

' EXTENDED SIMPLE PRECEDENCE

Thesis for the Degree of Ph. D.

MICHIGAN STATE UNIVERSITY

LEWIS HARVEY GREENBERG

1970

. ‘3‘ ‘.

G

. 3;
,V' I} ‘7‘

'

.4 1.1:) is i 2
I'HeSIB

3," PA1(-}ii,y‘-dlk {3"};

’ Unrest.» Cy

This is to certify that the

thesis entitled

EXTENDED S IMPLE PRECEDENCE

presented by

Lewis Harvey Greenberg

has been accepted towards fulfillment

of the requirements for

__Eh‘D_._ degree in

Electrical Engineering and

System Science

OLILLKLLL .
Major professor

Date—Decemheijqm

0-169

3? amount: av 3‘

"DAB & SONS'

590K HINDU" INC.

LIIMHY .lNDERS

'm SPIIII'QI! Inclus-

ABSTRACT

EXTENDED SIMPLE PRECEDENCE

BY

Lewis Harvey Greenberg

Grammars are tools for defining structures in languages.

Their study has enabled the mechanization of several techniques

for processing computer languages. These techniques depend to a

large extent on being able to determine the grammatical structure

of arbitrary strings of the language.

One method, first introduced by Wirth and Weber, called

precedence analysis, is extremely easy to implement if the

grammar under consideration has certain basic properties.

This dissertation extends the basic Wirth and Weber pre-

cedence concepts to a larger class of grammars. This is achieved

by changing the definitions of the precedence relations so that

these relations are mutually disjoint and adding a set of context

sensitive productions to the original grammar so as to effectively

leave the precedence parsing algorithm unchanged. The use of

context sensitive productions also provides a technique for

attacking the problem of equal right Sides. This enables the new

method, called extended simple precedence (ESP), to handle a much

larger class of grammars than simple precedence does.

EXTENDED SIMPLE PRECEDENCE

By

Lewis Harvey Greenberg

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering and

System Science

1970

6:02.757

7~/~7o

ACKNOWLEDGMENTS

I would like to express my gratitude and appreciation to

Professor Julian Kateley for his guidance throughout the pre-

paration of this dissertation. His generous assistance, encourage-

ment, and inspiration, played an important part in the completion

of this work.

I would also like to thank the other members of my

committee, Carl Page, Richard Dubes, William Kilmgr and J. Sutherland

Frame for their constructive criticism and guidance.

I would also like to extend my gratitude to my wife Maxine,

for her assistance in preparing the rough draft and her encourage-

ment and inSpiration during the preparation of this dissertation.

ii

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

Chapter

1. INTRODUCTION

1.1 Basic Notation

1.2 Dissertation Objectives

PRECEDENCE GRAMMARS

1 Simple Precedence

2 The Precedence Parsing Algorithm

.3 Conflicts in Simple Precedence

4 Extended Precedence

EXTENDED SIMPLE PRECEDENCE

3.1 The New Precedence Relations

3.2 The Formal Mechanism

3.3 Generating Strings

INFINITE STRINGS AND EQUAL RIGHT SIDES

4.1 Infinite Contest Sensitive Productions

4.2 A Canonical Form

4.3 Equal Right Sides and Bounded Context Grammars

LR(k) GRAMMARS AND THEIR RELATION TO ESP GRAMMARS

5 . 1 LR(k) Graumars

5.2 LR(1) Grammars

5.3 Synonomous Grammars for LR(k)

CONCLUS IONS

6.1 Summary of Results

6.2 Some Possible Extensions of ESP

BIBLIOGRAPHY

APPENDIX

Page

ii

iv

12

15

18

21

21

23

28

38

38

43

48

50

SO

56

62

63

63

66

68

Figure

1.1

2.1

2.2

3.1

5.1

LIST OF FIGURES

Inclusion Tree of Parsing Algorithms

Data on Analysis of Precedence Using Matrix

Techniques

Initial Configuration and Next Possible Steps

of the Precedence Analyzer

Graph of the Relation R

Automata for Example 5.3

iv

Page

12

14

31

59

CHAPTER I

Introduction

The modern digital computer, has made it increasingly impor-

tant to improve man-machine communications. To this end, many

compilers have been designed and built to translate man-oriented

languages, i.e. FORTRAN, ALGOL, COBOL, to machine-oriented lan-

guages. The man-oriented language which, in general, is machine

independent allows the programmer to Specify his problem in much

the same way he would if he were to solve it by hand. The machine-

oriented language, on the other hand, is, in general, completely

machine dependent and often impossible to readily comprehend.

In the last few years, much progress has been made in the

field of formalized languages. Yet the hand coded ad-hoc variety

of languages still plays a dominant role in todays computer systems,

mainly because of greater speed and error detecting capability. In

order to close the gap between formal and non-formal languages,

many papers have appeared in the literature which propose formal

methods for accomplishing the task of translation. These methods

deal with the structure or grammar of the language to be translated

and generate output by assigning meaning to syntactical structures.

In order for these methods to be efficient, the algorithm which is

to accomplish the syntactic analysis should be made as simple as

possible. The simplicity of the algorithm in most instances places

unwarranted restrictions on the type and the complexity of the

grammar it may effectively handle. In some cases the grammar

l

can be changed into a form which will make it acceptable

to the algorithm, but these changes are usually ad-hoc and in some

instances force unacceptable changes in the original structure of

the grammar. This dissertation will deal with an extension of a

method first proposed by Wirth and Weber [Ni 66] which provides

an efficient algorithm for syntactic analysis together with good

error detecting capability.

1.1 Basic Notation

The basic entities to be used in the classical mOdel of a

grammar are given as follows:

(1) A finite set V. V is called the vocabulary and the

elements of V are called symbols.

(2) The operation of concatenation as denoted by juxta-

position will be used to form strings from the elements

of V. Strings may also result from the juxtaposition

of strings.

(3) The null symbol is denoted by A.

Using these primitives several definitions can now be given.

(1) The set of all strings of finite length over a vocab-

ulary V is denoted by V*

V* - {xlx = A v (3y)(3Y)y E V* Y E V = x = yY}

Lower case Latin letters will be used to denote elements

of V*. Upper case Latin letters will denote elements

of V. In either case they may be subscripted.

(2) A pgoduction denoted by 1 d r is an ordered pair of

strings. The left and right parts of a production

are designated 1 and r reSpectively. The set of

3

productions is denoted by P.

(3) The set of symbols on the left hand side of the produc-

tions is denoted by VL

L
V = {A‘(3x)(3y)(32) yAz ~ yxz E P}

(4) The set of symbols on the right hand side of the pro-

ductions in P is denoted by VR.

vR - {AI <3x><ay><32> x ~ yAz 6 PI

(5) Z designates a subset of V called terminal symbols.

2: = {VR - vL}

(6) VN designates the set of non-terminal symbols.

vN={v-2}

When it becomes necessary to distinguish between terminal and non-

’ terminal symbols and strings the following notation will be used:

N

in implies X G V

_, N *

y implies y 6 (V)

§ implies X E 2

*

y implies y E 2

The length of a string a is denoted by ‘a‘ and if Ia‘ K

then the individual symbols of the string a will be denoted by

A1,A2,...,AK.

When a binary relation, say A, is defined for a symbol pair,

the following notation will be used to extend the notation to strings:

Let M =K

a A b implies AK A B1

A
a implies A1 A A i = 1,2,...,K-l

i+l

To denote that a relation does not hold between a pair of symbols

or strings the —1 sign will be used preceeding the relation i.e.

a—IAb. Where it would be ambiguous to use the = relation (mean-

ing equality) the symbol E will be used.

A context free grammar (CFG) is a 4 tuple, <V,2,P,G>

where: V = {V1,V2,...,VM,...,VN} is the vocabulary.

2={v

P

G

Mfil’vM+2""’VN} 18 the set of terminal symbols.

is a restricted set of productions of the form X.~ y.

is the goal symbol or the starting type and is an

element of the non-terminal set.

A derivation is denoted by x =ty and is defined as follows:

The

The

with which

Similarly,

with which

x =Iy iff x = wAz and y = wsz then either

A a s E P or A a t E P and t a 3

language L(Z) defined by the grammar Z is the set

L(Z) = {ylG = 3'}

set of head symbols, HSCX), is the set of all symbols

some derivation from X may begin.

mm)=WW=Yd

H86!) = ¢

the set of tail symbols, TS(X), is the set of all symbols

some derivation from X may end.

TS(X) = {le = zY}

T860 8 ¢

A sentential form (SF) is any string that can be derived

from the goal symbol. The set of sentential forms of which the

language of a grammar is a proper subset is defined as

The

entail the

{ch = z}

derivation of an element of a language will, in general,

generation of a goodly number of SF's as intermediate

steps. Since at each step there will in general exist several non-

terminals, any one of which may be replaced using a production,

the set of SF's used in the derivation is not unique. For this

reason a canonical form for derivations will next be defined.

A derivation is said to be rightmost (leftmost) if at each

step of the derivation the rightmost (leftmost) non-terminal symbol

is the symbol upon which the next SF is derived. If it is the case

that there exists more than one rightmost (leftmost) derivation for

the same SF then the grammar is said to be ambiguous‘.

Parsing, the reverse process of generation, is an algorithmic

method for determining whether a string is an element of a language

and if so, what productions were used in its generation. There are

two main approaches to parsing. The first of these methods, called

tog-down, tries to match the string in question by generating a

new string which is identical to the original" Cheathauiand Sattley

[Ch 64] give a clear treatment of this method together with some

of its pit-falls and draw-backs. The second method, called bottom-

gp, tries to reduce the original string by replacing substrings

in the SF which correSpond to the right hand side of some pro-

duction with the left hand side. The algorithm is successful if

the original string can be reduced to the goal symbol. These

methods differ mainly in the amount of foresight and hindsight

used in determining what constitutes a proper substitution.

A parsing algorithm is said to be deterministic if at every

point in the analysis the next step is uniquely determinable. This

is a very important consideration when evaluating the efficiency

of an algorithm since if there exists a choice at some point in

the analysis, the fact that the wrong choice was made may not be-

come apparent until after several additional steps. Then if the

analysis is to succeed the algorithm must make some provision for

backing up to the point of the incorrect choice so that an alternative

choice can be made. Clearly this type of analysis complicates the

algorithm and puts great restrictions on generation of output.

A parsing algorithm is said to yield a left to right

canonical parse (LRCP) if the substring to be reduced is always the

leftmost reducible substring in the sentential form. For bottom-

up parsing, a parse is an LRCP if the order in which the productions

are applied to reduce the string is just the reverse of the right-

most derivation (RMD) for that string.

1.2 Dissertation Objectives

Given a grammar <V,£,P,G>, it is a trivial task, starting

with the goal G and repeatedly using the various productions, to

derive a string of terminal symbols such that this string is in

the language specified by the grammar. However, parsing, the

reverse process of generation, is in general much more complex.

Since it is the objective of a compiler to determine the structure

of an arbitrary string and to generate code dependent on this

structural information, a solution to the parsing problem has

practical significance. Given a grammar, several algorithms exist

for the parsing of strings and this dissertation will deal with

an extension to one of the simplest of these methods.

In Chapter II the concepts of precedence are introduced.

This method attempts to reconstruct the SF's of the grammar by

the bottom-up method. This is accomplished by insertion of

brackets at appropriate points in the string so that the sub-

string that is to be replaced is clearly delineated. This sub-

string always corresponds to the right hand side of some pro-

duction in the grammar. The process for determining where the

brackets will be placed in the string is based on a set of rela-

tions between symbol pairs which may legally appear adjacent to

one another in a SF. If however, the set of relations are not

disjoint then the brackets are not unique and the substrings are

not properly delineated. Even when the substrings are pr0perly

delineated there may still be a problem in determining which pro-

duction is to be applied since there may exist two productions

which have the same right sides.

In Chapter III a new formulation of precedence is defined

in such a way that the set of relations is always disjoint. How-

ever the set of substrings delineated by the brackets no longer

correspomh directly to the right hand sides of productions and

therefore a new set of replacement rules must be defined. In

general these rules take the form of context sensitive productions

which we will loosely define to be any production which has more

than one symbol on the left hand side. A method for determining

the set of context sensitive productions is also given in this

chapter.

Since the set of context sensitive productions is not in

general finite, the concept of bounds is introduced in Chapter IV.

If the set of bounds exists then there exists a finite subset of

productions defined by the set of bounds which is sufficient to

parse any string in the language.

One method for dealing with the problem of equal right

sides is to examine the context in which the reduction is to take

place. Since the mechanism already exists for examining the con-

text under the new formulation, this method is also discussed in

Chapter IV.

Figure 1.1, taken from Feldman [Fl 68], shows the relation-

ship among various types of grammars. Thus LR(k) is seen to be

the most general of the various grammars shown. Under certain

conditions, as presented in Chapter V, ESP grammars are at least

as general as LR(k) grammars.

LR(k) Grammars and Production Languages

Knuth Kn 65]

(m,k) bounded context (1)

Eichel [Ei 64] Knuth [Kn 65]

(m,k) precedence (1,1) bounded context RCF

Wirth [W1 66] Eichel [Ei 64] Tixier [Ti 66]

exten ed precedence

McKeeman [MC 66] transition matrices

Gries [Gr 67]

precedence operator precedence

Wirth [W1 66] Floyd [F1 63]

Figure 1.1. Inclusion Tree of Parsing Algorithms

CHAPTER II

Precedence Grammars

There are two distinct types of precedence analysis in use

today. The first,called operator precedence,was first introduced

by Floyd [F1 63] and is concerned with the interrelation between

terminal symbols of the grammar. This method of syntactic analysis

is restricted to a specific form of context free languages, known

as operator grammars. A grammar is said to be an Operator grammar

if none of its productions contains two adjacent non-terminal

symbols. This type of analysis was extended to a larger class of

grammars by Colmerauer [Co 68] and Gries [Gr 68].

The second type of precedence analysis, sometimes referred

to as total precedence, is concerned with the interrelation of

all the symbols in the grammar. This technique was first described

by Wirth and Weber [Wi 66] and has been extended by McKeeman [Me 66]

and Cheatham [Ch 68]. Although there do exist grammars which are

both operator and total precedence, the class of grammars which

exhibit the simplest form of total precedence (referred to as simple

precedence) does not contain the entire class of operator pre-

cedence grammars.

2.1 Simple precedence

The precedence relations for simplegprecedence (SP) are

defined between pairs of symbols as follows:

9

10

xéY if L-eaXYbEP

X<~Y if L-oaXZbEP and YEHS(Z)

X>Y if L-vaZYbEP and XETS(Z)

or L a aZWb E P and X E TS(Z) and

Y E HS(W)

If there exists at most one relation between each pair of symbols

in V and no two productions have the same right sides or are of

the form X a A then the grammar is said to be simple precedence.

The relationship between Boolean matrices and relations can

be utilized to easily formulate the precedence relations. Three

Boolean matrices are constructed from the produttion set as follows:

E(I,J) = 1 if L‘» aV V b E P

I J

= 0 otherwise

h(I,J) = 1 if VI ~ VJb E P

= 0 otherwise

t(I,J) = 1 if VI a a‘VJ E P

0 otherwise

From the definition of the set of head symbols HS it is easily

seen that the transitive closure of the relation h is the set of

ordered pairs HS. Similarly the set of tail symbols TS is given

by the transitive closure of the relation t. Letting H and T

denote Boolean matrices which represent the transitive closure of

the relations h and t respectively, the following can easily

be shown:

H(I,J) = 1 if VJ E HS(VI)

= 0 otherwise

T(I,J) = 1 if VJ E TS(VI)

= 0 otherwise

11

The above transitive closure operations on the Boolean matrices

can be obtained by using Warshall's algorithm [Wa 62]. The

complexity of this algorithm is on a par with matrix multiplication

but its efficiency can be increased by arranging the rows and

columns so that all the non-terminal symbols precede the terminal

symbols, thus taking advantage of the zero entries that occur in

the rows for terminal symbols.

Using the Boolean equivalent of matrix multiplication and

addition, the following four matrices are defined:

L = EH G = T'L

Gl=T'E G=G]_-i-G2

The precedence relations can then be defined as follows:

v év if E(I,J) = 1
I J

VI <1 vJ 1f L(I,J) = 1

vI DVJ 1f G(I,J) = 1

The following matrix notation will be used throughout this

dissertation:

(1) AB will denote matrix multiplicator using and and or.

(2) T' will denote the tranSpose of the matrix T

(3) A-B will denote the matrix the elements of which equal

the logical product of the corresponding elements of

A and B.

C = A'B implies C(I,J) = A(I,J) and B(I,J)

(4) Ec will denote the logical complement of the matrix E.

EC(I,J) = 1 if E(I,J) = o

0 otherwise

(5) A +-B will denote matrix addition using the logical

operator or.

12

When it is important to distinguish between the two types

of > the following notation will be used:

v > v if Gl(I,J) = 1

v > ‘v if G2(I,J) 1

Since the above algorithm is well suited for computer

implementation, it might be interesting to examine some of the

data for a few of the languages that have been analyzed over the

past two years using this method. Figure 2.1 summarizes the

results of these analyses.

Similar Boolean matrix formulations for precedence grammars

have been presented by Colmerauer [Co 68] and Martin [Ma 68].

Number of Total time for Percent of non-blank to

Language productions analysis (SEC) total entries in the pre-

cedence matrix

MAD/I [M1 68] 106 5.767 24.10

MKL [Me 66] 95 6.484 52.08

AlGOl.[Co 68] 353 31.494 8.11

PI/I [A1 68] 689 96.124 9.90

Figure 2.1

2.2 The precedence parsing algprithm

The precedence parsing algorithm as presented by Wirth and

Weber [W1 66] is extremely simple to implement. Two stacks are

used to hold the SF being analyzed. In the initial configuration

(Fig. 2.2a), the string to be analyzed minus its first symbol

resides on the right stack and the relation be followed by the

first symbol of the string resides on the left stack. Designating

13

the top elements of the left and right stacks L1 and R1

reSpectively, the algorithm proceeds as follows. If L1'4 R1

(Fig. 2.2b) then the symbol «6 followed by the t0p symbol in the

1 = R1 (Fig.

2.2c) then the t0p symbol on the right stack is pushed down on the

right stack is pushed down on the left stack. If L

left stack. If L D'R (Fig. 2.2d) then the symbols on the left
1 l

stack between the most recent ‘6 symbol and the top of the stack

constitute the right hand side of some production. These symbols

together with the Em symbol are popped off the left stack and

the corresponding left hand side of the production is pushed onto

the right stack. The process continues until only the goal symbol

remains on the left stack and the right stack is empty. Whenever

the right stack is empty the algorithm assumes that I. éiRl.
1

Whenever the left stack is empty the ‘Q symbol followed by R1

is pushed onto the left stack.

‘6 A B C D E F ...

Left stack Right stack

(3)

<6 A <3 B C D E F

1 R1

If Ll‘¢ R1 then the result is:

<0 A (I B C < D E F

(b)

If L1 5 R1 then the result is:

‘0 A <8 B C D E F

(C)

14

If LID'R1 and there exists a production of the form S a BC 6 P

then the result is:

<3 A S D E F ...

((0

Figure 2.2 Initial configuration and next possible steps of the

precedence analyzer.

Error detection comes at two points in the algorithm. The

first case arises when there is no relation between L1 and R1.

This implies that the string is not an element of the language

since if a symbol can appear adjacent to some other symbol in a

SF then they are related by at least one of the precedence rela-

tions. The second case arises when a substring bounded by the

relations <5 and 9 does not correSpond to the right hand side

of any production. This condition also indicates the occurrence

of an invalid string.

Before going on it might be advantageous to give an example

of a simple precedence grammar together with the parse of a valid

string.

Example 2.1 The formation of the precedence relations and the

parsing technique.

The grammar The h matrix The t matrix

A a BCD A B C D Y A B C D Y

B a BA A O 1 O O O A O O O l O

B d D B O l O l O B l O O l O

C O O O O 1 C O O O 0 l

C d Y D O O 0 O O D O O O O O

Y O O O O O Y O O O 0 O

t
a

5
'

m :
1
:

B m n H E

N
d
o
w
>

c
>
c
>
c
>
c
>
c
>
>
-

c
>
c
>
c
>
r
a
r
l
u
t

The

r
<
t
d
c
3
t
fi
i
>

O
O
O
O
O
>

o
o
o
w
o
w

The parse

r
t 8 n H 52

c
>
c
>
c
>
r
a
c
>
~
<

15

The T

t
<
1
5
<
3
t
fi
1
>

G
O
O
D
-
“
0
:
1
>

The

r
<
t
d
c
3
t
n
:
>

O
H
O
O
H
>

O
t
-
‘
O
O
t
-
‘
w

0
0
0
0
0
5
3

0

of the string DDDYDYDYD

Sentential forms

<D->DDYDYDYD

<- B 4 D .> DYDYDYD

<'B‘< B < D‘D’YDYDYD

<'B'< B16 B 4 YtD'DYDYD

<-B<B<«B'°-‘C5D~>YDYD

be BE< B 5 A.9»YDYD

<oB<B<SY>DYD

<B<Bécéno>YD

<vBéA>YD

<'B < Y'D'D

<-B-*-C=D~>

<~A~>

2.3 Conflicts in simple precedence

Production used

t
<
|
5
1
3
1
3

¢
>
6
3
0
5
3
>
r
>
u
=
u
>
c
3
u
s
u
s
u
i

1
1

1
1

1
1

1
1

1
1

1

U
l
H
i
g
i
u
i
K
3
g
l
u
!

8
8

8

Conflicts arise in simple precedence when more than one

relation exists between a pair of symbols. These conflicts consist

of five basic forms; (4,5), (é,~>1), (5,92), (<-,s>1), and (4:92)-

Squires [Sq 66] has shown that there exist special cases of the

(1,5) and (é,>1) conflicts which may be resolved by the addition

of a new non-terminal symbol and a trivial production.

The first Special case arises when a symbol W

head symbol.

is its own

If such a symbol appears to the right of some other

l6

symbol V in some production then by definition V 5 W and V 4W.

Removing the conflict involves the addition of a new symbol, say

W', which is substituted for each occurrence of W appearing to

the right of some symbol in a production. Then the trivial pro-

duction, W' -' W is added to the production set. Now since there

exists no symbol V such that V "= W the conflict has been removed.

The second Special case involves a symbol which is its own

tail symbol appearing to the left of some symbol in a production.

A similar method will remove this (5,91) conflict.

The third conflict which we would like to examine involves

the <0 and -> relations. Colmerauer [Co 68] points out that this

type of conflict arises from the fact that the precedence algorithm

always yields a LRCP. If one is willing to forego the requirement

of a LRCP then any .>2 relation may be arbitrarily changed to <.

without effecting the parsing algorithm. By examining the general

form of the (4,02) conflict we observe that the following must

be present in the gramar:

(1) V a CXYd

(2) X =9 eA . = A -> B

(3) Y ”Bf J

(4) W as gAUh

:9 A 4 B

(5) U =oBi

In applying the parsing algorithm we can't decide whether to complete

the definition of X, i.e., A > B, or start building the definition

of U, i.e., A <2 B. But in either case, we must eventually start

working on the definitions of either U or Y, i.e., X <- B, and

therefore we might just as well form U or Y before considering

17

whether A constitutes the end of some definition. Clearly we no

longer have a LRCP since this would require the completion of X

before Y. However once either U or Y is found the problem of

what to do with A is resolved since if Y is found then A >'Y

and if U is found then A 5 U.

Cheathem [Ch 68] has shown that any grammar may be changed

so that there do not exist any precedence conflicts between symbol

pairs. This is accomplished by requiring that no symbol may appear

more than once in the right hand side of all the non-trivial pro-

ductions of the grammar. To convert any grammar to this form, one

need only replace each repeated symbol B with a new symbol Bi

and add the trivial production Bi ~ B. The following example will

demonstrate the procedure.

Example 2.2 The convertion of a non-precedence grammar

The grammar The precedence matrix

AI» CBC A B C X

A O O O O

B-ax 00é04

XO-‘~>4,~>

The new Grammar The precedence matrix

A'a 0181C2 A B B1 B2 C1 C2 X1 X2

31» X B A 0 0 O O 0 O O O

3.] X1 2X2 B 0 0 0 O 0 e» >- 0

B1 0 0 0 O O é O 0

31-03 32 000 0 0 o é 0

B «B C1 0 4 é O 0 0 4 0

2 C2 0 O O O O O O O

Clbfi C X1 0 «é O é 0 0 <9 0

2 C 0 9’:>' O O O -> O

Xl'e X x O D»'> 6> 0 ~> -> e>

X2 e X

O
O
O
O
O
O
O

O
V

V
O

A
C
>
A

c
>
c
>
c
>
c
>

x

V
c
s

18

There doesn't exist a deterministic parsing algorithm which will

successfully handle the grammar in example 2.2. This is because the

algorithm has no way of determining the middle of the string of X's

which is where the first production should be applied. Therefore

although we have eliminated all of the precedence conflicts the new

grammar is not simple precedence. All that we have done is to

exchange the precedence conflicts for a set of productions with

equal right sides. Also we note that the number of non-terminal

symbols has greatly increased as has the set of productions.

2.4 Extended precedence

Wirth and Weber [Wi 66] also defined an extended version of

precedence by extending the definition to strings. This higher

order precedence is defined as follows:

Let ‘x‘ = N

, * *

x = y if A bXNch E P and be =Ib'x , Y1c1= yc'

*

x < y if A bXNVc E P and bXN = b'x , Vc = yc'

*

x > y if A bUY E P and bU = b'x , Y c a yc'
1c 1

or A bUVc 6 P and bU = b'x , Vc = yc'

where a :3, b implies a E b or a =9 b

A grammar is called a ppecedenceggpammar of order,(M,N) if for the

strings x, ‘x‘ =‘M, and y, lyl =‘N, there exists at most one

relation between x and y. Clearly if a and b are strings

such that ‘a|‘< M and |b| < N and there exists at most one

relation between a and b then for any strings ca and db

at most one relation holds between them. This new definition of

precedence will tend to increase the size of the precedence matrix

19

to unwieldy proportion unless some procedure is introduced so that

the analyzer will look at strings of length greater than one only

when it is necessary. McKeeman [Me 66] took this into considera-

tion in his extension of the precedence algorithm.

McKeeman decomposed the precedence algorithm into two distinct

parts. The first part started scanning the input string from left

to right, looking for a >1 relation as defined in a precedence

grammar of order (2,1). Taking advantage of the fact that a

reducible substring is always bounded on the right by a terminal

symbol in a LRCP, McKeeman was able to simplfy the definition of

the > relation to:

x>i if A-vbWUYc and WU=w'x

or A-isUVc and WU==w'x,V=Yd

The second part involves scanning from the point at which

the 9' relation has been found, back to the left, looking for a

< relation as defined by a precedence grammar of order (1,2).

Again the definition of «< can be simplified to:

X14 y if A a bXVWc and VW = yw'

The two sets of triples are used to find the precedence

relations only when there is a conflict in the simple precedence

relations. These conflicts are flagged by a special symbol in the

simple precedence matrix which causes the analyzer to reference

the appropriate set of triples for the correct relation.

Both of these extensions contain Floyd's operator precedence

as a subset since both have the ability to look at the Operators

which in an operator grammar are never separated by more than one

symbol. However, neither of these methods can handle the problem

20

of equal right sides in the production set.

In Chapter III we will examine another method for extending

simple precedence which will use an augmented set of productions

to overcome precedence conflicts.

CHAPTER.III

Extended Simple Precedence

As was shown in Chapter II, Wirth and Weber extended the

notion of simple precedence by looking at more than two symbols

in order to determine the proper precedence relation. It was

pointed out that the size of the precedence matrix grew as a power

of the number of symbols used in the determination. In this

chapter we will introduce a new method for extending simple pre-

cedence without increasing the size of the precedence matrix.

Instead, the set of production rules will be augmented with a set

of context sensitive productions (08?) which will be used to re-

move conflicts in the precedence relations.

3.1 The New Precedence Relations

Conflicts in simple precedence, as mentioned before, take

five basic forms: (4,5), (é,~>1), (<,>1) and (<-,c>2). As was shown

before, the (65>2) conflict is of no consequence if one is willing

to forego the restriction of a LRCP. In the new method a LRCP

will not be a criterion. Therefore, the new precedence relations

are defined as follows:

Definition 3.1

X = Y iff X Y or (X14 Y and X >1 Y)

X < Y iff Xb< Y and X —1= Y

X>Y iff X>Y and X-1=Y and X-1<Y

21

22

Now there is no possibility of a conflict in the relations

between two symbols because the definitions are mutually exclusive.

In matrix notation the definitions are:

vI =‘vJ iff 6(I,J) = 1

vI < vJ lff {am = 1

vI >vJ if MLJ) = 1

where:

6 = E+-L-G1

=8. = Lsdc = L-Ec-Gi

8 = Ge6c9£C = G-EceLc

Clearly, 6.4. = 64. = aft-.9 = O by inapection.

The main idea behind this new definition is the fact that

by making all conflicts between any tWo symbols = we have enlarged

the number of symbols which can be examined in determining the proper

reduction to be applied. That is, we have changed the problem by

delaying the decision of whether to include a symbol in the

reducible string by always including it in the string whenever

there is a chance that it might be allowed.

Before going on, consider an example. This is a grammar

taken fromNWirth and Weber's paper which is not simple precedence.

Example 4.1

G: A—oB;B ABE];L

A O 1 l O O 1 .
H at

13-.[A] 3001001 mm"

A O 1 O l O 1 .

B-°[L] 3000101 Tmatm‘

A 0 0 O 5 9 0 Precedence

B a L B O 0 O > = 0 matrix

[5440051

] 0 0 0 9., 0

:0é4004

L O O 0 2 > O

23

There are two conflicts in the grammar which under the new defini-

tions will be changed to the = relation. Examining a typical

string, L;[[L;[L]];L] we note that the reducible string [L] comes

up whenever it appears since [=L=].1 [L will come up iff [L; is

in the string since ; is the only symbol S such that L > S. By

the same reasoning, L] appears iff ;L] was in the string.

The new set of productions is:

A a B;B B«~ L

B-o[L] [B-v[L

B-o[A] B]-oL]

and the parse of the sentential form [LgL];L is as follows:

<[=L>;L];L [B ~ [L

<[B=;<L=]>;L B] .. L]

<[B=;=B>],L A a B;B

<[=A=]>;L B .. [A]

<B=y<L> B 4 L

<B=;=B> A » B;B

<A>

3.2 The Formal Mechanism

Theorem 3.1

Let aNb be a SF

Let N a n

Let b"= b

Let anb' be a SF

then, if the grammar is unambiguous, aNb' is a SF.

The only relation between] and any symbol is the > relation and

the only relation between any symbol and [is the < relation.

24

2502::

First, since aNb is a SF, then anb is also and any

derivation sequence which is used to derive anb must contain

N a n by the definition of unambiguity.

0'; aNb fl anb

11

2 anb' = anb

The derivation sequence of b' =Ib must be included in 1 since it

was used in 3 to derive the same string. Then, if in l, we remove

the proper subsequence which corresponds to 3, the result must be

the derivation of aNb'.

Theorem 3.2

Let nb be a SF

s

Let n

Let b E cde such that Eb< 3 > e

Then there exists a d' such that d' E d and a SF nb' such

that b' E cd'e.

2222::

Since each element of the string d is equal to the next,

there are, in reality, 3 possible relations between the elements

of the string. Therefore, there are, at most, 3‘dl possible ways

that d can be factored and at least one of these is correct for

this SF form. Let R1 6 {<, E, >}. There exists one and only one

sequence of R's for the given SF such that R0 D1 R1 D2 RN-l D

is correct. We locate the smallest i such that Ri E >. Clearly,

there always exists an i for which this is true. Then we find

the largest j less than i such that R E <. Then for all k,

J

j less than k less than i, Rk E 5' which implies that Dj ... Di

N RN

25

is an alternative of some non-terminal symbol Q. Then

d'=D ...D_1QDi...D and the SF nb' exists. Q. E. D.
l j N

Given the SF aNb such that E, a s N and that N e n,

we would next like to consider under what conditions a context

sensitive production is needed to reduce the SF anb. Clearly,

if the grammar is SP, then n > b and there is no need to use

a CSP. However, under the new definitions for simple precedence,

hereafter referred to as ESP, four additional cases arise.

Case I a<< n, n = b

If b is of the form cd with the pr0perties Z and

c > d then by adding the CSP, Ncba nc, the proper reduction can

be made. If b cannot be factored into the above form, it must

be of the form E > d for some c and d. Then, by Theorem 3.1

there exists a SF anb' and by Theorem 3.2 a SF aNb', which

will delay the finding of the proper CSP until the sentential

forms anb' and aNb' are examined.

Case II a = n, n > b

From the hypothesis a can be factored into ef such that

E < f and the CSP fN a fn can be used to find the proper reduc-

tion.

Case III a = n, n = b

This is a combination of Cases I and II. If as in Case I

b E : > d then the CSP ch # fnc can be used to find the proper

reduction. If, on the other hand, b cannot be factored, then as

in Case I, there exists a SF anb', and the CSP will be found when

the SF aNb' is examined.

26

Case IV a s n, n < b

In this case no reduction can be made. But, by Theorem 3.1

there exists a SF anb' and by Theorem 3.2 a SP aNb', which will

delay the finding of the prOper CSP until the sentential forms

anb' and aNb' are.examined.

The new definitions would be of little use if the entire

sentential form had to be examined in order to decide what CSP was

to be applied. Therefore, we will define an entity called a phrase

which will contain sufficient information for the decision.

Define a phrase as any sub-string of a SF for which the

following prOperties are true.

Definition 3.2

If abc is a SF and

l. a < b

2. b > c

3. S

then b is a phrase.

Now, if it is the case that all phrases are known together

with the CSP's which reduce them, then the algorithm for parsing

is identical with the algorithm for parsing simple precedence. To

this end, we would next like to consider a method for determining

the phrases of a grammar.

Lemma 3.1

If for some symbol pair (A,B) A = B then X, X E HS(B),

A -,> x

27

Proof:

It is sufficient to prove that (6H) -.& = 0

Expanding the above

(E + L . G1) H . (G.E°.LC) 0

(EH) . c - EC . LC) + (L . G1)HtG-EC-LC) = 0

and since EH = L

(EH-G°EC-Lc) = 0

Assume (L-Gl)H)-G°EC.LC) 1‘ 0

then there exist I,J,K, and L such that

L(1,K)Gl(1,K)H(K,J)G(I,J)E°(1,J)L°(i,J) = 1

But L(J,K)H(K,J) implies L(I,J) which

contradicts LC(I,J). Therefore

(610%?! = 0

Lemma 3.2

If for some symbol pair (A,B), A = B then X, X E TS(A),

X —1< B

2.22.:

It is sufficient to show that (T'6) .1”, = 0

Expanding the above we get

T'(E+L'G1)- (DEC-GE) = 0

((T'E)-IrEc-G(1:) + ((T'(L-Gl))-IrEc-G:) = 0

but T'E = C1 therefore

((T'E)-L-Ec-Gi) = 0

Assume (T'(L- Gl))-L-EcoG: ’5 0

then there exists an I,J,K, and L such that

T(K,I)L(K,J)GI(K,J)L(I,J)EC(I,J)Gi(l,J)GI(K,J) = 1. This

implies there exists an M such that T(M,K)E(M,J)

28

T(M,K)T(K,I) implies T(M,I)

and T (M,I)E (M,J) implies G1(I ,J)

But G1(I,J) and G:(I,J) is a contradiction,

therefore (T'6) sf, = O

Lamina 3.3

If for some symbol pair (A,B) A.< B then X, X E HS(B),

A -1> X

see

It is sufficient to prove that (ea-0'19 = 0

Expanding the above we get ((L°EC°G:)H)'G-EC-LC = 0

Assume ((LoEciG:)H)°G'Ec9LC f 0

then there exists an I,J, and K such that

L(I,K)EC(I,K)G(I,K)H(K,J)G(I,J)EC(I,J)LC(I,J)

but L(I,K)H(K,J) implies L(I,J) which contradicts LC(IaJ).

Q. E. D.

3.3 Generating Strings

Definition 3.3

Define the 3 Link matrices as follows:

Let x e TS(VI), Y 6 HSO/J)

Q1(I,J) 1 if X=Y

Q2(I,J) 1 if VI = Y

Q3(I,J) = 1 if X = VJ

or equivalently in matrix notation

Q1 = T6H'

Qz=w'

Q3 =Te'

29

lemma 3.4

and H

If a grammar G is SP then (Q1 +Q2 +Q3)°(=E+& + 6) = 0

3.9.9.2:

Let TR and HR represent the reflexive closure of T

respectively.

G and (SEESince G is SP, is L, .8

and (Q1 +Q2 +03) = TREH' + TE

(L + c + E) = '11?an

assume (TREH' + TE)°(TI'{EH) 7‘ 0

then there exists an I,J,K,L,M and N such that one of the

following is true.

1) TR(K,I)E(K,L)HR(L,J)TR(I,M)E(M,N)H(J,N)

2) TR(K,J)E(K,L)HR(L,J)T(I,M)E(M,J)

If number 1 is true then TR(K,I) and T(I,M) imply

TR(K,M). HR(L,J) and H(J,N) imply HR(L,N).

TR(K,M)E(K,L)HR{L,N) implies there is a relation between

M and N. But E(M,N) implies V E V which forces
M N

K E M and L E N. Then rewriting l we get

TRm.J)ECM,N)HR(N ,J)TR(I .M)H(J .11}

but HR(N,J)H(J,N) implies H(N,N)

and E(M,N)HCN,N) implies V <V which will contradict
M N

E(M,N).

Therefore, 1 is false.

If 2 is true then TR(K,I) and T(I,M) implies TR(K,M).

TR(K,M)E(K.L)HR(L,J) implies there exists a relation

between VM and V . But E(M,J) implies V =V

J M J

therefore K E M and L E J. Then rewriting 2 we get

3O

TRCM,I)E(M,L)HR(J,J)T(I,M)E(M,J).

But TRfM,I) and T(I,M) implies T(M,M). T(M,M) and

E(M,J) implies VM >'VJ which contradicts with VM = VJ.

Therefore 2 is false.

Q. E. D.

Intuitively the Q matrices predict when there exists a

derivation on a symbol which will link to its context though

the equals relation.

Given a string c of length K, we define two sequences

<D> and <M> each consisting of the K elements D1,D2,...,DK

and M1,M2,...,MK’ respectively. We define the relation R on

these two sequences as follows:

1. DiRDi-l if Ci-l = C1

2' Mi 1-1 if Q2(Ci-1’Ci)

3. MiRMi-l if Q1(Ci-1’Ci)

4' DiRMi-l if Q3(Ci-l’ci)

Letting RT be the transitive closure of R, we define

linked strings as follows:

Definition 3.4

c is a (M,M) linked string if 1~H(RTM1

c is a (M,D) linked strig if DKRT M1

c is a (D,M) linked string, if MK.RT D1

c is a (D,D) linked string, if DK RT D1

31

Example 3.2 Finding Linked Strings

For the string a = A1A2A3A4

GRAPH OF THE RELATION R

the following are linked strings

STRING TYPE

1121314 (M,D). (D,D). (M,M)

A1A2A3 (D,M): (D,D)

Definition 3.5

A string ch is said to be a generating string, GS(X),

with distinguished non-terminal X if the string has all of the

following properties.

Let: |c| E I, |d| EJ

1. E

2. At least one of the following is true:

a. c is a (D,M) or (M,M) linked string and Q1(CI,X)

b. c is a (D,D) or (M,D) linked string and Q2(CI,X)

32

3. At least one of the following is true:

a. Q3(X,D1) and d

b. J E 2 and Dl,< D2

c. J E O

4. S X

C1

Definition 3.6

We define a generator as an ordered pair (x,N) where x

is a generating string and N is the distance to the distinguished

non-terminal when measured from the right hand end of the string.

If (ch,K) is a generator we can produce a new set of

generators by applying to the distinguished non-terminal X all

of its alternatives. For each alternative, say X A b, we examine

the string cbd for new generators. First, since ch was a

CS, by Lemma 3.1 cb has the property E S E. Now for each non-

terminal 2 in cb, factor cb into rZs and examine the string

rZ ad for GS(Z). Since, in the definition of a G8, the strings

to the left and the right of the distinguished non-terminal have

to satisfy disjoint requirements, we will examine each side

separately.

For the left side, we will factor r in two ways

II
!

II
I

r tu ‘u‘ I

II
I

II
I

r 1n ‘n‘ J

where u is the longest of (M,D) or (D,D) linked strings and

n is the longest of (M,M) or (D,M) linked strings. Then there

are four possible cases for the left side.

case I: Q2(UI,Z)—IQ1(NJ.Z)

Then the left hand side is uz since this satisfies re-

quirement 2.b in definition 3.5.

33

Case II: —1Q2(UI,Z) QICNJ,Z)

Then the left side is nZ since this satisfies requirement

2.a in definition 3.5.

Case III: Q2(UI,Z) Q1(NJ,Z)

Then, if I is greater than J, the left hand side is uZ

as in Case I.

If I is less than J then the left side is nZ as in Case II.

If I E J then u E n and the left side is nZ which is equi-

valent to uZ.

Case IV: —1Q2(UI,Z) —1Q1(NJ,Z)

Then the left side is just Z which satisfies 2.c in the

definition 3.5.

For the right side we factor sd as follows:

sd E ef E p ‘e‘ E I

where g > f

There are two possible cases for the right side.

Case I: I is greater than 0 and Q3(Z,e1)

Then the right side is e which satisfies 3.a of definition

3.5.

Case II: —1Q3(Z,e1) or I E 0

If 2 = P1, then the right side is A.

If 2 # P1, then the right side is 911.

Then the constructed string satisfies the requirements of a CS.

The set of generators for a grammar is defined to be the

set of all generators that can be derived from (0,1) where o

is the goal of the grammar.

34

In each step of the analysis the precedence analyzer will

return a phrase for reduction. In each case we know that the

string to the left of the phrase has the property s and that

the next reduction must be based solely on the phrase presented.

A GS is used to predict in which context a production may

become context sensitive by supplying a string which may be the

result of a reduction of a phrase. For a given GS, say ch and

a production B ~»b, we try to determine whether a phrase will

exist in the string abc. The same cases will arise that arose

when we considered the sentential forms.

Case I: a < b, b = c

From the definition of a CS, c may have one of two forms.

Form 1: 3

Then the CSP is Bc 4 be since by the construction of the

GS we know that c> the context in which the CS was derived.

Form 2: c E ClCZ’ C1 < C2

The only way in which this case could arise is when, in

the formation of the GS, the right side could not be factored into

some string ef such that g > f. It was Specifically for this

purpose that C1 and C2 were placed in the GS as such. Intu-

itively, what we are saying is that it is not possible for a

reduction to take place on this string because it is not a phrase.

However, this GS is still to be included in this set because of

the 68's which may be derived from it. Also, it is not necessarily

the case that all the tail symbols of the distinguished non-terminal

will be equal to C1. Therefore, C also keeps track of the

1

context in which case a tail symbol of the distinguished non-terminal

35

can appear so that if the tail symbol is > C the production
1

will be found.

Case II: a = b, n > b

In this case a production is always found, since by defini-

tion a is always factorable into some ef such that E < f

and the CSP is just fB d fb.

Case III: a = b, b = c

This is just a combination of Cases I and II. If a reduc-

tion exists for the right side, the CSP would be ch1~ fbc.

Otherwise, there is no reduction for the same reason given in

Case I.

Case IV: a s b, b < c

Clearly, in this case there are no reductions since there

exists no phrase in this context which contains b.

One can now see that the method for finding CSP'S is already

embedded in the process of determining the 68's and, therefore,

one can combine them into a simple algorithm.

Starting with the starting type of a grammar, we obtain

a set of generators and a corresponding set of CSP'S. The car-

dinality of these sets is not necessarily finite. However, at

this point, we will only consider the cases of finite cardinality

and investigate the infinite case in the next chapter.

Now we will examine, in more detail, a single step in the

algorithm. Given a GS(B) of the form ch with :, we will examine

all the possibilities that will arise and show that the algorithm

is complete.

36

First, we note that the only way in which c can be c

is if the GS from which this CS was derived had on the right side

of its non-terminal B, a string which was of the form cd and

that there exists a tail symbol of B, say X, such that X = c.

But, clearly, not all the tail symbols of B are necessarily

related to c by the = relation, so that two other cases are

possible.

Case I: X > c

In this case, the context of c is not needed for the

reduction but is necessary for establishing the existence of the

reduction.

Case II: X < c

This case can only arise if B E c by Lemma 3.2. In this

case, c is to be reduced since it is a phrase. But since c is

a phrase, it must contain as a sub-string, at least one right side

of some reduction. And since c is a sub-string in a CS, it

must have been derived from some mapping on some distinguished

non-terminal of some GS. Therefore, there exists a CS which will

produce a string c when its distinguished non-terminal is mapped

and the prOper reduction will be found.

Now we will examine the other side. From Lemma's 3.1 and

3.3 we know that a.< X or a = X for each X a head symbol of

B since by the definition of a CS, a S B. Therefore, either there

is or is not a left context, but it is never the case that a > X.

We also note that if there is a left context, then the production

thus found cannot be applied in this context without its left

context since, by Lemma 3.3, all the tail symbols of the right-most

37

symbol of the left context cannot be > the head symbol, X, of B

for which a = X.

In the 68's, we have examined all the contexts in which a

non-terminal can find itself in a sentential form and eliminated

only those contexts where the precedence relations were such that

they could not become part of a phrase. Therefore, if there are a

finite number of GS's, then there are a finite number of produc-

tions and they will be enumerated by the algorithm.

Before discussing the case of an infinite set of 68's, the

same example which was done earlier in this chapter will be used

to demonstrate the algorithm.

Example 3.3

ESP precedence matrix

Ar'B,B ABEJSL

B—v[A] AOOO=OO

3-o[L] 3000>=0

B-oL [=<<00=

]000>>0

,O=<00<

L000=>O

Q1 Q2 Q3

AB[],L ABE].L ABE].L

AOOOOOO AOOOOOO AOOOllO

3000000 3000000 3000100

[000000 [110000 [000000

]000000]000000]000000

, O 0 0 O O O , 1 O 0 O O 0 , O O 0 O O O

LOOOOOO L000000 LOOOOOO

GS MAPPINGS CSP

A 1 3,3 A—+B,B

3 1 [A].IL].L B~IAI

[A12 [3.3] BELL]

B] 2 £A11.[L11.L1 B~L
[3 1 [TA].I[L].IL B]~L]

EB~EL

CHAPTER IV

Infinite Strings and Equal Right Sides

In chapter III the concepts of ESP were introduced together

with a method for generating the CSP's necessary for the proper

operation of the precedence analyzer. It was stated that it is not

necessarily the case that the set of CSP's, thus derived, will be

finite. Therefore, we would next like to investigate the case of

the infinite CSP's leaving the problem of equal right sides to the

latter sections of this chapter.

4.1 Infinite Context Sensitive Productions

Infinite CSP arise in one of three ways. If there exists

a derivation of the form 'A E bAc,

Then,

Case I: E = b ahd : or c E c

Case II: E = c and E or b E b

Case III: : = c and E = b

In case I, the set of allowable phrases will contain

db*bAe where d and e are part of the context in which A may

appear. A similar set exists for the other cases.

Definition 4.1 A symbol, P, is said to have an LL bound, K, if

for every phrase which starts with P, there exists a reduction

within K symbols to the right of P.

38

Qfiilfl

for e

withi

93:13

for 6

with

Piél

for

with

aPPE

dist

19mg

whe

in

and

of

do

f0

39

Definition 4.2 A symbol P is said to have an LR bound, K, if

for every phrase which starts with P, there exists a reduction

within K symbols to the left of the right hand end of the phrase.

Definition 4.3 A symbol P is said to have an RR bound, K, if

for every phrase which ends with P, there exists a reduction

within K symbols to the left of P.

Definition 4.4 A symbol P is said to have an RL bound, K, if

for every phrase which ends with P, there exists a reduction

within K symbols to the right of the left hand end of the phrase.

Given phrases generated by either Case I or Case II, it is

apparent that the reduction to be made always lies a finite fixed

distance from one boundary of the phrase. For each phrase p of

length K, we define a six-tuple,

<LL,LR,RR,RL,P1,PK>

where LL,LR, RR, and RL are the values of the bounds defined

in definitions 4.1 through 4.4 and P1 and PK are the first

and last symbols of the phrase p. For each given finite set of

CSP's, there exists a maximum LL,LR,RR and RL for each symbol

in the grammar.

Definition 4.5 The dominant bound of a production is the smallest

of the four bounds (LL,LR,RR,RL) of a production.

The bounds associated with each symbol are the maximum

dominant bounds for that symbol. They can be easily found as

follows:

1. For each six—tuple defined above, we construct four

3-tuples <B,V,S>. 'Where B is the type of the bound

(LL,LR,RR,RL), V is its value and S is the associated

symbol.

does

cess

than

WhEn

far

Sub.

Stri

-
a
”

_
:
'
:
:
“
a

-
_
[
"
.
.
-
l

"

4O

Construct one 3-tuple for the dominant bound,

if more than one is dominant, construct one for

each such dominant bound.

b. Construct one 3-tuple for each of the remaining

bounds with a value one greater than the dominant

I value.

2. For each symbol and bound type, there exists a maximum

value V, which is the maximum bound for that symbol and

bound type.

3. Replace the bounds in each six-tuple by the correSpond-

ing maximum bound if the current bound is less than the

maximum.

The above process is repeated until a set of maximum bounds

does not change for two consecutive iterations. Clearly the pro-

cess must halt since the size of the bounds cannot become greater

than the largest original bound in the set.

The bounds, thus found, are used by the parsing algorithm

Vohenever a phrase is found. The analyzer finds the minimum bound

fer the given end symbols and then tries to match the indicated

Sub-string of the phrase to the CSP set. In thiS‘way, infinite

strings of Case I and Case II are easily handled.

Example 4.1 Consider the simple grammar:

S a AS

S a AA

In this grammar, A is both < A and =A.

Under the formation rules of ESP, this conflict is resolved

by making the relation between the A's equal. But there exists the

following two sentential forms, A*S

infinite set of productions.

41

and A*AA, which imply an

If we generate the ESP CSP's for

all strings of length less than or equal to 4, we get the follow-

ing set of productions and bounds:

S AA <2,2,2,2,A,A> <LL,2,A> <LR,2,A> <RR,2,A> <RL

AS AAA <3,2,2,3,A,A> <LL,3,A> <LR,2,A> <RR,2,A> <RL

AAS AAAA <4,2,2,3,A,A> <LL,4,A> <LR,2,A> <RR,2,A> <RL,

S AS <2,2,2,2,A,S> <LL,2,A> <LR,2,A> <RR,2,S> <RL 2 s>

AS AAS <3,2,2,3,A,S> <LL,3,A> <LR,2,A> <RR,2,S> <RL 3 S>

AAS AAAS <4,2,2,3,A,S> <LL,4,A> <LR,2,A> <RR,2,S> <RL 4

Maximum Bounds

LL LR RR RL

A 3 2 2 3

S 3 2 2 3

New six tuples

<3,2,2,3,A,A> <LL,3,A> <LR,2,A> <RL,2,A> <R

<3,2,2,3,A,A> <LL,3,A> <LR,2,A> <RL,2,A> <R

<4,2,2,3,A,A> <LL,3,A> <LR,2,A> <RL,2,A> <3

<3,2,2,3,A,S> <LL,3,A> <LR,2,A> <RL,2,S> <RL,

<3,2,2,3,A,S> <LL,3,A> <LR,2,A> <RL,2,S> <RL 3 S>

<4,2,2,3,A,S> <LL,3,A> <LR,2,A> <RL,2,S> <RL 3 S>

Theorem 4.1

Let K be the length of the longest CSP in the set which

contains all the finite CSP's and at least one representative of

each potentially infinite CSP and let S denote the set of all

K

CSP's of length less than or equal to K. Then, if the set of

bounds for the set S is the same as the set of bounds for the

K

set S , where M is the maximum bound in the set SKKfiM , then

the set of bounds for the set S is sufficient for the set of

K

infinite CSP's.

4.2

Proof:

Assume Case I. Then by the hypothesis there exists an N such that

1 +J N+J+1
IabNd|§K<IabN+d|§|abNd §K+M< ab d

since lb I E M . If there exists a RR or LR bound for abNd in SK it must

be equal to IleI + C, where C is a constant. But this is a sufficient

bound for the entire set of CSP's of the form ab*d and therefore it will

remain unchanged in the set SK+M .

If on the other hand a LL or RL bound was the dominant bound for

the phrase abNd in the set Sk then the maximum bound M must satisfy

the following for some I.

N+I N+I+1

abd§M<ab d]

2N+I . .
But ab d is in the set SK+M which would imply that the dominant bound

for ab2N+Id is greater then or eQual to I ab2N+I which is greater than

the maximum bound M in SK . Therefore the set of bounds for the two sets

SK and SK+M could not be the same.

A similar proof can be used for Case II.

Clearly Case III can't be effectively handled by using bounds and

therefore it is only necessary to show that if a Case III phrase exists

then the set of bounds for the sets SK and SK+M must not be the same.

If there exists a Case III phrase then by the hypothesis there

exists an N such that

N+l N+1 N+J N+J N+J+l N+J+1

c e] c e ab cd e|schdNe| .5. K < |sb d :a: lab d é K+M <

since Ichle E M. Then the maximum bound M must satisfy the following

for some I.

le+chN+Il g M <: bN+I+lch+I+1

But this implies that ab2N+ch2N+Ie is an element of the set S

K+M °

43

2N+l 2N+1

c eThe dominant bound for ab d is greater than the maximum

bound for the set SK and therefore the set of bounds for SK and

SK+M cannot be the same.

4.2 A Canonical Form

Even if a grammar exhibits only strings of Case I and Case 11,

there is no guarantee that the set of bounds will exist since the

strings may start and end with the same symbol. For example, if

Xbc*dY and le*nY were phrases of Cases I and II respectively,

then the LL bound of X would be fixed for Case I and potentially

infinite for Case 11. Therefore, we would next like to consider a

canonical form for a grammar for which, at most, only phrases of

Case I may arise. If each production of the grammar is of the form

A-obC bEOl-Z)* C62

then the following matrices arise.

E-"E E" H"rH Hj T- 0 TI'
' . 11 12. i 11 12I 12

[0 0 ; ,0 0 ,1 0 0 ,

= f' = r O F

L [Eu H11 E11 “12] G I O

[I . I

. I

I - . . -

0 O ' [T12 E11(H11 + U) T12(E11 H12 + E12)

From the above some elementary properties are easily obtained.

Property 1. There are no > conflicts

Property 2. The right end of every phrase is known

44

Properuy 3. The parse of any string is an LRCP.

Property 4. At most only Case I phrases exist.

Property 5. There always exists a set of bounds.

The above form always exists for any grammar since this is

just the reverse of Griebach Normal Form [Gr 65].

Several authors have pointed out that a sufficient condition

for parsing a grammar in Griebach Normal Form by a top-down method

is that each alternative of a given definition starts with a unique

terminal symbol. This method is based upon the fact that if a non-

terminal is to be replaced by one of its alternatives, one need

only look one symbol ahead on the input string to uniquely determine

which alternative to apply. In these grammars, there may be many

productions which have equal right sides, but, in a sense, only a

small subset of the productions can be applied at a given time.

Therefore, the restriction for the given subset, that the pro-

ductions be unique, reduces for top-down parsing to the case of

unique starting terminal symbols within the alternatives of the

definition. It would be convenient to have a similar set of sub-

sets of productions for bottom-up parsing. Taking advantage of

the LRCP of the canonical form, we will next investigate such a

procedure.

Definition 4.6 The production grammar GP of a grammar G is

defined as follows: C =1<V,2,P,o> GP =I<V',Z',P',o>. Let 1

denote theindfiiproduction in P and let 2' = {i‘i E 1,2,....#P}

and let v' E [v - 2} U {2'}.

.-th "" so.For each production in P, say thel. R W121W222 WKZK

where Wj E 2* and Zj E (V - 2)* define a corresponding pro-

d ti f P' .. .uc on or , R 2122 ZKi

45

Now for each production in P, there is a correSponding pro-

duction in P' which has the same non-terminal symbols in the

same order and a single terminal symbol at the right end which

represents the production number in P.

Theorem 4.2

The language generated by a production grammar is the set

of allowable LRCP's for the grammar.

3:22:

Clearly, the language generated bythe production grammar

contains only production numbers since these are the only terminal

symbols in the grammar. If one starts to derive an SF in GP

using an RMD, then at any point in the derivation, the SF will

have the form zAb where z E (V' - Z')*, A E (V' - 2') and

b 6 (2')*. Now, whenever a production is applied to an SF, using

an RMD on a production grammar, its production number is recorded

immediately to the right of its application and immediately to the

left of the most recent previous application. Therefore, the string

generated by the RMD is just the reverse of the application of the

productions in the RMD. But an LRCP is juSt the reverse of an RMD

and, since there exists an RMD for every string in the language,

then the language generated by the production grammar is the set

of LRCP'S.

Theorem 4.3

The set of LRCP's of a grammar G and its production grammar

are the same. Given any RMD, at any point in the derivation, the

number and order of the non-terminals in the SF's of the two

46

grammars are the same. This is evident from the construction of

the production grammar. Now, since the right-most non-terminal in

each of the two SF's is the same, if correSponding productions are

applied to this non-terminal in each of the reSpective SF's, the

resulting SF's are still identical with reSpect to non-terminal

symbols. Therefore, for every derivation in G, there exists a

correSponding derivation in GP and visa versa.

Q. E. D.

It was noted in Chapter II that the only way a symbol B

could appear immediately to the right of a symbol A was if

A‘<, = or >'B . Therefore, if the precedence relations are

known for the terminal symbols of a production grammar, then given

any production, the set of production which may legally follow it

in an LRCP are given by these relations. Since the form of the

production grammar is identical with the canonical form described

above, the relation matrix N for the production set is just

N = T12 (E11 H12 + E12). The restriction on equal right sides

can now be relaxed by only requiring productions within any given

subset to be unique. Clearly, this technique can be used for any

bottom-up method which is governed by an LRCP. As an example, a

precedence grammar, with equal right sides, will use the above

technique to resolve this problem.

Example 4.2

l S a LED

4 M.~ D

7 T * ATB

Production Grammar

l S d LRl

4 Min 4

7 T * T7

Precedence Matrix for G

I
:
c
o
t
fl
:
>
t
e
i
fl
i
i
t
~
c
n

c
>
c
>
c
>
c
>
c
>
c
>
c
>
c
>
c
>
a
a

c
>
c
>
c
>
c
>
c
>
c
>
c
>
c
>
c
>
r
*

c
>
c
>
c
>
c
>
c
>
c
>
c
>
c
>
c
>
z

C
I
V
I
C

u
<
=
<
3
<
D
I
I
c
>
z
i

V
0
0
"
0
0

"
C
O
T
-
J

v
v
c
>
A
c
>
c
>
A
A

c
>
>
h

O
O
V

II
II
n
o
o
o
w

47

2 S E'MTC

5 R a ARB

8 T a AB

2 S EIMTZ

5 R.* R5

8 T a 8

The N

C D l

O 0 l O

0 O 2 0

O O 3 0

O = 4 O

= O S l

O O 6 l

> > 7 O

O O 8 O

0 0

Matrix for G

H
H
O
O
O
O
O
O
N

O
O
O
O
O
O
O
O
U

O
O
O
O
O
O
O
O
L
‘

O
O
H
t
—
‘
O
O
O
O
U
I

C
O
O
O
O
I
—
‘
O
O
O
‘

H
t
—
‘
O
O
O
O
O
O
N

O
O
O
O
H
O
O
O
Q

Clearly the first applicable production must be a head symbol

of the starting type in the production grammar.

grammar it must be either production 3 or 4.

For this particular

The parse of a string in the language would proceed as follows:

DAAABBBC

<D>AAABBBC

<M<A<A<A=B>BBC

<M<A<A=T=B>BC

<M<A=TEB>C

<M=T=C>

S

Production to be applied

4

8

7

7

2

Allowable successors

8

2,7

2,7

2,7

48

4.3 Equal Right Sides and Bounded Context Grammars

Floyd [Fl 64] introduced the concept of bounded context analysis.

This is another convenient method for handling equal right sides in

ESP. If there exists a context of finite length, for which the

decision can be made as to which production is to be applied, then

if this context can be forced to appear with the phrase, the correct

reduction can easily be found. But clearly, the mechanism for

examining this extended context is already available in ESP. One

need only change the apprOpriate relations to = in order to extend

the contexts. In so doing, additional CSP's will be created which

will perform the same function as Floyd's Bounded Context Pro-

ductions. To illustrate this technique, we will examine another

precedence grammar which contains equal right sides.

Example 4.3

S * CR T 4 MTNB

S a DT T a MNB

R,* LRB M m A

R'* 13 N m B

L m A

The bounded context reductionsneeded to decide whether to apply

I.~ A or M ~ A when an A is found are:

LA use L d A

CA use L‘e A

DA use M ~ A

MA use M d L

The precedence matrix with the forced equalities circled is:

S R T M_ L N A B C D

S

R =

T - <

M = < -' G9 <:

L = < (E) =

N =

A «E be > > > > >

B > >

C = < I:

D = < ’)

The

Th1

ESP, are

free gra

grammar

49

The four CPS's added to the production set are:

MM d’MA CLH CA

LL'~ LA DMIE DA

The techniques discussed in this chapter, when combined with

ESP, create a powerful method for deterministic parsing of context-

free grammars. Some of timzmore interesting ramifications of ESP

grammars will be discussed in the next chapter.

CHAPTER V

LR(k) Grammars and their Relation to ESP Grammars

In this chapter we will show how ESP compares with other

techniques for deterministic parsing of context free languages.

5.1 LR(k) Grammars

Knuth [Kn 63] defines a grammar to be LR(k) if a phrase x

is uniquely determined by the entire string y to the left of the

phrase x and k terminal symbols to the right of the phrase x.

Both Floyd [Fl 68] and Tixier [Ti 67] consider LR(k) grammars

to be the most general form for which there exists a constructable

algorithm for an LRCP which is derived directly from the grammar.

This method always results in a LRCP.

Lemma 5.1

There exist grammars which are not LR(k) for any k but

which are ESP.

Consider the following grammar:

EBC

ABD

A

(B)

L0
3
0
5
1
1
1
0
3
0
:

1
1

1
1

1

This grammar is not LR(k) for any k since one cannot tell

whether the phrase A should be reduced to E or not by simply

looking at a finite number of terminal symbols to the right of A.

50

The key it

3151: be I)

this gran

The Cir

which 1

with

aPPrOp

of the

if bc

The key to the problem is that C or D, upon which the solution

must be based, can be an unbounded number of Symbols away. But

this grammar is ESP:

csp SBE()LACD

S-vABD S

34330 3 = ==

EBC a ABC E - < <

B-'(B) (< <

B a L) > > >

L > >>

A @- Q <.-

The circled relations represent conflicts in the original grammar

which were removed using ESP. Now the decision of what to do

with A is delayed until a C or D is found and then the

appropriate action is taken. Here we have also taken advantage

of the fact that the parse is not a LRCP.

Definition 5.1

A grammar G is said to be synonomous to a grammar G

1

if both of the following conditions hold:

2

1. Both G1 and G2 generate the same language.

2. If in each grammar the trivial productions of the form

X d Y are removed by substitution, then the two grammars

are isomorphic.

Example 5.1

GI S a AAB 62 S q RHQ

S d AS S * TS

S d AC S ~ RV

S a TC

R a A

T E A

Q a B

V m S

These two grammars are synonomous.

KnuI

andu 1

immee

with the

referred

this rig

Si

52

Knuth has shown that if a grammar is LR(k), then there exists

a right linear grammar which will generate a set of strings represent-

ing the entire string to the left of the right-most phrase together

with the phrase and k symbols to the left of the phrase, hereafter

referred to as a sentential head. The technique for constructing

this right linear grammar is as follows:

Given G = <V,Z‘.,P,o>,

construct: F =<V',2',P',o'>

where m = [PI

v' = {[z,a]lz e v, a 6 2K} u {[i]|i = 1...M}

2' = {V} U {$1

0' = [o,$]

P' is defined as follows:

For each production in P, say

A.X d ZX Zx ... Z , let

1 2 Xn

1. for each 2x 6 V - 2 add to P' a production of the form

1

[Ax,w] d ZX ...Zx [Zx,b] for each [A,w] and for each

1 i-l i

[Zx ,b] where b E {Z‘ZX. ...ZX w = Eq, ‘2‘ = K]

1 1+1 N

2. [A ,w] a Z Z ...Z w[X]

x x1 X2 "N

3. [x'j-oli

The w is defined to be any b that appears on the right

side with the corresponding AX.

53

Example 5.2

mm

1. S -* CT [s,$] 'I C[T9$]

[s,$] .. CT$[1]

2. s .. DR [s,$] - D[R,$]

[s,$] .. DR$[2]

3. T .. ATB [T,$] .. A[T,B]

[T.$] ~ ATB$E31

4. T .. AB [13.3] -» A[T,B]

[LB] - ATBBEBI

5. R .. ARBB [T.$] - AB$E4J

[LB] ~ ABB[4]

6. R .. A33 [R,$] - A[R,Be

[s,$] - ARBB$ 5]

[R,B] _. Amuse

[11,3] -» ARBBB 5

[R.$] -: ABB$[6]

[3,3] —. A333[6]

[I] -o A [4] -e A

[2] .. A [5] -. A

Definition 5.2

A finite state automata (FSA) is a 5-tuple A = <S,2,m,So,F>,

where S is a set of states

2 is a set of input symbols

S

m is a mapping of S X 2 into 2

So is the start state

F is a subset of S designated final states

The domain of m is extended to include strings of input symbols

as follows:

m(s,Ab) = m(m(s,A),b)

Definition 5.3

If the range of m is S instead of ZS then the FSA is

said to be deterministic (DFSA).

Definition 5.4

The set of strings excepted by a FSA is the set T(A)

T(A) = {2|n(so,z) c F}

That is

which I

that t

state

genera

contri

fitter

acce;

whet

IESU

fOry

ant

[1],"

54

Definition 5.5

A FSA is said to be input pure iff

a VX VI VY’VJ(m(X,I) E m(Y,J) implies I E J)

That is, for each state there exists one and only one input for

which the state is in the range of the m mapping.

Given any right linear grammar, Ginsberg [Gi 65] has shown

that there exists an effective procedure for finding a finite

state automata which will accept those and only those strings

generated by the right linear grammar. However, the automata thus

contrived is not necessarily deterministic.

Rabin and Scott [Ra 60] have proved that for each non-

deterministic automata there exists a deterministic automata which

accepts the same set of input strings.

Lemma 5.2

For each DFSA there exists an equivalent input pure DFSA.

Ems:

For each state Z we define K new states Z ,ZA A ,...,ZA

1 2 K

where K is the number of unique input symbols A1,...,AK which

result in transitions to Z. We replace each move function of the

form.‘M(L,A1) = z with the move function Ml(L,Ai) = ZA and

i

for each move function of the form M(Z,B) = P include

I _.._._ u .
M (ZAi,B) P. If Z 6 F add ZA.°°'ZAK to F . Now if

i

= v ' = d '
M(so,X) D then M (SO,X) DX an if D E F then Dx 6 F

by construction. Assuming that M(so,aX) ==Q, M'(so,aX) ==Q§

and M(Q,Y) = R, we precede by induction. By the induction

hypothesis M(so,aXY) = R and by the construction, if M(Q,Y) = R

55

then there exists M3(Qi,Y) = R; for all states Qi. In

I = 3 ' = '
particular M (QX,Y) 1%. Therefore, M (so,aXY) 1% and

REF then RéEF'.

Lemma 5.3

If a grammar is LR(K) there exists an input pure DFSA

which accepts those and only those strings which represent the

sentential heads of the grammar.

We would now like to construct a granniar which is synonomous

to the original LR(K) grammar. Let GS = <V',Z',P',o'> be the

new grammar and G = <V,Z,P,o> be the LR(K) grammar for which

A = <S,X,M,SO,F> is the input pure DFSA. Define V' = {V} U {S}

and 2' = 2. The production set P' is constructed as follows:

For each production in P, say Z ~ A1A2...AM, there exists

N

at least one production in the LR(k) right linear grammar of the

form

[zN ,w] .. AIAZ. . .AMBM+1. . .BM+K[N]

Then for each sequence d of length M+K which will, from some

state E, allow the automata to reach a final state NB , add

M+K

the following production to P'.

ZN 4'M(E,A1)M(E,A1A2)...M(E,A1A2...AN)

Since the automata is input pure each state represents one and

only one symbol from. V. By adding the following productions the

correSpondence between the states and the symbols in the automata

is put in the production form. For each move function of the form

M(Z,A) = X add the production A ~ X. Now each state represents

a single symbol and each production which contains states is clearly

56

reducible to the original production in G by substitution. And

since there exists at least one encoded (symbols replaced by states)

production for each production G the constructed grammar is

synonomous to the original grammar.

The precedence relations can be taken directly from the

automaton and the new grammar since the transitive closure type

operations are implicit in the automaton.

5.2 LR(l) Grammars

The synonomous grammar constructed from the automata is in

general ambiguous and contains several productions which have the

same right hand sides. However, the automata is deterministic

and therefore, for each input, there is only one transition possible.

Since the constructed grammar contains states of the automaton as

non-terminal symbols, we can use this information to guide the

precedence analyzer in choosing the proper production to apply.

That is, the last state entered contains all the information

necessary to determine the next State given any input. Since there

are no productions with equal right sides which contain states,

only the trivial productions need this consideration. The con-

struction of the precedence matrix directly from the automaton and

the non-trivial productions proceeds as follows:

The E matrix isobtained from the non-trivial productions of the

synonomous grammar together with the forced equalities which

uniquely determine which trivial production is to be applied.

Thus

a -O b

1 if V aVI VJ

or V--0VJ and M(VI,VJ) =V

E(I,J)

57

We note that the two conditions are disjoint, one dealing only

with relations between states and the other only between states

and inputs.

The L matrix reflects only relations between states and

is obtainedeirectly from the m function.

Thus

L(I,J) E 1 if m(VI,V) 5 VJ

The G matrix is just a relation between inputs since in

a LRCP only terminal strings can appear to the right of a pro-

duction and each production will have a terminal as its right

most symbol by the definition of LR(l).

Thus

G(I,J) E 1 if m(m(V,VI),VJ)

The matrices have the following form:

STATES INPUTS

E.=. rE 312‘ STATES LE 0 1
ll

1
"

.
3 C
) II
I

'
—
D

O

O[0 0 INPUTS I0 0]
- L G22.1

and therefore

6=E,=£=L-E°,.9=G

The Q matrix may be found in the usual manner.

In order to prove that the grammar just constructed is ESP

it is only necessary to Show that there exists bounds for each pro-

duction and that there are no equal right sides. If there were two

encoded productions which had the same right side, then the original

grammar could not have been LR(l) since the automaton ‘WOUld HOE

have been able to distinguish between these two productions either.

As for the trivial productions, since the'automatonis deterministic,

58

the last state entered must uniquely determine the next state for

a given input. Therefore, there are no equal right sides. Since

the length of each production is known and the right end of every

production is also known, i.e., there are no > conflicts, the

RR bound is just the longest production ending in each symbol and

this is always finite. In fact, the longest bound must be less

than or equal to the longest production in the grammar plus 1.

Theorem 5.4

If a grammar is LR(l) then there exists a synonomous

grammar G' which is an ESP grammar.

Knuth [Kn 64] has shown that if a language is deterministic

then there exists an LR(l) grammar which generates it.

Theorem 5.5

If L is a deterministic language then there exists an

ESP grammar which generates this language.

Example 5.3

l. S a ABC 2. B a ASS

3. BI~ DB 4. B E D

5. S-oDS 6. S-oD

This grammar is not a simple precedence grammar since there

are equal right sides and conflicts between B and C, and also be-

tween S and C. It is not bounded context since one must know how

many A's have been stacked in order to determine whether to use

B ~ D or S 41D. But it is LR(l), as illustrated below:

LR(l) right linear grammar

[s,$] - A[3,0] [3,0] - D[B,C]

[s,$] .. A30$[1] [3,0] .. 030D]

[s,c] .. A[3,0] [3,0] .. Dc[4]

[s,c] .. ABCC[1] [3,0] -. A[s,0]

[S.$] -° DIS.$] [3,0] -. Ascc[2]

[s,$] ~ DS$[5] [I] -+ A ~ [A] —~ A

[3,0] .. D[s,c] [2] .. A .. [5] _. A

[3,0] - Dsc[5] [3] .. A -. [6] -» A

59

C

B S S

o MSGB B

SYNONOMOUS GRAMMAR

F-oA N-o3 S—oJQR

G—oD o-s S-oFLM

I-I-D P-oc 3—o103

I-oA Q—+C B—oHN

J-+A R-oc N-+B

K—oD T—oS s-oc'r

L—oB U-S s-.1<v

M-oC G—aS

303033 EQUALITIES

FD,FA,FB ,GS ,GD ,GA,HD ,HA,1{B ,HC,IA,ID ,IS ,JB ,JD ,IA,KD ,KS ,KC ,KA,LC,

NC,OC,PC,QC,RC,VC.

Figure 5.1 Automaton for Example 5.3.

6O

ESP Productions

FIM d FLCHN fl HN

JQ d JB

JH d JD

F d A

IOP ~ IOCFI # FA

FL ~ FB JQR -0 JQC

SC d JQRC

BC * IOPC

S d FLM

SC ~ KUC

BC fl HNC

JI w JA

KK" KD

FH * FD

GF ~ GA

GG d GD

GT ~ GS

KJ d KA

KU ~ KS

HH ~ HD IO a IS

3 “ GT

S ~ G

IK H IDHI ~ HA

BC ~ BC IJ H IA

Precedence Matrix

n
o
n
.
)
>
.
U

a

n
u
:

n
v
n
v
=

n
.

.
A
=
.
U
.
U

=
.
U

M
u
n
v
n
v
n
v
n
v
n
v

=
=
>
0
0
0

3
0
0
:
0
:

=
0
0
=
0
=

0
0
0
0
0
0

U
O
O
O
O
O
O
O
O
O
O
O

1
“
:

n
v
n
v
n
u
n
v

m
.
n
v
n
v
n
v
=

n
u

K
A
U
A
U
n
u
n
u
n
v

p
n
n
v
n
v
n
v
n
v
n
v

r
u
n
v
n
v
n
v
n
v
n
u

n
x
n
v
n
v
n
v
n
v
n
u

T
.
(
‘
n
.
n
v
n
u
n
u

n
.
=

n
v
n
v
n
v
n
v

p
.
n
v
n
v
n
v
n
v
=

H
<
0
0
0
0

n
v
n
v
n
v
n
u
n
u
n
v

.
G
n
u
.
u
.
u
<
.
U

c
o
n
v
n
v
n
v
.

n
u

n
u
n
v
n
v
n
v
n
v
n
u

n
.
n
v
n
u
A
u
<
.
U

n
v
n
v
n
u
n
v
n
v
n
v

n
v
n
v
n
v
n
u
n
v
n
u

.
U
.
U
A
U
<
.
U
A
U

n
v
n
v
n
v
n
v
=

n
o

.
U
.
U
A
U
<
.
U
A
U

n
v
n
v
n
v
n
v
n
v
=

..
:
0
:

=
0

0
—
.
0
0
0
0

0
.
.
0
0
0
0

0
0
0
:
0
0

0
.
.
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
(
0
0
0
0

0
0
0
0
0
0

0
<
0
0
0
0

0
0
0
0
0
0

<
0
0
0
0
<
0
0
0
0
0
0

a
0
0
0
0
:

0
0
0
0
0
0

<
0
0
0
0
<

0
0
0
.
.
0
0

0
0
0
0
0
0

0
0
0
:
0
0

a
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
.
.
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

w
.
n
u
c
u
n
u
n
v
u
u
p
.
R
.
T
.
a
n
.
p
n
x
n
m
.
t
u
n
u
M
u

n
v
n
v
>

>
>
A
U

>
>
.
u

n
u
n
u
n
v

n
o
n
u
n
u

n
v
n
v
n
v

n
u
n
Y
O

n
o
n
u
n
v

n
u
n
v
n
v

n
o
n
u
n
u

n
v
n
v
n
v

n
v
n
v
n
u

n
u
n
v
n
v

n
v
n
v
n
v

n
o
n
u
n
u

n
v
n
v
n
v

n
v
n
v
n
v

>
>
.
U

n
v
n
v
n
v

n
v
n
v
n
v

A
D
C

Production usedAn example parse

<AADADCCC

<A>ADADCCC F d A

FI d FA<F=A>DADCCC

c
c
m

c
o
n

m
m

m
m
m
u
m
m
m
m
m
m
m
m
m
p
p

a
q

a
a

a
a

a
4

a
a

a
a

a
q

a

m
w
m
m
m
m
w
w
m
m
m
m
m
n
m
s

.
J

I
F

C
C
M

C
C

c
m
c
m
c
m
p

W
C
X
=
X

.
.
C
M

A
m
s
q
.
q
m
w
a
m
m
m

m
i
m
m
m
w
k
q
x
s
.
a
x
a
w

a
q
«
«
«
q
«
a
«
a
q
q
a
q
a

a
q
q
a
q
a
q
a
a
a
a
a
d
a
q

Lemma 5.4

61

Tnere exists a context sensitive language which has an ESP

grammar.

The grammar:

1 G -'R

2 R a AF

3 ARE —°AAFE

4 F$ a REC$

5 F$ * DC$

6 FE —.DE

7 FC d RECC

8 FC‘d DCC

9 DE -oDF

10 DRE -.DZE

11 DZ —~DR

12 R2 a RE

13 DC -oBC

14 DB * BB

ihis grammar generates

a context sensitive language.

N N N

generates

ESP productions:

R —~AF D a B

F ..REC F —»DC

F —~D G a R

E —.F R —.2

R2 —~RE D a R

The precedence matrix:

R F D E z A B C s

R O O O = > 0 0 O =

F 0 0 0 > 0 0 0 > >

D < <‘< >>< 0 < = o

E 0 0 0 > O 0 O = 0

Z O 0 O > O 0 0 0 O

A < = < 0 O < < 0 0

B 0 0 O O 0 0 > > 0

C 0 0 O 0 O 0 0 > >

$ = 0 0 0 0 < 0 0 0

SANBNCNS which has been shown to be

To show that the above grammar actually

$A B C $ for N 2 l we will examine a]-l sentential forms

in a general derivation together with the precedence relations.

Sentential Form

C

R

AF

$AREC$

$AAFEC$

$A.NFEN1CN1$

SANDEN1CN$1

$AWDKN-K-1$CN-1

Prod.

No.

€
>

0
‘

G
H
Q
-
fi
t
d
f
d

C
\

Prod.

No.

Resulting

Sentential Form

Resulting

Sentential Form

<$=R=$>

<$<A=F>$

<$<A<F=E=C>$ 5

<$<A<A=F>EC$

<$<A<A<D>EC$

<$<§N<D>EN—1CN-l$

<$<§N<D<$>EN'ZCN'1$

<N<K<D>EN-K-1Ch-l$

<$A<D=C>$

62

Sentential Form Prod. Resulting Prod. Resulting

No. Sentential Form No. Sentential Form

SAEDKEN-KCN-l$ 9 <$<ifi< K<E>EN-K-1CN-l$

SANDN-lEcN—1$ 9 <$<iN<BN-1<F>CN_1$

$ANDN-1FCN_1$ 7 <$<KN<I<)N-1<R=E=C>CN_1$ 8 < $<iN<I)N_ 1<D=C>CN— 1 $

$ANDN-1RECN$ 10 <$<iN<DN'1<z>ECNS

SANDKZEN'Kch 11 <$<EN<5K’1<R>ZEN‘KCN$

$ANDK’1RZEN'KCN3 12 <$<iN<fiK‘1<R=E>EN‘KCN$

$ANRENCN$ 3 <$<iN<A=F>ENcN$

$ANCNCN$ 13 <S<EN<DN-;CN$

$ANDKBN-KCN3 14 <$<iN<DK_;BN-KCN$

note that the only place in any derivation where there exists

a choice of productions is when either 4, 5 or 7, 8 can be applied.

If 5 or 8 is applied the size of N becomes fixed and the only

applicable productions are 13, 14 which convert D's to 3'5. Clearly

for each sentential form, the proper reduction is made by the pre—

cedence algorithm as demonstrated in the table. The only remaining

question is that the analyzer may also accept strings of the form

AIBJCK of ANBN-KCNBK. Examination of the precedence relations

between A,B and C shows that C's can only appear to the right of B's

and C's. Similar rules apply to both A and B so that the latter

problem does not exist. By examining the sentential forms we can

see that a precedence violation will occur with $ or the phrase R$

will come up with no reduction applicable in the former case.

Q. E. D.

5.3 Synonomous Grammar for LR(K) Grammars

To extend the concept of synonomous grammars to the general

case of LR(K) grammars requires only a change in the definition

of the set of productions used. That is, the automaton can be made

63

input pure and deterministic as shown in Lemma 5.3. However, since

tfimzautomaton,from which the productions are found, must look ahead

K symbol in order to determine if a reduction is to take place,

the first K-l symbols of the K symbol string are encoded as states.

But after the reduction is performed the states which represent the

encoding of the K-1 symbols have lost their value as states. That

is they are not necessarily related to the positions in the automaton

for which they were encoded.

This situation is easily rectified by replacing the right

context on the left hand side of each production with the original

terminal string. This can always be accomplished since the automaton

is input pure and therefore there exists a unique deviation from the

right context back to the original terminal string by the application

of K trivial productions.

For example if aSb a asb is a production and ‘bl = K then

the string B is a string of states and there exists182...BK_1

= B'B'... B' andtrivial productions such that B182...BK_1 l 2 K—l

Bi,

aSBlBé'°'BR-IBK.” aSb and the following theorem has been proved.

Theorem 5.6

Bé"'°’Bé—1 are terminal. Then the production to be used is just

For each LR(K) grammar there exist a synonomous ESP grammar.

CHAPTER VI

Conclusions

Section 6.1 gives a summary of the results of this disserta-

tion and section 6.2 describes some possible extensions.

6.1 Summary of Results

In chapter II we introduced the concept of precedence to—

gether with several extensions of the concept. Each of these exten—

sions increased the class of grammars which could be effectively

handled by either extending the definition of precedence or changing

the grammar. However none of these methods contain any mechanism

for handling the problem of equal right sides in the production

set. In this dissertation we have changed the definition of pre—

cedence to include such a mechanism through the use of bounded

context techniques [Fl 64].

Since the grammars which may be successfully handled by both

McKeeman's [Me 66] and Wirth and Weber's [Wi 66] extensions are

subsets of LR(K) [Ku 64] grammar, any prOperties of ESP which

are related to LR(K) are also related to these extensions.

To summarize, the following have been shown:

(1) Every deterministic language has an ESP grammar.

(2) Every LR(K) grammar has a synonomous grammar

which is ESP.

634

64

(3) There exist grammars which are not LR(K) for any

K but which are ESP.

(4) There exist context sensitive languages which are

ESP.

Although the above results are of theoretical significance

their practical value is marred by the large increase in non-

terminahsrequired for the synonomous grammar. However there do

exist many grammars which are not precedence under any of the

aforementioned formulations, but which can be effectively handled

by ESP without changing the grammar. The use of context sensitive

productions allows ESP to attack the equal right hand sides prob-

lem as part of its basic mechanism. This point is significant in

that no other precedence formulation can accomplish this directly

and in many such techniques it is completely ignored. Therefore

we feel that ESP is an effective technique for syntactic analysis.

6.2 Some Possible Extensions of ESP

The formulation of the precedence relations under ESP can

be applied to any method of precedence analysis. In particular,

the methods of Floyd [Fl 63] and Colmerauer [Co 68] can be easily

extended in this way.

Another interesting question involves the set of languages

accepted by deterministic linear bounded automata [My 60]. Several

languages from the above set have ESP grammars and we feel that

the mechanism of the analysis is sufficient to handle the entire

set although we have not been able to prove it.

65

Given a set of productions and a precedence matrix not

derived from the productions a third interesting problem can be

posed. Does this set define a language and if it does can a

grammar be constructed from the set so that it generates this

language? Again from the mechanism of the analyzer the class

of languages so defined would be larger than the class of con-

text free languages.

BIBLIOGRAPHY

[A1

[Ba

[Cd

[Ch

[Ch

[Co

[Ei

[Ei

[Fe

[F1

[F1

[Gi

[61

68]

64]

67]

64]

68]

67]

63]

64]

68]

63]

64]

62]

66]

BIBLIOGRAPHY

Alber, K., Oliva, P., Urachler, 6., Concrete Syntax of

PL/l, Technical Report No. TR25.084, IBM Laboratory

Veinna, Veinna, Austria, June 1968.

Bar-Hillel, Y., Language and Information, Addison-

Wesley Publishing Company, Inc., Reading, Mass., 1964.

A1G01.Generic Reference Manual, Publication No. 60214900,

Documentation Department, Control Data Corporation,

Palo Alto, Calif., 1967.

Cheatham, T.E., and Sattley, K., "Syntax Directed Com-

piling", Proc. AFIPS 1964 SJCC, Vol. 25, pp. 31-57.

, On the Generation and Implementation of Re-

duction Analysis Programs, CA-6804-0212, Computer

Associates, Inc., Wakefield, Mass., 1968.

Colmerauer, A., Precedence, Analyse Syntaxgque et

Languages de Programmation, Thesis, University of

Grenoble, Grenoble, France, 1967.

Eickel, J., Paul, M., Bauer, F.L., and Samelson, K.,

"A Syntax Controlled Generator of Formal Language

Processes". Comm. ACM, Vol. 6, pp. 451-455, August 1963.

, Generation of Parsing Algorithms for ChOmsky

Z-Type Languages. Mathematisches Institut der Techneschen

Hochschule, Munich, Germany, 1964.

Feldman, J. and Gries, D., "Translator Writing Systems,"

Comm. ACM, Vol. 11, pp. 77-113, February 1968.

Floyd, R.W., "Syntactic Analysis and Operator Pre-

cedence", J. ACM, Vol. 10, pp. 316-333, July 1963.

‘________’ "Bounded Context Syntactic Analysis",

EQEEL_A£!J V01- 10: PP. 62-67, February 1964.

Ginsberg, S., An Introduction to Mathematical Machine

Theory, Addison4Wesley Publishing Company, Inc.,

Reading, Mass., 1962.

, The Mathematical Theory of Context Free

Languages, McGraw—Hill, Inc., New York, 1966.

66

[Gr

[Gr

[Kn

[Ma

[MC

[Mi

[My

[Ra

[Sq

[Ti

[Wa

65]

68]

65]

68]

66]

68]

60]

59]

66]

67]

62]

66]

67

Greiback, S., "A New Normal Form.Theorem for Context

Free Phrase Structure Grammars", J. ACM, Vol. 12, pp.

42-52, January 1965.

Gries, D., "The Use of Transition Matrices in Compiling",

Comm. ACM, V01. 11, pp. 26-34, January 1968.

Knuth, D.E., "0n Translation of Languages from Left

to Right," Information and Control, Vol. 8, pp. 607-

639, October 1965.

Martin, D.F., "Boolean Matrix Method for the Detection

of Simple Precedence Grammars," Comm. ACM, Vol. 10,

pp. 685-688, October 1968.

McKeeman, W.M., An Approach to Computer Langgage Design,

Technical Report 0848, Computer Science Department,

Stanford University, Stanford, Ca1if., August 1966.

Mills, D.L., "The Syntactic Structure of MAD/1," Technical

Report 7, Concomp, University of Michigan, Ann Arbor,

Mich., June 1968.

Myhill, J., Linear Bounded Automata, Technical Report

60-165, Wright Air Deve10pment Division, Cincinnati,

Ohio, June 1960.

Rabin, M.O., and Scott, D., "Finite Automata and Their

Decision Problems," IBM J. Research and Development,

Vol. 3, pp. 114-125, 1959.

Squires, E.B., Precedence Grammars and the Euler

System, Parts I, II, III, and IV, Technical Report 701,

Computer Science Department, University of Illinois,

Urbana, 111., August 1966.

Tixier, V., Recursive Functions of Regular Expressions

in Language Analysis, Technical Report 0858, Computer

Science Department, Stanford University, Stanford,

Calif., March 1967.

Warshall, S., "A Theorem on Boolean Matrices," J. ACM,

V01. 9, pp. 11-12, January 1962.

Wirth, N. and Weber, H., "Euler-A Generalization of

AlGOL and its Formal Definition," Part I, Comm. ACM,

Vol. 9, pp. 13-25, January 1966.

APPENDIX

APPENDIX

Analysis of MAD/I

This appendix will deal with the analysis of MAD/I under

ESP. While it is not a simple precedence grammar, it is an

operator precedence grammar and therefore the problem of equal

right sides is assumed to be solvable by other considerations.

The problem is not solvable under ESP because the grammar is

ambiguous. That is, one may derive (IDR) in 3 ways from PLS and

(DES) in 2 ways from PLS.

The analysis is presented in the following order.

(1) The original productions start on page 70.

(2) The precedence matrix with the simple precedence

conflicts appears next, starting on page 72.

(3) The Q matrix, starting on page 76, is encoded as

follows:

a) Q1(I,J) implies Q(I,J) = E

b) Q2(I,J) implies Q(I,J) = G

c) Q3(I,J) implies Q(I,J) = L

(4) The set of generating strings appears next, starting

on page 80.

(5) Next the set of CSP's appears, starting on page 83.

(6) The bounds for the set of CSP's are listed next,

starting on page 89.

68

69

(7) Finally the set of CSP's with the bounds applied is

listed starting on page 91.

It is interesting to note that only two productions were added

to the original set under ESP.

70

SYNTAX FOR MAD/I OPERATOR PRECEDENCE KERNEL GRAMMAR

FROM MILLS. DAVID Lu. THE SYNTATIC STRUCTURE OF MAD/I. THE

UNIVERSITY OF MICHIGAN. CONCOMP PROJECT. ANN ARBOR. MICHIGAN.

TECHNICAL REPORT 7. JUNE 1968. 91 PP.. ALSO AO-67l 683
0
0
0
0
0
0

Q
Q
~
J
O
U
1
¢
U
N
~

PROGRAM PRIMITIVES

XL SIDN

XL SLP PLS

IDR XL

10R 10R .ATT. XL

XM IDR

XM XM STAG TOR

XM XM sxev

055 XM

DES DES . XM

ASSIGNMENT STATEMENT

X1 DES

X1 .ABS. X1

X2 X1

X2 ,X2 .LS. X1

X2 X2 .RS. X1

X3 X2

X3 X3U

X3U .ABS. X3U

X3 X2 .LS. X3U

X3 X2 .RS. X3U

X3U .N. X3

X4 X3

X4 X4 .A. X3

X5 X4

X5 X5 .V. X4

X5 X5 .EV. X4

X6 X5

X6 X6 9' X5

X7 X6

X7 X7U

X7U .ABS. X7U

X7 X2 .LS. X7U

X7 X2 .RS. X7U

X7U .N. X7U

X7 X4 .A. X7U

X7 X5 .V. X7U

X7 X5 .FV. X7U

X7 X6 *9 X7U

X7U $NEG X7

X8 X7

X8 X8 9 X7

X8 X3 / X7

X9 X8

X9 X9 . X8

X9 X9 - X8

XA X9

XA XA = X9

XA XA .NE. X9

XA XA .GT. X9

XA XA .GE. X9

XA XA .LT. X9

XA XA oLE. X9

X9 XA

XH XBU

XHU .AHS. XRU

71

'58—'X8flx2“ ".LS.7 ”XE—0 ' '

56 X8 X2 .RS. X8U

S7 X8U .N. XBU

58 X8 X4 .A. XBU

59 X8 X5 .Vo XBU

60 X8 X5 .EV. X8U

61 X8 X6 .9 X80

62 XBU SNEG X8U

63 X8 X8 ' X8U

66 X8 X8 / X8U

65 X8 X9 9 X8U

66 X8 X9 - X8U

67 X8 XA I X8U

68 X8 XA .NE. X8U

69 X8 XA .GT. X8U

70 X8 XA .LE. X8U

71 X8 XA oLT. X8U

72 X8 XA .GE. X8U

73 X8U .NOT. X8

74 XC X8

75 XC XC .AND. X8

76 X0 XC

77 XD XD .OR. XC

78 XD XD .FXOR. XC

79 XE X0

80 XE XE .THEN. X0

81 XF XE

82 XE XF .EOV. XE

83 ASN XF

84 ASN DES 8' ASN

85 STM ASN

C

C LIST STATEMENT

86 XH DES

87 XH XH ... DES

88 XJ XH

89 XJ ASN

90 LST XJ

91 LST LST . XJ

92 STM SLIST LST

C

C DECLARATION STATEMENT

93 XX IOR

94 XK XK SATRB IOR

95 L50 XX

96 LSD LSD . XX

97 STM SDECL LSD

C

C PROGRAM STRUCTURE

98 PLS (LSD)

99 PLS (LST 1

100 PLS (STM 1

101 STM DES .. STM

102 STM SSIMP STM

103 STL STM

104 STL STL 09 STM

105 STM SCOMP STL SEND

106 PGM SLC STL SRC

E END OF MAD/1 SYNTAX

106 PRODUCTIONS READ

NOT 8 32 NTT 8 78 NPD = 106

76

GT LToEO GTOEO LTOGT LT.GT.E°

72

53

O O O I O

L G

E0 LT

ENTRY

MEANS

PRECEDENCE ARRAY .

O

0

5

0

6
.
6
6
6
6
6
6
0
3
6
6
0
6
I
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
5
0
0
0
6
.
0
0
0
0
0

I
9
.

p
u
n
v
fi
p
U
fl
-
G
p
o
fl
v
o
a
u
n
v
a
n
u
l

0
.
0

0
0
.

0
.

.
.
0

0
.
.
.
G

0
.
6

.
0
0
.
0
.
.

.
0
0

0

O
a

5
6
6
6
6
6
0
6
5
5
6
6
5
I
0
0
0
0
0
0
0
0
o
0
0
0
.
0
0
6
0
0
5
0
0
0
6
0
0
0
0
0
0

S
u
r
e

7
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
0
0
0

0
0
0
0
0
0
0
0
L
L
L
L
L

.
0
.

6
fi
u
a
p
u
n
v
e
n
u
n
u
6
.
0
5
v
I

0
0
0

0
.
0

0
.
0
0
.

0
0
.

0
.
0
.
6

.
0
5

.
0
0
.
0
.
.

0
0
0

0

0
S
u
v

.
5

fi
v
s
n
u
n
v
6
.
0
n
u
G
.
U
I

0
0
0
0
.
.
0
.
0

0
0
.
0

.
0
0

0
.
.
G

.
.
6
0
.
0
G

0
0
.
0
0

0

0
N
0

.
9
G
O
G
G
G
G
G
G
G
I
0
0
.
0
0
.
0
0
0
.
0
0
0
0
0
0
0
.
0
6
0
.
6
.
0
.
6
0
0
0
0
0
0

0
‘

0
3

n
v
a
u
n
v
e
n
u
n
v
G

I
0
0

0
0
.

.
.
.

0
0
0
0
0

0
0
0

0
0
.
.
G

0
0
a
.
.

0
.
0

0
0
0

0
0
0

0
”
.

2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
L
L
L
l
-
L

0
‘
5
0

1
G
G
O
G
G
I
0
0
.
0
0
0
.
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
6
0
0
0
6
0
0
0
0
0
.

0
L
S
O

8
.

3
6
6
6
6
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
6
0
0
6
0
0
0
0
0
0
0
0
0
0

.
0
8
0
5
0

9
9
'
0
0
0
0
0
.
0
I
0
0
0
0
0
.
0
0
0
0
0
0
0
0
O
0
0
0
'
0
0
0
.
.
.
0
O
D
0
-
L
L
L
I
\

.
8

fi
v
G
.
D
I

0
0
0
0
0
0
.

0
0
0

0
.
0
0

.
0
0
0

0
0
0

0
.
.
0
G

0
0
6
0
0
0
°

0
0
.

.
0

0

‘
K
E
'

7
G
O
-

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
6
0
0
8
0
0
0
6
0
0
0
0
0
0

8
1
.
8
6

6
G
‘
I

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
6
0
0
6
0
0
0
5
0
0
0
0
0
0

0
8
0
0
1
.
.

.
3

G
I
0
0

0
0
.
0
0

0
0
0

0
.
.

0
.
.

0
0
.

0
.

0
0
0

0
0
.

.
G
.
.
.
5

.
.
0

0
.
0

0
.
0

0

'
L
P

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
L
L
0
L
L
L
L
L
L

’
1
0
”

3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
.
0
0
0
0
0
.
0
0
0
0
0
0
0
0
.
L
L

0
L
L
L
l
—
L
L

'
0
'

z
0

0
0
0

0
0

0
0
0
0

0
0

.
0

0
0

0
0

0
0

0
0

0
0

0
0
0
0

0
0

0
.
0
0

0
0

0
0

0
0

0
0

0

S
I
I
L

I
.
.
0
0
0
0
0
0
0
0
0

0
0

.
0
.
0
0
0

0
.
0
0
0
0
0
0

0
0
0
0

0
0
0
0
0
0

.
0
0
0
0
0

P
L
S

3
°

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

0
0
0
.
.
0
0
0
0
0
0
0
0
0

L
S
D

9
0

0
0
0

0
0

0
0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

a
n
“

a
0
0
0
0
0
0
0
0
0
0
0

0
0
0
.
0
0
0
0

.
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0
0
.
0
0

0
0
0
0

L
e
a
T

7
0
0
0
0
0

0
0
0
0
0
0

0
0

.
0
.
0
0
.
.
0
0
.

0
0
0
0

0
.
0
0

0
0
0
0
0
0

0
0
0
0
0
0

x
s
u

6
0
0
0
0
0

0
.
0
.

0
0
0
0
.
0
0
0
0
0

0
.
0
0
0
0

0
0
.
0
0
0
.
0
0
0
0
0

.
0
0
0
.
0

a
n
“

5
0
0
0
0
0

.
0
0
.
0
0

0
0
0
0

.
0
0
.

0
0
0
0

0
0

0
.
0
0
0
.

0
0
0
.
0
0

0
0
.
0
0
0

S
T
“

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

8
:
0
"

3
0
.
0
0
0

0
0
0
0
0
0

0
0
0
.

0
.
0
0

0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0
0
0

0
0
0
0
.
0

I
n
'

a
0
0
0
0
0
0
0
0
0
0
0

0
0
0
.
0
0
0
0

.
0
0
0
0
0
0
0

0
.
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
5
E

1
.
0
.
0
0

0
0
.
0
0
0

0
.
.
0
0
0
0
0

.
0
0
0
0
0
0
0

0
0
0
0

0
0

0
.
0
0

0
0
.
0
0
0

0
5
0

«
t
o

0
0
0
0
0

0
0
0
0
0
0

0
.
0
.

.
.
.
0
0
0
0
0

.
0

.
0

0
0
0
0

0
.
0
0
0
0
0
.
0
0
.
0

a
n

9
.
0
.
0
.

0
0
0
0
0
0
0
.

.
.
0
0
0
0

0
0
0
0

0
0

.
0

.
0
0
0

0
0
0
0
.
0

0
0

0
0
0
0

X
n
U
U

8
.
0
0
.
0

0
.
.
0
0
0
.
0

.
0
0
0
0
.

0
0
0
0
.
0

0
0

.
0
0
0

0
0
0
0
0
0

0
I
I
I
I
I

u
s
e

1
.

0
.
0
.

0
0
0

.
0
0

0
0
0

0
0
.

0
.
.

.
0
0

0
0
.

.
0
.
.
0

0
0
0

0
.
0

0
0
.

.
0
0

.

“
6

O
O

O
O

O
I

O
C

O
O

8
O

O
O

O
O

C
C

C
O

O
l

O
C

C
O

I
C

O
C

O
I

O
O

O
O

O
O

I
O

O
8

O

0
A
9

5
0
0
.
0
.

.
0
0
0
0
.

.
0
0
.

0
0
0
.

0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0

.
0
0
0
0
0

0
A
.

6
.
.
.
0
0
0
0
.
0
0
0
0
0

.
0
.
0
0
0

0
.
0
0
0
0

0
.
.
0
0
0

0
0
0
0
0
0

0
0
0
0
.
0

X
1
I
U

3
.
0
.
0
.

.
.
0
0
0
0
0
0
0
.

.
0
.
0

.
0
0
.
0
.

0
.

0
.
0
0
0
0
0
0
0
0
.
I
I
I
I

I

X
1
.

2
0
0
.
0
0

0
0
0
0
0
0

0
0

0
.
.
0
0
0

0
.
0
0
0
0
0
0

0
.
0
0
.
0
0
0
0
0
0
.
0
0
0
0

.
I
6

1
0
0
0
.
0

0
0
0
0

.
0

0
.

0
.
.
0
0
.

0
.

.
0
0
0
0
0

.
0
0
0

0
0
.
0
0
0
0
.
0
0
0
.

X
E
.

.
1
0

0
0
.
0
.

.
0
0
0
0
.

.
0
.
0
0
.
.
0

0
0
.
0

.
0
0
0

0
.
0
0

0
.
0
0
0
0

.
0
0
0

0
0

X
.
9

9
.
0
.
0
.

0
.
.
0

0
0
0
.
.
0
.
0
.
0

0
.

0
.
0
.

.
0

.
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

I
‘
J
U

s
0
0
0
0
.

0
0

.
.
0
0

0
.

.
0

.
.
0
0

0
0
.
0

0
0

0
.
0
0
0
0

0
0
0
0
0
0

0
I
I
I
.
L
L

X
q
J

7
.
0

0
.
0
0

0
0

0
0
.
0

.
.

0
.

0
0

0
.
.
0

0
0

0
0

0
.
.
0
0
0

.
0
0
0

0
0

0
0

0
I

I

I
?

6
0

0
0
0

0
0

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
L
L

X
.
l

5
0
.
.
.
0

.
0
.
0

0
0

.
.

.
0
0
.
.
0

0
.
0
0
.
0

0
0
0
.
0
0

0
.
.
0
0
0

.
I
I
I
I
L
L

O
I
L
S

9
.
.

.
0

.
.
0
0
.

0
.
.
0
.
.

0
0
0
.

0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0

0
L
.
L
L
.
L
L

X
I
”

3
.
0
0
.
0

.
0
.
0
0
0

0
.

0
.
0
0
.
0

0
.
.
0

0
0

0
0
0
0
0
0

0
0
0
0

0
0
1
J
L
.
L
L
.
L
L

i
n
“

2
0

0
0
0
0
0
0

0
0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
O
0
0
0
0

0
0
0
0
0
0
3
O
L
L
L
L
L
L
.

X
L

0
0
1

0
0
0
.
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
L
0
L
L
L
L
L
I
V

X2

7 X3

8 X311

9 X4

X9

11 X6

.ATT.

.889.

.LS.

IRS.

92 0".

_¢3 .80

12 X7

XA

xs

1 XL

2 109

3 XM

6 DES

5 X1

6

13 X7”

18 X8

15 X9

18 XBU

19 XC

20 X0

16

17

21 XE

22 X7

23 ASN

26 STM

25 XH

33 SIDN

3b SLP

35

36 STAG

37 SKEY

27 LST

38 0

39

10

26 XJ

28 XX

29 LSD

30 PLS

31 STL

32 PGM

60

01

73
._.L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

,
I
I
O
O
O
I
O
O
I
I
O
O
O
O
O
O
I
O
O
O
O

.
.
.
.
.
.
O
O
O
I
O
O
O
O
O
O
O
O
O
O
O
O

.
.
.
.
.
.
O
O
O
O
C
O
O
O
O
O
O
O
'
O
O

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

“
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

._
.
.
.
.
.
O
O
O
O
O
O
C
O
O
O
O
O
O
O
O

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L

0
0

0
0

0
0

0
0

L
L

0
.

0
L
L

0
.

0
0

0
0

0
L

0
0

0
0

0
L

0
0

6
0
0
0
0

6
0
0
0
0

0
0
0
0
0

0
L
L
L
L

6
0
0
0
0

6
0
0
0
0

0
0
0
0
0

6
0
0
0
0

0
L
L
L
L

6
0
0
0
0

0
.
I
?
0
L
L
L
L

OOOOOCC0
.
.

ICOP
.

.
0
.

.
0
.

C
O
.

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

.
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

.
0
0

.
0
0

I
I
I

0
0
0

0
0
0

_

0
0
0

.
0
0

I
I

0
0

.
0
0

0000O000000000

L

L

0
3
L

0
3
L
L

0
3
3
L
L
L

L
L
L
L
L
L

I
L
L
L
L
L

0
.

0
0

0
0
L
L
L
L
L
L
L

0
3
3
3
3
3
3
L
L
L
L
L
L
L

0
3
3
L
L
L
L
L
L
L
L
L
L
L
L
L

I
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0
I
I
I
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0
0
3
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0v.

.EV.

66

.5

06 ..

SNEG67

68.

69/

50 0

51 -

52 I

53 .ur;

56 .GT.

55 .GE.

56 .LT.

.LF.57

.NOT.

.ANn.

.OR.

58

59

60

.FXOR.

.THFN.

.EOV.

61

62

63

J
J
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
a
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

0
0
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
a
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

66 00

6s .0.

0
0

0
.

0
0

C
.

1
.
0

0
3

I
L

L
L

.
0

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

SLI<T

66.

67

.
.

0

.
.

0

.
0

O

0
3
3

0
L
L

.
3

0
L

0
L

0
I

.
L

0
L

0
L

.
L

.
L

0
L

.
L

0
L

.
L

0
L

.
L

0
L

.
L

0
L

0
L

0
L

0
L

O

0
1

.
L

0
0
L

OIOOIOOOOCCOOCOOOOOOOO68 SATDR

69 SDECL

70 1

B
0
0

0
0

6
0
0

0
0

0
0
0

0
0

6
0
0

0
0

0
L
L
L
L

0
L
L
L
L

0
0
0

0
0

0
0
0
3

.
L
L
L
L

0
L
L
L
L

73 SSIMP

00

SCOMP

SEND

QLC

7| 1

72 00

76

75

76

77

...............q...........

LOCOOOO3OLLOOOOLOOLOOOIL...

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

0
L

.
L

.
L

.
L

.
L

.
L

78 SRC

0

5

0

J 6

1 2 3 6 5 6 7 8 9 0 1 2 3 6 5 6 7 8 9 0 1 2 3 6 5 6 7 8 9 0 1 2 3 6 S 6 7 8 9 0 1 2 3 6 5 6 7 8 9

21

0

0

74

FRECEDENCE 8998' . . 0 0 0 0 0 0 0 0 0 0 . . 0 0 0 0

76

LT.EO GT.EO LT.6T LT.OT.EO

L G 3

E0 LT GT

ENTRY

MEANS

0
0
.
n
b

.
.
L
C

.
.
I
t
u
n
v

I
n
L
O
n
n
'

0
0

0
0
3
1
.
"
.
7

.
0

S
n
:
:
9
.
L

n
y
l
o
n
-
n
.

A
S
.
L
I
.
0
.
Y

0
0

0

I
I

0
t
s
°
u
v

0

.
T
M
E
N
.

0
'
X
o
.

0

0
fl
v
n

0

.
.
n
w
o

0

.
N
n
u
t
.
.

.
I
L
E

.
.
L
T

.
G
p
t

.
8
0
:

0
N
-
I

0

976

0

S

1 2 3 6 5 6 7 8 9 0 1 2 3 6 5 6 7 8 9 0 I 2 3 6 5 6 7 8 9 0 1 2 3 6 S 6 7 8 9 0 1 2 3 6 S 6 7 8 9

0
8
0
0
8
0
0
0
0
0
6
0
0
8
0
6
6
6
5
6
6
0
8
0
5
6
0
6
0
6
I
0
8
.
.

0
0
0
0
0
0
0
0
.
0
.
.
0
0
0
.
0
.
0

0
.
0
0

.
0
0
.
.
.
0
.
.
0
0
.

0
0
0
0
.
0
0
8
0
0
.
0
0
8
8
0
0
8
0
8
0
0
0
0
0
0
0
0
0
0
I
.
0
.
0

0
0
0
.

0
.
0

0
0
.

0
.
.
.

.
0
.

.
.
.
.

0
0
.
0
.

0
0
.

0
.
0

0
.
0

0
.
.
.

0
0
0
0
0
0
0
0
0
0
8
6
0
0
0
0
0
0
0
5
0
0
0
8
0
0
9
0
0
0
I
.
0
.
.

0
.
0
.
0

.
0
0
.
0
.

.
.

.
.
0
0

0
.

0
.
0
0

.
.
0
.
.
0
0
.
.
0
.
0

.
.
.
A
v
I

0
0
.
.
.
.
0
0
.

0
0
0
0
0

0
0
.
.
.
0
.

0
.
0
0
0
0
0
.

0
.
3
0
0
.

0
8
0
0
0
0
8
0
0
0
6
0
6
0
0
0
0
0
8
0
0
0
6
5
0
0
5
0
5
0
.
.
0
.
.

.
0
.
0
.
0
.
0

.
.
.
0
0
.

.
.
.
0
.
.
.
0
.
.
.
0

.
0
.
.
.
0
.
L

0

0
.
0
.
0

.
0
.
.
0
.

.
.

.
0
0
.
.
.

.
.
.
.

.
.
0
.
.
0
.
0
0
.
.
0

.
0
0
0
0
0
.
.
0

0
.

.
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0

.
I

.
0
0
0
.
.
.
.

.
0
0
.
.

.
0
.
0
.
0
0
.

.
0
0
.
0
.

0
0
.
0
0
.
0
0
.
0
0
0
0
0
.
0

G
.
u
fi
£
u
°
.
0
6
.
u
6
:
0
3
:
0
0
n
u
fi
n
u
s
n
u
s
n
u
0
n
u
0

0
0
0
0
-
.
0
I
n
u
.
0
0
.
0

6
.
0
n
v
0

0
0
0
0
.
0
0

0
.
0
0
0
0
0
0

0
.
0
0
0

0
.

0
0
0
0
0

0
.
0
0

0
.
0

B
R
Z
O
I

0
.
.
0
0
.
0
0
0
0

.
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
.
.
.
—
0
.

I
v
0
.
0
n
0
0
n
b
n
v
0
.
o
n
v
0
.
0
A
w
0
4
0
n
v
0
.
0
A
V
G
S
I
I

.
.
0

0
.
0
.
.
0

0
.
.
.
.

0

6
6
0
6
6
0
8
6
6
0
6
0
8
6
0
6
0
8
8
0
0
.
.
.
.
.
.
o
.
8
.
.
0
.
.

n
u
0
.
0
n
v
0
.
U
n
v
0
.
0
5
0
6
.
.
n
0
0
.
0
3
0
0
.
0
I
v
I

0
0
.
.
.
.

0
.
0

0
3
.
0

0
.
.
.

0

G
O
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
O
I
.
.
.
.
.
.
.
.
.
0
.
.
0
.
.

fi
v
0
.
U
fi
v
G
.
D
n
v
0
.
9
fi
v
a
.
u
n
u
c
.
0
n
v
e
n
o
I

.
0
0
.

.
0
.
.
.

0
0
0

0
0
0
.
.

0

.
.
.
.
.

0
.
0
0
.
0

.
0

.
.

.
.
.
0

.
0
.
.
.
0
0
.
0
.
0
0
0
0
0
0

G
V
G
.
U
A
V
G
.
D
A
V
G
.
U
R
V
G
.
0
E
V
6
.
0
I

0
.

0
0
.

0
0
0

0
.
0
0

0
0
0

0
0
0
.
0

0

G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
I
.
.
.
.
.
.
o
.
.
.
.
.
.
8
.
.
0
.
.

G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
.
.
.
.
.
.
.
o
.
.
.
.
.
.
0
.
.
.
0
.

n
v
6
.
0
n
u
0
.
0
a
v
6
.
0
5
6
8
.
0
n
v
6
.
0
I

.
.

0
.
0

.
.
.
.
.

0
.
0

.
B
_
.

0
.
.
.

0

6
6
6
0
6
6
0
6
6
0
6
6
8
8
8
0
.
.
.
.
.
.
o
.
.
.
.
.
.
.
.
.
.
.
.

a
v
G
A
D
A
V
G
.
0
n
v
G
.
U
a
v
G
.
U
n
u
O
.
D
I

.
0

0
.
0

.
.
.
.
.

.
.
0

0
.
.
.

0
0
.
0

0

6
.
0
n
v
6
.
0
n
0
6
.
0
n
v
6
.
b
n
u
8
.
0
I

.
0
.
.
.

.
.
.

.
.
.

0
0
0

0
.
.
.
0
.
.
.

0

.
0

R
5

U
U

U
N
u
n

T
"
0
3
L

N
I
H
"

L
n
q
u
L
1
a
t
3
a
J
6
c
0
6
0
I
7
.
8
.
9
6
-
u
.
.
L
n
u
E
r
r
5
0
u
H
I
u
s
-
n
s

T
I

A

X
u
x
l
n
u
X
.
X
X
.
u
X
.
X
u
n
i
-
n
X
.
n
x
u
a
X
.
A
.
.
X
.
.
A
.
3
0
n
l
n
L
X
.
L
n
{
:
m
.
0
n
n
.

1
2
3
.
5
.
1
.
.
m
u
n
n
u
u
u
n
u
m
a
n
n
a
u
a
n
n
n
n
u
u
n
n
u
s

0.......t...00....000000...00

00.000.000.00...00.00.000.00

00.....L

30 STD.

3T SKEY

3. 0

39 09's.

0. .LS’

91 .93.

92 ."0

0 0 0 0 0 . 0 L 0 0 0 0 0 0 . 0 0 0 . 0 . . 0 . 0 . . .

0 . 0 . 0 . . L 0 0 0 0 0 . 0 0 0 . 0 0 . 0 0 0

0 O 0 0 0 0'. L 0 0 0 0 0 0 0 0 . 0 0 0 0 0 .63 .A..

75

.EV.

«a .v.

as

a. ..
0
0
0
0
0
0

.
0
0
.
.
.

0
0
0
0
0
0

0
.
0
0
.
.

0
0
0
0
0
0

.
0
0
0
0
.

0
0
0
0
0
0

.
0
0
0
0
.

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

.
0
0
0
0
.

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
.

0
0
0
0
0
0

0
0
0
0
0
0

L
L
L
L
L
L

0
0
.
0
.
0

.
0
0
0
0
.

0
0
0
0
.
0

0
.
0
0
0
0

0
0
0
0
.
.

0
0
.
0
0
0

.
.
.
.
.
.

a
n

F“
0
,
0
.
-

7
8
9
0
1
2
.

6
6
6
5
5
5

0
0
.

0
0
0

0
.
0

0
.
.

0
0
0

0
.
.

.
0
0

0
0
.

0
.
0

0
0
0

0
.
0

0
0
0

0
.
0

0
.
0

0
0
0

0
0
0

0
0
.

0
0
.

0
0
0

0
0
0

L
L
L

.
0
.

0
0
0

0
0
0

0
0
0

0
0
0

0
.
.

.
0
.

0
0
.

F
o
l
-
0
.

N
6
6

.
0
.

3
.
6
5

.
5
5
5

0
.
0
0
0
0

0
.
0
.
.
.

0
0
0
0
0
0

.
0
0
.
.
.

0
.
0
0
0
.

.
.
.
.
.
.

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

.
.
.
.
.
.

.
0
0
.
.
.

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
.
0
.
.
.

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

L
L
L
L
L
L

0
0
0
0
0
0

0
0
0
.
0
0

0
0
.
0
.
.

0
0
0
0
0
.

.
0
0
0
0
.

0
0
.
.
.
.

0
0
.
0
.
0

0

0
.
0
”
"
.
.
0
M

T
E
O
N
R
X

L
L
N
I
O
E

0
.
0
0
0
0

“
m
a
m
a
“

.THFN.62

0.3 .FQV0

66 .8

6g .0.

66 .

0 L 0 .67 sttsr

so save»

0
.
6
.
0
0
0
6

.

0
0

0
.
0

.
.
0

.

0
.
5
.
0
0
.
6
.

0
L

0
I
L
L
I
L
L
0
L

0
0
0
0
0
0
.
6
0

.
L

.
I
T
L
I
L
L
.
L

0
0
6
.
.
.
.
.
.

0
0
5
0
0
0
0
6
.

.
0

0
.
.

0
.
.

0

.
L

.
I
r
L
I
L
L
.
L

0
0
6
0
0
0
0
0
0

.
L

0
L
1
L
I
T
L
0
L

0
.
6
0
0
0
0
0
0

0
.
6
0
0
0
0
0
0

L
P

P

C
N

I
.
“

M
T

n
u
N
.
L

.
S
O
C
E
L

0
1
7
.
0

.
0
5
.

9
0
1
2
3
6
5
6
7

6
7
7
7
7
7
7
7
7

78 SRC

1

6 7 8 9 0

0l 2 3 6 S 6 7 R 9 0 I 2 3 6 5 6 7 R 9 0 l 2 3 6 5 6 7 R 9 0 I 2 3 6 5 6 7 R 9 0 I 2 3 6 5 6 7 6 9

0

g

NUMRFR 0F FNTRTES OF EACH TYPE IN PRFCEOENCF ARRAY

......ro IIIIIIL' IIO0IIG'

771 50.82

...77.50 LT.GT.EO...LTOGT
1

...G'.E°

26

TcPo‘

0

02I

s

6
8
.
!

a
l
l
!

0
6
R

0
6
.
.
.NELR

I
I
T

O

S
S
T

E
.
.
.

I
I
I
"

R
.
u
.
-

m
m
r
i
m
R

r
K
L

O
N
.

A
.

a
.
.
.

n
e
w

’I
F

N
O

R

I
Q
T

T
I
T

O
U
A

T
N
R

76

O ARRAY .

0
“
s
o

.
.
0
0
0
0
0
0
0
0
0
0
0
0
.
G
G
G
G
G
G
G
G
G
.
G
G
.
.
.
G
0
.
0
0
0
0
.
.
0
0
0
0
.
0
0

,
/

9
.
.
0
0
.
0
0
0
.
.
.
0
0
.
5
6
5
5
5
6
6
5
5
6
0
6
6
0
0
.
G
.
.
0
0
.
0
.
0
.
0
.
.
.
0
0

.
a

0
0
0
0
0
0
0
0
0
0
0
0
0
.
6
6
6
6
5
6
5
6
6
6
0
6
6
.
0
0
6
0
0
0
0
0
.
0
0
.
0
0
.
0
0
0

0
N
E
.
G

7
0
0
.
0
0
.
0
0
.
.
.
.
0
.
.
0
0
.
0
0
0
.
0
0
0
0
0
0
0
0
0
.
.
0
0
0
0
0
0
0
0
.
0
0
0
0

.
.

6
.
0
0
0
0
0
0
0
0
.
.
G
G
G
G
G
G
G
G
G
G
G
G
G
.
6
6
0
0
0
6
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
F
V
.

.
5

0
.
.
0
.
.
.
0
.
.
G
G
G
G
G
G
G
G
G
G
“
G
G
G
0
G
“
0
.
0
5
0
.
0
0
0
.
0
0
0
0
0
0
0
0
0

0
V
0

6
.
0
0
0
.
0
0
0
0
0
6
5
6
5
6
.
.
“
“
5
5
6
6
6
6
0
0
6
6
0
0
0
5
0
0
0
0
.
.
.
0
0
0
0
0
0
.
.

0
.
.

1
.
.
.
0
0
0
.
.
.
0
.
5
6
6
6
3
6
6
6
6
6
6
6
6
6
6
0
5
0
0
0
.
6
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.

0
"
.

7
.

0
0
0
0
0
0
0
0
0
0
0
.
0
0
.
.
.
.
.
.
0
0
.
.
0
.
.
.
0
.
0
0
.
.
0
0
0
0
.
0
0
0
.
.
.
0

.
.
.
-
0

.
I

.
.
.
.
.
.
G
G
fi
G
G
G
G
G
G
G
G
G
G
G
G
E
G
G
.
6
6
0
0
0
5
0
0
0
0
0
0
0
0
.
0
0
.
.
.
.

0
L
5
.

0
0

0
0
.
0
0
0
6
6
6
5
6
6
6
3
6
6
6
6
5
5
6
5
6
6
0
6
6
0
0
0
5
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0

.
0
.
.
§
.
.
0

Q
.
9
2
0
'
0
0
2
2
0
'
9
0
0
9
2
0
0
.
0
0
2
2
0
0
9
2
9
9
9
9
0
2
9
0
0
.
"
!
0
0
9
0
0
0
'
0

.
.

n
.
.
.
.
.
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
.
.
.
G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

S
K
E
Y

7
o
.
.
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
.
.
.
G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

S
T
A
G

6
.
.
.
fl
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
.
.
.
G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
‘
T
T
0

5
0
0
0
6
5
6
6
6
6
6
9
“
6
5
.
5
6
6
0
5
6
5
5
6
6
6
0
6
6
6
“
0
6
.
0
0
0
.
0
0
0
.
0
0
0
.
.
.

S
L
P

0
0
0
0
0
.
.
.
.
0
0
0
.
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
.
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.
0
1
0
“

1
.

0
0
.
0
.
0
.
0
.
.
.
.
0
0
0
0
0
0
.
0
0
0
0
.
.
.
0
0
0
.
0
0
0
.
0
0
0
0
0
0
0
0
0
0
.
0

P
G
”

2
0
0
.
.
0
.
0
0
0
0
0
0
0
0
0
0
.
.
.
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
T
L

0
|

.
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.
.
.
L
L
0
L
L
L
L
L
L
L
L
L

P
L
S

1
.
0

0
.
0
0
0
0
0
0
.
.
.
0
.
0
0
0
.
.
.
.
0
0
.
.
.
.
.
.
.
0
0
0
.
0
0
.
.
.
.
0
.
.
0
0
0
.

L
5
0

9
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
L
L
0
0
0
0
0
0
0
0
0
0

X
“

'
0
0
0
0
0
0
0
0
0
0
.
0
.
0
0
.
0
0
0
.
0
0
.
0
0
.
0
0
0
0
0
0
0
0
L
L
0
0
0
0
0
0
0
0
0
0

L
5
0
!

7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
L
0
L
L
L
L
L
L
L
L
L

X
J

0
.
.
.
.
0
0
0
0
0
0
0
0
0
0
.
0
0
0
.
0
0
0
0
.
.
0
.
.
.
0
0
0
.
.
L
L
0
L
L
L
L
L
L
L
L
L

i
n
"

5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
.
.
.
.
0
0
.
0
0
0
.
0
0
.
0
0
L
L
0
L
0
0
0
0
0
0
0
0

S
T
"

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
L
0
L
L
L
L
L
L
L
L
L

I
S
"

....
.
.
.
.
.
0
0
0
.
.
.
.
.
.
.
.
0
0
0
.
0
.
0
0
.
0
.
0
.
.
0
0
.
.
L
L
.
L
L
L
L
L
L
L
L
L

I
r

2
0
0
0
0
0
0
0
.
.
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
L
L
0
L
L
L
L
L
L
L
L
L

I
E

I
.

0
0
.
.
.
.
.
.

0
0
.
0
0
0
0
.
0
.
.
.
0
0
0
0
.
.
0
0
.
.
.
.
.
0
L
L
.
L
L
L
L
L
L
L
L
L

0
0
0

2
.
0

.
0
.
0
0
.
.
0
.
0
0
0
0
.
0
0
.
0
0
0
0
.
.
0
0
0
0
0
0
0
0
.
0
0
L
L
0
L
L
L
L
L
L
L
L
L

X
C

9
.

0
.

.
.

.
0

0
.

0
.

.
0

0
0

.
0

0
0

.
.

0
0

0
.

0
0

.
.

.
.

.
0
.
L
L
.
L
L
L
L
L
L
L
L
L

X
H
U

M
.
.
.
.
.
0
.
.
0
0
0
0
0
0
0
0
.
.
.
.
.
.
0
.
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.

X
"

7
0
0
.
.
.
.
0
0
.
0
0
0
.
0
0
0
.
0
.
0
0
0
0
0
0
.
0
0
.
0
0
.
0
0
L
L
0
L
L
L
L
L
L
L
L
L

I
R

6
0
0
.
0
0
0
0
.

0
.
.
0
.
0
.
0
0
.
0
.
0
0
0
0
0
0
0
.
0
0
0
0
.
0
L
1
0
L
L
L
L
L
L
L
L
L

‘
9

I
.

.
.
.
.
.
.
o
.
.
.

0
0
.
0
.
0
.
0
.
.
.
.
.
.
.
0
0
0
.
.
0
0
0
0
L
L
.
L
L
L
L
L
L
L
L
L

I
.

0
0
.
0
.
0
0
0
0
0
0
0
0
0
.
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
L
L
.
L
L
L
L
L
L
L
L
I
.

X
7
U

.
.
.
.
0
.
0
.
0
.
0
.
.
.
.
0
0
0
0
0
0
.
0
0
0
.
.
0
.
.
.
0
.
0
0
.
0
0
0
.
0
.
0
0
0
0
.
0
0
0

X
7

7
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
L
0
L
L
L
L
L
L
L
L
L

X
6

1
.
0
0
0
0
0
0
0
0
0
.
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
L
0
L
L
L
L
L
L
L
L
L

X
5

1
0

.
.
.
.
.
.
o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
.
.
.
0
.
.
0
.
0
0
L
L
.
L
L
L
L
L
L
L
L
L

‘
0

Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
L
0
L
L
L
L
L
L
L
L
.

x
1
”

8
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0

‘
1
.

7
0
0
.
0
0
0
0
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
L
0
L
L
L
L
0
0
.
0
0

X
2

6
0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
.
.
0
.
.
0
.
1
1
.
L
1
L
L
0
0
.
0
0

X
1

5
.
.
.
.
.
.
o
.
.
.
.
.
.
.
.
0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
0
.
L
L
0
L
0
.
.
0
0
0
0
0

“
E
S

.
6

0
0
.
0
.
.
.
.
0
.
.
.
.
.
.
.
.
0
.
.
0
.
0
0
.
.
.
.
0
0
0
0
.
0
L
L
.
L
.
0
0
.
0
.
.
0

X
"

1
.

0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
L
L
0
L
0
0
0
0
0
0
0
0

I
n
”

P
.
0
0
0
0
.
.
.
.
.
.
0
.
.
.
.
.
.
0
.
.
.
.
.
.
.
.
.
0
0
0
0
0
0
L
L
0
0
0
0
0
0
0
0
0
0

X
L

0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
0
0
.
0
0
0
.
0
0
.
0
0
.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

I
I

I
I
.

I
.

N
T
fl
Y

9
'
.

.

9
S

I
I

1
N
M

T
D
S
I
M
D
D
T
A
F

R
S
S
.
.
.
V

I
O
N
F
1
2
3
3
6
9
6
7
7
R
9
A
R
R
C
n
F
F
S
T
H
J
S
K
S
L
T
G
T
L
A
T
K

A
L
R
N
A
V
E
.

I
T
X
D
X
X
I
X
X
X
X
X
X
X
X
X
X
X
X
I
X
X
A
S
X
X
I
X
I
P
S
P
‘
S

.
5
5
.
.

.
.

.
.

.
.
.
0

1
2
3
6
5
6
7
R
9
0
1
2
3
6
5
6
7
8
9
0
1
2
3
6
.
.
.
6
7
8
9
0
1
2
3
6
5
6
7
8
9
0
1
2
3
6
5
6

I
1
1
1
1
1
1
1
1
1
2
2
2
7
2
2
2
2
2
2
3
3
3
3
3
3
3
1
3
3
6
6
6
6
6
6
6

77

'o7".~ra

63 9

.9 I

50 o

91 -

I
I
I
I
I
I

52 I

93 .NF,

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

I
I
I

Y
r
.
Y

G
a
u
l

I
I
I

a
:

‘7 .lF.

56NOY .

I I I I I I ' I I I I I I I I I I I.‘Nn.5Q

60 .09.

I I I I I I , I I I I I I I I I I.FXOP.

.THrN.

IEOVI

6|

. p6?

63 9

L
n
L
L
-
L
I
T
L
A
s
L
I
L
L
n
L
I
‘
L
.
L
l
-
L
.
L
I
5
L

.
L

.
L

.
L

I
I

.
L

.
L

.
L

.
L

I
I

.
L

.
L

.
L

.
L

I
I

.
L

.
I
—

.
L

.
L

I
I

I
I

6. I:

65 III

.
.
.
.

.
.

.
.
.
.

.
.

.
.
.
.

.
.

.
L

.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
L

L
.
L
I
5
L
.
L
l
u
L
i
s
t
-
L
I
;
L
.
L
I
5
L
.
L
I
§
L
I
L
L
I
5
L

L
.
L
I
L
I
.
L
A
L
I
n
L
.
L
I
5
I
~
L
-
L
I
-
L
.
L
I
;
I
~
L

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
L

L
.
L
I
»
L
.
L
|
L
I
.
L
A
L
I
§
L
.
L
n
L
I
-
L
.
L
I
L
I
.
L

L
n
L
L
I
L
L
I
h
L
I
L
L
I
u
L
I
L
L
I
L
L
n
L
L

.
L

L
n
L
t
h
L
I
L
L
I
L
L
I
I
L
-
L
L
I
I
L
A
L
L

.
L

L
l
r
L
L
n
L
L
I
L
L
l
r
L
L
n
L
L
n
L
L
I
L
L

L
n
L
L
n
L
L
l
u
l
l
r
L
L
n
L
L
n
L
L
I
L
L

.

L
n
L
L
I
L
L
I
L
L
n
B
L
n
L
L
n
L
L
A
L
L

.
.
.
.

.
.

.
.
.
.

.

L
n
L
L
I
L
L
n
L
L
n
k
L
I
L
L

L
.
L
L
n
L
L
I
L
l
n
L
L
I
L
L

L
n
k
t
h
l
a
L
L
I
L
L
I
I
L

L
I
L
L
I
L
L
.
.

.
.
.
.

6h .

I7

L

.
.

.
L
n
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

.
L

I
I

.
L

.
L

.
L

.
L

I
I

o
L

.
L

.
L

.
L

.
L

.

.
l

.

.
L

.

.
L

.

.
L

.

.
L

.

ILIQT

6R IATDR

6Q $DFrL

70

7‘

IIIILILILIIIIIIIQIIIII(

) I

I I L I I I I I I I I I I I I I7?. II

73 I L I$5139 I I I I I I I I I I I I I I I I I I
.

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I

I
I

I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

’
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

.
L
L
.
L

.

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I

I
I

I

I
I

I
I

I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I
I

I
I

I
I

I

I
I

I
I

I

I
I
I

I
I

I
I

I
I

I

I
I
I

I
I

SCONP

7‘ .I

75

76 ’ENO

77 ILC

78 IPC

0

2 3 b S

0l 2 3 6 5 6 7 B 9 0 I 2 3 6 S 6 7 8 9 0 I 2 3 Q 5 6 7 I 9 0 i 2 3 6 5 6 7 I 0 0 I 2 1 6 S 6 7 6 0

0

0

78

0.99.7......................

I
.

I7IsI32I
.

9
.

II7I5I3zI
.

I
II
.

I
I
C

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

I
l
s
e

7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

I
t
u
o

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

I
c
o
n
,

5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
9

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

I
S
'
"
'

3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

2
.
.
.
.
I
I
I
I
G
I
I
I
I
I
I
I
I
I
I
I
O
G
C
I
G
I
G

I
.

l
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G
.
.
.

.
1

7
°

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

I
n
f
-
C
I
.

9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

I
I
I
.
.
.

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G
.
.
.

I
L
‘
S
7

7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

0
I

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
O
.
.
0
.
.
.

.
.
.

5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
.
°
I

.
0

I
.
.
.
.
I
O
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
G
G
I
I
G

.
5
0
.
.

3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
G
.
I
°

.
7
N
E
N
.

z
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
G
I
.
I
I

.
F
'
O
'
.

I
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
6
I
0
.
I
I

.
0
“
.

6
°

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
G
G
G
.
I
I

.
I
N
D
.

I
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
I
I
I
I
.
I
I

.
"
0
7
.

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
L
E
.

7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
O
G
G
G
G
G
O
G
.
I
G

.
L
'
.

6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G
G
I
G
G
G
G
G
.
°
G

.
6
3
.
.

s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G
G
G
G
G
G
G
I
.
I
I

.
6
7
.

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
G
I
G
G
I
I
I
.
I
I

.
"
E
.

3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
°
I
I
I
B
I
G
O
.
I
I

I
,
-

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
G
G
I
I
I
°
G
.
°
I

-
0
5
]
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G
G
G
G
G
G
°
G
G
.
I
°

R
s

U
U

U
”
n

7

L
0
"
M
1
2
3
3
I
5
6
7
7
0
9
‘
a
a
c
o
t
r
s
7
H
J
s

‘
7
‘
‘
l
“
“
"
‘
x
‘
l
“
“
x
‘
.
5
‘
x
L

‘
2
3
‘
5
6
7
'
9
0
‘
2
3
I
5
6
7
I
I
O
l
2
3
I
5
6
7

‘
l
‘
c
l
l
l
l
I
.
I
-
I
.
.
l
z
?
2
2
2
2
2
2

IIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIII

I I

I I I I I I I I I I I I I I I I I o I I I I I I I I I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I I I I I I I I I I. I I I I I I I I I I I I I I I I I

I I

I I I

'79

a7 $NFG

68 0

IIIIII'IIIIIII

I

69 /

50 O

91-

52 I

93 IN',

56 .67.

I I I I

I I I I I I

55 .GF.

56 ILY.

S7 .LF.

58 .N07.

.ANn.

.09.

SO

60

61 .r‘nn.

.YHFN.

IEOVI

66 II

6?

63

I I I I I I I

65 III

66 o

67 SLISY

68 $6798

69 SDEfL

70

7| 3

7? ..

73 SSINP

7‘ .I

75 SCOHP

76 SEN"

SLC77

78 SEC

I

6 7 fl 9 0

0I Z 3 6 S 6 7 fl 9 0 I 2 3 6 5 6 7 8 9 0 I 2 3 6 S 6 7 8 9 0 I Z 3 6 S 6 7 I I 0 l 2 3 6 S 6 7 a Q

0

5

9.775 SECONDS7OYAL TIME REQUIRED '0“ ANALYSIS I

80

GENERATOR STRINGS

PGH

SLC

STM

ASN

SLIST

SDECL

DES

SCOHP

XF

XJ

XK

SDECL

XM

DES

XE

XF

XH

IDR

XK

SDECL

XM

DES

XD

XE

XF

XH

XL

XC

XD

XD

XE

STL

LST

LSD

STL

LSD

.Eov O

SATRB

LSD

STAG

oTHENo

oEQV.

00R.

.FXDR.

.THEN.

XM

IDR

IDR

XM

XD

XE

DES

XC

XC

XK

XK

SYAG

.THEN.

.OR.

SATRB

IDR

XD

XC

IDR

81

XE .THEN. XD .FXOR. XC

XF .EOV. XE .THEN. XD .OR. XC

XF oEOV. XE .THEN. XD .FXOR. XC

XH ... DES . XM

PLS

X8

XH ... DES . XM STAG IDR

(LSD

(LST

STM)

XA

XBU

X2

Xb

X5

X6

X8

X9

(L50 9 XK

XA I X9

XA ;NE. X9

XA .GT. X9

XA .GE. X9

XA .LT. X9

XA .LE. X9

x1

x3

X5 oV. X4

X9 .EV. X4

X6 9* X5

X7

X9 9 X8

X9 - X8

XA

XA

XA

XA

XA

XA

XA

XA

XA

XA

XA

XA

X3U

X6

X6

X7U

LSD

.NE.

.NE.

‘.61.

.GT.

.65.

;GE.

;LT.

.LT.

.LE.

.LE.

9.

{G

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X5

X5

82

XK

;v.

.EV.

SATRB IDR

X8

X8

X8

X8

X8

X8

X8

X8

X8

X8

X8

X8

X4

PDODUCT'ONS LEE? YO RIGHY

SLC

SLC

SCDMP

SCOMP

SSIRP

SSINP

(

C

SDFCL

SDECL

SDECL

SDECL

SDECL

SLISY

SLIST

SLIST

.NDT.

SNEG

SNEG

oNo

.ADS.

.ADS.

.IISo

SYL

SYL

S'L

STL

STM

ST!

LSD

LSD

LSD

LSD

[57

L57

STM

LSD

LSO

LSD

LSD

L50

L51

LST

LSY

X8

XBU

X7

X80

X70

X3

X00

X30

SRC

o.

SEND

((IIII

((I-II

“IIII

(43-.-

‘i-III

(in...

c4...-

((3...

((Il-l

(‘0..-

¢(--.-

(in...

((u...

SIN

(tun--

STM

((II-c

STM

((IIII

XX

XX

XX

((03:-

XJ

((1..-

((33--

XX

XX

XX

51!

((IIII

XJ

SYN

XDU

XRU

X70

X80

X70

nu

xpu

X7U

PG"

<<----

5!!

(C...-

S?!

PLS

SAVRD

SIYRB

((IIII

PLS

«(u-u-

PLS

SYN

SAYRI

SATRR

‘(IIII

SYN

<(CII-

SLC

SCOHP

IOR

IOR

IOR

IOR

SDECL

’

SLIST

83

STL

SYL

oAVY. XL ((00-— (

((IIII 1 LSD 0

LSD

LS!

.AYY. XL ((uonu $0ECL

((0... SDECL LSD 0

L50

LS?

LSD

LSD

SAYRR

SAYRR

IDR

IDR

:3332

SL9

SIDN

xx

xx

xx

XJ

XH

XH

STAG

XH

XH

XH

XH

SYN

ASN

ISN

XF

.EXDR.

XF

XE

.ORo

X?

If

If

If

XE

XE

XE

XE

XE

XE

XD

XD

:1

PLS

((IIII

satna

sures

((IIII

((llll

IDR

‘(IIII

((IIII

((IIII

‘(IIII

.EOV.

XC

oEOV.

.Eov.

XC

oEOV.

.EOV.

.EOV.

((IIII

.THENo

.THEN.

.YHENo

.YHEN.

.YHENo

((0..-

.EXDRo

oEXOR.

(Cl-i. XI

((CIII

XL

IOR

IOR

LSD

LS?

DES

DES

DES

DES

DES

XJ

STL

SYN

XJ

XE

XE

XE

XE

XE

XE

ASN

XD

XD

XD

XD

XD

XE

XC

XC

XL

.ATTo

(CI...

((IIII

oYHENo

.THENo

.YHENo

.YHEN.

o'NENo

((IIII

.EXORo

oFXORo

oDRo

.OR-

(El-I-

O‘~OO

((I-I-

XL

XI

XI

XH

XD

XD

XD

XE

XC

XC

XC

XC

XE

XD

(to... II

SKEY

SEA. IOR

SVAG IOR

((lI-I XH

.EXORo XC

oEXDRo XC

.OR. XC

.OR. XC

((lnll XE

.QNDo X8

((IIII XE

.AND. X8

((3... XE

((Inni XD

<(II-I

84

SAYRD

I“

O"'.

“IIII

.ANDo

((II-I

.AND.

<(Il-I

.covL

((0..-

.THEN.

((3..-

.YHEN.

oEXORo

XL

XE

X8

XE

XE

XD

XE

XD

XC

DES o

((3... XH

.0. 0:5

((0... 1?

oEOVo XE

«(c-c. XF

oEQV. XE

.YHEN. XD

.THEN. X0

0:0”.

.YHFN.

oEaVo

.VHEN.

.EXDRo

Om.

DES

XD

XE

XD

XC

XC

.THEN.

.YHEN. XD

XD

XD

XE

xC

X8”

X8

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

.LF.

.LE.

.LF.

.LF.

.LE.

.LF.

.LF.

XC

xC

XE

X8

X0

X8

XC

X8”

X9

X9

X9

X9

X9

X9

X9

X8U

X9

X9

X9

X9

X9

X9

X9

X8U

X9

x9

X9

X9

X9

X9

X9

X8U

X9

..NO.

((3883

((3333

((3333

((3333

((3333

((3333

((3:33

(‘I'II

((IIII

X8

XD

XC

X8

X8

X8

X8

X8

X8

X8

XX

X8

X8

X8

X8

X8

X8

XX

X8

X8

X8

X8

X8

X8

X8

XX

X8

X8

((3333

((3333

((3333

((8:28

((3333

85

X0

X7

X7

XX

X7

X7

XX

X7

X7

XX

X7

X7

XX

X7

X7

XX

X7

X7

XX

X7

.08.

((88.3

((3333

.LE.

((3333

((3333

OLE.

((3333

((3333

0L1.

((3333

((3333

.LT.

((3333

((3333

.GE.

((3333

((3333

065.

((I.I8

XC

XX

XX

X9

XX

XX

X9

XX

XX

X9

XX

XX

X9

XX

XX

X9

XX

X9

XX

.LFO

.LE.

.LE.

.LE.

.LY.

oLT.

.LT.

0LT.

.GE.

.GE.

06‘.

.GF.

06'.

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X8

X8

X8

X8

X8

X8

X8

X8

X8

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X9

x9

X9

X9

xo

X9

X9

X9

X9

X8

.67.

.67.

.GT.

.67.

.GT.

.87.

.NE.

.NF.

.NE.

.NF.

.NF.

.NE.

.NE.

.NE.

((3333

((3333

X9 -

X9 -

X9 0

X9 9

X9 0

X9 ((3333

XRU ((3333

X9 3

X9 -

X9 -

X9 0

X9 0

X9 0

X9 ((3333

XRU ((3333

X9 -

X9 -

X9 -

X9 0

X9 0

X9 9

X9 ((3333

X8

X8U ((3333

X8 /

X8 9

X8 ((3333

X8U ((3333

X8 /

X8 9

X8 ((3333

XX

XBU ((3333

X8

X8

X8

X8

X8

XX

X8

X8

X8

X8

X8

X8

X8

XX

X8

X8

X8

X8

X8

X8

X8

XX

X8

X7

X7

X9

X8

X7

X7

X9

X8

86

((3333

((3333

((3333

((3333

((3333

((3333

X7

XX

X7

X7

XX

X7

X7

XX

X7

X7

XX

X7

X7

XX

X7

X7

XX

X9

X9

X9

X9

((3333

.GT.

((3333

((3333

.GT.

((3333

((3333

.NE.

((3333

((8...

ONE.

((888!

((3333

((3333

((IIII

XX

X9

XX

XX

X9

XX

XX

X9

XX

XX

X9

XX

XX

X9

XX

XX

X9

X8

X8

X8

X8

.GT.

.67.

.67.

.NE.

.NE.

.NE.

0“.

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X9

X8

X8

X8

X8

X8

X8

X8

X8

xn

xn

xn

xn

xm

x7

x.

X6

xv»

X6

X6

X6

x6

x5.

x9

x9

XS

x9

x8

:9

vs

x5

x5

xa

x4.

xa

x.

xau

X3

X2

x2

x?

X?

((3333

((3333

((3333

.0

I.

no

00

o.

.FV.

.FV.

.FV.

.EV.

.V.

.V.

.V.

((3333

((3333

((3333

.85.

.85.

.85.

.85.

X7

X8U

X7

X9

X7

X8

X8”

X7U

X5

X5

X5

X5

X8

X7

X8U

XTU

XX

XX

X8U

X 7U

X4

X6

X6

X8U

X7ll

X3

X5

X3

X6

XBU

X7U

X3U

X!

((333:

((88.8

.FV.

.FV.

.v.

.V.

((3333

((3333

((3333

.A.

((3333

((3333

((3333

0A.

((3333

((3333

((3333

((3...

((3333

((3333

((3333

((3333

X8

X8

X8

X8

X7

X6

X6

X6

X6

X6

X8

X7

X3

X5

X8

X7

X3

X5

X8

X7

XX

X8

X7

X3

X2

87

.X. X3

((3333 X6

.X. X3

((3333 X6

((3333 X5

<<===s X5

((3333 X6 .0 XS .ev; XX

00 X5

((33-- X6 .0 X5 .V. XX

09 XS

.EV. ‘“

.V. X“

X?

X?

x?

x?

x;

XI

nrs

DFS

nrs

DFS

nFS

DES

DFS

DES

DFS

xu

nu

xu

xn

Inn

IOR

Inn

XL

$KFY

STAG

$7XG

((333:

.X77.

((3333

((3333

((3333

88

XRU ((3:33 xn

X7U (<===: X7

X3U ((3333 x]

X! ((3338 X2

X3

X?

578) ((3:23 578 D

$78 ((3333 QTM

ASN ((2333 ASN

X" SKEY ((3333 DFS , xu

XM STAG IOR .ATI. XL <(::== nrs

X8 $TXG 708 ((3333 DES . X8

X8 ((3333 DES

XH

XI

((333: XM

[08 .XTT. XL ((3338 XM STXG ‘08

[DR ((3333 X8

DES

XL ((3333 109

XX

X8

IOR

X8 37XG IOR

ROUNDS ON THE VARIX

O
I
N
O
‘
J
‘
t
‘
J
N
D
-
i XI

789

XM

”Pg

X?

X?

X1

X?”

X4

X8

X6

X7

X7”

X8

X9

XX

X8

X8”

XC

XD

XF

XF

XGN

STM

XH

XJ

L97

XK

L90

PIS

87L

96M

$70N

$IP

.XYT.

$TXG

$KFY

.Ang.

.‘S.

.95.

.N.

.A.

CV.

.FV.

“I

$NFG

a

|
|
I
§
\

.MF.

Oar.

06F.

.IT.

0' F.

.MnT.

.AND.

onpo

.FXOR.

89

RLES

LL

C
O
S
M
O
S
3
3
3
0
3
3
3
3
M
3
3
9
3
N
0
3
N
3
9
D
O
N
—
‘
O
O
O
O
b
O
U
-
‘
k
-
‘
fl
5
9
9
J
#
~
9
9
J
~
“
9
&
J
-
U
fl
b
b
u
fl

L

O
O
O
O
O
O
O
O
O
O
O
O
C
O
O
D
O
O
O
O
O
3
3
3
V
O
O
O
-
‘
D
O
N
N
U
N
L
d
-
‘
d
U
—
‘
J
Q
J
U
U
H
U
Q
d
w
—
‘
U
U
J
J
W
U
d
'
J
U
U
B

O
O
O
O
O
C
D
O
O
G
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Q
O
O
O
H
O
O
M
m
e
k
—
‘
b
U
-
‘
U
b
b
U
9
-
‘
w
b
U
§
fl
w
¢
w
§
~
W
U
9
9
“
?
“

62

63'

64

65

66

67

68

69

7o

71

72

73

74

7s

76

77

78

.THFN.

.FQV.

$7157

sarna

snECL

sqIMP

.9

snonp

ern

77c

snc

9O

O
b
O
b
O
N
O
O
b
e
J
-
‘
O
O
O
O
O

O
U
O
W
Q
U
O
O
U
U
O
W
O
D
O
O
O

U
O
U
O
D
O
O
b
O
O
O
O
O
O
O
O
O

U
C
W
O
Q
O
O
W
O
O
O
O
O
O
O
Q
O

PRODUCTIONS

SLC STL

SCOMP STL

SSIMP STM

(LSD

(LST

(STM

SDECL LSD

SDECL LSD

SLIST LST

SLIST L57

.NOT. X8

SNEG X8U

SNEG X7

.N. X8U

.N. X7U

.N. X3

.XBS. X8U

.XBS. X7U

.ABS. xau

.XBS. X1

$LP PLS

SIDN ((8888

STL .9

L50 o

XK SXYRB

xx <<====

LST o

XJ ((==::

XH ...

XH ((=:==

STM ((3333

91

WITH ROUNDS

58C

SEND

((3333

<(::::

((3333

((3333

((3333

((3:33

((:===

((3:32

((==:=

((:===

((333:

((3333

((8838

XL

STM

XK

IOR

LSD

XJ

LST

DES

XJ

57L

STM

(<====

STM

X8U

X8U

X7U

X8U

X7U

X3U

X8U

X7U

X3U

X1

XL

((3333

((3333

((3333

((828:

P68

578

PLS

PLS

PLS

$78

$78

STL

LSD

XK

LST

XH

ASN

ASN

xr

x?

x:

XE

x0

x0

x0

xc

xc

xau

x3

xA

xA

xn

XA

XA

xA

XA

XA

XA

XA

XA

xA

XA

x9

x9

x9

x9

xq

xn

X8

{(3333

{(3333

«.EOV.

((3333

.THEN.

(£3333

.rxon.

.oa.

(£3333

.AND.

((3333

(£3333

<<3333

.LE.

.LE.

.L1.

.LT.

.66.

.GE.

.61.

.67.

.NE.

.NE.

92

§¥§V

XJ

XE

‘5"

X0

XF

XC

XC

XE

X8

X0

X8

XC

X8U

X9

X8U

X9

X8U

X9

X8U

X9

X80

X9

XBU

X9

X8

X8U

X8

X8U

X8

XA

X8U

X7

{(3333

;XI...

ék3333

égICII

‘(II‘O

3&3333

3&3333

(£3333

é<3333

((3333

......

é<3333

8(3333

233333

é<3333

3(3333

3(3333

((3333

(<3...

3(3333

((8...

((3333

((3333

XF

XE

XD

XD

XC

X8

XA

X8

XA

X8

XI

X8

XA

X8

XA

X8

XI

X8

X9

X8

X9

X8

X8

X7

X6

X6

X6

X6

X5

X5

X5

X5

X5

X5

X")

X4

X10

X1.

X4

X3U

X3

X?

X?

X?

X2

X2

X2

X?.

X?

X?

X]

DF§

o.

((8:88

.EV.

.EV.

.EV.

.V.

.Vo

.V.

.fl.

0A.

.A.

.85.

.RS.

.85.

.89.

.LS.

.LS.

.LS.

.LS.

A A I
I

I
I

I
I

I
I

A A I
I

I
I

I
I

I
I

93

X8U

X7

X9

X7

X8

X8U

X7U

X5

X7

X8U

X7U

X40

X8U

X7U

X4

X6

X8U

X7U

X3

X5

X3

X4

X8”

X7U

X3”

X1

X8”

X7U

X3U

X1

X3

X?

$7M

((3333

A A I
I

I
I

I
I

I
I

A A I
I

I
I

I
I

I
I

A A I
I

I
I

I
I

I
I

A A I
I

I
I

I
I

I
I

A A I
I

I
I

I
I

I
I

A A I
I I
I

I
I

I
I

X8

X8

X8

X7

'X6

X8

X7

X5

X8

X7

‘X5

X8

X7

X1.

X8

X7

X3

X2

X8

X7

X?

m -
¢

I

DES

DES

DES

DES

m

xn

x'M

IDR

IDR

IDR

XL

94

ASN ((333:

XM §<==3=

XH

X1

108

XM

108

