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ABSTRACT

REPRESENTATION AND PROCESSES

OF PEDAGOGIC KNOWLEDGE

BY

Harold Charles Grossman

Computer-based, generative instructional systems

have increased in occurrence as innovative methods of

instruction are developed. While generative instructional

systems are capable of the production of many problems,

the systems cannot solve these problems. The knowledge

representation and processes of these systems do not

cover more than one subject area. This research develops

a representation and processes for any pedagogic subject

area that can be expressed as a set of transformations.

A pedagogic knowledge representation is defined for

a task-oriented subject area. The thrust of the subject

area is the application of algorithms to data structures.

Three relations, simple transform, transform, and subset,

are identified. A diagram calculus is developed to identify

all transformations in a representation. A functional

automaton, whose language is the set of all functional

compositions in a representation, is derived from a

representation.

Pedagogic path, dependency, and partial ordering of

concepts are derived from a representation. Trivial,

simple, complex, complete, and extrinsic problems are

defined and discussed relative to a pedagogic
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representation. A solution planning sequence which

solves problems independent of the problem generation

process is shown to compute the answer to the stated

problem.
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CHAPTER I

INTRODUCTION

The notion of a generative, computer-assisted,

instructional system has attracted some attention.

Carbonell(2), Vickers(35), Ramani and Newell(24), Brown

and Burton(l), and Koffman and Perry(10), among others,

have reported on such generative systems. The endeavor

at hand is not to devise another specialized generative

instructional system but to devise powerful and general

mechanisms to represent a large class of such generative

systems.

The current view in the field of artificial intelligence

is that intelligence will result when information and

processes of an appropriate form and content are constructed.

The attempt at construction of such processes is to be

complemented in artificial intelligence by studying their

actual and potential structure, and the structure of the

uinformation that they incorporate or might incorporate.

The research that is reported in this dissertation is the

application of the field of artificial intelligence to

the problem of a general representation of pedagogic

knowledge in a large class of generative, computer-assisted,

instructional systems.



1.1 Overview

A traditional computer-assisted, instructional
  

system is a collection of computer programs that simulate

one of the numerous activities associated with teaching.

A generative, computer-assisted, instructional system
   

is an instructional system that performs the instructional

activities from some representation of the knowledge

contained in the subject area. The exact form and

processes of the information contained in these represen-

tations differ from system to system and from subject area

to subject area. Most generative instructional systems

use ad hoc techniques that are devoid of identifiable

form or process. By studying those generative instructional

systems that do contain some form or process, a general

representation of the knowledge contained in these systems

may emerge.

The generative instructional systems can be categorized

into two classes via their design and usage. The first

class contains the attribute question-answer systems.
 

In these systems a question is asked pertinent to some

attribute of a concept in the given subject area. The

answer is typically one word or a short English phrase.

The answer can also be computed from the representation

of the knowledge in the subject area. Thus the attribute

question-answer systems have sufficient knowledge and

processes to ask meaningful attribute-type questions,

relative to the subject area, and to answer similar

questions posed to the system about the subject area.
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The second class of generative systems is called

problem generators. The problems generated by these
 

systems require the application of an algorithm upon the

data structures that are produced by the system. The

answers to the generated problems are not determined by

the knowledge representation that is incorporated in

the system. The answers, if they are computed by the

system, are computed by special purpose routines. These

routines are associated with the generation of the problem

and possess none of the typical problem solving abilities

necessary for a solution that is independent of the problem

generation process. Unlike the first class of generative

instructional systems, the problem generators do not use

a representation of the knowledge in a subject area to

solve problems within that subject area.

The subject area of a problem generating system is
 

a collection of facts and actions that are modelled by the

activities which are simulated by the particular system.

A task-oriented subject area is a subject area that is
 

viewed from the data structures representing concepts

within the subject area and the algorithms that manipulate

those structures. The intrinsic elements of a task-oriented

subject area are the data structures and the algorithmic

actions that transform one data structure into another.

The second class of generative instructional systems

covers task-oriented subject areas.



1.2 Historical Vista

The usage of computers in assisting in the education

of students is attracting some attention, as new and

innovative, alternative approaches to the traditional

models of instruction are being developed. This usage

has developed in two major areas. The first area deals

with teaching students new material about a given subject

area. These instructional systems are the traditional

computer aided instructional systems. The second major

area is primarily concerned with the usage of computers

to test students. This latter area has mainly concentrated

on the construction of tests from a large data file of

questions.

Recent inclusion of artificial intelligence techniques

in specific generative instructional systems have yielded

a superior, more natural interaction between the student

and the particular system. This development has attracted

some researchers in the artificial intelligence area of

computer science and may yield some interesting results

with the application of artificial intelligence techniques

to the various aspects of constructing meaningful problems

within a given task-oriented subject area.

The more traditional computer aided instructional

systems, such as PLANIT, COURSEWRITER, and PLATO, use

an §§_hoc-frame-oriented approach as described by Carbonell(Z).
 

In this approach instructional material is stored in a

data base that consists of many frames of specific pieces

of text and questions. The frames include correct answers,
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and frequently, anticipated wrong answers, keywords, and

branching. The data base is entered in advance by the

constructor of the instructional system. Essentially

once the system is specified, the instruction is identical

for each student. All of the traditional computer aided

instructional systems lack the dynamics of a normal,

instructional interaction between student and teacher.

To more closely model a typical teaching situation,

Carbonell(Z) designed and implemented a computer aided

instructional system called SCHOLAR. Carbonell described

SCHOLAR as an information-structure-oriented, computer
 

aided instructional system, because SCHOLAR is based on

the utilization of an information network of facts, concepts,

and procedures. By using the knowledge as specified in an

information-structure-oriented knowledge representation,

SCHOLAR can generate text, questions, and corresponding

answers. SCHOLAR can also utilize its information-

structure-oriented network to solve questions formulated

by the student. Thus a mixed initiative dialogue between

the student and instructional system more appropriately

simulates the student-teacher interaction.

The second category of computer-assisted instructional

systems is a more recent development of using a computer to

assist in the construction of tests. Several such systems

have been in existence at Michigan State University since

1971. One widely known test construction program is the

Prosser exam generator(22), designed and/developed by

F. Prosser of Indiana University. This exam generator
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allows for the selection of questions from a data file

either randomly or by instructor specified codes. The

questions are printed on the left side of the printout

page while the answers to those questions are printed on

the right side of the page. The answers are computed

before hand and stored along with the questions on a data

file. Using this banking and retrieval mode of operation,

the composition of a test or homework exercise can be

automated along with answers to permit checking of student

responses.

Vickers(35) proposed using a syntax-semantic approach

for building questions which would involve the construction

of valid and invalid FORTRAN variable names, expressions, and

statements. The syntax-semantic approach, as described by

Vickers, involved the writing of specific routines for each

kind of question, i.e. one routine would construct valid,

invalid, real, or integer variable names. The resulting

system is expandable by writing new routines for each

additional type of question to be built.

Izquierdo(8) and Whitlock(36) extended the original

syntax-semantic ideas of Vickers to a general purpose

routine that uses a set of productions to construct the

desired question. This latter approach provides a flexible

approach to the generation of questions and begins to

identify some possible forms and processes necessary for

the construction of a large class of questions.

Ramani and Newell(24) investigated the design and

implementation of a problem generating system that constructs
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programming assignments from an abstract representation

of the problem. Design strategies utilizing grammar-like

mechanisms to put together the compatible elements to

create an acceptable problem structure are described.

Attention is given to the mechanisms necessary for

controlling the generation of coherent English cover

stories; of problems involving specified concepts in a

given subject area; and making use of information available

about the concepts involved in the subject area. Other

strategies discussed by Ramani and Newell are: generalized

good problems to produce useful variants of problems; the

use of reasoning about actions in a task area to recognize

good problem situations; and the design of surface details

to create problems having a given abstract structure.

Brown and Burton(l) describe a computer-assisted

instructional system that is called SOPHIE. The problem

situation in SOPHIE has a student trouble-shooting a

particular piece of faulty electronic equipment, namely

a Heathkit IP-28 regulated power supply. The student can

ask for various measurements, make hypothetical changes,

and ask for a list of possible faulty electronic components

that is consistent with prior measurements. A backward

working specialist and a forward working deduction system

are used to develop a list of faulty components. SOPHIE

also incorporates a semantically oriented predictive

parser to carry out a natural language dialog with the

student.

Koffman and Perry(10) report on an intelligent computer
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aided instructional monitor and generative tutor that they

have developed at the University of Connecticut. The tutor

has a simplified English interface with the student and

produces problems from some form of representation of the

subject area. The exact form of the knowledge representation

is not clearly specified. The knowledge may be directly

programmed in the routines that generate and solve the

problems in the system. The solutions of the generated

problems are computed by specific LISP routines. The LISP

routines do not have the ability to solve a problem that

is not generated by the tutor.

Earl Sacerdoti(28) at Stanford Research Institute is

developing a methodology for an organization of plans of

actions for a computer based consultant. The computer

based consultant is an expert on the assembly and disassembly

of an air compressor. The plans for working on an air

compressor are built in a representation called a procedural

net. Although immediate application of the ideas and

techniques being developed by Sacerdoti to the solution

of problems in a task-oriented subject area are not clear,

the class of activities of formulating plans and carrying

those plans to their conclusion is in the category of the

kinds of actiVities that an answer formulator for a

problem generating system would have to possess.

Several areas of artificial intelligence research

are tangential to the development of a knowledge representation

that is suitable for a large class of problem generating

systems. Novak(18,l9) has developed a computer program,
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ISAAC, which solves physics problems stated in English. The

knowledge representation that Novak uses is a canonical

object frame which is similar to a semantic network form of

representation. de Kleer(5) describes a program, NEWTON,

that employs multiple strategies in the solution of

classical mechanics problems. Sussman(32) describes a

problem solver for electrical design- The solution technique

is stated in terms of "problem solving by debugging

almost-right plans." Sussman's belief is that the creation

and removal of bugs is an unavoidable part of the process

of solving a complex problem.

The application of artificial intelligence techniques

to instructional systems of the attribute question-answer

category enhances the performance and interaction of these

systems. A more natural student-teacher interaction that

closely models the typical instructional environment is

the direct result of the inclusion of artificial intelligence

techniques. Such systems appear to be superior to their

non-artificial intelligence counterparts.

I.3 Context of Research

The goals of artificial intelligence researchers are

diverse, so it is necessary before going too far to

understand how the present work is related to artificial

intelligence's major subareas. Nilsson(16) has divided

the field of artificial intelligence into a number of

research areas, of which four are designated core areas,

and the rest, first-level applications areas. The four
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core areas are: common-sense reasoning, deduction, and

problem solving; modeling and representation of knowledge;

heuristic search; and artificial intelligence systems and

languages. The present effort is in the second category

but also touches on the first category. The principal

approach of research in those areas is the building of

understanding systems that embody knowledge about some

subject area, that are able to manipulate that knowledge,

including problem solving, and that are able to exhibit

communicative behavior to demonstrate their abilities and

the content of knowledge that they contain.

A number of past efforts of constructing generative

instructional systems have dealt with various aspects of

some of the problems encountered in building understanding

systems(l,2,8,9,10,l8,l9,24,27,35,36). None have dealt

with the form of the representation of the knowledge

content for more than one subject area. Only two generative

instructional systems contain the ability to solve their

own questions independent of the generation process(l,2).

Several lines of research that are relevant to various

components of generative instructional understanding systems

can be mentioned: problem-solving techniques and solving

simple puzzles using means-ends analysis and heuristic

search; the representation and subsequent use of structured

knowledge in semantic networks; and the use of ad hoc

problem solving procedures along with the use of predicate

calculus notation and general uniform proof procedures.

In addition to the necessary scope limitations of
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many of the results of research in the past, there are

some broader respects in which the research is inadequate

for attacking the larger aim of building knowledge

representations for generative instructional understanding

systems. The effectiveness of any single representation

over a diverse set of subject areas has not been demonstrated.

To aim at such a representation is desirable at least from

the standpoint of parsimony, though parsimony might turn

out to be unachievable. In dealing with knowledge

representations, each system represents its own task domain

without attempting to address any of the typical examples

of the other systems, or to deal with specific problems

(representational and processing) in the other approaches.

This results in a collection of systems covering a number

of task areas but whose interactions and overlaps are quite

unknown. As a result it is difficult to determine if

particular research is a real advance.

Very few systems have a coherent approach to one of

the primary problems of the area, the knowledge interaction

problem. SCHOLAR and SOPHIE are examples of systems that

do address the knowledge interaction problem. This problem

can be partially approached by asking how knowledge is

applied when appropriate, how its appropriateness is

recognized so that it can be brought to bear, and how it

.interacts with other pieces of knowledge in ensuring a

correct result when single pieces of knowledge or single

knowlege sources are insufficient by themselves.

There are a number of essential properties, from a
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conceptual standpoint, of a knowledge representation if

it is to be used effectively for a generative instructional

understanding system. Moore and Newell(12) give a list of

dimensions on which understanding systems are to be

evaluated. This list includes representation, assimilation,

efficiency, accommodation, action, directionality, depth

of understanding, and error. Without elaborating on the

definitions of these dimensions, it can be seen that these

are high-level properties of a system. Rather than using

those traits directly, Rychener(27) suggests that it is

more useful to focus on the representation, and see how the

various traits imply desirable properties for the system.

The following list of properties of knowledge representations

has emerged, though it is not to be put into direct

correspondence with the list of eight dimensions suggested

by Moore and Newell.

Knowledge within the structure should have the

following characteristics:

1. Encodability - knowledge should be easily mapped

from an external form to the form in the understanding

system; ultimately, the encoding should be accomplished

via an automaton.

2. Inspectability - content of knowledge already

encoded should be readily derivable; this is the converse

of encodability, and perhaps could also be called

extractability.

3. Accessibility - knowledge should be accessible

in some form for application when it is appropriate; this
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need not be as complete an operation as for inspection;

when knowledge is accessed or applied, its own nature is

not evident as is its effect.

4. Operability - knowledge must be amenable to such

operations as mapping, forming analogies, generalizing,

optimizing, reformulating, deducing, and inducing.

5. Flexibility - knowledge should have a number of

alternative forms, for instance along the procedural-

declarative aspect.

6. Organizability - there should be a variety of

potential control organizations, according to the demands

of various kinds of content knowledge.

7. Provability - there should be a way to guarantee

correctness or perhaps consistency of the encoding, in

some informal sense; this may include being able to

justify the presence of some knowledge by knowing how it

has been found necessary for some behavior.

1.4 Goals

The main goal of this dissertation is to establish

a knowledge representation and processes for a large class

of generative instructional systems in a task-oriented

subject area. Just as all artificial intelligence research

projects, by necessity, have been restrictive, the current

effort is restricted to representations and processes for

a pedagogic subject area.

The subject area is viewed from the concepts that

compose the subject area. The concepts are represented by
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data structures and algorithms. The knowledge that will

be represented is algorithms and data structures that are

the concepts in a pedagogic subject area. In the remainder

of this Work we will call a formal task-oriented subject

area, a subject area, and by that mean a pedagogic subject

area composed of concepts that are represented by algorithms

and data structures.

A direct benefit of developing a general representation

of the pedagogic knowledge content in a subject area is

that all generative instructional systems could use the

same representation schema. The constant schema would

permit experimental comparisons of different systems

possible with the measurement of such properties as

smartness or flexibility. Other benefits would be greater

emphasis of the processes that are involved in generative

instructional systems and a basis for departure of future

work in this area.

The processes that complement the representation

in a generative understanding system, as described by

Ramani and Newell(24), can be grouped into three areas.

The representation and processes must be sufficiently

rich to 1) answer pedagogic questions about an encoded subject

area, 2) construct complete, meaningful problems from an

encoded subject area, and 3) construct a sequence of problem

solving steps from which an answer to any possibly generated

problem from a given representation could be computed.

The first capability provides the means for extraction

of the knowledge content within a given representation.
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Without this ability the constructor of an encoded subject

area would be unable to justify to himself, herself, or

others that the encodement was complete with respect to

any criteria. The first capability also permits a measurement

of pedagogic aspects of a specific representation.

The more interesting capabilities are the second and

third ones. These abilities provide a basis from which to

address questions such as: what is a good, meaningful,

complete problem; when can a problem be solved; can a

paraphrase of another problem be identified; does the

construction of problems from a given representation have

any analogy to the human process of construction of

problems; and do the problem solving steps have any analogy

to the human process of problem solving. The major

thrust of this work is the development of a theoretical

foundation to address the above questions.

1.5 Organization

The remainder of the dissertation is organized into

four chapters. Chapter II is a study of various knowledge

representations that have been used in artificial

intelligence research and in generative instructional

systems. Representations including syntax-semantic-like

forms, semantic networks, and concept trees are viewed

relative to the goals outlined in chapter I.

Chapter III is the development of a knowledge

representation in terms of a set of primitive relations

and the composition of those relations. Mathematical-like
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properties of the primitive relations and their combinations

are included. Several subject areas are encoded into the

developed representation.

Chapter IV presents pedagogic implications that are

derivable from a representation. A problem is defined

relative to the developed representation and a meta-grammar

is presented to determine complete problems. A problem

solution sequence is shown to solve complete problems

in a given representation. Chatper V concludes the work

and suggests some extensions to the present research.



CHAPTER II

LITERATURE REVIEW

Several alternative representations have been used to

represent the knowledge content in a computer-assisted

instructional system. Grammar-like mechanisms have been

the most prolific with respect to systems whose main

thrust is the generation of problems(8,10,24,33,35,36).

Semantic networks have been used in several instructional

systems as a knowledge representation(1,2,24). Concept

trees have played a central role in several instructional

systems as a means for describing a pedagogic ordering

of concepts within a subject area(9,10). None of these

mechanisms have been used for both the construction of

problems and the solution of problems in a subject area.

11.1 Grammatical Representations

The simplest generative representation for problems

is an extension of the "slot-and-filler scheme" as it is

called in linguistics. In this scheme a problem is

expressed as a set of problem frames incorporating variables.

Each problem frame has a specification of the admissible

values that the variables or slots of the frame may assume.

The specification for the slots are either in the form of-

numerical limits or a set of admissible values for each

17
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variable.

The slot-and-filler scheme can be enriched in two

directions. Uhr(33) reports one direction which is to

implement computationally defined relations between the

variables of a problem frame. By choosing certain

independent variables randomly, either within the permitted

range of values or from sets of admissible values, the

remaining variables could be computed from these randomly

chosen variables. The computational relations would

ensure that a meaningful problem is constructed from a

compatible selection of values for the variables in the

problem frame.

The second direction of enriching the slot-and-filler

scheme involves the use of a context-free grammar. Using

a context-free grammar, the problem frames are the language

of the grammar. Thus unlike the slot-and-filler schemes

using the problem frames described above, the grammar-like

schemes are not limited to regular languages. The

grammar-like schemes have been used in the context of

problem generation for synthesizing data structures having

phrase structure.

Simple programs that use grammar-like schemes to

generate questions in artificial intelligence (developed

by Newell and Robertson) and in cognitive psychology

(developed by Waterman) have been in use at Carnegie-Mellon

University since 1971(24). The generations produced by

these programs are always grammatically and semantically

correct with respect to natural language theory. Most but
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not all questions generated are meaningful within themselves.

The grammar-like generation schemes could also include

probability assignments that allow certain choices of

syntactic and semantic structures to be more or less

frequent than other choices. This allows some control on

the generated structure so that favorite problem structures

are more likely.

Enumerative schemes, such as the above, derive their

power from a basic device that is the classification of a

set of phrases into different subsets of syntactically

and semantically similar items.\ The problem frames and

context-free grammar schemes are not sufficiently rich to

express the knowledge content of a subject area to both

generate and solve problems from the same representation.

Implicit representation of knowledge in grammar—like

systems provides only two devices to ensure coherence of

the generated problem: co-occurrence of symbols in the

grammar rewrite rules which ensures co-occurrence of

complementary parts of the problem; and set membership

which enables semantically and syntactically equivalent

°items to be distributed in the problem in an identical

manner. An inherent limitation with grammar-like systems

is the absence of an explicit representation of the

knowledge content of the kind found in practically every

artificial intelligence research project.
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11.2 Semantic Networks

Carbonell(2) chose to use semantic networks as the

knowledge representation in his instructional system

SCHOLAR. Carbonell developed SCHOLAR's representation

from earlier work that Quillian(23) first reported in

1966. Quillian used semantic networks to model human

memory and natural language comprehension. Carbonell

extended Quillian's work to develop a knowledge represen-

tation that would pose questions to a student, check the

studentls answer, and most importantly answer student

posed questions.

The particular dialect of semantic networks that

Carbonell used is described as an organization of units

of information in terms of their natural language meanings

and relationships. Each unit of information may refer

to other units within the set of information units. Each

unit may also refer to other units which refer to other

units or itself. Carbonell called this particular semantic

network, a "semantic information network."

The units of information are nodes in the computer

implementation of the knowledge representation. There are

two kinds of nodes which are labeled type nodes and token

nodes. In Carbonell's usage of semantic networks, a type

node is a unit pointing to an informational, multi—level

list of pointers to other units. Words referring to other

nodes in the body of the unit are token nodes. Each token
 

node represents a pointer to the corresponding type node,

i.e. the unit with that word as a name. By using type



21

and token nodes, information is not necessarily duplicated,

since it is stored only once at the type node. This type

of knowledge representation is recursive and leads to

circularities which do not represent a serious difficulty

and are not necessarily undesirable.

Each unit may be thought of as pieces of information

to which is associated a name. There is no one-to-one

correspondence between units and names. Each unit is

composed of three elements. The first element of each

property is the name of the property or attribute. The

second is a set of tags used by the executive routine.

The third element is the value of the attribute. A value

can be either a set of attributes of a pointer to a unit

or a set of units modified by other attributes.

By encoding a subject area such as the geography of

South America in the above semantic network, answering

and asking questions about the subject area involves

following pointers and type nodes until the appropriate

token node is found. Thus all of the properties of a given

subject area are abstracted to generalized attributes.

For instance, some of the attributes relative to geography

are population, size, cities in a country, countries in

a continent, language of a country, and principle industries

in a country. To answer questions such as "Name a country

in South America?" or "What language is spoken in

Argentina?," the appropriate attribute link (countries in a

continent, language of a country, respectively) from one

unit (South America, Argentina, respectively) to the answer
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(Argentina, Spanish, respectively) is followed. This

category of question and answer producer is very analogous

to the question and answering systems developed for natural

language processing of which some of the most notable

are those by Schank(29) and Woods(39).

An internal representation of the knowledge in a

subject area provides the flexibility to generate questions

and answer questions about a subject area. The semantic

network with its value-attribute-value representation

allows for the generation or answering of attribute

types of questions. For attribute types of questioning

and answering, the semantic information network as a

knowledge representation is a quite adequate structure.

II.3 Concept Tree

Koffman(9) develops the idea of a concept tree to

specify the order of presentation of course concepts via

a generative instruction system. The nodes of a concept

tree represent the course concepts and the branches of the

tree represent one of two relations that are defined later.

The concept tree represents the constructor's interpretation

of the relationship between course concepts. Obviously,

concept trees are not unique for a given subject area, just

as different people interpret course concepts differently.

The plateau upon which a given concept is placed indicates

that concept's relative degree of complexity within the

subject area. The concept tree for a digital circuits

course, as developed by Koffman, is shown in Figure 11.3.3.
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The relations between the nodes of the tree can be

defined as follows:

Definition II.3.l Concept A is a prerequisite of
 

concept B, denoted as .-.——->—- , means that concept

A should be mastered before concept B.

The normal order of presentation and learning of a

given concept would be all of the prerequisite concepts

followed by the given concept. Notice that the relation

"is a prerequisite of" is a transitive relation such that

if ..—->.._. and .-—>—— , then

[El—w].

Definition II.3.2 Concept A is a prerequisite of
 

concept B and concept A may be used as a subconcept by B,

denoted as , means that concept A should

be mastered before concept B and that when solving a

 

problem involving concept B, solution techniques involving

concept A might be used as a series of sub-tasks.

While Koffman does not mention any relational

properties, the latter relation appears to be transitive

such that if and ,

then u .

By using the above relations, Koffman constructs a

concept tree for a given subject area. His instructional

system uses the constructed tree to select appropriate

concepts for the student to learn. In general, all

concepts on a given plateau are mastered before advancing
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to the next higher level plateau. The second relation

between course concepts begins to identify the importance

of problem solving by using a knowledge representation

of the subject area. Koffman does not use the relation

in solving problems that his instructional system generates.

Obviously, the concept tree in Figure 11.3.3 is not a tree

in the mathematical sense

II.4 Abstract Problems

Koffman and Perry(10) introduce the idea of a basic

abstract problem as a structure representing certain

subclasses of a given collection of problems.

Definition II.4.l An abstract problem is a triple
 

of the form ((unknown), (data), (relation)) where (unknown)

is a list of variables whose values are sought as the

solution to a problem represented, (data) is a list of

input variables, and (relation) defines a function which

assigns unique values to the unknowns for each list of

idata values.

A basic abstract problem is assumed to be solvable.

A complex abstract problem is one that is constructed

from several basic abstract problems. Each basic abstract

problem will have a corresponding problem solver or solution

method. The problem solver is determined by the problem

generator. A complex abstract problem will be solvable

by using a combination of the problem solvers associated

with its basic abstract problem constituents.
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Definition II.4.2 A problem generation and solving
 

system is described by a triple (C, R, S) where R is a

representation for the class of problems C which can be

solved by the solution method S.

Koffman and Perry(10) indicate that the power of such

a system can be measured by the size and variety of C. The

power can be increased by l) enlarging C while keeping S

fixed, 2) enlarging C while extending S, or 3) decreasing

the degree of specialization required of the user to

implement S while keeping C and S (the method) fixed.

As an example, let (Ci, Ri’ Si) be a collection where

C1 is a subclass of problems represented by Ri and solvable

by 31' The subclass of problems, Ci' deals mainly with a

particular concept in a course. Ri could be a generative

grammar or a generation routine which generates problems

dealing with Ci' Si solves the generated problems and

monitors the student's solution. A generative instructional

system can be extended by adding more basic elements.

By defining relations on the basic elements, a structure

such as a concept graph similar to Koffman's(9) concept

tree can be identified.

The predicate of an abstract problem ((unknown),
 

(data), (function)) is the predicate PR such that PR((unknown),

(data)) is true if and only if the value(s) of the (unknown)

are the value(s) given by the function defined by (function)

when evaluated on (data). Predicates can be used for formal

proofs concerning abstract problems. If the predicate of
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a problem can be proven from the predicates of basic

abstract problems, the structure of the solution in terms

of basic solution procedures is determined by the proof.

The constructions on abstract problems involve set

theoretic and functional operations via Koffman and

Perry's(10) schema. Constructions include subproblem,

specialization, generalization, analogy, transformation,

union (or concatenation), composition, cascade, and domain

dependent constructions. The constructions are implemented

as operators which apply on the one hand to sublists Ri

and on the other hand to solution routines Si' The main

syntactic generative operations are union, composition,

cascade, and certain kinds of transformations. Subproblem

is a decomposition techniques which yields, ultimately,

basic problems. Specialization, generalization, and

analogy are special cases of transformation.

Let Pi and Pj be two abstract problems with

_ i i _ j 3'
Pi - ((Y ). (x ). (81)) and Pj - ((Y ), (x ), (sj))

with predicates PRi = ((Yl), (x1)) and PRj = ((YJ), (x3)),

respectively. The union or concatentaion of Pi and Pj'

denoted-Pi u pj. is defined to be <(<Y1)U(Y3). (<x1)U<x3)).

(SPi U Pj)) where SPi U Pj is a solution routine for all

the problems represented. SP U P is determined by the

i j

conjunction of PRi and PRj, i.e. PRi((Y1), (X1))AI

PRj((Y3), (XJ)). "U", union, on the variables indicates
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set union. The superscript denotes a list of variables.

Diagrammatically, the union of Pi and Pj is shown in

Figure 11.4.3.

Let Pi and Pj be the same as before except that Y1

is a single element, Yi' and (Yi) 9 (X3). Pj - Pi’ the

composition of Pi and Pj' is defined to be ((Yj), ((X1)U

j _ . .

((X ) (Yi)))' (SP. , Pi)) where SPj . P1 13 determined by

the predicate PRiHYi). (xl)) /\ PRj((YJ). ((Yi)U((x3)-

(Yi)))). Diagrammatically, Pj - Pi is given in Figure

II.4.4.

The cascade operation is a generalization of both

the union and composition operations. Let Pi = ((Yl),

(X1), (81)) and P3. = ((Yj), (X3), (Sj)) and also assume

that (Y1)() (X3) is not empty. Pj °/- Pi’ the cascade of

Pi and 123., is defined to be (I(Yj)UI(Yi)-(<Yi)n(xj))>).

((xi)U((xj)-((Yi)n<xj)))). (s ,/, P.)> where s
l

P. °/° P.P .

j lJ

is determined by the predicate PRi((Yi), (Xi))/\ PRj((Yj),

(I(Yiwxj))u<(xj)-<(Yi)mxj))m. The cascade of Pi

and Pj is illustrated in Figure 11.4.5.

Another natural relation which can hold among abstract

problems is that of a map or transformation. Let Pi and Pj

be defined as before. A map from Pi to Pj is a pair

(fl, f2) where f1: (Yi)———>-(Yj) and f2: (Xi)-—a>-(Xj)
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such that if PRi((Y1), (x1)) is true then PRj(fl((Y1)),

f2((X1))) is also true. If Pi is an abstract problem

and f = (f1, f2) is a pair of functions such that PRi((Yl),

(x1)) is true implies that PRi(fl((Y1)), f2((xl))) is

true, then the construction by map gives the abstract

1 i

problem f(Pi) = (<f1((Y ))). f2<(x ))). (31)). If the

condition on the predicate does not hold, it will be

necessary to modify Si to obtain a new solution routine.

The shortcomings of semantic networks is that the

attribute in the value-attribute-value link is difficult

to generalize to any task-oriented subject area. The

necessary attributes have been identified for the specific

subject area "mechanics"(5,18,l9). However, the generalization

of these or other attributes to any task—oriented subject

area seems difficult.

The syntax-predicate representation that is developed by

Koffman and Perry(10) has several shortcomings. The

representation does not allow the discovery of additional

knowledge from the original encoded subject area. The

solution of a problem does not solve a problem but just

provides an answer in conjunction with the generation of

a problem. The solution procedure of complex problems,

i.e. S is not shown to solve the stated problem, is
O. '

Pj/Pi

not shown what it is, and is not shown how to compute it.

The manipulation of knowledge and the processes of the

syntax-predicate representation are shortcomings with

Koffman and Perry's representation.



CHAPTER III

REPRESENTATION OF PEDAGOGIC KNOWLEDGE

A representation of pedagogic knowledge is presented

for subject areas that are composed of declarative and

procedural concepts. Three binary relations, "simple

transform," "transform," and "subset," are used in the

description of a knowledge representation. A diagram

calculus is developed to construct pedagogic, functional

diagrams from a graphical representation of the simple

transform and subset relations. Elements of the transform

relation are discovered by manipulations of the diagrams.

A functional automaton is developed which accepts

all functional compositions of a pedagogic knowledge

representation. Non-repetitive functional compositions

are computed from a matrix-type calculation. The chapter

is concluded with an example subject area "angles."

III.l Relations

Definition III.l.l A subject area is identified by
 

a finite non-empty set C of concepts. C = D U P where

D is a non-empty set of declarative concepts and P is a

non-empty set of basic procedural concepts. A declarative
 

concept is a set data structure. A procedural concept pk
 

is an (n, m) recursive function where the domain of pk

31
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consists of n-tuples and the range of pk consists of m-tuples.

Notationally, an element of a set is denoted by a small

letter and a subscript, e.g. an element of P is pk.

Examples of declarative concepts are a set of regular

grammars, a set of directed graphs, and a set of Turing

machines. A set will be named by the objects in that set,

e.g. a set of regular grammars will be called "regular

grammar." Examples of procedural concepts are the mapping

of a context-free grammar into a grounded context-free

grammar, the mapping of a graph into a path between two

nodes in the graph, and the mapping of a push-down automata

into the language of the push-down automata. Each element

of P will be denoted by a name that represents the mapping,

e.g. the mapping of a context-free grammar into a grounded

context-free grammar will be called "grounding."

The procedural concepts are more important than the

declarative concepts. The center of activity of this

research is the procedural concepts or algorithms that

determine the problems which can be formulated in C.

Three relations are identified with respect to C.

Definition III.1.2 A functional t from P to binary

relations, called simple transform, is defined as follows:
 

I
I
‘

n I

t(pk) = {( H d., H dj) I di' dj 8 D for l i a n and

d., and

3

m a a
.

H m

L
.
.
.
I

u a n
:

s n
.

'
0

w

"
:
1
:

o
.

I
I
=
1
5

l j l

B

n I

H d. :— domain pk, and II dj E range p l
1 1 3:1 k
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Graphically, an element of t(pk) is denoted by

d d

The brace may be omitted if the domain or range of pk

is a single declarative concept.

The relation t describes all basic functional

relationships between the procedural and declarative

concepts in C. An implicit assumption is that the

complete domain and range of pk is not necessarily known.

All that is known about pk is at least one subset of the

domain and one subset of the range. The relation t(pk)

does not necessarily contain all pairs of elements in C.

Example III.1.3 Consider the transformation

called "directly produces" which maps a "sentential form"

of a grammar into a "sentential form" of that grammar.

The concepts in the example are

C = {directly produces(DP), sentential form(SF)}

where the abbreviations of the concepts are enclosed

in parenthesis. The procedural concept is

P = {directly produces(DP)},

and the declarative concept is

D = {sentential form(SF)}.

The transformation is

DP: SF—a-SF .

Then by Definition III.1.2

t(DP) = {(SF, SF)}.
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The graphical representation is

SF DP >r SF
 

The above example illustrates a single declarative concept

in the domain and range of a procedure.

Example III.1.4 A second example involves the

declarative concepts

D = {syntax tree(ST), grammar(G), sentential form(SF),

left-most canonical derivation(LMCD)}

and the procedural concepts

P = {structuring(S), derivation sequences(DS)}.

The transformations are

S: ST —e>-G X SF

and

DS: ST X G -fi>-LMCD .

Then by Definition III.1.2

t(S) = {(ST, 6 x SF)}

and

t(DS) = (ST X G, LMCD) .

The graphical representation is

G ST

ST r— and DS r- LMCD .

SF G

 

 

The example depicts multiple declarative concepts in the

domain and range of procedural concepts.

Example III.1.5 Another example involves the

declarative concepts

D = {left linear grammar(LLG), right linear grammar(RLG),
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language(L), sentential form(SF), finite state

acceptor(FSA)}

and the procedural concept

P = {grammar intersecting(GI)}.

The mapping is

GI: LLG X RLG —+> L X SF X FSA .

Then

t(GI) = {(LLG x RLG, L x SF x FSA)}.

The element is represented by

L

LLG
—_._v,_

SF .

RLG GI

FSA

The above example displays multiple declarative concepts in

the range and domain of a procedural concept.

Definition III.1.6 A binary relation S on D,

called subset, is defined as follows:

S = {(di' dj) I died.j where di’ dj 6 D}.

Graphically, an element of S is represented by

Subset, as usual, is not reflexive or symmetric but is

transitive.

Example III.1.7 Let the declarative concepts in

C be

D = {phrase structure grammar(PSG), context-sensitive

grammar(CSG), context-free grammar(CFG), linear
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grammar(LG), regular grammar(RG)}.

Then

S = {(CSG, PSG), (CFG, PSG), (LG, PSG), (RG, PSG),

(CFG, CSG), (LG, CSG), (RG, CSG), (LG, CFG),

(RG, CFG), (RG, LG)}.

For notational purposes the functional composition

of basic procedural concepts, pk's, is denoted by a

small letter with no subscript, e.g. pk p. is denoted
1

If p: d——> e and q: e ——> f, then the functionalby p.

composition q pzd —+>-f.

Definition III.1.8

P = {q I q s P or q is the composition of elements in P}

Definition III.1.9

n n m .

DOM(p) = { n di | ( n di' n d.) c t(pn) for p = pl 92 - -

i=1 i=1 j=l 3

. . pn, and p c P}

Definition III.1.10

m . n m .

RNG(P) = {.5 dj I (.H di’ .3 dj) 6 t(pl) for P = P1 P2

j-l i=1 j—l

. . pn, and p c P}

Definition III.1.ll

relations, called transform,

A functional T from P to binary

is defined as follows:
 

n m

T(p) =

i=1 3
n

m, and H d. s

. 1
l=1

m .

and H d.'2

i=1 3

11d.) | d. , dj 8 D for l t i e n and

1

domipl for donkm) 5 DOM(p),

rngf(p)'for rngf(p) e RNG(p)}.
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Graphically, an element of T(p) is denoted by

The relation T is described by t, S, and P.

Obviously, t S T.

Example III.1.12 Consider the declarative concepts

D = {context-free grammar(CFG), regular grammar(RG),

context-free language(CFL), context-sensitive

language(CSL)}.

the procedural concept

P = {language determination(LD)},

and the transformation

LD: CFG —>—CFL .

(CFG, CFL) is in t(LD) and (RG, CFG) and (CFL, CSL) are in

S. By Definition III.1.ll

T(LD) = {(CFG, CFL), (RG, CFL), (CFG, CSL), (RG, CSL)}.

The above example illustrates the sub-domain and super-

range aspects of Definition III.1.11. The additional mappings

identified are; LD: RG-——+—CFL ; LD: CFG ——>-CSL ; and

LD: RG -—>- CSL.

Example III.1.13 As an additional example of the

functional T, consider the concepts

D = {context-free grammar(CFG), context-sensitive

grammar(CSG), derivation sequence(DS), left-most

canonical derivation(LMCD), right-most canonical

derivation(RMCD), syntax tree(ST), sentential
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form(SF), sentence(S)},

P = {sequence structuring(SS), grammar induction(GI)},

and the transformations

SS: 08 X CFG ——>-ST X 8

GI: ST X S —d> CFG

GI SS: DS X CFG ->-CFG

Then

t(SS) {(DS x CFG, ST x S)}

t(GI) {(ST x S, CFG)}

S = {(CFG, CSG), (S, SF), (RMCD DS), (LMCD, DS)}

From t, S, and the functional composition GI 85, the

following elements are identified by Definition III.1.ll:

T(SS) = {(05 x CFG, ST x S). (RMCD x CFG, ST x S),

(LMCD x CFG, ST x S), (DS x CFG, ST x SF),

(RMCD x CFG, ST x SF), (LMCD x CFG, ST x SF)}.

T(GI) = {(ST x S, CFG), (ST x S, CSG)}, and

T(GI SS) = {(DS x CFG, CFG), (LMCD x CFG, CFG),

(RMCD X CFG, CFG), (DS X CFG, CSG),

(LMCD x CFG, CSG), (RMCD x CFG, CSG)}.

Functional composition, sub-domain, and super-range are

illustrated in the example. From the initial three

mappings an additional eleven mappings have been identified.

Definition III.1.14 The relational composition
 

of T(p) and T(q), denoted as T(p) o T(q), is defined by

n m g r u

T(p) o T(q) = {( n di, n d.) | ;3 n ak such that

i=1 j=l 3 k=l

n r n r n m I

( H di' H dk) e T(p) and ( H d , H d.)

i=1 k=l k=1 j=l 3
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c T(q)}.

Relational composition of T is related to functional

composition by T(p) o T(q) e T(q p).

The operation of finding elements of t and S for a

given T is at best a guess among many candidates. Let

tl(p) = {(dZI d3)! (d2; d4)}p and

S ={(d1, d2)}.

Then

T1(P) = {(dZI d3)! (d1: d3): (d1, d4), (d2! d4)}.

Also let

t2(P) = {(dZI d3), (d1: d3)}r and

S = {(d3, d4)}.

Then

T2(p) = {(dzr d3): (d1: d3): (d1: d4): (d2! d4)}-

However T1(p) and T2(p) are the same.

 

Definition III.1.15 A pedagogic knowledge

representation is a 4-tuple <D, P, t, S>.
 

III.2 Diagram Construction

The graphical representation of the relations simple

transform and subset is called an elementary diagram.
 

Elementary diagrams are combined to form a diagram. The

parts of a diagram that are elementary diagrams are called

diagram segments. An operation is a general rule that
  

describes the manner in which the elementary diagrams and

diagram segments are manipulated.

The eight operations below are called construction

operations because of the building nature of the operations.
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In the description of the eight operations below, the first

two diagrams are elementary diagrams or diagram segments;

the last diagram is the results of combining the first

two diagrams. The eight construction operations are:

Operation III.2.l

I I II

d1 d1 d1 d1

I -———s» ' , i -————e— °

. p I C q C

' I II

dn dm dm dr

I , II

d1 d1 d1

yields . ——15—>— . —7;——>- .

. . I . II

an am ar

The interpretation of the resulting diagram is that

I

i d. and that q: H d

1 j-l 3 j=

, r

- —-d>-H d

1 k 1

k .'
U

"
:
1
5

o
.

I
z
n
a

Operation III.2.2

d. d.

IL: r1:

dj dk

d.
1

yields dj

dk

The resulting diagram indicates that dk c d. c di



Operation

d1

dk

d
n

yields
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111.2.3

d1 dk

—————" I

p . i

I

d dr

m

d1

I

d1

r—dk 17"“ -

a
m

a
n

m

dr

The resulting diagram indicates that

Xp: (11 . . . x d X

k

and that

p: d1 X . . x dr x ,

Operation III.2.4

d1

d -——-—->

r P

d

I

. . x dn-—+>-d1 x . . . x d

. x dn-——=>--dl x . x d

I

d1 dk

.' J\

d dr

m
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dk

d1

' I

. d1

yields \-—%:dr ———E——%» .

. d

m

d

n

The interpretation of the resulting diagram is that

I I

o o x d ""_+ d x o o o X d

n l m
p: d1 X . , , x dr x

Operation III.2.5
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d . '

l . dk

o I

. -——E——€>' dk r {L

dn . dr

. I

d
m

I

d1

d1 .

o I

yields . ——-E—%F dk-—x

dn

dm

A

dr

The resulting diagram indicates that

p:d1X...an—9-d1><...><dk><...xd
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Operation III.2.6

 

d1

d1 . ak

: -————->— d' ,
p If

an ar

a
m

dk

d1

d1 .

yields : —————>- d'3F—I
p r

a I
n

d
m

The interpretation of the resulting diagram is that

I I

p:le...an——:—dlx...Xdrx...xdm

and that

I I I

p: d1 x . . . x dn——er-d1 x . . . x dk x . . . X dm

Operation III.2.7

I I

d1 di dl

I ———>— I '
. P . ,

I .I II

dn dj di dl

' --———5—
. q .

dJ dr

.I

d



 

l

. u

d1 di

YiEIdS . —p—-> . —(i-——>'

. . .

d d.

n 3

d
m

The resulting diagram indicates that

n j , m

p: H du-—4>- H d and that q: H

u=l v=i k=

Operation III.2.8

 

al a1

.I .I

dl ai dj

I P r I
I

a d.
n J

.I

a



d1

(11 di (11

yields . ———p—->- . —-—(i—->'

. . I . II

dn dj dI

. I

d
m

I j I r II

. H(1k and that q. _.dv'—-)' H dr .

1 v—1 w=l

'
U

"
:
2
5

a
.

ll
:
1
8

Definition III.2.9 A pedagogic, functional diagram

is a diagram constructed by any composition of Operations

111.2.1 through III.2.8.

Example III.2.10 Consider the declarative concepts

D = {derivation sequence(DS), sentence(S), sentential

form(SF), syntax tree(ST), regular grammar(RG),

context-free grammar(CFG)},

the procedural concepts

P = {grammar induction(GI), sequence structuring(SS)},

and the mappings

GI: S x ST ——>CFG

and

SS: DSXCFG—erST .

Then

t(GI) = {(s x ST, CFG)}

t(SS) = {(DS x CFG, S x ST)}
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S = {(RG, CFG), (S, SF)}

The above relational elements are depicted in Figure

 

111.2.11.

S DS' 5

GI " CFG SS 5

ST CFG ST

CFG SF

RG S

Elementary Pedagogic, Functional Diagrams

Figure III.2.ll

The elementary diagrams in Figure III.2.ll are

combined by Operations III.2.l through III.2.8 to result

in the diagram in Figure III.2.12.

 

SF

DS S

SS ’ GI ” CFG

CFG ST {L

l R.
R6

Pedagogic, Functional Diagram

Figure III.2.12
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111.3 Diagram Implication

The pedagogic, functional diagrams are used to

discover elements in T by the manipulations that are

described in this section. The construction of a

pedagogic, functional diagram involves combinations of

elements from t and S under the Operations III.2.l through

III.2.8. The elements in T that are identified from a

given diagram are those elements specified by t and S in

the construction of that diagram.

Before presenting operations to identify elements in

T, an operation of a reductive nature is presented.

Operation III.3.l A pedagogic, functional diagram

segment of the form

l

d.
l

a.

J:

dk

is replaced by the diagram segment

The latter diagram segment represents the relational

compOSTtion of S(dk, dj) and S(dj, di).

The following four operations along with the above

operation are used to identify elements in T.
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Operation III.3.2 The diagram segment

1 l

. -—-->- .

pk .
I

d d
n m

is replaced by

d1 d1

Pk .

d d
n m

n m , n m ,

( H di' H d.) is an element of T(pk) since ( H di' H d.)

i=1 j=l 3 i=1 j=1 3

is an element of t(pk) and t(pk) E T(pk).

Operation III.3.3 The diagram segment

I II

d1 d1 d1

I II

dn dm dr

is replaced by

l l

I q P E .

dn dr

_ n r n

where q and p are elements in P. ( H d., H d ) is an

i=1 1 k=1 k

element of T(q p) since T(p) o T(q) c T(q p).
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Operation III.3.4 The diagram segment

d1

d1

dk ===§=ég>

d
m

d dn
r

d1

. dl

dk p % ° and

. d

m

n

(d1 X . X dk X . . X dn' d1 X .

I

(d1 X . X dr x . . . x dn' dl x .

elements in T(p) by Definition III.1.ll.

x dk

discovered in Operation III.3.2.

x . . . X d , d. X

n 1

d1

. al

ar -===§==§>

. d
m

a
n

. x dm) and

I

. x d ) are

m

The element

I

. x d ) is also

m

Operation III.3.5 The diagram segment

I I

(d1 dk

dl .

. I'.

. ==—p—=> Idr

d
n

 
is replaced by the two diagram segments
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d1 d1

d1 . dl .

o I 0 I

‘ p g dr and ' p ; dk

a . a i
n n

. I . I

dm dm

I I I

(d1 X . . . X dn, d1 X . . . X dr X . . . X dm) and

(d1 X . . . X dn' d; X . . . X d; X . . . X dé) are

elements in T(p) by Definition III.1.ll. The element

1 X . . . X dn' d; X . . . X d; X . . . X d%) is also(d

discovered in Operation III.3.2.

Operations III.3.l through III.3.5 are called

"discovery operations” since each operation either

identifies or leads to the identification of new

knowledge in C. The new knowledge is either an additional

element in S or additional transformations that might

not have been in the original representation. The

additional transformations are depicted as additional

elements in T either as new procedural concepts from

Operation III.3.3 or as new domains and/or ranges of

procedural concepts from Operations III.3.4 and III.3.5.

Operations III.3.l, III.3.3, III.3.4, and III.3.5

may lead to disjoint diagrams.

Example III.3.6 Consider the pedagogic,

functional diagram
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which will result in the diagram

C3‘1

L
  
  

\ \
d 2 d 2 d

pl J\ p2

d3

after applying Operation III.3.2 twice. Operation III.3.l

will yield the disjoint diagram

d1

 
 

 
 

\\ \\

’7’ d2 .z“ d5

pl 92

d3

Operation III.3.3 will yield the disjoint diagram

d1

L
\\

d2 d4 - d

1
d3

 

All elements in T that are in a given pedagogic,

functional diagram can be discovered by a finite number

of compositions of Operations III.3.l through III.3.5.
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Since all pedagogic, functional diagrams are finite,

every combination of operations can be applied to the

original diagram yielding every possible element in T that

can be discovered by the Operations III.3.l through III.3.5.

Example III.3.7 Consider the pedagogic, functional

diagram in Figure III.2.12. After two applications of

Operation III.3.2, the diagram is

SF

==€Eé§> ==ifié=%;’ CFG .

RG

The elements discovered are (DS X CFG, S X ST) 6 T(SS)

and (S X ST, CFG) 5 T(GI).

Examining the diagram segment

DS 8

SS E

CFG ST

RG

and applying Operation III.3.4, the diagram segment is

replaced by two diagram segments resulting in two

diagrams, namely
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DS S

CFG ST KL

 
 

  

 
 

RG

and SF

DS S

\x E;

SS i GI ; CFG .

RG ST rL

RG

The elements (DS X CFG, S X ST) and (DS X RG, S X ST)

are discovered to be members of T(SS).

From the diagram segments

SF SF

DS S DS S

SS % and SS %

CFG ST RG ST

under Operation III.3.5, (DS X CFG, S X ST), (DS X CFG,

SF X ST), (DS X RG, S X ST), and (OS X RG, SF X ST) are

discovered to be elements in T(SS). The diagrams

DS S

\

SS % GI /’ CFG '

CFG ST
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DS SF S

CFG ST ST J\

 

 

  

  

RG

DS 8

\ \

SS 2; GI //’ CFG , and

RG ST KL

RG

08 SF S

 

 

#95:? a > CFG
RG ST ST J\

RG

are the results of the application of Operation III.3.5.

The second and fourth diagrams are disjoint.

From the first and third diagrams, immediately above,

the diagrams

DS DS

\\
GI SS CFG and GI SS 77 CFG ,

CFG J\ RG

RG RG

 

 

respectively, result from Operation III.3.3. (DS X CFG,

CFG) and (DS X RG, CFG) are discovered to be elements in

T(GI SS).

There are alternative compositions of Operations

III.3.1 through III.3.5 that will discover the same elements

as the above example. Summarizing the above example, the

following elements in T were discovered from Figure III.2.12:
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T(SS) = {(DS x CFG, S x ST), (DS x RG, S x ST),

(DS x CFG, SF x ST), (DS x RG, SF x ST)}

T(GI) = {(S x ST, CFG)}

T(GI SS) = {(05 x CFG, CFG), (OS X RG, CFG)}

III.4 Functional Automaton

The discovery operations of Section 111.3 identify

elements in T that are present in a specific pedagogic,

functional diagram. All possible diagrams would need to

be constructed to identify all elements in T from the

given t's and 8's. To construct all diagrams would require

all possible combinations of Operations III.2.l through

III.2.8 applied to the elements in t and S. Some diagrams

might be countably infinite. An alternative description

of all elements in T is desirable for computational reasons.

The alternative description that is developed in this

section is called a functional automaton.

Definition III.4.1 A finite functional automaton
 

M over an alphabet Z is a S-tuple <K, Z, 6, go, F>, where

K is a finite, non-empty set of states, 2 is a finite input

alphabet, 5 is a mapping of K X 2 into K, q0 in K is the

initial state, and F s K is the set of final states.

Notationally, the mapping 6: k. X o. —~>-km is

l J

denoted by 6(ki, oj) = km and is represented graphically by

e so
where ki, km S K and o. c X. The initial state and final
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state are represented graphically by

and © ,

* *

The domain of 6 is extended to K X Z , where 2

respectively.

is the set of all strings of finite length composed of

symbols from Z and also including the empty string, by

5(q: E) = q

6(q, ax) = 6(6(q, x), a)

for each x c 2*, a c 2, g c K, and c is the empty string.

Since 6 and 8 agree wherever 6 is defined, 6 will be used

for both 6 and 6 without any confusion.

Definition III.4.2 A sentence x is accepted by

M if 6(q0, x) = p for some p in F.

Definition III.4.3 The language of M, denoted

L(M), is defined by

L(M) = {x I 6(qo, x) is in F}.

Example III.4.4 Consider the functional automaton

M where M is

a b c

o .1 s o
   

A sentence in L(M) is "cba." This is shown by

6(qo. cba) 6(6(q0. ba). C)

6(6(6(q0, a), b), c)

<5 (5 (ql, b), c)



S7

6(q2, C)

Since 6(qo, cba) is in q4 which is a final state in M,

"cba" is a sentence accepted by the automaton. L(M) is

c ( b c a )* b a.

Let dr be a set composed of all domains and ranges

of elements in P. Let DR be a set composed of all domains,

sub-domains, ranges, and super-ranges of elements in P.

DR is computed from dr by Algorithm III.4.5.

Algorithm III.4.5 Domain-Range Extensions

The final wi is DR.

i. i = 1

ii. wi = dr

iii. 1 = i + 1

iv. wi = wi-l U {Y | Y = y1 x . . . x dk x . . . x yn,

Z = Yl X . . . x dj x . . . x yn, Z c wi-l’

(dk, dj) 6 S}

v. Repeat steps iii and iv until wi = w.

vi. i = i + 1

II

Nvii. w. = w._1 U {Z I Z

(dk, dj) 6 8}

viii. Repeat steps vi and vii until wi = wi_1

Step iv computes the sub-domains, and step vii computes the

super-ranges. If (X, Y) c T(p), then X and Y are in DR.

A functional automaton <K, Z, 6, go, F> that can be

used to identify all functional compositions in C is
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defined by

K = DR,

q0 = DRi where DRi 8 DR,

F = {DR. , . . . , DR. | DR. 5 DR for

31 3n 3k

k = l, o o o p n}:

6(DRi, pk) = DRj 1f (DRi, DRj) c T(pk) for

pk e P.

The language of <DR, P, 6, DRi' {DRj , . . . , DRj}> is

l n

the set of all functional compositions that map DRi into

DR. for k = l, . . . , n.

3k

Example III.4.6 Consider the following relations:

T(pl) = {(D, t)}

T(pz) = {(t. 0)}

T(p3) = {(S X r! t)}

T(P4) = {(s Xr, t)}

where the declarative concepts are

D = {angle in degrees(D), angle in radians(t),

radius(r), arc length(s), sector area(S)}.

The procedural concepts p1, p2, p3, and p4 are the mappings

pl:D—>t; p2:t—>D; p3:SXr—-’-t;and

p4 : s X r —e>-t , respectively.

dr = {D, t, S x r, s x r}

Since S is empty, DR = dr.

K = {D, t, S X r, s X r}

2 {p1, pz. p3. p4}
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6(D, p1) = t 6(8 X r. p3)

ll

d

l

”
-

6(t, p2) = D 6(s x r. p4)

The graphical representation of M is

 

If S X r is the initial state and D is the final state,

the language of the automaton is p2 ( pl p2 )* p3. Thus

T(p2 p3) = {(S X r. D)}; T(p2 pl 92 p3) = {(S X r, D)};

T(p2 pl p2 p1 p2 p3) = {(S X r, D)}; etc. By considering

all combinations of elements in DR as initial states and

final states of a functional automaton, all elements in

T are represented by the functional automaton.

III.S Non-Repetitive Functional Compositions

For computational reasons and later usage of the

functional compositions, a direct calculation of all

non-repetitive functional compositions and corresponding

elements in T from elements in t and S is developed.

Definition III.5.l A composition of basic functions

 

pk . . . pk is non-repetitive if and only if forP

kl 2 n

every basic function in the composition pk e pk for

i J

i # j and i, j = l, . . . , n.

The remainder of this section develops an algorithmic

procedure to calculate all non-repetitive functional

compositions.
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Let dr be a set composed of all domains and ranges of

elements in P. Let DR be a set composed of all domains,

sub-domains, ranges, and super-ranges of elements in P.

DR is computed by Algorithm III.4.5.

Let M ) be an n by n function matrix whose rows

t(pk

and columns are ordered identically by the elements in

DR and where n is the number of elements in DR. Mt(p )

k

is defined by

pk 1f (DRi’ DRj) e t(Pk)

( )
Mt(pk) 1.3 =

0 otherwise

pk + pr as an element of a function matrix means that

‘: . . : . .. u+u '

pk DR1-—er DRJ and that pr DRl-——‘>--DRJ The 1n

pk + pr is a formal symbol. + is commutative, i.e.

+ is associative, i.e.pk + pr is identical to pr + pk’

(pk + pr) + pv is identical to pk + (pr + pv).

The addition of two function matrices, Mt(pk) and

Mt(Pr)' is denoted as ”t(pk) + Mt(pr) and is defined by

pk + pr if (Mt(pk))i'j = pk

and (Mt(pr))i,j = pr

pk if (Mt(pk))i.j = pk and

(Mt(Pk)+Mt(Pr))i.j z (”t(pr)’i.j = 0

pr if (Mt(pk))i,j = 0 and

I (”t(pr))i,j = pr 
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Let Mt represent all basic functional transformations.

Mt is defined by

M = Z M where P has m elements.

t i 1 t(Pi)

Let MS be an n by n Boolean matrix whose rows and

M iscolumns are ordered identically to those of Mt' S

defined by

1 if DRi c: DRj

0 otherwise

A

Let MS be the transitive closure of MS(7).

The multiplication of an element from a Boolean matrix,

MS’ with an element from a function matrix, M is defined
t,

by

pk 1f (MS)i,j = l and (Mt)x,y = pk

0 otherwise

and (”s’i.j (Mt’x.y = ‘Mt’x.y (”S’i.j

The multiplication of a Boolean matrix, MS, with a function

t' 15 denoted as MSMt or MtMS and 1s def1ned as

usual matrix multiplication.

matrix, M

The basic functions, their domains, sub-domains,

ranges, and super-ranges are represented by MT which is

determined by the formula

MT = Mt + MSMt + MtMS + MSMtMS

Mt represents all basic functional relations. MSMt

represents all sub-domains of the functional relations.

MtMs represents all super-ranges of the functional

relations. MSMtMS represents all sub-domains, and
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super-ranges of the functional relations.

The above formula simplifies via

MT = Mt + MtMS + MSMt + MSMtMS

= Mt(I + MS) + MSMt(I + Ms) where I IS

the identity matrix

= M M? + M M MR where MR is the reflexive

t S t S S

closure of M i.e. MR = I + M

S' S S

— A AR

_ "R "R

' MSMtMS

The multiplication of two elements from the function

matrices M1 and M2 is defined by

2 q.p. if (M ). . = X p. and
i,j j 1 l 1,] i 1

(M )- (M ) = _
l 1'] 2 le (M2)x,y - :2; qj

0 otherwise

The multiplication of two function matrices is defined as

usual matrix multiplication.

The non-repetitive functional compositions of

basic functions are represented by the expression

Each power of MT represents the number of basic functions

in the functional composition. Elements in T are identified

immediately from the above expression.

Example III.5.2 Consider the pedagogic, functional
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diagram in Figure III.2.ll. The figure depicts the

elements (DS X CFG, S X ST) e t(SS), (S X ST, CFG) c t(GI),

and (RG, CFG) and (S, SF) c S. The domains and ranges are

dr = {DS X CFG, S X ST, CFG}.

From Algorithm III.4.5

DR = {DS x CFG, S x ST, CFG, DS x RG, SF x ST}.

The following matrices are computed:

M
t

DS S DS SF

x x x x

CFG ST CFG RG RG ST

OS X CFG 0 SS 0 O O 0

S X ST 0 0 GI 0 0 O

CFG O 0 0 O O 0

DS X RG 0 0 0 0 O 0

RG 0 O O 0 0 0

SF X ST 0 O O 0 O 0

R

MS

DS S DS SF

x x x x

CFG ST CFG RG RG ST

DS X CFG 1 0 0 O 0 0

S X ST 0 l 0 0 O l

CFG 0 O l 0 0 0

DS X RG 1 0 0 1 0 0

RG 0 0 l 0 l 0

SF X ST 0 O 0 O O 1
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M
T

DS 8 DS SF

X X X X

CFG ST CFG RG RG ST

DS X CFG 0 SS 0 0 0 SS

8 X ST 0 0 GI 0 O O

CFG 0 0 0 0 O 0

DS X RG 0 SS 0 0 0 SS

RG 0 0 0 0 O 0

SF X ST 0 0 0 O 0 0

Mi

DS S DS SF

X X X X

CFG ST CFG RG RG ST

DS X CFG 0 0 GI SS 0 0 0

S X ST 0 0 0 0 0 0

CFG 0 0 O 0 0 0

DS X RG 0 0 GI SS 0 0 0

RG 0 0 0 0 0 0

SF X ST 0 0 0 O O 0

Mg, Mg, M3, and Mg are all zero. The non-repetitive

compositions are represented by
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g 1

i=1 MT

as 3 DS SF

x x x x

CFG ST CFG RG RG ST

DS x CFG 0 SS GI SS 0 0 SS

S x ST 0 0 c1 0 o o

CFG o o o o o 0

DS X RG 0 SS GI SS 0 0 SS

RG 0 o o o o 0

SF x ST 0 o o o o o

The elements in T that can be directly read from the

matrix are:

T(SS) = {(DS X CFG, S X ST), (DS X CFG, SF x ST),

(DS X RG, S X ST), (DS X RG, SF x ST)},

T(GI) = {(S X ST, CFG)},

T(GI SS) = {(DS X CFG, CFG), (DS x RG, CFG)}.

The same elements were also discovered under Operations

III.3.1 through III.3.5.

III.6 Identification of t and S

The identification of elements of t and S is most

easily accomplished from instructional material in the

chosen subject area. The instructional material with the

greatest wealth of information is homework assignments,

examinations, and one or more textbooks in the subject

area. The usefulness of the homework assignments and

examinations is that the problems represented in the

homework assignments and examinations are the basic
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functional transformations. These basic functions are

the elements in P. The elements in P immediately describe

the relation t.

Most declarative concepts will be specified by the

basic functions from their domains and/or ranges.

Additional declarative concepts will be found in textual

material. The textual material will be most helpful in

the identification of elements in S.

The procedural and declarative concepts in the subject

area "angles" in Section III.7 were discovered from

instructional material(13).

Example III.6.1 An example problem(l3-p3l4) is

"Find the length of an arc of a circle of radius 6

inches and with a central angle of H/6 radians." The

procedure that solves this problem is found in the back

of the text and is to multiply the angle in radians (n/6)

by the radius (6) to obtain the arc length (n). Let p1

be the above procedure. Then p1: r x t —q>-s where r

is the radius, t is the angle in radians, and s is the

arc length. Obviously, (r x t, s) c t(pl). Usually, the

procedures are not given and will have to be identified

by the builder of a pedagogic knowledge representation.

The declarative concepts "angle in radians," "radius,"

and "arc length" are identified from the domain and range

of p1.

Examples are another good place to discover procedural

and declarative concepts.

Example III.6.2 Example 3(13-p312) in part states
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"This means then that an angle of D degrees is (n/180)D

radians." Applying one's own knowledge about the subject

area and some algebra, two procedural concepts are described.

The procedures are p2: D-—e»-r and p3: r -4>-D where r

is the angle in radians and D is the angle in degrees. The

relational elements (D, t) e t(pz) and (r, D) c t(p3) are

directly identified from p2 and p3, respectively. The

two declarative concepts "angle in radians" and "angle in

degrees" are identified from the domain and range of p2

and p3.

Identifying elements in S is a more difficult task.

Often an intuitive understanding of the subject area is

necessary. From textual material(13-p313) a discussion of

the calculation of arc length from the radius and central

angle leads to the fact that the circumference is a

specific instance of the arc length. Thus (circumference,

arc length) a S.

The preceeding expository in this section describes

the identification of elements in D, P, t, and S. Process

III.6.3 is not a formal procedure but is an initial

approach than an inexperienced builder of a pedagogic

knowledge representation might employ.

Process III.6.3 Identifying Elements in t and S

1. Collect all the problems possible in the given

subject area. Problems most likely will be found in

tests, exams, quizzes, worksheets, homework sets, textbooks,

class notes, etc.

ii. Apply any prerequisite knowledge or one's own
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knowledge about the subject area to construct additional

problems. These additional problems enhance the problems

from step i in that they involve new algorithms.

iii. For each problem found in step i and ii, identify

a procedure that will solve the stated problem. The

identified procedure is a basic function. The procedures

form P. The functional relation t(pk) is immediately

specified by the basic function pk.

iv. Using the declarative concepts in the domains and

ranges of the procedures found in step iii and any other

declarative concepts in the subject area, identify elements

in S.

V. Repeat steps 1, ii, iii, and iv until t and S

are satisfactory for the purpose at hand.

Process III.6.3 is intended as a guide to building

a first pedagogic knowledge representation. As additional

pedagogic knowledge representations are constructed,

individual techniques will most likely be developed.

III.7 An Example Subject Area

The chosen subject area for this example is "angles"

where angles are viewed with respect to circles and some

of the other concepts associated with a circle.

The declarative concepts with their abbreviations in

parentheses are:

D = {arc length(s), radius(r), angle in radians(t),

circumference(c), angle in degrees(D), circle

area(A), sector area(S), diameter(d)}.
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The procedural concepts in the "angles" subject area

are expressed in the form of several formulas. The

procedural concepts immediately identified from the

given formulas(l3) are

P = {p1: D-—4» t, p2: r X t -+>-S, p3: c-—e»-r,

p4: r —A>-A, p5: r X t -+>-S, p6: d-—e» r}.

The procedural concepts possess no knowledge specific

to any subject area. Applying one's own knowledge about

the subject area, in this instance algebraic knowledge,

additional procedural concepts are identified. As an

example of the application of algebraic knowledge in this

subject area, consider the algebraic formula to calculate

the arc length. The formula is s = rt where r, t, and

s are the radius, angle in radians, and arc length,

respectively. In algebraic terms if a student was given

values for any two of the above three variables, the third

variable could be computed. The procedure for computing

the arc length, p2, only computes the arc length.

Intuitively, one would also expect the ability to compute

the radius from a given angle and arc length. After all,

a simple algebraic manipulation of the above formula

would make the necessary procedure readily available.

The independence of procedural concepts and subject

areas is an extremely beneficial feature of the

representation. The beneficial effect is that any assumed

knowledge is clearly emphasized and identified in the

specification of additional procedural concepts in a

subject area.
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After applying algebraic manipulations to the above

six procedures, an additional eight procedures are

identified. The basic procedures for the example subject

area are:

P={pl: D-—->-t, p2: rXt——>-s, p3: c—>-—r,

p4:r-—->—A, p5: rXt——>-—S, p6:d——>—r,

p7:t——>-D,p8: sxr—->-t,p9: sxt—v—r,

p10: r-—+>-c, p11: A —+>-r, p12: S x r —+>-t,

p13: 8 x t-—er-r, p14: r -e>-d}.

The following relations are immediately identified:

t(pl) = {(D, t)} t(pz) = {(r x t, s)}

t(p3) = {(c. r)} t(p4) = {(r. A)} ‘

t(ps) = {(r X t. 8)} t(p6) = {(d, r)}

t(p7) = {(t, 0)} t(p8) = {(s x r, t)}

t(pg) = {(s X t. r)} t(plo) = {(r. o)}

t(p11) = {(A, r)} t(Plz) = {(s x r, t)}

t(p13) = {(s x t, r)} t(p14) = {(r, d)}

Two elements in S are identified from elements in D.

S = {(A, S), (C, 5)}

Many pedagogic, functional diagrams can be constructed

under Operations III.2.l through III.2.8. One of these

diagrams in represented in Figure III.7.l. The discovery

Operations III.3.1 through III.3.5 can be used to identify

elements in T from the diagram in Figure III.7.l. This

example will not demonstrate such a process.

The domains and ranges of P are

dr = {D, t, r X t, s, c, r, A, S, d, s X r, s X t,

S x r, S x t}.
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t 95 S
S -——).r

c .__.. ——->-t p13

p r r p12
3 ——->—S

t p2

.————q>-r ————A>-.A -————q> r —————e..c

pa P4 p11 p10

D———->—t

pl

Pedagogic, Functional Diagram of "Angles"

Figure III.7.1

p8 er

P

p3 c X r

o a p12
S x

 

Functional Automaton of "Angles"

Figure III.7.2
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Algorithm III.4.5 yields

DR = {D, t, r X t, s, c, r, A, S, d, s X r, s X t,

S x r, S x t, c x r, c X t, A X r, A x t}.

A functional automaton for the subject area "angles" can

be constructed. Such an automaton is shown in Figure

III.7.2. Functional compositions can be read directly

from the automaton. For example, the relation T(p) =

{(r, A)} where r is the initial state and A is the final

state. The compositions p4, p4p3plop11p4, p4p6p14,

p4p3p10p6pl4, and p4p11p4p11p4 are some of the possible

compositions for p. I

All non-repetitive functional compositions for this

example are given in Appendix A. The functional automaton

in Figure III.7.2 can be used to verify the entries in

the matrix. Consider the element that represents all

non-repetitive mappings of the diameter of a circle

into the circumference of a circle. There are two

non-repetitive functional compositions that map "d" into

"c," namely plOPG and p10p11p4p6. There are fourteen

non-repetitive compositions that map the radius of a circle

into itself.



CHAPTER IV

PEDAGOGIC REPRESENTATION PROCESSES

The performance of a pedagogic knowledge representation

is measured by the representation's ability to determine

or display pedagogic aspects, its ability to enumerate

problems, and its ability to answer problems. The

representation's pedagogic aspects are stated in terms

of a pedagogic ordering of concepts. The idea of a

connected representation is presented along with an

analysis schema to determine the connected parts of a

representation.

Several types of problems are identified. A meta-

grammar, whose sentential forms represent all possible

problems for a given representation, is derived from the

elements in the relational T. Complete and extrinsic

problems are defined and discussed relative to the

meta-grammar.

A solution planning sequence is constructed independent

of the problem generation process. Another meta-grammar,

whose sentential forms represent all solution planning

sequences, is constructed from a representation. The

execution of a solution planning sequence is shown to

solve the stated problem.

73
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IV.1 Connected Representation

The concepts in a pedagogic representation are

connected to other concepts by the elements in t and S.

The relation PATH can be thought of as a single step

relation in a pedagogic representation.

Definition IV.1.1 A binary relation PATH on C,

called pedagogic path, is defined as follows:
 

PATH = {(ci, cj) I 1) (c., Ci) 3 S for C1' cj c C, or

3 n m
I I

2) :3 dk, dr such that ( H dk' H dr) 5 t(pw)

k=1 r=l

for pw 6 P, dk' dr 8 D for l E k e n and 1 t r E m,

ci = dr' and cj = dk, or

n m ,

3) 33 dk’ pw such that ( H dk’ H dr) 8 t(pw)

k-l r—l

I

for pw 8 P, dk’ dr 8 D for l S k e n and 1 e r‘e m,

I

cj = dr, and ci = pw}.

Definition IV.l.2 A connected pedagogic knowledge
 

representation is a set CR which is composed of elements
 

from C such that for every pair of elements in CR, (ci, cj),

A A , . .

j' ci) e PATH where PATH 13 the trans1t1ve

closure of PATH.

(Ci, cj) or (c

To find the connected parts of a pedagogic represen—

tation, a Boolean matrix MPATH is constructed from PATH.

The n rows and columns of MPATH are ordered identically

by elements in C where n is the number of elements in C.

MPATH 1s def1ned by

1 if (01’ cj) c PATH

(MPATH)i,j

0 otherwise



75

By taking the transitive closure of the symmetric

closure of the reflexive closure(7) of M

A

R S . . . .
((MPATH) ) , all undirected p0531b1e paths 1n the pedagog1c

PATH' denoted by

representation are obtained. The reflexive closure

(MPATH)R includeseach concept on any path emanating from

R S

itself. The symmetric closure ((M ) ) makes each path
PATH

A

undirected. The transitive closure((MPATH)R)S includes

all concepts that can be reached from a given concept.

/\

R S

If ((MPATH) )

connected pedagogic representation. If the matrix has

is all 1's, then there is only one

0's in it, then more than one connected representation

is present. The number of connected representations and

the concepts in each are computed by Algorithm IV.1.3.

Algorithm IV.1.3 Connected Representation

The set wi contains the concepts in the ith connected

representation, and 1 counts the number of connected

representations.

ii. i = i + 1

iii. Arbitrarily choose a concept from C, call it

/\

-: R S _
cc, such that (((MPATH) ) )Cc’ cc — l

/\

iv w = {c I ((( )R)S) = 1 for all '}
‘ i j MpATH cc. cj 3

/\

R S _

' j
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Repeat steps ii, iii, iv, and v until the matrix

is all 0's.

Example

A pedagogic,

t(Pl) =

t(pz) =

t(P3)

S = {(d

elements is

The relation PATH

PATH = {(dz'

MPATH 15

d1

a1 0

d2 1

a3 1

a4 0

d5 0

d6 0

d 0

(d3 I

(d6 I

d2 d3

0 o

o o

o o

o o

o o

o o

o o

IV.1.4 Consider the relations

{(d1. d2 x d3)}

{(d4 x d1, d3)}

{(d5. d6). (d6. d7)}

4. d2), (d7. d5)}

functional diagram composed of the above

is

d4): (d5: d7): (P1: d2): (p1: d3): (d2: d1):

d1): (P2: d3): (d3: d4)! (P3, d6): (p3! d7):

as). (d7. d6)}.
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MPATH cont1nued

al 1 1 1 1 o o o 1 1 0

a2 1 1 1 1 o o o 1 1 0

d3 1 1 1 1 o o o 1 1 0

a4 1 1 1 1 o o o 1 1 0

a5 0 o o o 1 1 1 o o 1

a6 0 o o o 1 1 1 o o 1

d7 0 o o o 1 1 1 o o 1

Algorithm IV.1.3 yields

w]. = {dlr d2! d3! d4: pl! p2}

and

{d }.d d
“’2: 5' 6' 7'93

The representation contains two connected parts. Thus the

above representation is disjoint since it has more than

one connected part.

A disjoint representation implies a disjoint subject

area. A disjoint subject area suggests that the concepts
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in one of the connected representations are not related

in any instructional manner to the concepts in other

connected representations. It is desirable to have a

single connected pedagogic representation where every

declarative and procedural concept is related to other

declarative and/or procedural concepts in the representation.

IV.2 Pedagogic Dependencies

The elements in t and S can be used to determine if

one concept is dependent on another concept.

 

Definition IV.2.1 A concept C1 is pedggogically

dependent on concept cj if cj must be mastered before ci
 

where ci, cj e C.

To master a declarative concept means that the

general data structure of the declarative concept can be

stated and that many specific instances of that general

structure can be stated. To master a procedural concept

means that the declarative concepts in the domain and range

of the procedure have been mastered and that the transformation

of many specific domains into their corresponding ranges

has been performed.

Definition IV.2.2 A binary relation PD on C, called

pedagogic dependency, is defined as follows:
 

PD = PATH U {(01, cj) I (ci, cj) c s for ci, cj e c}.

The pedagogic dependency implies that the element

The(di, dj) S t(pk) 1s mastered 1n the order di' d

3" pk'

element (61’ dj) 8 S 1mpl1es that either di’ dj or dj' di

are pedagogically dependent on each other. Either di or dj



79

can be mastered first. The former sequence di' dj is called

the bottom-up approach. The latter sequence dj' di is

called the top-down approach. The top-down approach

introduces the most general declarative concept first

followed by more specific declarative concepts. This has

the effect of giving the "Big Picture" of a subject area.

A pedagogic dependency matrix M is used to find the
PD

pedagogically dependent concepts. The n rows and columns

of MPD are ordered 1dent1ca11y by elements 1n C. MPD 15

defined by

(MPD)i,j = i

1 if (ci, cj) e PD

0 otherwise

If (MPD)i,j = 1, then cj is an 1mmed1ate prerequ1s1te of ci.

By taking the transitive closure of MPD' MPD’ all

pedagogic dependencies in C are obtained. If (MPD)i j = l,

I

then cj is a prerequisite of ci, Conversely, if

(MPD)i,j = 1, then ci pedagog1cally depends on cj. For

each concept cj such that (MPD)i,j = l, cj should be

presented and mastered before ci is encountered in the

subject area.

A

MPD indicates all prerequisites of a concept, and,

conversely, all concepts for which a given concept is a

prerequisite. For notational purposes, (M)* j denotes

I

(M) for all i. (MPD)* j indicates all concepts that

I1.1

depend on C3. and all concepts for which cj is a prerequisite.

A

(MP ). * indicates all concepts upon which c. is dependent
D 1, 1
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and all concepts that are a prerequisite of ci.

MPD is a useful tool in the implementation of a

generative instructional system. If a student is allowed

to choose the next material that he or she wants to learn

in a generative instructional system, MPD and a student's

history vector can be used to determine accessibility to

the desired concept. The student's history vector is a

binary vector where each element represents a concept in

the subject area.

Let H be a binary vector of the student's historical

accomplishments. H is ordered identically to the ordering

of the columns of MPD' H is defined by

1 if ci has been mastered by the student

(Hli =

0 otherwise

By using an approach factor, either a top-down or a

bottom-up approach to presenting the concepts in a subject

area can be achieved. Let MAF be a Boolean matrix whose

n rows and columns are ordered identically to M For
PD'

a top-down approach

MAF = I‘V’M

where I is the identity matrix and M is the transpose of

(
D
i
-
3

(
D
I
-
3

S

approach

M which is defined in Section 111.5. For a bottom-up

MAP = I‘V MS .

If a student wants to next learn and master concept Ci'

then he or she would be permitted such access if
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_ A

H /\ (MPD A MAF)i,*

is all zeros where H and MAP are the complement of H and

MAF’ respectively. If the conjunction does have concepts

not mastered, H, and that are prerequisite concepts of the

A

choosen concept Ci' (MPD/\ MAF)i,*' then those preclud1ng

concepts are identified as 1's in the conjunction. The

precluding concepts could be displayed to the student for

a new selection.

Example IV.2.3 Suppose the pedagogic representation

is represented by the diagram

d
2

———4>.d

P1 1

d

3

Then

PD = {(plp d1): (d1: d2): (dll d3)! (d3! d4)! (d4! d3)!

(p2. d4). (d4. d5)}

“pp

d1 d2 d3 d4 d5 Pl p2

d1 0 l 1 0 0 0 0

d2 0 O 0 0 0 O 0

d3 0 0 O 1 O 0 0

d4 0 O l 0 l 0 0

d5 0 0 0 0 0 0 0

pl 1 0 0 0 0 0 0
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From MPD d2 and d5 do not have any prerequisite concepts.

Assume a bottom-up approach. Then

MAF

d1 d2 d3 d4 d5 p1 p2

al 1 o o o o o 0

a2 0 1 o o o o 0

d3 0 o 1 o o o 0

a4 0 o 1 1 o o 0

d5 0 o o o 1 o o

””~‘:T

MPD/\ MAP

d1 d2 d3 d4 d5 p1 p2

al 0 1 1 1 1 o 0

a2 0 o o o o o 0

d3 0 o o 1 1 o 0

d4 0 o o o 1 o 0

d5 0 o o o o o o

The following concepts must be mastered before access to

the indicated concept would be permitted:

mastered concepts access concept

d5 d4

d4, d5 d3

d2, d3, d4, d5 d1

d
1' d2, d3, d4, d5 p1
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If H = 0 O 0 0 l 0 0, then a student has mastered only

d5. If the student wants to learn d4 next, access is

permitted to <14 because the access expression is all 0's.

However, if the student wants to learn d3 next, access is

not permitted because the expression contains a l and is

0 0 0 l O 0 0. Thus d4 needs to be mastered before access

is permitted to d3.

IV.3 Pedagogic Ordering

A pedagogic ordering of concepts in C is a partial

ordering. A partial ordering represents an order of

presentation of the concepts in the ordering. Such an

order of presentation is called an outline. An outline is

not intended to represent a best or optimal ordering of

concepts.

Definition IV.3.1 A pedagogic partial ordering
 

is the sequence cl, c2, . . . , cn such that 3 c3. for each

ci where (ci, cj) 6 PD for ci, cj e C and l a j < i S n.

If for all ci, cj c C and l e j 4 i g n (ci, cj) 5 PD,

then the partial ordering c1, . . . , cn is a strict

partial ordering. Such a strict partial ordering of a

subject area is highly unlikely.

Algorithm IV.3.2 determines a pedagogic partial

ordering of concepts that preceed the chosen concept in

a pedagogic partial ordering. Algorithm IV.3.5 determines

a pedagogic partial ordering of concepts which succeed

the chosen concept. Algorithm IV.3.7 combines the two

partial orderings to yield an outline containing the
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chosen concept.

Algorithm IV.3.2 Pedagogic Dependencies

Let 01 be a pedagogic partial ordering upon which the

arbitrarily chosen concept cC is pedagogically dependent.

1. Push cC on the stack and set i = 1.

ii. For each (pk, cc) 5 PD, push pk on the stack.

Push cc on the stack. Delete the relational element

(pk, cc) from PD.

iii. For each (cc, cj) 8 PD, push cj on the stack.

Delete the relational element (cc, cj) from PD.

iv. 1 = i + 1

v. If i is greater than the number of elements in

the stack, then go to vii, else go to vi.

vi. Set cc to be the concept at the ith position in

the stack. Go to ii.

vii. Pop the top element c from the stack. If
t

ct is not already in 01, then add ct

in which the concepts are popped from the stack.

to O1 in the order

viii. Repeat step vii until the stack is empty.

Example IV.3.3 The pedagogic dependency relations are

PD = {(12, 2), (2, 1), (l, 2), (2, 3), (3, 2), (4, 2),

(2, 5), (6, 5), (5, 6), (5, 7), (7, 5), (ll, 7):

(7, 9), (13, 5). (5, 3), (8, 6), (6, 10)]u

Algorithm IV.3.2 yields the following partial pedagogic

orderings for the indicated concepts:
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concept pedagogic partial ordering

8 2, 5, 3, l, 4, 12, 9, 7, ll, 6, 13, 10, 8

7 2, l, 3, 5, 4, 12, 10, 6, 8, 7, l3, 9, ll

2 9, 5, ll, 7, 10, 6, 8, 3, 13, 2, l, 4, 12

2 5, 10, 6, 8, 9, 7, ll, 2, 3, 13, l, 12, 4

Algorithm IV.3.5 Pedagogically Dependent

Let 02 be a pedagogic partial ordering of concepts that

are pedagogically dependent on the arbitrarily chosen

concept cc.

i. Push cc on the stack and set i = 1.

ii. For each (cj, cc) 8 PD, push cj on the stack.

Delete the relational element (cj, cc) from PD.

iii. 1 = i + 1

iv. If i is greater than the number of elements in

the stack, then go to vi, else go to v.

th
v. Set c to the concept at the i position in the

c

stack. Go to ii.

vi. Invert the stack making the top of the stack the

bottom and the bottom the top.

vii. Pop the top element ct from the stack. If ct

is not in 02, add c to O2 in the order in which the concepts
t

are popped from the stack.

viii. Repeat step vii until the stack is empty.

Example IV.3.6 Consider the pedagogic dependency

relation in Example IV.3.3. The following pedagogic

partial orderings for the chosen concepts via Algorithm

IV.3.5 are:
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concept pedagogic partial ordering

8 8

7 7, 5, 2, 6, 13, 12, l, 3, 4, 8, ll

2 2, 12, l, 3, 4, 5, 6, 7, l3, 8, 11

The partial orderings that result from Algorithms

IV.3.2 and IV.3.5 can be combined to yield a pedagogic

partial ordering for all concepts in 01 and 02' If

01 and 02 contain all the concepts in C, an outline for

presenting and mastering the concepts in C can be constructed.

Algorithm IV.3.7 computes such an outline.

Algorithm IV.3.7 An Outline

Let O1 and 02 be the partial orderings computed by

Algorithm IV.3.2 and Algorithm IV.3.5, respectively.

Let 0 be an outline for the concepts in 01 and 02'

i. Catenate O1 and O2 to form 0, O = 01, 02.

ii. If 0 = 01' . . . , Oi' cj, °i+2’ . . . , On’ then

cj is deleted from 0 if cj = ok for some 1 t k e 1.

Example IV.3.8 Consider the pedagogic dependency

relation in Example IV.3.3. An outline for the chosen

concept 8 or 2 is 2, 5, 3, l, 4, 12, 9, 7, ll, 6, 13, 10,

8, or 5, 10, 6, 8, 9, 7, ll, 2, 3, 13, l, 12, 4, respectively.

IV.4 Problems

Definition IV.4.1 A problem is described by the

2-tuple <G, A> where G and A are subsets of D.

G is called the "given" component, and A is called the

"asked for" component.

Example IV.4.2 An example of a problem is
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<{FORTRAN DO-LOOP program segment}, {FORTRAN IF program

segment}> where FORTRAN DO-LOOP program segment is

DO 100 I=l,50

A(I)=2*I

100 CONTINUE

and FORTRAN IF program segment is

I=0

200 I=I+l

A(I)=2*I

IF(I.LT.SO) GO TO 200 .

An English directive for the problem could be

"Compute an equivalent FORTRAN IF program segment for the

given FORTRAN DO-LOOP program segment given below:

DO 100 I=l,50

A(I)+2*I

100 CONTINUE ."

Several types of problems can be identified. Each

of these types are useful in determining if a given problem

is solvable. A trivial problem is one in which no procedure

is required to solve the problem.

Definition IV.4.3 A trivial problem is a problem
 

<G, A> where 3 9i such that for each aj (gi, aj) c S

for all aj c A, gi c G, and S is the transitive closure

of S.

In the trivial type of problem the "asked for" is the

"given." The "given" is a more specific instance of the

more general "asked for." The answer to such a problem

is the "given" and requires no computation. Trivial
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problems are said to be solvable by the empty procedure.

Trivial problems are almost never given in homework

assignments or on quizzes.

Definition IV.4.4 A simple problem is a problem
 

n n m

<G, A> where E] H gi such that ( H gi, H a.) c T(pk)

i=1 i=1 j=1 3

where 9i 6 G for 1 e i e n, A = {aj for 1 e j‘é m}, and

pch.

Simple problems can be solved by the application of

the one procedure to the declarative concepts in G resulting

in the declarative concepts in A. All simple problems can

be solved since the solving information is directly

encoded in T. As an observation of homework assignments

and quizzes, most problems that a student is given are

simple problems that require the recognition of the one

correct procedure to apply to the "given" data structure.

Definition IV.4.5 A complex problem is a problem
 

<G, A> that is not a trivial or simple problem.

Complex problems cannot be solved by the application

of a single procedure.

Definition IV.4.6 A problem <G, A> is solvable

if there exists procedures in P that will map elements in

G into all elements in A or if <G, A> is a trivial problem.

All simple and trivial problems are solvable. Complex

problems may or may not be solvable. If <G, A> is solvable,

then A is computable from elements in G.

Definition IV.4.7 <G, A> is complete if and only

if <G, A> is solvable.
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All simple and trivial problems are complete.

Additional analysis is needed to determine if a complex

problem is complete. The knowledge for this analysis is

present in the pedagogic representation. Consider the

problem "Compute the area of a farmer's field knowing that

the field is 149 yards long and that the field has 40 cows

grazing on it." The pedagogic representation would need

to possess the information that the above problem is not

complete.

Extra information may be given in a problem to discover

if a student can distinguish the extraneous information

from the necessary information in solving a problem.

Such problems are called extrinsic problems.

Definition IV.4.8 <G, A> is extrinsic if and only
 

if <G1, A> is complete where Gl C G.

Example IV.4.9 The following problem illustrates an

extrinsic problem. "Compute the area of a farmer's field

knowing that the field is 147 yards long, that the field

has 4 cows grazing under 3 trees, and that the field is

53 yards wide." The answer {area of a field} can be

computed from the givens {147 yards long, 53 yards wide}

which is a proper subset of {147 yards long, 53 yards

wide, 4 cows, 3 trees}.

Extrinsic problems are appropriate problems to give

students. The student must learn to discriminate the

necessary information from the random noise. This

discrimination alters the usual problem solving approach

of most students which is to use all information stated
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in a problem to solve that problem.

All problems that exist in a pedagogic knowledge

representation can be described as the sentential forms

of a meta-grammar that is derived from the representation.

The meta-grammar describes all possible G's for a given A.

Let the meta-grammar GRPROBA = <Vt, Vn' PGR’ SGR> where

Vt is the set of terminal symbols, Vn is the set of

non-terminal symbols, P is the set of productions, and
GR

SGR is the distinguished symbol. The mapping from a

pedagogic knowledge representation to GRPROB is

A

vt = d

V = D

n

SGR = a1 . . . an where A = {ai for l S 1 e n}

PGR is formed by the mapping

n m ,

For every ( H d., H d.) e T(p),
._ 1 ._ 3
1-1 j-l

I

dj ::= dl . . . dn for 1 S j s an

There are no terminal symbols since the givens are described

by the sentential forms of GRPROB . The m productions that

A

result for every element in T(p) of the form

In I I

d., H dj) indicate that dj is computed from(

l l j=li "
:
1
5

d1 X . . . X dn by some procedure.

Let SF(G ) be the set of sentential forms for
RPRoaA

A and let sfi be in SF(GRPROBA). <G, A> 18 complete

if for every element gj in G, gj is also a symbol in Sfi'

GRPROB

and every symbol in sfi is in G. <G, A> is extrinsic if
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every symbol in sfi is in G but there is at least one

element 93. in G that is not a symbol in Sfi'

Example IV.4.10 Consider the relations

T(Pl) = {(d1, d2)}

T(92’ = {(ds x d6 x d7' d4 x d1)' (d5 x d6 x d10'

d4 X dl)}

T(P3) = {(d8, d6), (all, d6)}

T(P4) = {(dgl dll)’ (d9! d8)}

The productions of GRPROB are:

A

d2 ::= d1 d4 ' = (15 d6 d7 d4 °.= d5 d6 dlo

d6 ::= d8 d1 :.- d5 d6 d7 d1 °.= d5 d6 d10

d6 ::= dll d11 . = (19 d8 ::= d9

The sentential forms for GRPROB{d } are

2

SF(GRPROB{ }’ = {d2' d1' d5 d6 d7' d5 d6 dlords d8 7'
.d
2

d5 d11 d10' d5 d9 d7' d5 d9 d1o}‘

The problem <{d5, d7, dlo}, {d2}> is complete; the problem

<{d8, dlo}, {d2}> is not complete; and the problem

<{d4, d5, d9, d7}, {d2}> is extrinsic.

IV.5 Solutions

The solution process of a pedagogic representation is

viewed as a two step process. The first step is the

construction of a plan to solve the stated problem. The

second step is the execution of that plan. The execution

of a plan is viewed as a successive application of procedures

to single or multiple declarative concepts which results in

declarative concepts that answer the problem.
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Definition IV.5.1 A solution planning sequence,
 

denoted by 4£ for the problem <G, A> is a sequence of

declarative and procedural concepts that represent a

plan for solving the problem.

J represents all the procedures and data structures

that are necessary to compute the answer for the problem

<G, A>. ,J is composed of sub-solution planning sequences.

Definition IV.5.2 A sub-solution planning sequence

n m
I

IS the sequence (dl . . . dn) pk where (igldi, jgldj) c T(pk).

The parentheses are used to indicate all declarative

concepts upon which pk Operates. If pk only operates on a

single declarative concept, then the sub-sequence d1 pk

is used. The lack of parentheses in the latter case does

not result in any ambiguity within a solution planning

sequence.

Example IV.5.3 Consider the relations

T(pl)

T(PZ)
“as " as x d7' d1 " d4" (d5 " d6 x le'

d1 X d4)}

T(P3) = {(d8, d6), (dll'.d6)}

T(P4) = {(dg, dlll, (dlz, d8)}

A solution planning sequence for the problem <{d9}, {d6}>

is the sequence d9 p4 p3. For the problem <{d5, d9, d101,

(cl, d4}>, J is (d5 d9 p4 p3 c110) p2.

If <G, A> is complete and not extrinsic, every

element in G is also in.gfi and every declarative concept

in J is also an element in G. Thus G and ,4? have identical

declarative concepts. If <G, A> were extrinsic, then G
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would have some declarative concepts that were not in,J.

If <G, A> is not complete, then.J would not exist by

Definition IV.5.1.

Definition IV.5.4 The execution pf 3 sub-solution
 
 

 

planning sequence (dl . . . dn) pk, denoted as

u n m .

5((d1 . . . dn) pk), 15 dj for some 3 where (igldi, jEldj)

c T(pk).

If 4f= sl . . . (dl . . . dn) pk . . . sn, then

t(dl . . . dn) pk results 1n.{f= sl . . . dj . . . sn

I

where dj is a declarative concept in the range of pk. The

execution of a sub-solution planning sequence is a

non-deterministic process since any declarative concept

in the range of pk can result from the execution of a

sub-solution planning sequence.

 

Definition IV.5.5 The execution ngflfi €(J3, is

the composition of executions of sub-solution planning

sequences.

Example IV.5.6 Using the relations in Example IV.5.3

and the sequence (19 p4 p3, the sub-solution planning

sequence is d9 p4. €(d9 p4) results in all“ The partially

completed solution planning sequence is d11 p3. £(dll p3)

yields d which is the answer to the problem <{d9}, {d6}>.
6

For the problem <{d5, d d {d1, d4}>, the solution
9' 10}’

p1ann1ng sequence 1s ((15 d9 p4 p3 dlo) p2 (d5 d9 p4 p3

The partial progress of a student solving a problem

can be monitored. Suppose a student is solving the

problem <{d5, d d10}' {dl}>. At each step in the
9'
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solution of the problem, the student's progress can be

monitored by the completion of each sub-problem's solution

which corresponds to the execution of a sub-solution

planning sequence. Various scenarios could be incorporated

in a generative instructional system that uses the execution

of solution planning sequences to monitor or guide a

student through the solution of a problem.

The identification of’gffor a <G, A> is the planning

process of solving a problem. ,J'describes how the computation

of the answer will be accomplished. J is not necessarily

unique. There may exist several solution planning

sequences for a given problem. The execution of a solution

planning sequence is also not necessarily unique. There may

be several sub-solution planning sequences in a solution

planning sequence that could all be executed next. Thus

there may be more than one plan for solving a problem and

more than one manner in carrying out that plan.

Definition IV.5.7 A simple solution planning
 

seguence is a solution planning sequence that contains

one basic procedural concept.

Definition IV.5.8 A complex solution planning
 

seguence is a solution planning sequence that contains

more than one basic procedural concept.

Example IV.5.9 Using the relations in Example IV.5.3,

the problem <{d1}, {d2}> has a simple solution planning

sequence, namely d1 pl. The problem <{d5, d d {d1}>
9' 10}'

has a complex solution planning sequence, namely

(d5 d d
9 P4 p3 10’ p2°



95

A solution planning sequence for the problem <G, A>

can be derived as a sentential form of a meta—grammar

called GRSPSA’ Let GRSPSA = <V

Vn’ PGR' and SGR

as in Section IV.4. V

S > where V

vn' PGR' GR t'
t!

represent the same grammatical entities

t’ Vn’ PGR' and SGR are defined as

E U {(, )}< ll

GR 1 . . . an where A = {a1, . . . , a }

PGR is constructed via the mapping

n m ,

For every ( H di' H d.) e T(p)

i=1 j=1 3

'..= 4'
dj .. (dl . . . dn) p for l - j e m.

If n = 1, then the parentheses may be omitted from the

right hand side of the production.

Example IV.5.lO From Example IV.5.3 the following

productions will result from the relations:

d2 ::= d1 pl (11 ::= (d5 d6 d7) p2

d1 ::= (d5 d6 dlo) p2 d4 ::= (d5 d6 67) P2

d4 ::= (d5 d6 le) P2 d6 33? d3 P3

d6 ::= d11 p3 d11 ' = d9 94

d8 “= d12 P4

Each "asked for" has its own meta-grammar that

describes all the solution planning sequences for computing

that declarative concepts. The sentential forms for

GRSPS , SF(GR ), are all the solution planning sequences

A A

for A. For the problem <G, {d2}>

SP8

2

(d5 d8 P3 d7) p2 91' (d5 d11 p3 d7) p2 P1'
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(d5 d12 P4 p3 d7) 92 91' (d5 d9 94 p3

The only simple solution planning sequence for the problem

<G, {d2}> is (11 pl. The other solution planning sequences

are complex.



CHAPTER V

CONCLUS ION

V.l Summary

The processes of a pedagogic representation are

illustrated by the construction Operations III.2.l

through III.2.8. WLOG the domains and ranges of the

procedural concepts are simplified to single elements.

Operation III.2.l,

d   1 pl 9. d2 and d2 )- d3

yields dl   

illustrates the combination of two simple problems

to yield the complex problem <{dl}, {d3}> whose solution

planning sequence is d1 p1 p2. The implication of the

above operation is that the procedural concepts p1 and

p2 are meaningful in the subject area as the composition

P2 P1-

Operation III.2.2, III.2.4, and III.2.5 do not

yield additional problems but do provide additional

pedagogic knowledge about the subject area. These

operations help to connect a representation which reflects

the connected nature of the subject area.

Operation III.2.3,

97
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d p >5 e and d

l J\

f

yields d >— e ,

J\ pl

f

illustrates the problem <{f}, {e}> in the subject area.

Considering the resulting diagram, one may speculate

that there exists a subset of e such that pl maps f

into this subset. Such speculation is strictly subject

area dependent and is not treated in this development.

In a similar manner, Operation III.2.6,

 

 

(1 p1 > e and g

e

yields 9

d p .>> 4? .

1

illustrates the problem <{d}, {g}> in the subject area.

The last two operations illustrate problems that could

be called "mis-named" problems because the domain or range

of the problem is mis-named, i.e. d is named f, and e

is named g.

Operations III.2.7 and III.2.8,

d )>. e and e

Pi
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yields d >- e

Pl es». g

f p2

and e and f p2 + g

d :=

P

1 f

yields e

d p :=

l
f i g ,

p2

respectively, illustrate problems where the "givens"

or "asked fors" are not in the same domain or range

of a single procedure. From Operation III.2.7 the

problems <{d, f}, {g}> and <{d, f}, {e, g}> are identified.

From Operation III.2.8 the problem <{d}, {g}> indicates

that the declarative concept e is extraneous to the

solution of the problem.

V.2 Extensions

There are several areas in which the results of this

work is inadequate. Consider the diagram below:

———_>

j:G LD CFL

RG RL

where

D = {context-free grammar(CFG), context-free

language(CFL), regular grammar(RG), regular

language(RL)}
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and

P = {language determination(LD)}.

The indicated and implied transformations are

LD: CFG«-—v-CFL

and

LD: RG——>—CFL ,_

respectively.

Because of the particular subject area, one would

like to conclude that

LD: RG——>-RL .

In general, the above desired conclusion does not hold

in all subject areas but does appear to hold in specific

instances. The mathematics do not allow the above

conclusion. An alternate formulation with perhaps

additional information would broaden the possible

implications that could be drawn from a given representation.

Such an alternate formulation might involve a different

treatment of the procedural concepts. The information

necessary for the correct implication is imbedded in the

procedural concepts. Thus some alternate formulation

of the information in the procedural concepts might

lead to identifying the appropriate conclusion.

The current work did not consider the components of

the basic procedural concepts. An analysis of the basic

procedural concepts might lead to a fundamental

understanding of their mapping implications, their

components, and the appropriate situations for their

applicability. Two subject areas with a limited number
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of basic procedural concepts could be examined to determine

the fundamental components of the procedures. The identi-

fication of the fundamental processes might lead to a

basic understanding of the two subject areas and a basic

understanding of whatever commonality might exist between

them.
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Non-repetitive Functional Composition for the

Subject Area "Angles"

r s s S S c c A

x x x x x x x x

D t t s c r A S d r t r t r t r

0 pl 0 0 0 0 0 0 0 0 0 0 O 0 0 0

p7 0 O 0 0 O 0 0 0 O 0 O 0 0 O 0

0 0 0 p2 O 0 0 p5 0 0 0 0 0 0 0 0

0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 p3 O O 0 0 O O 0 0 0 0

0 0 0 0 p10 0 p4 0 p14 0 0 0 0 0 0 0

0 0 0 0 0 p11 0 O 0 0 O 0 0.0 0 0

0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 p6 O 0 0 0 O 0 0 0 0 O

0 p8 0 0 0 0 O O O 0 0 0 0 O 0 0

0 0 0 0 0 p9 0 O 0 0 0 0 0 O 0 O

0 p12 0 0 0 0 0 0 0 0 0 O 0 0 0 0

0 0 0 0 0 p13 0 0 0 0 0 O 0 0 0 O

0 0 0 0 0 O 0 0 0 0 0 0 0 O 0 O

O 0 0 0 O 0 0 O 0 0 0 0 0 0 0 0

0 0 O 0 0 0 0 0 0 0 0 0 O 0 O 0

0 O 0 O 0 0 O O 0 0 0 0 O 0 O 0
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D t

0 p1

p, o

0 0

0 O

O O

0 O

0 0

O 0

O O

0 p8

0 0

0 p12

0 0

0 p8

0 0

0 p12

0 0

fi
'
X
H

O
0
0

O

S C

o o

o 0

P2 0

o o

O 0

p10 p10

0 o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o
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0 O 0 0

0 0 O O

0 0 p50

0 0 0 0

p11 0 0 0

0 O 0 0

p6 0 0 0

0 0 0 0

p9 0 0 0

0 O 0 0

p13 0 O 0

0 O 0 0

p9 O 0 0

0 0 O 0

H
'
X

C
O
O

O
O
O
O
O
O
O
O
O
O
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O
O
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O
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0

137138

p7912

p8+plp798

p12+p1p7p12

(
T
X
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p2

o

p1093+p10911p4p3+

piopspl4p3+

plopepl4p1lp4p3+

p10p11p4p6pl4p3

p1o+p1op1lp4+

91096914+

plopsp14pllp4+

p109119496914

p10911+p1opep14p11

o

p1ope+Piop1lp4ps

0

p1op9+910911914p9+

p109691499+

p10969149119499+

p1op1194pep1499

0

p1opl3+piop11p4p13

+p1096914913+

p1opspi4p11p4pl3+

p1op1lp496914p13

0

0

p1093+p1op11p4p3+

p1013691493+

p10p6pl4pllp4p3+

p10p11p4p6p14p3

p10+P1op1lp4+

91096914+

p1096914911134+

p109119496914

p1099+p10911914p9+

p10p6P14p9+

91096914911P4p9+

p10911949691499

0

p10913+Piopllp4p13

+p1096914913+

p109691491194913+

p109119496914913



I?

n

D

c x r p.7p8

c x t 0

A x r

p7912

A x t 0

i .

MT cont1nued

31

t

pa+plp7p8

p12+pip7912

O
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p10p9+p10p11p4p9

+p109691499+

p10p6914p11p4p9+

p10911949691499

0

p10p13+p1oP11p4p13

+p1opspi4p13+

p1opspl4pllp4p13+

p109119496914913

p10p9+P1op1194p9

+p1opepl4p9+

p10p6pl4pllp4p9+

p10911949691499

0

p10913+p1091194p13

+Plopsp14p13+

p1096914911941’13+

p109119496914913
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continued

0

p3+p11p4p3+psp14p3+pep14pl1p4p3+p11p4pepl4p3

p3plo+plip4+96914+91194p3plo+pepi4p3P1o+p3p1091194+

p6914pl1p4+p3plopsp14+911P4PSP14+96914P119493910+

p11949691493pio+pep14p391091194”)39109691491194+

p1194p391096914+p3p1op119496?“

pll+p3p10pll+p6pl4pll+p6pl4p3p10pl1+p3p10p6p14p11

o

p6+P3plops+911p4ps+Pllp4P3piope+P3p1op119496

o

p9+p3plop9+p1lp4p9+91194P3p1op9+96P14P3piop9+

p691499”)3910911p4p9+pepl4pllp4p9+p39109691415+

p1194PSP14P9+PSP14P1194P3p1ope+pspl4p3p1op11p4p9+

p1194p3plopep14p9+93910911949691499

o

p13+P1ip4p13+p6914p13+P3plop13+96914p11p4p13+

p119496P14913+P11P4P3plop13+psp14p3910913+

P391096914P13+P3P1op1194913+Psp14pllp4pap1opl3+

p119496?14P3P1o+PSP14p391091194913+P3P1096P14P1194p13

p11P4P3p1opsp14p13+939109119496914913

+

0
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continued

p9+p3p1op9+p11p4p9+p1194p3p1op9+pspl4p3plop9+

p6914994”?3p1op11p4p9+psp14p1194p9+p3p1op6914p9+

p1194p6914p9+pep14p1lp4p3p1099+96914p3910p119499+

p11P4P3p1opsp14P9+p3plop11p4pspl499

o

913+p1lp4p13+96p14p13+p3p10913+psp14p1lp4913+

p1194p6p14913+911p4p3p1opl3+pep14p3p1opl3+

p391096914913+p3p10911p4p13+96914p11p4p3p1op13+

p11949691493p1o+Pep14p3p1opilp4p13+p39109691491194?13

p119493910969141313+p3p1opilp4pspl4p13

+
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k
a

\
.

X

i .

MT cont1nued

n

0
0
>
l

0

p4P3+p4pep14p3

p4+p4p3p1o+9496914

+p49691493910+

p49391096914

p4p1l+p4p3p1op11+

P4pepi4pl1+

p4pepl4p3plop11+

p4P3P1op6914p11

o

p4PS+P4P3P1096

0

p4p9+p4p3plop9+

P496914P9+

p4p6pl4p3p10p9+

P4939109691499

o

P4p13+p4pepl4913+

94939103313+

949691493910913+

p49391096914913

109

ps

0

p4p3+p4pep14p3

p4+p4p3pio+P496p14

+P4pepl4p3p1o+

P49391096914

p4911+p4p3910911+

p4p6pl4pll+

p49691493910911+

p49391096914911

o

p4ps+P4paploP6

o

p499+p4p3p1op9+

p496P14P9+

p496914p3p1op9+

p4pap1opspl4p9

o

P4P13+p496914913+

p493910913+

p496p14p3p1op13+

p49391096914913

o

pl4p3+pl4pllp4p3

p14+P14P3910+P14pl1p4

+p149119493910+

P14p3plop1ip4

p14911+P14P3P10911

o

p1496+p14p3plope+

p14P11p4ps+

p14911949391096+

p14939109119496

o

p1499+pl4p3p1op9+

p14911P4P9+

p14911949391099+

p14939109119499

o

p14913+p14p11p4913+

p1493910913+

p“9119493910913+

p1493plop11p4p13
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