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ABSTRACT
REACTION MATRICES FOR FINITE NUCLEI

by David V. Grillot

A method for calculating the reaction matrix elements of a
closed-shell nucleus is discussed. An improved treatment of the
Pauli operator is proposed, and accurate solutions of the Bethe-
Goldstone are obtained for the coupled and uncoupled integro-
differential equations. The solutions are used to obtain the first
order binding energy of 160 using the Hamada-Johnston and
Brueckner-Gammel-Thaler potentials. The results indicate that
the Hamada-Johnston potential gives too little binding and possible
ways of improving the binding energy calculations are discussed.
The reaction matrix is examineci as a function of the single
particle energies. It was found that the 3S1 states are very
sensitive to the choice of single particle energies; whereas, the

So states are relatively insensitive to this choice. Calculated

singularities of the reaction matrix are also reported for both the

1S and 3S states.
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CHAPTER

INTRODUCTION

The initial attempts to classify and explain nuclear structure
relied upon certain models, viz., the shell-model and the collective
model. These models and generalizations of these models had some
moderate successes; however, there were also some notable failures.

The initial attempts to overcome the shortcomings of these
models and to develop a unified nuclear perturbation theory were
made by Brueckner, 1 Bethe, and Goldstone, 2 One of the major
difficulties in the development of the nuclear perturbation theory
was the strong nature of the nucleon-nucleon potential, v, which when
used in the conventional perturbation theory gives rise to divergent
matrix elements. The many body perturbation theory shows that the
infinite matrix elements, <4)|N~[49) , should be replaced by the finite
matrix elements, (|t |9> , where t is a two body operator defined by

t=N'-N,’%

1o 12 S 1 )

(1)

1K. A. Brueckner and J. L. Gammel, Phys. Rev. 109 (1958)

1023, this work lists all earlier references.

2H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London), 238A
(1957) 551.



and

A

(2)

In these expressions Q is the Pauli projection operator which prevents
two interacting nucleons from scattering into states occupied by other
spectator nucleons. The energy denominator, e, is the difference
between the energies of the pair of nucleons in their excited inter-
mediate states and their initial states. Considerable confusion exists
in the literature about the precise nature of the energy denominator.
The current belief is that this energy denominator should be comprised
of Hartree-Fock (HF) single particle energies.

The first attempts to solve equations (1) and (2) were carried out
for nuclear matter, i.e., an artificial nucleus of infinite extent in
which the Coulomb effects are neglected. One of the major simplifica-
tions for nuclear matter is that the intermediate state wave functions
are plane waves. This is possible due to the translational invariance
of nuclear matter. Another simplification for nuclear matter is that
the intermediate state energies are the energies of free particles.

Even with these simplifications, the calculations of the binding energy

3
M. K. Pal and A. P. Stamp, Phys. Rev. 158 (1967) 924.



of nuclear matter have oscillated throughout the past ten years and
are still in a state of flux.

Despite the uncertainties of the nuclear matter results, one
of the more instructive conclusions to be shown is that the many
body theory reduces in a certain approximation to the earlier shell
model. This was shown to be the case by Gomes, Walecka, and
Weisskopf. 4 Their calculation using the t-matrix formalism of
references 1, 2 showed in a convincing manner that, (a) the many
body effects fundamentally alter the correlated motion of a pair of
nucleons such that the perturbed wave function heals to the unperturbed
wave function and (b) the hard core potential could be treated in a
consistent non-divergent manner. The first conclusion is a result
fundamental to both nuclear matter and finite nuclei, and the '""healing"
of the correlated wave function to the unperturbed wave function can
be used either as a calculational tool or can be viewed as a qualita-
tive test for proposed two nucleon wave functions.

The transition from early nuclear matter calculations using

the t-matrix formalism to the present day calculations for finite

4L. C. Gomes, J. D. Walecka, and V, F, Weisskopf, Ann.
Phys. 3 (1958) 241.



nuclei has proceeded quite slowly. The slowness of this transition is
due basically to the fact that the simplifying assumptions of inter-
mediate state energies and wave functions cannot be carried over
readily to finite nuclei. In fact at the present time there is no firm
basis for choosing the intermediate state energies and it will be shown
in Chapter III that the t-matrix elements are dependent on the energy
denominator. Moreover, in finite nuclei the Pauli operator is
difficult to handle because the bookkeeping devices, viz, Racah co-
efficients and Moshinsky brackets5 are cumbersome to treat.

’

As has been stressed by several authors the rigorously
correct calculational procedure is a doubly self-consistent computa-
tion. That is, using equation (1), a set of t-matrices are computed
with some realistic nucleon-nucleon potential. Using these initial
t-matrices, a self-consistent HF calculation is performed. The HF
calculation generates a set of single particle energies and wave

functions. These single particle energies and wave functions are

then used to recalculate a new set of t-matrices. The double iterative

ST. A. Brody and M. Moshinsky, Tables of Transformation

Brackets (Monografias del Institute de Fisica, Mexico, 1960).

6K. Kumar, Perturbation Theory and the Nuclear Many Body

Problem (North Holland Publishing Co., Amsterdam, 1962).




procedure is then repeated until a self-consistent set of single
particle energies and wave functions is obtained. Even using high
speed computers the problem of achieving double self-consistency
is only now becoming feasible.

In order to avoid the above-mentioned complexities several

78, 9 which will

simplifying assumptions are usually introduced
be maintained in the present paper. The first assumption is that

the intermediate HF wave functions are replaced by harmonic
oscillator wave functions. This approximation has been discussed

by Kuo and Brown7 who argue that the results of HF calculationslo
give wave functions which are similar to harmonic oscillator wave
functions. The next major assumption is that the Bethe-Goldstone
(BG) wave function, ¥, can be separated into an unperturbed center-
of-mass wave function and a perturbed relative wave function. There

is no justification for this assumption due to the nonlocality of the

Pauli operator, but unless this assumption is made the BG equation

7
T. T. S. Kuo, and G. E. Brown, Nucl. phys., 85 (1966) 40.

8
C. W. Wong, Nucl. Phys. A9l (1967) 399.

9
A. D. Mackellar PhD Thesis, Texas A and M University,
January 1966 (Unpublished).

1OI_.. Kelson and C. A. Levinson, Phys. Rev. 134 (1964) B269.



is insoluble. The retention of this approximation will be necessary
until a suitable method of solving directly the two-body BG equation is
devised. The final assumption concerns the nature of the intermediate
state energies. As mentioned earlier there is no clear basis for
choosing these energies; however, two choices are now popular.

The first choice is based on nuclear matter results and uses plane
waves; the second choice is to use harmonic oscillator energies,

Both of these choices are questionable, and in this paper the harmonic
oscillator is chosen.

Before the complete self-consistent problem is attempted it is
necessary that accurate solutions of equation (1) be obtained. Unless
one has confidence in these fundamental solutions it seems unwarranted
to proceed with the larger calculation.

Recently there have been several convincing solutions to
equation (1). The more notable of these have used the reference
spectrum method, 11 the separation method, 12 and the Eden-Emery

13
method. Kuo and Brown' have applied the first two methods to

“H. A. Bethe, B. H. Brandow and A. G. Petshek, Phys. Rev,
129 (1963) 225.

125, A. Moszkowski and B. L. Scott, Ann. Phys. 11 (1960) 65.

13
R. J. Eden, V. J. Emery and S. Sampanthar, Proc. Roy.

Soc. (London) A253 (1959) 186.
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the excited state spectrum of " F and

16

O and the binding energy of
O. Ma.c1<e11:=1r9 has used the latter method to obtain the binding
energy of 16O.

Both the separation method and the reference spectrum method
use a perturbation expansion of the t-matrix which in the first
approximation neglects the Pauli operator. The Pauli operator
occurs in the perturbation expansion and is ultimately calculated by
using the angle average Pauli operator which was originally used
for nuclear matter. Recently Wong8 has improved the Kuo- Brown
treatment of the Pauli operator.

The separation method and the reference spectrum method
differ basically in the choice of the first order t-matrix. In the
separation method, which was initially used by Moszkowski and
ScottlZ for nuclear matter, one assumes that the potential can be
separated into a short range and a long range part. The separation
distance is chosen such that the short range attraction in some
sense cancels the repulsive hard core part of the potential. Then
one 'is left with the problem of evaluating the long range part of
the potential via the perturbation expansion for the reaction matrix.

There are several minor assumptions such as averages of state



dependent separation distances, but it is believed that these
corrections are small. 14

The reference spectrum method was originally suggested by
Bethe, Brandow, and Petchekll for nuclear matter. This method
has particular utility for the odd state repulsive potentials because
the concept of a separation distance is meaningless for these
states. In this method the first order t-matrix neglects the Pauli
operator and approximates the intermediate state energies with
the free particle energies. With these approximations one gets
an inhomogeneous differential equation for the first order t-matrix.
The higher order corrections to the reaction matrix are then
calculated in a manner analogous to the separation method.

In both methods the question of convergence of the pertur-
bation expansion is made plausible by explicitly showing that
higher order terms are small.

The third method was originally suggested by Eden and
Emery in a series of papers, 13 and some calculations were
performed using questionable numerical approximations.
Mackellar9 has recently redone the calculations in a precise

manner for 16O using several different nucleon-nucleon

4
! T.T.S. Kuo, to be published.



potentials. There are two basic approximations in this approach

to the problem which make the calculations possible. The first

is to observe that a tenable approximation exists for the Pauli
operator based on the unique characteristics of the harmonic
oscillator wave functions. The final effect of this approximation

in l60 is to forbid scattering into one allowed state and permit
scattering into a set of forbidden states. Despite these restrictions
the method does include the essential features of the Pauli operator.

The second approximation is the treatment of the HF self-
consistency condition. By introducing a state dependent potential
for the initial state energies, it is possible to obtain approximate
self-consistency for the BG wave function.

The overall method deviates considerably from the frame-
work of the nuclear many body theory, and despite its ability to
predict nuclear binding energies it is an artificial approach to the
problem.

In the present paper some of the above-mentioned approxi-
mations are avoided. In particular it is shown that it is unnecessary
to construct a perturbation expansion for the t-matrix since
equation (1) can be solved exactly. At first glance this appears to
be an involved calculation, but in actuality the calculation is

simpler and avoids any question of convergence of the perturbation
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series. Moreover, there is no necessity of calculating state
dependent separation distances.

In addition to this exact solution, it will be shown in
Chapter II that it is possible to incorporate animproved treatment
of the Pauli operator. This improved treatment of the Pauli
operator and the exact solution of equation (1) should increase
the reliability of the t-matrix elements for finite nuclei, and it is
anticipated that one could now proceed with the full self-

consistent problem.



CHAPTER 11

FORMULATION OF THE PROBLEM

1. General Development

Rather than solving equation (1) of Chapter I, the standard
procedure is to calculate the two body correlated wave function, (}' .
By combining equations (1) and (2) of Chapter I, the following is

obtained for the BG wave function:
y =@ + F~¥ (1)
Or in terms of the wave operator

no=1 1—%”—“—

Once equation (1) is solved, the diagonal and off-diagonal reaction

matrix elements are determined from

KPIEI§> = LPIv ¥ (2)

which is a finite quantity since Y vanishes in that region where the

potential, v, has an infinite hard core.
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In Appendix A a detailed analysis of the hard core shows that
the hard core contribution to the t-matrix is given approximately by
Q ﬁ ’,‘, A - This contribution has been added to all matrix elements
in equation (2).

The task is to solve equation (1) which is the Bethe-Goldstone
(BG) equation in as exact manner as possible. For complete generality
the BG equation is written in the j-j representation even though this
generality is not needed for closed-shell nuclei. In this representation

the BG equation is
14a)f(4) 5T T mmD) = [(4a)] (44)f, TH THmm,)

UNOCC UP8 D ot ,
+4 (24 Spr msti) (A0 LD 70, THA A )

4'/,_1"7'/‘51 il !

m:I,'y;’ T'H,.,

o (47 (ha)F/ T e T Mye lr O] U0)7, (2 )5, TR THe ) (3)
€ , + - — ,
mig  mdd T Gy Ty

where nlj designate the single particle quantum numbers, enlj are
the initial state self-consistent energies, and en'l'j' are the
energies of the intermediate states. The summation in equation (3)

is carried out over all initially unoccupied states and in principle

these states should be the self-consistent HF single particle states.
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Since the complete self-consistent problem, i.e., the problem
of doing a self-consistent HF calculation in conjunction with a self-
consistent treatment of the BG equation, is an extremely involved
computational exercise, the approximation of replacing the inter-
mediate state single particle wave functions by harmonic oscillator
wave functions is made. The initial state energies, which should
also be determined in a self-consistent manner, are varied over a
wide range of physically interesting values. For the final calculation
of the t-matrix elements, the initial single particle energies are
obtained from Hartree-Fock calculations. 3 The intermediate state

energies € are chosen to be harmonic oscillator

190 .1 + e 190 20 2
ol Loy

energies. Based on these considerations the problem of double self-
consistency as discussed by Pal and Stamp3 is circumvented.

Due to the nonlocality of the Pauli operator the BG equation is
not separable into relative and center-of-mass coordinates. There-
fore, the major approximation of this paper will be to assume that the
BG wave function, ¥ , can be separated Ainto a perturbed relative
wave function and an unperturbed center-of-mass wave function.
Similar assumptions are made for the initial state energies

&€ + €_. Thatis ¢ . + € . . rel. C. M.
12 nliy Rl = Epys t By
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where nljS are quantum numbers of the relative state and NL are
center-of-mass quantum numbers.
Using these assumptions the BG equation can be reduced to an

integro-differential equation by performing the following algebraic

manipulations:

(1) Operate with

(4)

where Ho is the harmonic oscillator Hamiltonian. (2) Change the
sum over the unoccupied states to one minus the sum over occupied
states. (3) Use the standard transformation for the perturbed and

unperturbed states, viz.,

‘ . -1
’(!'4)4//z¢,)71f}7r71/‘;/"/ml> = [a(t 4—5,,/,,;,,,»,/,1;)]

14,44 ' Lr5PT
x> T 7% <mj/v/,,/l//",//":/z>[/"('/) 7]

SAT
SAmAINML

5 NT T ClLmem |78 e, wyl) w2 | Ty (5)
:

JLA .m
Sl :



15

where

| 4 kg
-'-1,;;"/"]: '
Lar = VasenGardGgen Gl 94 4 4
AS T
and
| £ sz
. StL+F+ A
/\!S; = (-1)
VLA 7 L A )

In these expressions the angular momentum jl and j2 couple to a

total angular momentum, J. The spin of the two nucleons is S, and
1, L, and A are the relative, center-of-mass, and total orbital

angular momentum respectively. The T-coefficients are the trans-
formation coefficients from j-j to L-S coupling. /\Jisj is the re-
coupling coefficient of 1 and S to a total relative angular momentum,
j. And the bracket < nINL, A [ n 1 n_1)> isthe Brody-Moshinsky

1122

transformation bracket. > (4) Eliminate the center-of-mass energy

. c.M. M
by using (E NL -H0

") |LM N =0. (5 Take the scalar
product of the transformed equation with <LMLN, and (TMTf .

(6) Assume that the interaction is diagonal in S, T, MT,j and m .
J
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(7) Finally for closed-shell nuclei use the orthogonality properties of

Vloidy YWhoihb, § 5
T %sst AN

) _ 15 ...
the T-coefficients, viz., Z. TSA 5 TSA I
112
After performing these operations and using the properties of the

Clebsch-Gordan coefficients, the following equation is obtained:

(Buggs = WD =1) Wostjmym) = prt ltsijmy 2

B 5T LA ML) oo | A VL AD
ALRLTH, e LA,

s g r 4/‘&7' ' )
x L= et AuA. ClGLamymILn) (8)

457 . : I} ;
X JZ /&L/: C (.7, Lr"z,' e [J;l-;‘ )/C{,S)‘z/m’m.>4£',)jq,,! IN—J\_’{A?,,,?M>

This equation is valid for either 1=j or 1=j-1.

2. Singlet and Triplet 1=j states.

In this section only the case where 1=j will be considered.

Define
n "
{(x /{Is)jam m) = Re®? Y reg) (9)
15

A. DeShalit and I. Talmi, Nuclear Structure Theory
(Academic Press Inc., New York, 1963).
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and

i,
<,:I_a_]{!$)‘1‘m,’.m> = _,_,,_4,____ 7/{0 .9) (10)
JAS

where 'g, ™j  is the standard angular momentum function which has
jls

been defined elsewhere. 16 Also introduce a dimensionless variable
f =r/b, (b=V#§ /mew ).
m.
Then after taking the scalar product % le s with equation (8),

» performing the sum over M

summing both sides over mj and m,

Jo

and Jo, and using the implicit energy relations of the Brody-Moshinsky

bracket, > the following expression is obtained:

A ) a2
[+ - 182 - <3, g Y]ty

=[) mlys ’\:'l]'iff) <K, ’u"‘-’f’>
ocguLied 2 \pi)< > U, (f’)/f
m%;—‘o/ 50 j } g/f/ .;17”

(12)

X {E(,_._H)(g/,/)f'/% (1/L+/) ,("L/NL,/UMOJ A, 7‘ ?

16M. A. Preston, Physics of the Nucleus (Addison-Wesley
Publishing Co., Reading, Massachusetts, 1962).
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1.
where n = (Zno +1° +2n° +1° . 2N-L-1)/2, A =i—-Ere_ , and
o 1 1 2 2 nljS nljS
o
A .= 2(2n+l1) + 3.
nl

Equ;tion (12) is the final reduced form of the BG equation which
has to be solved. It should be emphasized that the only major approxi-
mation which has been made in deriving equation (12) is the separability
of the BG wave function.

By explicitly writing out equation (12) it becomes obvious that the
form of this equation isidentical to the equation derived by Eden and
Emery. 13 However, there are several major differences. As is

9

well-known’ the Eden-Emery approximation incorrectly includes and
excludes scattering into certain intermediate states. This approxi-
mation manifests itself in the number of terms in the sum in the
reduced equation. Also, equal weights are assigned to all inter-
mediate occupied states. In the present treatment of the BG equation
both of these difficulties are corrected. That is, each intermediate
state is multiplied by the appropriate weighting coefficient and the
summation is over the proper number of terms. In the Eden-Emery
method there is no clear prescription for extending the method to
nuclei other than 160. It is now apparent how equation (12) can be

extended to any closed-shell nucleus. In addition the Eden-Emery

energy denominator differs from the present formulation.
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3. Triplet 1=j-1 states.

In this section only the case where 1=j-1 is the dominant solution
will be considered.

Define

R () 4 700p)
,ml y(’,f

(T |(sYgmpm) = —2 15 (13)
and
Gln-ls)jmm) = “4/,{_2_"_’ %//Z:{ﬂ v }7/{?@ (14)
where unljs is the 1=j-1 component of the solution and wo 'jS
is the 1'=j+1 component of the solution. When unljS is the dominant

solution, this implies that the unperturbed state is an 1=j-1 state.
The procedure used in deriving the relevant reduced coupled
equations is, in principle, the same as that used for the uncoupled
equations. Starting with equation (8), the scalar product with first
yle and then yjl'S is taken. This leads to two equations which

are summed over mj and mL. The summation over MJ and Jo can
o

then be performed and if the implicit energy relations of the Brody-

Moshinsky brackets are used, the following expressions are obtained:
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4 - ¢
L)"’"J’ T T - #w <71:/” 15 ]Lfﬂ;!j)s

ety yer @ =y, =X, 1REK, 14, o

The Jis 945 m?ys
(15a)
acev 5DR (f) fﬁ (1 )[(? ,”,7) ure) +<7 ,/U',7 >UJ’(;)]
0/0 ./ ﬁw 113 ,‘, MI’S j[s M’l
(s E Cari knomnerm 3] f
and
e
s I’ 7 = *“’<:91;'s’”’? 2] oA
S
(15b)

w5z 2 (jenlly Ity yn o<y b pu )
743

Py U DR ll' w255 % wljs

‘/ 1 o o 2% 2
X {[(un)(u'ﬂ)] pReY) H)/(m,’.( NL,A.!M,'/,m,J,>} }
A
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where
ng=(2n + 10+ 20 +15 - 2N - L -1)/2 (16)
1 o o o
= + + - - -1
n' =(2n +1,+2n,+1, - 2N-L-1)/2 (17)

Comments identical to those following equation (12) about the
comparison of these equations with those of Eden and Emery can

also be made.

4. Approximate Solution of BG Equation

Although the approach discussed in this section has been super-

ceded by the formulations of the previous sections, it is instructive
to analyze the BG equation when the Pauli operator is completely
ignored. For this situation a model is assumed in which two nucleons
interact through the nucleon-nucleon potential while the spectator
nucleons affect the interacting particles only through a spherically
symmetric potential which is chosen to be a harmonic oscillator
potential. The two particle Hamiltonian is then H=Ho+v, and the

wave function satisfies the eigenvalue equation

(E-H_ -v) y°=0 (18)



22

Because of the properties of the harmonic oscillator, the total
Hamiltonian separates readily into the sum of center-of-mass and

relative coordinates. The equation for the center-of-mass is
c.M. M ) =0
E"-w7)Y (19)

and is readily solved analytically. The relative equation in terms

of the dimensionless variable [4 is

A5 _ ) gt _ A 1) =0
[ ’\,,.,(js ’ et r* 7% <z7‘lM/Z/r>] LL':" (20)

for the uncoupled 1=j states, and for the coupled 1=j-1 states,

‘_{‘ A v 2 | > °r4)
[h i~ 70 5 e <Z’/s/ :‘r/.js]um.s

_E2 Y InlY D wrte =0
ﬁw Z[’ Z}IS M’j’,'\f (Zla)
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and

J _ 202'F1) ‘ - :7:. (;)
£A41j5+7i" f" #e ; :// ‘u,s

(21b)

7 ’””le (','ul(;)s = ©

these equations which ignore the Pauli operator should be compared
with equations 12, 15a and 15b which include the Pauli operator.
Although the form of the eigenvalue equation is considerably
different from the correct form of the BG equation, it was originally
thought that the eigenfunctions would be reasonably good approxi-
mations to the BG wave functions particularly for the higher angular
momentum states. A priori it is difficult to assess the severity of
neglecting the Pauli operator. Dawson, Talmi and Walecka, 17 based
on some crude estimates of the effect of the Pauli operator in 18O,
showed that the effect of neglecting the Pauli operator in the ISO
states would result in about 10% error. It was hoped that the same
would be true for the troublesome 351 states. The present paper

will show in the next chapter that for the 1So states their estimate

17J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys.
18 (1962), 339.
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. 3 .
of the error is reasonable. However, for the S1 states one is not
quite so fortunate, and it is imperative that the Pauli operator be
taken into account. Moreover, in order to obtain decent values for
L 16 . .. . . .
the binding energy of * O it is necessary to include the Pauli operator.
In addition to the above quantitative considerations the qualita-
tive comparisons of the solutions with and without the Pauli operator

demonstrates in a dramatic fashion the effect of the Pauli operator

on the nuclear wave function.



CHAPTER II1
NUMERICAL RESULTS

A computer program has been written to solve the coupled and
uncoupled integro-differential equations exactly, i.e., equations 12
and 15 of Chapter II. The numerical technique used to solve these
equations is discussed in detail in Appendix B. The numerical
accuracy required for the wave function, u, is §u/u ¢ .005 where

$u is the computed change in the wave function at the end of each
iteration. Usually three iterations were sufficient for convergence.
The method of solution was quite efficient, and ultimately it was
faster to solve the full BG equation than the related eigenvalue
problem. Disregarding compilation time, the computer time
required to calculate one state and its off-diagonal matrix elements
was 30 seconds and 60 seconds for the uncoupled and coupled states
respectively using an IBM - 360 Model 50 computer.

The nucleus of interest in this calculation was 16O, but the
method developed has equal applicability to other closed-shell
nuclei. For ! O the summation in equations (12) and (15) is carried
out over the os and op shell. For other closed-shell nuclei it is

necessary to alter the range of this summation accordingly.



In solving equations (12) and (15), three pieces of information
are needed: a phenomenological nucleon-nucleon potential, a set
of HF single particle energies, and an oscillator parameter, e .

The equations were solved using both the Ha.ma.da.-.',fohnstonl
(HJ) and the Brueckner-Gammel- Thaler19 (BGT) potentials. Both
of these potentials contain a hard-core, tensor force and spin-
orbit force. In addition the HJ potential contains a quadratic
spin-orbit force. The properties and parameters of these potentials
are given in Appendix C.

The values of the HF single particle energies were -40 and
-18 MeV for the os and op states respectively. These were the
values calculated by Pal and Stamp3 and should be correct to
within 5MeV. It should be realized that these values will be
altered somewhat when the doubly self-consistent calculation
is performed. Since there is doubt concerning the specific
dependence of the t-matrix on the initial state single particle
energies a detailed examination of this dependence has been

performed for the lSo and 351 states.

18T. Hamada and I. D. Johnston, Nucl. Phys. 34 (1962) 382.

19K. A. Brueckner, J. L. Gammel and R. M. Thaler, Phys.
Rev. 109 (1958) 1023.

26
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The oscillator parameter used was based on electron scattering
data.20 which indicates that the value of #w for 16O should be
between 13 and 15 MeV. The t-matrix elements were calculated
using three values of fw , viz., 13.35, 14.5, and 15.5 MeV.
Ultimately more values of #w were needed to clearly define a
minimum in the B.E. /A versus %« curve.

With these pieces of information the first equation solved was
equation (20), i.e., the eigenvalue equation which neglects the
Pauli operator. This equation was solved for all angular momentum
states less than 3 and for both the singlet and triplet states. The
resulting ISO relative wave function, ugo’is plotted in Figure 1
and is compared to the unperturbed harmonic oscillator, Rg,.

The important qualitative feature to be noted is that there is no
healing of the wave function ugo onto the unperturbed solution. In
this situation, the scattering of the two nucleons inside the harmonic
oscillator potential can be viewed as a real scattering process in
which the final wave function has undergone a phase shift.

Figure 1 should be compare directly with Figure 2 in which
o is the lS0

the perturbed wave function, u,,, is plotted. Here u

oo o

solution of equation (12) which includes the Pauli projection operator.

20
1961).

L. R. B. Elton, Nuclear Sizes (Oxford University Press,
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The contrast of Figures 1 and 2 explicitly displays the effect of the
Pauli operator. The correct BG wave function, for all calculational
purposes, has healed at 2.5 fm, and the healing is complete at 4 fm.
Similarly for the 381 coupled 1 = j-1 dominate states, the
solution without the Pauli operator is plotted in Figure 3 and the
solution containing the Pauli operator is plotted in Figure 4. The
same healing phenomenon for the dominate component of the solution
occurs in the case of the coupled states at roughly the same healing
distances as in the lSo state. The minor component of the coupled
solution is drastically reduced when the Pauli operator is included,
and since the tensor force is strong, the off-diagonal tensor
contribution to the matrix element <<ﬁ/\l’l V) is reduced accordingly.
The healing of the BG wave function is of fundamental
significance in the nuclear many-body problem and shoW%s precisely
the effect of the Pauli operator. This phenomenon is well known
and was originally investigated for the lSo state in nuclear matter
by Gomes, Walecka and Weisskopf. 4 Similar results using
different techniques and approximations have been reported by

9, 21

other authors for finite nuclei. Considerable importance has

21y, S. Kohler and R. J. McCarthy, Nucl. Phys. 86 (1966)
611.
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been attached to the healing property since it implies that the wave
function for nucleons inside the nucleus are independent and spheri-
cally symmetric; this is precisely the assumption of the classical
shell model. So the validity of the shell model comes directly
from the many-body effects of the Pauli operator. Even though

the aim of the many-body theory is to reproduce the experimental
data and not to justify any models, it is encouraging to observe

that the many-body results, in some sense, do justify the

classical shell model which has had some successes in classifying
nuclear data.

The healing of the BG wave function can be explained physi-
cally by viewing the interaction of the two nucleons as a scattering
process in which the energy and momentum distribution of the two
particles must be conserved. Since all the nearby energy states
are occupied by spectator nucleons, scattering can only occur into
unoccupied states. But since energy is not conserved, the parti-
cles must return to the original states with the same initial energy
and momentum distribution. Hence there is no momentum transfer
in the scattering process and hence the phase shift is zero. The
entire process is considered to be a virtual process and the phase
shifts are said to be virtual. 6 Since there are no real phase

shifts, the wave function must heal, and only at very
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short distances (r< 2fm) can be perturbed and unperturbed wave
functions be different.

In the past (references 7 and 12) healing of the wave function
has been viewed as a calculational tool. That is, healing has been
imposed as an additional boundary condition and considerably
reduced the computation involved. The point of view of the present
paper is that healing is a test of the validity of the solutions. More-
over, it is believed that the numerical techniques of Appendix B are
more efficient than those using the separation method, i.e., the
method which imposes healing from the beginning, and it is unneces-
sary to artificially force healing.

The quantitative effect of the Pauli operator can be demon-
strated by comparing the diagonal t-matrices calculated with and
without the Pauli operator. This has been done for several states
and is shown in Table I. As can be seen from this table the effect

TABLE I. --Comparison of diagonal t-matrices (in MeV) with and
without the Pauli operator using the HJ potential.

So Sl Pl I:’o Pl PZ
Without Pauli operator -8.2 -15.9 1.7 -2.0 1.9 -1.2

With Pauli operator -6.4 -17.0 2.0 -2.4 2.1 -1.0
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of the Pauli operator is quite large in the 3S state and less important

1
for all the other states.

In the past there has been uncertainty concerning the dependence
of the BG wave function on the center-of-mass quantum numbers and
the initial state HF single particle energies. The results of this
study show that for the singlet and triplet 1l = j states the center-of-
mass and energy dependence are not crucial. In fact the final
t-matrix results for the 1 = j states are extremely insensitive to
variations in both of these quantities. Figure 5 compares two wave
functions with comparable energies and different center-of-mass
quantum numbers. The differences in the two wave functions are
minimal. Since the center-of-mass quantum numbers determine
the number of terms which are included in the summation in
equation 12 Chapter II, it has been concluded that by far the most
important term in the BG equation is the term (A =X )ERS 4124
The additional terms which enter the complicated summation
contribute at most . 5 MeV to the t-matrix.

The energy dependence of the 1So wave function is shown in
Figure 6 which compares two wave functions with the same center-
of-mass quantum numbers but very different energies. Again the

differences in the wave functions are slight. In order to reinforce

this point the t-matrix for the ISO. N =0, L =0 state was
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calculated over a wide range of energy values and the diagonal matrix
elements are plotted in Figure 7. This graph explicitly shows the
insensitivity of the t-matrix to variations in the single particle
energies. The final results vary less than 3% over the energy range
-80 to -35 MeV which is the region of interest in 16O.

For the 351 states the results are sensitive to the energy
and insensitive to the center-of-mass quantum numbers. Figure 8
shows two 3Sl wave functions plotted for different values of the
single particle energies. The minor component of the solution
changed appreciably for different energies and this is reflected in
the t-matrix through the off-diagonal element. Therefore, it is
imperative that the correct choice for the energies be made in
the 381 states. Figure 9 shows that the final results vary by
about 20% over the energy range -80 to -35 MeV.

The mathematical reason for the insensitivity to €, +&,
of the lSo state is directly related to the healing property of the
wave function. In the BG equation the energy enters as a factor
multiplying ( u - R ), and since the wave function, u, approaches
the unperturbed wave function, R, the term A ( u-R ) is a small
quantity when compared to other terms in the integro-differential

equation. The overall effect is that the BG wave function and the

t-matrix are extremely independent of the energy.



39

_ 'sa131aud aronnred ardurs
MJ0 J-99I31®H 9Y3} UO XTI}BW uondeax (=1 3ar8urs ayy yo aduapuadag-- -2 ‘91 4g

(F2W) 35 +'5
ob 02 o) oz2- Ob- 09- 08-
1 k| ] ! ] |
_“
[ dg71-
f ozl
i
I 400I-
"
I\
/s— _[/ - O.wl
409-
- O.¢o

(M) XIYIYW-4 IYNOOSVIQ °S,



20 oo :
‘A1oaryoodsaax uorydouny aaem Ng ayj jo sjusuodwod Jourtw pue yofew ayj @axe © m pue n -sarBasua

Jusx93yTIp LI9A Yjtm suorjouny saaem auolspron-ayyag 391d11} so omy yo uosrtaedwon-- g -81g
(wy)4

ool 08 09 Ob T VI
| L ] _ ¥ _ — | | OO

40

MINOG-=2+'> —— "\

MNOZ-=%3+'> — "\ “n/ .
w - -8
MW 0S| = MY N\ /
0=10=N 0=u's; S 00n




41

074

Oc-

‘sa18aous
saro13aed a13urs Y50 J-99131BH 9Y} UO XII}BW uomndeax [-[=73191d113 ay3 yo asuspuadag-- ¢ 319

(M) 235 +'5

08-

-108I-

-109i-

-10vi-

. =102I-

- 00I-

(‘AW) XIYLVYW-4 TYNOOVIQ 'S,



42

In the case of the 351 state the 1 = j-1 dominant component of
the solution behaves in a manner identical to the uncoupled solution.
However, the 1' = j + 1 minor component does not heal to any
unperturbed solution. The resultant effect is that the minor
component of the solution is sensitive to the sum of the single
particle energies.

Although it was not the purpose of this investigation to study
the singularities of the t-matrix, it is worth noting that they
constantly occurred in all states whenever the energy was varied.
Fortunately these singularities did not occur in the energy regions
which are important for the calculation of the ground state energy.
Theoretical investigations of these singularities have been performed

. 22, 23
in several papers

> but to the author's knowledge they have
never been encountered in numerical solutions of the BG equation.
The fact that they do exist is evident from a cursory examination

of the form of the defining equation for the t-matrix, viz.,

equation (1) Chapter I. The singularities shown in Figures 7 and 9

22J. S. R. Chishold and E. J. Squires, Nucl. Phys. 13

(1959) 156.

23
V. J. Emery, Nucl. Phys. 12 (1959) 69; 19 (1960) 154.
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occur roughly at those values of E which satisfy the eigenvalue

equation

(E-H ~m)¥° =0

This is not the only value of E which gives rise to singularities.
They occur quite frequently for energies at and above the Fermi
surface, i.e., when €&+¢ > © . Since these are of considerable
theoretical interest a possible future detailed examination of them
is being considered.

In the past there has never been a clear demonstration of the
variation of the t-matrix from one nucleus to the next. In order to
study this effect the t-matrix was calculated using a Pauli operator
which is appropriate to 4OCa while the single particle energies and
oscillator parameter, ¥« , were those appropriate to 160. The
4OCa exclusion principle can easily be incorporated by extending
the summation through the 1sod major shell in the BG equation.

In Table II the results of this calculation are compared to the 16O
results. From this Table it is seen that there is some slight
effect of the Pauli operator in going from one closed-shell nucleus
to the next. All of the intermediate 1sod shell nuclei should

possess Pauli operators in between the extremes of 16O and 40Ca.

However, since the effect due to different 1sod shell Pauli
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TABLE II. --The first column gives the matrix elements

<n'l'| t_S(NL)I nl> for 160. The last column gives the value of the
reactioh matrix using a Pauli operator appropriate to 40Ca while the
single particle energies are those of ““O. The numbers in the last
column are not realistic matrix elements and are listed only to display
the effect of the Pauli operator in going from one major shell to another.

164 40
€+ n'l' nl jS NL %@ = 14.50 14. 50
-80 00 00 00 00 -6. 445 -6. 342
10 -4. 897 -4.811
00 00 11 00 -7.051 -6. 646
10 -5.206 -4.945
02 -6.373 -6.364
12 -8.939 -8.873
-58 00 00 00 01 -6.572 -6. 467
10 -5.011 -4.924
00 00 11 01 -7.519 -7.228
10 -5.571 -5. 389
02 -6.403 -6.367
12 -9.035 -8.928
-36 00 00 00 02 -6. 616 -6.575
(10)
10 -5.057 -5.023
00 00 11 02 -7.774 -7. 637

(10)
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TABLE II. - -continued

- 16, 40,
n'l nl js NL fw=14.50 14. 50
10 -5.808 -5.724
02 -6. 407 -6.396
12 -9.051 -9.012
00 10 00 00 -5.278 -5. 241
10 -4.451 -4. 420
00 10 11 00 -6.767 -6. 489
10 -5.576 -5.396
02 -3.102 -3. 124

12 -6.117 -6. 125
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operators is slight, it would be adequate to use some interpolated
values for these nuclei since a precise calculation for these nuclei
is extremely difficult, if not impossible.

Solutions for a few of the higher angular momentum and
higher nodal states are shown in Figures 10, 11, 12, and 13. In
general these solutions exhibit the same properties as the
previously discussed solutions. The higher angular momentum
states heal more rapidly than the S-states and are almost
completely independent of the values of the single particle energies.

Bethe et al. H have shown that the t-matrix should be
Hermitian. The Hermiticity was tested for only the ISO and 351
states. By actual calculation with the same particle energies for

the relative 1s and os states, the following results were obtained:

1o | T (00) 00> = = 7.87 oalt fo0)]10) = - ¥.84
oo

and

=-S5/
ol t (o0) 00> =521 (oo [T, (00102
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where the notation is
e L
</ﬂ/—/ , jS(N )”"">

A complete list of the t-matrices relevant for the ground state
properties of 16O are listed for the HJ and BGT potentials in Tables
III and IV respectively. The single particle energies, -80, -58 and
-36 MeV, correspond to the two particles in the osos, osop, and
opop states respectively. These values are the results which were
ultimately used in calculating the binding energies.

Once a good set of t-matrix elements has been obtained there
exists a wealth of experimental data which should provide good
tests for both the t-matrix and the numerical results. Unfortunately
rigorous tests usually involve either shell-model or Hartree-Fock
calculations. Each of these calculations involves considerable
effort. However, it is possible to immediately calculate the
approximate binding energy of l60 and the -l-tg‘splitting in l70.

In Appendix D it was shown that the approximate binding

energy of 16O is given by the following
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TABLE III.- -Matrix elements, <n'l'| th(NL)I nl>, for HJ potential.

% ow

€. +s n'l nl jS NL 13. 35 14. 50 15. 50

-80 00 00 00 00 -5.973  -6.445  -6.838
10 -4.733  -4.897  -4.988
00 00 11 00 -6.617  -7.051  -7.397
10 -5.127  -5.206  -5.222
02 -5.578  -6.373  -7.089
12 -7.892  -8.939  -9.873

-58 00 00 00 01 -6.101  -6.572  -6.962
10 -4.852  -5.011  -5.106
00 00 11 01 -7.080 -7.519  -7.867
10 -5.508 -5.571  -5.568
02 -5.612 -6.403  -7.115
12 -7.987  -9.035  -9.968
01 01 10 00 1. 757 2.029 2.284
11 1.875 2. 197 2.504
01 01 01 00 -2.144  -2.389  -2.599
11 -1.779  -1.902  -1.993
01 01 11 00 1.849 2.133 2.393
11 1.985 2.279 2. 549



TABLE IIl.--continued
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4w
€  * n'l nl js NL 13. 35 14. 50 15. 50
01 01 21 00 -0.834 -0.990 -1.135
11 -1.118  -1.310  -1.485
03 0. 682 0.794 0.896
13 +0.924 1. 062 1. 185
-36 00 00 00 02 -6.150  -6.616  -7.001
(10)
10 -4.904  -5.057  -5.147
00 00 11 02 -7.363  -7.774  -8.094
(10)
10 -5.776  -5.808 -5.776
02 -5.617  -6.407  -7.117
12 -8.007  -9.051  -9.981
00 10 00 00 -5.062  -5.278  -5.430
10 -4.426  -4.451  -4.425
00 10 11 00 -6.566  -6.767  -6.876
10 -5.631  -5.576  -5.454
02 -2.809  -3.102  -3.345
12 -5.470  -6.117  -6.673
02 02 20 00 -0.497  -0.589  -0.675
12 -0.552  -0.650  -0.740



TABLE I1II. --continued
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% w
51 + 52 n'l nl jS NL 13. 35 14. 50 15. 50
02 02 11 00 1. 676 1. 361 1. 537
12 1.099 1. 252 1. 389
00 -5.571  -6.363  -7.076
10 -2.853  -3.141  -3.386
02 02 21 00 -2.114  -2.459  -2.772
12 -2.141  -2.443  -2.710
02 02 31 00 0.038  +0.044 0.049
12 0.025  +0.026 0.027
04 -1.039  -1.239  -1.427
14 -1.403  -1.652  -1.882
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TABLE IV. --Matrix elements, <n'l’ lth(NL)l nl>, for BGT potential.

x>
€, +62 n'l' nl jS NL 13.35 14. 50 15. 50

-80 00 00 00 00 -6.222  -6.683  -7.061
10 -4.697  -4.795  -4.838

00 00 11 00 -7.817  -8.426  -8.931

10 -6.896  -7.199  -7.416

02 -5.603  -6.371  -7.055

12 -7.879  -8.791  -9.608

58 00 00 00 01 -6.343  -6.800 -7.174
10 -4.806  -4.897  -4.933

00 00 11 01 -8.317  -8.939  -9.453

10 -7.302  -7.594  -7.797

02 -5.627  -6.389  -7.067

12 -7.968  -8.881  -9.698

01 01 10 00 2.553 2.916 3.242

11 2.574 2.881 3.156

01 01 01 00 -2.983  -3.302  -3.575

11 -2.342  -2.479  -2.584

01 01 11 00 1.992 2. 288 2.558

11 2.087 2.373 2. 637

01 01 21 00 -1.336  -1.553  -1.752
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TABLE IV. --continued

o

éi-+¢} n'l' nl jS NL 13. 35 14. 50 15. 50
11 -1. 584 -1.823 -2.041
03 0.930 1.071 1. 199
13 1. 254 1. 404 1. 542

-36 00 00 00 02 -6. 388 -6.814 -7.210

(10)
10 -4.853 -4. 940 -4.917
00 00 11 02 -8.554 -9. 150 -9. 683
(10)

10 -7.519 -7.782 -7. 459
02 -5.621 -6. 381 -7.058
12 -7.969 -8.879 -9. 694
00 10 00 00 -4.928 -5.064 -5.143
10 -4.094 -4.038 -3.946
00 10 11 00 -7.848 -8. 187 -8. 439
10 -7.117 -7.214 -7.246
02 -2.518  -2.698  -2.84l
12 -4.921 -5.360 -5.749
02 02 20 00 -0. 668 -0. 809 -0.942
12 -0. 862 -1.015 -1. 159

02 02 11 00 1.761 2.030 2.313



TABLE 1IV. --continued
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Hw
+¢2 n'l' nl jS NL 13.35 14. 50 15.50
12 1. 804 2.031 2.270
00 -5.701  -6.367  -7.050
10 -2.653  -2.815  -2.965
02 02 21 00 -2.298 -2.718  -3.106
12 -2.659  -3.060  -3.429
02 02 31 00 0.095 0.079 0.058
12 -0.087  -0.155  -0.269
04 -1.088 -1.312 -1.524
14 -1.656 -1.915  -2.161
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The coefficients in this expression have been tabulated by Mackellar9
and have been used in this paper to calculate the binding energy per
nucleon as a function of the oscillator parameter, ¥«. The final
results are plotted in Figure 14 for the HJ and BGT potentials. For
the HJ potential a minimum of -3.6 MeV /A occurs at about
#w =14 MeV, and for the BGT potential a minimum of -7.8 MeV/A
occurs at about #w =18 MeV. The experimental value is -7. 98
MeV /A. 24

The BGT potential is known25 to be unacceptable as a fit
to nucleon-nucleon scattering for the T =1 states, but is as
good as the HJ for the T = O, 3Sl state. Since the central force
is not affected as much as the tensor force by the Pauli operator
and since the BGT triplet force has a strong central part, its

S1 matrix elements give much more binding than the HJ

potential (see TABLES III and IV).

24L. A. Konig, J. H. Mattauch, and A. H. Wapstra, Nucl.

Phys. 31 (1962) 18.

25P. Signell and N. R. Yoder, Phys. Rev. 132 (1963) 1707.
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Fig. 14. --The binding energy per nucleon for 16O as a function of the
oscillator parameter for the Hamada-Johnston and Brueckner-Gammel-
Thaler potentials.
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Fig. 15. --The binding energy per nucleon for 16O when the Pauli operator
is neglected.
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Moreover, it appears that the calculations of binding energies in
finite nuclei will follow the oscillating path of nuclear matter
calculations. 26 Clearly higher order effects need to be examined
for finite nuclei as they have been for nuclear matter.

7, 8, 9, 26

A series of papers on binding energy calculations

for 160 by different authors using different methods reveal con-

siderable discrepancies. Table V is a sample listing of the t-matrix

and B. E. /A results of different authors.

TABLE V. --Comparison of diagonal t-matrix, (nl | th(NL)I nl) ,
and B. E. /A with results of various authors using the HJ potential.

Kuo & Kohler & Present
Brown Wong MacKellar McCarthy Calculation

% 14.0 13.5 20.7 10. 5 14. 5
Coo| t 1(oo)l oo -5.61 -5.7 -9.57 -4. 36 -6.44
o
<oo[t13(oo)| ooy -9.73 -6.2 -11.22 -5.37 -7.05
B. E. /A -5.5 -- -8.0 -2.70 -3.6
26

S. A. Moszkowski, Rev. Mod. Phys. 39 (1967) 657.
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Although the results of Mackellar fit the experimental B.E. /A
quite well there is considerable doubt about the Eden-Emery treatment
of the intermediate single particle energies. Moreover, the value of
4w at which self-consistency is obtained is about 20 MeV and this
seems at variance with the experimentally determined value of 14
MeV. 20 As suggested by Kohler and McCa.rthy27 it would be of
interest to see the Eden-Emery calculations repeated treating the
energy denominators in a more precise manner.

It is interesting to observe that the calculations of Wong,

Kuo and Brown, 7 and Kohler and McCarthyz7 are similar to the
results of this paper. This is somewhat remarkable since their
calculations are quite different in both point of view and in
calculational details. In particular the choice of the intermediate
state energies in those papers are the free particle energies as
opposed to harmonic oscillator energies used in this paper.

It is difficult to compare the present calculation with that of

Kallio and Day28 since they choose a potential which is radically

27H. S. Kohler and R. J. McCarthy, Nucl. Phys. 99(1967) 65.

28A. Kallio and B. D. Day, Phys. Letters, 25 (1967) 72.
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different from the HJ potential and ignores the difficulties of the
tensor force.

It is interesting to compare the B. E. /A calculated with and
without the Pauli operator. Figure 15 is a plot of the binding energy
per nucleon calculated without the Pauli operator. There is no
minimum as there is when the Pauli operator is included and the
nucleons are greatly overbound by about 8 MeV/A.

As a final calculation the 1°S splitting in 17O was computed

. . . . 2
using an approximate expression due to Nigan:

25 .
- -.-J..[qo\/”,«-ff\g&«;-/é/lg:-#?‘{,rj

o/

where

v® o= Kt |viimep

~mA
and
Vls: Vl‘f"') ,(_' 3-‘

The experimentally observed splitting is 5. 9 MeV and the
calculated results are 4.01 and 4. 56 MeV using the HJ and BGT

potentials respectively.

29B. P. Nigam, to be published



CHAPTER IV

CONCLUSION

The results of this study show that it is possible to solve the
Bethe-Goldstone equation exactly for finite nuclei. The Pauli
operator for finite nuclei has been treated in an exact manner and
its qualitative and quantitative effects have been examined in detail.
It has been found that when the Pauli operator is treated correctly
the BG wave function heals properly to the unperturbed wave function.
In addition it has been shown that the effect of the Pauli operator
on the t-matrix is appreciable in the 351 states and moderate in all
other states. Since the numerical methods developed to solve the
BG equation with the exact Pauli operator are so efficient it seems
unwarranted in future calculations to make various questionable
approximations when solving the BG equation. With accurate two
body t-matrices available it is8 now possible to examine the higher
order effects with more confidence.

Since the current trend in nuclear structure calculations for

3, 30, 31

both the ground state and excited state properties relies

305, Das Gupta & M. Harvey, Nucl. Phys. A94 (1967) 602

31Ripka., Lectures in Theoretical Physics Vol. VIII B (1965) 237
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upon HF calculations an examination of the t-matrix dependence on
the HF single particle energies was performed. It was concluded
that the t-matrix for the 381 state is sensitive to the single particle
spectrum, and in doing a HF calculation it is important that these
single particle energies be chosen correctly. For other states the
single particle energies are not critical, and it should not be
necessary to treat these in a self-consistent manner.

The calculation of the binding energy per nucleon in this study
and in those of references 7, 8, and 27 using the HJ potential give
2.7to 5.5 MeV as compared to the observed value of 7. 98 MeV.

Kuo and Lynch32 report similar results using the Yale and Reid
potentials. These discrepancies clearly show that it will be
necessary to perform additional calculations, and there are several
improvements in these calculations which need to be incorporated.

The first possible improvement is to pursue the HF
calculations with more vigor. Although reference 3 gives an excellent
treatment of the HF problem the authors of that paper suggest the
following improvements which could bring the binding energy in line
with the experimental value: First, the problem should be done in a

doubly self-consistent way, and second, more nodes should be

32R. P. Lynch and T. T. S. Kuo, Nucl. Phys. A95 (1967) 561
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included in the expansion of the HF wave functions. Efforts along
these lines have been initiated.

The second explanation of the difference in the experimental
and calculated results is directly related to the nucleon-nucleon
potentials which are currently in use. Since the spectrum
calculations of Kuo and Brown7 rely basically on the long range part
of the potential and giv;:‘ excellent agreement with experiment, it is
believed that the poor binding energy results may be due to the short
range part of the potential. In particular a potential with a smaller
hard core radius or a soft core would improve the binding energy
results.

Along these same lines it has been suggested by several

authors33’ 34

that one should by pass the use of potentials and
attempt to calculate the t-matrix for finite nuclei by working

directly with the experimental phase shifts. This avenue of approach
would be very desirable although new calculational techniques would
have to be devised, and the attempts to date--though admittedly

initial attempts--have not shed any light on how to handle the Pauli

operator in conjunction with the phase shifts.

33.1. P. Elliot, H. A. Avromatis, E. A. Sanderson, Phys.
Letters 24B (1967) 358

34Koltun, unpublished
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Finally, there is the difficult question of the convergence of
the Bethe-Goldstone expansion and the effect of higher order terms
in finite nuclei. Bethe and Rajaraman35 have shown that three body
correlations are important in nuclear matter and these contributions
will also have to be examined for finite nuclei.

In summary it is believed that the Hartree-Fock, higher
order cluster effects, and better potentials individually would
contribute at best 1 MeV per nucleon. So collectively one may
expect an improvement of the order of 2 to 3 MeV which would
still leave the binding energy too small by roughly 2 MeV. These
crude estimates indicate that it may finally be necessary to
include specifically three body forces in order to get good a-

greement with the experimental binding energies.

35R. Rajaraman and H. Bethe, Rev. Mod. Phys. 39 (1967)



APPENDIX A
TREATMENT OF HARD-CORE

In this Appendix an approximate expression for the hard
core contribution to the t-matrix will be discussed. Once the BG

wave-function, ‘f, has been obtained the t-matrix is calculated from

!

@ltig)> = (g7t =1 +1. W

where

£
1= tin (g mapds @
[
{7t (3)
+é

The integral, I, is straightforward to evaluate using standard
numerical integration. The first integral, Il’ presents some diffi-

culties since v is infinite for f$¢ f‘ ; however, by using the BG
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equation it is possible to approximate v_,,e ‘f’ n+ From the BG

equation for ¢ ¢ f we have
<

b = (E-H)E - G LIy +ZCTF Lty 4

Using equation (4) in (2) gives

e .

£+
1 = tim{ ([4.Goky -ca-2)LILILS ] 45

[} & -Po

f*‘ (5)
s Z c"<£lwlﬁ>f%’,,ff)f@)/f }

It has been found in actual calculations that the last two terms in

equation (5) are small compared to the first term. This is directly

related to the fact that

2

[t.44 =" ©

Therefore,

1.t¢

1= b J:ﬁ/‘«"“fi‘/f (7)



Since P is zero for < f this integral is zero except at =
n (o g p f '

3
where ‘ir{ has a §-function singularity. Then,

4
¢ 3
~ Lim *t f,"yl-é'/f (8)
I"é-ra;mz': !

fre f,*‘
o Lim £ g AT f«/ﬂ. b 4y
I', € +o 1m [z' i /f,_-‘ (_‘77 f

Since 5}{ and 3/-;& are both finite quantities, the second term

goes to zero as &+0. Therefore, we have

P 7:9 At (9)

o 43 /581"

II = am

Equation (9) can be evaluated numerically and I has been added to

all calculations of the t-matrix.
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APPENDIX B
NUMERICAL METHODS

In this appendix the numerical methods used to solve the BG
equation are discussed in detail. The method used is basically an
extension of the F‘ox-Goodwin36 method. In the past, the Fox-
Goodwin method has been applied to differential equations, and to
the author's knowledge, it‘,has never been used to solve integro-
differential equations.

After dropping all subscripts in the BG equation, the integro-

differential equation which was solved is of the form

[/\; j;; —vmJute) = (x-X)REIRIUY

-2 e R RV AU (1)

By expanding u and u' in a Taylor series and performing a little
y g y P g

algebra, we get the following three-point equation

*
The author is indebted to Dr. P. Signell for initially suggesting
the method for solving differential equations which was ultimately
extended to treat integro-differential equations.

36L. Fox and A. Goodwin, Proc. of Cambridge Phil. Soc. 45
(1949) 373.
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where 0 is the mesh width and j denotes the jth mesh point. From

equation (1) expressions for u"i' , u3!+1 , and u.'i'-l can be obtained,

and when these are substituted into equation (2), we get
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Let u* be a trial wave function and § u be the change in the

trial wave function. Then

w. = ut +5°:/ (5)

* »
.u. +C.u' ’ »
RS DR TR L

= (A-V) 5 [@HHO +/?,-,,][<mu> +<plsud] (6)

[z e, rrof ¢ R, I[<R™ 1oy +<R s

At this point the plausible assumption is made that
”
CRIsuy << RIU™D

and

CRInlsud << <RIFIHD
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Even though a given uj may be comparable to a given Suj, these
assumptions imply that on the average §u is much less than u*.
The validity of these assumptions is ultimately justified by the
rapid convergence of the solutions. When convergence is obtained,
§u = O, and there is no question of approximation. The final
results can be made as accurate as desired, limited only by the

accuracy of the computer.

After dropping the small terms in equation (6) we get

%fﬂ J,,+§‘S“* ;L}lgo 7)
where
%- = 'Z({!:' +§.u; +C J' Y-r = (A=A >/z.[1u”a@‘* ’;-,,](R/u”}
[ZC (J“ + 10, 4 )<,\> ,N-/q*>] ®)
Next let

= 5+f$;u (9)



Then equation (7) becomes

i SU. . . =
Gt AU, tBisY +C(f,tH, Su) =0 (10)

Lm

= - . P "/ (11
G5, +9)(8+¢H,) ’

- -/
F (1.9/ +CJ‘/j.-,) (e

T

The Aj, Bj' Cj and Qj- are well defined numerical quantities, and

the Fj and Hj can be determined provided Fo and Ho are known. Fo

and Ho can be determined from the boundary conditions at the hard
core, viz. u(Core) = u*¥(Core) = O. Then

gM.:o:f;'-/-h;SCl, (13)

Since Fo and Ho are independent quantities Fo and Ho must be zero
in order to satisfy equation (13).
!

Since the ultimae aim is to calculate each of the Suj

from equation (9), we now need to know SuN where N denotes the

74
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last mesh point. § uy is found from the asymptotic form of the BG

equation. From equation (1), we have

-—[A(N'/)JZ - (14)
u «< e = @
N
and
-fANJ}& (15)
u, =< €
Nt

From equations (14) and (15) we get

'4‘(/'1”)/1 (16)

Combining equation (16) and (9) gives

‘ -
-4 (1—2”)/2) / (17)

su =-/:(H”-C'3

M+

Since the Fj s and H. s and Suj_'_1 ® are known, all of the Suj
J
1
can now be obtained from equation (9). Once the Suj ® are known
a new trial wave function u** can be computed using equation (5).

After u** is obtained the whole procedure is repeated with u**

replacing u*. The iterative process is terminated when ZSuj is less
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than some arbitrarily small number. Usually the convergence is
quite rapid if one is sufficiently careful in choosing an initial trial
wave function. Even with '"bad'' trial wave functions the convergence
is satisfactory.

In practice the initial trial wave function is chosen to be of the

form

ues) = (1= 2/ ) RG) (18)

This form of the wave function fulfills the necessary requirements
at the hard core and asymptotically.

The method outlined above is applicable to both coupled and un-
coupled equations. For the case of coupled equations the only differ-
ence is that the wave function, u, is a vector quantity and the
expression for the A's, B's, C's, H's, F'S etc. are matrices.

For completeness the method used to solve the ordinary differ-

ential equation will be outlined. The form of this equation is
T
[N +g -vid]ug) =o (19)

where )\ is now an eigenvalue to be obtained along with the wave

function, u. Equation (19) is used to find u‘;' , u:i'+1 and u"j' ] and



these expressions are substituted into equation (2) to give

, up +u C =o0 20
(ijlef-/g HC} (20)

where Aj, Bj' and Cj are defined by equation (4). Now let u* be a

trial wave function and \* be a trial eigenvalue. Then

L{j = L.(; + SUJ' (21)
Ny = A tSA (22)

after substituting equations (21) and (22) into equation (20) we get

» » »
: . : §y, +C fy_ =0 (23
G thsx+ A Gy, tEILFC Iy, )

where terms of the order §uél have been dropped and

0.2 u H+uB +uc (24)

T f
a uTH +10u” + U, ] (25)

W\
ng
vl
Q'
Q
U
1]
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Next let

f‘{]'"’ fj'_ +"95ujr1+§‘“ (26)

Then substitute equation (26) into equation (23) and rearrange terms

to get

1 ¥ » ' X
Su, = -7 [g} FCTE, FATY + (5 +C E, )] @

where

= +C K

¢ =& TG G (28)
By comparing equation (27) and (26) term by term we get
¥*

= - + F. ,

ANUMAE
. (29)

VA

*
- - . +D. ,
s - (G, )
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The Aj, Bj’ Cj’ Dj and Qj are well defined numerical quantities
and the Fj, Hj’ and Ej can be determined if Fo, Ho and Eo are known.
Fo' Ho’ and Eo can be determined from the boundary condition at the

coare, viz., u(core)=u*(core)=O. Then
Su, = F + H sy, +E SA =0 (30)

and since F , H and E_are independent quantities F , H , and E
o o o o o o
must be zero in order to satisfy equation (30).
Since the ultimate aim is to calculate each of the juj '® and §)

we need to know § Uy where N denotes the last mesh point. As was

done earlier §u . is found from the asymptotic boundary condition.

N

For this case we simply require that the wave function be zero at

large distances. This makes §u__ and JuN zero. Therefore,

N +1

from equation (26) we get

CA = -/;-/E. (31)

1
The solution is now complete since all the Fj's, Hj's, and Ej &

are well defined in terms of the trial wave function and trial eigen-

value, and §A and the § uj'8 can be calculated using equation (31)
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and (26). Once the SA and Suj's are determined a new eigenvalue
A** and a new wave function u** can be computed and the whole

procedure is repeated until X Suj and §4/» are arbitrarily small.




APPENDIX C

PARAMETERS AND PROPERTIES OF THE

NUCLEON-NUCLEON POTENTIAL

The form of the HJ and BGT potential

Area) = pra) F AL AVTS F AL L, AT S,

where

IS = i’[;’(j 1) =L1+1) -s(sw)]
2z
| =[5, v T g Javry - (5N (Fer HI)
I "J
L = 0 (_'Fev BGT.)
-2 (3 A)FR) -T T
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The radial dependence of the HJ potential is given by

NF(h) =+ 0 A A

iy = 0l (ha)(E-B)YR[| +a yir) + b Y]
w2 G YL+ by ]

ara) = 4G K ea)[1+a, V) Hh, ywy]

where
-+
Yy = =
zay = (1 +F +3)y)

A is the pion mass (139.4 MeV), and x is measured in f/yc =1.415fm.
The hard core radius in all states is 0. 343 ﬁ/A/c , and corresponds

to r.=- 485 fm. The parameters for the HJ potential are given in

Table VI.
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TABLE VI. --Parameters for Hamada-Johnston potential.

State a.c bc aT bT GLS bLS GLL aLL bLL

Singlet +8.7 +10.6 0 0 0 0 -0.000891 +0.2 -0.2
even

Triplet -9.07 +3.48 -1.29 40.55 +0.1961 -7.12 -0.000891 -7.26 +6.92
odd

Triplet +6.0 -1.0 -0.5 +40.2 +40.0743 -0.1 +0.00267 +1.8 -0.4
even

Singlet -8.0 +12.0 0 0 0 0 -0.00267 +2.0 +46.0
odd

The radial dependence for all states of the BGT potential is given

by
nVlA) = + 0 A <A
-44,
= - e AN
,74

The parameters for the BGT potential are given in Table VII.
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TABLE VII. --Parameters of the Brueckner-Gammel-Thaler potential.

. 1 3 3 3 3
Parity Vc AIC Vc 7c Vt ‘,t Vls 115

+ 877.4 2.091 434.0 1.45 159.4 1.045 5000 3.7

- 14.0 1.0 -130.0 1.00 -22.0 0.80 7315 3.7
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APPENDIX D
DERIVATION OF BINDING ENERGY

In this appendix the expression for the total energy of a closed-
shell nucleus is derived in terms of the reduced matrix elements.
The potential energy to first order is given by

et 22 (1 vy

' I ' MI ]
SYPEL g4,

Mll‘j;r,y (l)

X {(4a)1 (441§ T, TR am|E]Ua) ] (AAYS, THTHM7)

Where both the ket and bra are the proper normalized, anti-
symmetric wave functions given by equation (4) Chapter II. After
substituting the transformed two particle state vectors into equation

(1) and using the orthogonality of the center-of-mass wave functions

the following is obtained:
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occuPIeD Z 44, 5 1
P=-¢_ 7:AT T <m"/’mt"tIMjNL’A>
ml, "9 34
AL

XZ: 1_'/—(-/)“”7..] .TLA Z. C(JL""’”'I-T@)
(2)

1444 2rseT
X 7"’1';1.1: <M'/7\;L,A'|A;I,m‘/,>[l—(-l) J
g'l\'m'/' sA

/I/

xZ_ /\ i C(J’LMM/TH )({J:)J,mM,t-{m),(_,zsl)j‘vm?
75

Next we split the wave function into its radial and angular
parts, use the fact that the interaction is diagonal in S, j, m;,

and utilize the orthogonality of the Clebsch-Gordan coefficients

to obtain
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“

Z:, T+l INVLA y,
a4y rsnaf%‘:u (27+1)Em ) I,,,,/’,”‘ ‘>

P

P87
x copmdlarmad] e L=

154
X <m/$j'f(~‘),~’j"j7é (‘T*')A’u‘l (3)

4414, T*‘ii
yf; zu SA'T

For a closed-shell nucleus the sum over j; j, can be eliminated by
using the properties of the LS-jj transformation coefficients. If

we also use the properties of the 6-j symbols, viz.,
’sq 154 , \
Z(ZI*’) A"‘Z Af‘-: = (lJf/)(lA+'>§Il/(?Jf,) (4)
J

then we get
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P-4 Z Z:_/:T*/)[/-(./)I*T*r_]fzj +1)

TSy menLm’

ocgupivo (MH)
tene)|m'4s.
X <4I-fj/ ( , JZ‘%//\ (24*,) (5)

X (WL A [ mhAA) b md, | 'l we,n)

Finally using the implicit energy relations of the Brody-Moshinsky

brackets, viz., 2n] + 1) +2n; + 1, =2n+ 1+ 2n+ L we get

P = -LZ_ (are1) (25 +1) mdsy|ttve)mdsy )

TS4 adNL
4 (6)
ecculiep b}
, Atbl)
([rm e B s
P2V (24+1)

We now need to know the kinetic energy of the particles. This
is given by %(QITI'%) where T is the single particle kinetic
energy operator and |no> denotes the unperturbed harmonic
oscillator state vector. It is easily shown that the diagonal matrix
elements of the kinetic energy is one half the total energy of the

harmonic oscillator. For 16O we only need to sum over the os and
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op shells, and since there are 4 particles in the os shell all with
kinetic energy ;‘;-ﬁw and 12 particles in the op shell all with kinetic

energy fﬁw , the total kinetic energy is 184%«w. This is then added

to equation (7) to give the total ground state energy of 16O.
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