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ABSTRACT

THE FIELD AND CARRIER WAVES INTERACTION

IN A SEMI-INFINITE SEMICONDUCTOR

By

Chuck T. Hui

An analytical treatment of the transverse magnetic field waves

and carrier waves is presented without the quasistatic approximation.

The effects of diffusion and an external magnetic field are included.

To evaluate the properties of the carriers at the surface, Sumi's

stiff boundary model as well as the "ripple" boundary condition are

examined. The resulting dispersion relations are evaluated numeri—

cally. Possible instabilities are analyzed, and gain shapes are

studied under varying conditions. It is found that gain is possible

theoretically under specific conditions.
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1. INTRODUCTION

The objective of this paper is to investigate analytically

a device called the solid state traveling wave amplifier (STWA).

This device is somewhat a solid-state analogue of the vacuum TNT

where electromagnetic waves will be amplified if guided by a slow

wave structure. The planar guiding structure is assumed to be a

meander line. Amplification of waves is due to interaction of

drifting carriers in semiconductor with the "external" slow waves.

Since the device is so similar to the TWT it seems reasonable

to extend the three-wave theory for the TNT to semiconductors as

well. Such an idea was first proposed by Pierce and Suhl [1] in

1955. Since that proposal, wave interactions between the slow EM

waves and drifting carriers in a semiconductor have been studied

extensively.

The STWA falls into the very broad category of wave instabili-

ties in solids. The literature on this subject is quite extensive.

Collectively, the theories of the STWA have been either one or two-

dimensional analyses. The one-dimensional investigations follow

very closely the successful theory developed by Pierce for the TWT.

For reference purposes, the basic dispersion relation obtained by.

Pierce in the analysis of the TWT is given as follows:

2 2 . 2 . 2 3

(v ' y1)(JBe - v) = 'JZBeY ch



Numerous modifications were made to accommodate space charge

effects [2, 3]. Further works in this area are:

(1) In 1966, Solymar and Ash [4] furnished a one-dimensional

analysis for an n-type STNA similar to the analysis for the vacuum

TNT of Pierce.

(2) Fujisawa (1968, 1970) worked out a transmission line

analogue and a kinetic power theorem for carrier waves in semicon-

ductors [5]. Similar works in transmission lines analogues were

done by B. H0 in 1970 [6].

(3) Coupled mode theory for STNA was given by Fujisawa and

Ishikawa in 1969 [7].’

However, it should be pointed out that though a one-dimensional

analysis has been successful with TNT and ANA (acoustic-wave ampli-

fier) and that it is much simpler than the many two-dimensional

analyses used, it cannot be extended toliueSTNA without modification-

One big difference between the TNT and the STNA lies in the fact

that in the former the space charge waves are weakly damped and

the carriers are inertia dominated. In the semiconductor, the stream

is collision dominated and the normal modes are highly damped. Further

discussion on these will be found in reference [8]. The two-dimensional

models are basically field analyses and yield considerably more

information about the device. In 1966, 1967 Sumi [9] published a

two-dimensional analysis of the interactions between the surface

TM waves on a semi-infinite semiconductor medium and the adjacent

planar slow wave structure as an infinitely thin current sheet.





An extension of his work was done by Vural and Steele (1969)

and Freeman (1972) [10, 11]. In their work, as distinct from Sumi's

stiff boundary model with zero transverse current, they have taken

into account the effect of the surface charge arising on the semi-

conductor by using the "ripple" boundary condition. Kino [12] and

other authors have also applied the ripple boundary condition in

the analysis of thin semiconductor slabs and wave instability in

zero diffusion limit.

In these two-dimensional analyses, many researchers have pre-

dicted an extremely large gain of tens of decibels per mm length

of circuit length. Yet the experimental results so far have been

inconclusive though promising [13-15]; no net terminal gain has been

achieved. This discrepancy between theoretical prediction and

experimental result can be related to a simplification of model

or imperfect experimental arrangement.

From the experimental side: Nas gain unachievable solely

due to the high transmission loss of the slow wave circuit? Or

is the geometry of the meander line and its separation from the

semiconductor a factor in achieving strong interaction between the

drifting carrier and the slow waves?

Two major centers of difference can be noted from some of

the above theories, as suggested by Freeman [16]. The first point

of disagreement centers about the importance of diffusion forces

in the model of the carrier stream. Understandably, the omission of

diffusion simplified the mathematics considerably. Yet, it has





been shown that the effect of diffusion is important and must be

included [17]. The other disagreement concerns the boundary condi-

tions to be used at the surface of the semiconductor. This will

ultimately determine the mechanism of coupling between the stream

and the slow waves.

In the analysis to be presented here, diffusion; will.

be included. Also, a new model for the boundary condition essential

to the founding of a dispersion relationship will be established.

The analysis is essentially a two-dimensional field analysis follow-

ing closely that of Sumi, Freeman, and that of Okamoto and Mizu-

shima [18] especially, since a static B field (magnetic field) is

included in the analysis. A computer is used to aid in the solutions

of the dispersion relations. Theoretical results were obtained

and an interpretation of them is presented.





2. ANALYSIS OF THE STNA

2.1. Formulation of the Problem

In the analysis that follows here, we will consider a semi-

infinite region which fills the lower half space x_: 0. The meander

line is represented by a current sheet at distance d above the surface

of the semiconductor. The semiconductor is assumed to be uniform,

isotropic, and homogeneous. Uniform, static electric and magnetic

fields E0 and B0 are applied in the -z and +y directions, respectively,

as shown in Figure 1.

The linearized forms of Maxwell's equations, along with Poisson's

equation and the equation of motion, are used to describe the behavior

of the carriers in the material. All the RF quantities are assumed

to vary as exp. j(wt - kz). Furthermore, we make the following

assumptions:

(1) small signal assumption;

(2) the carrier stream is collision-dominated; Iw - Buo|<<v ;

(3) single type carriers; electron;

(4) the electrons drift in the +2 direction under the influence

of a constant drift field;

(5) no significant trapping, generation or recombination

effect;

(6) the density no(x) is uniform.





Meander Line

Insulator

C

Semi 03

Figure 1. Semi-infinite semiconductor and meander line





The last assumption is a forced one. The transverse magnetostatic

field B; will cause an accumulation of electrons on the surface,

the so-called Suhl effect. Thus, the density no(x) might not be

uniform. However, if a gate is applied on the far side of the meander

line, we anticipate n0(x) to be approximately uniform.

The equations are as follows:

+ +

v x E = =jwuoH (1)

+ + +

v x H = a + jweE (2)

V.B=p

(3)

+ —)- +

J - -e(nov1 + "luo) (4)

+

W. .121" 1e_+ ‘* + 232—t-—-m*E-m*va-W-va
(5)

where the d.c. drift velocity u0 is assumed to be in the +z direc-

A

tion; 36 = uoaz. m* is the effective mass of the electron. The

subscript "I" is used for RF quantity and “O“ for d.c. quantity.

It can be shown that '

+

dv _ :4*

at'“ 3 v1

‘wh re'— - k d 3' - 3 + v 3e w - w - uO an 1 vx x z z .

Now the term V’x B'is considered.
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A

+

Since we are only assuming the TM mode; then Bl~= Blay'

The third term on the r.h.s. is a d.c. quantity which we drop. Ne

are assuming this pushes the carrier toward the surface which is

the Suhl effect and is cancelled by the gate. The very last term

on r.h.s. is dropped due to the small signal assumption. Thus,

rewriting the equation of motion

._:* __ Jfl "‘ + '* —>- '* 2173 —>-

JwV1--m* (E+v1><Bo+uo><B1)-va -\)v1 (6a)

Vp _

Since-YE s-——l , and 9* = v + jw

0 DO

(
x
i
—
F
m

are the modified mobility, diffusion constants of the electron. With

the understanding that these quantities are complex, we will drop

the asterisk for simplicity in the development which follows.

Rearranging equation (6a), we obtain the equation of motion.

Vp+_ + _,_ + + + _.._.l

v1 - -u[E + v1 X B0 + u0 X BI] - D 90 (5b)

We now proceed to obtain the equation for the electric field

in the semiconductor. Using equations (1) and (2)





+- +

V x (lbflid = jewE + j

 

Juow

+ . .+

V(V'E) - 172E = pochE - judm

. 2 _ -1 _ . .
if c - (epo) , wc — eunO/e, by us1ng equation (4)

E e-wzt - +V(V ) - V - ZE- - Judw[-|e|n1uo - |e|nov1]

thus

2 iii
+ = 1 ._EL.+' U 0 :+ .+. _ 2+

1 juoweno [ C2 E + c2 V E + V(V E) V 53 (5°)

Substituting into the equation of motion, and also defining

3.: -uB aA, we obtain the following:

 

0 y

_ 2 mg -+ +

I-Q—E +1—9— v~E + v(voE) - VZE]
2 2

c c

"(02+ wuo + + 2+

+a>< [—,—E+j——v-E+v(v-E) -VE]
2 2

c c

mm m U+ +

= -i —7§-E + C20 x (V x‘E) + i-g%-V(V°E) (7)

c c c

Assuming the fields do not vary with the y-coordinate, that is,

§%-= O, we can separate them into TE and TM waves. This assumption

IS Justified if the semiconductor extends far enough in the y direc-

tion. Since the TE wave has only a y component of the electric field,

we will study the TM mode here.
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We assume the x variation to be eYX; thus, the coordinate

dependence of all a.c. quantities is exp (-jkz + yx) where the time

dependence is understood. The TM field is

.+ _ .

= vx-sz
E(x,z) (Exax + Ezaz)e

where Ex’ Ez are complex amplitudes. Then

= _ . vx-jkz

[7Ex JkEZJe

.‘* ___ A _./~, _. YX-jkz
V(V E) [yaX Jkaz][YEx jkEZJe

2*
V E = [y2 - k2]E

Substituting the above equation into equation (7) and equating the

a and a components, we obtain

 

X Z

2 m w ku mu
. wD 2 2 w . c . c o . o

a : E [j ——'Y - k +-- (1 - J “—0 + J + Ja(k ' ‘——§YJ
x x c2 c2 w C2 C2

weu0 w2 muok

=EI-J'k(1-=1-)Y-—-——2—oY-“(Yz +—2—-———)1
c2 c c c

(8a)

w2
. Dk ““0 2

a = E [Y(-Jk- w + j--) + a(- - k )]=
z x C2 C2 C2

w2 uok

EZIY2 + ---(l - ---i - j—%(w + k2D) - iakY] (8b)

C2 C2





Now using

11

the notation:

 

 

2 u k _
w 0 . w 2

‘-—— (1 --———) - J-—— (m + Dk )
c2 w c2 C

mu .

. o . wD

-Jk[1 - —- - J —

kc2 c2

. mD
J ___-

C2

2 w

2 w ___

k -'—§ (1 ' J u))

c

-J’k(1 - .i 9-2)
C

LOU

. o

Ja(k - —)
c2

w _.

a-——¢n
c2

2
w 2

a(-—- - k )
C2

jak

J wckuo

C2

(1) U

.. (:2 'Y ,

C

then equations (8a) and (8b) become
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[6Y2 - d + P + fv]Ex = [ev - avg - 9 + q)Ez (9a)

[aw-rug = [Y2 + a — hy]EZ . (9b)

2.2. The Stiff Boundary Case

If we drop the terms due to the magnetic fields, i.e., p, q

and d = O, we have Sumi's case:

[6Y2 - dJEx = [eYJEZ (lea)

[butx = [92 + aJEZ (10b)

In order to have a non-trivial solution, the determinant

6Y2 — d -eY

= O

by -<YZ + a)

From Freeman's [19] evaluation, we know the roots are

k
5 n l

(
D
I
G
:

u

x
- n
:

+

0
| + (
.
1

O
I
€
|
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For the geometry given, only positive roots are allowed. Thus,

the components of the TM mode are:

7 x

= Y.x 2
E2 Ale + Aze

_ le
Ex - Ble + Bze

sz

The above case has been studied by Sumi and Freeman. Therefore,

I will quote results from Freeman as reference,

 

='_k_81 j Y1 A1 (11a)

Y A

_ . 2 2
82 - j ___—ZEF- (11b)

_._12

C2

by utilizing equations (10a) and (10b).

Since for the TM mode Hz and E‘y = 0, and we assume §%-= 0,

using equations (1), (11a), and (11b),

. y x v u y x

....1ee_k_ _-_w_c_ 1 2+0 2My k [Y1 (1 J Q))A1e + a) A26 ] (12)

To find the dispersion relation for the entire system, we

must match the fields of the semiconductor to those of the meander

line. Several assumptions are made here:
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(1) The insulator between the meander line and the semiconduc-

tor is perfect, thus there is no conduction current in this region.

(2) 0n the surface of the semiconductor, no real charge or

current exists.

Due to these assumptions, we have Sumi's stiff-boundary case

with the following boundary conditions:

(a) le = 0 at the semiconductor surface, i.e., x = 0;

(b) the transverse admittances of the two regions are equal.

From condition (a), we obtain a relationship between A1 and A2

wckz

A = -' __ 13 

With this relation we can express Hy and E2 in terms of A1. At

5 s

x = 0, the transverse admittance is

 

H . . we

yS _ 1wes(1 - 1 I?)

E - 2
z . k (DC

S Y (1 - ‘l—"—_

1 Y1Y2w

Similarly, we can find an expression for that of the current sheet.

This is done in detail by J. Freeman [20] and is also used by

 

Yen [21].

-2Y d

Hyc iweC (1 + e C )k2 - k:

I?__ = y ~2Y d

2c C kg - (1 - e C )k2
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where

d = thickness of the insulator

Yc = the circuit propagation constant

ko =-§L , where v? is the phase velocity of the circuit.

¢

With the assumption that

ex é I + x

and

2 ; 2

YC-k

along with the approximations

Y1=k

L [_2.
Y2" D,

we obtain the final dispersion relation by using boundary condition

8

(b). The result is as follows [22], with K =-E§ .

c

[2duo(1 - k) + j2dJ55;]k4 + {2[dw(K - 1) - uo]

- 12(chd + J55;)}k3 + 2wk2 + [kguo(1 + K) + jkglfiEEJk

2 2 . 2 _
+ [-kow - Kkow + ijowC] - 0
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This relationship is the stiff boundary case examined by Sumi and

Freeman.

2.3. The Stiff Boundary Case with Static Bo Field

Returning to equations (9a) and (9b), we now assume |Ba|>>|Bij,

+

and if B0 = 0, Bi is still not of significance in the motion. Thus,

equations (9a) and (9b) lead to:

4 3 3

Gy + (f - Gh + ab)y + (a0 - d - fh - eb + a£)y

+ (dh + af - e2 + gb)y - da + 92 = 0 . (14)

The coefficient of y3 vanishes, and the only non zero term in-

the coefficient of y is much smaller in magnitude when compared

to coefficients of other terms. Thus, equation (14) reduces to

If we assume that the constant term is still a product of the roots,

the above equation can be rearranged as a bi-quadratic with the

roots perturbed from the stiff-boundary case.

Two possibilities exist here: either Y1 or Y2 is perturbed.

After careful evaluation, it is found that v2 is perturbed. The

2
solutionscfiiy in equation (15) are given as follows:
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Y2 2 w ”c

i=d‘k "2‘1"”;
C

L .
-a + 9—. w -

2 _ (i z 2 _2. ..9 2
Y2 - G k + I) + J D (1 + a ) °

Utilizing equations (9a) and (9b) again, we obtain the relationship

between A1 and BI’ and A2 and B :
2

__°_ C

Bl VIE-Y1 + jak(1' 8)] A1

 

 

 

 

(16a)

2 _ 'ak

; Y2 3 Y2 (16b)

B2 ‘ wz 2 A2

-Jk(1 ' 5)Y2 + “(‘5 - k )

c

wuo
where B =-——§ and j-—§ is dropped when compared to unity.

kc c

For reasons stated previously,

we 2

- wa -kY1(1 ' j 3') + jak le

Hy - k . 2 Ale

(Jak ' Y1)

MkUw-YU) YX
+ 2 g 0 2e 2 (17)

jky2 + ak

Setting le = 0 at x = 0, i.e., the transverse component of

the RF current being zero, we obtain the relationship between A1

and A2 ,
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Y1Y2&(Jak - Y1)

A1 = -j 2 2 A2 (18)

k (YlwC - ak uo)

 

It is comforting to note that in the absence of the magnetostatic

+

field 30’ a = 0 the above equation reduces to the previous case

as it should be. Substituting the above relationship into equa-

tion (17) yields

in

_ .iweAzrjrzwhl - .iak)(1 - 17c)
 

Y X Y U Y X

1 + 2 O 2 }

 

  

  

Hy - 1 e e (19)

k 2 w
k[y1wc - ak uo]

Finally, we will match the fields at x = 0

H5’s Hyc

5—." = 1:— (20)
2S zC

where

2 2
_ Y u k (y w - ak u )

Hys .iweSIJ'YZMYl - iak)(1 - i 7?) + 2 ° lwfi °

EzS [k2(Y1wc - akzuo) + jrlrz 5(Y1 - jak)]

and

“yc jwec(282 - 283d - 83

E = 2 4
2C (880 - 28 d)

with
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.
4

H

I

7
:
.

a 2

° £%.[1 + j Eflirgg9LlJ (see Appendix A)

(I)

.
<

N

I
I

C

where

D wC

After a lengthy algebraic manipulation, we arrive at a 6-degree

complex polynomial dispersion relation for the stiff-boundary case,

 

+

with B0 = ayBo' For convenience it is represented here by

6 5 4 3 2 1 _
alk + blk + clk + dlk + elk + flk + g - 0 .

Coefficient of k6:

. 2dK¢u§o

a1 = J w

Coefficient of k5:

2duoKa .

b1 = [2daxD + 2u0¢d(1 - K) + a) (owc - 1) - jZaouod]

Coefficient of k4:

2dwCA

uo

 c1 = {[2a(d — AD) + 4d¢w(K - 1) - 4dKo - 2u0¢ - D]

2de

 + j[2d(1 - K) + 4a¢wd(1 - K) + C (o - no) + 2a¢uo]}
LU
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Coefficient of K3:

2 . .Zw

_ zoo d 2dwa __g;
d1 - {F_U——— (1 - K) +-—Er— (K - 1) + 11 (ADi-Kd)

0 O 0

dwcaK

 

+ 244(2 + ) - 2a] + 11de (K - 1)
u0

+ ZdKUMP (w + w) - 2a¢w(2 + 999') " 2
uo C

uO

2 2
2dKocwc - kOKouoaJ}

(U

u0

 

Coefficient of k2:

2
k Ku a

e1 = {[kgouo(1 + K)+ °T° (1 - iw) +—“(a - 4w)
uO

+ kgako] + 353% (1 + ooh) — kguoooJ}

Coefficient of k1:

(—- + 2km)= {[oK§(1 + K)- 2k§o¢(1 + K) + kowc ”o

+ j[k§ (1 + K) + 2q¢wk2(1 + K) + k3ch (—-+ ¢)l}

Coefficient of k0:
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¢w2k2 awkz k2

91=II u °<1+K)-—u-9<1+K)- ° °<1+¢w>1
0 O O

kgK 2 wkg

+J'I-J-(ounc-w-4wc-9wa)--l-‘-(1+a<l>wn}

O O

(21)

1 + a2

where ¢ = 2

“c

It is interesting to note that in the case with no magnetic

+

field 30’ and the relationship between A1 and B1 being

-1

the Y1 mode is called the solensoidual wave since

0
'* p

V°E(Y1) = E-

s

0 everywhere .

'
0 I
I

+

However, with the addition of the B0 field, this is no longer true.

-"< >=—9-VEYI E: #0

S

Therefore p f 0.

The differencesbetween this dispersion equation and the one

by Sumi are (1) the existence of an external magnetostatic field

_).

Bo represented by a, and (2) the approximations for a2 differ. Nhen
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these significant differences are removed, the 6-degree polynomial

here reduces to that of Sumi.

It is important to point out that the above dispersion rela-

tion, with or without the static magnetic field 66, is derived via

the stiff boundary condition. However, it was point out by Dean

and Robinson (1974) [23] that this condition is questionable when

compared to experimental results and a free boundary condition must

be used. Freeman in his dissertation used the ripple boundary con-

dition, but only studied the dispersion relation for special cases.

Ne will attempt to find a dispersion relation of the system

by adding a new constraint.

2.4. The Ripple Boundary Condition

It is apparent that in Sumi's development of the stiff boundary

condition, he assumed the carriers only have motion parallel to

the physical surface of the semiconductor at x = 0. He was able

to accomplish this by using the two basic modes Y1’ Y2 in such a

way that the transverse component of the current is zero, i.e.,

le = O at the physical surface. This constraint can be somewhat

relaxed if we assume a ripple boundary.

Let us say the electrons have a transverse RF velocity and

cause accumulation and depletion alternatively near the surface

during each cycle. This change in carrier density results in an

RF surface charge, p As demonstrated by Collin [24], this surfaceS.

charge results from two causes:
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(1) the transverse conduction current, Ox;

(2) the charge being carried to a given point 2 due to the

surface charge moving with the beam.

 

Ops _ . _ Ops .

at I prs — Jr ' mo '57:- ” Jr + Jkuops

Thus

_ Jr 'pon

0s ' in“ = in (22)

Since this surface charge drifts along with the beam, it constitutes

an RF surface current,

K =up (23)

We now proceed to model the system as such.

(1) Near the surface of the semiconductor there exists a per-

fect depletion region which extends about .Su into the semiconductor.

(2) Since the surface of the semiconductor is rippled, standard

boundary conditions cannot be applied. To remedy this we shall use

the method described by Hahn [25], that is, to represent the ripple

boundary by a static one with effective surface charge an current.

At this static boundary, x = 0, which is not the physical surface of

the semiconductor, but the unperturbed stream boundary.

(i) E = EZ (tangential E must be continuous)

c s
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(ii) eCEX = ESEX + ps' (normal E must be discontinuous by

c s and effective charge ps)

(iii) H = H + K (tangential H must be discontinuous by

yc ys S Ks)

Conditions (i) and (iii) are useful for obtaining the dispersion

relation.

(3) Both the solenoid (yl) and diffusion (72) waves are highly

damped and exist only on an extremely thin layer, with the former

to within a skin depth and the latter to within a Debye length.

Therefore at some depth from the surface

vx(mAD) = 0 m = 1, 2, ..., 30 (24)

(The geometry of the model is shown in Figure 2.)

Assumptions (2) and (3) are of interest for obtaining the

dispersion relation. Applying equation (24), the relationship between

A1 and A2

YlmAD . ”(1)/2‘3“”k ' Y1) Y2on

1 ’ '3 2 2 2e
k (Ylwc - ak uo)

 

(25)

or rewriting,

 

A1 = -. Y1Y2&(iak - Y1) emAD(v2-Y1)

— J
A k2

with the approximation (see Appendix B)

m4 (Y -Y ) , 2- -
e D 21 mu)(. mu)

2w 2wc
C
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Thus

51-: _j Y1Y2w(jak ' Y1) m2& (. _.flié)

A 2 2 2w 2w
2 k (Ylwc - ak uo) c G

Since

_ -oovx(0)

ps jw

We must now evaluate vx at x = 0.

. 2 2

vx(0) = 451:- A2 {[n2(k2 - fi) - ikv21+ [n1(k2 -

1Y1Y2w(Y1 - jak) . LAEQ-<' -.fléL)]}

2wc J 2wc

 

k2(ylwC - akzuo)

with _

. 2 mm

-ka -av —a—
B1 L 1 1 c2

n1 = A1 - Y1['Y1 + jak(1 ' 3)]

YE - jakrz

>
|
U
a

N

 

n

2 2 . w2 2

-Jk(1 - B)Y2 + 00-5 - k )

c

The transverse admittances must match. Thus,

I

___3 ye
E E2

(25)

2

2L. - °k .
C2) 3 Y1]

(27)
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The dispersion relation

is at least thirteenth degree unless simplified. To avoid confusion

and error, we will study the case where a = 0; no magnetostatic

field. With this simplification, the dispersion relation will reduce

to sixth degree.

The quantities are

-2Y d
_ . c 2 2

Hyc - jwec[(1 + e )k - k0]

-Zv d
_ 2 c 2

E2 - Yc[k0 - (1 - e )k ]

c

juuoczpo 2 w2 . 2 w2 .

KS = __m—c— A2 {[n2(k " c—Z') " JkYz] + [n1(k ' 2‘2‘) ' Jle] °

iv1Y25(Y1 - Jak)
 

2- -

. 1 11M (i-flw—m

k2(ylwC - akzuo) 20°C 2(”c

iv Y 6(Y - Jak) 2- -

E =A2{1+[212 1 1[%2(i-§fii;)11 

 

Zs k (ylwC - akzuo) c

A iv v 6(v - jak) 2- -

Hy =5ug-Hkn1-1Y1N212 1 2 1%flu-gfln
s o k (ylwC - ak uo) c c

+ (knz ‘ jY2)}
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After a very lengthy algebraic manipulation, we arrive at

the final dispersion relation

6 4 3
+ e k2 + f

 

 

 

 

  

5 _
azk + b2k + czk + dzk 2 2k + 92 - 0

where

dmu3 kmu3K

a = ___O + j ___—0..

2 Zwb Zwb

3dmou§ 2 . 2 m 11ng

b2 = {(- amt "UodK) + JIdUO(1 +'§i ' TEE: ("o + 3dw)]}

{[3dmw2uo 2 ( )1 [ 4duowE

c = -—-————— + u K + u d 2wK - w + j -
2 Zwb o o c m2w¢

3uomwK

4‘T (U0 + dw) - dwu0(2 + 01):”

2 3
3 k mu

_ dmw _ o 0
d2 - {[dwwC - wK(2uo + wd) - 2m 4w

c c

2 3
2 k u m

. 2 m w mK o o
+ j[dw [1 +-§] "7EET (3uo + wd) + 4wc ]}

2 2 2 2
k u 3 k u

_ 2 _ o o 3mg . mw K _ o o .m_ 3mwK

92 " {[03 K 2 (zwc + K)] + 3':ch 2 (2 + 1 + 2mg )]}
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2 .3kgmw2uo . 2_ . m

f2 = {[kouo(wc + wK) - _—45;___] + j[kowuo(1 +-§]

218,132.; 3k2u maZK
+ 0 C O + 0 0 J}

2’ 4w
m w¢ c

k§w3m kgmw , kng m

92:“: 4Q) "' 2 (wC+wK)]+j[-T(l+§)-

c

We assume

¢ = 1 - kAD s 1

and w

c

o>>a .

is assumed to be real instead of complex; i.e.,

2 3
komw K

 

4wC ]}



3. EVALUATION OF THE DISPERSION RELATIONS

In this chapter, the propagation constant k is examined by solv-

ing the dispersion relations obtained in the previous chapter. In

the past, many attempts to find k involved the use of the perturba-

tion method. It is often assumed that the coupled modes differ from

the normal modes by very small perturbations. There has been con-

siderable disagreement in the literature concerning the validity of

the perturbation approximations. With the advent of fast computers,

numerical solution seems very convenient. This is the method we

adopt in finding the roots for the dispersion relations.

3.1. Procedure Used in Evaluation of the Roots

The evaluation of the dispersion equation involves three parts:

(1) finding all the roots for the dispersion under a specific set

of parameters, (2) evaluation of possible growing root(s), and

(3) examination of the behavior of the growing root(s) under varying

conditions.

The first part is achieved through the use of a subroutine

currently in the MSU computer library, called ZPOLY. This subrou-

tine will find numerical solutions of complex polynomials up to

49th degree. We believe that this is far more accurate and convenient

than the perturbation method.

In the second part, we are entering the rather confused area

of instability criteria. One approach for physically interpreting

3O
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the solutions of the dispersion relation is based on the complex-

mode method and the kinetic power theorem [26]. This method separates

components of an interacting system into weakly interacting modes

and studies them individually. As in the special case of ANA, one

can decompose the system into a collision-dominant carrier stream

and the sound waves. If the stream interacts with a sound wave

with phase velocity less than the drift velocity of the electrons,

it becomes "active"--it loses energy not because of collisions but

due to interaction.with the "passive" sound wave. If the energy

flows of these two modes are in the same direction, we have a con-

vective "spatial" instability. If the energy flows are in opposite

directions, then a nonconvective (temporal) instability occurs.

An example of this nonconvective instability is the BNO, where the

energy flows in the two subsystems are oppositely directed, thus

only oscillation can occur.

The above criteria set forth a necessary condition for convec-

tive instability to occur in the system. To determine which mode(s)

is actually unstable due to the interaction, we will utilize the

Bers and Briggs criteria for convective instability. This approach

is based on the principal of causality and the initial value problem.

It essentially studies the asymptotic response of the system to a

signal bounded both in space and time [27]. In application, it

offers a way to test the system for convective instabilities. The

procedure applicable to our case is outlined here [28]:
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(1) Solve the dispersion relation D(w,k) = 0 for realu1(i.e.,

setting “i = O) and find complex k (k = kr + jki). The set of complex

k gives forms of solutions for z > 0 and z < 0.

(2) For the given geometry, we are only considering roots

that correspond to solutions that exist for z > 0. This means only

roots with ki greater than zero are possible candidates for insta-

bility. The sign of kr is irrelevant.

(3) If ki has a change of sign as we increase mi from zero

to negative values, then a convective instability does occur and

convects energy to the right, i.e., z > 0.

From the previous chapter, there are three dispersion equations

as a result of various boundary conditions and assumptions. Sumi's

general dispersion relation is a fourth-degree complex polynomial

with coefficients composed of the following parameters:

(1) d is the distance between the plane of the meander line

and the semiconductor surface. For the stiff boundary cases, this

distance is just the thickness of the insulator. In the discussion

to follow, d is to vary from O to In.

(2) U0 is the drift velocity of the electron beam. The

coupling mechanism of the system is affected as we vary uo. If

the drift velocity is increased to a value near the phase velocity

of the meander line, we hope to see a "growing root."
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(3) w is determined by the carrier density. (no is assumed
c

to be able to vary from 1013 to 1014 cm'3). Thus wc can vary from

1010 to 1011.

(4) v¢ is the phase velocity of the "slow" wave. Due to

physical limitation of the "slow" factor, it is allowed to vary

from 106 cm/s to 107 cm/s.

(5) k0 is a measure of the "slow" factor of the line;

k0 = w/v¢.

(6) D is the diffusion constant; for GaAs it is about

220 cmz/s.

(7) K is the ratio

5 13

c

E— ___

c 4

II
I

For the stiff boundary case with external transverse magnetic

field, one more parameter is added. a is the product of the carrier

mobility "m and the magnetic flux B The electron mobility of0.

GaAs is about 8500 cm2(vs)'1. The BC field is allowed to vary from

0 to 10 KGauss.

In the final ripple boundary case, a is to be zero and the

”depth" of the ripple is represented by the dimensionless m.

The above parameters will be varied within set limits and

the movement of the root(s) will be plotted in the next section.
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3.2, Evaluation of the Growing Roots
 

Recall we are looking for wave solutions of the form

exp [j(wt - kz)] which represent waves traveling in the z direction.

If k1 changes sign as we vary wi from zero to negative values, we

have an amplifying wave. Contrary to conventional belief, the sign

of kr does not indicate the direction of wave propagation. For

a more detailed discussion of this topic, see reference [27].

In Figure 3, movement of the roots

increasingly negative. Only one of the possible four roots is a

"growing" root. As described in the previous section, this wave

grows as exp (kiz) as it propagates toward 2 > 0. The propagation

constant of this root is near the value of the slowing parameter

k0. This requirement is necessary because only the normal modes

that can be excited by the meander line are of interest.

Nith w being purely real, we step the excitation frequency

of the line in 1 GHz increments and note the change of k1 of the

growing wave. The result is shown in Figure 4. The gain in dB

per wavelength is expressed by

mfg—B) = 54.58lk1.|(;09) .

Gain is possible over a range of 27 GHz, and limited by the carrier

velocity uo.

Interesting results occur when we vary the conduction fre-

quency wc. It seems that wC must be near the operating frequency

w if gain is to occur. As shown in Figure 5, the gain increases

with increasing wC up to a maximum, but decreases gradually after
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that. Thus the carrier density no is an important factor in the

coupling mechanism. Also, the threshold and the magnitude of the

gain decreases in general as d increases. The reason for the decrease

in gain magnitude is the less effective interaction between the

circuit and the beam as the separation between them is increased.

In Figures 6 and 7, the general variation of the real and

imaginary part of k is shown as a function of the drift velocity.

Once again near-synchronism is a criterion for gain. Maximum gain

occurs when drift velocity is around 1.5 times that of the phase

velocity of the line. A closer comparison shows a surprising fact:

greater separation does not show a reduction in gain. This result

was observed by Freeman [29] in his theoretical analysis of the

behavior of the roots. Figure 8 reveals the existence of an optimal

distance of separation for the case we study.

Figure 9 shows that as the distance d increases kr approaches

k0; the system decouples and only the normal mode(s) exists in the

line.

The above illustrations conclude our investigation on the

stiff boundary case pioneered by Sumi. Ne now turn to the case

with the transverse magnetic field and the modification in v2.

As expected, the plot in Figure 10 resembles that of Figure 5

very closely. The only noted difference between the two is the

lowering of the threshold for gain. This is understandable because

if a = 0, then the only contrast remaining is the modification of

Y2-
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The variation of the imaginary part of k as a function of a

is shown in the next three figures. In Figure 11, ki increases

to a maximum value, then decreases gradually afterward as we increase

the magnetic flux. However, in Figure 12, the variation of ki does

not follow the same trend as in the previous case. The magnitude

of ki actually decreases as we increase a, reaching a minimum, then

rebounding to a less negative value. Figure 13 shows still another

variation. Note that the conduction frequency wc is the only sig-

nificant parameter varying in these cases. It seems as if the intro-

duction of magnetic field will disturb the synchronism of the system.

If the system is already at synchronism (;%-= 1), an increase of

magnetic flux has the effect of "lowering" wC to below synchronism,

thus the decrease in gain. However, if the system is much beyond

the synchronous condition, the applied 86 field will bring the system

into synchronism. This effect becomes more apparent if we examine

the expression for wc:

nlelum

we _ €

 

+

Due to the applied 80 field, the carrier mobility ”m is reduced to

1
______j .

1 + 02

Thus, the "effective" conduction frequency is

 

Physically, this decrease in mobility probably reduces and limits

the amplitude of the a.c. motion of the carrier.
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Quite different from the Sumi case, the imaginary part of k

decreases monotonically as the distance d increases (as shown in

Figure 14). One possible explanation could be the effect of the

magnetic field on the "diffusion" wave YZ' Ascxincreases, this.

mode may become more "damped" and cancel any benefit from an optimal

spacing. This is merely a speculation and the problem is open to

discussion.

Figure 15 shows that as separation increases, kr approaches

the normal mode k0.

Near-synchronism as a necessary condition for growth is demon-

strated in Figure 16.

Figure 17 shows the growth rate as a function of operating

frequency.

The above illustrations show some resemblance to the Sumi

case as well as some marked differences. ‘One thing to remember

is that both cases assume a stiff boundary condition. It would

be interesting to see how the "ripple" boundary case compares with

these results.

As shown in Figure 18, the "window" for gain is much narrower

and the decay much more abrupt than in the previous cases. Gain

is possible only when wt is about 2m to 4m, though the gain can

reach as high as 20 dB per wavelength. Figures 19 and 20 show the

variation of ki as a function of the ripple "depth" m. The gain

increases as m increases. This result might not be as meaningful

if we consider the physical viewpoint. Assuming the "ripple" is
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symmetrical about the x = 0 line, the "ripple" might extend well

into the insulator region if m is large. This would imply that

carriers are injected into the insuIator!

In Figure 21, k1 decreases if the separation is increased

while kr increases to an optimal value of 2800 cm"1 before decreasing.

In Figure 22, we confirm the necessity of near-sychronism

for gain.
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4. SUMMARY AND CONCLUSION

4.1. Summary

An analysis of the interaction between slow circuit waves

guided by a meander line and drifting carrier in a semiconductor

has been given. The system is decomposed into its components: the

circuit and the carrier stream in the semiconductor. The investi-

gation emphasizes the importance of the properties of the carriers

at the surface and explores different models for its behavior. The

theoretical treatment follows that of Sumi, Freeman, Okamoto, and

Mizushima closely. Sumi's "stiff boundary" case is studied, and

extended to include an external magnetic field. Secondly, the

"rippled boundary" is applied and both modes are kept in our analysis.

A new constraint is introduced to treat the ripple boundary condi-

tion. Evaluation of the dispersion relations is carried out numeri-

cally through the use of a Fortran subroutine. Possible convective

instabilities are examined through criteria adopted from Bers and

Briggs. Gain ranges and gain shapes are studied under varying condi-

tions. Theoretical gain for STWA is predicted. Also, we find the

frequency range for STWA operation to be around 27 GHz. This band-

width is limited by the maximum carrier velocity obtainable in GaHs;

2 x 107 cm/sec. Theoretical gain for STWA is predicted.
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4.2. Conclusion
 

The results from the different models are similarly encouraging.

Amplification of signal due to a "collision dominated" carrier stream

is possible theoretically if the conditions are proper. This concep-

tual problem can be viewed in light of the success of the AHA where

the carrier stream is "collision dominated." Also, the interpreta-

tion of gain is supported by the Bers and Briggs criteria used con-

sistently in the investigation.

The importance of synchronism in velocities and frequencies

demonstrates itself in our study and cannot be understated. Gain

0.)

is predicted whenever-—9-and'3§-are near unity throughout our inves-
v

tigation. Other factors which might enhance the possibility of

gain include:

(1) the separation between circuit and semiconductor;

(2) the application of a transverse magnetic field to "tune"

wc, thereby bringing-gg-toward unity when interaction occurs; and

(3) the carrier density of the semiconductor and ultimately

the material itself.

In light of the results we gathered, I propose further inves-

tigation in the applicability of STWA.
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APPENDIX A

APPROXIMATION FOR THE DIFFUSION WAVE

The expression for Y2 is

 

 

. 2
_ 2 we + 3(1 + a )(w - kuo) £

Y2 - [k + D. ] .

Since

w
c 2

'D—>>k ,

then

2
. we . (Id-a )(w - kuo) %

Y2=['E'+J D ]

Assume k is purely real for the time being, and utilize the

relationship

[x + jy]é = r% (cos-%-+ j sin-g)

 

where

r = [x2 + yZJI, cos B = é-and sin 6 = %-.

Then

02 (1 + a2)2(w ku )2 1
_ C 0 2

r - L—— + ]

0" D2





60

Assuming that in many cases,

0) >(1+012)(w-ku)
c o ’

then

(.0

rét—Dfifi.

Also,

cos-g = E% (1 + cos 6)]%

= [g— (1 + 91*

 

 

 

4w2 + (1 + a2)2(w - ku )2
= I c o I

2 2 2
4wc + 2(1 + a ) (w - kuo)

s 1

and

. 0

$111 2 = % (1 - %)]If

2 2 2
= (1 + a ) (m - kuo) I

402 + 2(1 + az)z(w - ku )2
c o

(1 + a2)(w - kuo)

= 2wc

Thus,

w 2 -

Y2 t-Dfiiiu + 1' W1 .
C





APPENDIX B

APPROXIMATION FOR exp [mAD(v2 - 71)]

We have

:._~.1_ -__§)_ 2
YZ-XD[1+JZIDC (1+a)]

Y1 5 k .

Therefore,

- 2
. +

exp [mob/2 - 11)] = exp [m(1 - kADHexp m [—‘—H12w °‘ .
C

Now,

exp (x) é 1 + x + 2T’+ ...

We will take a linear approximation for simplicity even though error

will be introduced. Thus,

eXp [mXD(Y2 - Y1)] 5

 

2 - 2

U+m-mMflU-[mu
C C

2

Assume m to be no less than three;

exn [mx(v2 - Y1)] 51%39 (j --§EL) .
C C
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