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ABSTRACT

REACTION MATRICES FOR FINITE NUCLEI

by David V. Grillot

A method for calculating the reaction matrix elements of a

closed-shell nucleus is discussed. An improved treatment of the

Pauli operator is proposed, and accurate solutions of the Bethe-

Goldstone are obtained for the coupled and uncoupled integro-

differential equations. The solutions are used to obtain the first

order binding energy of 160 using the Hamada-Johnston and

Brueckner-Gammel-Thaler potentials. The results indicate that

the Hamada-Johnston potential gives too little binding and possible

ways of improving the binding energy calculations are discussed.

The reaction matrix is examined as a function of the single

particle energies. It was found that the 351 states are very

sensitive to the choice of single particle energies; whereas, the

So states are relatively insensitive to this choice. Calculated

singularities of the reaction matrix are also reported for both the

1s and 35 states.
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CHAPTER I

INTRODUCTION

The initial attempts to classify and explain nuclear structure

relied upon certain models, viz. , the shell-model and the collective

model. These models and generalizations of these models had some

moderate successes; however, there were also some notable failures.

The initial attempts to overcome the shortcomings of these

models and to develop a unified nuclear perturbation theory were

made by Brueckner, 1 Bethe, and Goldstone, 2‘ One of the major

difficulties in the development of the nuclear perturbation theory

was the strong nature of the nucleon-nucleon potential, v, which when

used in the conventional perturbation theory gives rise to divergent

matrix elements. The many body perturbation theory shows that the

infinite matrix elements, (film-IQ) , should be replaced by the finite

matrix elements, <<91t|49> , where t is a two body operator defined by

t=nr-N,‘% <1)

 

1K. A. Brueckner and J. L. GammeL, Phys. Rev. 109 (1958)

1023, this work lists all earlier references.

2H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London), 238A

(1957) 551.



and

17149=A£V
(2)

In these expressions Q is the Pauli projection Operator which prevents

two interacting nucleons from scattering into states occupied by other

spectator nucleons. The energy denominator, e, is the difference

between the energies of the pair of nucleons in their excited inter-

mediate states and their initial states. Considerable confusion exists

in the literature about the precise nature Of the energy denominator.

The current belief is that this energy denominator should be comprised

Of Hartree-Fock (HF) single particle energies.

The first attempts to solve equations (1) and (2) were carried out

for nuclear matter, i. e. , an artificial nucleus of infinite extent in

which the Coulomb effects are neglected. One Of the major simplifica-

tions for nuclear matter is that the intermediate state wave functions

are plane waves. This is possible due to the translational invariance

of nuclear matter. Another simplification for nuclear matter is that

the intermediate state energies are the energies of free particles.

Even with these simplifications, the calculations Of the binding energy

 

3

M. K. Pal and A. P. Stamp, Phys. Rev. 158 (1967) 924.



of nuclear matter have oscillated throughout the past ten years and

are still in a state of flux.

Despite the uncertainties of the nuclear matter results, one

of the more instructive conclusions to be shown is that the many

body theory reduces in a certain approximation to the earlier shell

model. This was shown to be the case by Gomes, Walecka, and

WeisskOpf. 4 Their calculation using the t-matrix formalism of

references 1, 2 showed in a convincing manner that, (a) the many

body effects fundamentally alter the correlated motion of a pair of

nucleons such that the perturbed wave function heals to the unperturbed

wave function and (b) the hard core potential could be treated in a

consistent non-divergent manner. The first conclusion is a result

fundamental to both nuclear matter and finite nuclei, and the ”healing"

of the correlated wave function to the unperturbed wave function can

be used either as a calculational tool or can be viewed as a qualita-

tive test for proposed two nucleon wave functions.

The transition from early nuclear matter calculations using

the t-matrix formalism to the present day calculations for finite

 

4L. C. Gomes, J. D. Walecka, and V. F. WeisskOpf, Ann.

Phys. _3_(l958) 241.



nuclei has proceeded quite slowly. The slowness of this transition is

due basically to the fact that the simplifying assumptions of inter-

mediate state energies and wave functions cannot be carried over

readily to finite nuclei. In fact at the present time there is no firm

basis for choosing the intermediate state energies and it will be shown

in Chapter III that the t-matrix elements are dependent on the energy

denominator. Moreover, in finite nuclei the Pauli Operator is

difficult to handle because the bookkeeping devices, viz, Racah co-

efficients and Moshinsky brackets5 are cumbersome to treat.

!

As has been stressed by several authors the rigorously

correct calculational procedure is a doubly self-consistent computa-

tion. That is, using equation (I), a set of t-matrices are computed

with some realistic nucleon-nucleon potential. Using these initial

t-matrices, a self-consistent HF calculation is performed. The HF

calculation generates a set of single particle energies and wave

functions. These single particle energies and wave functions are

then used to recalculate a new set of t-matrices. The double iterative

5T. A. Brody and M. Moshinsky, Tables 3f Transformation

Brackets (Monografias del Institute de Fisica, Mexico, 1960).

6K. Kumar, Perturbation Theory and the Nuclear Many Body

Problem (North Holland Publishing Co. , Amsterdam, 1962).

 

 



procedure is then repeated until a self-consistent set of single

particle energies and wave functions is Obtained. Even using high

speed computers the problem of achieving double self-consistency

is only now becoming feasible.

In order to avoid the above-mentioned complexities several

7. 8. 9.
simplifying assumptions are usually introduced which will

be maintained in the present paper. The first assumption is that

the intermediate HF wave functions are replaced by harmonic

oscillator wave functions. This approximation has been discussed

7 , l

by Kuo and Brown who argue that the results of HF calculations

give wave functions which are similar to harmonic oscillator wave

functions. The next major assumption is that the Bethe-Goldstone

(BG) wave function,‘,V, can be separated into an unperturbed center-

Of-mass wave function and a perturbed relative wave function. There

is no justification for this assumption due to the nonlocality Of the

Pauli Operator, but unless this assumption is made the BG equation

 

7

T. T. S. Kuo, and G. E. Brown, Nucl. phys., 8_5 (1966) 40.

8

C. W. Wong, Nucl. Phys. A91 (1967) 399.

9

A. D. Mackellar PhD Thesis, Texas A and M University,

January 1966 (Unpublished).

0

1 L. Kelson and C. A. Levinson, Phys. Rev. 134 (1964) B269.



is insoluble. The retention of this approximation will be necessary

until a suitable method of solving directly the two-body BG equation is

devised. The final assumption concerns the nature Of the intermediate

state energies. As mentioned earlier there is no clear basis for

choosing these energies; however, two choices are now popular.

The first choice is based on nuclear matter results and uses plane

waves; the second choice is to use harmonic oscillator energies.

Both of these choices are questionable, and in this paper the harmonic

oscillator is chosen.

Before the complete self-consistent problem is attempted it is

necessary that accurate solutions Of equation (1) be Obtained. Unless

one has confidence in these fundamental solutions it seems unwarranted

to proceed with the larger calculation.

Recently there have been several convincing solutions to

equation (I). The more notable of these have used the reference

12
spectrum method, 11 the separation method, and the Eden-Ems ry

13

method. Kuo and Brown7 have applied the first two methods to

 

11H. A. Bethe, B. H. Brandow and A. G. Petshek, Phys. Rev.

129 (1963) 225.

lZS. A. Moszkowski and B. L. Scott, Ann. Phys. _l_1_ (1960) 65.

13

R. J. Eden, V. J. Emery and S. Sampanthar, Proc. Roy.

Soc. (London) A253 (1959) 186.
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the excited state Spectrum of 18F and

16

O and the binding energy of

O. Mackellar9 has used the latter method to obtain the binding

energy of 160.

Both the separation method and the reference spectrum method

use a perturbation expansion of the t-matrix which in the first

approximation neglects the Pauli Operator. The Pauli operator

occurs in the perturbation expansion and is ultimately calculated by

using the angle average Pauli operator which was originally used

for nuclear matter. Recently Wong8 has improved the Kuo-Brown

treatment of the Pauli Operator.

The separation method and the reference spectrum method

differ basically in the choice of the first order t-matrix. In the

separation method, which was initially used by Moszkowski and

Scott12 for nuclear matter, one assumes that the potential can be

separated into a short range and a long range part. The separation

distance is chosen such that the short range attraction in some

sense cancels the repulsive hard core part of the potential. Then

onelis left with the problem of evaluating the long range part of

the potential via the perturbation expansion for the reaction matrix.

There are several minor assumptions such as averages of state



dependent separation distances, but it is believed that these

corrections are small. 14

The reference spectrum method was originally suggested by

Bethe, Brandow, and Petchekll for nuclear matter. This method

has particular utility for the odd state repulsive potentials because

the concept of a separation distance is meaningless for these

states. In this method the first order t-matrix neglects the Pauli

operator and approximates the intermediate state energies with

the free particle energies. With these approximations one gets

an inhomogeneous differential equation for the first order t-matrix.

The higher order corrections to the reaction matrix are then

calculated in a manner analogous to the separation method.

In both methods the question of convergence of the pertur-

bation expansion is made plausible by explicitly showing that

higher order terms are small.

The third method was originally suggested by Eden and

Emery in a series of papers, 13 and some calculations were

performed using questionable numerical approximations.

9
Mackellar has recently redone the calculations in a precise

manner for 160 using several different nucleon-nucleon

 

4

1 T. T. S. Kuo, to be published.



potentials. There are two basic approximations in this approach

to the problem which make the calculations possible. The first

is to Observe that a tenable approximation exists for the Pauli

operator based on the unique characteristics of the harmonic

oscillator wave functions. The final effect of this approximation

in 16O is to forbid scattering into one allowed state and permit

scattering into a set of forbidden states. Despite these restrictions

the method does include the essential features Of the Pauli Operator.

The second approximation is the treatment of the HF self-

consistency condition. By introducing a state dependent potential

for the initial state energies, it is possible to obtain approximate

self-consistency for the BG wave function.

The overall method deviates considerably from the frame-

work of the nuclear many body theory, and despite its ability to

predict nuclear binding energies it is an artificial approach to the

problem.

In the present paper some of the above-mentioned approxi-

mations are avoided. In particular it is shown that it is unnecessary

to construct a perturbation expansion for the t-matrix since

equation (1) can be solved exactly. At first glance this appears to

be an involved calculation, but in actuality the calculation is

simpler and avoids any question of convergence of the perturbation



10

series. Moreover, there is no necessity of calculating state

dependent separation distances.

In addition to this exact solution, it will be shown in

Chapter II that it is possible to incorporate an improved treatment

of the Pauli Operator. This improved treatment of the Pauli

operator and the exact solution of equation (1) should increase

the reliability of the t-matrix elements for finite nuclei, and it is

anticipated that one could now proceed with the full self-

consistent problem.



CHAPTER II

FORMULATION OF THE PROBLEM

I. General DevelOpment
 

Rather than solving equation (1) of Chapter I, the standard

procedure is to calculate the two body correlated wave function, (P .

By combining equations (1) and (2) of Chapter I, the following is

obtained for the BG wave function:

«y = r? + gr 3" (1)

Or in terms of the wave Operator

J'L: 1 +gfl—n-

Once equation (1) is solved, the diagonal and off-diagonal reaction

matrix elements are determined from

(Wt-I43? = (4’1er (2)

which is a finite quantity since W vanishes in that region where the

potential, v, has an infinite hard core.
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In Appendix A a detailed analysis of the hard core shows that

the hard core contribution to the t-matrix is given approximately by

Q 5;? I... . .tc . This contribution has been added to all matrix elements

in equation (2).

The task is to solve equation (1) which is the Bethe-Goldstone

(BG) equation in as exact manner as possible. For complete generality

the BG equation is written in the j-j representation even though this

generality is not needed for closed-shell nuclei. In this representation

the BG equation is

xii/M1, (magma/m. = {am} (4013’; 74mm.)

UNOCCUPl-‘D ’ I ' I I '1 i l ,

+5, (1 +5va m’l’j’) ((1.4 )j (44); 17.7w. 4 >
”xi, I’NJ’ UO” D ‘ t ’

me, (1:13,? '

x ({4’4.'):}'//.14.')1',’f'fi,oT'Nr'lflm—VM).7} (1.4.)1'. fem/m.) (3)

6 . + 6 O c -6 I '

«.41. Mi, 61’4’1,’ 14’1,’

where nlj designate the single particle quantum numbers, enlj are

the initial state self-consistent energies, and én'l'j' are the

energies Of the intermediate states. The summation in equation (3)

is carried out over all initially unoccupied states and in principle

these states should be the self-consistent HF single particle states.



13

Since the complete self-consistent problem, i. e. , the problem

of doing a self-consistent HF calculation in conjunction with a self-

consistent treatment of the BG equation, is an extremely involved

computational exercise, the approximation of replacing the inter-

mediate state single particle wave functions by harmonic oscillator

wave functions is made. The initial state energies, which should

also be determined in a self-consistent manner, are varied over a

wide range Of physically interesting values. For the final calculation

of the t-matrix elements, the initial single particle energies are

Obtained from Hartree-Fock calculations. 3 The intermediate state

energies 6 are chosen to be harmonic oscillator
I Id + 6 t [.9 9

n11131 “21sz '

energies. Based on these considerations the problem Of double self-

consistency as discussed by Pal and Stamp3 is circumvented.

Due to the nonlocality of the Pauli Operator the BG equation is

not separable into relative and center-of—mass coordinates. There-

fore, the major approximation of this paper will be to assume that the

BG wave function, hf , can be separated into a perturbed relative

wave function and an unperturbed center-of-mass wave function.

Similar assumptions are made for the initial state energies

& +6. Thatis e , + e , _ rel. C.M.

l 2 n11111 n21.232. " EnljS + ENL
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where nljS are quantum numbers of the relative state and NL are

center -Of-ma s s quantum number 3.

Using these assumptions the BG equation can be reduced to an

integro -differential equation by performing the following algebraic

manipulations:

(I) Operate with

49/. C." 4.6,. 6.".

H, = E . + E
6011.1; *2/17; " M; m 0 (4)

where H0 is the harmonic oscillator Hamiltonian. (2) Change the

sum over the unoccupied states to one minus the sum over occupied

states. (3) Use the standard transformation for the perturbed and

unperturbed states, viz. ,

. . . '1

“4’91. (4'4") jar/77 Tnm’m‘> :: [1(1 4’ S‘V’I’, )mtIz 71.)]

1,1,, ' ' ' jn’r?’

X Z T 1’7‘ <m/NL,/|//’Z/.M./z>£/‘f'/) J

x2: AM Z: C(jL/rglef/Z)luawlfisynfj-MNTMR (5)

ILA ,

”Vi
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where

a

. Ij KL 1’

xiii/.1“ . , .

IS,” - \/(25+/)(2A+/)(2Jl+0011+!) It 8. 4? (6)

5 J’

A J

and

. 1 5 51.
- S+L+}*'/\

A”; =(-/)
JM 3' L /\ (7)

In these expressions the angular momentum jl and j2 couple to a

total angular momentum, J. The spin of the two nucleons is S, and

l, L, and /\ are the relative, center-of-mass, and total orbital

angular momentum respectively. The T-coefficients are the trans-

formation coefficients from j-j to L-S coupling. Aft-33 is the re-

coupling coefficient of 1 and S to a total relative angular momentum,

j. And the bracket < nlNL, /\ I n l n l > is the Brody-Moshinsky
l l 2 2

transformation bracket. 5 (4) Eliminate the center-Of-mass energy

. C.M. C-M- -
by usmg (E NL .HO ) I LMLN> _ o. (5) Take the scalar

product Of the transformed equation with <LMLN, and (TMTf .

(6) Assume that the interaction is diagonal in S, T, MT,j and m,

J



l6

(7) Finally for closed-shell nuclei use the orthogonality properties of

111.73132 11123132.= 5 S .
_ A/\

_ . . 15 . , .
the T coeff1c1ents, Viz. , Z TSA J TSIAIJ SS"

J112 ‘
After performing these operations and using the properties of the

Clebsch-Gordan coefficients, the following equation is Obtained:

(541’: " rye/9(1)- ‘1) WUJQW) = Mfi. (115)7'0? m)

~0fic ‘D‘YL Z; <m¢ 4 NL: Ael’no‘eam:/&°> (MI0431‘C4' I4Z’NL’ A°>

trfid'frt. "M40.

: 1., “’7' {ISJ’ ' .

X 0-H)" ”JI’ 4") + ] Aux/1. CGLM‘M‘IM‘) (8)

1. ' .

x :2: 42.2.7 C (J. “’9' "'1 I T» ”T. >/“size,«Nice/ne’bmiflrbem?

This equation is valid for either l=j or l=j-1.

2. Singlet and Triplet l=j states.

In this section only the case where l=j will be considered.

 

Define

a”.

4 1

(xi/Us);i””,-"'> : iii) 7?") (9)

i

15

A. DeShalit and I. Talmi, Nuclear Structure Theory

(Academic Press Inc. , New York, 1963).
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and

Mo

.. v

<,:/_{L|{IS)J'»~’./n>= AL 7!?” (10)

.1

where ’g, ml is the standard angular momentum function which has

jls

been defined elsewhere. 16 Also introduce a dimensionless variable

f =r/b. (half/ma) )-

m.

Then after taking the scalar product 3. le s with equation (8),

summing both sides over m, and m , performing the sum over M

J L Jo

and Jo, and using the implicit energy relations of the Brody-Moshinsky

bracket, 5 the following expression is obtained:

1‘ - {£1.22 - 2:3. w
E 6.1,: +;’—,—. r r ,a, <gfllvlgfl>l ”3';

=[AMJJ'S_ ;,](Z£f) <&j [um/1'3)

in: WPLIEQ’Ky /Mtg/h) %1.S(:')/;.

”VIM:J’ ’1‘

(12)
2.

x {£(1L+I)(ZIH)]-IAZ (l/LH) ’(ntlA/LAIMM‘MI’A? ) E

 

16M. A. Preston, Physics o_f the Nucleus (Addison-Wesley

Publishing Co., Reading, Massachusetts, 1962).
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2 rel.

wheren = (2n° +10 +2n° +1° - 2N-L-1)/2, /\ =——E _ , and

o 1 1 2 2 nljS 47‘” nljS
O

A = 2(2n+l)+ 3.
n1

Equation (12) is the final reduced form of the BG equation which

has to be solved. It should be emphasized that the only major approxi-

mation which has been made in deriving equation (12) is the separability

Of the BG wave function.

By explicitly writing out equation (12) it becomes Obvious that the

form of this equation is identical to the equation derived by Eden and

Emery. 13 However, there are several major differences. As- is

9
well-known the Eden-Emery approximation incorrectly includes and

excludes scattering into certain intermediate states. This approxi-

mation manifests itself in the number of terms in the sum in the

reduced equation. Also, equal weights are assigned to all inter-

mediate occupied states. In the present treatment Of the BG equation

both of these difficulties are corrected. That is, each intermediate

state is multiplied by the appropriate weighting coefficient and the

summation is over the proper number Of terms. In the Eden-Emery

method there is no clear prescription for extending the method to

nuclei other than 160. It is now apparent how equation (12) can be

extended to any closed-shell nucleus. In addition the Eden-Emery

energy denominator differs from the present formulation.



l9

3. Triplet l=j-1 states.
 

In this section only the case where l=j-l is the dominant solution

will be considered.

Define

? (a) M")
’m/ y("&

<5 l/ij'n'y m) = A jls (13)

and

. u (A) . y

(slat/15);»3-w = «I5my“9’) + .111 {94°) 14

4/: .71’5 ( )

where unljS is the l=j-l component of the solution and wn 'l'jS

is the l'=j+l component Of the solution. When unljS is the dominant

solution, this implies that the unperturbed state is an l=j-l state.

The procedure used in deriving the relevant reduced coupled

equations is, in principle, the same as that used for the uncoupled

equations. Starting with equation (8), the scalar product with first

'5le and then ijs is taken. This leads to two equations which

are summed over mj and mL. The summation over MJ and Jo can

0

then be performed and if the implicit energy relations Of the Brody-

Moshinsky brackets are used, the following expressions are Obtained:
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v!” I)
u/)

[A’Vi‘fwill; it AI,47"»(72$,M’3/12] Mfrs

(”'17)>w’1!) =DM/5‘AL1]agd<fiv1/%,'s>

‘5: all: 19‘“""

(15a)

actuZf/so ')

/ ’) / +< 1”! 2°”!
fiofi’fli’w fa!’ [2%€JIMI;ZIS>2%535 :17" :2: .015$41,]

og'lfm'1'

I o I,"

xfiamxumj' ’22: (14“) I<n11~L.A.l»z°JiM.‘/..> ]

and

J2 .. {(1.31}... ‘- 33' ' N” w’ (I

[9"st +1? f‘ f fiw<gjsi 5%)] M19)

.3: Ar U. (I):
-540 <y114s/ (Z/s> m”; (15b)

aflofi,(f:——)9.“f;(IV/”[2? [Ar/y >w’0') +<y [Ar/y >MG')]J.’

[$1M‘fm‘lo ”I!" ""1 j": (1’? all!!! I]: A”:

Z

x {Batu/)(u’Hfl-lg: (an. H)/<m,’1’A/L,A.(nz'l. 41.)) (
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where

0 0 O

no=(2n1+l(1)+2n2+12 - 2N-L-1)/2 (16)

. 0 0 O

= + +2 - 2 - - 'no (2n1 l2 n2+12 N L l)/2 (17)

Comments identical to those following equation (12) about the

comparison of these equations with those Of Eden and Emery can

also be made.

4. Approximate Solution Of BG Equation
 

Although the approach discussed in this section has been super-

ceded by the formulations of the previous sections, it is instructive

to analyze the BG equation when the Pauli Operator is completely

ignored. For this situation a model is assumed in which two nucleons

interact through the nucleon-nucleon potential while the spectator

nucleons affect the interacting particles only through a spherically

symmetric potential which is chosen to be a harmonic oscillator

potential. The two particle Hamiltonian is then H=Ho+v, and the

wave function satisfies the eigenvalue equation

(E-Ho-V) 1r°= 0 (18)
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Because of the properties of the harmonic oscillator, the total

Hamiltonian separates readily into the sum Of center-Of-mass and

relative coordinates. The equation for the center-Of-mass is

(19)

and is readily solved analytically. The relative equation in terms

of the dimensionless variable (v is

+‘,/ _L..—-/’“)— __ ”f ) -.—. 0

[Am/1's hj} fl. {w<z75/M/z152] (IL/f3 (20)

for the uncoupled l=j states, and for the coupled l=j-l states,

‘ )

«11’s 1f ‘ f ‘ Ari/s) m1,5

_. -——<’p'/ l/‘r/J/ > (,J’ff) :o

1!: 1150197: (21a)
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and

J‘ __ 1719‘") .— ‘ — 37-”- ,u— car?!)

0.437» -——-—-.. I may (2;.
(21b)

33:. ° ) ‘0

'fiw <Z’lqlfl’ly >bjuf;s
115

these equations which ignore the Pauli operator should be compared

with equations 12, 15a and 15b which include the Pauli Operator.

Although the form of the eigenvalue equation is considerably

different from the correct form Of the BG equation, it was originally

thought that the eigenfunctions would be reasonably good approxi-

mations to the BG wave functions particularly for the higher angular

momentum states. A priori it is difficult to assess the severity of

neglecting the Pauli operator. Dawson, Talmi and Walecka, 17 based

on some crude estimates of the effect Of the Pauli operator in 180,

showed that the effect Of neglecting the Pauli Operator in the 1So

states would result in about 10% error. It was hoped that the same

would be true for the troublesome 351 states. The present paper

. . l . .
W111 show in the next chapter that for the So states their estimate

 

17J. F. Dawson, 1. Talmi, and J. D. Walecka, Ann. Phys.

l§(1962h 339.



24

. 3 .

of the error is reasonable. However, for the S1 states one 18 not

quite so fortunate, and it is imperative that the Pauli Operator be

taken into account. Moreover, in order to Obtain decent values for

. . l6 . . . .

the binding energy of 0 it IS necessary to include the Pauli Operator.

In addition to the above quantitative considerations the qualita-

tive comparisons of the solutions with and without the Pauli Operator

demonstrates in a dramatic fashion the effect of the Pauli Operator

on the nuclear wave function.



CHAPTER III

NUMERICAL RESULTS

A computer program has been written to solve the coupled and

uncoupled integro-differential equations exactly, i. e. , equations 12

and 15 of Chapter II. The numerical technique used to solve these

equations is discussed in detail in Appendix B. The numerical

accuracy required for the wave function, u, is gu/u < . 005 where

Su is the computed change in the wave function at the end Of each

iteration. Usually three iterations were sufficient for convergence.

The method of solution was quite efficient, and ultimately it was

faster to solve the full BG equation than the related eigenvalue

problem. Disregarding compilation time, the computer time

required to calculate one state and its off-diagonal matrix elements

was 30 seconds and 60 seconds for the uncoupled and coupled states

respectively using an IBM - 360 Model 50 computer.

The nucleus of interest in this calculation was 160, but the

method developed has equal applicability to other closed-shell

nuclei. For O the summation in equations (12) and (15) is carried

out over the os and op shell. For other closed-shell nuclei it is

necessary to alter the range of this summation accordingly.



26

In solving equations (12) and (15), three pieces of information

are needed: a phenomenological nucleon-nucleon potential, a set

of HF single particle energies, and an oscillator parameter, ’Kw .

The equations were solved using both the Hamada-Johnston18

(HJ) and the Brueckner-Garmnel-Thaler19 (BGT) potentials. Both

Of these potentials contain a hard-core, tensor force and spin-

orbit force. In addition the HJ potential contains a quadratic

spin-orbit force. The properties and parameters of these potentials

are given in Appendix C.

The values of the HF single particle energies were -40 and

-18 MeV for the os and Op states respectively. These were the

values calculated by Pal and Stamp3 and should be correct to

within 5MeV. It should be realized that these values will be

altered somewhat when the doubly self— consistent calculation

is performed. Since there is doubt concerning the specific

dependence of the t-matrix on the initial state single particle

energies a detailed examination of this dependence has been

performed for the 1S0 and 381 states.

 

18T. Hamada and 1. D. Johnston, Nucl. Phys. 33 (1962) 382.

19K. A. Brueckner, J. L. Gammel and R. M. Thaler, Phys.

Rev. 109 (1958) 1023.
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The oscillator parameter used was based on electron scattering

data20 which indicates that the value of Kw for 160 should be

between 13 and 15 MeV. The t-matrix elements were calculated

using three values of {w , viz., 13. 35, 14. 5, and 15. 5 MeV.

Ultimately more values of if“) were needed to clearly define a

minimum in the B. E. /A versus ‘50) curve.

With these pieces of information the first equation solved was

equation (20), i. e. , the eigenvalue equation which neglects the

Pauli Operator. This equation was solved for all angular momentum

states less than 3 and for both the singlet and triplet states. The

resulting ISO relative wave function, ugo’is plotted in Figure l

and is compared to the unperturbed harmonic oscillator, R00.

The important qualitative feature to be noted is that there is no

healing of the wave function 1180 onto the unperturbed solution. In

this situation, the scattering of the two nucleons inside the harmonic

oscillator potential can be viewed as a real scattering process in

which the final wave function has undergone a phase shift.

Figure I should be compare directly with Figure 2 in which

the perturbed wave function, “00' is plotted. Here “00 is the 1So

solution of equation (12) which includes the Pauli projection operator.

 

20

1961).

L. R. B. Elton, Nuclear Sizes (Oxford University Press,
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The contrast of Figures 1 and 2 explicitly displays the effect of the

Pauli Operator. The correct BG wave function, for all calculational

purposes, has healed at 2. 5 fm, and the healing is complete at 4 fm.

Similarly for the 381 coupled l = j-l dominate states, the

solution without the Pauli operator is plotted in Figure 3 and the

solution containing the Pauli operator is plotted in Figure 4. The

same healing phenomenon for the dominate component of the solution

occurs in the case of the coupled states at roughly the same healing

distances as in the 1SO state. The minor component of the coupled

solution is drastically reduced when the Pauli operator is included,

and since the tensor force is strong, the off-diagonal tensor

contribution to the matrix element (eff/VII» is reduced accordingly.

The healing of the BG wave function is Of fundamental

significance in the nuclear many-body problem and sho‘vs precisely

the effect of the Pauli operator. This phenomenon is well known

and was originally investigated for the 1So state in nuclear matter

by Gomes, Walecka and Weisskopf. 4 Similar results using

different techniques and approximations have been reported by

9, 21

other authors for finite nuclei. Considerable importance has

 

21H. s. Kohler and R. J. McCarthy, Nucl. Phys. 86 (1966)

611.
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been attached to the healing property since it implies that the wave

function for nucleons inside the nucleus are independent and spheri-

cally symmetric; this is precisely the assumption of the classical

shell model. So the validity of the shell model comes directly

from the many-body effects of the Pauli Operator. Even though

the aim of the many-body theory is to reproduce the experimental

data and not to justify any models, it is encouraging to Ob serve

that the many-body results, in some sense, do justify the

classical shell model which has had some successes in classifying

nuclear data.

The healing of the BG wave function can be explained physi-

cally by viewing the interaction of the two nucleons as a scattering

process in which the energy and momentum distribution Of the two

particles must be conserved. Since all the nearby energy states

are Occupied by spectator nucleons, scattering can only occur into

unoccupied states. But since energy is not conserved, the parti-

cles must return to the original states with the same initial energy

and momentum distribution. Hence there is no momentum transfer

in the scattering process and hence the phase shift is zero. The

entire process is considered to be a virtual process and the phase

shifts are said to be virtual. 6 Since there are no real phase

shifts, the wave function must heal, and only at very



34

short distances (r< 2fm) can be perturbed and unperturbed wave

functions be different.

In the past (references 7 and 12) healing Of the wave function

has been viewed as a calculational tool. That is, healing has been

imposed as an additional boundary condition and considerably

reduced the computation involved. The point Of view of the present

paper is that healing is a test of the validity of the solutions. More-

over, it is believed that the numerical techniques of Appendix B are

more efficient than those using the separation method, 1. e. , the

method which imposes healing from the beginning, and it is unneces-

sary to artificially force healing.

The quantitative effect of the Pauli operator can be demon-

strated by comparing the diagonal t-matrices calculated with and

without the Pauli Operator. This has been done for several states

and is shown in Table I. As can be seen from this table the effect

TABLE I. --Comparison of diagonal t—matrices (in MeV) with and

without the Pauli operator using the HJ potential.

 

 

1 3 l 3 3 3

S6 S1 p1 P6 P1 P2

Without Pauli Operator -8. 2 -15. 9 l. 7 _ -2. 0 1.9 -l. 2

With Pauli operator —6. 4 - 7. 0 2. 0 -2. 4 2.1 -1. 0
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. . . . 3 .
of the Pauli Operator is quite large in the 5 state and less important

1

for all the other states.

In the past there has been uncertainty concerning the dependence

of the BG wave function on the center-of-mass quantum numbers and

the initial state HF single particle energies. The results of this

study show that for the singlet and triplet l = j states the center-of-

mass and energy dependence are not crucial. In fact the final

t-matrix results for the l = j states are extremely insensitive to

variations in both of these quantities. Figure 5 compares two wave

functions with comparable energies and different center-of—mass

quantum numbers. The differences in the two wave functions are

minimal. Since the center-of—mass quantum numbers determine

the number of terms which are included in the summation in

equation 12 Chapter II, it has been concluded that by far the most

important term in the BG equation is the term ( A - .\° )4’<‘fl'}’>

The additional terms which enter the complicated summation

contribute at most . 5 MeV to the t-matrix.

The energy dependence of the 1So wave function is shown in

Figure 6 which compares two wave functions with the same center-

Of-mass quantum numbers but very different energies. Again the

differences in the wave functions are slight. In order to reinforce

this point the t-matrix for the 1So, N = O, L = 0 state was
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calculated over a wide range of energy values and the diagonal matrix

elements are plotted in Figure 7. This graph explicitly shows the

insensitivity of the t-matrix to variations in the single particle

energies. The final results vary less than 3% over the energy range

-80 to -35 MeV which is the region of interest in 16O.

For the 351 states the results are sensitive to the energy

and insensitive to the center-of-mass quantum numbers. Figure 8

shows two 381 wave functions plotted for different values of the

single particle energies. The minor component of the solution

changed appreciably for different energies and this is reflected in

the t-matrix through the off-diagonal element. Therefore, it is

imperative that the correct choice for the energies be made in

the 351 states. Figure 9 shows that the final results vary by

about 20% over the energy range -80 to -35 MeV.

The mathematical reason for the insensitivity to e, #61

of the 1So state is directly related to the healing property of the

wave function. In the BG equation the energy enters as a factor

multiplying ( u - R ), and since the wave function, u, approaches

the unperturbed wave function, R, the term A( u—R ) is a small

quantity when compared to other terms in the integro -differential

equation. The overall effect is that the BG wave function and the

t-matrix are extremely independent of the energy.
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In the case of the 381 state the l = j—l dominant component of

the solution behaves in a manner identical to the uncoupled solution.

However, the l' = j + 1 minor component does not heal to any

unperturbed solution. The resultant effect is that the minor

component of the solution is sensitive to the sum of the single

particle energies.

Although it was not the purpose of this investigation to study

the singularities of the t-matrix, it is worth noting that they

constantly occurred in all states whenever the energy was varied.

Fortunately these singularities did not occur in the energy regions

which are important for the calculation Of the ground state energy.

Theoretical investigations of these singularities have been performed

. 22, 23
in several papers ’ but to the author's knowledge they have

never been encountered in numerical solutions Of the BG equation.

The fact that they do exist is evident from a cursory examination

of the form of the defining equation for the t-matrix, viz. ,

equation (1) Chapter I. The singularities shown in Figures 7 and 9

 

22J. S. R. Chishold and E. J. Squires, Nucl. Phys._l_3

(1959) 156.

3

V. J. Emery, Nucl. Phys. _l_2_ (1959) 69;_1_9_ (1960) 154.
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occur roughly at those values of E which satisfy the eigenvalue

equation

(E-ft'”>5‘°=°

This is not the only value of E which gives rise to singularities.

They occur quite frequently for energies at and above the Fermi

surface, i. e. , when «fie-e; > O . Since these are Of considerable

theoretical interest a possible future detailed examination Of them

is being considered.

In the past there has never been a clear demonstration Of the

variation of the t-matrix from one nucleus to the next. In order to

study this effect the t-matrix was calculated using a Pauli Operator

which is apprOpriate to 40Ca while the single particle energies and

oscillator parameter, #00 , were those appropriate to 16O. The

40Ca exclusion principle can easily be incorporated by extending

the summation through the lsod major shell in the BG equation.

In Table II the results of this calculation are compared to the 16O

results. From this Table it is seen that there is some slight

effect of the Pauli operator in going from one closed-shell nucleus

to the next. All of the intermediate lsod shell nuclei should

0
possess Pauli operators in between the extremes of 160 and 4 Ca.

However, since the effect due to different lsod shell Pauli
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TABLE II. --The first column gives the matrix elements

<n'l'I t.S(NL)I nl> for 160. The last column gives the value Of the

reactioh matrix using a Pauli Operator apprOpriate to 40Ca while the

single particle energies are those of O. The numbers in the last

column are not realistic matrix elements and are listed only to display

the effect of the Pauli Operator in going from one major shell to another.

 

16 40

 

0 Ca

61+ 62 n'1' n1 jS NL to» = 14.50 14.50

-80 oo oo oo 00 -6.445 -6.342

10 -4.897 -4.811

00 oo 11 00 -7.051 -6.646

10 -5.206 -4.945

02 -6.373 -6.364

12 -s.939 -3.s73

-58 oo oo oo 01 -6.572 -6.467

10 -5.o11 -4.924

00 oo 11 01 -7.519 -7.228

10 -5.571 -5.389

02 -6.403 -6.367

12 -9.035 -8.928

-36 oo oo oo 02 -6.616 -6.575

(10)

10 -5.057 -5.023

00 oo 11 02 -7.774 -7.637

(10)
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TABLE 11. --continued

 

16 40

 

0 Ca

n'1' n1 jS NL 4;... = 14.50 14.50

10 -5.808 -5.724

02 -6.407 -6.396

12 -9.051 -9.012

00 10 oo 00 -5.278 -5.241

10 -4.451 -4.420

00 1o 11 00 -6.767 -6.489

10 -5.576 -5.396

02 -3.102 -3.124

12 -6. 117 -6. 125
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operators is slight, it would be adequate to use some interpolated

values for these nuclei since a precise calculation for these nuclei

is extremely difficult, if not impossible.

Solutions for a few of the higher angular momentum and

higher nodal states are shown in Figures 10, ll, 12, and 13. In

general these solutions exhibit the same properties as the

previously discussed solutions. The higher angular momentum

states heal more rapidly than the S-states and are almost

completely independent of the values of the single particle energies.

Bethe et a1. 11 have shown that the t-matrix should be

Hermitian. The He rmiticity was tested for only the 1So and 381

states. By actual calculation with the same particle energies for

the relative Is and 05 states, the following results were obtained:

()0 It; {00>Ioo> = - H7 (Wigwam/,0) = -y.r1

and

:-:-f.$’/

<Ioltl,l(oo)j00> :2 *fl/ <00 I€I{00)l/0>
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A complete list of the t-matrices relevant for the ground state

properties of 16O are listed for the HJ and BGT potentials in Tables

III and IV respectively. The single particle energies, -80, -58 and

-36 MeV, correspond to the two particles in the 0808, osop, and

opop states respectively. These values are the results which were

ultimately used in calculating the binding energies.

Once a good set of t-matrix elements has been Obtained there

exists a wealth of experimental data which should provide good

tests for both the t-matrix and the numerical results. Unfortunately

rigorous tests usually involve either shell-model or Hartree-Fock

calculations. Each of these calculations involves considerable

effort. However, it is possible to immediately calculate the

approximate binding energy of 16O and the TOE-splitting in 17O.

In Appendix D it was shown that the approximate binding

energy Of 160 is given by the following
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TABLE III.--Matrix elements, < n'1'] th(NL)I nl>, for HJ potential.

 

 

{w

él-téé 161' n1 jS Ni. 13.35 14.50 15.50

-80 oo 00 00 00 -5.973 -6.445 -6.838

10 -4.733 -4.897 -4.988

00 oo 11 00 -6.617 -7.051 -7.397

10 -5.127 -5.206 -5.222

02 -5.578 -6.373 -7.089

12 . -7.892 -8.939 -9.873

-58 oo oo oo 01 -6.101 -6.572 -6.962

10 -4.852 -5.011 -5.106

00 oo 11 01 -7.080 -7.519 -7.867

10 -5.508 -5.571 -5.568

02 -5.612 -6.403 -7.115

12 -7.987 -9.035 -9.968

01 01 1o 00 1.757 2.029 2.284

11 1.875 2.197 2.504

01 01 01 00 -2.144 -2.389 -2.599

11 -1.779 -1.902 -1.993

01 01 11 00 1.849 2.133 2.393

11 1.985 2. 279 2. 549



TABLE III.- - continued
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4760

51-1 xfi' n1 jS Ni. 13.35 14.50 15.50

01 01 21 oo -O.834 -o.99o -1.135

11 -l.118 -1.310 -1.485

03 0.682 0.794 0.896

13 +0.924 1.062 1.185

-36 oo oo oo 02 -6.150 —6.616 -7.001

(10)

10 -4.904 -5.057 -5.147

00 oo 11 02 -7.363 -7.774 -8.094

(10)

10 -5.776 -5.808 -5 776

02 -5.617 -6.407 -7 117

12 -8.007 -9.051 -9.981

00 10 00 00 -5.062 -5.278 —5.430

10 -4.426 -4.451 -4.425

00 10 11 00 -6.566 -6.767 -6.876

10 -5.631 -5.576 -5.454

02 -2.809 -3.102 -3.345

12 .5.470 -6.117 -6.673

02 02 20 oo -o.497 -0.589 -o.675

12 -o.552 -0.650 -o.74o



TABLE III. - -c0ntinued
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#7..)

511-6; nu. nl jS Ni. 13.35 14.50 15.50

02 02 11 00 1.676 1.361 1.537

12 1.099 1.252 1.389

00 -5.571 -6.363 -7.076

10 -2.853 -3.141 -3.386

02 02 21 00 -2.114 -2.459 -2.772

12 -2.141 -2.443 -2.710

02 02 31 00 0.038 +0.044 0.049

12 0.025 +0.026 0.027

04 -1.039 -1.239 -1.427

14 -1 403 -1.652 -l.882
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TABLE IV. --Matrix elements, <n'l' Ith(NL)| nl>, for BGT potential.

 

 

.52»

e] +62 ifl n1 jS NI. 13.35 14.50 15.50

-80 00 00 00 (x) -6.222 -6.683 -7.061

10 -4.697 -4.795 -4.838

00 00 11 00 -7.817 -8.426 -8.931

10 -6.896 -7.199 -7.416

02 -5.603 -6.371 -7.055

12 -7.879 -8 791 -9.608

58 00 00 00 01 -6.343 -6.800 -7.174

10 -4.806 -4.897 -4.933

00 00 11 01 -8.317 -8.939 -9.453

10 -7.302 -7.594 -7.797

02 -5.627 -6.389 -7 067

12 -7.968 -8.881 -9.698

01 01 10 00 2.553 2.916 3.242

11 2.574 2.881 3.156

01 01 01 00 -2.983 -3.302 -3.575

11 -2.342 -2.479 -2.584

01 01 11 00 1.992 2.288 2.558

11 2.087 2.373 2.637

01 01 21 00 -1.336 -1.553 -1.752



TABLE IV. - -continued

56

 

 

4fa)

614.62 n'1' nl jS NL 13. 35 1.4. 50 15. 50

11 -l.584 -1.823 -2.041

03 0.930 1.071 1.199

13 1.254 1.404 1.542

-36 00 00 00 02 -6.388 -6.814 -7.210

(10)

10 -4.853 -4.940 -4.917

00 00 11 02 -8.554 -9.150 -9.683

(10)

10 -7.519 -7.782 -7.459

02 -5.621 -6.381 -7 058

12 -7.969 -8.879 ~9.694

00 10 00 00 -4.928 -5.064 -5.143

10 -4.094 -4.038 -3.946

00 10 11 00 -7 848 -8.187 -8.439

10 -7.117 -7.214 -7.246

02 -2.518 -2.698 -2.841

12 -4.921 -5.360 -5.749

02 02 20 00 -0.668 -0.809 -0.942

12 -O.862 -1.015 -1.159

02 02 11 00 1.761 2.030 2.313



TABLE IV. --continued
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in)

+02 n'1 n1 jS NL 13. 35 14. 50 15. 50

12 1.804 2.031 2.270

00 -5.701 -6.367 -7.050

10 -2.653 -Z.815 -2.965

02 02 21 00 -2.298 -2.718 -3.106

12 -2.659 -3.060 -3.429

02 02 31 00 0.095 0.079 0.058

12 -0.087 -0.155 -0.269

04 -1.088 -1.312 -1.524

14 -1.656 -1.915 -2.161
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' 411m.

B E ; /gfiw +fz; L (27+))(zjv-INI-(M’HH)(misjltmuM/Sj)

' ' r57

 

2.
OCCUPIED (111+!)

[fit /I l
x : (2’44) l<ml’/Imt/t/m J >

mlltatit A

The coefficients in this expression have been tabulated by Mackellar9

and have been used in this paper to calculate the binding energy per

nucleon as a function of the oscillator parameter, k w. The final

results are plotted in Figure 14 for the HJ and BGT potentials. For

the HJ potential a minimum of -3. 6 MeV/A occurs at about

{00 =14 MeV, and for the BGT potential a minimum of -7. 8 MeV/A

occurs at about {‘0 =18 MeV. The experimental value is -7. 98

MeV /A. 24

The BGT potential is known25 to be unacceptable as a fit

to nucleon-nucleon scattering for the T = 1 states, but is as

good as the HJ for the T = O, 381 state. Since the central force

is not affected as much as the tensor force by the Pauli Operator

and since the BGT triplet force has a strong central part, its

Sl matrix elements give much more binding than the HJ

potential (see TABLES III and IV).

 

2

4L. A. Konig, J. H. Mattauch, and A. H. Wapstra, Nucl.

Phys. _3_1_ (1962) 18.

25p. Signell and N. R. Yoder, Phys. Rev. 132 (1963) 1707.
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‘30 "\ / 11.1

$3 -5.0 -
g .

Q

13: ~70 -

BGT

l l l 1 l l l

l2.0 - I40 I60 I80

1‘1wIMeV)

Fig. 14. --The binding energy per nucleon for 16O as a function of the

oscillator parameter for the Hamada-Johnston and Brueckner-Gammel-

Thaler potentials.

 
 

-140 .-

g -160 -

if

:3 ~18!) - H.)

1 . 1 ' . 1 . L

IZO I40 l6.0 I8.0

1'10)(MeV)

Fig. 15. --The binding energy per nucleon for 160 when the Pauli operator

is neglected.



60

Moreover, it appears that the calculations of binding energies in

finite nuclei will follow the oscillating path of nuclear matter

calculations. 26 Clearly higher order effects need to be examined

for finite nuclei as they have been for nuclear matter.

A series Of papers7' 8' 9’ 26

16
for O by different authors using different methods reveal con-

On binding energy calculations

siderable discrepancies. Table V is a sample listing of the t-matrix

and B. E. /A results of different authors.

TABLE V. --C0mparison of diagonal t-matrix, (n1 I t.S(NL)I nl> .

and B. E. /A with results Of various authors using the HJ potential.

 

 

 

 

Kuo g, Kohler 8: Present

Brown Wong MacKellar McCarthy Calculation

{co l4. 0 13. 5 20. 7 10. 5 l4. 5

(00) t01(OO)I oo) -5. 61 -5. 7 -9. 57 -4. 36 -6. 44

<00|t13(00)l 00) -9.73 -6.2 -1l.22 -5. 37 -7.05

B. E. /A -5.5 -- -8.0 -2. 70 -3.6

26

S. A. Moszkowski, Rev. Mod. Phys. _3_9 (1967) 657.
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Although the results of Mackellar fit the experimental B. E. /A

quite well the re is considerable doubt about the Eden-Emery treatment

of the intermediate single particle energies. Moreover, the value of

fit.) at which self- consistency is obtained is about 20 MeV and this

seems at variance with the experimentally determined value of 14

MeV. 20 As suggested by Kohler and McCarthy27 it would be of

interest to see the Eden- Emery calculations repeated treating the

energy denominators in a more precise manner.

It is interesting to observe that the calculations of Wong,

Kuo and Brown, 7 and Kohler and McCarthyZ7 are similar to the

results of this paper. This is somewhat remarkable since their

calculations are quite different in both point of view and in

calculational details. In particular the choice of the intermediate

state energies in those papers are the free particle energies as

opposed to harmonic oscillator energies used in this paper.

It is difficult to compare the present calculation with that of

Kallio and Day28 since they choose a potential which is radically

 

27H. s. Kohler and R. J. McCarthy, Nucl. Phys. 23(1967) 65.

28A. Kallio and B. D. Day, Phys. Letters, E (1967) 72.
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different from the HJ potential and ignores the difficulties of the

tensor force.

It is interesting to compare the B. E. /A calculated with and

without the Pauli operator. Figure 15 is a plot of the binding energy

per nucleon calculated without the Pauli operator. There is no

minimum as there is when the Pauli Operator is included and the

nucleons are greatly overbound by about 8 MeV/A.

As a final calculation the T‘S splitting in 17O was computed

29
using an approximate expression due to Nigan:

[S If 15 I:

E. -E, =/Jé—[9014, “7‘4. Hug, +714]

where

and

V15: Vile) 1...?

The experimentally observed splitting is 5. 9 MeV and the

calculated results are 4. 01 and 4. 56 MeV using the HJ and BGT

potentials respectively.

 

29B. P. Nigam, to be published



CHAPTER IV

CONCLUSION

The results of this study show that it is possible to solve the

Bethe—Goldstone equation exactly for finite nuclei. The Pauli

operator for finite nuclei has been treated in an exact manner and

its qualitative and quantitative effects have been examined in detail.

It has been found that when the Pauli Operator is treated correctly

the BG wave function heals properly to the unperturbed wave function.

In addition it has been shown that the effect of the Pauli operator

on the t-matrix is appreciable in the 381 states and moderate in all

other states. Since the numerical methods developed to solve the

BG equation with the exact Pauli Operator are so efficient it seems

unwarranted in future calculations to make various questionable

approximations when solving the BG equation. With accurate two

body t-matrices available it is now possible to examine the higher

order effects with more confidence.

Since the current trend in nuclear structure calculations for

3, 30, 31

both the ground state and excited state properties relies

 

305. Das Gupta 8. M. Harvey, Nucl. Phys. A94 (1967) 602

31Ripka, Lectures in Theoretical Physics Vol. VIII B (1965) 237
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upon HF calculations an examination of the t-matrix dependence on

the HF single particle energies was performed. It was concluded

that the t-matrix for the 381 state is sensitive tO the single particle

spectrum, and in doing a HF calculation it is important that these

single particle energies be chosen correctly. For other states the

single particle energies are not critical, and it should not be

necessary to treat these in a self-consistent manner.

The calculation of the binding energy per nucleon in this study

and in those of references 7, 8, and 27 using the HJ potential give

2. 7 to 5. 5 MeV as compared to the observed value of 7. 98 MeV.

Kuo and Lynch32 report similar results using the Yale and Reid

potentials. These discrepancies clearly show that it will be

necessary to perform additional calculations, and there are several

improvements in these calculations which need to be incorporated.

The first possible improvement is to pursue the HF

calculations with more vigor. Although reference 3 gives an excellent

treatment of the HF problem the authors of that paper suggest the

following improvements which could bring the binding energy in line

with the experimental value: First, the problem should be done in a

doubly self- consistent way, and second, more nodes should be

32R. P. Lynch and T. T. s. Kuo, Nucl. Phys. A95 (1967) 561
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included in the expansion of the HF wave functions. Efforts along

these lines have been initiated.

The second explanation of the difference in the experimental

and calculated results is directly related to the nucleon-nucleon

potentials which are currently in use. Since the spectrum

calculations of Kuo and Brown7 rely basically on the long range part

of the potential and give excellent agreement with experiment, it is

believed that the poor binding energy results may be due to the short

range part of the potential. In particular a potential with a smaller

hard core radius or a soft core would improve the binding energy

results.

Along these same lines it has been suggested by several

authors 33’ 34 that one should by pass the use of potentials and

attempt to calculate the t-matrix for finite nuclei by working

directly with the experimental phase shifts. This avenue Of approach

would be very desirable although new calculational techniques would

have to be devised, and the attempts to date--though admittedly

initial attempts--have not shed any light on how to handle the Pauli

operator in conjunction with the phase shifts.

 

3'B’J. P. Elliot, H. A. Avromatis, E. A. Sanderson, Phys.

Letters 24B (1967) 358

34Koltun, unpublished
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Finally, there is the difficult question Of the convergence of

the Bethe-Goldstone expansion and the effect Of higher order terms

in finite nuclei. Bethe and Rajaraman35 have shown that three body

correlations are important in nuclear matter and these contributions

will also have to be examined for finite nuclei.

In summary it is believed that the Hartree-Fock, higher

order cluster effects, and better potentials individually would

contribute at best 1 MeV per nucleon. SO collectively one may

expect an improvement of the order Of 2 to 3 MeV which would

still leave the binding energy too small by roughly 2 MeV. These

crude estimates indicate that it may finally be necessary to

include specifically three body forces in order to get good a-

greement with the experimental binding energies.

 

35

R. Rajaraman and H. Bethe, Rev. Mod. Phys. 39 (1967)



APPENDIX A

TREATMENT OF HARD-CORE

In this Appendix an approximate expression for the hard

core contribution to the t-matrix will be discussed. Once the BG

wave-function, ‘f’, has been obtained the t-matrix is calculated from

I
(alt/Z) = ffiIMZ/f .-.— I +I‘ (1)

where

_. Lin 6
I, " 6+0 ff“ Carcfijf

(2)

I.) tiijfaA’li/f 131

I:

The integral, 12, is straightforward to evaluate using standard

numerical integration. The first integral, 11’ presents some diffi-

culties since v is infinite for ffi f: ; however, by using the BG
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From the BGequation it is possible to approximate vcore W n’

equation for {5 f we have

c

Con

- 52 = (EA-+4)?” - (gm-amQ/fi) +Zc”£ (mar/g.) (4)

Using equation (4) in (2) gives

6 .
1:.»

z = U" { (Egg-M) 45. -€)<£IL>£.£ ] ./f
I é—fo

{+6 (5)

+§ c‘<{lvlfi>JZ,f:J{‘5)/f}

It has been found in actual calculations that the last two terms in

equation (5) are small compared to the first term. This is directly

related to the fact that

”IL/r ’~‘= ’0': ‘6’

Therefore,

I 3‘ Lin f£’{m—f{,)z’/f (7)
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Since ¢ 11 is zero for f we this integral is zero except at f: fc

‘

where d has a g-function singularity. Then,

Jr‘

12H

1

~ Lin #7. ,éfi/

I, : s-n {m :g, f‘ f (8)

Integrating by parts gives

f ‘ {‘r‘
f

2’ Li" 3:- {fa/c. ’ I‘d/n'1‘! J!

I, ' 5+0 1M Z'jf ‘6‘ -‘77 ‘7?

Since 5; and it are both finite quantities, the second term

goes to zero as 6+0. Therefore, we have

2 jfif”,
I, 371%.. {“77 A”; (9)

Equation (9) can be evaluated numerically and 11 has been added to

all calculations of the t-matrix.
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APPENDIX B '

NUMERICAL METHODS

In this appendix the numerical methods used to solve the BG

equation are discussed in detail. The method used is basically an

extension of the Fox-Goodwin36 method. In the past, the Fox-

Goodwin method has been applied to differential equations, and to

the author's knowledge, ithas never been used to solve integro-

differential equations.

After dr0pping all subscripts in the BG equation, the integro-

differential equation which was solved is of the form

U" 5;. - vmju/r) = (A - X ) WINK/“P

" Z C‘R“/!)<Ii’"//V'/“> (1)

By expanding u and u' in a Taylor series and performing a little

algebra, we get the following three-point equation

 

*

The author is indebted to Dr. P. Signell for initially suggesting

the method for solving differential equations which was ultimately

extended to treat integro -differential equations.

36L. Fox and A. Goodwin, Proc. of Cambridge Phil. Soc. 1?

(1949) 373.
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A . rt ”)+(u vi‘uf’)“ (2)
(M ...__ ' )— (103' +74 “J JL, ’1 J”

where o is the mesh width and j denotes the jth mesh point. From

equation (1) expressions for u',‘ , u" , and u',‘j'+l 1 can be obtained,

and when these are substituted into equation (2), we get

. .-+L(~ C'. : -—°..4.‘ OR'FR R!“

“J4"; * $51 ,-, J (A A)». U}, *’ J x—zk >

I a, a. “ “ " I“ (3)

“7".ch 0;. W} +6.?“ ’N‘ >1

where

z

5 : I +fi'(/\—JH)

BJ : v2 *f6‘(’\‘g (4)

«
(
A H

s
?

I
A

F

’
\

>

|

1
‘ l

V
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Let u* be a trial wave function and 5 u be the change in the

trial wave function. Then

M... = Ha. +501, (5)

4r * +8.5”. +0.5“,
60;“ {—glf; +$L$ +55“. 1,! JJ/

0.>,-mum/s +mm» +<w~>3 <6»

-lgfl’; 6"(5: ,wol? +A’H)][(R" 'N'l“) +0?[xv-Isa)

At this point the plausible assumption is made that

q-

<Rlsu> << (RIM >

and

(RIM/5U) << «IN/W
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Even though a given uj may be comparable to a given Suj, these

assumptions imply that on the average Su is much less than u*.

The validity of these assumptions is ultimately justified by the

rapid convergence of the solutions. When convergence is obtained,

Ju = O, and there is no question of approximation. The final

results can be made as accurate as desired, limited only by the

accuracy of the computer.

After dropping the small terms in equation (6) we get

(87' +- 5 503+! + @5037 + (3.] “ff-I a 0 (7)

where

k . 0"

QJ. E J 69:, +§ u; f (3.09,, " (A‘A >;—i[@.H+/O@.+
’5;,]<KIU*>

z fly to
Go ~ I. *

+7°;[§C(/§,-,, HM} 1Hf-,‘..,)</H”’/‘4 >] (3)

Next let

(9)
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Then equation (7) becomes

4} +55%, +93%. +9.0? +H. 565,.) -= o (10)

The Aj' Bj' C. and Qj- are well defined numerical quantities, and

the Fj and Hj can be determined provided F0 and Ho are known. F0

and Ho can be determined from the boundary conditions at the hard

core, viz. u(Core) = u*(Core) = 0. Then

S“ g 0 = I: + ILLS“, (13)

Since F0 and Ho are independent quantities F0 and Ho must be zero

in order to satisfy equation (13).

. . . . 3

Since the ultimae am 18 to calculate each of the Suj

from equation (9), we now need to know SuN where N denotes the
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last mesh point. 5 uN is found from the asymptotic form of the BG

equation. From equation (1), we have

{MN-0.721 J}:- (14)

U °( 6 : e

N

and

4m}; (15)

u °< C
”H

From equations (14) and (15) we get

'A‘(/'1N)/Z (16)

M” = Sum e

Combining equation (16) and (9) gives

“mafia/z)” (17)

S” =-’:(”fl-e
N+I

Since the Fj s and H, S and Suj+l S are known, all of the Suj

J

I

can now be obtained from equation (9). Once the Suj 8 are known

a new trial wave function u** can be computed using equation (5).

After u** is obtained the whole procedure is repeated with u**

replacing u*. The iterative process is terminated when ZSuj is less
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than some arbitrarily small number. Usually the convergence is

quite rapid if one is sufficiently careful in choosing an initial trial

wave function. Even with ”bad” trial wave functions the convergence

is satisfactory.

In practice the initial trial wave function is chosen to be of the

form

m) = (I - Ig/r) W1") (is)

This form of the wave function fulfills the necessary requirements

at the hard core and asymptotically.

The method outlined above is applicable to both coupled and un-

coupled equations. For the case of coupled equations the only differ-

ence is that the wave function, u, is a vector quantity and the

expression for the A's, B's, C's, H's, F's etc. are matrices.

For completeness the method used to solve the ordinary differ-

ential equation will be outlined. The form of this equation is

‘L

[,\ +fi. «WNW/r) =0 (19)

where A is now an eigenvalue to be obtained along with the wave

function, 11. Equation (19) is used to find u',’ , u',’ and u',‘ and

J
3+1 J-l



these expressions are substituted into equation (2) to give

.(J..+..=0 20

L9+I€lflg MC} ()

where Aj, Bj, and Cj are defined by equation (4). Now let u* be a

trial wave function and )8“ be a trial eigenvalue. Then

(,3, : L3” + Suj- (21)

A : A” +$/) (22)

after substituting equations (21) and (22) into equation (20) we get

+59% +0.”. =0 (23)

where terms of the order {USA have been dropped and

- ,p u * f f *

Q] " ujH 5’ + L; g ‘P (31/ C} (24)

: Oz ' f ’9

1.)" " 72[”1'+z H“? " 3M] ‘25)

77
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Next let

{a}. = g + (9569., +5“ (26)

Then substitute equation (26) into equation (23) and rearrange terms

to get

\
\ t It *‘

M,- = — [5;- +9.51, +553.,+(9+95.)“7 <2“

Q
‘
Q
.

where

E + C' I4

((1 {3} J J" (28’

By comparing equation (27) and (26) term by term we get

_—. - " F. .
5' (g; + 5 r/ > A)

* (29)

H. = ' ‘3' ‘5'
f

" — . o + ' I
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The Aj, Bj' Cj' Dj and Qj are well defined numerical quantities

and the Fj’ Hj’ and Ej can be determined if F0, Ho and E0 are known.

F0, H0, and 130 can be determined from the boundary condition at the

coare, viz., u(core)=u*(core)=O. Then

fu,=/f +H.W. +5.3)” ‘30)

and since F , H and E are independent quantities F , H , and E

o o o o o 0

must be zero in order to satisfy equation (30).

Since the ultimate aim is to calculate each of the éuj '3 and S)

we need to know 5 u where N denotes the last mesh point. As was

N

done earlier Su is found from the asymptotic boundary condition.
N

For this case we simply require that the wave function be zero at

large distances. This makes SuN and JuNH zero. Therefore,

from equation (26) we get

g) = -g/t} (31)

I

The solution is now complete since all the Fj's, Hj's, and Ej 8

are well defined in terms of the trial wave function and trial eigen-

value, and 8') and the Suj's can be calculated using equation (31)
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and (26). Once the SA and Suj's are determined a new eigenvalue

A ** and a new wave function u** can be computed and the whole

procedure is repeated until Z S uj and 51/) are arbitrarily small.

 



APPENDIX C

PARAMETERS AND PROPERTIES OF THE

NUCLEON-NUCLEON POTENTIAL

The form of the HI and BGT potential

”(4.) = fight) + /%(4-)j'§ + Afifd) Lu +Nr’fa) 5;;

where

I-§ = fEJYjH) —!/J+I) -$’($H)]

- 2.

L 2LT. +5?'o'fjifi+/)—{J°§)
(in H1)

I:- [J

(— - 0 (70v BGT)

I?»

= lJEI—wflaf 2:) -—é7"-o'i"
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The radial dependence of the HJ potential is given by

”(+)=+-O flgfi

n40») = “(MMZT-EWMD May/047%]

N’sflv) =4 6;:5 VIMD 4' 5L, WM]

nag.) = 75“. 4:2. z(+)[/ +- any/7t) +6“ W60]

where

-+

WM = £—

20) = (I ti +5))’/+)

,7 is the pion mass (139. 4 MeV), and x is measured in ‘fi/qc = 1.415fm.

The hard core radius in all states is 0. 343 fi/A/c , and corresponds

to rc = . 485 fm. The parameters for the HJ potential are given in

Table VI.
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TABLE VI. --Parameters for Hamada-Johnston potential.

 

State ac bc aT bT GLS bLS GLL aLL bLL

 

Singlet +8. 7 +10. 6 0 0 0 0 -0. 000891 +0. 2 -0. 2

even

Triplet -9. 07 +3. 48 -l. 29 +0.55 +0. 1961 -7. 12 -0. 000891 -7. 26 +6. 92

odd

Triplet +6.0 -l.0 -O.5 +0.2 +0.0743 -0.l +0.00267 +1.8 -0.4

even

Singlet -8.0 +12.0 0 0 0 0 -0.00267 +2.0 +6.0

odd

 

The radial dependence for all states of the BGT potential is given

by

Ara.) = +00 Ag/tc

-44,

3 ‘KL— A >/"c.

’74

The parameters for the BGT potential are given in Table VII.
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TABLE VII. --Parameters of the Brueckner-Gammel-Thaler potential.

 

3 1 1 3 3 3 3
P .

arity V 7c . V 4c V 7t V18 “’18

 

+ 877.4 2.091 434.0 1.45 159.4 1.045 5000 3.7

- 14.0 1.0 -130.0 1.00 -22.0 0.80 7315 3.7
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APPENDIX D

DERIVATION OF BINDING ENERGY

In this appendix the expression for the total energy of a closed-

shell nucleus is derived in terms of the reduced matrix elements.

The potential energy to first order is given by

that??? (1+4;
. 1' MI'

441’1’9 I 11’) $ ‘13,

M34117."
(1)

X «Md/4401;”. T’Mflltlfin.)4'(1.d.)1;WWW”)

Where both the ket and bra are the prOper normalized, anti-

symmetric wave functions given by equation (4) Chapter 11. After

substituting the transformed two particle state vectors into equation

(1) and using the orthogonality of the center-of-mass wave functions

the following is obtained:



86

new [on 41,11

P‘FZ ZCA! I ; <MIltmalle1/VLJA)

"’4', ”r ”‘

«417'?

r

x; E/-(-,)“”]/\AIM”51;”C(JLMLMIJ’fgr)

(Z)

"
[QSQT

X2. 77““: <Mwa1A’M4m‘JQD—I-I) J

S'A’M’J’ {’fl’f

“I I:-

x Z A: 7’/C(j’LMM/TH,')<(11)J
.«M)f[~L)/(z’3’)j»9,’m>

A’

1"”?

Next we split the wave function into its radial and angular

parts, use the fact that the interaction is diagonal in S, j, mj,

and utilize the orthogonality of the Clebsch- Gordan coefficients

to obtain
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p.12; 5,, 2; (2r+/)<...1m,n/,,,’,,,,.‘4>

Q'Iofi‘" "A‘J:’57L

lir+r

x «maln’l'mmfl I-M’m'lfPM
J

171'

x (”lgj'ltmulmll
If); (zJ’+I)/\IM.

(3)

41.1'1' “if.
x ' . T'

.2: 7;” $437

«7.1;

For a closed-shell nucleus the sum over .11 .12 can be eliminated by

using the properties of the LS-jj transformation coefficients. If

we also use the properties of the 6-j symbols, viz. ,

13‘ 1’5’ . .
£03.”) A“: An: = (1J+I)(2A+I)§Jt/(zjfl) (4)

.7

then we get
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P= i 2:, ZL/‘TWD -(->“WU/2.7.“)
rsj AINLAI’

'1‘“ (_z__4H)

x («May/trim.)ImWWZ:I (7”,) (5)

«(at/g l)

x <mlNL,A/M,/, 41,4)(4444/m’1mm)

Finally using the implicit energy relations of the Brody-Moshinsky

brackets, viz., Zn1+ 11+ an +12 = 2n + 1+ 2n + Lwe get

P = J-LZ; (2 TH) {ZJ'H ) («JSJ'It/MNMISJ'}

TS" "N"

(6)

6660”"

a» 2!) I) 1

XII- (fl)! {IrJ; ((337) (<«l’lfl’b1’fl/pli"),

41414

We now need to know the kinetic energy of the particles. This

is given by ”AEOQITIfl) where T is the single particle kinetic

energy operator and Inc) denotes the unperturbed harmonic

oscillator state vector. It is easily shown that the diagonal matrix

elements of the kinetic energy is one half the total energy of the

harmonic oscillator. For 160 we only need to sum over the 08 and
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op shells, and since there are 4 particles in the os shell all with

kinetic energy g—fiw and 12 particles in the op shell all with kinetic

energy {‘00 , the total kinetic energy is 185”. This is then added

to equation (7) to give the total ground state energy of 160.
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