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ABSTRACT

AUTOMATED ANALYSIS OF TRIPLE QUADRUPOLE MS/MS DATA

By

Hugh Ralph Gregg

A data Dexplosion has accompanied the advent of

microcomputer controlled instrumentation. Many of these

automated instruments are capable of generating more data

than the operator is capable, willing, or able to analyze.

What the analyst wants is not the data, but the chemical

information contained in the data. In this dissertation,

several software tools developed for collecting, storing

and retrieving data as well as methods for extracting the

information contained in mass spectrometry/mass

spectrometry (MS/MS) data are presented.

Triple quadrupole mass spectrometry (TOMS) is a multi-

variate technique with unique data storage and retrieval

requirements. Traditional MS or GC/MS data base systems

are unable to handle the many dimensions of data that make

MS/MS a powerful tool for structure determination and

mixture analysis. A multi-dimensional data base was

developed to quickly and efficiently store all data and

instrumental parameters' produced by TQMS. A program is



presented which is able to extract any arbitrary two-

dimensional plane of data for display and interpretation.

The final tools presented in this dissertation are aids

in the interpretation of MS/MS data. One of the techniques

used in analyzing a mass spectrum of an unknown is to

identify characteristic neutral losses from the ions

present in the spectrum. MS/MS is unique in that if the

collision conditions demonstrate first order fragmentation

of the parent ion, all the daughter ions formed are direct,

single event fragmentation products of the parent. A

program was developed which compares neutral losses (the

difference between parent and daughter masses) with a table

of common losses and presents a list of possible fragments

and/or the substructures giving rise to those fragments.

Mass spectra matching routines have traditionally been

used to identify unknown spectra. The simplicity and wide

variations in intensities in daughter spectra make normal

EI matching techniques unsuitable. The matching algorithm

presented in this dissertation was designed to group

daughter spectra.

Each of the tools presented in this thesis addresses

different aspects of the data/information handling problem

and demonstrates the need for powerful software tools to

complement today’s complex instrumentation.
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Chapter 1

Introduction

Introduction

In the fall of 1978 a new instrument was just coming

online and being tested in Dr. Enke’s research laboratory.

The triple quadrupole mass spectrometer (TOMS), designed by

Yost and Enke (1-3), was completed and proved capable of

generating daughter spectra (mass spectra of selected

parent ions). The technique of mass spectrometry/mass

spectrometry (MS/MS) was not new (4-6), but this new

instrument was capable of unit mass resolution in both mass

analyzers, and boasted a highly efficient collision

chamber. It was a new instrument - a promising technique

and the basis for many years of fascinating research.

In tandem quadrupole mass spectrometry (7), ions

created in the source are selected by the first mass filter

(quadrupole l) and undergo a fragmenting collision with

neutral molecules in the collision cell (quad 2, RF only:

not mass filtering). The ionic products of this collision

are then mass analyzed (by quad 3) and detected. By this

process, a fragmentation spectrum from each ion in the

normal mass spectrum can be obtained.
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The TOMS instrument can be operated in several ways by

using the mass filtering quadrupoles in one of three modes:

1) selecting one mass for transmission, 2) scanning a

series of masses, or 3) allowing all masses to pass through

the quadrupole (RF only mode). Table 1.1 shows a summary

of the operating modes and the resulting scans.

The information contained in MS/MS data can be used in

a variety of ways. Daughter spectra are useful in mixture

analysis and screening techniques (2,5,8-11) as well as

structure determination problems (2,5,12-14). I will

present, in this dissertation, tools and techniques

necessary to extract the information present in this type

of multi-dimensional data. To help the reader to gain an

appreciation for how these pieces fit into the overall

goal, I will present the structure determination scheme

developed in our laboratory. This method, and associated

tools, have been developed and refined over the years by

several people (15-16).

Structure determination by MS/MS

The basic premise behind our structure elucidation

scheme is that if many small, "simple" parts or

substructures of a sample are known, its structure can be

determined. Each ion in the source results from some
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Table 1.1

TOMS operational modes

 

Quad 1 Quad g Quad 3 Description

scan RF only* RF only* Normal mass spectrum

no gas

RF only* RF only* scan Normal mass spectrum

no gas

fixed RF only"I scan Daughter scan: spectrum

gas on of all daughter ions

from a selected parent

scan RF only* fixed Parent scan: spectrum

gas on of all parents that

’fragment to form a

specific daughter ion

scan RF only' seen at a Neutral loss/gain scan:

gas on fixed offset spectrum of those

from Quad 1 parents that lose/gain a

given mass during a

collision

fixed RF on1y* fixed Single or multiple

gas on reaction monitoring

*RF only quadrupoles pass all masses (not mass filtering)
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substructural feature of the original molecule, and the

fragmentation (daughter) spectra of these ions are often

indicitive of these substructures. Other MS/MS information

(parent scans, neutral loss/gain scans, neutral spectra,

etc.) can also be used to identify structural fragments.

The general approach is to make correlations between a

known substructure and some subset of the complete MS/MS

fragmentation 'map. With a library of these correlations,

an unknown MS/MS fragmentation map can be quickly analyzed

for the indicated structural characteristics. In the first

implementation of this scheme, we will compare an unknown

daughter spectrum against a library of daughter spectra.

The closely matching daughter spectra are assumed to be

related to structural similarities, specifically common

substructures. The structures of the reference compounds

will be compared to determine the substructures they have

in common. Lists of substructure/spectrum correlations

will be made in this way. This process would be

impractical without a group of synergistic software tools

to help automate each step. Figure 1.1 shows in block form

each of the_ major tools needed for a project of this

magnitude.

An unknown sample enters the scheme diagramed in

Figure 1.1 as experimental data which is stored in the

multi-dimensional data base (see Chapter 3). These unknown
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daughter spectra are compared to spectra in the reference

data base (17-18) by matching algorithms (19-20, also see

Chapter 5). The substructures of the best matched daughter

spectra are obtained (currently these substructures are

manually entered, but algorithms to extract these

substructural features from structures of the parent

molecule are being developed). All resulting substructures

(and .information from other sources) will be used as input

to GENOA (21-23) to determine all chemically possible

structures 'that contain the identified substructures. The

final step involves analyzing GENOA’s output structures for

the major features and determining what experiments will

further reduce the number of candidate structures.

Thesis outline

This thesis describes my work toward automating the

data collection and analysis of a complex, multi-variate

instrument. That this work involves three vastly different

areas of computer science (real-time processing for control

systems, data base management and expert systems for data

analysis) underscores the diversity of techniques needed to

take full advantage of today’s automated instruments. This

dissertation consists of five chapters, including this

introduction. Each chapter is independent of the others

(although Chapter 4 refers back to Chapter 3 for details of



7

the data base) and includes introductory and concluding

remarks.

Control system hardware and software are discussed in

Chapter 2. This chapter describes the first and second

phases of the control system and its operation. The design

considerations and tradeoffs that went into each phase are

discussed. Although these phases of the control system

have been subsequently superseded, they provided an

excellent foundation on which more sophisticated systems

were implemented.

Chapter 3 describes a data_base for multi-dimensional

data. The first version of this data base software was

developed jointly with researchers at Lawrence Livermore

National Laboratory (24-25), but was modified and extended

locally. This data base software is currently running on

three TOMS instruments, and has proven to be extremely

reliable and invaluable for the storage of MS/MS data.

A special data retrieval program is discussed in

Chapter 4. Described is a program that is able to extract

any two dimensional plane of data from the multi-

dimensional data stored in the data base. This is a

convenient and powerful tool for trend analysis and allows

the user to look at a matrix of data from several

orthogonal axes.
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The final chapter describes some of the chemical

information available in MS/MS data, and presents several

ways of extracting some of this information from the data.

The concept of a neutral spectrum is introduced, it’s

utility is explored, and a simple expert system for the

analysis of these spectra is described. Also presented is

a grouping algorithm designed to cluster daughter and

neutral spectra so that the common structural features of

their parent molecules can be obtained. The substructural

information gained by using these techniques can be used to

help determine the overall structure of unknown compounds.

Conclusions

In this dissertation, the process of automating the

analysis of TOMS data is described, from the analog to

digital converter that samples the ion intensity, through

an expert system which samples the information present in

MS/MS data collected. Throughout this work, I have tried

to show that comprehensive software tools can aid the

chemist in such complex tasks as structure determination.

Someday these tools will be integrated with the addition of

an intelligent controller as shown in Figure 1.1. This

controller will be able to direct the experiments performed

by the instrument. The work that others and I have done in

Dr. Enke’s lab (solid lines and boxes in Figure 1.1) sets

an excellent foundation for these higher level systems.



Chapter 2

Instrument Control

Introduction

In the fall of 1978, the triple quadrupole mass

spectrometer designed by Drs. Richard Yost and Christie

Enke (2) produced it’s first daughter spectra. This

instrument, while designed to be controlled by computer,

was initially operated manually. The early TOMS instrument

used a ramp generator to sweep the mass selected by one of

the quadrupoles and had a strip chart recorder for data

output. To collect daughter spectra, the first quadrupole

was manually set (with a potentiometer) to the mass of a

parent ion (identified by an oscilloscope), the sweep

generator was switched to the third quadrupole, and a scan

was taken. The strip chart recording was then measured and

a mass scale added. As this process indicates, the

collection and analysis of each spectrum was a time

consuming task.

The design of a general purpose, single or multiple

microprocessor system for instrument control had been

initiated in the fall of 1978 (26). One of the goals of

this research was complete control of all instrumental

parameters of the TOMS. We realized that this would not be

9
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accomplished overnight, and decided to implement computer

control in three phases. The first phase would be a simple

digital strip chart recorder, the second phase would be the

implementation of the new microprocessor system hardware,

and the final phase would be complete computer control of

the instrument with a multiple microcomputer system.

Phase 1: Digital strip chart recorder

The first phase of the TOMS automation was the

implementation of a digital strip chart recorder. This

allowed a computer to generate the sweep signal for mass

selection and to collect the ion intensities. A computer

can then assign the mass values and display the data in

several different formats.

Digital strip chart recorder: Hardware

The INTEL 8085 microprocessor chip was chosen to be the

heart of the general purpose control computer. An 8085

microcomputer evaluation board, the SUE-85, was convenient

for implementing the first phase of the TOMS automation.

The SDK-85 is a microcomputer with a monitor (in read only

memory, ROM), a limited amount of program memory (random

access memory, RAM), a keypad, an eight character display

and an area for custom hardware. In the extra space

provided on the SDK-85, I wire-wapped interfaces to the
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instrument, a floppy disk drive and a keyboard/display unit

along with some extra RAM and ROM (see Figure 2.1). The

terminal I constructed for this system included two video

memories; a graphics memory which provided a low resolution

display (256 pixels horizontal by 240 pixels vertical) and

a text display which provided 16 lines of 64 characters.

Both of these memories, -a 9 inch monitor, a parallel

keyboard and a disk drive with an intelligent controller

were mounted in a terminal enclosure. This terminal was

connected to a parallel port on the SDK-85 with a ribbon

cable. The instrument was interfaced with a single

digital-to-analog converter (DAC) to control the mass.

selected by one of the quadrupoles, and an analog-to-

digital converter (ADC) to measure the ion intensity. The

ion current was converted to a voltage and amplified by a

Keithley model 18000 programmable current amplifier.

The disk drive (model 270) and intelligent controller

(model 1070) were manufactured by 'PERSCI. The disk

controller had an INTEL 8080 microprocessor which handled

all the disk functions (seek, read, write, etc) and

maintained a file structure. The use of this controller

saved much development time, since all the disk related

functions were already done. I wrote a program for the lab

PDP-ll minicomputer (PIPERSCI) to read and write PERSCI

formatted floppy disk. With PIPERSCI, programs are created

on the PDP-ll (with good editors and cross-compilers) and
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carried to the microcomputer for use. Data stored on a

floppy by the microcomputer are transferred to the PDP-ll

for post-processing and display.

Digital strip chart recorder: Software

Software for this control system was written entirely

in assembly language. The initial versions of the code

were assembled and typed in by hand; later versions were

cross-compiled on the PDP-ll and transferred to the

microcomputer on floppy disk. ‘ A bootstrap for the

microcomputer disk was burned into a ROM (after interfacing

a PROM programmer to the lab PDP-ll and writing a program

to burn the PROMs).

The final version of the control software for this

phase consisted of only a few commands (summarized in

Table 2.1). These commands consist of only the basics:

load in a new program, set the number of data points to

average, set the threshold level, scan a quadrupole, store

collected data to disk, and display data. This system was

not meant to be the final word in mass spectrometry control

systems, but was designed to replace the strip chart

recording method with a digital method and gain the

experience and tools required to design and implement a

more complete system. With this system, scans could be

initiated and data could be collected and stored on disk.
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Table 2.1

Summary of commands for the digital strip chart software

CHANGE

FSCAN

SCAN

DISP

WRITE

query the user for the following:

low mass

high mass

mass increment

number of points to average

threshold for saving data

quickly scan from low mass to high mass to

observe the peak on an oscillosc0pe

scan from low to high, collecting data

display the data on the graphics display

write the data to the disk
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Post processing and display of processed .data were

accomplished on a PDP-ll computer using programs written by

Phil Hoffman (18,27).

Phase 2: Single micro control system

The second phase of instrument control proceeded on two

fronts, the development of the control hardware and the

software systems. The design and development of

microprocessor hardware modules was done primarily by Bruce

Newcome (26,28). My role in the development of the

hardware was as the software consultant. Together, we

would determine whether a hardware design ’feature’ would

make programming the hardware easier, or conversely make

the software much more difficult to code. By designing

both the hardware and software together, we were able to

trade off functions between hardware and software for the

most efficient operation of the resulting system. The

hardware will be briefly described here to enable the

reader to gain appreciation for the control software.

Single micro control system: Hardware

As can be seen in Figure 2.2, the Newcome micro-

processor has bus connections on two levels; each module is

attached to a ’mother-board’, which is in turn plugged into

a backplane. Each ’Bruce-bus’ microprocessor module
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performs one specific function. A set of these modules are

joined to comprise a microcomputer system. The ’standard’

microcomputer board consists of an 8085 microprocessor

board, a memory board capable of holding either RAM or ROM,

two serial ports and an interrupt controller. This

hardware modularity allows a great deal of flexibility in

the design of a control microcomputer system.

Specific modules for the triple quadrupole mass

spectrometer control consisted of two digital-to-analog

converters (DACs), one analog-to-digital converter (ADC), a

controller for a Keithley programmable current amplifier,

two video displays and a keyboard. Each of the DACs

controlled one quadrupole power supply, allowing the

software to select masses in both quadrupoles. With

computer control of the amplification range of the Keithley

amplifier, the microcomputer was able to sample the input

signal and adjust the gain for a 10s dynamic range. The

graphics and alphanumeric video memories were split to

separate display units, allowing simultaneous display of

data and of the collection parameters. The terminal

constructed for the first phase was dismantled and the disk

drive was built into the TOMS console.
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Single micro control system: Software

The development of microcomputer systems from the chip

level necessitated the development of software for testing

both hardware and software. At that time, there were no

affordable, commercially available software packages that

could be adapted to our needs. The first versions of the

home-built microcomputers were debugged with highly

specific software; the first operating processor/memory

combination did nothing but flash a light on the CPU board.

As the hardware matured, so did the software. A software

monitor (called "Dr. Memory"), able to operate on any

standard CPU board, was developed and refined, and used as

the basis of more complex software systems. This monitor

is the equivalent of a simple operating system, complete

with device drivers for the commonly used peripherals (i.e.

the terminal and disk). This frees the user to program

the higher level functions without concern for the details

of the hardware registers. Although this monitor eased the

hardware dependencies of the applications software, a more

complete programming system and command interpreter was

needed.

A library of commands, and a programming system was

developed (the structured library oriented programming

system, SLOPS) as a basis for specific control

applications. Finally, control software for the triple
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quadrupole mass spectrometer was implemented using the

tools provided by both Dr. Memory and SLOPS. In practice,

all three levels of programming (monitor, library and

control software) were developed concurrently, but they

will be described separately below. Today, one would

choose from a variety of convenient and inexpensive hard-

ware and software modules that are commercially available,

but at this. relatively early time in microprocessor

applications, we were on our own. Figure 2.3 shows the

relationship between currently available software modules

and Dr. Memory, SLOPS and the applications programs.

Dr. Memory’s monitor

A monitor for the home-built microcomputer systems

needs the following characteristics: handle all terminal

I/O, allow display/change of memory locations, execute code

starting at any location, stop and restart execution of

programs and load software. Dr. Memory was designed with

all these features in mind, and the code fit in only

2 Kbytes of ROM, complete with help screens, communication

software and general purpose I/O subroutines.

Dr. Memory is a general purpose monitor used for both

hardware and software debugging. The majority of the

available commands (listed briefly in Table 2.2 and more

fully in Appendix 1) are for examining and changing memory
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Table 2.2

Dr. Memory’s Monitor. (V2.6 9/3/80)

Commands Description

Break Breakpoint - stops program execution

<ESC> Cold restart - used to clean up user stack

0 Octal entry and display format

H Hexadecimal entry and display

? Prints a summary of this text

a/ Open location a for modification

a\ Opens two bytes for modification

n<CR> Modify open location, close it

n<LF> Modify, close, open next location

nA Modify, close, open previous location

Sr Open register <abcdefhilABDHSP>

aG Start user program at location a

P Procede (at saved PC)

S Start the second EPROM (SLOPS)

T Talk to the PDP-11

L Download from the PDP 11/40

Note: a’s and n’s are optional, defaulting to the last

value.

Restarts fig; Description

RST 0 C7 Cold restart - sets default stack, etc.

EST 1 CF A \

EST 2 D7 BC \ Diagnostics - prints

RST 3 DE DE ) the contents of the

RST 4 E7 HL / indicated registers

RST 5 EF PC /

RST 6 F7 SP, flags printed

RST 7 FF~ Breakpoint (warm restart)

Useful subroutines

Crlf Outputs a <CR><LF> combination

Downld Downloads data from the PDP ll

Efclr Clears an event flag

Getnum Gets a number input

Gettt Gets a character from the USARTs

Lights Sends a predefined light pattern out

Lite Sends a specified light pattern out

Nulljb Boredom routine

Print Prints an ASCII string

Putnum Outputs a number

Puttt Writes a character to a USART

Rhlr Rotates HL right
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locations, and starting programs. New pieces of hardware

are easily checked out with this tool. The new interface

hardware is connected into the system, the power applied,

and the operator can use Dr. Memory to access the registers

of the new device and manually exercise and test it.

Software (8085 assembly language) entered into the lab

PDP-11 computer is cross-compiled and downloaded to the

microcomputer. Dr. Memory has two commands that facilitate

this process: TALK and DOWNLOAD. TALK is a routine to

connect the user’s terminal to the PDP—ll through a second

serial port. The DOWNLOAD command instructs the

microcomputer to accept a program from the PDP-ll, and load

it directly into memory. Dr. Memory is used to start

execution of these new routines, and stop execution at any

time to examine memory or registers.

This monitor includes a series of software debugging

tools to aid the assembly language programmer. The 8085

restart commands (EST 0 to RST 7) are software interrupts,

used in the monitor as debugging breakpoints and display

routines. Restarts 1-6 print the contents of different

registers and restart 0 initiates a cold restart (as if the

power were just applied). The breakpoint restart (RST 7)

is the most powerful restart for the programmer, returning

control to Dr. Memory. The complete context of the user’s

program is saved, and the programmer is able to examine and
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change registers and memory locations. When control is

returned to the program under test, the program’s context

is restored and program execution continues as if the

breakpoint never occurred.

Dr. Memory’s monitor internal structure

Internally, Dr. Memory consists of data tables,

interrupt handlers, subroutines and a command processor.

All the terminal I/O’s are interrupt driven, so commands

can be entered and buffered while the microcomputer is

performing another task. These commands are executed when

the current command finishes. A break character from the

console terminal acts as a special command, caught by the

interrupt handler, which causes the microcomputer to stop

executing the current program, saves the program context

and returns control to Dr. Memory. The command processor

is a simple program that accepts input from the terminal

and checks it against the list of available commands.

Valid commands are executed while undefined input returns a

"Say what?" response.

A special subroutine, NULLJB, is called whenever the

microcomputer is not executing a command or when terminal

input is pending. This subroutine continually checks for

an ’event’ to occur (a character input from either serial

port, a timer to go off, or any other interrupt process),
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at which time control is returned to the calling program if

the program was waiting for that event. While NULLJB is

waiting for an event to occur, it flashes the lights on the

processor board in a characteristic pattern. By watching

the microcomputer, one can instantly tell if a program is

running or waiting for input.

l

Structured Library Oriented Programming System

The structured library oriented programming system

(SLOPS) defines a structure for both commands and

subroutines (which are identical in SLOPS’ view of the

world). The base SLOPS system fits into 2 Ebytes ROM, and

consists of a command processor (more elaborate than Dr.

Memory’s command processor) and a series of subroutines

and/or commands. The basic premise for SLOPS is to create

a library of entries (either subroutines or commands) which

can be built upon to create new, more elaborate entries.

These entries are chained together to form a linked list

which can be quickly scanned.

SLOPS is conceptually similar to the FORTH programming

language (29), in that they are both threaded, interpreting

compilers. When either programming system is started, it

is in interactive mode. In this mode, commands entered are

immediately executed. A new command definition, when

entered, is "compiled", stored in memory, and ready for
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execution. This compilation phase searches the library (or

dictionary, as it is called in FORTH) for each word in the

definition and replaces it with the address of that

subroutine, or assembles the instruction if necessary.

This process of combining previously defined modules to

form more complex functions is the basis of threaded

programming.

The major difference between SLOPS, FORTH and CONVERS

(a FORTH style language developed by Bonner Denton, et. al.

at the University of Arizona) (30-31) is the way arguments

are handled. Both FORTH and CONVERS are post-fix languages

(similar to Hewlett-Packard calculators), while SLOPS uses

pre-fix notation. In FORTH, arguments for the subroutine or

function are assumed .to be pushed onto an internal stack

followed by the function (i.e. 2 2 +), while SLOPS

functions assume arguments will follow the function name

(i.e. + 2 2). Both of these notations have merits, but

pre-fix notation seemed clearer, especially for single

argument functions (i.e. MASS 41).

At the time we needed to implement the control software

for the TOMS instrument, FORTH was only available for

PDP-11 minicomputers. CONVERS was developed at. the

University of Arizona as a FORTH style language for the

'INTEL 8080 series microcomputers, and was implemented in

our lab by Eric Carlson (32) for an early version of the
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multi-microcomputer system used to control a stopped-flow

spectrophotometer. Instead of porting CONVERS to the new

microcomputer hardware, we decided to use the experience

and concepts gained from the development of CONVERS to

implement a new, hopefully better, programming system.

SLOPS internal structure

Each library entry consists of a header flag, the name

of the entry, a link to the next entry, and the entry

itself. The header flag byte contains the length of the

entry’s name and a two bit flag describing the type of.

entry. Only three types of entries are currently used.

Figure 2.4 shows each of the entry formats. Two of the

formats have variable length entries; hence they have link

fields pointing to the next entry in the library. The

other two types of entries have fixed lengths and do not

require link fields, saving a few bytes of RAM per entry.

The subroutine or command library entry is the most

common type of entry. The code for the subroutine starts

immediately after the link field and can be as long as the

available RAM. The macro library entry is presently

unused. The label and assembler library entries are used

for _the built in assembler/linker. The data field of the

label entry is two bytes long, and can be either a value or

an address (absolute or relative). The data field for the
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assembler entry is one byte long, and is the microprocessor

operational code for this mnemonic.

The command processing routine of SLOPS prompts the

user for one or more lines of input, and breaks the input

stream down into ”words”. These ”words" are defined as

alphanumeric strings delimited by non-alpha characters

(spaces, commas, quotes, etc.) The input words are kept in

a forward-chaining stack, and the first word in a line is

assumed to be a command. The command processor searches

the library for a match, and if a subrbutine/command is

found, it is executed. If the executing procedure needs

input parameters, it gets them from the word stack; if no

words are available, SLOPS prompts the user for the

required input. Any executing task is able to call any

subroutine in the system, recursively if necessary. When

any procedure is finished, it simply RETURNs to the program

that called it. The top level command, when done, returns

to SLOPS. If more words are in the word stack, they are

then executed in turn until the stack is empty, and SLOPS

prompts the user for more commands.

The base SLOPS system contains a number of useful

subroutines as well as the command kernel. Table 2.3

contains a list commands and brief descriptions of each

subroutine or command, and Appendix 1 is an abbreviated

form of the user’s manuals for both Dr. Memory and SLOPS.



Subroutines

Addr

Ascii

Blank

Brkdwn

Check

Cvtext

Cvtint

Dcmp

Delay

Link

Number

Search

Ttyin

Word
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Table 2.3

Basic SLOPS subroutines and commands

Returns code address of library entry

Converts binary to and from ASCII

Clears the screen

Breaks input line into words

Compares word with library entry

Converts a number to ASCII string

Converts ASCII string to binary number

Double compare

Software time delay

Links to next library entry

Get number from word stack

Search library for a match

Gets a line of input

Get word from word stack

(also see subroutines listed under Dr. Memory)

Arithgetic subroutines

Ddiv

Div

Dmult

Dsub

Mult

Commands

Convert

Downld

Drmem

Talk

Double divide

Divide

Double multiply

Double subtract

Multiply

Converts a number to any base

Loads from the PDP 11 (See Dr. Memory)

Puts Dr. Memory in control

Talk to the PDP 11 (See Dr. Memory)
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As can be seen from this list, about half of the

subroutines are used by SLOPS to keep track of library

entries, etc. The other half are general purpose

subroutines (double multiply, convert binary to/from ASCII,

etc.) An extended SLOPS system includes an 8085 assembler

and many more general purpose subroutines.

The extended SLOPS system is a powerful tool for

software development. The user is able to create and test

small subroutines and build more complex systems using

these building blocks. Execution speed of the resulting

commands is excellent due to the extensive use of assembly

language and the low overhead of the command processor.

When a library of low level commands is built, this system

behaves like a higher level programming language, allowing

the programmer to use structured programming techniques.

Mass spectrometer control software

SLOPS provided a good foundation for control software

for the triple quadrupole mass spectrometer. The new

control hardware featured two video displays, one for

graphics and another for status display and user

interaction. The graphics screen could be logically

divided into two halves termed the upper and lower

displays. Each of these displays were equivalent, but

could be programmed independently. The status display also
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had two ’halves’ to control each half of the graphics

display. The status display, shown in Table 2.4, displayed

the current status of the instrument, the mass range for

each quadrupole to scan and the threshold for gathering and

storing intensity data.

Table 2.4

TOMS status display

UPPER LOWER

Mass: Quad 1 xxx-xxx xxx-xxx

Quad 3 xxx-xxx xxx-xxx

# pts to avg xxxxx xxxxx

threshold xxx.x:-x xxx.xz-x

min/max range -x/-x -x/-x

Quad 1 Quad 3 Intensity

DC:xxx.x RF:xxx.x xxx.x:-x

The two halves of each screen effectively allow two

separate experiments to be run simultaneously. This

feature, as well as much improved graphics and the ability

to change the gain on the amplifier during data collection,

made this control software much more convenient and

versatile than the ’digital strip chart’ of phase 1.

The commands available to the operator of this system

are listed in Table 2.5. The control software allows four

sets of parameters to be stored (with the SAVE command) and

retrieved (with the GET command). This allows the operator

to set up several different experiments and quickly switch



INI

GET

SAVE

PARAM

MANUAL

FSCAN

SCAN

WDATA
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Table 2.5

TOMS control system commands

Initializes the system, clearing the displays,

setting default mass values, etc.

Gets a set of parameters from one of four stored

setting areas.

Saves the current parameter table in a bank of

parameter tables, for future recall.

Sets general parameters. It acts in a ’single

character input’ mode for the parameter to change,

i.e. ’O’ not ’OUAD’ for changing a Ouad’s mass

range. The parameters for either graph, the UPPER

or the LOWER, must be changed individually, and the

commands U and L identify which graph is being

changed. -

The following commands are currently supported:

O n low~high Changes Ouad n’s mass range

T int range Changes the threshold

R min-max Changes the min and max range

A n Changes the # of points to average

G low,n Changes the low mass on the graph

F Changes flags, each flag queried

M text Puts message on the status display

H text . Puts a header (title) on the graph

? Prints a summary of the options

AZ exits (control Z)

Implements ’manual’ control. Using the keypad of

the terminal, the keys 1, 2 and 3 are for quad l; 4,

5 and 6 are for quad 3; and keys 7, 8 and 9 are for

the range. Keys 1, 4 and 7 decrease the current

value by 1, keys 2, 5 and 8 set the current value

into the parameter table, and keys 3, 6 and 9

increase the current value by l.

Increments the mass, checks for a typed character,

and if none entered, leaps about.

Scans the set mass ranges, collects data, updates

the screens, records the data and loops until a

character is typed.

Writes the data from RAM to a disk file.
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between them. Setting parameters is accomplished by using

the PARAM command. The parameter changes are immediately

displayed on the status and/or graphics displays. The

MANUAL command allows the operator to step the quadrupole

masses by single DAC units to accurately find the maximum

of a peak. For example, when set up for a daughter scan,

the MANUAL command allows the operator to tune the first

quadrupole mass to the maximum intensity (which might not

be an integral mass due to calibration inaccuracies).

Two commands, FSCAN and SCAN sweep one or both (as

defined on the status display) quadrupole masses from the

preset minima to the maxima. The FSCAN command sweeps

quickly, allowing the spectra to be displayed on an

oscilloscope. The SCAN command is necessarily slower since

data are being collected and averaged. Each of these

commands sweeps the entire specified range of one or both

displays, and restarts the sweep unless told to stop by any

keystroke on the keyboard. One last command, WDATA, writes

the data collected by a SCAN command to the disk for post

processing by the lab PDP—11 computer.

This control software is written as a series of modular

subroutines allowing for independent testing of each

module. Appendix I briefly describes the library of

subroutines created for and used by this system.

Enhancements to the control software, such as special
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purpose commands, are easily constructed using these

routines as a foundation.

Phase 3: Current mass spectrometer control system

The single microcomputer system described above was a

temporary solution to the control problem. When that

system was implemented, we were aware that the system could

not be operated at the high speeds we desired. The third

and current phase of instrument control was accomplished

with a multiple microprocessor system, designed and

implemented to allow several tasks to run concurrently. A

full description of the control hardware can be found

elsewhere (26,33).

Commercial software tools and systems were being

developed and becoming available during the implementation

of the SLOPS based system. These tools were now

sufficiently powerful, flexible and affordable that we

decided to implement the third phase of software control

using these tools. The control software for the multiple

microprocessor system was written in the FORTH programming

language, now available for microprocessors. FORTH is a

high level programming language commercially available that

is well suited to control systems. The experience gained

from the SLOPS based control system was invaluable in the

design and implementation of the current FORTH based
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software. Complete descriptions of the current control

software can be found in Carl Myerholtz’s thesis with

modifications by Adam Shubert and Mike Kristo (11,34-39).

Conclusions

The triple quadrupole. mass spectrometer is a complex

and experimental instrument, and automation could not occur

in a single step. The three-phase process described in

this chapter worked very well, allowing us to become

familiar with the advantages and disadvantages of various

techniques. The transition from a completely manually~

operated instrument to a completely computer controlled

instrument was arduous both in implementing the

harware/software as well as in convincing the operators

that a computer can reliably operate a complex instrument.



Chapter 3

Multi-dimensional Instrument Data Base

Introduction

The evolution of GC/MS brought with it the development

of computer data systems designed to handle the additional

dimension of time as well as the mass and intensity axes.

However, even three dimensions are inadequate to cope with

the measurement capabilities of MS/MS instruments and many

other modern computer-controlled systems. In the case of a

totally computer-controlled MS/MS, a large number of

variables can be scanned, either singly or jointly. Each

such scan will produce one plane of information in a multi-

dimensional data base. As an example, the axial energy can

be scanned at fixed masses or the mass (in either quad 1 or

quad 3) can be scanned with incremental changes in axial

energy. Other variables (dimensions) include direct inlet

probe temperature, collision gas pressure, ionization

voltage, chemical ionization gas pressure, lens voltages

(both in the source and between quadrupoles), collision gas

type and others. Thus, a new, more versatile data base

management system was required.

36
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Fortunately, the storage of all these data has become

affordable using computers with large capacity disks and

magnetic tapes. Now the analyst can store all data as they

are acquired on disk, and subsequently put them on magnetic

tape for archival storage. Once these data are stored, the

problem becomes one of rapidly and flexibly accessing the

data. An additional problem in multi-dimensional

instrumentation is the need to extract any plane of

information in the data base, even if that plane does not

correspond to the types of scans that produced the data

base. The concerns of data retrieval are explored in the

next chapter.

The chemical literature contains many examples of

systems for creating and searching libraries (40-49). There

are also suggestions for using pattern recognition (50-55)

and artificial intelligence or heuristic (21,56-59) means

of (interpreting data. Little is said, though, about rapid,

versatile and efficient initial storage of raw data in real

time. We have developed a system that provides these

storage characteristics, provides for storage of multi-

dimensional data, and incorporates mechanisms for rapidly

accessing the data.
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Scientific versus business data bases

In many ways, both business and scientific data bases

are similar, but there are significant differences (60-74).

Business data bases must be able to handle text ("warehouse

X"), integers (52 widgets left in stock), and floating

point numbers ($42,000) (60-72). In addition to these

requirements, ’scientific data bases may also have to

accommodate bit strings, vectors, arrays, graphs and multi—

dimensional data (63-74). Both types of systems must have

query languages, or methods to retrieve the data stored in

the data base. Business systems usually require a small

set of specific answers (all employees with salaries

greater than $30,000). Scientific data base retrieval

languages or programs must .be able to handle the

uncertainty (error) present in many scientific measurements

(68). Queries must be made in the form ”retrieve all

energies between -20 volts and -18 volts". Both data base

query systems must be able to join several queries ("names

of employees older than 62" AND "been with the company

longer than 15 years"), and display the results as lists,

tables or graphs.

The data formats of business data bases must be defined

before, use by the data base administrator using a data

definition language, and the data are often entered by

keypunch operators. The structure of the data base must be
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carefully considered and analyzed, for the resulting data

base may be in use for many years. This data base

definition process can take weeks or months, and has

spawned an industry that provides data base definition

templates for the popular data base programs. Scientific

data bases, especially those created by during an

experiment, must be created quickly (possibly

automatically) and be able to accept data from the ongoing

experiment in real time. A scientist does not have the

time to spend weeks organizing a data base for one

experiment, and then redefine the data base for the next!

A scientific data base must be easily adapted to new and

rapidly changing problems.

Survey of data base structures

There are essentially 4 major structures for data

bases: flat file, hierarchial, network and relational

(so-61,72). or these, the flat file is the simplest, and

is used in the majority of the ”spread sheet” programs for

micro- and mini-computers (75-76). These flat files are

two-dimensional tables consisting of columns for each

variable or attribute, and rows for each observation or

‘instance. If the data to be recorded are amenable to this

form with minimum duplication of values, this format is

efficient and can represent a natural working order of data
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from right to left and top to bottom. Example 1 in

Figure 3.1 illustrates a simple flat file data base.

Hierarchial data bases provide 1 to N links between

records, such that one root record may have one or more

"child” records, each of which may have one or more

"grandchild” records, and so forth. An illustration of an

hierarchical data base can be seen in example 2 in

Figure 3.1, where Prof. Smith teaches 3 classes and Prof.

Jones teaches two others. By providing the links between

the records, redundant information (Prof. Smith teaches

math 101; Prof. Smith teaches math 103, etc.) is.

eliminated.

Network model data bases provide for N to M linkages

between records, and have all the features and advantages

of hierarchial data bases. In addition, they provide more

flexible ways to interconnect records, allowing almost all

redundant information to be eliminated. Example 3 in

Figure 3.1 shows a simple network data base.. As is

expected, this increased flexibility comes at a price;

network model data bases are more complex than hierarchial

models, and often require special training for data base

administrators.

Relational data bases make a radical departure from the

linkage schemes used in both hierarchial and network
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models. In the relational model, all data are stored in

flat file format, and "relations" are established between

various tables. In this manner, implicit links are made

between relations as opposed to the explicit links needed

in hierarchial and network models. The data base system

creates these links as needed by "joining" tables together

on the fly. Example 4 in Figure 3.1 shows an example of a

simple relational data base. This type of data base is

easy to maintain (the flat files are conceptually simpler),

but require more computational power to join relations for

all but the simplest queries. For example, from

Figure 3.1, a query ”list all students of Prof. Jones"

requires the course number from the two tables to be

joined, and only students in one of Prof. Jones’ classes to

be listed.

Data base capabilities

We have included in our system several capabilities

that have been either overlooked or not necessary in past

data base management implementations for scientific

instrumentation (see Table 3.1).

These extra capabilities of the multi-dimensional data

base system are essential for use with our triple

quadrupole mass spectrometers. There is a large degree of

interdependence among the TOMS parameters, and the effects
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Table 3.1

Capabilities of the multi-dimensional data base

1) The ability to store all instrument parameters

2) The ability to store a variety of changing parameters

3) The ability to store any X/Y data pairs (such as

mass/intensity and energy/intensity pairs)

4) The ability to add comments before, during or after

the experiment.

5) One compound or experiment for each dataset.

of these dependencies are not yet completely understood.

Storage of all instrumental parameters along with the data

is required if we are to fully understand these parameters.

To study these interdependencies effectively, the operator

may vary several parameters incrementally to obtain a

dataset with multiple dimensions of data. These data can

later be searched in a variety of ways to study the effects

of individual instrumental parameters.

For many research applications, complete mass spectra

or daughter spectra are not required. For an energy

dependence study, the operator may want to vary the axial

energy for a certain parent/daughter fragmentation. This

data base is able to handle these data (intensity vs. axial

energy) as well as the more usual mass spectral data

(intensity vs. mass). The additional capability ‘Df

allowing the operator to enter comments at any time clur‘i-r‘g

the experiment allow the dataset to be used as a notebook ’
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storing information about that experiment with the

experimental data.

An example of multi-dimensional data

The control systems for the triple quadrupole mass

spectrometers at MSU have the ability to devise "methods"

which allow the rapid collection of multiple dimensions of

data. This is useful for characterizing both the

instrument as well as a chemical sample. A method to

collect data for a study of axial energy and collision gas

pressure would follow the outline presented in Table 3.2.

Table 3.2

Method to collect 5 dimensions of data

1) LOOP: collision gas pressure: from low to high.

2) LOOP: axial energy: from low to high.

3) LOOP: quad 1 mass: set to parent in the EI spectrum

4) scan quad 3. _

5) continue to the next parent mass

6) continue to the next energy

7) continue to the next pressure

This method creates a five dimensional dataset:

collision pressure, axial energy, quad 1 mass, quad 3 mass

and intensity. This- dataset contains a wealth of

information about the compound, and the data are collected

automatically (except for setting the collision gas

pressure). The operator is then able to search through
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this dataset and extract a plane of information, even if

that plane wasn’t specifically scanned. For example, with

this dataset, we can extract data to produce a plot of the

intensity vs. axial energy for a certain parent/daughter

pair at a specific collision pressure. Details of data

retrieval and extraction from a dataset are presented in

the next chapter (24-25,77).

A programmer’s view of the data base

The data base definition is complete when the variables

to be studied are defined. Since many experimental.

parameters will not change, an hierarchial model was chosen

for this application. At the top level or root of the

hierarchy are the parameters that do not change during the

course of the experiment. A second level was implemented

in order to store a traditional mass spectrum as one record

in the data base. This structure was choosen to reduce

redundancy in the data base, and hence conserve disk space.

The details of the data base structure are presented later

in this chapter.

The portion of this system used to write and read data

to and from the data base consists of a series of FORTRAN

subroutines. These subroutines are easy to incorporate

into any computer-controlled instrument. Only a few 11088

of code are needed to implement this data base system into
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the control software (see Figure 3.2). All the work of

managing the data in a dataset is accomplished by a set of

subroutines which frees the programmer to concentrate on

other aspects of the project. Appendix 2 provides more

information regarding the subroutines used for data storage

and retrieval.

Because the subroutines are short and data storage is

efficient, this system could be added to many existing

dedicated instrument control computers. It could also be

put on a separate, time-shared computer system, with a high

speed data link. Both of the triple quadrupole mass

spectrometers at MSU are controlled by one or several

microprocessors linked to a minicomputer which handles the

data storage and retrieval. This allows for the efficient

separation of tasks, the data acquisition and the data

storage and retrieval. By using separate computers, the

instrument can be collecting data while other operators

analyze their previously collected data.

Data base file formats

Computer files are generally organized in one of three

ways: sequential, indexed or direct (60—62,71,78). A

sequential file is the simplest, and as the name implieS.

is a sequentially ordered collection of information, placed

in the file as received and packed in an unstructured WHY-
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PROGRAM SAMPLE

INCLUDE ’MDDB.CMN’ ! include the commons

REAL*4 X(500),Y(500) ! arrays for data

LOONTI = 5 ! define the terminal LUN

CALL MSINIT ! initialize things

IF (IERR .NE. 0) THEN ... 9 check for errors

IFILE = 1 ! define the dataset number

CALL MSOPEN(IFILE,’New dataset name? ’,’NEW’,2,3,4)

! open new dataset, using

2 LUNs 2,3,4.

Now define the variables

NUMSTC(IFILE) = 3 ! three static variables

ISTATC(1,IFILE) = 23 2 the first is code #23

RSTATC(1,IFILE) = 2.0 9 and it’s value is 2.

NUMVAR(IFILE) = 6 ! six variable parameters

IVAR(1,IFILE) = 42 2 first variable is #42

CALL PUTPRM(IFILE) ! and write to the dataset

(fill up the X, Y arrays with data)

RVAR(n,IFILE) = value ! record the variables

NUMDAT(IFILE) = xx ! number of data pairs

CALL PUTDAT(IFILE,X,Y) ! and store the data

IF (more) GOTO 10

CLOSE (UNIT=2) ! close all the files

END ! and all done

Writing to the multi-dimensional data set

Figure 3.2
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If these data are written in such a way that they can be

printed or displayed directly without any processing, the

file is called a sequential, formatted ASCII file. This

type of file is almost never used for large amounts of

data, as it requires a great deal of space on the disk and

is cumbersome to access.

A variation, 'of an unformatted sequential file, is

again sequential, but the data are written in internal

(unformatted or non-printing) format. This is a compact

form of storing data. It has been used in some instrument

data systems, but has several drawbacks, the most severe

being access speed. As with any sequential file, the only

way to find any particular piece of data is to start at the

beginning of the file and read all entries until the

particular datum is encountered. For large datasets, this

is a very slow process.

A second type of file format is an indexed file. In

this type of file, a "key field" is associated with some

part of the data record. the keys from all the records are

collected in one or more structured indicies, and access to

the records are provided through these indicies. This is a

powerful file format, but unfortunately is not part of the

FORTRAN-77 standard. It was not used in order to remain

within the standard. Another drawback is the time required

to write a record; after the data are written, the file
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system must update the indicies which could slow the data

collection process down.

A third type of file is a direct access file. The file

is broken into fixed length records, and any one of these

records may be accessed almost immediately. An elementary

direct access file, consisting of one record per scan,

could be used by an instrument that always puts out a fixed

amount of data. For mass spectrometry, this format would

waste a great deal of space, as the fixed record length

would have to be long enough to hold the maximum number of

mass/intensity pairs that might be recorded in any one

scan. Table 3.3 shows the advantages and disadvantages of

sequential, indexed and direct access files.

Table 3.3

Comparison of sequential and direct access files

 

Sequential Indexed Direct

Record length variable fixed fixed

Time required fast medium fast

to write record

Access speed to slow fast fast

specific datum

Memory/storage very wastes wastes

space compact space sapace
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In our system we have combined elements of several file

types to create a fast, efficient system. An unformatted,

sequential file, the header file, is used to store a

variety of information that describes the instrument, the

experimental conditions, and the variables to be recorded.

This file also contains the instrumental parameters that

did not change during the given experiment, and these

variables become the root of the data base hierarchy. A

second file, the pointer file, is written with short,

direct access records. The major function of this file is

to record the starting record number (pointer or index) of

the variables and data pairs located in the third file.‘

This file also contains some redundant data for fast data

retrieval. The third file, the data file, is also direct

access and contains the values for variable parameters and

the X-Y data pairs acquired. Another file, the instrument

description or dictionary file, is also direct access and

each record contains a definition of a variable or

parameter. Each file is described in more detail below.

Dictionary file

The instrument description file, or dictionary,

contains complete descriptions ' of the instrumental

parameters that may be varied or recorded. To reduce

computer storage, all variables and parameters are assigned

a code number. These code numbers are the record numbers in
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a direct access file which point to the descriptions of

each code number. Two descriptions are stored for each

code number, a short one (less than 20 characters) and a

long one (up to 57 characters), and one flag integer (see

Figure 3.3). The short descriptions are used for speed when

the operator is entering them, or when display space is at

a premium. The long descriptions are more suitable for

tables and graphs. The general purpose nature of the data

base is thus maintained by conferring the instrument-

specific parameter lists to this file, which is, in effect,

a kind of conversion table or template. Each different

instrument can have it’s own dictionary file.

The flag associated with each description in the

dictionary tells how that description is used. If the flag

is greater than zero for a particular code (say the code

for ”collision gas type”), the value associated with the

variable also needs to be looked up in the dictionary. For

example, if we were looking at code 81, "collision gas

type”, and had a value of l, we would display ”Argon", not

the numeric value 1 (see Figure 3.4, example 1). In this

case, the flag is a pointer into the dictionary, and the

value is an offset from this pointer. However, if the flag

were zero, we would use the definition itself; in this

case, there either isn’t a value (as in the "Argon" example

above), or the value has no physical meaning. In the final

case, when the flag is negative (or more precisely, a
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Record Number Record Contents (80 byte direct access records)
  

 

     
1 A20 A58 l2

QSDICT OLDICT IPTDIC

QSDlCT Short description of instrument parameter

QLDICT Long description of instrument parameter

lPTDlC Flag: -1 ==> The value is the answer

(i.e. "70.0" eV)

0 ==> No values

. (i.e. ”Argon")

>0 ==> Must look up the value

(i.e. gas #1 = "Argon”)

END

More definitions

Instrument description file format

Figure 3.3



Example 1:

Parameter 3'81 has a value at 3

record __]

81

m+1

m+2

m+3

 

     

 

 

 

  

'CAD Gas Collision Gas m

me no

AR Argon 0

N2 Nitrogen O

HE Helium 0
  

Result: Collision Gas: Helium

Example 2:

Parameter #fo has a value of 70.0

record

 

 

 

20
 
eV

 
Electron Energy

   

Result: Electron Energy: 70.0

Use of the dictionary file

Figure 3.4
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"-l"), the value itself has physical significance, such as

70.0 eV electrons (see Figure 3.4, example 2).

The instrument description file is a powerful feature

of this system. By changing this dictionary, the data base

management software can be used by almost any analytical

instrument. Table 3.4 shows a portion of the dictionary

for our triple quadrupole mass spectrometer. Modifications

to an instrument often add new variables, and many data

base systems would need to be fundamentally modified to

account for the new parameter. This software only requires

the addition of a new definition in the dictionary.

Header file

The header file serves primarily as a notebook, storing

a variety of numerical and textual descriptions of the

analysis. Included in this file are the values of all

instrument parameters that will not change in the

experiment. Examples of these static parameters are the

operator’s name, positive ion mode, EI spectra, etc. (see

Table 3.5, a sample dump of a header file). Other

parameters that will change in the course of the experiment

are called variables, and their codes are listed in this

file. The contents and order of data in the header file

are diagramed in Figure 3.5 and summarized in Table 3.6.
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Table 3.4

Definitions in the TOMS dictionary

Operator

1) John

2) Milton

Date

Scan type

1) lscan

2) 3scan

3) Dscan

4) Pscan

5) Nscan

6) Sweep

7) Stable ion

Neutral Loss Mass

Parent mass

Daughter mass

Source

1) CI

2) EI

Ions

1) Pos

2) Neg

SP

CI Gas

1) CH4

2) H2

3) CH4+N20

FC

~EC

eV

Ion Volume

Repeller

CI Drawout

EIV

Ql Lens 1

Q1 Lens 2

Q1 Lens 3

Q1 Offset

Ql Mode

1) RF

2) DC

3) Scan

Q1 Mass

01 Delta M

Q1 Res.

02 Lens 1

02 Lens 2

02 Lens 3

02 Offset

02 Pressure

Operator

John 0. Public

Milton Webber

Date of Experiment

Scan type

Quad 1 scan

Quad 3 scan

Daughter Ion Scan

Parent Ion Scan

Neutral Loss (gain) Scan

Potential Sweep

Stable ion Scan

Neutral Loss (gain) Mass (amu)

Parent mass

Daughter mass

Source Type

Chemical Ionization

Electron Impact

Ion Type

Positive Ions

Negative Ions

Source Pressure (Torr)

Chemical Ionization Gas

Methane

Hydrogen

Methane + Dinitrogen Oxide

Filament Current ,(Amperes)

Emission Current (Milliamperes)

Electron Energy (Volts)

Ion Volume (Volts)

Repeller Potential (Volts)

CI Drawout-Potential (Volts)

EI Ion Volume (Volts)

Pre-Quad 1 Lens 1 Potential (V)

Pre-Quad 1 Lens 2 Potential (V)

Pre-Quad 1 Lens 3 Potential (V)

Quad 1 Offset Potential (Volts)

Quad 1 Mode

RF Only (No mass filtering)

DC (Mass Filtering)

Scan

Quad 1 Mass (amu)

Quad 1 Delta M

Quad 1 Resolution

Pre-Quad 2 Lens 1 Potential (V)

Pre-Quad 2 Lens 2 Potential (V)

Pre-Quad 2 Lens 3 Potential (V)

Quad 2 Offset Potential (Volts)

Quad 2 Pressure (Torr)



81)

104)

105)

106)

107)

108)

109)

112)

113)

114)

135)

136)

140)

141)

142)

143)

Table 3.

CAD Gas

1) AR

2) N2

3) RE

4) SF6

5) 002

6) CH4

7) NZ

8) CH4+N20

Q3 Lens 3

Q3 Lens 2

Q3 Lens 3

Q3 Offset

Q3 Mode

1) RF

2) DC

3) Scan

Q3 Mass

Q3 Delta M

Q3 Res.

EM Lens 1

Conversion Dynode

EM Voltage

Peak Finding Thres

Min Peak Width

Max Peak Width

Scan Rate
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4 (cont’d.)

Collsion Gas

Argon

Nitrogen

Helium

Sulfur Rexaflouride

Carbon Dioxide

Methane

Hydrogen

Methane + Dinitrogen Oxide

Pre-Quad 3 Lens 1 Potential (V)

Pre-Quad 3 Lens 2 Potential (V)

Pre-Quad 3 Lens 3 Potential (V)

Quad 3 Offset Potential (Volts)

Quad 3 Mode

RF Only (No mass filtering)

DC (Mass Filtering)

Scan

Quad 3 Mass (amu)

Quad 3 Delta M

Quad 3 Resolution

Pre-Electron Multiplier Lens 1

Conversion Dynode Potential (V)

Electron Multiplier Potential

Peak Finding Threshold

Minimum Peak width

Maximum Peak width

Scan Rate
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Table 3.5

Dump of the parameters in the Reader file

11 variable parameters:

H
o
m
m
s
‘
l
m
m
b
w
n
w

l
-
u
-
o

Modification History

Registry Identification Number

Quad 1 Mass

Quad 3 Mass

Scan type

Quad 1 Mode

Quad 3 Mode

(amu)

(amu)

Neutral Loss (gain) Mass (amu)

Source Type

Ion Type

Quad 2 Pressure (Torr)

24 static parameters:

c
o
o
o
s
l
o
z
o
u
s
w
m
l
-
a

l3

14

15

16

17

18

19

20

21

22

23

24

Comments:

70.0

14.9

13.5

10.1

-19.1

21.6

0.000

-53.8

4.20

-11.6

-4.90

-25.1

-5.60

0.144E+04

-12.5

~14.0

0.000

0.000

0.000

0.150E+04

4.00

25.0

4.00

0.129E+05

TRIAL RUN.

Electron Energy (Volts)

Repeller Potential (Volts)

CI Drawout Potential (Volts)

EI Ion Volume (Volts)

External Potential (Volts)

Pre-Quad 1 Lens 1 Potential (Volts)

Pre-Quad 1 Lens 2 Potential (Volts)

Pre-Quad 1 Lens 3 Potential (Volts)

Quad 1 Offset Potential (Volts)

Pre-Quad 2 Lens 1 Potential (Volts)

Quad 2 Offset Potential (Volts)

Pre-Quad 3 Lens 1 Potential (Volts)

Quad 3 Offset Potential (Volts)

Electron Multiplier Potential (Volts)

Quad 1 Delta M

Quad 3 Delta M

Quad 1 Resolution

Quad 3 Resolution

Quad 2 Pressure (Torr)

Peak Finding Threshold

Minimum Peak width

Maximum Peak width

Scan Rate

Date of Experiment



Record Number

 

END
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Record Contents (unformatted binary variable length)
 

 

   
l2 I2 A10 A8

   

NUMSTC QDATE QTIME

NUMVAR

NUMSTC Number of static (fixed) parameters

NUMVAR Number of variable parameters

QDATE Date the dataset was created (DD-MMM-YY)

' QTIME Time the dataset was created (HH:MM:SS)

I L

  

 4. ‘_       
:2 R4 l2LR4 “12 R4
  

ISTATC(I) ISTATC(Z) j . ISTATC(NUMSTC)

RSTATC(I) RSTATC(Z) RSTATC(NUMSTC)

ISTATC(i) Static parameter code number

RSTATC(i) Static parameter value

 

      

 

    
 

I l—F—-'

l2 l2 4 2— l2 ’

lVAR(l) IVAR(NUMVAR)

IVAR(2-)

lVAR(i) Code number for variable i

fir a--—»

'A10 A8 480

QDATE arm: ocoTANT

QDATE Date this comment was entered (DD-MMM-YY)

QTlME Time this comment was entered (HH:MM:SS)

QCOMNT ASCII comment

More comments

Reader file format

Figure 3.5
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Table 3.6

Summary of Header file format

1) The number of static or fixed parameters (all

computer readable instrument settings that will not

be changed in this experiment)

2) The number of variables (those parameters which are

likely to be changed during the analysis)

3) Date and Time

4) The code numbers and values of static parameters

5) The code numbers of variable parameters

6) Comments as needed, with time of comment entry in

front of each.

The header file is constructed so the comments are

stored at the end. This allows comments to be entered

before, during and after an experiment, thus providing

exceptional archival value. The computer clock time is

prefixed to each comment so that the coincidence of

comments and particular sections of the collected data can

be established during post-collection analysis.

Pointer file

There exists one record in the pointer file foreach

scan performed on the instrument, and each record has as

it’s first entry a pointer into the data file. This allows

one to access any data from an experiment rapidly. The

other elements in the record are either for housekeeping,

or to enable faster display of the data. The last entries,

’the fast access variables, are especially important for

multi-dimensional work. These are copies of variables
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stored in the data file. They are redundant, but this

redundancy gains speed when searching the dataset for

specific results (see the next chapter for more details).

Selected variables, kept in the pointer file, save

significant amounts of time by not accessing the data file.

For example, if we want. to examine the behavior of a

daughter ion from a specific parent, and one of the fast

access variables is quad 1 mass, we can quickly determine

if we must retrieve the data for this scan. If quad 1 mass

were equal to the parent of interest, we would get the data

for this scan. However, if quad 1 mass didn’t equal the.

parent of interest, we don’t have to access the data file,

and we’ve saved the operator some time. The time savings

can become significant (from seconds to minutes) for medium

to large datasets.

The contents and order of data in the pointer file are

shown in Figure 3.6. Each scan produces one record in the

pointer file. Each record contains the elements listed in

Table 3.7.

The pointer file was designed as a separate file for

several reasons. First, since it is a small, direct access

file, it can be quickly accessed. Each read of this file

immediately brings the important aspects of this scan to

light, i.e. the dependent variable, number of data pairs



Record Number

 

END
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Record Contents (32 byte direct access records)
 

 

I2 I2 R4 R4 l2 I2 R4 l2 R4 l2 R4
             

IPTDAT arms men vaeru) RVARF(2) mam) I

NUUDAT RSUMY mam) IVARF(2) mam)

IPTDAT Index (pointer) into the data file

NUMDAT Number of X,Y pairs in this scan

RTIME Time this scan was taken (seconds since start)

RSUMY Sum of Y values for this scan

IVARD Code for the dependant variable

IVARF(i) Code for a selected variable

RVARF(i) Value for a selected variable

Identical to above

Pointer file format

Figure 3.6
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Table 3.7

Summary of one record in the Pointer file

1) The record number (pointer) where the data for each

scan begins in the Data file

2) The number of data pairs (for example, mass/intensity

or energy/intensity) in the scan.

3) Elapsed time (in seconds) from experiment start to scan

start

4) The sum of the Y values (for MS, the total ion current)

for the scan

5) A code number for the dependent variable in the scan

6) Copies of three selected variables

and most importantly, three selected variables and their

values. The second reason the pointers-were placed in a

separate file was for extensibility. More scans can easily

be added without wasting any space caused by preallocation

of space within the data file.

Data file

The data file contains one or more records per scan.

The contents and order of data in this file are shown in

Figure 3.7. Each record or set of records associated with

a particular scan contains 1) the values of variable

parameters, such as probe temperature, lens voltage, etc.

and 2) the X-Y data pairs (intensity vs. dependent

variable).

The logical records in the data file are variable

length; one scan may have 10 X,Y pairs and the next may



Record Number

 

o
m
\
I
m

0
'
#

(
N
N

END
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Record Contents (64 byte direct access records)
 

 

Values for variables, scan I

 

___l
X,Y data pairs. scan I

 

~777 /~’ ,«71

WéZfiv/g
 

Values for variables, scan 2

 

  

X,Y data pairs, scan 2 %/

  L F C

 

 
.... .5. @ZfiW/Z   
 

Data file format

Figure 3.7
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have 1000 pairs. In this scheme, variable length logical

records have been imposed onto one or more direct access

physical records. The direct access records allow us to

jump quickly to a specific scan. One disadvantage of

imposing variable length logical records onto fixed length

physical records is that some space following the end of

the logical record is wasted. With small physical records,

this wasted space is small, and is outweighed by the

convenience of direct access to the data. Table 3.8 is a

display of one logical record in the data file.

The physical record number that is the beginning of

each logical record, or scan, is stored in the pointer

file. Each logical record consists of the values of the

variables (in the order specified in the header file), and

the X,Y data pairs. Each of these values is stored

unabridged as real numbers. Since the data are stored in a

separate file, adding new scans of data is simply a matter

of extending the file.

Creation of a data set

The multi-dimensional data base described follows the

hierarchial model. Those variables, instrument parameters

and miscellaneous data that do not change during the

iexperiment, form the foot segment of a l:N tree and are

stored in the header file. As data are acquired by the
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Table 3.8

Dump of one logical record in the Data file

Scan number 1

Time (seconds) 0

Sum of the Y’s 0.600E+05

Variable parameters:

1 0.000 Modification History

2 1.00 Registry Identification Number

3 -l.00 Quad 1 Mass (amu)

4 0.000 Quad 3 Mass (amu)

5 lscan Scan type

6 Scan 01 Mode

7 RF Q3 Mode

8 0.000 Neutral Loss (gain) Mass (amu)

9 EI Source

10 Pos Ions

11 0.000 Quad 2 Pressure (Torr)

Ql Mass intensity 01 Mass intensity

18.100 4433.000 32.000 6607.000

28.000 19263.000
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instrument control computers, they are stored in scan

records consisting of one record in the pointer or index

file, and one or more records in the data file. Again, the

hierarchial model is followed and those variables not

scanned are stored together with a link to the scanned data

(actually, the variables and data are stored together in

the data file as described earlier, and the link is

implicit).

Business style data bases are designed with ”data

definition languages" (60-62) which define the records and

fields available. A multi-dimensional dataset is defined

by creating the header file, specifying the static and

variable parameters. This process is usually done by the

control computers and the user is not required to learn a

”data definition language” or become a data base

administrator. This ability to create a dataset tailored

to an individual experiment allows for very fast data

storage and retrieval. when an instrument is modified and

a new parameter added, the dictionary file is simply

updated, and new datasets may be created containing the new

variable.

Conclusions

The data base described here has several unique

features: 1) It has the ability to store multi-
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dimensional data in real time; 2) Datasets can be

automatically created and tailored to individual

experiments; and 3) The data base can be extended with a

simple addition to the dictionary file. These features set

this data base system apart from those used in business (no

data definition language, no complicated structures or

programming required). Since each dataset holds

information about only one compound or experiment, the

overhead and complexity of a complete laboratory

information management package (66,67,70,73-74) are

eliminated.

The subroutines that comprise this data base are all

capable of handling multiple datasets. This is necessary

for matching spectra and doing various "massaging"

functions on the data, such as averaging spectra. Various

programs for matching and data manipulation have been

written by Kevin Cross, of MSU. Examples of the use of

this system, and a program for extracting orthogonal planes

of data are presented in the following chapter.

The instrument data base system described here is an

efficient, extensible and modular set of routines to store

multi-dimensional data (24—25) in a hierarchial data base.

The dictionary file is an extremely powerful mechanism for

adapting this system to ever changing instrumentation.

This system has been in routine use since 1982 on three
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triple quadrupole mass spectrometers, each with a different

set of ion optics and features. The three file formats for

the data allow a dataset to expand almost without limit.

The provisions for the rapid retrieval of data make the

system easy to use. The ease of programming and modularity

of the subroutines has been proven by the variety of

applications for which it has been adapted.



Chapter 4

Retrieval and Display of Multi-dimensional Data

Introduction

The ability to store and retrieve data is essential to

its utility. New instrumentation, capable of creating and

collecting more data than can be practically analyzed or

far more than is ultimately needed is constantly being used

to collect unwieldy amounts of difficult-to-access data.

Any new computer-controlled instrument can be told to

blindly collect and store data, and a disk quickly becomes

full of data, much of which will never encounter human

observation. However, with the right tools, one might be

able to automate a search through this sea of data to

extract trends, obtain minimum or maximum values for

parameters, or otherwise gain some appreciation for the

collected data. With the ability to automatically collect

grand amounts of data comes the need to automatically sort

and analyze them to extract the reduced set of trends or

conclusions we seek (79-80).

In triple quadrupole mass spectrometry, large amounts

of multi-dimensional data can be collected by the control

computers. This instrument is capable of collecting much

69
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more data in one hour than the operator could possibly.

analyze in a month. This is not to say that large

quantities of data should not be taken, Just that tools to

look at these data must be utilized. If such tools are not

available, and cannot be developed, a more selective

approach to data collection is required to simplify the

analysis. The latter requires the ability to anticipate

over which range of experimental variables the needed

information will be found. Since the triple quadrupole

MS/MS technique is relatively new, the knowledge needed to

anticipate the role of the various parameters is not yet

available. In fact, copious amounts of data must be

collected in order to assess the effects of these

parameters. Since we must take large quantities of data,

and since suitable software tools for data analysis were

not available, we developed our own tools, notably a

program called EXTRACT.

The previous chapter described a multi-dimensional data

base suitable for storage of data from MS/MS experiments.

Fast storage of data into this data base is essential while

the instrument is operational; fast retrieval of data from

the data base is also a requirement. In the first case,

fast storage is required since the sample may have a

limited life. In the second case, fast retrieval of data

from the data base is required due to an operator’s limited

patience. The program we have developed, EXTRACT, provides
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for the quick presentation of results from the dataset, as

well as several other ’user-friendly’ features. In this

chapter, I will discuss the considerations that went into

the design of EXTRACT; how it works, the user interface,

examples of use, internal configuration of the program and

possible future directions for this and other data

retrieval programs. Appendix 3 is a copy of the EXTRACT

User’s Guide for details on the operation of the program.

Data retrieval

The data retrieval methods for business and scientific

data bases have the same goal: to extract a user defined

subset of the dataset for display or a report. The query

languages for business systems often involve data

manipulation languages, query languages and report

generators (60-62). While these full report generation

systems are extremely powerful and flexible, programmers or

data base administrators are often needed to create the

templates required for even simple reports. Since the data

base needs of the business community are relatively static

(i.e. same inventory form used every week), the weeks or

months required to tailor a report generation template are

justified.

Full laboratory information management systems (LIMS)

often have full reporting capabilities (73-74), but our
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needs dictated a much more simple interface. LIMS packages

are more akin to business systems and generate standard

sample analysis reports. A scientific data base is needed

for raw experimental data, tools are needed to view these

data from a variety of viewpoints and scientists often need

to interactively search the data base for the desired

information. The retrieval program must include provisions

for: 1) the uncertainty (error) present in our

measurements; 2) ever changing instrumentation; and 3)

simplicity of use. Simplicity of use is a key point;

scientists generally don’t want to learn a full query

language or design report templates to see the results of

their experiments.

EXTRACT - the program

EXTRACT is a general program for the retrieval of data

from a multi-dimensional dataset. This program is

completely generalized, and can be used with any instrument

that uses the multi-dimensional data base described in

Chapter 3 (25). The only element that links the data in a

multi-dimensional dataset to a specific instrument is the

correlation between a parameter code and a physical or

logical parameter of an instrument, as defined in the

instrument description (or dictionary) file. EXTRACT is

instrument independent; it makes extensive use of the

dictionary, and all displays are derived from this file.
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In this way, the report generation displays are

automatically created from the contents of the dataset and

definitions from the dictionary.

How EXTRACT works

Data, as stored in the multi-dimensional data base, are

stored in scans (intensity vs. something) as recorded by

the instrument. If the operator wishes to see these data

in this format (i.e. one of the scans performed by the

instrument), it is a simple matter to retrieve that scan.

However, if the operator wishes data presented along an

axis that wasn’t scanned, EXTRACT must search through the

dataset extracting the data that the user wishes to see.

To do this, the operator sets the limits of the search and

instructs the program to extract data matching these

criteria.

The base rule of EXTRACT is to exclude as much of the

data in a dataset as possible, and then to present the user

with all data that remains. In this way, we are assured

that no datum will go unnoticed unless we specifically

reject if from further consideration. Specifically,

EXTRACT follows the steps outlined in Table 4.1.
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Table 4.1

Outline of how EXTRACT functions

1) EXTRACT loops through each scan in the dataset.

2) The variables stored with this scan are

examined; if any variable is outside of the

user set limits, this scan is rejected.

3) The data in this scan are examined; if the

user requested values that don’t exist, this

scan is rejected.

4) The values the user wished displayed are

extracted and saved.

5) The next scan is examined.

By following these steps, we are certain that all the

data that fall within the user-specified limits are

extracted and saved for later display. When a datum is

retrieved from a scan (step 4 above), the minimum and

maximum values of the variables throughout the extraction

process are saved. These values are then presented to the

user after the entire dataset has been searched, and serve

to inform the user .of the status of the extraction just

performed. Say that the user extracted some data, but did

not set 'any limits for the CAD gas pressure. If the

minimum and maximum extracted values indicate a wide

pressure range, the operator may wish to set limits on the

pressure and extract the data again.

The user sets the acceptable limits for variables,

extracts the data, and the program displays the actual

minimum and maximum values for all the variables. In this
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way, the user may interactively modify the extraction

limits while keeping an eye on the resulting data.

EXTRACT internal structure

EXTRACT consists of three main subroutines, a user

interface (EXEDIT), a graphics interface (MSPLOT) and the

extraction subroutine (XTRACT).

User interface

Various types of user interfaces were considered for

this program. There are four main types of user/machine

interfaces (see Table 4.2).

Table 4.2

User/machine interface types

1) question/answer or prompting

2) command or switch oriented

3) menu driven

4) icon driven

The first type of interface, prompting, is the simplest

to code, but the worst to use. Prompting, or question and

answer, is also the easiest for a novice computer user to

understand and use; the computer asks questions and the

user answers them. However, this type of interface is the
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most difficult for an experienced user of the software, for

he or she too, must answer each question in turn, and this

is a time consuming process. On the other hand, a command

oriented interface doesn’t prompt the user at all. With

this style interface, the user is assumed to be an expert,

and has all the commands or switches memorized, and they

are entered as needed. For a novice, or any user that

doesn’t use the software routinely, this type of interface

requires the user to have a copy of the user’s guide beside

the terminal.

The fourth interface, icon driven, is a special

graphical form of a menu-driven system, and requires a

graphics terminal to operate the software. The menu style

interface, not requiring a graphics terminal, was selected

as appropriate for EXTRACT. As described in the theory

section above, the user must set the limits of variables,

and EXTRACT displays the actual limits found. To be a

useful, interactive program, all these limits must be

presented to the user, the user must be allowed to change

the extract limits, and see the results of these changes.

A menu format, on a video terminal, fulfills these

requirements.

The format selected for the menu is shown in

Figure 4.1. This display consists of four sections: two

lines for the header or titles, up to 20 lines for the
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display of the variables, a line for the commands and a

last line for expanded descriptions. Each of the variable

displays consists of 40 character positions, including 10

characters for the variable description, and 4 numeric

fields of 6 characters each. This crowded display is

necessary to display all the variables, the user set limits

and the resulting extraction limits.

These extraction displays are generated from parameters

stored Tin the dataset. The parameter code numbers (form

the header file) are looked up in the dictionary file to

produce text for the display. All text displays (except

the two header lines) are generated this way, making

EXTRACT a fully generalized program able to retrieve data

from any dataset as described in chapter 3. iThis automatic

creation of customized report generation screens makes

EXTRACT easy to use.

Subroutine EXEDIT

EXEDIT is a screen oriented editor, allowing the user

to enter and change the limits of the extraction. EXEDIT

is a driver that keeps track of the values and their

locations on the screen, and calls subroutines to update

the screen and parse command input. The command input

'subroutine is special because it accepts single character

input from the terminal, decides if the user is starting to



79

type a command or a number, and prompts the user

accordingly. By doing this, the advanced user may reduce

the number of keystrokes required to enter extraction

limits. This input subroutine also allows the user to

enter both the minimum and maximum limits separately, or

enter them at the same time.

Upon entering the EXTRACT program, none of the

variables have extraction limits set (as in Figure 4.1);

the user must set these limits as desired. To change a

variables limit, the user moves the highlighted or active

area using the cursor keys on the terminal. Once the-

variable to change has been selected ("Scan” in

Figure 4.1), the user simply types in a new value, and that

value is inserted into the display. Since each variable

position on the screen is only six characters long, some

significant figures may not be displayed (see Table 4.3).

Table 4.3

Numeric representation for EXTRACT

Full number Truncated number

integers and floating 42 42

point numbers less than 123.4567 123.45

six characters long *63.7 —63.7

floating point numbers 1.23E+07 .123+8

greater than six digits -2.34E-17 -.2-16

The worst case truncation of the numbers is for small

negative numbers, where the number is truncated to one

digit plus the exponent. Note that EXTRACT displays

the full number on the last line of the display.
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To alleviate this problem, the last line on the screen is

an enhanced description of the active area, including the

full. dictionary definition, and the full value, or the

value’s description, if there is one.

EXTRACT is based on the principle of retrieving a plane

of data from a multi-dimensional data base. The retrieved

plane of data can be visualized as a plot of Y vs. X.

These X and Y variables are chosen by positioning the

active area to a variable, and typing either X or Y (or Z

for three dimensional plots, see description below). The

selected X and Y variables become the axes titles for the

resultant plot.

Presentation of EXTRACT results

Once the user has entered all the limiting values for

the extraction and specified the X and Y axes, the program

is told to extract all data that are not outside of the

given limits. This extraction process can take from microf

seconds to several minutes, depending on the size of the

data base and the type of extraction desired. When the

extraction is complete, the screen is updated, showing the

user-requested limits and -the actual extraction limits

found. The actual limits will always fall within the given

limits, but may indicate a larger range than acceptable.

For example, if no limits were set for a variable, say
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quad 2 pressure, an extraction performed, and the resulting

display showed that the actual limits of quad 2 pressure

ranged from zero to 1.0x10" torr, this would indicate that

several points were extracted at various pressures, and the

resulting plot would be meaningless. In this case, the

user should limit the pressure range, and extract the data

again.

When an extraction has yielded limits within an

acceptable range, the data may be filed and plotted (using

the graphics program MULPLT). The link to the graphics

program has been automated (subroutine MSPLOT) and can be

called up in two keystrokes. This automated link sets up a

variety of scaling factors, axes limits and other

parameters for the user, in one of four formats: point

plot, line plot, bar graph and spectrum plot. The first

three of these are options of MULPLT, but the fourth, a

spectrum plot, is a specialized bar graph that normalizes

the data to the base peak. By calling MULPLT (81) directly

from EXTRACT, either simple or publication quality

graphics, on a variety of graphics devices, can be

obtained. (MULPLT was originally written by Dr. Tom

Atkinson, but I have extensively modified it in recent

years, adding such features as color, new commands, new

device support, shading of bar graphs, speed enhancements,

a post processor for raster printers and multiple plots,

etc.)
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EXTRACT is capable of generating pseudo three

dimensional plots by extracting a series of two dimensional

planes of data, each offset by a specific ’2’ variable

increment. These planes of data are extracted and filed,

and a post processing program (PLOT3D) is used to generate~

a series of MULPLT commands to produce pseudo three

dimensional plots. These plots are not true three

dimensional plots; they are just two dimensional plots

offset with X and Y increments. True 30 plots are

projection plots, and usually have the ’hidden’ lines

removed. They are "prettier”, but the hidden data are

inaccessible, a feature considered undesirable for most of

our applications.

Subroutine XTRACT

The subroutine XTRACT was written with speed in mind.

Since one complete pass through the entire dataset is

required for a thorough extraction of data, hooks are built

in to extract more than one plane of data in one pass

through the dataset. While the ability to extract several

planes of information in a single pass would dramatically

speed up three dimensional extractions, it would have no

effect on standard two dimensional extractions. Currently,

three dimensional plots are semiautomatically made by

EXTRACT calling the subroutine XTRACT many times. Each

time XTRACT is called, one more two dimensional plane of
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data is added to a three dimensional .file for future

plotting. Although the multiple plane extraction feature

has- not yet been utilized, there is no reason to believe

that it will not work. To implement this feature would

require modifications to the EXTRACT main program and

possibly to the EXEDIT subroutine.

Examples of EXTRACT use

EXTRACT has proven to be a very useful program for

looking at data collected by a triple quadrupole mass

spectrometer. By using this tool, we are able to collect

large amounts of data from one sample, and present them in

a variety of ways. This allows us to easily pick out

trends in the data, and identify the effects of instrument

parameters on the collected data. By using EXTRACT, we

have been able to quickly gain new insights into the

processes going on in the TQMS instrument.

A five dimensional matrix (intensity, quad 1 mass,

quad 3 mass, collision energy and collision gas pressure)

of data is often obtained for a compound on the TQMS. An

example of such a dataset is used for Figures 4.2 and 4.3,

of the compound cyclohexyl-acetic acid. The upper portion

of Figures 4.2 and 4.3 shows the extraction limits used to

produce the plots shown in the lower portion of the figure.

In the case of Figure 4.2, a pressure plot for a specific
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parent/daughter combination at a specific collision energy

has been extracted. Figure 4.3 is from the same dataset,

showing an energy plot for the same parent/daughter at a

specific pressure.

EXTRACT is capable of generating pseudo three

dimensional plots, enabling the user to see trends in

several dimensions at once. Figure 4.4 is an extraction

from the same dataset used in the above examples, but now

three dimensions of data are displayed. In this example,

if we were looking for the energy/pressure that resulted in

the largest daughter intensity, we would see that quad 2

offset needs to be about 5 volts, and the collision

pressure about 2x10'4 torr.

Conclusions

EXTRACT has proven to be a valuable tool in the

analysis of multi-dimensional data. The ability to extract

data in a plane other than that scanned gives the operator

more flexibility designing an experiment. For many

samples, collecting a full three dimensional map

(intensity, quad 1 .mass, quad 3 mass) at a variety of

collision pressures and energies allows us to determine the

optimum collision parameters.
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EXTRACT is an instrument-independent. program; it is

capable of working with any multi-dimensional data base (as

described in the last chapter). This is due the use of an

instrument description (or dictionary) file. EXTRACT has

no instrument specific parameters coded in; instead the

dictionary file provides translation for the variables and

other parameters associated with the multi-dimensional data

base.

The generality of EXTRACT and the multi-dimensional

data base was proven by their use with simulated

electrochemical data. Simulated data was generated and

stored in the data base. EXTRACT was used to retrieve and

display these data in ways that would have been difficult

or impossible to simulate directly.

The use of the dictionary file for EXTRACT display has

the added advantage of easing report generation. With

business data bases, the field names must be known and

entered with each query (”list all employees with salary GT

35000”). The menu format for EXTRACT displays all the

parameters in a dataset, and the cursor keys provide an

easy way to select the variables.

EXTRACT provides for range limits and feedback for each

variable to minimize the impact of data uncertainty. Being

able to select the extraction limits for a variable and see



89

the actual extracted range for all variables make EXTRACT a

powerful tool for retrieving scientific data.



Chapter 5

Extracting the Information Contained in MS/MS Data

Introduction

The triple quadrupole mass spectrometer is capable of

generating large amounts of data. The analysis of these

data, in a reasonable time would be impossible without the

use of the software tools presented in the last several

chapters. These and other tools allow the operator to

examine the collected data and display them in a variety of

formats. These displays present the operator with the raw

data as they were collected (or possibly normalized), and

allow the operator to interpret the results. The next

logical. step in computer-assisted problem solving is to

automate the extraction of the information present in the

data.

There are two predominant ways that a computer can help

interpret data from a mass spectrometer: expert systems and

pattern recognition. Artificial intelligence (AI) is a

field of computer science dealing, generally speaking, with

making computers "think”. A subfield of AI is the study of

expert systems. An expert system (82-84) is a computer

program that mimics a human expert in a specific field of

expertise. This is currently possible only for small, well

90
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defined problems for which there exists a well-defined

”knowledge base" of information on which the program bases

its decisions. Essentially, these programs apply a set of

"rules" to the data, presumably the same rules that human

experts use, to extract the information present in the

data.

Several researchers have applied expert systems (85-93)

to mass spectrometry. The DENDRAL project, from Stanford

University (21,85-93) has shown that expert systems could

be used to help interpret mass spectra. The original

DENDRAL algorithm, developed by J. Lederberg, was able to

identify all possible acyclic molecular structures given a

set of constituent atoms. Heuristic DENDRAL achieved the

same objective in less time by using mass spectrometric

data and rules to infer constraints on the structure gen-l

eration. Meta-DENDRAL was then'developed to automatically

generate the rules for Heuristic DENDRAL. CONGEN was later

developed to replace the older DENDRAL algorithm, and was

able to generate cyclic structures. DENDRAL has three

functional units, Plan, Generate and Test. The planning

phase uses rules to constrain the generate phase (using

CONGEN). The test phase then uses another set of rules to

”fragment" the generated structure and compare the

resulting mass spectrum with the unknown. In this way, the

generated structures could be ranked, and top ranked

structures are often indicative of the unknown’s structure.
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One program from the DENDRAL project, GENOA (22-23), is

a program to generate all chemically possible structures

from the molecular formula, constrained by any additional

chemical information presented to it. We are currently

using this program in our laboratory as one part of our

structure elucidation scheme (see Figure 1.1). Another

expert system applied to mass spectrometry is the system

developed at. Lawrence Livermore National Laboratory

(95-98). Currently this system is capable of tuning a

triple quadrupole mass spectrometer based on both signal

intensity and peak shape.

Pattern recognition is a field of study based on the

assumption that data can be clustered or grouped into

distinct sets (50-54,85-87). Each of these sets is

presumed to have one or more characteristics that

distinguish it from other sets. A subset of this field is

routinely used in mass spectrometry: spectrum matching

(85-87). Any MS data system capable of searching a library

for reference spectra that "match" an unknown is performing

a simple pattern recognition task. The criteria for

separating normal 31 mass spectra into groups, with top

ranked matches, have been studied extensively (40-49).

In this chapter, I will present two tools that help a

chemist extract a small portion of the information present

in MS/MS data. MS/MS data are different (i.e. more
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specific) than "normal" MS data, and .new rules for

information extraction are required. The first tool

presented is a knowledge-based program to aid in the

analysis of neutral losses from parent ions. The second

tool is an example of a pattern recognition technique, and

is used to match daughter (or neutral) spectra.

Information contained in MS/MS data

Mass spectrometers have traditionally been used to aid

chemists in determining the structure of unknowns. The

information contained in a typical mass spectrum comes from

several basic sources, including 1) the absolute mass to

charge ratio of an ion; 2) the relative m/z value relative

to another ion in the spectrum; 3) the intensity of an ion

peak relative to the base peak intensity, total intensity

or another ion’s intensity; and 4) the absence of ions at

certain m/z values. The absolute mass of a peak shows the

presence of a relatively stable charged species, giving an

indication of it’s chemical makeup. The relative masses of

two or more peaks gives the mass(es) of non-charged species

that may have been lost from the higher mass ion. The

relative intensities of the ion peaks in a spectrum yield

information about which fragmentation pathways are most

predominant. The data present in a mass spectrum are

interpreted by analyzing these absolute and relative masses

and intensities according to'well-defined rules (99).
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A set of all daughter spectra from a sample contains

all the information present in an El spectrum from the same

sample. Each daughter spectrum has the advantage of being

simpler than the E1 spectrum of the molecule, but the

concatenation, or overlapping, of all the daughter spectra

produces a spectrum similar to the RI spectrum. The

relative simplicity of a daughter spectrum is due to the

selective nature of the first mass filter and the less

severe nature of the second collision. Each daughter ion

contributes evidence of the composition of its parent ion,

and can be used to help interpret the structure of the

parent. Due to these differences, new information.

extraction rules or algorithms are needed to analyze MS/MS

data.

Neutral spectrum

A neutral spectrum is similar to and derived from a

daughter spectrum. A neutral spectrum presents the

relative amounts and masses of neutral fragments lost in

the fragmentation of a parent. These scans are easily

derived from a normal daughter spectrum by simply

subtracting the daughter masses from the parent mass. The

resultant spectrum contains the same information present in

a daughter spectrum (less the parent ion, now at mass 0),

but is presented in a different form. Figure 5.1 shows
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both daughter and neutral spectra for parent m/z 147 from

2—methyl-4-phenyl-2-butanol.

One of the techniques for identifying an unknown from

its EI mass spectrum is to characterize the neutral losses

from ions in the spectrum. The characterization of these

losses is complicated by the richness of an El spectrum, in

that it is difficult to tell exactly which ions are formed

from neutral losses from the molecular or any other ions.

Losses are most easily observed from the molecular ion,

looking backwards down the spectrum. ‘ If the next ion

present is 28 daltons less, the parent lost either CO or

CzHe. However, as we proceed down the spectrum, it becomes

unclear where a specific loss occurred from. This limits

the usefulness of this technique to confirming postulated

structures.

In tandem mass spectrometry, we can determine exactly

which daughter ions are formed from which parent ions. If

we set up the collision conditions (CAD gas pressure, axial

energy) so as to ensure only a single collision for the

parent ion and little or no chance that the resultant

daughters will further fragment, we know that all the

daughter ions formed are direct, single-event fragmentation

products of the parent. If the collision gas pressure were

too high, some of the daughter ions formed would again

collide with the target gas. These second and higher order
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fragmentation processes give the same types of uncertainty

in a daughter spectrum as in an E1 spectrum. Therefore, if

we keep the collision conditions conservative (CAD gas

pressure low, medium energy), we produce spectra of first-

order collision products. These spectra are not as rich as

spectra produced at higher pressures since only first-order

products are generated. However, first-order daughter and

neutral spectra give direct, definitive information about

the composition of parent ions.

Daughter spectra and neutral spectra present

essentially the same information, but this information can

be used in a complementary fashion. Daughter spectra

present those species that retain the charge during

fragmentation, while neutral spectra present the uncharged

fragments. Deriving neutral spectra gives spectra of a

form amenable to the same matching techniques used for ion

spectra. If the spectra were left in daughter ion form,

different pattern recognition techniques (such as sliding

correlations) would have to be used to group spectra by

neutral loss information. By analyzing both of these

spectra, we are able to deduce some information about the

parent ion’s composition and structure.
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A simple expert system for neutral loss analysis

The low mass neutral fragments are simple structures,

generally corresponding to simple, common neutral losses.

I have written a program (ANEUT) to aid in the

determination of these losses. ”Expert knowledge" may be

encoded in a knowledge-based system, such as an expert

system, in two primary ways: as rules and as base of

knowledge upon which rules can draw information

(85-87,90-93). The knowledge base for this program was

derived from a table of possible losses from appendix A.5

in McLafferty’s Interpretatiog 91 M25; S ectra, and was

enhanced as we gained experience with the program. The

conclusions drawn from this deductive system are simply a

list of possible neutral losses - it is the chemist’s

responsibility to utilize the resulting information and

update the knowledge base as required.

ANEUT knowledge base and rules

The knowledge base is a text file which allows for the

easy extension of the knowledge available to the program.

This file consists of one entry for each possible loss, or

series of losses. Figure 5.2 shows several entries.from

the current file, and the format of each entry. For series

'of losses, such as CnH2n+i, an alkyl loss, limits are

placed on the values of n (for this case, n is greater than
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0). These limits, the formula, and a comment comprise one

record. The comment describes the conditions or

conformation that lead to a specified loss.

There are currently only three ”rules" for the program

ANEUT. One rule is used to match the actual losses (found

in the spectrum) with the possible losses (generated from

the knowledge base). Another rule is used to allow higher

mass neutrals to be a sum of lower neutrals, and the final

rule adds a "quality" to a possible loss. The primary rule

is simple: if the mass of an actual loss is within 10.3

daltons of the mass calculated from the knowledge base,

that loss/knowledge base entry correlation is retained.

The mass deviation of 10.3 allows for instrumental effects

(the instrument may be slightly off calibration, etc).

This rule searches the entire knowledge base generating a

list of correlations. It should be noted that this rule

does not guarantee a complete and exhaustive check of all

possible neutral losses, instead it relies on the knowledge

base to contain a fairly complete list of the common

neutral losses.

The second rule allows several of the neutral losses to

occur, and effectively adds their masses together. The

third rule adds a ”quality" factor to certain of the

correlations made by the first rule. If the unknown

daughter or neutral spectrum contains a series of losses
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(such as 15, 29, etc. from CnH2n+i), each of these entries

is flagged as being the likely loss. If just one of the

elements in a series is present, it is not flagged: This

is based on the assumption that if a series of losses is

possible, the fragmentation process will generate the

entire series.

Example of ANEUT use

Examples of ANEUT’s use are seen in Figures 5.3

and 5.4. Figure 5.3 shows the neutral spectrum from parent

m/z 108 (the molecular ion) of 1,4-benzenediamine and the

output from ANEUT. As can be seen from this list of

possible neutral losses, the peaks at l and 27 daltons are

well accounted for (H and HCN), while the peak at 28

daltons is the loss of both H and HCN. Figure 5.4 shows

the neutral spectrum from parent m/z >147 (probably

HOOC(CH2)eCOOH2*) from bis—2-ethylhexyl adipate and the

results from ANEUT. After ignoring the Cl, N and S

containing structures, we are left with fragments

indicative of acids and alcohols.

The comments used for ANEUT’s output are directly from

McLafferty’s table which was derived from normal El

spectra. These comments represent the possible

conformation of the original molecule and take into account

the extensive rearrangements possible in the source. As a
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result, these comments may only be useful for analyzing

neutral species lost during the fragmentation of the

molecular ion.

Future extensions to this system include constraining

the matching process to include or exclude certain atoms.

For example, if we know that the compound doesn’t include

nitrogen, several of correlations will not be displayed,

shrinking the list of possible losses. Alternatively, we

may know that the unknown contains only carbon, hydrogen

and oxygen, effectively eliminating all other elements.

This same program, used with a different knowledge

base, could be used to aid in the identification of peaks

in a daughter spectrum. This program or similar expert

systems can be (and will be) used in an iterative manner

with others, including GENOA. The more information that an

expert system is given about an unknown, the more certain

its analysis of the unknown. For example, output from

ANEUT can be used as constraint input into GENOA, limiting

the number of structures generated.

Data groupings

The data content of a daughter spectrum is not as great

as that in an El spectrum; however, the information content

may be greater if the conclusions are more certain. The
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sum of the information contained in all the daughter

spectra for one compound could then greatly exceed the'

information available from the E1 spectrum. Many

information extracting techniques have been applied to El

spectra to deconvolute them into simple patterns (52-54).

Some of these pattern recognition techniques have not fared

well, being overwhelmed by the overlapping data present.

These same techniques applied to the daughter spectra from

a compound don’t reveal any new information, because the

daughter spectra are already well grouped subsets of the El

spectrum.

A daughter spectrum of the molecular ion bears a great

similarity to the E1 spectrum, however the daughter spectra

from other than the molecular ion are relatively simple.

The normal EI spectrum contains fragments from all

substructures in the compound, while a daughter spectrum

contains fragments from one (or a small number) of

substructures of the molecule. If we are able to group

sets of these daughter spectra from different compounds, we

expect, and find, that the closest matching spectra are

derived from compounds with similar substructural features.

MS versus MS/MS spectra matching

The traditional spectrum matching programs designed for

matching EI mass spectra take one of several general
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approaches to this problem of grouping spectra. Each of

these methods relies on a library of spectra which may be

abridged in a variety of ways. Biemann searching

techniques abridge the spectra to the two most abundant

peaks in a 14 dalton window (42). Other techniques reduce

the intensity to a binary value, i.e. either there is a

peak at a mass or not (40-41). Kevin Cross of MSU has

implemented a matching system for El spectra that is based

on the unabridged spectra (20,47). This matching program,

patterned after a variety of other matching techniques,

assigns weights to the masses and the intensities of each

peak, and produces good results for EI spectra.

The simplicity and wide variations in intensities in

daughter spectra make normal EI matching techniques less

suitable for daughter spectra. Better daughter spectra

groupings (and) hence substructural feature groups) can be

achieved by doing minimal intensity screening for peaks at

similar m/z values. I have studied a variety of intensity

matching algorithms to determine the importance of the

relative intensities of daughters at the same mass. The

problem becomes more complicated when you must match a

daughter spectrum from a weak parent ion to a spectrum from

an intense parent ion. Simply normalizing the spectrum to

the parent peak or to the total ion current may result in

the noise peaks becoming too prominent. The threshold

level for recording a peak on the spectrometer may have
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been set too high, and low intensity daughter ions may not

be seen. These and other problems require special

attention when matching daughter spectra.

Intensity matching for daughter spectra

The approach I took to determining the importance of

daughter ion' intensity was to try several intensity

compression algorithms on daughter spectra from the same

parent structure taken under different conditions. Also

included in the reference library were vastly different

compounds with the same parent ion masses. The first

attempt ignored intensities altogether, ire. a binary

compression. If any peak existed at the same mass in both

the unknown and reference spectra, it scored one point. On

this basis, the top scoring matches proved to be an

unselective sample of the data base. This was primarily

due to scoring ’matches’ of intense daughter peaks with

very small peaks, and neglecting to account for missing

peaks. This indicated the need for some intensity

weighing, and several methods were tried.

Reducing the intensity range from six orders of

magnitude available from the instrument to a number

representative of the magnitude (i.e. LOGio) gave a total

dynamic range of zero to six. Even with this dramatic

reduction of scale, and counting intensities that matched
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within :1 unit, the resultant groupings of spectra were not

as good as desired. The intensity differences, from

similar spectra, were just too great for this 6 level

approach.

The current grouping algorithm uses only three levels

of intensity information: strong, medium and weak. First,

any peaks that are "weak" (less than an arbitrary 800

counts) are marked as being weak. These small peaks must

be classified as weak before normalizing the spectrum to

identify them as peaks not much greater than the instrument

background noise. Next, the daughter spectrum is

normalized to the parent ion, and those peaks that are less

than one percent are marked weak, between 1 and 10 percent

are medium, and greater than 10 percent are strong. Two

peaks are considered to have matched intensities if they

are in the same or adjacent groups. ' This algorithm

produces good results, allowing for wide intensity

variations present in daughter spectra.

Ranking and sorting the data groups

The last step in a grouping program is to have the

computer rank the results (Figure 5.5). This involves

assigning ‘quality factors to matching peaks, and deducting

points for mis-matched spectra. Peaks in an unknown that

intensity match peaks in the reference are given full
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Intensities reduced to: Weak 800 counts or < 12)

  

( <

Medium ( 1X 5 intensity 5 10%)

Strong (10% g intensity 5 100%)

mass comparison intengity comparison weighting factor

ref = unknown intensity matches + 1.0 U

(a mass in both) (within i one group)

ref = unknown intensity doesn’t + 0.5 U

(a mass in both) match

mass in unknown weak intensity : 0.0

not in reference (ignored)

mass in unknown medium, strong - 0.33 U

not in reference intensity

mass in reference weak intensity - 0.05 R

not in unknown

mass in reference medium, strong - 0.1 R

not in unknown intensity

The weighting factor is based on the number of peaks in

either the reference or unknown spectra. R and 0 each

represent the percent of the total spectrum (based on the

number of peaks, not their intensities) in the reference

and unknown spectra.

Characteristics used to match daughter spectra

Figure 5.5
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credit, while those peaks at the same mass but different

intensities gain only one half credit. Each "credit" is

the percentage of the number of peaks in the unknown. For

example, if an unknown has 5 peaks, and 4 peaks match in

mass and intensity and one matches mass but not intensity,

the rating would be 90% (4*100/5 + 1*50/5). Medium and

strong peaks in the unknown that are not in the reference

spectrum are negative 1/3 credits. Weak peaks from the

unknown, not in the reference, are given a zero credit

(i.e. they are ignored). The last of the ranking credits

are based on reverse searching (comparing the reference to

the unknown). These negative points are based on the

number of peaks in the reference spectrum (here one credit

is a percentage of the number of peaks in the reference

spectrum). Unmatched strong and medium peaks in the

reference are a -1OX credit, while weak peaks not in the

unknown spectrum deduct 5* of a credit.

Examples of daughter spectra grouping

An example of this grouping algorithm is shown for a

group of 21 compounds, each containing a parent at m/z 149.

In both Figures 5.6 and 5.7, the phthalate ion

(CeHe(CO)2OH*) of di-ethyl-phthalate is matched against all

the daughter spectra from these 21 compounds (which include

other phthalates and a variety of other compounds). The

grouping. technique correctly clusters the spectra from the
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Matching scan 6 (0149.0) from dataset R15444 (diethyl phthalate)

Group factor Scan

100 6

97 10

87 10

66 13

64 10

63 7

58 4

58 5

55 7

54 13

53 13

50 2

49 5

35 6

34 2

Parent

(0149.

(0149.

(0149.

(0120.

(0149.

(0121.

(0149.

(0149.

(0121.

(0121.

(0120.

(0164.

(0177.

(D 93.

(0164.

0)

0)

1)

8)

0)

0)

0)

0)

1)

0)

6)

0)

1)

0)

0)

Dataset

R15444 (diethyl phthalate)

R27399 (dioctyl phthalate)

R20688 (dibutyl phthalate)

R27399 (dioctyl phthalate)

R22855 (dipentyl phthalate)

88248 (p-t-butylbenzyl alcohol)

R8239 (2-t-butyl-6-methyl phenol)

R12776 (lO-undecenoic acid, methyl ester)

R15444 (diethyl phthalate) .

R20688 (dibutyl phthalate)

R22855 (dipentyl phthalate)

R8248 (t-butylbenzyl alcohol)

R15444 (diethyl phthalate)

R8416 (1,3 benzenedicarboxylic acid)

R8239 (2-t-butyl-6-methyl phenol)

Example of the daughter spectrum matching algorithm

Figure 5.6
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Matching scan 6 (0149.0) from dataset R15444 (diethyl phthalate)

PT PC NC NS NR IS

100 100 4 0 0 0

68 55 3 1 0 61

67 51 2 2 0 25

66 59 3 l l 61

59 58 3 l 2 61

58 60 3 'l 2 61

57 55 3 1 2 61

56 61 3 l 3 8

53 52 2 2 2 25

50 55 4 0 l 0

49 40 2 2 l 70

49 32 2 2 0 75

46 59 3 l 3 8

45 33 2 2 l 75

44 34 2 2 1 75

*1

s2

*3

3
5
1
5
5
6
3
1
3

IR Scan Parent

n
o

h
i

c
e
a
s
c
o
c
s
-
a
c
n
c
n
c
o
n
o
c
o
c
o
c
:

(
J
r
-
i

0
3
0
!

14

6

7

3

13

13

13

4

7

2

10

10

6

5

16

9

(0149.0)

(0121.1)

(0149.0)

(0121.0)

(0120.6)

(0120.8)

(0121.0)

(0149.0)

(0164.0)

(0149.1)

(0121.0)

(0 93.0)

(0177.1)

(0 92.8)

(0 93.2)

1,3 benzenedicarboxylic acid

tetra ethyl silicic acid

2-t-butyl-6-methyl phenol

overall match factor

Dataset

R15444

R15444

R8416

R2060!

R22855

R27399

R8416

R13923

R8239

R20688

R13923

R8416

R15444

R22855

R15444

(diethyl phthalate)

(diethyl phthalate)

*

(dibutyl phthalate)

(dipentyl phthalate)

(dioctyl phthalate)

*1

s2

s3

(dibutyl phthalate)

t1

(diethyl phthalate)

(dipentyl phthalate)

(diethyl phthalate)

pattern correspondence - intensity based fit

‘ 3 commonnumber of peaks

number of peaks the sample (unknown) not matched to ref.

number of peaks ;n the reference not in the unknown

percent total ion current of unmatched sample (unknown)

percent total ion current of unmatched reference

Example of the RI spectrum matching algorithm

Figure 5.7
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phthalates, and other samples are distributed lower on the

scale (Figure 5.6). Figure 5.7 is a comparison of the

match factors produced from the RI matching technique. As

can be seen from these figures, the El matching algorithm

did not successfully group the phthalates together, while

an algorithm designed for matching daughter spectra

performed well.

Conclusions

These two techniques extract only a small fragment of

the information present in MS/MS data. The neutral-

spectral studies have shown that the first-order losses

from parent ions give direct, definitive information about

the composition of the parent ion. The expert system

presented in this chapter is a simple program that shows

the promise of this technique. The grouping method

presented here demonstrates the differences between

daughter/neutral spectra and EI spectra. In order to

effectively group daughter or neutral spectra, we need to

use algorithms with minimal intensity screening.

The technique of MS/MS is a powerful tool for structure

determination. The tools presented in this thesis are an

introduction to the kind of tools, rules and algorithms

needed to elucidate the structure of unknowns. The

combined research efforts of many members of the Enke group
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have and will continue to lead toward the development and

implementation of a variety of tools and techniques useful

in determining the structure of unknown samples.
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Appendix 1

Dr. Memory, SLOPS and control software

This appendix contains brief descriptions of each of the

commands and subroutines used in the TQMS control software.

For the purpose of brevity, the complete user’s manuals for

each of the three software packages (Dr. Memory, SLOPS, and

the control software) will not be reproduced. Each command

or subroutine in each user manual consisted two or more

pages. A sample of the format used is presented (for the

subroutine that checked with the user, then set/reset

specified bits, BITCHK), followed by only the description

section of the documentation for the rest of the

subroutines.

Appendix 1, part 1: Bit check example

part 2: Dr. Memory

part 3: SLOPS

part 4: TQMS control software
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Appendix 1, Part 1

BITCHK

Description

Version

This routine, bit check, sends out a message, gets

a response, and clears, sets or leaves alone the

indicated bit in the indicated byte. A YES

response sets the bit, NO clears is, and nothing

(<CR>) does not change it.

hg 1.0

Required

Returns

Modified

B

DE

HL

bit position (mask)

pointer to the byte to change

pointer to query text

none

none

Pushes/Pops

Calls

Bugs

0/0 - register A modified

PRINT

TTYIN



BITCHK:

BITCHl:

BITCHZ:

SUBR

CALL

CALL

LDA

CPI

JZ

CPI

JZ

CPI

JZ

CPI

RNZ

MOV

CMA

MOV

LDAX

ANA

STAX

RET

LDAX

ORA

STAX

RET

BITCHK

PRINT

TTYIN

CHRBUF

’Y

BITCH2

’y

BITCHZ

’N

BITCHl
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set the given bit

and head home
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Appendix 1, Part 2

Dr. Memory summary
 

Subroutines

Globals Definitions, memory locations, etc

Lowcore Restart and trap jumps

Interupts Interupt handling routines

RSTO Cold start, sets defaults

RSTl A \

RST2 BC \ Diagnostics - prints

RST3 DE \ the contents of the

RST4 HL / indicated registers

RST5 PC /

RST6 SP+flags/

RST7 Software breakpoint

Kernal Dispatcher for the monitor

Commands Processes several commands

Go Go and Procede commands

Quest Prints a summary of the commands

Regstr Open a register for modification

Talk Connect terminal to PDP 11

Chrchk Checks and converts ASCII to binary!

Close Closes an open location*

Crlf Outputs a <CR><LF> combination

Downld Downloads data from the PDP ll

Efclr Clears an event flag

Getnum Gets a number input

Gettt Gets a character from the USARTs

Lights Sends a predefined light pattern out

Lite Sends a specified light pattern out

Modify Modify a location in memory*

Nulljb Boredom routine

Open Opens a memory locations*

Print Prints an ASCII string

Putnum Outputs a number

Puttt Writes a character to a USART

Rhlr Rotates HL right

Stkbit Stacks 3/4 bits of HL on stackt

* these routines are useful only to Dr. Memory, and

probably will not help the casual programmer.
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GLOBALS This is a list of mnemonics that assign values to

ASCII characters, memory locations, etc.

LOWCORE These are the hardware vector jumps. This routine

just transfer control to the processing routines.

The restart interrupts are transferred to RAM where

RST 7’s await (unless user modified).

INTERRUPTS These routines process interrupts from devices.

The USART interrupt routines fetch and store one

character. The break interrupt routine does a warm

restart.

RSTO This cold start routine initializes several

parameters needed for the monitor to operate.

Breakpoint instructions are placed in RAM where

unused interrupts transfer control, jump tables set

up, flags set to default values, default user stack

set up as well as a default program counter.

RSTl Debugging aid: prints the contents of register A

RST2 Debugging aid: prints contents of register pair BC

RST3 Debugging aid: prints contents of register pair DE

RST4 Debugging aid: prints contents of register pair HL

RST5 Debugging aid: prints the user’s program counter

RST6 Debugging aid: prints the value of the stack

pointer and flags

RST7 Warm start or breakpoint entry. This routine saves

all of the user registers and status. Control is

returned to either Dr. Memory or Slops, depending

on who is in control. '

KERNAL This is the heart of Dr. Memory. It accepts

numbers (addresses and values) and commands and

dispatches to the appropriate routine.

COMMANDS These are routines that process Dr. Memory’s

commands. Those processed in this module are

slash, backslash, carriage return, line feed, up

arrow, Slaps, Hex, and Octal.

GO Two of Dr. Memory’s commands live here: Go and

Procede. Procede is useful - it restores all user

status and registers, including program counter.

This gets us back to ’user mode’.



QUEST

REGSTR

TALK

CHRCHK

CLOSE

CRLF

DOWNLD

EFCLR

GETNUM

GETTT

LIGHTS
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This is the ? command of Dr. Memory. It prints a

summary help message.

This is another of Dr. Memory’s commands, the s.

It is used to translate a register mnemonic to an

address, and open one or two bytes for

modification.

This is a routine that ’connects’ the two USARTs

together. Used to communicate to the PDP 11 thru

the micro. Note that there is no exit to this

routine. As such, it is both a command and a

subroutine. A break is needed to exit.

Character check. Numbers (actually digits, in

register A) are converted to binary (numbers either

octal or hex) and the result is left in register A.

Non-numbers cause the carry bit to be set.

Sets the open/closed flag to closed, and write out

a carriage

This routine sends a carriage return/line feed

combination to the terminal.

This subroutine talks to the PDP 11, and expects a

defined protocol for loading the micro’s memory.

Binary records are loaded directly into memory,

while ASCII records are sent to the terminal.

This routine clears the event flag specified in

register A.

This routine gets characters from the keyboard,

echoes them, checks them, and if numeric, builds a

number and loops for more. The number, if entered,

is built in HL and the ’entered number’ flag is

set. This routine returns when a non-numeric is

entered.

These are the get character routines. GETTTO gets

a character from USART 0, while GETTTl gets a

character from USART 1. Each routine waits until a

character is entered. The character is returned in

register A.

This routine displays a characteristic light

pattern each time called. The pattern displayed is

stored at location LITES.



LITE

MODIFY

NULLJB

OPEN

PRINT

PUTNUM

PUTTT

RHLR

STKBIT
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This routine turns lights on/off as defined by a

mask in register A. Each of the low 4 bits specify

a light as follows:

0 ==> bottom PS light

1 ==> middle PS light

2 ==> top PS light

3 ==> SOD light

This routine will modify a memory location if there

is an open location and a number has been entered.

This routine waits for the occurence of specified

event flags. Register A contains a mask of the

flags to wait for. While waiting, this routine

plays with the lights.

These routines set the open location flag and

writes the contents of the open byte(s) to the

terminal. OPEN opens a one byte location, OPEN2

opens a two byte location.r

This subroutine prints a string of ASCII characters

which ‘are ended by a null (0). HL point to the

start of the string.

This routine writes out a number, one or two bytes

long, octal or hex, to the terminal. HL contain

the number to output, and B contains a flag byte: 1

for byte output, 0 for word output.

These routines output a byte to a USART. PUTTTO

sends a byte to USART 0, while PUTTTl send it to

USART 1. The character to send is in register A.

These routines wait until the USART is ready to

send.

This routine rotates register pair HL right one

bit. The most significant bit is always set to 0,

and the least significant bit is returned in the

carry flag.

This routine takes the least significant 3 or 4

bits, depending on the octal/hex flag, of HL and

pushes them on the stack under the return address.
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Appendix 1, Part 3

SLOPS summary

Globals

Globals Mnemonics, address, etc for Dr. Memory

Sglobals Globals for Slops

Init Initialization routine

Kernel Driver routine and dispatcher

Subroutines

Addr Returns code address of library entry

Ascii Converts binary to and from ASCII

Blank Clears the screen

Brkdwn Breaks input line into words

Check Compares word with library entry

Cvtext Converts a number to ASCII string

Cvtint Converts ASCII string to binary number

Dcmp Double compare

Delay Software time delay

Link Links to next library entry

Number Get number from word stack

Search Search library for a match

Ttyin Gets a line of input

Word Get word from word stack

(also see subroutines listed under Dr. Memory)

Arithmetic gpbroptineg

Ddiv

Div

Dmult

Dsub

Mult

Commands

Convert

Downld

Drmem

Talk

Double divide

Divide '

Double multiply

Double subtract

Multiply

Converts a number to any base

Loads from the PDP 11 (See Dr.

Puts Dr. Memory in control

Talk to the PDP 11

Memory)
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GLOBALS This is a list of mnemonics, address assignments,

SGLOBALS

INIT

KERNAL

ADDR

ASCII

BLANK

BRKDWN

CHECK

CVTEXT

etc. for Dr. Memory. Needed for proper assembly.

Slops globals. Mnemonics for Slops use,

definition of memory locations and subroutine

addresses.

This routine initializes a few parameters, and sets

Dr. Memory to look directly at Slops, not here.

This is the heart of Slops. It gets a command

line, searches the library, and if the command if

found, starts the named routine.

This routine returns a pointer to the code of a

library subroutine entry, given a pointer to the

entry. e.g. the pointer is incremented past the

flag byte, the name and the link field, if present.

These are two routines, TOASCI and UNASCI. TOASCI

adds either 48 or 55 to the number in register A to

make it either numeric or alpha, as needed. UNASCI

checks the character in register A to see if it is

a legal digit, with radix given in register C. If

legal, the number is converted to binary. Carry

flag is set otherwise.

Blanks the screen and resets the cursor to the

’home’ position.

This utility routine breaks a line of input

(assumed to be in the terminal buffer) down into

’words’. A word is defined as alphanumeric

characters delimited by non-alpha characters.

These non-alpha characters are also words of length

1. Spaces are defined as non-alpha delimiters, but

do not count as words. Text after a semicolon is

treated as a comment, and not broken down into

words.

Compares the current word (eg an entered ’command’)

with an entry in the library. Sign flag set if the

words don’t match.

Converts a number (0E) to an ASCII string (radix

(C)). The resultant string is ’pushed’ to an area

pointed to by HL. The end of the string is flagged

by a null (0). Note that the string built is built

backwards, so on entry, HL must point to the TOP of

a buffer. On return, carry set implies a bad radix

was given.



CVTINT

DCMP

DDIV

DELAY

DIV

DMULT

DRMEM

DSUB

LINK

MULT

NUMBER
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This routine converts an ASCII string (radix (C))

to a number (DE). The carry flag will be set on

return if a bad character was discovered. On

return, carry set implies a conversion error (bad

character in string).

Double compare, patterned after the 8085 CMP

instructions. Here, flags (S, CY, 2) set according

to 0E - HL.

Double divide. The following takes place:

BC = HLBC / DE, remainder in HL

Software timing lodp generate approximate time

delays. HL contain the count, each count is about

10 microseconds. Note that HL=1 is the shortest

time, and HL=0 is the longest.

Divide routine. This acts as follows:

DE = DE / A, remainder in A

Double multiply. This routine acts as follows:

DE = DE 3 A

This routine sets Dr. Memory as the kernel in

charge, and returns to it.

Double subtract. This routine acts as follows:

HL = HL - DE

This is the counterpart to the 8085 instr DAD D

This routine links from one library entry to the

next. e.g. BC pointing to a library entry is

redirected to point to the next entry. The sign

flag is set if no more entries exist.

Multiplication. This routine acts as follows:

DE = D t E

This routine tries to find a number as the next

element on the word stack. If found, conversion to

binary is attempted. The conversion radix may be

specified with the number or defaulted. Radix

qualifiers follow the number, as follows:

’ octal

decimal

hexadecimal

radix n, where n is any valid

number.

The carry flag tells of errors, which might include

any of the following: no next word, next word not

a number, or the radix qualifier (number after :)

is not a number.

0

fl

V
V
V

:n

 



SEARCH

TTYIN

WORD

CONVERT

132

This routine searches through the library for a

match with the current word. If‘a match is found,

the entry is passed back along with its flag byte.

The sign flag is used as an error indicator for no

match.

Keyboard driver. Accepts a line of input, ended by

a control character (ASCII value < 32), stores the

line in the input buffer and echoes each character

as typed. This routine also processes the

following special characters:

delete deletes the last character

escape blanks the screen

cntl/U deletes the current line of input

Pops pointer to and length of next ward off the

word stack. If no more entries exist, the sign

flag is set.

This command converts a number from one base to

another. To invoke this routine, type:

CONVERT number base

where ’number’ is the number to be converted to the

base ’base’. For a description of valid numbers,

see NUMBER.
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Appendix 1, Part 4

Control system summary

Commands

INI Initialize the system

GET This routine gets a set of stored parameters

SAVE This routine save the current parameter table

PARAM This is the general parameter setting routine

MANUAL Routine for ’manual’ control

FSCAN Fast scan - see the spectra on the oscilloscope

SCAN Scan, collect data and display it

WDATA This routine writes the data from RAM to a disk

file

Graphics gpbrogtineg

CHRLIB

CLEAR

DRAW

GRFAXS

GRFCHR

GRFLAB

GRFVEC

Display

UPDATE

UPSTAT

UPSNUM

UPINT

UPMASS

UPGRAF

UPAXES

DLAST

Character library

This subroutine/command clears the graphics screen

Etch-a-sketch command '

This is the axis drawing routine

This subroutine draws a character on the screen

This routine draws a string on the graphics screen

Draws a vector on the graphics screen

update routines

This routine updates the status

displays

This routine updates the status display

This routine updates numbers on the status display

Format and display the intensity on status display

Format and display the mass on the status display

This routine updates the graphic display

This routine draws the axes

Draws the last collected intensity

and graphic
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Other gpbroptineg

BITCHK

FMASS

FORMAT

GETGRF

GETMAS

GETPM

GETPRM

INCMAS

INTENS

INT16

MSADC

MSDATA

MSINIT

MSMASS

PVRAM

SMASS

SMGL

SRANGE

STARTP

Sets/clears bits in a flag based on user response

Formats the mass as follows: aa:xxx.x

Format a number for output

This routine returns a flag byte with graph info.

This routine gets a mass from the word stack

Get X coordinate for current mass for display

Get a new set of parameters

Increment the quads to the next mass

This routine collects the data

This routine returns the sum of 16 intensities

Gets one ADC value

Store current intensity in memory

Initialize the control hardware

Send the quad controller a mass via DACs

Put text to the status display video RAM

Set current mass

Send message to user, get line of response

Set range of Kiethley amplifier

This is a file of the startup (default) parameters
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Commands

INI

GET

SAVE

PARAM

MANUAL

This is a routine to clean things (mainly the

display) up. The data RAM is zeroed, graphics and

status screens are cleared and updated, range and

mass reset.

This routine gets a set of parameters from a stored

bank. The number of the bank where the parameters

are stored is requested, and the entire bank is

transferred into the current parameter table.

This routine save the current parameter table in a

bank of parameter tables, for future recall. Use

is as follows:

SAVE n

where n is a number between 1 and 4 inclusive.

This is the general parameter setting routine. It

acts in a ’single character input’ mode for the

parameter to change, i.e. ’Q’ not ’QUAD’ for

changing a Quad’s mass range. At this time, little

checking is done of the parameters, and each

parameter must be set individually, i.e. changing

the’ mass range does not change the graph

parameters.

The parameters for either graph, the UPPER or the

LOWER, must be changed individually, and the

commands U and L identify which graph is being

changed.

The following commands are currently supported:

Q n low-high Change Quad n’s mass scan

T int range Change the threshold

R min-max Change the min and max range

A n Change the # points to average

G low,n Change low mass on the graph

F Change flags, each queried

M text' Puts message on status display

H text Puts a header on graph

? Prints a summary of the

options

“2 to exit (control 2)

Routine for ’manual’ control. Using the keypad of

the terminal, the keys 1, 2 and 3 are for quad l;

4, 5 and 6 are for quad 3; and keys 7, 8 and 9 are

for the range. Keys 1, 4 and 7 decrease the

current value by 1, keys 2, 5 and 8 set the current

value into the parameter table, and keys 3, 6 and 9

increase the current value by 1.

 



FSCAN

SCAN

WDATA
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This routine increments the mass, checks for a

typed character, and if none entered, loops about.

This routine scans the set mass ranges, collects

data, updates the screens, records the data and

loops until a character is typed.

This routine writes the data from RAM to a disk

file.

Graphics subroutines

CHRLIB

CLEAR

DRAW

GRFAXS

GRFCHR

GRFLAB

This is not a subroutine, but a library of vector

moves that draws the ASCII character set on the

MATROX graphics board. A list of pointers, in

ASCII“ order, points to the entries for each

character.

This subroutine/command clears the graphics screen.

The actual clearing takes a maximum of 34 msec, but

this routine does not wait.

This command allows the user to draw, dot by dot,

on the MATROX graphics board. The numeric keypad

is used to determine the direction, 5 ==> don’t

move, 9==> northwest, 4 ==> east, etc. The 0 key

tells the routine to clear dots in the drawn path,

the period (.) tells the routine to draw points.

To exit, type a slash (/).

This is the axis drawing routine. It will draw an

axis either vertical or horizontal. Large and

small tick marks can also be drawn, and large tick

marks can be labeled. This routine works from a

table of data the defines the axis to be drawn.

The table (an axis description block) is defined

below. '

This subroutine draws a character on the graphics

screen. The ASCII code for a character is passed

in register A, the graphics board must be aware of

the address to plot at (lower left corner of the

character space), and this routine will draw the

character from the library (CHRLIB).

This routine draws a string of characters on the

graphics board. The supported characters are all

the printing ASCII characters. The string can be

left, center or right justified. Registers D and E

contain the coordinates of the lower left (center

or right) for the string to be drawn. HL points to

the string, terminated by a null.

 



enrvec

Display

UPDATE

UPSTAT

UPSNUM

UPINT

UPMASS

UPGRAF

UPAXES

DLAST
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Draws a vector, of length (C), in the direction (8)

[Note that the direction mnemonics (north, south,

east, west, ne, se, nw, sw) should be used],

starting at physical coordinates X and Y (D,E).

update routines

This routine updates the status and graphic

displays.

This routine updates the status display.

Individual parts of the display can be updated, or

the entire screen can be blanked and redrawn.

This routine updates the numbers on the status

display for either the upper or the lower scan.

Not updated are the descriptions, the current info,

or the messages; just the numbers under the "UPPER"

or "LOWER" headers. -

This routine scales the given intensity and range

to the format xx.x -xx and sends it to the status

display, at location pointed to by HL.

This routine updates a mass range on the status

display, in the following format: xxx-xxx

This routine updates the graphic display. The

entire graph may be updated, or only the current

information can be plotted.

This routine draws the axes, taking into account

single or double plot, linear or log scale, low

mass for display, and # pts/AMU.

This routine updates the last mass, and the current

intensity. This is done to allow time for the

quads to settle, ions to be selected, etc. before

the next intensity is collected. While waiting,

graphing the last displayed point seemed like the

thing to do.

Other subroutines

BITCHK

FMASS

This routine sends out a message, gets a response,

and clears, sets or leaves alone the indicated bit

in the indicated byte. A YES response sets the

bit, NO clears is, and nothing (<CR>) does not

change it.

This routine formats the given mass as follows:

aa:xxx.x, where as is either RF or DC, and xxx.x 18

the mass.



FORMAT

GETGRF

GETMAS

GETPM

GETPRM

INCMAS

INTENS

INT16

MSADC

MSDATA
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This routine converts a number from registers DE

into ASCII in a predefined format, into a buffer

pointed to by HL. This routine converts numbers to

decimal, adds the required number of trailing

zeros, inserts a decimal point, and pads the from

of the string with spaces. The user than cells

PRINT to output the formatted string.

This routine returns a flag byte with graph

information.’

This routine attempts to get a valid mass from the

word stack. If a number was entered, it is scaled

for the DAC’s in use (MASS = MASS * 8.). If no

number given, the carry flag is set.

This routine returns the X-coordinate on the

graphics display corresponding to the current mass.

Also returned are some of the graph parameters.

This routine changes the entire parameter table for

Mass Spec control. A table, set up exactly like

the parameter table, is pointed to by HL, and its

contents ‘ are moved to the current or active

parameter table.

This routine checks the parameter table, finds

which quads want their mass incremented, and

increments them. Checks are made if any of the

masses increment past the end of their allowed

scan, and if so, the masses are reset.

This routine collects the data. A small sample of

intensities (16) are collected, and this set is

used to determine if autoranging is required. If

so, the Keithley is ranged, and time is allowed for

it to settle. This is repeated until the signal is

in range, or no more auto-ranging is possible. The

signal is then sampled and averaged the required

number of times.

This routine returns the sum of 16 intensities. It

is intended to give an idea of the current ion

intensity.

This is the lowest level data acquisition routine.

It requests and receives a datum from the analog to

digital converter.

This routine stores the current intensity in the

data RAM, at a location corresponding to the DAC

value (mass).



MSINIT

MSMASS

PVRAM

SMASS

SMGL

SRANGE

STARTP
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This routine sets up the parallel parts used for

the DACs, ADC. It also gets the default

parameters, sets masses to reasonable values, and

cleans up the displays.

This is the lowest level routine to send a mass to

the DACs controlling the quad’s mass.

This routine prints the text pointed to by BC to

the VRAM pointed to by HL, offset by DE. The

display is written into during vertical or

horizontal flyback, minimizing flicker.

This routine gets the "current masses" from the

parameter table, and sends them to the DACs.

This routine sends a message (pointed to by HL),

and gets the response from the user. The message

is broken down into words, and an attempt to get a

number is done.

This routine sends a new range to the Keithley, and

delays a bit to allow the amplifier to settle and

become reasonably stable.

This is a file of the startup (default) parameters.

0n startup, this file is copied into the parameter

table.
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Appendix 2

Multi-dimensional data base subroutines

This appendix contains descriptions of the subroutines used

to interface with the multi-dimensional data base format.

 



141

—~_*

SUBROUTINE MSINIT

This subroutine (along with the PARAMETER statements in

MDDB.CMN) set up the characteristics of this system.

All possible datasets are initialized, and system-wide

globals are set up, and the dictionary file is opened.

C

C

C

C

C

C

C calls CONCAT (STRING)

C SCOPY (STRING)

C DSINIT (MDDB)

C EXIT (RSX)

C

C

C

C

C

h gregg jul-82

SUBROUTINE MSOPEN(IFILE,QPRMPT,QTYPE,LOON1,LOON2,LOON3)

BYTE QPRMPT(1),QTYPE(1)

INTEGER*2 IFILE,LOON1,LOON2,LOON3

This subroutine open (close) the files associated with a

dataset. New or Old files may be opened, and filenames

can be prompted or defaulted.

where IFILE the number of the data set to open

negative means close that dataset.

QPRMPT prompt for asking for a dataset name

if LENGTH(QPRMPT) = 0, use QDSFIL as

the dataset name (in common).

QTYPE is either ’NEW’, ’OLD’ or ’READONLY’

LOONn are the logical units to use for the

dataset

returns (if ’OLD’, see GETPRM,GETCOM)

calls CONCAT (STRING)

LENGTH (STRING)

GETCOM (MDDB)

GETPRM (MDDB)

h gregg ju1—82

O
O
O
O
O
O
O
Q
O
O
Q
O
Q
O
O
O
O
O
O
O
O
O
O
O
O



142

Subroutines 53 write into 3 dataset

SUBROUTINE PUTPRM(IFILE)

INTEGERIZ IFILE

This subroutine writes parameters to the header file.

with the current time and date.

where IFILE is the dataset number

uses NUMSTC the number of static variables

ISTATC code for the static parameters

RSTATC value of corresponding parameter x

NUMVAR the number of static variables

IVAR code for the variable parameters

calls DATE (RSX)

TIME (RSX)

h gregg ju1—82

O
O
O
O
O
O
O
O
Q
O
O
O
O
O
O
O
G
O
O

SUBROUTINE PUTCOM(IFILE)

INTEGER¥2 IFILE

This subroutine writes a comment (title, words of wisdom,

etc.) to the header file, including the current date and

time, if needed.

where IFILE is the dataset number

uses QDATE is the date to write out.

If LENGTH(QDATE) = 0, get current date.

QTIME is the time to write out.

If LENGTH(QTIME) = 0, get current time.

QCOMNT an array holding the comment

The comment is assumed to end with a null

and be 80 bytes or less long.

calls DATE (RSX)

TIME (RSX)

LENGTH (STRING)

h gregg jul—82

O
O
O
Q
O
O
Q
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
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SUBROUTINE PUTDAT(IFILE,X,Y)

INTEGERXZ IFILE

REAL34 X(1),Y(l)

This subroutine puts a scan of data into the pointer and

data files. All pointers are kept internally, and some

values are calculated. .

where IFILE is the number of the dataset to use

X,Y are the X,Y data pairs

uses NUMDAT number of data points

IVARD code for X of X,Y pair

RTIME time the scan was taken

RVAR values of the variables

IVARF codes for fast variables

RVARF* values of fast variables, from RVAR.

RSUMY* sum of Y values, done here

ISCAN* + l is where this scan will go

* ==> calculated or kept internally, do not change!

calls PTDATM (MDDB)

PUTPTR (MDDB)

h gregg jul-82
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ubroutines to read from a dataset

SUBROUTINE GETCOM(IFILE)

INTEGER12 IFILE

This subroutine gets the next comment in the header file,

along with its time and date of entry.

where IFILE is the dataset number

returns QDATE the date of the comment

QTIME the time of the comment

QCOMNT the comment (or title) itself

calls none

h gregg ju1—82

SUBROUTINE GETDAT(IFILE,JSCAN,X,Y)

INTRastz IFILE,JSCAN

REALt4 x(1).Y(l)

This subroutine gets all information associated with

the current scan. All error information is from the

subroutines.

where IFILE is the dataset number

JSCAN is the scan number to retrieve

X,Y are arrays for the X,Y data pairs

returns (see GETPTR, GETVAR, GETXY)

calls GETPTR (MDDB)

GETVAR (MDDB)

GETXY (MDDB)

h gregg jul-82
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SUBROUTINE GETPTR(IFILE,JSCAN)

INTEGER*2 IFILE,JSCAN

This subroutine gets JSCAN’s pointer variables out

of the pointer file.

where IFILE is the dataset number

JSCAN is the number of the pointer to get

returns IPTDAT pointer into the data file

NUMDAT number of data points

RTIME time this scan was taken

RSUMY sum of the Y values

IVARD code for the dependent variable

IVARF codes for the fast variables

RVARF values of the fast variables

calls none

h gregg jul-82

SUBROUTINE GETVAR(IFILE)

INTEGER¥2 IFILE

This subroutine get the variable parameters for the

current scan (i.e. GETPTR must have been called).

where IFILE is the dataset number

returns RVAR variable values for the current scan

calls none

h gregg ju1-82
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SUBROUTINE GETXY(IFILE,X,Y)

INTEGER*2 IFILE

RRALI4 X(l),Y(l)

This subroutine gets the X,Y pairs for the current scan

(i.e. GETPTR and GETVAR must have been called).

where IFILE is the dataset number

X,Y are arrays for the X,Y pairs

calls none

h gregg ju1—82

SUBROUTINE GETEND(IFILE)

INTEGER*2 IFILE

This subroutine gets quickly to the end of the dataset,

and sets up the commons for the next write.

where IFILE is the dataset number

returns all variables necessary for the next write

calls GETPRM (MDDB)

GETVAR (MDDB)

h gregg may-85
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User interface subroutines

0
0
0
0
0
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0
0
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SUBROUTINE EXEDIT(INSTR,TRACE,IXY)

INTEGERIZ INSTR,IXY(6)

REAL*4 TRACE(4,1)

This subroutine edits the ’trace’ matrix used by the

extract subroutine. This trace matrix is the mask for

the extraction program, and this subroutine allows

manipulation of the input parameters (1&2).

where INSTR is a return variable for the main program:

( 0 == 30 plot: -INSTR is the parameter

for 3rd dimension

= 0 ==> exit

= l ==> start an extraction

= 2 ==> file the data

= 3 ==> call MULPLT

= 4 ==> extract and file the data

= 5 ==> file and plot the data

= 6 ==> extract, file and plot the data

TRACE is the matrix of min/max values

(l,n)&(2,n) are the min/max limits allowed —

edited here

(3,n)&(4,n) are the min/max found in the

data base - from extract

IXY(1) is the code for the independent variable

IXY(Z) is the code for the dependent variable

IXY(3) is the number of pairs extracted

IXY(4-6)aren’t used here

The numbers on the screen have the following format (see

NUMDIS):

integer - if it fits

real - if its fits

exponential: .xx-ee, .xxx-e, .xx+ee or .xxx+e

if negative, one decimal place is lost

The screen format is as follows:

lines 1&2 are for titles

lines 3-22 are for the numbers: .

3 variable 1 . . . . variable 2

4 variable 3 . . . . variable 4

etc

22 variable 39 . . . . variable 40

line 23 is for input

line 24 is for descriptive information
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follows:

bytes 3-12 are a description of the variable

bytes l3,20,27,34 are spaces

bytes 14-19,21-26,28-33,35-40 are the numeric

fields 1-4 '

calls: GETPOS (MDDB)

VTxxxx (string)

EDISPL (MDDB)

NUMDIS (MDDB)

INPUT (MDDB)

SUBROUTINE INPUT(ICMD,

INTEGER*2 ICMD

REAL*4 VALUE

This subroutine works

h gregg 7/84,8/84

VALUE)

for EXEDIT, getting the user input,

correcting mistakes and translating the input into an

index for the main program.

calls VTxxxx (string)

returns: ICMD VALU what the user typed

l -- Extract, <PF1>Extract

2 -- File, <PF1>File

3 -- Plot, <PFl)Plot

»4 -- EF, <PF1>EF

5 -- FP, <PF1>FP

6 -- Go, <PF1>Go

7 -- Quit, AZ, <PF1>Quit

8 -- Z, <PFl>Z

9 -- Help, (PF2), <PF1>Help

10 -- <up-arrow key)

11 -- (down-arrow key)

12 —— (right-arrow key>

13 -- <1eft-arrow key>

14 -- (carriage-return)

15 value value, <PF3>va1ue

16 -- X, <PF1>X

l7 —- Y, <PF1>Y

h gregg may—85
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Main extraction subroutine
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SUBROUTINE XTRACT(IFILE,NPLANE,IXY,TRACE,ARRAY,MAXARY)

INTEGER*2 IFILE,NPLANE,IXY(6,1),MAXARY

REAL*4 TRACE(1),ARRAY(1)

This subroutine extracts data from the multi-dimensional

data base. Several ’planes’ of data may be extracted at

once, dependent on the size of the data ARRAY. As many

planes of data as can fit into the ARRAY will be

extracted. The extraction parameters are passed in two

arrays - IXY and TRACE. IXY contains the codes for the X

and Y values to be retrieved, while TRACE contains the

constraints on the constants (min and max values forming

range). On return, TRACE will also contain the range of

values selected for every variable; this helps determine

if the extraction parameters were specified in enough

detail.

where IFILE is the dataset number

NPLANE is the number of X,Y planes to extract

IXY are codes and pointers for each plane

(1,m) pointer to code for X

(2,m) pointer to code for Y

(3,m) number of X,Y pairs extracted

(4,m) pointer to first X value in ARRAY

(5,m) pointer to first Y value in ARARY

(6,m) max number of X,Y pairs, no shuffle

Note that an additional plane is used intern’ly

and space for it must be allocated by caller.

TRACE extraction parameters

[equivalent to TRACE(4,NUMVAR(IFILE)+4,NPLANE)]

(1,n,m) minimum allowed value

(2,n,m) maximum allowed value

(3,n,m) minimum found value

(4,n,m) maximum found value

(i,l,m) scan number (ISCAN)

(i,2,m) time scan was taken (RTIME)

(i,3,m) sum of Y values (RSUMY)

(i,4,m) the Y values

(i,k,m) the variables [IVAR(ifi1e,j)]

where k=j+4

m is the extraction plane

ARRAY is the data array

MAXARY is the maximum size of ARRAY
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calls ASHUFL

SHUFFL

GETPTR

GETVAR

GETXY

STORXY

TRACER

IT

ITRACE

(MDDB)

(MDDB)

(MDDB)

(MDDB)

(MDDB)

(MDDB)

(MDDB)

(MDDB)

(MDDB)
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Common area - variable definitions

C

C MDDB.CMN - common areas for the M008 data base routines

C

0
0
0
0
0

0
0
0

0
0
0

PARAMETER MXFIL=1

PARAMETER MXSTC=4O

PARAMETER MXVAR=40

Variables common to all

for the dictionary:

open datasets

static params

variable params

number of

number of

number of

maximum

maximum

maximum

datasets:

BYTE QSDICT (20) 2 short dictionary description

BYTE QLDICT (58) ! long dictionary description

INTEGER*2 LUNDIC I logical unit for the dictionary

INTEGERXZ IPTDIC ! dictionary pointer: no/val/point

misc. variables:

BYTE QSYSTM (20) ! device and UIC for common files

BYTE QDATE (10) ! the date \ either current

BYTE QTIME ( 8) ! the time / or from the dataset

BYTE QCOMNT (82) 2 comment lines from the header

INTEGER¥2 LOONTI ! the logical unit for TI: (errors)

INTEGER*2 IERR ! error return flag

INTEGERXZ MAXFIL ! == MXFIL

INTEGERXZ MAXSTC ! == MXSTC

INTEGER*2 MAXVAR ! == MXVAR

variables for each data set:

BYTE QDSFIL ( 30,MXFIL) ! dataset file name

INTEGER*2 LUNHDR ( MXFIL) ! LUN for the header file

INTEGERXZ LUNPTR ( MXFIL) 2 LUN for the pointer file

INTEGER*2 LUNDAT ( MXFIL) ! LUN for the data file

INTEGEth ISCAN ( MXFIL) 2 current scan number

INTEGER*2 IPTDAT ( MXFIL) ! pointer to current scan

INTEGER*2 JPTDAT ( MXFIL) I pointer to memory record

INTEGER*2 IDAT ( MXFIL) ! pointer into RDAT

REAL*4 RDAT ( .16,MXFIL) ! one data record buffer

REAL*4 RTIME ( MXFIL) ! time this scan was taken

 



INTEGER*2

INTEGERIZ

REAL34

INTEGERtZ

INTEGERXZ

REAL*4

INTEGER*2

REAL¥4

INTRGRRIZ

INTEGERXZ

INTEGERXZ

INTEGERIZ

INTRaentz

REAL*4

COMMON

QSDICT,

LUNDIC,

QDSFIL,

NUMSTC,

NUMDAT,

RSTATC,

152

NUMSTC ( MXFIL) !

ISTATC (MXSTC,MXFIL) !

RSTATC (MXSTC,MXFIL) !

NUMVAR ( MXFIL) I

IVAR (MXVAR,MXFIL) !

RVAR (MXVAR,MXFIL) !

IVARF ( 3,MXFIL) !

RVARF ( 3,MXFIL) !

MAXDAT ( MXFIL) !

NUMDAT ( MXFIL) I

IVARD ( MXFIL) !

IPTX ( MXFIL) !

IPTY ( MXFIL) !

RSUMY ( MXFIL) !

/MSFILE/

QLDICT, QSYSTM, QDATE,

IPTDIC, MAXFIL, MAXSTC,

LUNHDR, LUNPTR, LUNDAT,

ISTATC, NUMVAR, IVAR,

IVARD, MAXDAT,

RVAR, RTIME,

number of static params

code for static params

value for static param

number of var. params

code for variable params

value for variable param

code for the fast vars

values of fast vars

max number of data pairs

number pairs this scan

code for dependent var

pointer for X, this scan

pointer for Y, this scan

sum of Y, this scan

QTIME, QCOMNT,

MAXVAR, IERR,

LOONTI,

ISCAN, IPTDAT, JPTDAT,

IPTX, IPTY, IDAT,

RSUMY, RVARF

C__________________________________________________________

C
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Appendix 3

EXTRACT User’s Guide

Hugh Gregg

June 24, 1985

EXTRACT is a program for interrogating a

multi-dimensional dataset and extracting

any two dimensional plane of data from

it. The resulting data can then be

formatted and presented to MULPLT for

immediate graphics presentation, or the

user may choose different extraction

parameters and extract another plane of

data.

 



154

EXTRACT, the program

The program EXTRACT was created to extract any two

dimensional plane of data from a multi-dimensional dataset.

This is accomplished by specifying a set of extraction

limits, and letting the program search through the dataset

extracting all the data that matches the specified

constraints. The actual limits of the extraction are then

presented to the user. If these limits are acceptable, the

user may plot (using MULPLT) the extracted data.

Multi—Dimensional Dataset

Datasets created by multi-dimensional instruments, such

as Triple Quadrupole Mass Spectrometers (TQMS), may contain

more than two dimensions of data (i.e. more than mass vs.

intensity pairs). A TQMS has many instrumental parameters,

each of which, when varied, creates an orthogonal dimension

of data. Examples of these dimensions include quad 1 mass,

quad 3 mass, the axial energy, collision pressure, and ion

intensity. Varying more than two variables results in a

dataset with multiple dimensions of data. A multi-

dimensional data base system (MDDB) was created to handle

these data.

An MDDB dataset is a set of three files (*.HDR, *.PTR,

*.DAT) that contain all the instrumental parameters as well

as the data. The data is stored in this dataset in a

series of "SCANS”. Each scan is the result of one

instrumental operation (i.e. an intensity vs. quad 1 mass

scan, or an intensity vs. axial energy scan at specific

parent/daughter masses). The values of all variables at

the time each scan was recorded are stored with the scan.

In this way, each scan is a two dimensional slice into the

multi-dimensional dataset with all other variables held

constant.

How extraction works

EXTRACT extracts a plane of data based on the

constraints specified by the user. The user is presented

with a list of all the variables in the dataset and must

choose what data is to be presented. The abscissa and

ordinate (X and Y) of the resulting plane are selected. If

the user wishes to limit the extraction process, the limits

of the variables must be set. When EXTRACT is told to do

it’s stuff, it extracts all data that satisfy the

constraints. When this is accomplished, the user is

presented with the actual limits found during the

extraction. If these limits are acceptable, the data may

be formatted for MULPLT and displayed. However, if the

actual limits of the extracted data indicate a variance

larger than acceptable, the limits of the offending

variable may be narrowed and the extraction tried again.
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Using EXTRACT

To use EXTRACT, you must first convince RSX to let you

use it. This is done by typing ”EXTRACT" or "EXTRACT

datasetname". If you don’t specify the dataset name on the

command line, EXTRACT asks you for the name. If the

dataset exists, EXTRACT displays all the variables and

waits for the user to type something. One section of the

screen is highlighted - this is the "active" area. The

user may move to a new active area by using the cursor

control (arrow) keys on the terminal. To change a specific

value, move the active area to the position of the value to

change, then just type in the new value (followed by a

<CR>). Commands can be entered at any time, and take

immediate action. For more information about the commands

and how to enter values, see the sections on COMMANDS and

VALUES.

Screen Display Format

The screen format of EXTRACT displays all the user

variables stored in the dataset. Each variable has four

values associated with it: the minimum and maximum

extraction limits (set by the user) and the minimum and

maximum limits found by EXTRACT in the dataset.

Each value is displayed in only six character positions

and may appear truncated. If the value conveniently fits

within the six character window, it is displayed in full.

A problem arises when displaying large or small numbers

(i.e. 2.345687 counts). These numbers are displayed in

exponent format with implicit "times 10 raised to" (i.e.

.234+8). In the worst case, only one digit of the number

plus the exponent is visible (-.3-16).

The bottom line of the screen displays an enhanced

version of the active area. A number truncated in the main

portion of the screen is displayed in full along with the

full name of the variable. This status line is also used

to display definitions of certain values. For example, a

value of "2" for the variable "CAD gas type" produces the

description "CAD gas type: Nitrogen".

Values

Values may be entered in a variety of ways, the simplest

of which is to type in the new value. While this method

will always work, there are a few short cuts available.

When the active area is at either the minimum limit or the

maximum limit, the following may be used:

 



Minimum limits

(CR)

Nl,N2

Maximum limits

(CR)
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A single carriage return, when the minimum

limit is the active area, resets the

minimum and maximum limits to "no limit".

This allows EXTRACT to use any values for

this variable.

Entering a number N results in that value

being inserted into both the minimum and

the maximum value slots. Note that the

input of exponents must be done in

computer notation (i.e. 1.23E7), and that

a carriage return must be typed after the

number.

This format enters the number Nl into the

minimum value slot, and the number N2 into

the maximum value slot.

This format enters the number N into the

minimum value slot, and the number N+i

into the maximum value slot. This format

allows easy entry of a range of limits;

you specify the minimum value and the

range or increment. ‘

This vrmat enters the number N into the

minla.m value slot, and the number N+l.0

into the maximum value slot. This format

is identical to the above format, but

defaults to a range of 1.0 (useful for

mass selection).

This format enters the number N into the

minimum value slot, and sets the maximum

value to infinity (1.0236).

A carriage‘ return at the maximum limit

sets the maximum equal to the minimum

limit.

Entering a number N results in that value

being inserted into the maximum value

slot.
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Command Summary

This is a list of the available commands and a brief

description of their use. All commands may be abbreviated

to their first letter, and are explaned in greater detail

below.

Single keystroke commands:

arrow keys move the active area

(PFl) get the "Command?" prompt

<PF2) Help: display the known commands

<PF3> get the "Value:" prompt

(CR) at first limit: sets "no limits"

at second limit: set second value to first

AZ Exits EXTRACT

anything else starts either a command or value

Other Commands (in response to the ”Command?" prompt):

X set the abscissa

Y set the ordinate

Z three-dimensional extraction and file

Extract Extract a plane of data

File File the extracted data

Plot call MULPLT

EF Extract and File a plane

FP File and Plot extracted data

Go Extract, File and Plot extracted data

Save Save the current extract limits

Read Read in saved extract limits

Help Display the command summary

Quit Exits EXEDIT

Description of Commands

X or Y This command sets the active area to be

either the abscissa or ordinate (X or Y)

for the resulting extract plane. A

highlighted letter (X or Y) is placed in

front of the variable name to indicate the

current X and Y variables.

2 This command executes a three-dimensional

extract. Position the active area to the

variable that will be the third axis (note

that this variable’s limits must be set).

Enter the 2 command, and you will be asked

for the incremental value for the 2

variable. This procedure does a series of

two dimensional extracts, starting with Z

equal to the minimum limit, and subsequent

extraction with the 2 value incremented

until the maximum limit is reached. Data

 



Extract

File

Plot

EF

FP

Save
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from each two dimensional extract are

filed. An auxiliary program (PLOT3D) is

used to read this file and produce MULPLT

files for pseudo three-dimensional plots.

This command extracts a plane of data from

the dataset and displays the resulting

extraction limits. The data extracted are

not automatically filed or plotted.

This command files previously extracted

data. The filename is derived from the

dataset name (*.BIN), and each File

command in one extraction run uses the

same file (the MULPLT tag for each file

command starts at "AA" and is incremented

for subsequent file commands: "AB", "AC",

etc). A MULPLT command file is also

created (*.PDL). Before the first file

command is executed, the user is asked

whether the plot will' be a point plot,

line plot, bar graph or spectra plot.

Point plots and bar graphs are just that;

*the data for line plots will be sorted;

spectra plots are normalized to the base

peak, and the maximum intensity is put

into a MULPLT special features file

(*.SPF).

This command go directly 'to MULPLT,

passing it the name of the command file

generated by the File command. The user

is left in MULPLT, ready for a GO command,

or whatever. To exit MULPLT, type Halt or

AZ, and you will be returned to EXTRACT.

Extract and File command for those times

that you know the extraction will work,

but you don’t want the data plotted yet.

File and Plot command. Used after doing

an extract command, and you wish to plot

the data.

Extract, File and Plot extracted data,

this command ”Goes for it", and does it

all.

This command saves the current extraction

limits in a file (the default file name is

derived from the dataset name, *.EXT).

This is a normal file that may be edited,

displayed, etc. For information on the

file format, see the Read command below.
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Read This command reads in a file of saved

extraction limits (the default file name

is derived from the dataset name, *.EXT).

The file contains lines with the following

form: "variable = N1 to N2" for each of

the variables with limits set. The

variable name must exactly match the short

dictionary definition, and the two

keywords "=" and ” to " are not optional.

Help This command produces a short list of

available commands.

Quit , This command exits EXTRACT.

The mechanics of EXTRACT

Internally, EXTRACT consists of three major phases:

extraction parameter editing (EXEDIT), extraction (XTRACT)

and formatting for plotting (MSPLOT). Both the editing and

plotting phases are described in the COMMANDS section. The

extraction routine itself basically operates as two units.

The first unit processes the simplest of the extractions;

i.e. when the extraction plane is a scan. In this case,

the requested plane of information is stored.in the format

that the user wants, and all that is required is to

retrieve it.

The retrieval of a plane of data that wasn’t scanned is

more complicated. A large loop is initiated where each

cycle of the loop looks at one scan in the dataset. The

limits specified by the user are used to try to reject a

scan from further consideration. If the scan cannot be

rejected, the X and Y variables that the user specified are

studied. If there are multiple X values, all X values are

retrieved along with their corresponding Y values and are

stored in the extraction plane. If there are multiple Y

values and only a single X, the Y values are averaged and

the resulting X, Y pair is placed in the extract plane.

Finally, if no X or Y values match their extraction limits,

no data from this scan is saved. Once this scan is

finished, EXTRACT loops back and gets the next scan until

the entire dataset has bee examined.

The dimensions of the internal arrays in EXTRACT are not

fixed as in conventional programs. This allows quite a bit

of flexibility in the size of the scans and planes

extracted. Space for the data in each scan (from the

dataset) and the extract plane (under construction) is

dynamically allocated from a pool of 16000 bytes (room for

2000 X,Y pairs). Therefore, as the extract plane is built

(more data pairs added to it), the room available to hold

the next scan diminishes. In practice, this space is more

than enough. If we assume a fixed length scan of 1000 X,Y
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pairs, we still have room for an extraction plane of 1000

X,Y pairs.

GLOSSARY of terms used

Active area

Extract

Plane

Scan

Value slot

(CR)

(PEI)

<PF2>

<PF3>

describes the area currently highlighted

on the screen.

the process of searching the dataset for a

specific two dimensional plane of data.

a two dimensional grouping of data,

usually extracted from a multi-dimensional

dataset.

one instrument scan; i.e. one grouping of

data consisting of X,Y data pairs and the

corresponding values for the variables.

one of the four minimum or maximum values

for a variable. A value slot may become

the active area.

the carriage return key.

the PFI key on VTlOO’s, the "gold" key.

Used to start a command.

the PF2 key on VTlOO’s, next to "gold"

key. Used to obtain Help.

the PF3 key on VTlOO’s. -Used to start a

value.

control Z (hold the control key down and

press the Z key). Used to exit EXTRACT.
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