
r
a
m
e
t
e
r
s

a
n
d

r
e
s
p
e
c
i
f
i
e
d

i
n
i
t
i
a
l

c
o
n
d
i
t
i
o
n
s

55



  



56

—
m
m
<
0

A
I
?

m
u
n
g
“
.

0
E
:

 

  

o
—

 



57

n
$
5

.
7
4

m
e
n
u
:

a
s
:

2
m

w
v

1N

 

o
—

  



  

 



a
"

m
m
m
<
o

.
m
l
?

m
a
n
o
r
.

6
&
3

 

58

 

s
o

 

m
6

m
6

m
6

m
6



 

 



59

Figures 4-1 and 4-2 indicate no discernable difference in

the time scales of response for the nonlinear system with the

parameter equal to unity, and set to their optimal values.

Tabulated in Table 4-2 are the approximating eigenvalues for

these two cases. Evidently, the initial specification of C10 and

C11 equal to unity was nearly optimal. Shown in Figure 4-3, is

the convergence of the system to steady state with respecified

initial conditions. Note that very few iterations are required.

Table 4-1 tabulates the important information for each simulation.

TABLE 4-2 Eigenvalue Approximation

Cases k1 k2 A] A2 Comments

1 1.0 1.0 -2.065 -.9505 Default parameters

2 1.16 .52 —2.1 -l.0 Optimal parameters

4.2 Exampje 2
 

The augmented sub-graph used in example problem 1 is re-

considered here again; however, the dissipation functions have

been redefined as follows:

f1 = 6 TANH (e1) (4-11)

- 3 _
f3 — 3e3 + 2e3 (4 13)

15e4

f4 = -——7? (4—14)
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Figure 4-4 illustrates the nature of the dissipation functions.

Tabulated in Table 4-3 are-the relevant data for Figures 4-5 and

4-6. In Table 4-4, the instantaneous eigenvalues for case 1 and

case 2 computed from the equivalent resistance method are compared.

Note in this example, the selection of the optimal parameter

provided a significant decrease in eigenvalue seperation (see

Table 4-4). In case 1, the input vector has been specified to be

8.0

(4—15)

-2.0

In case 2, at the subsequent sub-system call, for the sake of

example, the input vector has been assumed to be displaced to

[F5] [7.9 ]

= (4-16)

E6 -1 95

from the information provided in case 1. The improved initial

conditions for case 2 were calculated from the equation

A

x (O) = x /k (4-17)

*td ”td-l td opt.

Apparent from Figure 4-6 is the rapid convergence of the system

to the new steady-state effected by the choice of an optimal

parameter pair and respecification of the initial conditions.
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TABLE 4-4 Eigenvalue Approximation

1 k2 A] A2 Comments

Case l 1.0 1.0 -35.77 -.884 Default parameters

Case 2 2.624 2.08 -27.25 -l.O Optimal parameters
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5.0 CONCLUSIONS

5.1 The General Problem Structure
 

In Figure 5—1, a diagram representing the general problem

structure is illustrated. From this diagram, several alternate

paths of investigation as well as potential directions for future

work are shown.

5.2 Summary of Results
 

In the preceding chapters, the origin and identification of

algebraic loops within the framework of the bond graph approach

has been discussed. Following the identification of the bond-graph

fragments containing algebraic loops, a procedure for the struc-

tural modification of the static sub-graphs containing the loops

was defined. Inherent to this particular procedure is the concept

of piecewise simulation.

Associated with the dynamic augmentation of the static sub-

graphs is the problem Of parameter selection. A procedure for

the selection of parameters for optimal pole placement in lst and

2nd order linear systems has been outlined. By recasting the

nonlinear problem into an approximate linear equivalent, the task

of parameter selection was reduced to that for the linear problem.
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Algebraic Loops in Bond Graph Models

\

\

‘fi-

 

Dissipative Fields Dependent State Variables

\\

I \-
\\~

Dynamic Augmentation Direct Numerical Solution

of Static Subgraphs of Loop Equations

Selection of Free __. Minimum Maximum Order

Parameters _ T Augmentation

The Linear Case The Nonlinear Case

\/

Specification of

Initial Conditions

I
Stability?

Uniqueness?

¥

Simulation

FIGURE 5-1. THE PROBLEM STRUCTURE
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The solution process incorporating the required manipulations

for a bond-graph model containing algebraic loops was delineated

in a flowchart format.

Chapter 4 contains two numerical examples implementing the

solution process. These examples demonstrate the viability of

the solution process discussed in this thesis.

5.3 Open Questions
 

Remaining undetermined is the manner of selection of optimal

parameters for a general nth order augmented sub-graph, and the

associated stability question.

It may be remarked that for dissipation functions strictly

increasing and confined to the lst and 3rd quadrants of the effort-

flow plane, as demonstrated in Figure 4-4, stability for a non-

linear subsystem is ensured independent of parameter values,

provided they are positive. In a physical sense, such a system

disturbed by constant inputs will eventually settle to a steady-

state where energy influx equates with energy dissipation.

Further work however, should be pursued in examining system

stability for a general class of dissipation functions with, for

example, the capability of returning power to the system for

finite time intervals.

Experience indicates that most physical systems represented

by bond graph models containing algebraic loops may be adequately

handled with only a lst or 2nd order augmentation. It remains

desirable to develop an algorithm for the parameter selection

for the general nth order case.
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It must also be noted that the bond-graph model requires

the dissipation functions to have an explicit form of either

6 = ¢(f) (5-1)

OI"

.
.
.
,

I
I

4(9) (5-2)

Therefore, implicit forms of the dissipative functions are not

addressed by the method of dynamic augmentation.

In summary, the utility of the method of dynamic augmentation

of dissipative algebraic loops has been Clearly demonstrated with

bond graph techniques for a class of problems that were previously

neglected.
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Language

introduction

THE purpose of this paper is to present the basic

definitions of the bond graph language in a compact but general

form. The language presented herein is a formal mathematical

system of definitions and symbolism. The descriptive names

are stated in terms related to energy and power, because that is

the historical basis of the multiport concept.

It is important that the fundamental definitions of the lan-

guage be standardized because an increasing number of people

around the world are using and developing the bond graph

language as a modeling tool in relation to multiport systems.

A common set of reference definitions will be an aid to all in

promoting ease of communication.

Some care has been taken from the start to construct defini-

tions and notation which are helpful in communicating with

digital computers through special programs, such as ENPORT

[5].l It is hoped that any subsequent modifications and exten-

sions to the language will give due consideration to this goal.

Principal sources of extended descriptions of the language and

physical applications and interpretations will be found in

Paynter [l], Karnopp and Rosenberg [2, 3], and Takahashi, et

a1. [4]. This paper is the most highly codified version of language

definition, drawing as it does upon all previous efiorts.

Basic Definitions

Multiport Elements, Ports. and Bonds. Multiport elements are

the nodes of the graph, and are designated by alpha-numeric

characters. They are referred to as elements, for convenience.

For example, in Fig. 1(a) two multiport elements, 1 and R, are

shown. Ports of a multiport element are designated by line
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APPENDIX A1

A Definition of the Bond Graph

segments incident on the element at one end. Ports are places

where the element can interact with its environment.

For example, in Fig. 1(b) the 1 element has three ports and

the R element has one port. We say that the 1 element is a 3-

port, and the R element is a l-port.

Bonds are formed when pairs of ports are joined. Thus bonds

are connections between pairs of multiport elements.

For example, in Fig. 1(a) two ports have been joined, forming

a bond between the 1 and the R.

Bond Graphs. A bond graph is a collection of multiport

elements bonded together. In the general sense it is a linear

graph whose nodes are multiport elements and whose branches

are bonds.

A bond graph may have one part or several parts, may have

no loops or several loops, and in general has the characteristics

of any linear graph.

An example of a bond graph is given in Fig. 2. In part (a) a

bond graph with seven elements and six bonds is shown. In

part (b) the same graph has had its powers directed and bonds

labeled.

A bond graph fragment is a bond graph not all of whose ports

have been paired as bonds.

An example of a bond graph fragment is given in Fig. 1(a),

which has one bond and two open, or unconnected, ports.

Port Variables. Associated with a given port are three direct

and three integral quantities.

Efl'ort, e(t), and flow, f(t), are directly associated with a given

port, and are called the port power variables. They are assumed

to be scalar functions of an independent variable (t).

Power, P(t), is found directly from the scalar product of efiort

and flow, as

PG) - e(t)'f(¢).

The direction of positive power is indicated by a half-arrow on

the bond. q

Momentum, p(¢), and displacement, q(t), are related to the

effort and flow at a port by integral relations. That is,

70
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R ——I—- -—R —-I R

 

(a) (b) (C)

Fig. 1 Multlport elements, ports. and bonds: (a) two multiport

elements: (is) the elements and their ports; (c) formation of a bond

R

‘1 5

I 3 4

SE—-* 0 —7TF—rl

I 2"; +6

(a) (b)

Fig. 2 An example of a bond graph: (a) a bond graph: (b) the bond

graph with powers directed and bonds labeled

_
x

 0-—-—TF——1

P0) = P00) + 1:; e()\)d>\

and q(t) = q(lo) + 1:; f(A)d>\, respectively.

Momentlun and displacement are sometimes referred to as

energy variables.

Energy, E(t), is related to the power at a port by

£0) = Ea.) + f Pom.

The quantity E(t) — E(to) represents the net energy transferred

through the port in the direction of the half-arrow (i.e., positive

power) over the interval (to, t).

In common bond graph usage the effort and the flow are often

shown explicitly next to the port (or bond). The power, dis-

placement, momentum, and energy quantities are all implied.

Basic Multlport Elements. There are nine basic multiport

elements, grouped into four categories according to their energy

characteristics. These elements and their definitions are sum-

marized in Fig. 3.

Sources.

Source of eflorl, written SE _e_, is defined by c = e(t).

Source of flow, written SF1:, is defined by f = f(t).

Storages.

. . e .

Capacztance, written 1: C, Is defined by

e = «no and <10) = qua + f. mm.

That is, the efiort is a static function of the displacement and

the displacement is the time integral of the flow.

. e .

Inertance, written 1: I, 18 defined by

f = <I>(p) and pa) = pa.) + flu e(A)dA.

That is, the flow is a static function of the momentum and the

momentum is the time integral of the effort.

Dissipation.

Resistance, written ER, is defined by

¢(€, f) = 0

 

 

SYMBOL DEFINITION NAME

SE—e-w e = e(t) source of effort

SF-—f—-; f = f(t) source of flow

C‘-:— e = C(q) capacitance

«(o = q(to)+ {mu

1’:— f = Mp) inertance

P('t)=p(to)+ {..dt

Rl—i—— @(e,f) = O resistance

1 2
,TF 7 el = m-e2 transformer

Izm

III-fl = f2

1 2

,GY 7 el = r f2 gyrator

r

82 = refl

3 _ -
__'0_———, e1 - e2 - e3 common effort

2 junction

fI + f2 - f3 = 0

l 3 _
__,l__., fI = f2 — f3 common flow

2 junction

el + e2 - e3 = 0

Fig. 3 Definitions of the basic multiport elements

That is, a static relation exists between the effort and flow at the

port.

Junctions: z-Port.

Transformer, written :3 TF 6-2, is a linear 2—port element de-

fined by l 2

e; = m-eg

m-fl = f2,and

where m is the modulus.

e e . .

Gyrator, written -l GY 3, Is a linear 2-port element defined

fl f:

by

C] = T'fz

and 62 = T:fl,

where r is the modulus.

Both the transformer and gyrator preserve power (i.e., P, =

P2 in each case shown), and they must each have two ports, so

they are called essential 2-port junctions.

Junctions: 3-Port.

. 1 3

Common efl'orl. junction, written ———7 O ——7

2 ’l

is a linear 3-port element defined by

e; = e; = e; (common effort)

fl +f2 "f: = 0-

Other names for this element are the flow junction and the

and (flow summation)

Transactions of the ASME  
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l 3

T—71—7.

2I‘

zero junction. Common flow junc/ion, written

is a linear 3-port element. defined by

f: = f: = fa

(’I + (’2 — l’. = 0.

(common flow)

and (efi'ort summation)

Other names for this element. are the cfiort junction and the one

junction.

Both the common effort junction and the common flow junc-

tion preserve power (i.e.. the not power in is zero at all times).

so they are called junctions. If the reference power directions

are changed the signs on the summation relation must change

accordingly.

Extended Definitions

Multlport Fields .

Storage Fields. Mulliport capacitances, or C-fields, are written

] n .

———7 C Y—_ , and characterized by

2’) 3

e,- = <I>,-(q;, q), ... q.), i = 1 to n,

t

and q,-(l) = (1,-(10) + .f‘o f,-(A)d)\, i = 1 to n.

. . . l n

Mullzporl inertanccs, or I-ficlds, are wrltten —7 I v\——,

I)1..

and characterized by

fu’ = 4’4?» P2. --

1

p,(t) = p¢(lo) + flo el(A)dA, i = l to n.

Ito n,- p»), i

and

If a C-field or I-field is to have an associated “energy” state

function than certain integrability conditions must be met by

the (P,- functions. In multiport terms the relations given in the

foregoing are sufficient to define a C-field and I-field, respectively.

Mixed multiport storage fields can arise when both C and I-

type storage effects are present simultaneously. The symbol for

such an element consists of a set of 0’s and 1’5 with appropriate

ports indicated.

For example, ——1-7 ICI T3— indicates the existence of a set

“12

of relations

in = @1001. 92. Pa),

= (P2071. 92. Pa).'
5

a
s

fa = <1>a(pl. 92. Pa).

and

72.0) = 271(k) + f; e;(A)dA,

‘71“) = (1200) 'I' 1:: f2(>\)d>\,

3.0) = 20.0.) + f, e.(>\)d>\.

—————

Journal of Dynamic Systems, Measurement, and Control

Mulliport dissipators, or R-fields, are written % R Ln—

2 I‘.

and are characterized by

¢i(elr fl; 8:, f2: : - -

If the R—field is to represent pure dissipation, then the power

function associated with the R-field must be positive definite.

Mulliporl junctions include 0 junctions and l - junctions with

n ports, n _>_ 2. The general case for each junction is given

in the following.

e,.,f..) =O,i = lton.

l 0,71 l l C".

2/I 2/\

..I; .1;

e;=e,=....=c,, fl=f3= =f,,

Zfl=0 Zer=0

5'! i-i

Modulated z-Port Junctions. The modulated transformer, or

lm(X)

MTF' written 1 M TF' 2 implies the realtions
7 -7

£1 = m(x)'€z

m(x)-fl = f»

where m(x) is a function of a set of variables, x. The modulated

transformer preserves power; i.e., P1(l) = P20).

and

f(x) I

The modulated gyrator, or MGY, written 1 MGY 2

'7 -7
implies the relations

(I = I‘(X)'fz

and 6: = r(X)'fl,

where r(x) is a function of set of variables, x. The modulated

gyrator preserves power; i.e., Pi(l) = P:(t).

Junction Structure. The junction structure of a bond graph is

the set of all 0, l, GY, and TF elements and their bonds and

ports. The junction structure is an n-port that preserves power

(i.e., the not power in is zero). The junction structure may be

modulated (if it contains any MGY’s or MTF’S) or unmodulated.

For example, the junction structure of the graph in Fig. 2(b) is

a 4-port element with ports 1, 2, 5, and 6 and bonds 3 and 4. It.

contains the elements 0, TF, and 1.

Physical Interpretations

The physical interpretations given in this section are very

succinctly stated. References [l], [2], and [3] contain extensive

descriptions of physical applications and the interested reader is

encouraged to consult them.

Mechanical Translation. To represent mechanical translational

phenomena we may make the following variable associations:

1 efi'orl, e, is interpreted as force;

2 flow, I, is interpreted as velocity;

3 momentum, p, is interpreted as impulse-momentum;

4 displacement, q, is interpreted as mechanical displacement.

Then the basic bond graph elements have the following in-

terpretations :

1 source of effort, SE, is a force source;

2 source of flow, SF, is a velocity source (or may be thought

of as a geometric constraint);



 



3 resistance, R, represents friction and other mechanical

loss mechanisms;

4 capacitance, 0, represents potential or elastic energy

storage effects (or spring-like behavior);

5 inertance, I, represents kinetic energy storage (or mass

effects);

6 transformer, TF, represents linear lever or linkage action

(motion restricted to small angles);

7 gyrator, GY, represents gryational coupling or interaction

between two ports;

8 O-junction represents a common force coupling among the

several incident ports (or among the ports of the system bonded

to the O-junction) ; and

9 l-junction represents a common velocity constraint among

the several incident ports (or among the ports of the system

bonded to the l-junction).

The extension of the interpretation to rotational mechanics

is a natural one. It is based on the following associations:

1 effort, e, is associated with torque; and

2 flow, f, is associated with angular velocity.

Because the development is so similar to the one for translational

mechanics it. will not be repeated here.

Electrical Networks. In electrical networks the key step is to

interpret a port as a terminal-pair. Then variable associations

may be made as follows:

1 efiort, e, is interpreted as voltage;

2 flow, f, is interpreted as current;

3 momentum, p, is interpreted as flux linkage;

4 displacement, q, is interpreted as charge.

The basic bond graph elements have the following interpreta-

tions:

1 source of effort, SE, is a voltage source;

2 source of flow, ‘ is a current source;

3 resistance, R, -. ;;'.:..~:ents electrical resistance;

4 capacitance, ‘ ::.nresents capacitance effect (stored

electric energy);

5 inertance, I , -;‘,: *. rents inductance (stored magnetic

energy);

6 transformer, ’ . :_-presents ideal transformer coupling;

7 gyrator, GY, rcgtregc'its gyrational coupling;

8 O-junction re]. :;- -.‘»l:- a parallel connection of ports (com-

mon voltage across Lit 1*"minal pairs); and

9 l-junction repr= rains a series connection of ports (common

current through the terminal pairs).

Hydraulic Circuits. For fluid systems in which the significant

fluid power is given as the product of pressure times volume

flow, the following variable associations are useful:

1 efl'ort, e, is interpreted as pressure;

2 flow, f, is interpreted as volume flow.

3 momentum, p, is interpreted as pressure-momentum;

4 displacement, q, is interpreted as volume.

The basic bond graph element-s have the following interpreta-

tions:

1 source of effort, SE, is a pressure source;

2 source of flow, SF, is a volume flow source;

73

3 resistance, R, represents loss effects (e.g., due to leakage,

valves, orifices, etc.);

4 capacitance, 0', represents accumulation or tank-like effects

(head storage);

5 inertance, 1, represents slug-flow inertia effects;

6 O-junction represents a set of ports having a common

pressure (e.g., a pipe tee);

7 1-junction represents a set of ports having a common

volume flow (i.e., series).

Other Interpretations. This brief listing of physical interpreta-

tions of bond graph elements is restricted to the simplest, most

direct, applications. Such applications came first by virtue of

historical development, and they are a natural point of de-

parture for most classically trained scientists and engineers.

As references [1-4] and the special issue collection in the

JOURNAL or DYNAMIC SYSTEMS, MEASUREMENT, AND CON-

TROL, TRANS. ASME, Sept. 1972, indicate, bond graph elements

can be used to describe an amazingly rich variety of complex

dynamic systems. The limits of applicability are not bound by

energy and power in the sense of physics; they include any

areas in which there exist useful analogous quantities to energy.

Concluding Remarks

In this brief definition of the bond graph language two im-

portant concepts have been omitted. The first is the concept of

bond activation, in which one of the two power variables is sup-

pressed, producing a pure signal coupling in place of the bond.

This is very useful modeling device in active systems. Further

discussion of activation will be found in reference [3], section

2.4, as well as in references [1] and [2].

Another concept omitted from discussion in this definitional

paper is that of operational causality. It is by means of causality

operations applied to bond graphs that the algebraic and dif-

ferential relations implied by the graph and its elements may be

organized and reduced to state-space form in a systematic

manner. Extensive discussion of causality will be found in

reference [3], section 3.4 and chapter 5. Systematic formulation

of relations is presented in reference [6].
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APPENDIX A2

Mathematical Basis for Dynamic Augmentation

The incidence of algebraic loops, within the framework

of the bond-graph approach, are associated with acausal fragments

as has been shown. Let us reconsider the acausal static sub-graph

shown again in Figure 2-5c. By virtue of the nature of the junction

elements, the following statements can be made:

2 efforts = 0 'l'

2 flows = O '0'

For the augmented sub-graph,

z efforts = p 'l'

2 flows = i '0'

junction (A-l)

junction (A-Z)

the following statements can be made:

junction (A-3)

junction (A-4)

The condition of steady-state requires that

(A-5)
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Consequently, at steady-state, the junction imposed con-

straint equations of the dynamic system are

2 efforts = 0 'l' junctions (A-6)

z flows = 0 '0' junctions (A-7)

From this result, it is evident that the algebraic character of

the static sub-graph is preserved at the steady-state of a

pr0perly augmented sub-graph. Note that augmentation can be

extended to any or all of the '0' and 'l' junctions contained

within a static sub-graph.
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