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ABSTRACT

INVESTIGATION OF A DYNAMIC SAINT-VENANT

REGION IN A SEMI-INFINITE STRIP

By

Hartley T. Grandin, Jr.

The investigation examines the steady state response of a

semi-infinite strip with stress-free edges to time-harmonic self-

equilibrated shear and normal stresses on the finite edge. The

mathematical analysis is based on the equations of linear

elasticity for generalized plane stress and involves a biorthogonal

eigenfunction expansion of a four component stress vector.

Solutions for three different boundary stress distributions

at one frequency are examined in detail and reveal significant non-

decaying stress modes. The shapes of these modes are shown

graphically.

The eigenvalues are tabulated for seven different frequencies

between 100 and 100,000 cycles per second.
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CHAPTER I

INTRODUCTION

1.1 Historical Background
 

In 1853, Barre de Saint-Venant presented his solution for

torsion in long prismatic bars of various cross sectional shapes

(1). In this solution, he was able to satisfy the end conditions

producing the twist in the bar only up to a resultant force and

couple, the distribution of which, he assumed, could differ from

the required distribution in the body of the bar. He postulated

that variations in the distribution of statically equivalent end

loadings must have little effect on the twisted bar except near the

ends. This declaration became the basis for what is now known as the

Saint-Venant principle. In a footnote of his memoir, Saint-Venant

went on to say that the influence of forces in equilibrium acting

on a small portion of a body extends very little beyond the parts

upon which they act (2).

The importance of this principle in the subsequent develop-

ments of the theory of elasticity cannot be over-stated, and the

problem of providing mathematical clarification of the principle and

justification of its use has been the subject of serious consideration

since its enunciation. As a practical matter, analytical stress

analysis of equilibrium systems using classical theory constantly

resorts to the principle by replacing one force system with a



statically equivalent one with the assumption that the resulting

errors exist in a region extending very little beyond the surface

of application. Indeed, without the use of this principle, many

problems would be too complicated to solve.

The earliest solution for a system of forces in equilibrium

on the edge of a plate is attributed to Thomson and Tait (1867),

followed by a more complete solution by Maurice Levy (1877), (3).

M.J. Boussinesq (1885), (4), one of the most distinguished pupils

of Saint-Venant, was able to define the region of local perturbation

resulting from the application of statically equivalent systems of

loads normal to the infinite half Space. This work has been a

standard reference in textbooks as proof of the Saint-Venant principle.

As recently as 1945, von Mises (5) argued that Boussinesq's solution

was for a particular loading, and that Saint-Venant's principle in

its traditional form does not hold true if equilibrant force systems

are introduced tangent to the plane surface. He prOposed to modify

the principle with the introduction of the concept of astatic equili-

brium which requires forces to remain in equilibrium when rotated

through any angle. E. Sternberg (1953), (6) supplied a precise formula-

tion and proof of the SainEVenant principle as modified by von Mises.

The von Mises-Sternberg papers define the Saint-Venant boundary

region for bodies having very general geometries. Recent engineering

requirements have necessitated the determination of the magnitude of

the stresses in this boundary region for specific geometries. Tech-

niques now exist to investigate the stress distribution in the Saint-

Venant boundary region for particular time-independent boundary con-

ditions on the semi-infinite strip (7), cylinder (8), wedge and cone (9).



The investigation of the possible existence of a dynamic

Saint-Venant region is limited. B.A. Boley (1954), (10), using a

simple model, found that a region similar to the static boundary

region exists for slowly applied loads; but as the rate of loading

is increased, the region extends to longer portions. L.w. Kennedy

and O.E. Jones (1969), (11) examined the effect of altering the

radial distribution of statically equivalent pressure step loads on

a semi-infinite cylinder having zero lateral displacement on the end.

They concluded that any differences in time-average dynamic stresses

and strains are negligible at distances greater than five times the

cylinder diameter, and differences in peak values are small at dis-

tances greater than twenty diameters. The effect of a self-equili-

brated load representing the difference between the two statically

equivalent applied loads remains undetermined.

The Kennedy and Jones investigation, as well as other of the

most recent studies in wave propagation, employed transform techniques

which permit asymptotic solutions to the equations of motion at large

propagation distances only for the mixed end boundary conditions of

one stress and one displacement (12). The important Saint-Venant

boundary region with pure end stress conditions specified still re-

quires investigation.

1.2 Problem Statement
 

A semi-infinite strip with stress free edges is end loaded

with time-harmonic self-equilibrated shear and normal stresses. The

decay characteristics of the resulting stress distribution and pro-

pagation modes are investigated through the analytic solution of the



equations of linear elasticity.

1.3 Assumptions and General Solution Outline

The homogeneous, isotropic, linearly-elastic, semi-infinite

strip occupies the region -1 s y s l and x S m. The solution is

based on the linearized equations of elasticity for generalized

plane stress and is obtained by use of an extension of a technique

of biorthogonal eigenfunction expansion developed by M.W. Johnson and

R.W. Little (1965), (7). The boundary conditions for this problem are:

a bounded solution as x approaches infinity

(1.3-l)

stress free infinite boundaries, y = + l

oyy(X, :,1) = oxy(x, :_l) = 0 (1.3-2)

and one of the following conditions on the finite boundary x = 0:

the first mixed boundary condition

Oxx = 0*Xb(y) cos mt

(1.3-3a)

u = u ( ) COS wt

y yby

the second mixed boundary condition

Oxy = okyb(y) cos wt

(1.3-3b)

ux = qu(y) COS wt

the pure stress boundary condition

Oxx = oxxb(y) COS wt

(1.3-3c)

o (y) cos wt
oxy xyb



the pure displacement boundary condition

u = uxb(y) cos wt

(1.3-3d)

u = uyb(y) cos mt .

This problem is formulated to investigate the Saint—Venant

boundary region with pure stress end conditions. In the course of

the development, formulations are obtained which accept the Specifica-

tion of each of the mixed boundary conditions. The mixed boundary

cases are not examined separately because these boundary conditions

are not of immediate interest to this problem. Their development,

however, is a vital step in the formulation of the pure stress problem.

The formulation of the pure stress case involves three major

steps, each of which is discussed separately in Chapters 11, III,

and IV.

In Chapter II, a second-order partial differential vector

equation is deve10ped in terms of the normal stresses Oxx and Oyy'

This development is called the first mixed boundary case because

specification of Oxx and Oyy on the boundary x = 0 is equivalent

to specification of the normal stress Gxx and the displacement u

in the y direction. The stress Oyy by itself is not a boundary

stress on the surface x = 0, but in combination with Oxx allows

specification of uy. The homogeneous boundary conditions on the

infinite edges leads to an eigenvalue problem which is solved for the

eigenvalues and eigenfunctions. A biorthogonality operator is found

which permits the direct calculation of the eigenfunction constants

from the prescribed mixed boundary conditions. As was indicated

earlier, the investigation of the Saint-Venant boundary region is to



be made for pure stress end conditions, not conditions involving

one boundary stress and one boundary displacement. Thus, for this

study, the solutions developed in this chapter will not be used to

solve a particular mixed boundary value problem, but rather, they

constitute an intermediate step in the pure stress boundary formula-

tion continued in Chapters III and IV.

’In Chapter III, a second-order partial differential vector

equation is developed in terms of the shear stress Oxy and a new

function Q. This deveIOpment is called the second mixed case be-

cause specification of Oxy and Q on the surface x = 0 is equi-

valent to specification of the shear stress Oxy and a displacement

ux in the x direction. The solution proceeds in the same manner

described for the first mixed case. Again, the solutions obtained

for the second mixed case are treated as elements of the final

formulation.

In Chapter IV, the results of Chapters II and III are com-

bined to write a series eXpansion of the vector [0 ,o ,0 ,Q].

XX yy xy

The two biorthogonality Operators are combined to produce a

biorthogonality operator which can be applied to the four component

vector.

In Chapter V, boundary functions a and o

xxb x

are s ecified

yb p ’

and Oyy and Q are written as a series expansion on the surface

x = 0. The eigenfunction constants are obtained by applying the

four-vector biorthogonal Operator. Chapter VII includes a discussion

of three examples.



CHAPTER II

FORMULATION OF PROBLEM FOR FIRST MIXED BOUNDARY CASE

2.1 Equations of Elasticity
 

The governing equations for the first mixed case are derived

from the following linearized equations of elasticity using the gen-

eralized plane stress assumption.

Equations of Motion
 

 

2

BOXX + 3331 = p i_3§ (2.1-1)

ax ay 3:2

2

23:1.+ 3311.: p 2_3x. (2.1-2)

ax ay atz

Stress-Displacement Relations
 

Bux l

g; - E— (oXX - voyy) (2°1‘3)

All

__x.= l _ . -
By E (oyy egxx) (2.1 4)

3:§.1.i:x = Ziktal (2 1 5)
by ' ax E Oxy ' '

2.2 Boundary Conditions

For the first mixed case, the boundary conditions specified

on the finite boundary x = 0 are

oxx = oxxb(y) cos wt (2.2-l)



U =11

y yb

(y) cos wt . (2.2-2)

As has been indicated earlier in Section 1.3, equation (2.1-4) shows

that the condition (2.2-2) is equivalent to the specification of

(2.2-1) and ny on the boundary x = 0.

= cos mt (2.2-3

The infinite boundaries, y = :pl, are taken to be stress free,

O'yy(xs : 1) = OXY(X’ i 1) = 0’ (202-4)

and the solution is required to be bounded as x approaches infinity.

2.3 Equations for the First Mixed Case

The general equations given in Section 2.1 can be reduced

to two equations for Oxx and oyy. Differentiating equation

(2.1-5) once with respect to x and once with respect to y yields

the following expression

3 3 2

a U A U A o

X + ———1—-= Zglfyl» XY . (2.3-1)
2 2

axsy ayax E axay

 

Substituting equations (2.1-3) and (2.1-4) gives

 
 

2 2 2 2 2

5 0 B 0 a G A o a o

ZXX - v -—§11-+ ——§11 - v ZXK = 2(l+v) —;—51-. (2.3-2)

ay ay ax ex 3 5y

Differentiating equation (2.1-l) with respect to x, (2.1-2) with

reSpect to y and adding gives

 

2 2 2

a a 2 BU an A o a o
2_Xt=pa_(x+__r)___>_<1___1x . (2.3-3)

axay 2 ex ay 2 2
at 5x BY



Substituting equation (2.3-3) into (2.3-2) and using equations

(2.1-3) and (2.1-4) yields the first equation.

 

2 2 (1_ 2) 2

a—2(oxx+o)+a—3(oxx+oyy)=gEv EL2(oxx-to)

3x yy By at yy

(2.3-4)

The second equation is obtained by differentiating equation

(2.1-l) with respect to x, (2.1-2) with respect to y, subtracting

and substituting equations (2.1-3) and (2.1-4).

  

  

2 2

a o a o 2
xx _ yy = Q£1+V) A _ -

2 2 E 2 (OXX ny) (203 5)

BX BY at

Equations (2.3-4) and (2.3-5) can be written in matrix form

28 28 28

A5—2+a—2=N5—2, (2.3-6)

Bx By at

where

2 1 r0 1
xx

A = ’ S =

-l O o

1 yys

2 u

2+v-v -\)(1+\))

= 2

N E

-(1+v) l+v

This matrix equation is the desired first mixed boundary case

formulation.

2.4 Solution of the Equations for First Mixed Case

The boundary stresses (2.2-1) and (2.2-3) are time-harmonic

of frequency w. Thus, a time—harmonic solution form is assumed
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using separation of variables

3 = V(y)X(x)eiwt , (2.4-1)

where

V1(y)

V(y) =

v2(y)

Substituting this assumed form of solution into equation (2.3-6)

yields

2X 2V 2
Ava—5+Xa‘7'l'w vi=0. (2.4-2)

BX BY

This suggests the possible form X(x) = emX which when sub-

stituted into equation (2.4-2) yields

dZV 2

——-—2 + (sz - a m = 0 , (2.4-3)
dy

or

2

g—%-+-HV = 0 , (2.4-4)

dy

where

2 2 2 '2 2 27

P—,‘§’—-(2+v-v)-2a -1;3’—(v+v)-a

H ='.

2 2 ‘2

- 53%— (1+v) + 01 9-9— as.)
E E J  

Equation (2.4-4) is an ordinary second-order matrix differential

equation with constant coefficients. EXpanding equation (2.4-4)

yields



 

ll

 

 

2

d v1

2 + hllvl + h12v2 = 0 (2.4-5)

dy

2

d v2

+ + = .-
2 h21V1 h22"2 0 (2 4 6)

dy

These two equations may be written in the form

d4 d2 v1
——""l" 'l' —-+ - = . .-4 (h11 h22) 2 h11h22 h12h21 O (2 4 7)

dy dy v2

The roots of the characteristic equation obtained from (2.4-7) are:

_ _l”__2 _“w

r = + w/az _ EQ_.(1-VZ) = + am (2.4-8a)

1,2 —- E ._

2 2 7"? _-._ "
r3 = +1 a - —E£— (1+ ) = + an , (2.4-8b)

,4 -' E '-

where

1 \/ 2. ”Quasi—m7“ 2 A

m = 3' a - E (l-v ) (2.4—9)

1 2 lwé 2-”- _..

n = —’ a --—9£— (1+v) . (2.4-10)
a E

The solution of equation (2.4-4) has the following form:

v1 = C1 Slnh amy +C2 cosh amy + C3 sinh any + C4 cosh any

v2 = C5 Slnh amy + C6 cosh amy + C7 Sinh any + C8 cosh any

Substituting these expressions for v1 and v2 into either of

the equations (2.4-5) or (2.4-6) defines four of the constants.

v1 = C1 sinh amy +C2 cosh amy + C3 sinh any + C4 cosh any (2.4-ll)
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= KC1 sinh amy + KC cosh amy - C sinh any - C cosh any , (2.4-12)

2 3 4

1 + n2

vn2 - v - 2

 

The remaining constants are determined from the boundary conditions.

Satisfaction of the boundary conditions on y = i_l.

(a) On the surfaces y = :.l, the normal stress Oyy is zero

for all x and time t. This implies, from equation

(2.4-1), that v2(:_l) = 0. Thus from equation (2.4-12):

ll

OKC1 sinh am - C3 sinh an (2.4-13)
I

OKC2 cosh am - C cosh an - (2.4-l4)
4

Two equations appear as a result of separating the solution

into even and odd functions of y.

(b) 0n the surfaces y = :_l, the shear stress Oxy is zero

for all x and t. The governing equations do not

explicitly contain ny’ so that a relationship between

Oxx’ Oyy’ and Oxy must be constructed. Differentiating

equation (2.1-2) with respect to x and substituting equa-

tion (2.1-5) yields

 

2 2

32a=paz 2am, 3:. 1.15m
5x2 8,2 E xy ay axay

Differentiating this equation with respect to x and sub-

stituting equation (2.1-3) yields



 

2 2 2 2

[5—_20(1+\D az]aoxv=_[a__2__g_\;a_z_]§fzx_

E2

ex E at 5x ax at ay

2 ac

- 9 3— i. (2.4-15)

E 2 by
at

50

If C is constant at y = + 1, then -—§l-— 0 and

xy BX

equation (2.4-15) becomes

2 2 BO 2 50

a.— _ E2.a__. __11.+.Q.a__.__§£.= 0 at y = + 1 .

2 E 2 By E 2 By —

ax at . at

Using the assumed solution form from equation (2.4-1) gives

(2.4-16)
E

d +[ 2 + u 2] v2(il) - U)2 dv1(_l)

y E dy

Substituting equations (2.4-11) and (2.4-12) into equation

(2.4-16) and separating into even and odd functions of y

 

 

yields

2 ’2 K 2

C am(a K.+ E£_ - —2EQ—)cosh am
1 E E

2 2

+ C3an(-a + ”w + 39w )cosh an = 0 (2.4-17)
E E

and

2 .2 K 2

C am(a K + Efl— - —22£—)sinh am
2 E E

2 2

+ Caan(-a +19; + vgw )sinh an = o . (2.4-18)

The solution of equations (2.4-13) and (2.4-17) yields the

transcendental equation for the odd eigenvalues.

tanh am _ 4mn
_ . (2.4-l9)

tanh an (1+n2)2
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In a similar manner the equation for the even eigenvalues

is obtained by solution of equations (2.4-14) and (2.4-l8).

tanh an 4mn
.__..___ = _—_———— 2. -2

tanh am ( A 0)

(1+1?)2

The transcendental equation, (frequency equation), (2.4-l9)

is used to define the eigenvalue a when the eigenfunctions

v1 and v2 are odd in y, and equation (2.4-20) is used

when these eigenfunctions are even.

The eigenfunctions divide into even and odd functions of

the form:

K sinh am

Ov1 = C1 (Sinh amy + —-;E;E—;;'31nh any)

_ . K sinh am .
Ov2 C1 (K Sinh amy -—;E;E—;;-51nh any)

(2.4-21)

e 1 2 amy cosh an COS any)

_ _ K cosh am

ev2 — C2 (K cosh amy -—:;;E—EE-cosh any) .

The constants C1 and C2 are determined from the boundary con-

ditions on the remaining surface x = 0.

2.5 Definition of the Biorthogonal Operator and the Adjoint Equation
 

Consider Vr as the solution vector of the differential

t

equation (2.4-3) associated with the r h eigenvalue ar'

2

d V
2

"55 = (arA - wZN)Vr (2.5-1)

dY

Premultiplying equation (2.5-1) by the complex conjugate transpose

of some arbitrary vector function of y, ZS, and integrating from
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y = -l to y = l yields(1)

2 z

1 d V 1 31
+ + 2

I Z 21‘ dy = by Z (a A - sz)V dy , Z =

_1 s d _1 s r r s z

y
82

Integrating the left side by parts gives

+ avr dz:v1 1 .122: 1 2
__ _ __ = A _ . _

s dy dy _1 dyz [182+(a u)2%dy. (2 5 2)

 

. . . . th
ConSider the arbitrary vector function ZS as being the 3

solution vector of the following differential equation, termed

the adjoint equation(2)

2

d Z
+ +

-—-25 = (azA - wZN )z , (2.5-3)
dy s s

where the eigenvalue a8 is determined from the same transcendental

equation obtained for the equation (2.5-l). It remains to be shown

that this condition is satisfied.

+

Premultiplying equation (2.5-3) by Vr and integrating

from y = -l to y = 1 produces

2

l d Z
+( A+

J‘v+——dy=f1r(av-2 -wZN+)Zdy
r

-l dy

Taking the complex conjugate transpose of this equation,

1 d22:1

2 y=J‘1::2r2(aA-wN)de,   

 

-1 dy

 

+

(1) () represents complex conjugate transpose

(2) "'
( ) represents complex conjugate
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and subtracting from equation (2.5-2) yields

 

 

+ l

+:v—rufiv =(2- 2)IZ+AVd (25-4)
8 dy dy r _1 01r 0[s [I s r y ' °

 

Expanding the left side of equation (2.5-4) gives

 

 

 

- - l
d d

E vrl + ; dvr2 _ dzsl v _ 232 v =

$1 dy $2 dy dy rl dy r2 _1

( 2 2)1 Z+AV d 2 5 5

0’r - 0[s [l s r y ° ( ° - )

The boundary conditions on the surface y = i_l in Section

2.2 for the original differential equation give:

(a) vr2(;t 1) = 0

(b) From equation (2.4-l6)

dvr1(:l) 2 E dvr2(tl) dvr2(il)

_.____—_=_ +V

d a 2y r pm dy dy

where it is noted that the eigenvalue ar appears in the second

boundary condition. Substituting these values into equation (2.5-5)

 

 

yields

dv dv dv d2 1

[5 -a2 —§—'-—£g + v r2 + g -——E; -._4§l v =

281 r pm dy dy 32 dy dy r1 _1

2 2 1 +
(”r - “5)i ZSAVrdy . (2.5-6)

-1

Imposing the following boundary conditions on the adjoint problem:

d2 (+1)
31" _

(8) §;—"“‘ - 0

(b) 2 (+1)-2L5 (1)-2 (+1)
2 -' as 2 51 V 31 — ’
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and substituting these into equation (2.5-6) yields

1

 

 

dv l

2 2 - E r2 _ 2 2 +

(as - ar)zsl 2 dy — (Ur as)j ZsA'Vrdy ’

pm -1 -l

or

1 dv

2 2 + - E r2

- z A + '———-——-— = . 2. -(“r as)[j1 S vrdy 231 2 dy ] 0 < 5 7)

- pm -1

Thus, biorthogonality is defined by equation (2.5-7) for a2 # a:.

r

2.6 Solution of the Adjoint Differential Equation

The adjoint differential equation (2.5-3) can be written as

2

§—%-+ n+2 = 0

dy

: (2.6-l)

where the matrix H is defined with equation (2.4-4). The solution

of equation (2.6-l) is obtained by the same procedure used in the

solution of equation (2.4-4). EXpanding equation (2.6-l) gives

 

 

2
d 21 _ _

+ + = -
2 h1121 h2122 O (2'6 2)

dy

dzz2 _ _

dyz + hlzzl + hzzz2 = o . (2.6-3)

These equations can be written in the following form

d4 _ d2 21

— + . —— + - - - - - = . . _"

4 (hll + h22) 2 hllh22 h12h21 z 0 (2 6 )
dy dy 2

The roots of the characteristic equation obtained from equation

(2.6-4) are:

 

V/ 2 2 2
r12=i a -9-‘”—(1-v) =-_e_a (2.6-5a)
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2

= ‘2 2 0‘) = — -r3,4 :\/a - i—E (1+v) i an , (2.6 5b)

where

- l 2 Q 2 2

m = :' a - w (1‘V ) (2°6‘6)
a E

- 1 2 29 2
n = a a - Eu) (1+\)) . (2°6-7)

The complex conjugate of the adjoint functions representing the

solution of the adjoint equation are:

1 Blsinh amy + B cosh amy + B sinh any + B cosh anyN
I

II

2 3 4

B sinh amy + B cosh amy + B sinh any + B cosh any .

5 6 7 8

Substitution of these functions into either equation (2.6-2) or

(2.6-3) defines four of the constants.

sinh any - KB cosh any (2.6-8)N

II

B sinh amy + Bzcosh amy - KB

1 1 3 4

22 Blsinh amy +'B2cosh amy + B3sinh any + Bacosh any (2.6-9)

Satisfaction of the Adjoint Problem Boundarngonditions.
 

In defining orthogonality in Section 2.5, the following two

boundary conditions were imposed on the adjoint problem:

délen

“0 37— : O

2 —E—2- 210:1) - v£1(:1) .

pw

(b) 5,011) = a

Substitution of equations (2.6-8) and (2.6-9) into (a) and (b) and

separating into even and odd functions of y yields the following

two transcendental equations which are identical to those defining



19

the eigenvalue a for the original governing equation (2.4-4).

For the adjoint functions odd in y,

tanh am _ 4mn

2tanh an (1+n2)

For the adjoint functions even in y,

tanh an = 4mn

tanh am (1+n2)2

Similar to the eigenfunctions, the adjoint functions divide into

even and odd functions of the form:

- m cosh am
0 1 B1 (Sinh amy - n cosh an Sinh any)N

ll

- , m cosh am
= + _ _.____.. °

022 B1 (Sinh amy Kn cosh an Sinh any)

(2.6-10)

- __ fl sinh am

e21 B2 (cosh amy - n EEEE—Eg'cosh any)

5 = B (cosh amy + EL- filflh_gfl cosh any)

e 2 2 Kn siM1an

2.7 Summary

The y-dependence of the solution is carried by the eigen-

functions (2.4-21) of which there are an infinite number correspond-

ing to the roots, a, of the transcendental equations. The correct

solution of the governing differential equations requires the

summation of the distinct solutions. Separating the solution into

even and odd functions of y, this sum may be expressed as
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co

'- 1< ' h
sinh amy + __§%EE_QE sinh any

= C1 K sinh e O r

C r K sinh amy - —_;IHH€32 sinh any

yy __ j (r)

r=l

(I)

_

Fcosh amy + E_EEEE_QE cosh any

COS an 1(Q’X+UJC)

+ C
e e r _

2r K cosh m

K cosh amy -----41- cosh any

cosh an j .
L - (r)

r=1 (2.7-1)

The constants C1r and C2r are obtained formally by the specifica-

tion of Oxx and oyy on the surface x = 0 and the application

of the biorthogonality operator (2.5-7). This solution and the

solution deve10ped in Chapter III will be combined in Chapter IV

in a formulation which allows specification of pure stress boundary

conditions, a and o , on the surface x
xx xy

0.



CHAPTER III

FORMULATION OF PROBLEM FOR SECOND MIXED BOUNDARY CASE

3.1 General Remarks

In this chapter, the equations given in Section 2.1 are used

to derive governing equations for specifications of Oxy and the

displacement ux on the finite surface x = 0. To permit formulation

of the problem in this manner, a new variable Q is introduced, and

the governing equations involving only the stress oxy and the

"stress-like" variable Q are obtained. It will be shown in Section

3.3 that the specification of oxy and Q on the surface x = 0

is equivalent to specification of ny and uX up to a rigid

body displacement.

As in Chapter II, the solutions of the second mixed case

developed in this chapter will not be used to solve a particular

mixed value problem, but will be combined with those obtained in

Chapter II for specification of the stresses ka and Oxy on

the surface x = 0.

3.2 Boundary Conditions
 

For the second mixed case, the boundary conditions specified

on the finite boundary x = 0 are

qu = okyb(y) COS wt (3.2-l)

21
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ux = uxb(y) cos wt (3.2-2)

It will be shown in Section 3.3 that condition (3.2-2) is equiv-

alent to specification of (3.2-1) and Q on the surface x = 0.

D

II

Qb(y) cos wt (3.2-3)

The infinite boundaries, y = i_l, are stress free,

:+1o y(X _ ) x + l = 0 , 3.2-4y o y( , _ ) ( )
X

and the solution is required to be bounded as x approaches

infinity.

3.3 The Auxiliary Variable, Q
 

To construct equations which do not involve o x and Oyy’

x

the variable Q is introduced and is defined

 

2 .

so a u
a9.= XX - vp._.J£ (3.3-1)

ax ay 3:2

with the requirement that it be bounded as dimension x approaches

infinity.

Differentiating equation (2.1-3) with respect to y and

substituting equation (2.1-2) yields

 

 

2 2

a ux _ 1. 80xx 8 ”1 BOXX
- - v p 2 - . (3.3-2)

BXBY E 8y at ax

Substituting equation (3.3-l) into equation (3.3-2) gives

ax By E ax AX

    

Integrating with respect to x gives
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_ l
ST-E (Q +voxy) + f(y) ,

and substituting equation (2.1-5) yields

Slum,
E

l

ax - E (Q + vsxy) — f<y> . (3.3-3)
xy

If uy is bounded as x approaches infinity, f(y) may be taken

to be zero. Equation (3.3-3) may be written

au

——§-— 1 (Q + vo )

Xyay — E (3.3-z.)

Specification of Q and oxy on the surface x = 0 is equivalent

to specification of Oxy and uX up to a rigid body displacement.

3.4 Equations for the Second Mixed Case
 

Differentiating equation (3.3-3) with respect to y and

substituting equation (2.1-4) into the result gives

 

BC 60 an

59+—¥1-v x"-<2+\»>—-l" =0-
By BX BX 8y

Differentiating again with respect to y and using equations (2.1-1)

and (2 .1 -2) gives

2 2

2 2 u

a.9._ 9—331._ 2 §_EEX.+ p 5.. (iii V EQE) = 0

2 2 2 5X ay

ay ax sy at

Substituting equations (2.1-5)

2 2
2 2 u 2 2 711

3.9.- 2.331._ 2 2_3:1.+ a__.2_i - a__.211:22. + a__.l_x = 0
\J O' \)

2 2 2 P 2 P 2 E 9 2

BY ax ay 5t 5X at Xy at 9x

and (3.3-l) yields



 

 

2 2
2 2

a.9.-2&1-22__°_xy_+pa_a_ui_va 2(1+v)

2 2 2 25x 9 2 E xy
ay ax ay t at

2
2

ECXX_E_02.=O

axay ax

Using equations (2.1-l) and (2.1-5) yields the first equation for

d .Oxy an Q

2 2 2

O' 2 2 2 0

§_§§Y.+ 3 §_;EY.+ BJ% _ aJ% =.E§LZX_L p i_§§1. (3.4-1)

E

Bx BY BX BY Bt

The second equation for Oxy and Q is obtained by adding

the derivative of equation (3.3-l) with respect to x to the deriv-

ative of equation (2.1-l) with respect to y and substituting equa-

tions (2.1-5) and (3.3-4) into the resulting equation.

2

2 B o 2

1+ ~
B_92.+_§>LY.=ELE__ELB__2(Q _vOX) (3.4-2)

ax by at y

Equations (3.4-l) and (3.4-2) may be written in matrix form

  

2 2 2

D 9—%-+ a_%.= M a—%-, (3.4-3)

BX BY Bt

tflmre

O l1 0

xy

D = , T =

-1 2 Q

--V 1-

-(2+\)) 3 .  

This matrix equation is the desired second mixed boundary case

formulation.
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3.5 Solution of the Equations for Second Mixed Case
 

The boundary conditions (3.2-1) and (3.2-3) are time—har-

monic of frequency w. A time—harmonic solution form is assumed

1'.ch iwt

T = W(y)e e , (3.5-1)

where

w1(y).

W(y) =

w2(y)

Substituting this assumed form of solution into equation (3.4-3)

gives

2

(13+ (032M " 021))“, = O 9 (3.5-2)

dy

or

2

__dV2’+Gw=o , (3.5-3)

dy

where

P 2 2 T

2

-%—E<v+v2> saw-a
G =

2 2 2 2 2

_w_2E (2+3\)+\))+Q/ w—JE (3+3v)-201

  
Expanding equation (3.5-3) yields

2

d w1

-——§—-+ gllw1 + glzw2 = O (3.5-4)

dy

dzw2

;;§—-+ g21w1 + gzzw2 = O . (3.5-5)

These two equations may be written
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d4 d2 w1

+ - = -

4 + (311 + g22) 2 g115322 g12’321 0 ' (3'5 6)

The roots of the characteristic equation obtained from equation

(3.5-6) are identical to the roots of the first mixed problem of

Chapter II:

 

 

J2 032 2

11,2": 6* "LE(1"’) =ia‘“

2 22m2

‘34:: 0‘ ' E 0+") =i0’“

The solution of equation (3.5-3) has the following form:

ll

w1 Clsinh amy + Czcosh amy + C3sinh any + C cosh any
4

w2 Cssinh amy + C6cosh amy + C sinh any + C cosh any

7 8

Substituting these expressions for w1 and w2 into either of

the equations (3.5-4) or (3.5-5) defines four of the constants

yielding:

w1 = Clsinh amy + Czcosh amy + C3sinh any + C4cosh any (3.5-7)

w2 = Clsinh amy + Czcosh amy + RC3sinh any + RCacosh any , (3.5-8)

where

 

The remaining constants are determined by specification of the

boundary conditions on the surfaces y = i_1 and x = 0.

Satisfaction of the boundary conditions on y = :.l.

(a) On the surfaces y = i;l, the shear stress Oxy is zero

for all x and t. This implies, from equation (3.5-1),
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that w1(:l) = 0. Thus, from equation (3.5-7):

(3.5-9)ll

0C sinh am‘+ C3sinh an

1

(3.5-10)I

OCzcosh am + C4cosh an -

(b) On the surfaces y = i.l, the normal stress gyy is zero

for all x and t. Because the equations do not explicitly

contain 0 , a relation between 0' , Q, and 0 must

YY YY XY

be constructed. Differentiating equation (3.3-3) with

respect to y and substituting into equation (2.1-4) gives

a9. 5" a"x+ 41— —’9$ - (2+v)—l = 0 . (3.5-11)

BY Bx vBX BY

Differentiating equation (2.1-l) with respect to x and substitut-

ing from equation (2.1-3) yields

 

2 2
a o B o 2

2x“ + -——§1-= 9-5—5 (0 - v0 ) . (3.5-12)
ax axay E at xx yy

Multiplying the derivative of equation (3.5-12) with respect to

x by Poisson's ratio, v, and substituting equation (3.5-11) gives

2 ad 2 2

a..- _ 2a..__u a.._ a__a9.

ax at2 5x .5x at “y

+ [-257+§ (2+v) EL—z ——’$l=o . (3.5-13)

Bx BC BY

50'

If 0 is constant on the surfaces y = i_l, then g;11 = 0 and

equation (3.5-13) becomes

Using the assumed solution form from equation (3.5-1) gives
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2

2932.

[m
dw (:1)

+ [2a2 - §'(2+v)w2] E;l-—- = 0 . (3.5-14)
2

dy

(W (‘11)

 

Substituting equations (3.5-7) and (3.5-8) into equation (3.5-14)

and separating into even and odd functions of y yields

  

2 2

C3am.[(-a2 + 99-")R + 2a2 - (2+v) QQ- cosh an

E E

2 2

+ Clam[:a - (1+v) QfiL. cosh am = 0 (3.5-15)

and

2 2 2 '2

C40n [‘-a +-QEL‘)R + 2a - (2+v)'2£— ] sinh an

E E

2 -2
+ Czam [a - (l+\)) Li:— J sinh am = O . (3.5-16)

Solution of equations (3.5-9) and (3.5-15) yields

tanh an 4mn
—-———— = —-——-— .

05"

tanh am 2 2 (3 17)

(1+n)

Solution of equations (3.5-10) and (3.5-16) yields

tanh am 4mn

'—--- = --—-—-. (3.5-18)
2tanh an (1+n2)

The transcendental equation (3.5-17) is used to define the eigen-

value a when the eigenfunctions w1 and w2 are odd in y.

Note that this equation is identical to equation (2.4-20) which

defines the eigenvalue a for the first mixed problem when the

eigenfunctions v1 and v2 are even in y. The transcendental

equation (3.5-18) defines a when the eigenfunctions w1 and w2

are even in y. Likewise, this equation defines the eigenvalue

for odd functions of v1 and v2. This relation is equivalent to

the fact that if Oxx and Oyy are even functions of a given

variable, 0*y is odd in that variable.



29

It is desirable at this point to define as the even problem

the one which has Oxx and ny in terms of functions even in the

y-variable and Oxy in terms of functions odd in the y-variable.

The odd problem is defined as the one with oxx and Oyy odd in

the y —variable and Oxy even in the y-—variable. The presub-

scripts I'o" and "e" used to designate odd and even will now be

used to identify quantities related to the odd and even problems

respectively. Thus, for example, for the odd problem the presub-

script "0" is applied to the eigenfunctions of the first mixed case

which are odd in the y..variable, and to the eigenfunctions of the

second mixed case which are even in the y..variable.

The eigenfunctions of the second mixed case divide into

sets for the even and odd problems of the form:

_ . sinh am .
ew1 — C1 (Sinh amy EEKE‘EE'Slnh any)

w =C (sinh _R_§_£1£_gm_sinh )

e 2 1 amy sinh an any

(305-19)

_ cosh am

Ow1 — C2 (cosh amy BEEF—EH cosh any)

R cosh am

cosh an

S

I

o 2 — C2 (cosh amy cosh any)

The constants C1 and C2 are determined from the boundary con-

ditions on the surface x = O.

3.6 Definition of the Biorthogonal Operator and the Adjgint Equation

Consider wr as the solution vector of the differential

(2

equation (3.5-2) associated with the r h eigenvalue ar.
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         r = 0 (3.6-l)

Premultiplying equation (3.6-l) by the complex conjugate trans-

pose of some arbitrary vector function of y, Us’ and integrating

from y = -l to y = 1 yields

1 dzwrd 1 Usl
+

f U fly(a:D - w2M)wdy . U =
S S

-l dy2 - u
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Integrating the left side by parts gives

1 l d2U+ l
+ 2 2

+ j‘ ——ZS--wrdy J" Us(ozrD - w M)Wrdy - (3-6‘2)

-1 -1 dy2 -1

+dwr an:

UsF-er

 

 

. . . th .
ConSider the vector function US as being the 5 solution vector

of the following differential equation, termed the adjoint equation

 

dZU
2+ 2+

28 = (& D ‘ w M )U 3 (3°6‘3)

dy s s

where, as will be shown later, the eigenvalue a is determined

L

from the same transcendental equation obtained for the equation

(3.6-l).

. . . + . .
Premultiplying equation (3.6-3) by wr and integrating

from y = -l to y = 1 gives

1 d U 1
+ s _ +_2+ 2+

j w 2 dy —-£lwr(asn - w M )Ude

Taking the complex conjugate transpose of this equation,

1 dzd: 1
+ 2 2

28 - jIUS(aSD - w M)wrdy , 

   

 

-1 dy

and subtracting it from equation (3.6-2) yields
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1
+ 2 2 +

——E- S = (a -a)funw dy. (3.6-4)
r S '18 r

dw dU )

r

 

 s dy dy _1

Expanding the left side of equation (3.6-4) yields

 

 

- - l
d

a wr1 + a dwrZ _ dusl w _ dusZ w ) =

51 dy $2 dy dy r1 dy r2 _1

l
2 2 +

(qr - as)§lUSDwrdy . (3.6-5)

The boundary conditions on the surface y = :_1 may be

written in the form:

(a) ”ti“- 1) = o

2 dw (+1)

2 DLlL __r£:_ 2 _ 9. 2 __ =
(b) [-ar '1" E de + [201' E (2+v)u) O ,

where it is noted that eigenvalue ar appears in the second

boundary condition. Substituting these values into equation (3.6-5)

 
 

gives

dw 2a2 - 2-(2+v)w2 dw dd 1

[ - r1 J r' E rl 52 w =

u ' 2 "“‘ "“-‘
sl dy 32 - 2 + w dy dy r2 _1

0‘,r E

2 21 +
(a - oz )jU D w dy. (3.6-6)

r s _1 s r

The following boundary conditions are imposed on the adjoint func-

 

tions:

( ) —-—-dusz(i1) = oa dy

_ 201S - gnaw,2 _

(b) u (+1) = u (+1)
81 -' 2 32 —

Substituting these boundary conditions into equation (3.6-6) gives
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2 Q 2 2 Q 2 1

20/3 - E (2+vhn _ dwr1 - 2ar - E (2+v)w a dwrl —

2 $2 dy $2 dy _

'02 + QQ_ -a2 + E'wz -l
s E r E

l
2 2 +

(qr - as)f UsDwrdy ’

-1

or

2

2 2 1 + 29$- dw 1
(a -a)jUDwdy- E 6 —-El =0.

r s s r 2 2 52 dy

-l 2 gm 2 gm -1

(‘Q8 + E )(-ar + E )

(3.6-7)

Biorthogonality is defined by (3.6-7), but it is not in a usable

form because the eigenvalue ar appears in the Operator. Multiply-

2

ing equation (3.6-7) by (-a: + 2%L2

 

 

l

l 2 2mg— dw

2 2 + 2 g E -

(a - a ) I U (-a + w )Dw dy - '—-—-————— u r1 = O ,

r s _1 s r E r 2 2 52 dy

-a +.E£_ _1

s E

and recalling from equation (3.6-l)

dzwr 2

aerr = 2 + U.) er ,

dy

the term under the integral sign can be written in the following

form

2
2 dw 2+2

+ + +
U(-a2+9—‘”)Dw=9——‘”UDw -U-—-r-wUMw
s r E r E s r s dyz s r

After these substitutions, the biorthogonality can be defined as

 

 

2

l d w

J‘ (U+Dw --§—-U+——5-E-U+Mw dy
_1 r 2 s 2 p s

l
dw

- v u r1 = 0, a2 f 02 .

2 2 $2 dy 1 r s

.22. _ a '

E S (3.6-9)
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3.7 Solution of the Adjoint Differential Equation

The adjoint differential equation (3.6-3) can be written as

+

d U + c U = o (3.7-1)

where the matrix C is defined with equation (3.5-3). The solution

of equation (3.7-l) is obtained by the same procedure used in the

solution of equation (3.5-3). Expanding equation (3.7-1) gives

2
d ”1 _ _

——--2 + gllu1 + g21u2 = O (3-7‘2)

dy

2
d u2 _ _

;;§-'+ g12”1 + g22”2 = O ' (3'7’3)

These equations can be written in the following form

d4 - - d2 — - - - u1

( 4 + (g11 + gzz) 2 + g11322 ' 812821 = 0 '
dy dy u2

The roots of the characteristic equation are identical to those

obtained for the adjoint equation of the first mixed problem:

2 2 2 -——
_ + - _ BE. _ _

1,2 ._ V<y E (1 v )

\/ 2 2ng —-

r3,4 i- a ‘ E (1+V) i-Q“

 

H'
-

3

 

The complex conjugate of the adjoint functions representing the

solution of the adjoint equation are:

1 " BISInh amy + BC

I

2cosh amy + B3sinh any + Bacosh any

112 BSSinh amy + B6cosh amy + B7Sinh any + B8COSh any
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Substitution of these functions into either equation (3.7-2) or

(3.7-3) defines four of the constants, thus:
C

l

1 “ -RBlsinh amy - RBzcosh amy - B33inh any - B cosh any (3.7-4)
4

C

II2 Blsinh amy + Bzcosh amy + B3sinh any + B cosh any . (3.7-5)
4

‘_atisfaction of the Adjoint Problem Boundary Conditions.

In developing the biorthogonality operator in Section 3.6,

the following two boundary conditions were imposed on the adjoint

functions:

c182 (:1) _

(a) - 0
dy

2
2

(b) (-oz2 + %—)Gl(:1) = [2a -EP- <2+v>w2352(:1>

Substitution of equations (3.7-4) and (3.7-5) into (a) and (b) and

separating into even and odd functions yields the following two

transcendental equations which are identical to those defining the

eigenvalue a for the original governing equation (3.5-3). For

the even problem, the adjoint functions are odd in the y..variable,

and the corresponding eigenvalues are the roots of

tanh an 3 4mn

tanh am (1+n2)2

For the odd problem, the adjoint functions are even in the y-

variable, and the eigenvalues are the roots of

tanh am = 4mn

2 2
tanh 0m (1411 )
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The adjoint functions divide into sets corresponding to

the even and odd problem in a similar manner as the eigenfunctions.

They are of the form:

- . m cosh afl .
= .. + —

eu1 B1 ( R Sinh amy n cosh an Slnh any)

5 = B (s inh am - fl SEE—L” sinh )
e 2 l y n cosh an any

(3.7-6)

- m sinh am
= .. + -— __Ou1 B2 ( R cosh amy n sinh an cosh any)

m sinh am

cosh any) .C
.

I

I

o 2 - B2 (COSh amy - n sinh an

3.8 Summary

The y-dependence of the solution is carried by the eigen-

functions (3.5-l9) of which there are an infinite number correspond-

ing to the roots, a, of the transcendental equations (3.5-17) and

(3.5-18). The solution of the differential equation requires the

summation of the distinct solutions. Separating the solution

into even and odd functions of y, this sum may be expressed as

  

  

co

'— h
oxy cosh amy - EEEE—gg'cosh any

' t= C el(oarx+w )

Q 1r cosh amy - B—EEEflLiflfl cosh any

COSh an (r)

r=l

m r“sinh amy - Eiflh—gm sinh any

sinh an i( a x+wt)

+ C2r R sinh am e e r
Slnh amy - sinh an Slnh any (r)

_' (3.8-l)



36

The arbitrary constants C11. and C2r are obtained formally by

the specification of Oxy and Q on the finite edge x = O and

the application of the biorthogonality operator (3.6-9). This

solution will now be combined with the first mixed case to form

a general solution for any acceptable boundary conditions. As

indicated earlier, the stress boundary problem is the one of most

importance.



CHAPTER IV

FOUR-VECTOR FORMULATION FOR THE PURE STRESS CASE

4.1 The Odd Problem Four-Vector Formulation

In Chapters II and III, eigenfunction expansions were

developed for Oxx and Oyy’ and for Oxy and Q, respectively.

These solutions are given by equations (2.7-1) and (3.8-1),

and the functions in the odd problem have the following form:

m . i( a x + wt)

_ , K Slnh am . o r

okx - rE£C1r(Slnh amy + —-;EEE—;E Slnh any)(r)e

m K sinh QE i(oarx + wt)

Oyy = rElclr(l< Sinh amy - sinh an Sinh any)(r)e

. (401-1)

00 cosh am 1(oat-x + wt)

Oxy - rEIC2r(COSh amy -m cosh any) (r)e

00 l( a X + LDC)

_ R cosh am 0 r
Q rEICZr(cosh amy -":;;;:7;H cosh any)(r)e

In this chapter, the four solutions are combined to form

a four-vector [o ,o ,0' ,Q]. Substituting the rth term of the

XX yy xy

solutions (4.1-1) into the coupled differential equation (3.5-11)

60 50 go

a9+7u - v.33}: _ (2 + v) __JLX = 0 (3.5-11)

By a a by repeated

yields the following relation between the constants C11. and C21.

37
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= ( 1 2m ) C

2r \m2 - v-Z (r) lr

The desired odd eigenfunction expansion of the four-vector becomes

    

 

o Foul

xx

0‘ on2 i( arx + mt)
Y)’ = C n e O , (4-1'2)
a o r o 3

XY

Q oné

L .J

o b A r=1 (r)

where

K sinh am .

= ' +---—--——- honl Slnh amy sinh an Sin any

_ , K sinh am .

GHQ — K Slnh amy - sinh an Slnh any

_ 1 2m cosh_gm
on3 ——§—-— (cosh amy ESEE-an cosh any)

vn -v-2

_ i 2m R cosh am
onh ‘——§—-- (cosh amy -—;3;E7;; cosh any)

vn -v-2

_ 1 + n2 _ vn2 + 2n2 - v

R ‘ “—2—— ’ R - 2
vn -v-2 1 + n

a are the roots of %EEE_QE = __3E%_§. .

0’ <1+n >

4.2 The Even Problem Four-Vector Formulation

The even problem formulation involves the following variable

forms:

no 1(ax+wt)

_ K cosh am e r

Oxx - r£1C3r(cosh amy -—:;;E-;;-cosh any)(r)e

m i( a X + wt)

Kcosh am e r
= -—>_-——-————— h

0yy 2 C3r(K COSh amy cosh an COS any)(r)e

r l

(4.2-1)
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co . l( 0/ X + wt)

0‘ = 2C (sinh amy -w—sinh any) e e r

xy r=1 4r sinh an (r)

w R sinh am i(earx + mt)

Q = rEIC4r(S lnh amy -m Slnh any)(r)e

Substituting the rth term of the solutions into equation (3.5-11)

yields

C

_ i 2m

C _ ( 3r

4r vnz-v-Z )(r)

The desired even problem eigenfunction expansion becomes

  
  

(I) ..
- l

okx {enl

a enz i( a x + wt)

yy = c en3 e e r , (4.2-2)
e r n

ny e 4

Q j (r)

e - r=1

where

= cosh +-1L£§EEL£EE cosh n

enl amy cosh an a y

_ K cosh am

eflz — K cosh amy -—ES;E—;;'cosh any

_ i 2m , sinh am .

en3 ~ :;§:;:; (Slnh amy sinh—an Sinh any)

_ i 2m , R sinh am .

€114 “ an-v-Z (3 1nh amy - -—_—'—Sinh om Sinh any)

K and R are defined with equation (4.1-2), and a are the

roots of

tanh an = 4mn

2tanh am (1+n2)
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The general solution is the sum of the expansions (4.1-2)

and (4.2—2). However, every function can be replaced with the sum

of an even and odd function, and the series expansions will be

used separately for convenience.

4.3 Four4Vector Form of the Biorthogonality Operator
 

The biorthogonality for the first mixed case is given by

(2.5-7).

1 dv
+ —

I 2 AV dy + 4&5 z
S r

 

2 2

—0,ar#as

-1 

The eigenfunctions nri of the four-vector form equal the eigen-

functions vri of the two-vector form divided by a constant, so

that the biorthogonality is not violated.

1
1 2 1 an

‘ - E - 2 2 2

I [231’282] “r1 dy +‘__§ zsl d;£_ = 0’ Ur # as
-1 -1 0 “r2 pw -1

- (4.3-1)

The biorthogonality for the second mixed case is given by

(3.6-9).

2

l d w

J" (”:Dwr ‘ "E? U: 3;): ' E ”:er>dy
-1 pm

v _ dwr1 l — 2 2

_-—TE—-——— u 2 E_-— - 0, 0 # a

w 2 s y 1 s r

£__ - a _

E s

The functions “ti equal the two-vector form eigenfunctions wri

multiplied by a constant, and the biorthogonality is not violated.
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l 2

I[JJ]DW3_E[u-]d Tlr3

_ 31’ 52 2 81’ 52 d 2

r4 pw y nr4

(E - - an v - dan 1
- EDEUSI’USZ] M dy - 2 2 ”32 E;——' - O,

nr4 2%L'- a -l

2 2

as = or (4.3-2)

Combining the biorthogonality relations (4.3-1) and (4.3-2) yields

    

    

     

 

1 F 2 1 o o" .an-T

I1 [zsl’ZSZ’usl’u32] '1 0 0 O nr2

0 0 O 1 “r3

L O O -l 2 nrh

r 1 r

“New
- 2 [zsl’ZSZ’usl’GSZJ 2 “r2

pm 0 o 1 o dy an

_o 0 o 1 “r4

’- _ ' q)
0 0 0 0 “r1

- - - - o o o o

‘ [231’232’usl’u32] 2 “r2 ) dy
0 0 -(v:v ) (1+v) “r3

0 0 -(v +3v+2) (3+3v) “r4 /

1 - -

+ E 5 d,an _ v - (”113 = 0 2 if 2 (4 3.3)

pwz sl dy wz 2 U32 dy ’ 0s 0[r ° °

E - Q’s ‘1

The adjoint functions 231, defined by equations (2.6-10),

and usi, (3.7-6), are determined up to an arbitrary constant for

each set. The determination of these constants is explained in

Section 5.2.

The four-vector form of the biorthogonality operator Q

can be written as
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'0 0 0 0
+ + E + +

- [Zs’Us] [O F] - (;)[Zs’Us] [O M_

  

J 0" J 0
+ + + +

+ [28413] [0 PJ 6(y-1) - [28418] [0 P] 5(y+1) , (4.3-4)

where matrices A, D, F, J, M, and P are defined as

  

2 ..

2 1 O 1 E 51—2- O

A = _1 0 , D = _1 2 , F = ——2- dy 2

am _d__.
O dyzg

0 §_ -v 1 O O

J = £— y M - ”V P - V
,2 0 0 ’ E “(2+V) 3 , 2 2 £1... 0

94’
L: - as dy



CHAPTER V

SATISFACTION OF BOUNDARY CONDITIONS ON THE SURFACE X = O

5.1 Procedure Outline

The eigenfunction constants are determined in terms of the

time harmonic stresses Oxx and Oxy on the surface x = 0. On

this boundary, the general eigenfunction expansion has the form

    
  

   

r 1 °°

, .. oxxb r ‘

O m R

xx 1

C. .

Oyy 1’21 3ng “2
= cos wt = Cr cos wt ,

o’xy Oxyb 1‘3

co

' Q "x=0 Z C.n.4 r—l __n4u (r)

j=1 J J

or

F. .. co

Oxxb -

m n1

C. .

E 1ng
J “2

= Cr (5.1-1)

Oxyb “3

2 C.“. r=1 fl,

j=1334 N-(r) . 
Multiplying both sides of equation (5.1-1) by the biorthogonality

operator as, (4.3-4), and integrating from y = -l to y — 1

yields the following equations

43
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co

F + 2 B .C =NC , S =1,2,...,oo . (5.1-2)

N8 is a normalization factor, FS involves the boundary stresses

0 and O , and the summed term arises from the series expansion

xxb xyb

of o and Q. The system of equations is solved for the 3 con-

YY

stants by truncating the series.

5.2 The Adjoint Function Arbitrary Constants

The arbitrary constants of each set of adjoint function

vectors are chosen such that the adjoint function vectors and the

eigenfunction vectors of each mixed case are a biorthonormal set.

The necessity of this requirement becomes evident in the actual de-

velopment of equation (5.1-2).

Consider the solution of either of the mixed boundary cases.

For the first mixed case, the eXpansion (2.7-1) can be used, and

the biorthogonality operator of (2.5-7) applied in the manner des-

cribed in Section 5.1, or the four-vector expansion can be used by

substituting the series expansion for Oxy and Q. In the latter

procedure, an inner biorthogonality condition yields the same

relation developed using the two-vector expansion. The series term

of equation (5.1-2) does not appear in this mixed boundary case,

thereby yielding an explicit solution for the eigenfunction con-

stants. Also, each term of the resulting equation for the eigen-

function constants is multiplied by a single adjoint function

arbitrary constant which can be taken equal to unity. These same

characteristics are true of the second mixed case. In the four-

vector formulation for the pure stress end condition, the equations
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(5.1-2) involve a sum of terms, some of which are multiplied by

the adjoint function arbitrary constant of the first mixed case and

others multiplied by the constant of the second mixed case. This

condition requires the evaluation of each constant or at least a

determination of the ratio of the constants. The second alternative

is dismissed because equations coupling the two adjoint problems

are not evident.

The normalization constant N8 of equation (5.1-2) for the

four-vector form is the sum of the normalization constants for the

first and second mixed cases

N = k(1),,(1) + k(2>N(2>
s s s s s ’

2

where kél) and k; ) are the adjoint function arbitrary constants

of the first and second mixed cases respectively. In constructing

a biorthonormal set for each case, these constants are chosen as

k<1) = 1,Nm k(2) = 1/N<2>
S S S S

,

with the result that NS = 2.

5.3 Satisfaction of Boundary Conditions for the Odd Problem

The eigenfunction expansion for the odd problem is given

by (4.1-2). Substituting the stress boundary conditions at x = O,

premultiplying both sides by the odd problem biorthogonality

operator, OQS, and integrating from y = -l to y - l
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Oxxb

_ Cjnjz n1]
1 j—l 1

02 dy = CS I Oi T‘2 dy

-1 S °xyb -1 S n3

°° m2 C “j, _ _

j__1 J' o (8)

yields

F + SB 3 _ (k(1>N(1>+ k<2)N<2))C ,
3 i=1 31 5 k3 s s

where

 

 

 

 

1
_ 2 - 2 _

Fs ’ [1 {(2281 z 2)Gxxb + [FV+V )usl + (V +3V+1)“32

1

d

E - d2 d _ v 5 kab

- 2 L131 Oxyb y 2 2 32 dy

9w dy 22.. a _1

E s

1 E - d2

Bsx =1. { slniZ [vu 1 + (1+3v)u 2 _—2- u32 7] “14 dy

1 Pw dy

1

+2.; dT‘12
2pm 51 dy _1

1 an 1
k(1)N(1) ‘ ‘ _J;_ - $2

=I1[(2% z$2)nsl 31n321dy + 2 zsl dy

w -1

k(2)N(2)_ 2 - 2 - E .. d2

I [NW )“31 + (V +3v+1)u32 ‘ 2 ”s1 2] “s3
-1 pm dy

- - E - d2
- [vusl + (1+3v)u82 + ‘7 U82 ——2] “54 dy

pm d

1

_ v - d“s3

m2 - a2 32 dy _1

(5.3-l)

(5.3-2)

(5.3-3)

(5.3-4)

(5.3-5)

(5.3-6)
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The odd problem adjoint functions zi are given by equations

(2.6-10), the functions ui by (3.7-6), and the eigenfunctions

“1 by (4.1-2).

The evaluation of the coefficients Bsi requires care.

The arguments of the hyperbolic functions are related to the eigen-

value a through the following expressions

arm =\/oz2 -'Q—-(1-v2) , om =2_\/Q_P_20”)

The eigenvalues occur in pairs, one of the pair being the negative

  

of the complex conjugate of the other, and some of the eigenvalues

are real. Bsi must be determined independently for each of the

following relations between the roots 01:

2 2

(l) 01 1‘ 018

(2) 01 = as

(3) ai = -as and:

(a) O[imi = O[sms’ C1lini = asns’ mi = dms’ ni = -ns

(b) aimi = asms, aini = -aSnS, m1 = -ms, ni = nS

(C) aimi = -asms, aini = -aSnS, m1 = ms, ni = nS

BSi for Case (1)

Substitution of the eigenfunctions and adjoint functions

into (5.3-4) and performing the required operations yields

  

 

 

= (1) . 2 _ 1 1

Bsi 2kg COS“ “smssmh aimi “smSKi 2 2 2 2 2 2 2 2 2 2 2 2

0’ 1'1 "O’Jl. 0’ “1 'Q’.n 0/ n ’O’.m

S 1 1 S S 1 1 S S l 1

tanh aSmS aimiKi E ( 2n2 - 2 2 _ 1

tanh a.m. 2 2 2 2 2 C1Is s 0[in i

1 i as ns'a.1ni pm



1 S

2 2

-a;m. s
1 1

2 2 2 2

*§§'(a n - a,m.) - 1]

s s 1 1

pm

 

tanh a n a.m,Kr m [

s s

tanh a.m,

1 1 a n

m
u
s
e

m
u
s
e

1

tanh a 2
-a0ni

tanh asms a,n,K, E 2 2 2 2

2 (asms - aini) - 1

pm

5
3
H

m
K
J
H

t
o

.n.

11am

(
0

I
'
"

 

tanh a n a.n.K m
s s i _§_ _§__ 2 2 2 2 _

+‘ 2 2 n [ 2 (asns aini) 1tanh a.n.

1 1 a n -aini 8 pm

C
D
N
H

C
D
N
H

. E 2 2

2 1+3v-vR + ———'a.m.

(2) Zaim'K' S w2 1 1
+ i 2k cosh a m sinh a,m. 1 1 p

s s s 1 1 2 2 2 2 2

1 +'n. a n - a.n.
1 s s 1 1

 

- E 2 2 E 2 2
u _ _ 2a.(1+n?)R.K, 1+3v vRS + 2 aini l+2v +- 2 aini 4m

_ 1 1 1 1 pm _ gm 3

2 2 2 2 2 2 2 2 2 2 2

O’sms ' aini O’sms. " “1‘“1 (I‘ms)

 

 

E 2 2 E 2 2
.— —— + —

2a m m.K. H3" VRs + 2 aimi 1+2“ 2 “1‘“1 tanh a m
_ s s 1 1 gm _ 11w __$___§

1+1n2 2 2 2 2 2H2 2 tanh aim,

i asms aimi aS s aim 1

H
-
P
O

E

9w

2 2 2 2 2

l +'n m - .n.

i as s 0{1 1

2a m m,K,R,

s s 1 1 1
 +

pwz tanh aSmS

- 2 2 2 2 tanh a.m, ' (5.3-7)

a n - a.n. 1 1

s s 1 1

1+2v + “—E— a2n2
1 1

BSi for Case (2)

 

 

' 1 1

B = k(1)K -1 _IE Slnh am COSh am + am.sinh am cosh am +

ss 3 n Sinh an cosh an 2 2 2 2

a m a n

2E n tanh am m tanh an
+_ 2-—”-_—

2 m tanh an n tanh am
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+ 2 n_tanh am _ m tanh an

2 2 2 2 m tanh an n tanh am

O’m'O’

1 2mk(2)K sinh osh

' __2__ (1+3v-vR) [1 + 0‘“ C 0"“

1+n ‘3‘“

ZamR sinh am cosh am 1 n_tanh an

' 22 22 -mtanham
am -an

+ (1+2v) QLR sinh am cosh am 1 +.81nh an cosh an

n s1nh an cosh an an

+ 2am sinh am coshm 1 __m_tanh@”

2 2 2a m? _ a n n tanh an

 

+201m Sinhamcosham 1 _mtanhcxm

am 22 22 ntanhan
am

E am
+—

2 'an

2 2 '
[1 +_31nh am cosh am

 

1
pm

1 +
 

n sinh an cosh an

+_ E2 a2n2 [95 sinh am cosh am

an

 

sinh an cosh an )

pm

2amR sinh am cosh am 1 _ E.£§ED_QE;] (5 3-8)

O[ZmZ _ aZnZ m tanh am

BSi for Cases (3a) and (3b)

 

Eliminating the i subscript from the functions in (5.3-4)

through the substitution of the relations given in (3a) gives the

same expression for BSi as with the substitution of the relations

given in (3b). The resulting expression is almost identical to

(5.3-8) except for one sign change.

Consider (5.3-8) written as

B = k(1)K I - —— . (5.3-8)
SS 8

BSi for the cases (3a) and (3b) are
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B . _—_ kinx + —-—-—-———— . (5.3—9)

BSi for Case (3c)

 

Substituting the relations listed in (3c) again yields a

relation similar to (5.3-8) except for a sign change on the first

term

(1) i 2mk(2)K

1331 = -k K - ————5—-§-— . (5.3-10)

S l + n

Substituting the adjoint functions into (5.3-S) and (5.3-6),

 
 

 

and factoring out the arbitrary constants kél) and kiz), the

following is obtained for the normalization constants Nil) and

N(2):

s

2 .
N(1) = (1+v)gn -l) m S1nh am cosh am _ 1

s 2 n sinh an cosh an
vn - v - 2

fig-D 'tl h 4 2
+ 251“ 20”“ C03 0““ [(2-2v)n + (l+5v)n - (1+v)] (5.3-11)

2amm (1+n )

  

N(2) _ i 2m(l+gxl+2v+n2) m_ sinh am cosh am _
_ 2 .

s (vn -v-2)(1+n2) n Sinh an cosh an

 

2 .
+ (n -1):mh gm COSh 0““ [ (2-2\J)n4 + (l+5v)n2 - (l+v)] .(5.3-12)

2amn (l+n )

2 2

In the derivation, biorthogonality was defined for ai * aS

but examination of the operator reveals biorthogonality holds for

a Iai # aS 130

5.4 Satisfaction of Boundary Conditions for the Even Problem

The even problem is handled in exactly the same way using

the eigenfunction expansion (4.2-2) and the even problem biorthogonality
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operator. Substituting the even problem eigenfunctions and adjoint

functions into (5.3-3) for Fs’ (5.3-4) for Bsi’ (5.3-5) and

(5.3-6) for the normalization constants yields the following:

 

 

 

 

 

 

 

  

   

   

(1) . 2 1 1= 2 K. _....____ - -

Bsi ks 31““ O’s,"‘sC°‘”’h “imi 0’s“"53 1 2 2 2 2 2 2 2 2 2 2 2 2
a n -aun. a m -a n a -a.
S S S S S l 1

+ tanh aimi “1m1K1 E ( 2 2 _ 2 2 1

tanh a m 2 2 2 2 2 asns “1“1) '

S S OIsns-Q’1ni pm

_ tanh aimi aimiKi T;_ _E__( _ 2 2 _ 1

tanh a n 2 2 2 2 n 2 a “ 91mi)
s s a n -a.m. 3 pm

5 s 1 1

- tanh aini ainiKi E ( m _ 2 2) - 1

tanh asms 2 2 2 2 2 a O[ini

oIsms O[in1 pm

tanh a.n, a,n,K, m

+ 11111 i—(an-2n2)-l

tanh asns 2n2_ 2 2 2 “i 1

as s CYin1 S pm

20’ m2K 1+3\)-\)RS + —'2- (rim,

2 o o

+ i 2k( )sinh a m cosh q,m, 1 1 1 pm

3 s s 1 1 1+“2 2 2

. CY n " CY n.

1 1 1

2 2

+2 ——— 2

1 v't 2 afni 4m

2 2 2 2

a n - a.m, (1+n )

1 1 s

E 2 2 E 2 2

2 1+3 - +-——— 1+2 + ——— 2
C311(1+ni)RiKi V VRs pUL)2 aini V N2 “1% 4mS

' 2 2 2 2 2 ' 2 2 2 2 2 2

- - +
OIsms aini Cvsms aimi (1 n5)

E 2 2 E 2 2
+ _. —— __

2asmsmiKi 1 3v vRs + pr aimi 1+2v + 9&2 aimi tanh aimi

- 2 2 2 2 2 - 2 -

1+ni asm - a.m. a n2 - agm? tanh O(sms
s 1 1 s s 1 1

E 2 2 E 2 2
+ _ __ __

2a m m,R.K 1 3V vRs + 2 mini 1+2V + 2 aini tanh cum,

+ s s 1 1 i ppm _ 49w 1

1+112 2 2 2 2 2 2 2 2 tanh a m

1 asms ' O’i“1 asns " aini S S
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Bsi for Case (2)

 

1

+ am sinh am cosh cym[—;—‘§+ “-2—2"

am an

 

1 o

B = k( )K 1 + m sinh am cosh am

33 s n Slnh an cosh an

 

+

22 _________

2 n tanh an m tanh am

a m -a2n2 m tanh am n tanh an

i 2mk(2)K si h sh
+————§-—- (1+3v-vR)[l- “ 0‘7"“ 0”"

2 am
l+n

+ 2am R sinh am cosh am 1 _ n_tanh am

2 2 2 2 m tanh an

(I’m an

 

E.R sinh am cosh am 1 sinh gn cosh an

n sinh an cosh an an

+ (l+2v)[

2am sinh am cosh am 1

2 2

.E

2 2 n

a m - a n

tanh an

tanh am

 

+ _§__ 2 2 1 _ sinh am cosh am _ Zam sinh am cosh am

20’m Om] 22 22
pm a m - a n

m tanh an
1_—_._._____...

n tanh am

 

 

E

+ 20

pm

2n2 m,R sinh am cosh gm

(1’11

sinh an cosh an

n sinh an cosh an

 

:
3

2am R sinh am cosh am

2 2n2+ 2
am '0’

tanh an3

1 - — Lam—0"“ J . (5.4-2)

 

Bsi for Cases (3a), (3b), (3c)

For the three cases of condition 3, the expression for B81

differs from (5.4-2) by only one sign change. Consider (5.4-2)

written as
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(1) 1 2m k(2)K

B S = k K + Z
s 3 1+“

Bsi for the case (3) are

(1) i 2mk(2)K

B . =k K - ————S§— . (5.4-3)
31 3 1+“

The normalization constants for the even problem are:

 
 

 

N(l) = gliv)§n2-l) 1 _ m_sinh am cosh am

3 2 n sinh an cosh an
vn -v-2

2 ' 4 2
+ Q“ "”31““ “‘2“ C03“ m“ [ (2-2v)n + (l+5v)n - (1%)] (5.4-5)

(1+n )2qmn

N(2) __ i 2m(l+\)) Q+2v+n2) 1 _ Q sinh arm cosh am

— 2 2 °3 (vn -v-2)(1+n ) n Sinh an cosh an

2

+ in -l)sinh am cosh am

2 2 [(2-2v)nA + (1+SV)n2 - (1+v)] .(5.4-6)

2amm (1+n )



CHAPTER VI

DETERMINATION OF THE EIGENVALUES

6.1 General Remarks

The eigenvalues a are the roots of the transcendental

equations

tanh am 4mn

-— = —— 6.1-1)

2 2 (tanh an (1+n )

tanh an 4mn
-—-——-- = ---- . (6.1-2)

tanh am (1+n2)2

Equation (6.1-l) is used for the odd problem, and equation (6.1-2)

is used for the even problem. Similar equations occur in the in-

vestigation of wave prOpagation in an infinite plate. This prob-

lem has received much attention, and the solutions of these equa-

tions have been made, but, as far as this writer has been able to

determine, not for the complex values of a associated with the

decaying wave modes close to the finite edge of the plate. This

study is concerned with the investigation of all bounded modes for

each frequency of propagation. Equations (6.1-1) and (6.1-2) de-

fine the eigenvalues on the real axis and the upper half of the

complex plane.

6.2 Determination of the Real Eigenvalues for the Odd Problem

The transcendental equations are solved with the frequency

w as a parameter and the Poisson ratio v taken to be equal to

54
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1/3. Recalling that

2

2 2 2 2

a m = a - Q§_'(1'V )

2

2 2 2 2

(1117-01 ~“5‘UL(1+V) ,

it is convenient to substitute constants "a" and "b" such that

2 2 2

2 2 2

For v = 1/3, the constant b equals 3a. Equation (6.1-l) can now

be written as

tanh'2 a =4q2Q2—aJa2-3aa -

f——————- 2 2

tanh 2 3a (20 - 3a)a -

 

 

(6.2-l)

Consider the solution of equation (6.2-1) when a is very large

compared to "a" and the hyperbolic terms approach unity.

a6 - 5.25q4a + 6.75q2a2 - 2.53a3 = o (6.2-2)

Only one root of equation (6.2-2) yields a real argument for the

hyperbolic functions. This root is

a = 1.884 V a . (6.2-3)

Consider the solution of equation (6.2-l) when a and "a" are very

small and the hyperbolic functions can be replaced by their arguments.

40,4 - 1202a + 9a = 40,4 - 1203.1 (6.2-4)

For this equation to be satisfied, "a" (or w) must equal zero.
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The phase velocity, c, of a given mode equals w/a, and the

wave length A is defined in terms of a by a = Zn/A. When a

is very large (small wave length), the limiting phase velocity is

C w/a = w/l.884‘/a , c = 0.563 E/p

When a approaches zero the phase velocity approaches zero.

Intermediate values of a have been obtained numerically

with the computer for seven values of frequency. For each frequency,

the root yielding the lowest phase velocity is identified as the

first mode root, and the mode with the next highest phase velocity

is mode two, and so on.

Table VI-l lists the odd problem real eigenvalues of the

first four modes for the frequencies examined and the correSponding

\/ E- , the velocity of

prOpagation of plane longitudinal waves along a rod. Tabulation

phase velocity ratio c/cO where c0

of all the eigenvalues for these frequencies is found in the

appendix.

Figure VI-l is presented to graphically illustrate the

phase velocity-wave length dependence. Phase velocity variation

with changes in wave length is termed dispersion stemming from the

fact that this characteristic causes distortion of the shape of a

prOpagating pulse. The first mode curve is in close agreement with

the dispersion curve for flexural waves in cylindrical bars, and

the trend of the higher mode curves indicated by the few data points

plotted is in agreement with published phase velocity curves for

flat plates and cylindrical bars. The intent here is not to present,

a complete solution of the transcendental equations, but to attach
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some physical significance to the real eigenvalues and make some

comparisons of the values used to solve the problem with published

results (13)-(15).

6.3 Determination of the Real.Eigenvalues for the Even Problem

Following the same procedure as in article 6.2, equation

(6.1-2) can be written as {‘5

tanh “(12 - 3a - hazvgz - a {(12 - 3a

2 2

tanh '02 - a (2d - 3a)

Considering the solution of (6.3-1) when a is very large relative

 

  

(6.3-1)

 to "a" yields the result (6.2-3). Considering the solution when a 2.;

and "a" are very small yields

-8a2+9a=0,

Thus, when a is large the phase velocity approaches 0.563 co.

or

0 II

Q
l
8

When a approaches zero, the phase velocity approaches co.

Intermediate values of a were obtained numerically, and

Table VI-2 lists the even problem real eigenvalues of the first

four modes and the corresponding phase velocities for the frequencies

examined. Figure VI-2 illustrates the dispersive nature of the

first three modes. The flmplied shape and values of the curves are

close to those found in the literature for flat plates and

cylindrical bars. For the first mode, the velocity ratio c/cO

approaches 1.062 for the flat plate and approaches one for the

cylindrical bar as a approaches zero.
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6.4 Determination of the Complex Eigenvalues for the Odd and Even

Problem

Writing equation (6.2-1) in the following form

 

(20,2 - 3a)2tanhV 012 - a - Aazfaz - aJaZ - 3a tanh V012 - 3a = 0,

(6.4-l)

and (6.2-2) as

 

(20/2 - 3a)2tanhVa2 - 3a - 4(12 {0:2 - a V02 - 3a tanh (:2 - a = 0,

(604-2)

and letting a = x + iy, solutions were made numerically by use of

a digital computer. An asymptotic solution of (6.4-1) for a very  
large compared to "a" aided the search for the roots by isolating

the roots in the complex plane and giving very good approximations

of the roots at low frequencies.

It is of interest to note the comparison of the complex

roots of (6.4-1) and (6.4-2) with the roots obtained by Johnson

and Little in their solution of the static problem. This comparison

is given in Tables VI-3 and VI-4.

The first quadrant complex roots for two frequencies, 1000

and 31600 cycles per second, are plotted in Figure VI-3. The roots

for all frequencies examined are tabulated in the appendix. The

calculations were made for a material density of 15.1 slugs per

cubic foot and a Young's modulus of 30(106) pounds per square inch.

All dimensions are in units of feet.
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Table VI-l -- Real Eigenvalues and Phase Velocities for the First

Four Modes of the Odd Problem

 

Eigen- Velocity Wavelength

Frequency w Constant value Ratio Strip Width

cps "a" Cox c/cO

100 0.00123 0.259 0.144 12.130

1000 0.123 0.969 0.384 3.242

6380 5.0 4.30 0.552 0.731

2.42 0.980 1.300

10000 12.3 6.63 0.561 0.474

5.38 0.691 0.584

3.29 1.131 0.955

1.44 2.583 2.182

31600 123.0 20.89 0.563 0.150

19.12 0.615 0.164

18.38 0.640 0.171

16.90 0.696 0.186

63800 500.0 42.12 0.563 0.074

38.69 0.613 0.081

38.39 0.618 0.082

37.78 0.628 0.083

100000 1230.0 66.07 0.563 0.048

60.18 0.618 0.052

59.63 0.624 0.053

58.89 0.632 0.053



Table VI-2 -- Real Eigenvalues and Phase Velocities for the First

Four Modes of the Even Problem

 

Eigen- Velocity Wavelength

Frequency w Constant value Ratio Strip Width

cps "a" ea c/cO

100 0.00123 0.0372 1.000 84.451

1000 0.123 0.373 0.997 8.422

6380 5.0 4.056 0.584 0.774

2.238 1.060 1.404

1.131 2.097 2.778

10000 12.3 6.580 0.565 0.477

3.926 0.947 0.800

3.316 1.120 0.947

31600 123 20.89 0.563 0.150

18.84 0.624 0.167

17.74 0.663 0.177

15.85 0.742 0.198

63800 500 42.12 0.563 0.074

38.58 0.615 0.081

38.12 0.622 0.082

37.36 0.635 0.084

100000 1230 66.07 0.563 0.048

60.65 0.619 0.052

60.38 0.616 0.052

59.93 0.621 0.052
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Table VI-3 -— Comparison of Low Frequency, Odd Problem, Complex

Eigenvalues with the Static Problem Eigenvalues*

Static, Odd Problem 100 cps, Odd Problem

i1.384339 + 13.748838 :1.384371 + 13.748499

1.676105 6.949980 1.676120 6.949802

1.858384 10.119259 1.858393 10.119137

1.991571 13.277274 1.991577 13.277181

2.096626 16.429872 2.096630 16.429796

2.183398 19.579409 2.183401 19.579346

2.257320 22.727036 2.257323 22.726982

2.321714 25.873384 2.321716 25.873337

2.378758 29.018831 2.378759 29.018789

2.429959 32.163617 2.429960 32.163579

 0""
-

.
-
I
:

1

Table VI-4 -- Comparison of Low Frequency, Even Problem, Complex

Eigenvalues with the Static Problem.Eigenva1ues*

Static, Odd Problem 100 cps, Odd Problem

:11.125365 + i2.106196 i_1.125419 + i2.105550

1.551575 5.356269 1.551595 5.356036

1.775544 8.536683 1.775555 8.536538

1.929405 11.699178 1.929412 11.699072

2.046853 14.854060 2.046858 14.853977

2.141891 18.004933 2.141895 18.004865

2.221723 21.153414 2.221726 21.153355

2.290553 24.300342 2.290555 24.300292

2.351048 27.446203 2.351050 27.446158

2.405013 30.591295 2.405014 30.591255

From Johnson and Little (7)
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CHAPTER VII

SPECIFIC BOUNDARY VALUE PROBLEMS

7.1 General Remarks
F‘i

The general solution of the problem is in the form of an

eigenfunction expansion of the four-vector

 

    

.oxx '1 n1
:7

o n i(a x + wt)
yy = C 2 e r , (7 .1-1)

oxy r n3

11

.. Q .. r=1 .. 4.1 (r)

where the constants Cr are determined from the particular

bo ndar stresses a d h fa e = hro hu y oxxb n oxyb on t e sur c x 0 t ug

the application of the biorthogonality operator 63, (4.3-4). This

procedure was detailed in Chapter V, and it was seen that the

evaluation of the constants requires the solution of the infinite

set of equations (5.3-2)

8 ._ 31 1 s s s s s

1-1
repeated

The FS term is the only term containing the boundary functions.

1
- - 2 - 2 -

FS — [1 {(2281 - zsz)okxb + [(v + 30 + l)u82 + (v + v )uS

1

1

_.E__- 12.. __v - Elisa 33
- 2 usl 2 oxyb dy - 2-—._; u$2 dy (5. - )

pm dy 9%L-- as -1 repeated
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In this chapter, solutions are made for the following

self-equilibrated end loadings:

 

Problem oxxb Ox b

1 -3y +10y3 - 7y5 0

2 cos E- - £_ 0

2 11

3 0 -sin fly

7.2 The Boundary Term FS

 

-3y + 10y3 - 7ySProblem 1 Oxxb =

oxyb = 0

where

_ ( ) m.S cosh asms

k (Slnh qsmsy - Eg'EBEF—Egfig Slnh asnsy)

m cosh a m

 

5 = k(1) (sinh a m y‘+

s S S

o 52 Sinh asnsy) .
K n cosh a n

s s s 3

Performing the required integration yields

tanh a n

_(1) ms 33 44 22
FS kS RS Eg'cosh asms -;Fr:3;-- ( 16asnS 7200/SnS 1680)

s s

 

1 2 2
+ as 5 (160asnS + 1680)]

n

S S

tanh a m
s S 4 4 2 2

+ COSh asms[:-—-g-—€- (lOaSmS + 7ZOaSms + 1680)

a m

S S

1 2 2

+ 5 5 (-16008ms - 1680)]

a m

S S

1
-
I
O
§
H
I
Z
W

p
.
1
1
“
A
“

 I.
5
"

.
5
'
.
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_ 11 _2
Problem 2 oxxb ‘ 003 2 Y n

Oxyb = 0

Following the same procedure using the even adjoint functions gives

 
 

(1) ‘m 4 tanh a m

F =k R—gcosham tanham TI SS

8 s s s aim n s s 2 2 2 tanh a n

s s s n +4asns s s

4tanh a m

+ cosh asms [72112—5 - -———§-§-] .

n +4asms “3“5“

Problem 3 o = 0

xxb

Oxyb -s in rry

Substitution of these functions into (5.3-3) and integrating gives

2

F =k()2nsinham R(V+V2+-LIT2)
s s s s 2 s 2

a m +fl pm

8 s

2 2 2

-(v +3v+1)-—-2—V—'—(a:ms+n)

$1-012

E

m tanhan

1 _§_ 3 s 2 2 E 2

+222ntanham [(V+3V+1)'(V+v+ 2n)

an‘l'n S SS pm

3 s

2 2 2

++——(asns+n)] .

&.a2

E

7.3 Results and Conclusions

A detailed study of the steady state solution was made for

the intermediate frequency, 6380 cycles per second, for each of the

time—harmonic boundary loadings defined by problems 1, 2, and 3.

The eigenvalues used for this frequency are tabulated in Table A-3

in the appendix. Tables VII-1 and VII-2 illustrate the convergence

 I
I
I
.

'
'
h
u
:
c

”
’
1
1
e
r
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of the eigenfunction constants for problems 1 and 2; Table VII-3

gives the comparison of the prescribed boundary functions with the

truncated eigenfunction expansion approximation for problem 1.

These examples are representative of the solutions for the three

problems at this frequency. The boundary functions and the non-

decaying stress wave modes of problems 1, 2, and 3 have been plotted

in Figures VII-1 through VII-7. The decaying modes at x = 0, the

sum of which is the difference between the boundary functions and

the sum of the non-decaying modes at x = 0, are not shown as the

major concern is the stress magnitude and distribution beyond the

decay region. The phase velocities and wave lengths of each mode

are given in Tables VI-l and VI-2.

Examination of the results shown in Figures VII-l through

VII-7 leads to the following conclusions:

1. A Saint-Venant boundary region does not exist for the

dynamic problem. The self equilibrated, time-harmonic

boundary stresses of this problem produce stress waves

which do not decay. The existence of non-decaying

stress waves at this frequency insures the existence

of non-decaying stress waves for any time—dependent

boundary loading which includes this frequency component.

2. Application of the time-harmonic, self-equilibrated

stress 0 with zero shear stress 0 in problems

xxb xyb

1 and 2 produces significant non-decaying ckx, Oyy’

and oxy stress modes. These modes are the only

significant modes remaining beyond a distance of 2

strip widths for the odd problem and l strip width for

1
-
-
.
:
¢
-
’

1
%

7
'
.

 cFP'H'
E
”
_
'
.
‘
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the even problem from the loading surface X = 0.

3. The time-harmonic, self-equilibrated shear stress Oxyb

with zero normal stress 0 in problem 3 yields a

xxb

non-decaying 0*y stress mode very similar in magnitude

and shape to the applied stress without producing Oxx

and 0 modes.

YY

4. The shape and magnitude of the non-decaying stress modes

are very sensitive to the boundary stress distribution.

Problems 1 and 2 each involve self-equilibrated normal

boundary stress distributions of approximately

oxxb

the same peak magnitude as shown in Figures VII-l and

VII-4. Figure VII-2 of problem 1 shows a resulting mode

1 oxx stress wave having a peak magnitude 5.7 times

greater than the peak magnitude of the applied stress.

Figure VII-5 of problem 2 shows three non-decaying

modes of Oxx stress waves, all of which have peak

values less than the peak value of the boundary stress.

Solutions of these problems were attempted for other fre-

quencies, but the results were not conclusive because of un-

satisfactory convergence of the eigenfunction constants. At the

lower frequencies, round-off error is suspected as the main source

of difficulty. At the higher frequencies, the equations (5.3-2)

become highly ill-conditioned. Examining problem 1 at the lower

frequency of 1000 cycles per second, the trend of the convergence

of the single non-decaying eigenmode constant appeared to be toward

zero. The higher frequency solutions indicated the existence of

 

C
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more non-decaying modes, but the convergence of the eigenfunction

constants was too unstable to permit conclusive statements.
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Table VII-3 -- Approximation of Boundary Function, Problem 1

Boundary Function: 0 = -3y + 10y3 - 7y5

= 0

Series Solution with 15 pairs of Eigenvalues

Prescribed Stresses

Cxxb

0.00000

-0.29007

-0.52224

-0.64701

-0.63l68

-0.46875

-0.18432

0.15351

0.42624

0.45657

0.00000

nyb

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

Series Solution

0

XX

0.00000

-0.29013

-0.52222

-0.64696

-0.63174

-0.46878

-0.18422

0.15348

0.42612

0.45662

-0.00051

0'

xy

0.00000

0.00002

0.00006

-0.00005

-0.00004

0.00009

-0.00001

-0.00011

0.00008

0.00010

0.00000
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TABLE A’I --ROOTS OF TRANSCENDENTAL

P
U

N
O
O
Q
N
O
‘
U
‘

FREQUENCY

EQUATION

000 PR

oaN

1.384371

1.676120

1.858393

1.991577

2.096630

2.183401

2.257323

2.321716

2.378759

2.429960

(601-1)

OBLEM

.259341 +10.000000

3.748499

6.949802

10.119137

13.277181

16.429796

19.579346

22.726982

25.873337

29.018789

32.163579

= 100 CYCLES

POISSON RATIO = 1/3

H
-

EQUATIONS (6.1-1)

PER SECOND

EQUATION (6.1-2)

EVEN PROBLEM

eaN

.0371997 +-10.000000

1.125419 2.105550

1.551595 5.356036

1.775555 8.536538

1.929412 11.699072

2.046858 14.853977

2.141895 18.004865

2.221726 21.153355

2.290555 24.300292

2.351050 27.446158

2.405014 30.591255
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TABLE A-2 --ROOTS OF TRANSCENDENTAL EQUATIONS (6.1-1)

AND (601.21

S
w

A
)

O
o
:

'
4

0
U
1

10

11

12

13

14

15

16

17

1s

19

FREQUENCY

EQUATION (601-1)

ODD PROBLEM

oaN

.969392+-i 0.000000

1.387431

1.677591

1.859280

1.992178

2.097068

2.183736

2.257588

2.321933

2.378940

2.430112

2.476535

2.519015

2.558169

2.594481

2.628334

2.660042

2.689860

2.717999

3.714782

6.932145

10.107082

13.268010

16.422389

19.573132

22.721629

25.868635

29.014596

32.159796

35.304422

38.448604

41.592435

44.735984

47.879302

51.022428

54.165395

57.308225

= 1000 CYCLES PER SECOND

POISSON RATIO = 1/3

EQUATION (6.1-2)

EVEN PROBLEM

a

e

.3730024-i 0.000000

1.130700

1.553632

1.776676

1.930134

2.047367

2.142276

2.222023

2.290794

2.351247

2.405180

2.453862

2.498226

2.538975

2.576654

2.611694

2.644439

2.675173

2.704127

2.040549

5.332933

8.522219

11.688658

14.845783

17.998107

21.147604

24.295285

27.441726

30.587278

33.732171

36.876562

40.020558

43.164241

46.307669

49.450887

52.593930

55.736826

 If
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TABLE A-3 --ROOTS OF TRANSCENDENTAL EQUATIONS (6.1-1)

10

11

12

13

14

15

16

17

18

AND

FREQUENCY = 6380 CYCLES PER SECOND

(6.1-2)

POISSON RATIO

EQUATION (6.1-1)

ODD PROBLEM

oaN

2.421033

1.355817

1.702163

1.877602

2.005841

2.107627

2.192156

2.264475

2.327682

2.383821

2.434316

2.480197

2.522237

2.561030

2.597039

2.630638

2.662129

: 4.295876+ 1 0.000000

0.000000

1.992252

6.179568

9.609329

12.893890

16.122062

19.322040

22.505794

25.679321

28.845969

32.007763

35.165999

38.321548

41.475016

44.626840

47.777341

50.926763

1/3

EQUATION 1601-2,

EVEN PROBLEM

eO‘N

4.0559994-i 0.000000

2.237781

1.130842

1.577832

1.798075

1.945888

2.059326

2.151671

2.229616

2.297072

2.356535

2.409702

2.457780

2.501657

2.542008

2.579357

2.614120

2.646631

0.000000

0.000000

4.304994

7.924157

11.261712

14.512666

17.724623

20.915484

24.093585

27.263356

30.427379

33.587264

36.744066

39.898511

43.051111

46.202239

49.352174

“.0.

F. '.

 L
E
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TABLE A-4 --ROOTS OF TRANSCENDENTAL EQUATIONS (6.1-11

N
0
‘

L
“

k
U

h
)

m

10

11

12

13

14

15

16

17

18

19

AND (601-2)

FREQUENCY = 10000 CYCLES PER SECOND

POISSON RATIO = 1/3

EQUATION (601‘1)

ODD PROBLEM

oaN

5.378575

3.286863

1.436153

1.517139

1.826559

1.983445

2.095982

2.185563

2.260571

2.325330

2.382416

2.433512

2.479787

2.522091

2.561062

2.597194

2.630877

2.662425

i 6.630079 + 1 0.000000

0.000000

0.000000

0.000000

4.818572

8.800626

12.306705

15.658226

18.937701

22.177246

25.392200

28.590880

31.778207

34.957288

38.130183

41.298318

44.462708

47.624099

50.783048

EQUATION 1601‘2)

EVEN PROBLEM

eaN

3.926267

3.315675

.805028

1.710236

1.913085

2.043406

2.142976

2.224562

2.294043

2.354712

2.408631

2.457193

2.501392

2.541960

2.579457

2.614321

2.646901

2.677480

1 6.579686 + 1 0.000000

0.000000

0.000000

1.973710

6.917090

10.582463

13.994701

17.304375

20.561275

23.787170

26.993212

30.185738

33.368631

36.544408

39.714775

42.880930

46.043740

49.203849

52.361744

a
n
.

‘
4
1
~
4
3
'
.
.
j

W
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TABLE A-S --ROOTS OF TRANSCENDENTAL EQUATIONS (6.1-1)

\
O
G
N
O
‘
U
'
I

10

11

12

13

14

15

16

17

1e

19

20

AND

FREQUENCY =

(601’?)

POISSON RATIO

EQUATION (6.1-1)

ODD PROBLEM

oaN

19.116382

18.381749

16.903148

14.554569

11.561352

10.709123

9.690573

8.071672

5.638132

1.109372

0.000000

.821718

1.574184

1.705364

1.665112

1.493388

1.058952

0.000000

1.174472

at 20.893342 + i 0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

6.327763

11.332493

14.202922

18.660664

22.653411

26.420677

30.065269

33.689863

35.977305

38.321627

31600 CYCLES PER

1/3

SECOND

EQUATION (6.1-2)

EVEN PROBLEM

(I

e N

18.839587

17.740090

15.850131

11.088598

10.700487

9.681430

7.950855

4.312302

1.216463

.382669

0.000000

1.365751

1.669688

1.701246

1.597806

1.333585

0.000000

.363617

1.461126

i 20.893334 +i.0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

9.825665

12.971777

16.518870

20.694499

24.557542

28.253380

31.868434

35.246044

36.386089

40.076479



TABLE A-6 --ROOTS OF TRANSCENDENTAL EQUATIONS

87

AND (601-2)

(601-1)

FREQUENCY = 63800 CYCLES PER SECOND

POISSON RATIO = 1/3

EQUATION (6.1-1)

ODD PROBLEM

oaN

:t42.125041+-1 0.000000

38.691841 0.000000

38.387766 0.000000

37.777907 0.000000

36.855312 0.000000

35.603678 0.000000

33.993858 0.000000

31.980117 0.000000

29.496923 0.000000

26.477242 0.000000

23.205347 0.000000

22.171072 0.000000

21.657992 0.000000

20.824644 0.000000

19.670625 0.000000

18.256867 0.000000

16.281783 0.000000

14.064993 0.000000

11.648308 0.000000

4.201674 0.000000

0.000000 11.271708

1.311928 17.237081

.292534 23.194187

0.000000 25.992610

EQUATION (6.1-2)

EVEN PROBLEM

eaN

i 42.125041-11 0.000000

38.577849 0.000000

38.121319 0.000000

37.356459 0.000000

36.272106 0.000000

34.845962 0.000000

33.041099 0.000000

30.802011 0.000000

24.795354 0.000000

22.382882 0.000000

22.202007 0.000000

21.644669 0.000000

20.797816 0.000000

19.682077 0.000000

18.195303 0.000000

16.543159 0.000000

14.153948 0.000000

10.156298 0.000000

7.960167 0.000000

.802532 13.652395

1.161230 20.331783

0.000000 24.405508

.904466 27.419767

1.521996 32.102359
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TABLE A-7 --ROOTS OF TRANSCENDENTAL EQUATIONS (6.1-1)

O
G
N
O
‘
U
T
P
U
N
W

AND 1601-2)

FREQUENCY = 100000 CYCLES PER SECOND

POISSON RATIO = 1/3

EQUATION (6.1-1)

ODD PROBLEM

60.177115

59.629017

58.893544

57.965518

56.837344

55.498506

53.934958

52.128313

50.054807

47.684164

44.979451

41.904074

38.478920

35.378636

34.900756

34.463530

33.836205

33.033031

32.012504

30.800500

29.420589

27.730862

24.000258

20.984984

17.915348

15.191106

6.107614

0.000000

1.230817

i 66.070545+ 1 0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

13.641388

21.138086

EQUATION (6.1-2)

EVEN PROBLEM

60.654611

60.381975

59.926245

59.284975

58.454013

57.427032

56.195045

54.745858

53.063368

51.126645

48.908797

40.226163

36.751606

34.853644

34.455069

33.829152

32.991782

31.995858

30.813558

29.399656

27.860995

23.511384

21.533973

18.332334

12.807290

10.498085

.825374

.553100

0.000000

1 66.070545 + 1 0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

16.772158

24.873496

28.918273



APPENDIX B

ASYMPTOTIC SOLUTION OF THE ODD PROBLEM TRANSCENDENTAL EQUATION

The transcendental equation for the odd problem is

tanh am 4mn

tanh an = (1+n2)2 (3'1)

where

2

0,2612 = 82 - 9%— (1 - 62) (B.2)

2

a2n2 = oz - Z§Q_.(1 + v) (B.3)

The eigenvalue 0 is found for a given frequency w and Poisson

ratio equal to 1/3. Thus, (B.2) and (B.3) can be written in terms

of the constant "a"

2 2
a Jug—an.)

22 2
am =QI-a

qznz = 02 - 3a .

Substituting these two expressions into equation (B.1) yields

 

tanh £2 - a = 4072 {0’2 - a «(i172 - 3a (B a)

2 2

tanh o2 - 3a (2a - 3a)

 

The asymptotic solution yields values of a in the complex plane

for a very large relative to the constant "a". Substituting

0 = x + iy gives

89



90

Vaz-a= [xz-yZ-a+2ixy =x+€1+i(y+32), (8.5)

 

where 91, 52 << 1.

Squaring both sides of (8.5), cancelling like terms, and neglecting

the higher order terms of 61 yields

.3

Xel - ye2 = - 2

yel '1’ X62 = O .

Solving these two equations for 31 and 32 gives

c1 = - fix—2 (8.6)

2y

a
62 - 2y . (8.7)

The right hand side of equation (B.4) becomes

 2 . .

4612 1/82 - a V82 - 3a = 40’ [0’ + ‘31 + 162]“ + 3(31 + 1‘32)]

(282-4602 (282--3a>2

 
 

Substituting 6c = 31 + iez, the right side is

2

4o (a + ec)(a + see) 484 +16chc + 1282.:
  

(2a2 - 3a)2 404 - 12a2a + 9&2

As 0 becomes very large relative to "a", this ratio approaches 1.

The left side of (B.4) can be written as

tanthz - a _ tanh” + 61 + i(y + 6’2” _ tanh(p + 16)

r-—--- tanh[x +13; + i(y + 3e )] - tanh(r + is)

tanh a2 - 3a 1 2

   

tanh p +'i tan_gr . l + i tanh r tan 8

1 +'i tanh p tan q tanh r + i tan 3

 

, (B-8)

where



91

p=M1-3fi . r—Ml-Efi
2y 2y

' 3a
q=y(1+—32) , 3=y(1+—2) .

2y 2y

As X and Y become very large,

tanh p a tanh x a l

tanh r a tanh x a l

and (8.8) may be written as

tanh x[1 - tan q tan s] + i[tan q + tanhzx tan s]

 (8.9)

tanh x[1 - tan q tan s] + i[tan s + tanhzx tan q]

The ratio (8.9) must approach unity for large a. This requires

that tan q equal tan 3

tan q = tan 8

a 3a

tan (y + 2y) tan(y 2y)

Using the identity for the tangent of the sum, and replacing the

tangent of the small argument with the argument itself yields

 
 

a 3a

tan y +~2y = tan y + 2

a 3a

1 - 2y tan y 1 -2y tan y

As y increases without limit, tan y should remain of the order

of magnitude 1. Thus, tan q and tan s approach unity. Assume

 

 

for y:

= (424-511 '1’ 6 , 6 << 1 . (8.10)

a tan y +1;-

tan q = tan(y + E;- = ,y = l (8.11)

1 -'- tany Y
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For y defined by (8.10),

 

_ 4n+l _ 1+6

tan y — tan[( 4 )n + 5] — {:3

Substituting into (8.11) yields

1:0 2.: 2.12:9.

1-0+2Y 1 2y (1-6) ’

or 6 = - %;' which is negligible for large values of y. Like-

wise, requiring tan 5 to approach unity and solving for 6 gives

3a

6 = - E;' which is negligible for large values of y. Thus, for

large values of y, the imaginary part of a is approximated by

_ 4n+1

y (“Z—‘9n .

Having isolated the imaginary part of a, the real part, x, is

determined from equation (8.4) numerically with the compUter.
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